WorldWideScience

Sample records for group a-3 bacteria

  1. OXIDASE REACTION OF VARIOUS GROUPS OF BACTERIA.

    Science.gov (United States)

    Felton, L D

    1923-08-31

    1. A simple technique is described for studying the oxidase action of bacteria by means of the oxidation of p-aminoleucomalachite green. 2. It is shown that pneumococci under aerobic conditions produced an oxidase when grown on suitable medium. The sera of any of seven different animal species constitute such a medium, the degree of oxidation by the pneumococcus depending upon the animal from which the serum was taken-rat, guinea pig, rabbit, horse, man, cat, and chicken in order of diminishing suitability. 3. Conditions favoring the oxidation of p-aminoleucomalachite green by a single strain of pneumococci are: the presence of a slight amount of hemoglobin, dextrose, H ion concentration on the add side, and heating of fresh serum for 30 minutes at 56 degrees C. Conditions preventing the oxidation are: sterilized meat infusion, 1 per cent peptone, plain broth, a high concentration of hemoglobin, and absence of oxygen. In a quantitative fashion, meat infusion, 1 per cent peptone, and plain broth interfere with the suitability of serum as a substratum of oxidase production by the pneumococcus. 4. Twenty-three microbic species were studied with reference to oxidative power. They were grown upon 10 per cent horse serum, with and without dextrose, upon 10 per cent guinea pig serum, and upon plain broth. Only three of the twenty-three gave evidence of oxidative power as tested by p-aminoleucomalachite green; namely, the pneumococcus, Streptococcus viridans, and Streptococcus haemolyticus. Among the strains, of these three pneumococci gave the most intense reaction, after which Streptococcus viridans and Streptococcus haemolyticus follow in the order named, but with a noticeable variation among the different strains of Streptococcus haemolyticus. 5. Hemolytic streptococci of human and bovine origin were studied. The only variation in the type of reaction was manifested by the streptococci of milk and cheese origin. Strains from these sources showed definitely the least

  2. Mechanism of cell alignment in groups of Myxococcus xanthus bacteria

    Science.gov (United States)

    Balgam, Rajesh; Igoshin, Oleg

    2015-03-01

    Myxococcus xanthus is a model for studying self-organization in bacteria. These flexible cylindrical bacteria move along. In groups, M. xanthus cells align themselves into dynamic cell clusters but the mechanism underlying their formation is unknown. It has been shown that steric interactions can cause alignment in self-propelled hard rods but it is not clear how flexibility and reversals affect the alignment and cluster formation. We have investigated cell alignment process using our biophysical model of M. xanthus cell in an agent-based simulation framework under realistic cell flexibility values. We observed that flexible model cells can form aligned cell clusters when reversals are suppressed but these clusters disappeared when reversals frequency becomes similar to the observed value. However, M. xanthus cells follow slime (polysaccharide gel like material) trails left by other cells and we show that implementing this into our model rescues cell clustering for reversing cells. Our results show that slime following along with periodic cell reversals act as positive feedback to reinforce existing slime trails and recruit more cells. Furthermore, we have observed that mechanical cell alignment combined with slime following is sufficient to explain the distinct clustering patterns of reversing and non-reversing cells as observed in recent experiments. This work is supported by NSF MCB 0845919 and 1411780.

  3. Transmission of specific groups of bacteria through water distribution system.

    Science.gov (United States)

    Grabińska-Łoniewska, Anna; Wardzyńska, Grazyna; Pajor, Elzbieta; Korsak, Dorota; Boryń, Krystyna

    2007-01-01

    Microbial contamination of a water distribution system was examined. The number and the taxonomy of non-pigmented and pigmented heterotrophic bacteria (HB), number of bacteria (Pseudomonas sp., Enterococcus sp., Campylobacter sp., Yersinia sp., representatives of the Enterobacteriaceae, coagulase-positive staphylococci, and C. pefringens) in the bulk water phase, biomass of zoogloeal aggregates of bacteria, fungi, algae, protozoa and rotifers (ZABFAPR) (separated from the above on 5 microm pore size filters) and in pipe sediments was determined. An increased number of HB occurred at the sampling sites situated as close as 4.2 km to the Water Treatment Plant (WTP), and was especially significant at 10.3 km. It was shown that the main reservoir of hygienically relevant bacteria did not occur in the water phase which is monitored in routine control analyses carried out by the WTP laboratories, but in the ZABFAPR biomass not monitored so far.

  4. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance.

  5. Antimicrobial effect of Salvia officinalis L. against selected group of bacteria isolated from chickens meat

    Directory of Open Access Journals (Sweden)

    Jana Petrová

    2013-10-01

    Full Text Available The effect of Salvia officinalis L. essential oil as well as vacuum packaging in extending the shelf life of fresh chicken’s breast meat stored at 4 °C was investigated. In a preliminary experiment Salvia officinalis L. essential oil  were used at concentrations 2% v/w while vacuum packaging. Microbiological properties of fresh chicken breast meat were monitored over a 16 days period. For this experiment three groups were used. First group was control with air packaging second was with vacuum packaging condition and was treated with essential oil on the surface of fresh chicken breast meat. From the microbiological indicators in this experiment total count of bacteria and coliform bacteria were observed. The total count of bacteria on the meat after killing animals was 2.97 log cfu.g-1 and number of coliform bacteria was 0.33 log cfu.g-1. The total count of bacteria on the chicken breast meat after 4, 8, 12 and 16 days gradually increased. The same number of coliform bacteria in extending self-life gradually increased. The highest number of both groups of microorganisms was in the control group with air condition and lowest number of both bacterial groups was in the group with salvia essential oil treatment.

  6. Simple groups with orders 2a3b5cpd,2a3b7cpd and 2a3b5c7d

    Institute of Scientific and Technical Information of China (English)

    JIANG Youyi; TAN Mingshu; LIU Xuefei

    2004-01-01

    This work deals with the power exponent r1 and r2 respectively of the maximal and second-maximal prime factors of the order of simple K4-group, and the classification for simple {5,7}'- K4-group G (i.e. |G| can not be divided by 5 nor by 7 or |π(G)| = 4 ), simple 5' - K4 -group G (i.e. |G| can not divided by 5 and |π(G)| =4) and simple 7'- K4 -group G (i.e. |G| can not divided by 7 and |π(G)| =4). It is derived that r1 =1, 2 and 4, and r2 is not greater than 4. All the simple K4 -groups with order 2a3b5cpd, 2a3b7cpd and 2a3b5c7d are obtained.

  7. A 3-hydroxy β-end group in xanthophylls is preferentially oxidized to a 3-oxo ε-end group in mammals.

    Science.gov (United States)

    Nagao, Akihiko; Maoka, Takashi; Ono, Hiroshi; Kotake-Nara, Eiichi; Kobayashi, Miyuki; Tomita, Mie

    2015-02-01

    We previously found that mice fed lutein accumulated its oxidative metabolites (3'-hydroxy-ε,ε-caroten-3-one and ε,ε-carotene-3,3'-dione) as major carotenoids, suggesting that mammals can convert xanthophylls to keto-carotenoids by the oxidation of hydroxyl groups. Here we elucidated the metabolic activities of mouse liver for several xanthophylls. When lutein was incubated with liver postmitochondrial fraction in the presence of NAD(+), (3'R,6'R)-3'-hydroxy-β,ε-caroten-3-one and (6RS,3'R,6'R)-3'-hydroxy-ε,ε-caroten-3-one were produced as major oxidation products. The former accumulated only at the early stage and was assumed to be an intermediate, followed by isomerization to the latter. The configuration at the C3' and C6' of the ε-end group in lutein was retained in the two oxidation products. These results indicate that the 3-hydroxy β-end group in lutein was preferentially oxidized to a 3-oxo ε-end group via a 3-oxo β-end group. Other xanthophylls such as β-cryptoxanthin and zeaxanthin, which have a 3-hydroxy β-end group, were also oxidized in the same manner as lutein. These keto-carotenoids, derived from dietary xanthophylls, were confirmed to be present in plasma of normal human subjects, and β,ε-caroten-3'-one was significantly increased by the ingestion of β-cryptoxanthin. Thus, humans as well as mice have oxidative activity to convert the 3-hydroxy β-end group of xanthophylls to a 3-oxo ε-end group. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Evaluation of some natural products on sugar beet contamined with coliform bacteria group

    Directory of Open Access Journals (Sweden)

    Rogéria Maria Alves de Almeida

    2006-08-01

    Full Text Available The sugar beet crop has great importance because its ability on sugar production that can be extracted and crystallized. The use of wastewater in the irrigation has increased because this water has some nutrients sources. However the use of wastewater may cause some health problems due to the presence of coliform bacteria group. In this trial, the objective was to contribute for the sugar beet decontamination. Some products as lemon juice, NaClO and ascetic acid were used by sugar beet immersion during a little time. In conclusion, the lemon juice showed best results by reducing coliform bacteria group.

  9. Crystalliferous Bacillus cereus group bacteria from a Maryland hardwood forest are dominated by psychrotolerant strains.

    Science.gov (United States)

    Blackburn, Michael B; Martin, Phyllis A W; Kuhar, Daniel; Farrar, Robert R; Gundersen-Rindal, Dawn E

    2014-08-01

    Crystal-forming bacteria of the Bacillus cereus group were isolated from soil samples collected at different elevations within a mixed hardwood forest in central Maryland, and their phylogenetic relationships determined by multilocus sequence analysis. The vast majority of isolates obtained were associated with two phylogenetic groups known to be psychrotolerant, with very few isolates representing phylogenetic groups more typically associated with Bacillus thuringiensis. Isolates from the psychrotolerant groups were found to grow on solid media at 7 °C. Isolates of 11 highly related, novel sequence types (STs) from the psychrotolerant group that includes Bacillus weihenstephanensis were generally found at higher elevations, and were not associated with soils near streams. Isolates of two related STs from the second psychrotolerant group were nearly always found at the bottoms of ravines near streams, in areas abundant in earthworm castings.

  10. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products.

    Science.gov (United States)

    Capozzi, Vittorio; Russo, Pasquale; Dueñas, María Teresa; López, Paloma; Spano, Giuseppe

    2012-12-01

    Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed.

  11. A 3-Component Approach Incorporating Focus Groups in Strategic Planning for Sexual Violence Prevention.

    Science.gov (United States)

    Cruz, Theresa H; Hess, Julia Meredith; Woelk, Leona; Bear, Samantha

    2016-01-01

    Sexual violence is of special concern in New Mexico because of the presence of large priority populations in which its prevalence is high. This article describes a 3-component approach to developing a strategic plan to prevent sexual violence in the state that consisted of an advisory group, subject matter experts, and focus groups from geographically and demographically diverse communities. Both common and community-specific themes emerged from the focus groups and were included in the strategic plan. By incorporating community needs and experiences, this approach fosters increased investment in plan implementation.

  12. RESERCH CONCERNING THE ESTIMATE OF QUANTITATIVE AND QUALITATIVE PHYSIOLOGICAL GROUP BACTERIA IN PEATS SAMPLE

    Directory of Open Access Journals (Sweden)

    ADRIANA CRISTE

    2013-12-01

    Full Text Available The total aerobe micro flora can be determined on solid mediums for the aerobe bacteria and this relive quantity of micro organisms from the peat samples. The quantitative evaluation was done using solid nutritive mediums which allows the estimation of nr CFU/g as well observing the morphology of the colonies and their utility through their emplacement and morphological and biochemical characterization of isolated strains.. The evaluations where done through the method of dilution, using selective liquid mediums. Every day the characteristic reaction of the respective group was observed, either through the metabolising of the substrate, or through the appearance of a catabolic product in the medium.

  13. The Antituberculosis Drug Ethambutol Selectively Blocks Apical Growth in CMN Group Bacteria

    Science.gov (United States)

    Schubert, Karin; Sieger, Boris; Meyer, Fabian; Giacomelli, Giacomo; Böhm, Kati; Rieblinger, Angela; Lindenthal, Laura; Sachs, Nadja; Wanner, Gerhard

    2017-01-01

    ABSTRACT Members of the genus Mycobacterium are the most prevalent cause of infectious diseases. Mycobacteria have a complex cell envelope containing a peptidoglycan layer and an additional arabinogalactan polymer to which a mycolic acid bilayer is linked; this complex, multilayered cell wall composition (mAGP) is conserved among all CMN group bacteria. The arabinogalactan and mycolic acid synthesis pathways constitute effective drug targets for tuberculosis treatment. Ethambutol (EMB), a classical antituberculosis drug, inhibits the synthesis of the arabinose polymer. Although EMB acts bacteriostatically, its underlying molecular mechanism remains unclear. Here, we used Corynebacterium glutamicum and Mycobacterium phlei as model organisms to study the effects of EMB at the single-cell level. Our results demonstrate that EMB specifically blocks apical cell wall synthesis, but not cell division, explaining the bacteriostatic effect of EMB. Furthermore, the data suggest that members of the family Corynebacterineae have two dedicated machineries for cell elongation (elongasome) and cytokinesis (divisome). PMID:28174310

  14. Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor

    Science.gov (United States)

    Nielsen, Alex T.; Liu, Wen-Tso; Filipe, Carlos; Grady, Leslie; Molin, Søren; Stahl, David A.

    1999-01-01

    The microbial diversity of a deteriorated biological phosphorus removal reactor was investigated by methods not requiring direct cultivation. The reactor was fed with media containing acetate and high levels of phosphate (P/C weight ratio, 8:100) but failed to completely remove phosphate in the effluent and showed very limited biological phosphorus removal activity. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA was used to investigate the bacterial diversity. Up to 11 DGGE bands representing at least 11 different sequence types were observed; DNA from the 6 most dominant of these bands was further isolated and sequenced. Comparative phylogenetic analysis of the partial 16S rRNA sequences suggested that one sequence type was affiliated with the alpha subclass of the Proteobacteria, one was associated with the Legionella group of the gamma subclass of the Proteobacteria, and the remaining four formed a novel group of the gamma subclass of the Proteobacteria with no close relationship to any previously described species. The novel group represented approximately 75% of the PCR-amplified DNA, based on the DGGE band intensities. Two oligonucleotide rRNA probes for this novel group were designed and used in a whole-cell hybridization analysis to investigate the abundance of this novel group in situ. The bacteria were coccoid and 3 to 4 μm in diameter and represented approximately 35% of the total population, suggesting a relatively close agreement with the results obtained by the PCR-based DGGE method. Further, based on electron microscopy and standard staining microscopic analysis, this novel group was able to accumulate granule inclusions, possibly consisting of polyhydroxyalkanoate, inside the cells. PMID:10049891

  15. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria.

    Science.gov (United States)

    Hodgson, D A

    2000-01-01

    Streptomycetes are Gram-positive bacteria with a unique capacity for the production of a multitude of varied and complex secondary metabolites. They also have a complex life cycle including differentiation into at least three distinct cell types. Whilst much attention has been paid to the pathways and regulation of secondary metabolism, less has been paid to the pathways and the regulation of primary metabolism, which supplies the precursors. With the imminent completion of the total genome sequence of Streptomyces coelicolor A3(2), we need to understand the pathways of primary metabolism if we are to understand the role of newly discovered genes. This review is written as a contribution to supplying these wants. Streptomycetes inhabit soil, which, because of the high numbers of microbial competitors, is an oligotrophic environment. Soil nutrient levels reflect the fact that plant-derived material is the main nutrient input; i.e. it is carbon-rich and nitrogen- and phosphate-poor. Control of streptomycete primary metabolism reflects the nutrient availability. The variety and multiplicity of carbohydrate catabolic pathways reflects the variety and multiplicity of carbohydrates in the soil. This multiplicity of pathways has led to investment by streptomycetes in pathway-specific and global regulatory networks such as glucose repression. The mechanism of glucose repression is clearly different from that in other bacteria. Streptomycetes feed by secreting complexes of extracellular enzymes that break down plant cell walls to release nutrients. The induction of these enzyme complexes is often coordinated by inducers that bear no structural relation to the substrate or product of any particular enzyme in the complex; e.g. a product of xylan breakdown may induce cellulase production. Control of amino acid catabolism reflects the relative absence of nitrogen catabolites in soil. The cognate amino acid induces about half of the catabolic pathways and half are constitutive

  16. Personality composition alters the transmission of cuticular bacteria in social groups.

    Science.gov (United States)

    Keiser, Carl N; Howell, Kimberly A; Pinter-Wollman, Noa; Pruitt, Jonathan N

    2016-07-01

    The initial stages of a disease outbreak can determine the magnitude of the ensuing epidemic. Though rarely tested in unison, two factors with important consequences for the transmission dynamics of infectious agents are the collective traits of the susceptible population and the individual traits of the index case (i.e. 'patient zero'). Here, we test whether the personality composition of a social group can explain horizontal transmission dynamics of cuticular bacteria using the social spider Stegodyphus dumicola We exposed focal spiders of known behavioural phenotypes with a GFP-transformed cuticular bacterium (Pantoea sp.) and placed them in groups of 10 susceptible individuals (i.e. those with no experience with this bacterium). We measured bacterial transmission to groups composed of either all shy spiders, 10% bold spiders or 40% bold spiders. We found that colonies with 40% bold spiders experienced over twice the incidence of transmission compared to colonies with just 10% bold individuals after only 24 h of interaction. Colonies of all shy spiders experienced an intermediate degree of transmission. Interestingly, we did not detect an effect of the traits of the index case on transmission. These data suggest that the phenotypic composition of the susceptible population can have a greater influence on the degree of early transmission events than the traits of the index case. © 2016 The Author(s).

  17. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters.

    Science.gov (United States)

    Ferrera, Isabel; Gasol, Josep M; Sebastián, Marta; Hojerová, Eva; Koblízek, Michal

    2011-11-01

    Growth is one of the basic attributes of any living organism. Surprisingly, the growth rates of marine bacterioplankton are only poorly known. Current data suggest that marine bacteria grow relatively slowly, having generation times of several days. However, some bacterial groups, such as the aerobic anoxygenic phototrophic (AAP) bacteria, have been shown to grow much faster. Two manipulation experiments, in which grazing, viruses, and resource competition were reduced, were conducted in the coastal Mediterranean Sea (Blanes Bay Microbial Observatory). The growth rates of AAP bacteria and of several important phylogenetic groups (the Bacteroidetes, the alphaproteobacterial groups Roseobacter and SAR11, and the Gammaproteobacteria group and its subgroups the Alteromonadaceae and the NOR5/OM60 clade) were calculated from changes in cell numbers in the manipulation treatments. In addition, we examined the role that top-down (mortality due to grazers and viruses) and bottom-up (resource availability) factors play in determining the growth rates of these groups. Manipulations resulted in an increase of the growth rates of all groups studied, but its extent differed largely among the individual treatments and among the different groups. Interestingly, higher growth rates were found for the AAP bacteria (up to 3.71 day⁻¹) and for the Alteromonadaceae (up to 5.44 day⁻¹), in spite of the fact that these bacterial groups represented only a very low percentage of the total prokaryotic community. In contrast, the SAR11 clade, which was the most abundant group, was the slower grower in all treatments. Our results show that, in general, the least abundant groups exhibited the highest rates, whereas the most abundant groups were those growing more slowly, indicating that some minor groups, such the AAP bacteria, very likely contribute much more to the recycling of organic matter in the ocean than what their abundances alone would predict.

  18. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    Science.gov (United States)

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  19. B-group vitamin production by lactic acid bacteria--current knowledge and potential applications.

    Science.gov (United States)

    LeBlanc, J G; Laiño, J E; del Valle, M Juarez; Vannini, V; van Sinderen, D; Taranto, M P; de Valdez, G Font; de Giori, G Savoy; Sesma, F

    2011-12-01

    Although most vitamins are present in a variety of foods, human vitamin deficiencies still occur in many countries, mainly because of malnutrition not only as a result of insufficient food intake but also because of unbalanced diets. Even though most lactic acid bacteria (LAB) are auxotrophic for several vitamins, it is now known that certain strains have the capability to synthesize water-soluble vitamins such as those included in the B-group (folates, riboflavin and vitamin B(12) amongst others). This review article will show the current knowledge of vitamin biosynthesis by LAB and show how the proper selection of starter cultures and probiotic strains could be useful in preventing clinical and subclinical vitamin deficiencies. Here, several examples will be presented where vitamin-producing LAB led to the elaboration of novel fermented foods with increased and bioavailable vitamins. In addition, the use of genetic engineering strategies to increase vitamin production or to create novel vitamin-producing strains will also be discussed. This review will show that the use of vitamin-producing LAB could be a cost-effective alternative to current vitamin fortification programmes and be useful in the elaboration of novel vitamin-enriched products. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Conjugated Polyelectrolytes with Imidazolium Solubilizing Groups. Properties and Application to Photodynamic Inactivation of Bacteria.

    Science.gov (United States)

    Parthasarathy, Anand; Pappas, Harry C; Hill, Eric H; Huang, Yun; Whitten, David G; Schanze, Kirk S

    2015-12-30

    This article reports an investigation of the photophysical properties and the light- and dark-biocidal activity of two poly(phenyleneethynylene) (PPE)-based conjugated polyelectrolytes (CPEs) bearing cationic imidazolium solubilizing groups. The two polymers feature the same PPE-type backbone, but they differ in the frequency of imidazoliums on the chains: PIM-4 features two imidazolium units on every phenylene repeat, whereas PIM-2 contains two imidazolium units on every other phenylene unit. Both polymers are very soluble in water and polar organic solvents, but their propensity to aggregate in water differs with the density of the imidazolium units. The polymers are highly fluorescent, and they exhibit the amplified quenching effect when exposed to a low concentration of anionic electron-acceptor anthraquinone disulfonate. The CPEs are also quenched by a relatively low concentration of pyrophosphate by an aggregation-induced quenching mechanism. The biocidal activity of the cationic imidazolium CPEs was studied against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria in the dark and under blue-light illumination. Both polymers are effective biocides, exhibiting greater than 3 log kill with 30-60 min of light exposure at concentrations of ≤10 μg mL(-1).

  1. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    NARCIS (Netherlands)

    Quevedo, Beatrice; Giertsen, Elin; Zijnge, Vincent; Luethi-Schaller, Helga; Guggenheim, Bernhard; Thurnheer, Thomas; Gmuer, Rudolf

    2011-01-01

    Background: The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotroph

  2. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    NARCIS (Netherlands)

    Quevedo, Beatrice; Giertsen, Elin; Zijnge, Vincent; Luethi-Schaller, Helga; Guggenheim, Bernhard; Thurnheer, Thomas; Gmuer, Rudolf

    2011-01-01

    Background: The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotroph

  3. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress

    Directory of Open Access Journals (Sweden)

    Dan eLi

    2015-07-01

    Full Text Available This study aims to investigate if histo-blood group antigen (HBGA expressing bacteria have any protective role on human norovirus (NoV from acute heat stress. Eleven bacterial strains were included, belonging to Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Clostridium difficile, Bifidobacterium adolescentis, and Bifidobacterium longum. HBGA expression of the bacteria as well as binding of human NoV virus-like particles (VLPs, GI.1 and GII.4 strains to the bacteria were detected by flow cytometry. NoV VLPs pre-incubated with HBGA expressing or non-HBGA expressing bacteria were heated and detected by both direct ELISA and porcine gastric mucin-binding assay. The NoV-binding abilities of the bacteria correlated well with their HBGA expression profiles. Two HBGA expressing E.coli (LMG8223 and LFMFP861, both GI.1 and GII.4 binders and one non-HBGA expressing E.coli (ATCC8739, neither GI.1 nor GII.4 binder were selected for the heat treatment test with NoV VLPs. Compared with the same cell numbers of non-HBGA expressing E.coli, the presence of HBGA-expressing E.coli could always maintain higher antigen integrity, as well as mucin-binding ability of NoV VLPs of both GI.1 and GII.4 after heat-treatment at 90°C for 2 min. These results indicate that HBGA-expressing bacteria may protect NoVs during the food processing treatments, thereby facilitating their transmission.

  4. [In vitro control of Sclerotinia sclerotiorum and Gaeumannomyces graminis by bacteria of the fluorescent Pseudomonas group].

    Science.gov (United States)

    Andreoli, Y E; Laich, F S; Navarro, C A

    1993-01-01

    Thirty six fluorescent Pseudomonas isolates were obtained from the rhizosphere of sunflower plants. By antibiosis tests, the six more efficient strains in Sclerotinia sclerotiorum growth inhibition, were selected. Simultaneously, twenty three fluorescent Pseudomonas isolates were recuperated from the rhizosphere of wheat plants and the five most efficient strains in growth inhibition of the fungi Gaeumannomyces graminis were selected. The strains selected from the rhizosphere of sunflower plants had no antagonistic effect on G. graminis and the bacteria isolated from the wheat rhizosphere showed no fungistatic activity on S. sclerotiorum. These results suggest the existence of a certain degree of plant bacteria pathogenic specificity. Among the selected bacteria, the strain FF5 of P. fluorescens originated the major inhibiting halo in vitro against S. sclerotiorum (Figure 1). In liquid culture medium this bacterium produces an antifungal substance that promotes lysis of fungi mycelium (Figure 2) and inhibition of ascospore germination and is not inhibited by the presence of Fe+3 in the culture medium (Table 1). Its synthesis is not associated with the production of fluorescein. Its action is not enzymatic because it is a substance of low molecular weight (< 2000), resistant to autoclave sterilization and photo-stable. The amount of NH4+ and the high pH values produced by the FF5 strain in the liquid culture medium (Table 2) are not responsible for the antifungalal action.

  5. Learning Cycles and Focus Groups: A Complementary Approach to the A3 Thinking Methodology

    Science.gov (United States)

    Tortorella, Guilherme Luz; Viana, Samanta; Fettermann, Diego

    2015-01-01

    Purpose: This study aims to propose a complementary method to the A3 information collection, data analysis and capturing and sharing knowledge to facilitate problem solving in a general framework. The incorporation of this method minimizes the difficulties identified in the literature focused on continuous improvement of processes. The method…

  6. Assessment of Photodynamic Inactivation against Periodontal Bacteria Mediated by a Chitosan Hydrogel in a 3D Gingival Model

    Directory of Open Access Journals (Sweden)

    Po-Chun Peng

    2016-11-01

    Full Text Available Chitosan hydrogels containing hydroxypropyl methylcellulose (HPMC and toluidine blue O were prepared and assessed for their mucoadhesive property and antimicrobial efficacy of photodynamic inactivation (PDI. Increased HPMC content in the hydrogels resulted in increased mucoadhesiveness. Furthermore, we developed a simple In Vitro 3D gingival model resembling the oral periodontal pocket to culture the biofilms of Staphylococcus aureus (S. aureus, Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans, and Porphyromonas gingivalis (P. gingivalis. The PDI efficacy of chitosan hydrogel was examined against periodontal biofilms cultured in this 3D gingival model. We found that the PDI effectiveness was limited due to leaving some of the innermost bacteria alive at the non-illuminated site. Using this 3D gingival model, we further optimized PDI procedures with various adjustments of light energy and irradiation sites. The PDI efficacy of the chitosan hydrogel against periodontal biofilms can significantly improve via four sides of irradiation. In conclusion, this study not only showed the clinical applicability of this chitosan hydrogel but also the importance of the light irradiation pattern in performing PDI for periodontal disease.

  7. Assessment of Photodynamic Inactivation against Periodontal Bacteria Mediated by a Chitosan Hydrogel in a 3D Gingival Model.

    Science.gov (United States)

    Peng, Po-Chun; Hsieh, Chien-Ming; Chen, Chueh-Pin; Tsai, Tsuimin; Chen, Chin-Tin

    2016-11-01

    Chitosan hydrogels containing hydroxypropyl methylcellulose (HPMC) and toluidine blue O were prepared and assessed for their mucoadhesive property and antimicrobial efficacy of photodynamic inactivation (PDI). Increased HPMC content in the hydrogels resulted in increased mucoadhesiveness. Furthermore, we developed a simple In Vitro 3D gingival model resembling the oral periodontal pocket to culture the biofilms of Staphylococcus aureus (S. aureus), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), and Porphyromonas gingivalis (P. gingivalis). The PDI efficacy of chitosan hydrogel was examined against periodontal biofilms cultured in this 3D gingival model. We found that the PDI effectiveness was limited due to leaving some of the innermost bacteria alive at the non-illuminated site. Using this 3D gingival model, we further optimized PDI procedures with various adjustments of light energy and irradiation sites. The PDI efficacy of the chitosan hydrogel against periodontal biofilms can significantly improve via four sides of irradiation. In conclusion, this study not only showed the clinical applicability of this chitosan hydrogel but also the importance of the light irradiation pattern in performing PDI for periodontal disease.

  8. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    Directory of Open Access Journals (Sweden)

    Thurnheer Thomas

    2011-01-01

    Full Text Available Abstract Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of

  9. [The effect of oxygen on endotoxin production in bacteria of the Bacteroides fragilis group isolated from patients with colorectal carcinoma].

    Science.gov (United States)

    Chmelař, D; Hájek, M; Janečková, J; Vobejdová, J; Martineková, P; Kašíková, A

    The aim of the study was to draw attention to the risk posed by anaerobic bacteria of the Bacteroides fragilis (BAFR) group, isolated particularly from abdominal lesions, and to assess the possible role of these species in colorectal cancer. A correlation has previously been suggested between the detection of the bacteria of the genus Bacteroides in patients on a meat-based diet and intestinal and, in particular, colorectal cancer. Given that the species of the BAFR group are major producers of endotoxins, measurements and statistical analysis of endotoxin production were used to compare the Bacteroides strains isolated from clinical specimens of patients with colon cancer, rectal cancer, and other abdominal lesions. Endotoxin production was detected in bacterial strains of the BAFR group (B. fragilis, B. thetaiotaomicron, B. distasonis, and B. vulgatus) isolated from clinical specimens of patients with rectal cancer, colon cancer, and intestinal cancer and was compared with that in strains from samples of patients with inflammatory conditions (anal abscess, appendicitis, skin abscess, etc.) under anaerobic and microaerophilic (with 5% of oxygen) culture conditions. The production of endotoxins was detected quantitatively using the Pyrosate LAL assay kit (Limulus Amoebocyte Lysate Test, BIOGENIX, CR) in four species of the BAFR group after anaerobic and microaerophilic culture. Five strains of each isolated Bacteroides species from each type of specimens were tested (in total 140 BAFR strains). The amount of endotoxin was given in endotoxin units per ml (EU/ml). Endotoxin production by bacteria under microaerophilic culture conditions was several times higher in comparison with strictly anaerobic culture.The difference was statistically significant (F1.269 = 160, p bacteroides species and diagnosis. These results suggest that the amount of free oxygen in the environment affects the amount of endotoxin generated by the Bacteroides strains. The results show that

  10. Low-temperature isolation of disease-suppressive bacteria and characterization of a distinctive group of pseudomonads.

    Science.gov (United States)

    Johansson, P Maria; Wright, Sandra A I

    2003-11-01

    The influence of environmental factors during isolation on the composition of potential biocontrol isolates is largely unknown. Bacterial isolates that efficiently suppressed wheat seedling blight caused by Fusarium culmorum were found by isolating psychrotrophic, root-associated bacteria and by screening them in a bioassay that mimicked field conditions. The impact of individual isolation factors on the disease-suppressive index (DSI) of almost 600 isolates was analyzed. The bacteria originated from 135 samples from 62 sites in Sweden and Switzerland. The isolation factors that increased the probability of finding isolates with high DSIs were sampling from arable land, Swiss origin of samples, and origination of isolates from plants belonging to the family Brassicaceae. The colony morphology of the isolates was characterized and compared to DSIs, which led to identification of a uniform morphological group containing 57 highly disease-suppressive isolates. Isolates in this group were identified as Pseudomonas sp.; they were fluorescent on King's medium B and had characteristic crystalline structures in their colonies. These isolates were morphologically similar to seven strains that had previously been selected for suppression of barley net blotch caused by Drechslera teres. Members of this morphological group grow at 1.5 degrees C and produce an antifungal polyketide (2,3-deepoxy-2,3-didehydrorhizoxin [DDR]). They have similar two-dimensional polyacrylamide gel electrophoresis protein profiles, phenotypic characteristics, and in vitro inhibition spectra of pathogens. In summary, in this paper we describe some isolation factors that are important for obtaining disease-suppressive bacteria in our system, and we describe a novel group of biocontrol pseudomonads.

  11. A 3D analysis of the metal distribution in the compact group of galaxies HCG 31

    Science.gov (United States)

    Torres-Flores, Sergio; Mendes de Oliveira, Claudia; Alfaro-Cuello, Mayte; Rodrigo Carrasco, Eleazar; de Mello, Duilia; Amram, Philippe

    2015-02-01

    We present new Gemini/GMOS integral field unit observations of the central region of the merging compact group of galaxies HCG 31. Using this data set, we derive the oxygen abundances for the merging galaxies HCG 31A and HCG 31C. We found a smooth metallicity gradient between the nuclei of these galaxies, suggesting a mixing of metals between these objects. These results are confirmed by high-resolution Fabry-Perot data, from which we infer that gas is flowing between HCG 31A and HCG 31C.

  12. A 3-5 GHz CMOS UWB power amplifier with {+-}8 ps group delay ripple

    Energy Technology Data Exchange (ETDEWEB)

    Xi Tianzuo; Huang Lu; Zheng Zhong; Feng Lisong, E-mail: xitianzuo@hotmail.co [Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027 (China)

    2010-04-15

    A differential power amplifier (PA), designed using the linear-phase filter model, for a BPSK modulated ultra-wideband (UWB) system operating in the 3-5 GHz frequency range is presented. The proposed PA was fabricated using 0.18 {mu}m SMIC CMOS technology. To achieve sufficient linearity and efficiency, this PA operates in the class-AB region, delivering an output power of 8.5 dBm at an input-1 dB compression point of -0.5 dBm. It consumes 28.8 mW, realizing a flat gain of 9.11 {+-} 0.39 dB and a very low group delay ripple of {+-}8 ps across the whole band of operation. (semiconductor integrated circuits)

  13. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    Science.gov (United States)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  14. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Langerak Ankie A

    2008-02-01

    Full Text Available Abstract Background The obligate intracellular growing bacterium Chlamydia trachomatis causes diseases like trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Several serovars and genotypes have been identified, but these could not be linked to clinical disease or outcome. The related Chlamydophila pneumoniae, of which no subtypes are recognized, causes respiratory infections worldwide. We developed a multi locus sequence typing (MLST scheme to understand the population genetic structure and diversity of these species and to evaluate the association between genotype and disease. Results A collection of 26 strains of C. trachomatis of different serovars and clinical presentation and 18 strains of C. pneumoniae were included in the study. For comparison, sequences of C. abortus, C. psittaci, C. caviae, C. felis, C. pecorum (Chlamydophila, C. muridarum (Chlamydia and of Candidatus protochlamydia and Simkania negevensis were also included. Sequences of fragments (400 – 500 base pairs from seven housekeeping genes (enoA, fumC, gatA, gidA, hemN, hlfX, oppA were analysed. Analysis of allelic profiles by eBurst revealed three non-overlapping clonal complexes among the C. trachomatis strains, while the C. pneumoniae strains formed a single group. An UPGMA tree produced from the allelic profiles resulted in three groups of sequence types. The LGV strains grouped in a single cluster, while the urogenital strains were distributed over two separated groups, one consisted solely of strains with frequent occurring serovars (E, D and F. The distribution of the different serovars over the three groups was not consistent, suggesting exchange of serovar encoding ompA sequences. In one instance, exchange of fumC sequences between strains of different groups was observed. Cluster analyses of concatenated sequences of the Chlamydophila and Chlamydia species together with those of Candidatus Protochlamydia amoebophila and Simkania

  15. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor

    DEFF Research Database (Denmark)

    Nielsen, Alex Toftgaard; Liu, Wen-Tso; Filipe, Carlos

    1999-01-01

    The microbial diversity of a deteriorated biological phosphorus removal reactor was investigated by methods not requiring direct cultivation. The reactor was fed with media containing acetate and high levels of phosphate (P/C weight ratio, 8:100) but failed to completely remove phosphate in the e...... obtained by the PCR-based DGGE method. Further, based on electron microscopy and standard staining microscopic analysis, this novel group was able to accumulate granule inclusions, possibly consisting of polyhydroxyalkanoate, inside the cells....

  16. Survey of antimicrobial susceptibility patterns of the bacteria of the Bacteroides fragilis group isolated from the intestinal tract of children

    Directory of Open Access Journals (Sweden)

    Viviane Nakano

    2004-05-01

    Full Text Available The bacteria of the Bacteroides fragilis group are considered important clinical pathogens and they are the most common anaerobes isolated from human endogenous infections. In this study, the susceptibility patterns to antibiotics and metals of 114 species of the B. fragilis group isolated from children with and without diarrhea were determined. Susceptibility was assayed by using an agar dilution method with Wilkins-Chalgren agar. All B. fragilis strains were resistant to lead and nickel, but susceptible to metronidazole and imipenem. beta-lactamase production was detected by using biological and nitrocefin methods, respectively, in 50% and 90.6% of the isolates of children with diarrhea and in 60% and 90% of the isolates of children without diarrhea. Our results show an increase of antibiotics and metals resistance in this microbial group, and a periodic evaluation of the antimicrobial susceptibility is needed. In Brazil, the contamination for antibiotics or metal ions is often observed, and it is suggested an increase the antimicrobial resistance surveillance of this microbial group, mainly those isolated from children's diarrhea.

  17. Responses of Aquatic Bacteria to Terrestrial Runoff: Effects on Community Structure and Key Taxonomic Groups

    Science.gov (United States)

    Le, Huong T.; Ho, Cuong T.; Trinh, Quan H.; Trinh, Duc A.; Luu, Minh T. N.; Tran, Hai S.; Orange, Didier; Janeau, Jean L.; Merroune, Asmaa; Rochelle-Newall, Emma; Pommier, Thomas

    2016-01-01

    Organic fertilizer application is often touted as an economical and effective method to increase soil fertility. However, this amendment may increase dissolved organic carbon (DOC) runoff into downstream aquatic ecosystems and may consequently alter aquatic microbial community. We focused on understanding the effects of DOC runoff from soils amended with compost, vermicompost, or biochar on the aquatic microbial community of a tropical reservoir. Runoff collected from a series of rainfall simulations on soils amended with different organic fertilizers was incubated for 16 days in a series of 200 L mesocosms filled with water from a downstream reservoir. We applied 454 high throughput pyrosequencing for bacterial 16S rRNA genes to analyze microbial communities. After 16 days of incubation, the richness and evenness of the microbial communities present decreased in the mesocosms amended with any organic fertilizers, except for the evenness in the mesocosms amended with compost runoff. In contrast, they increased in the reservoir water control and soil-only amended mesocosms. Community structure was mainly affected by pH and DOC concentration. Compared to the autochthonous organic carbon produced during primary production, the addition of allochthonous DOC from these organic amendments seemed to exert a stronger effect on the communities over the period of incubation. While the Proteobacteria and Actinobacteria classes were positively associated with higher DOC concentration, the number of sequences representing key bacterial groups differed between mesocosms particularly between the biochar runoff addition and the compost or vermi-compost runoff additions. The genera of Propionibacterium spp. and Methylobacterium spp. were highly abundant in the compost runoff additions suggesting that they may represent sentinel species of complex organic carbon inputs. Overall, this work further underlines the importance of studying the off-site impacts of organic fertilizers as

  18. Self-assembled molecular platforms for bacteria/material biointerface studies: importance to control functional group accessibility.

    Science.gov (United States)

    Böhmler, Judith; Ponche, Arnaud; Anselme, Karine; Ploux, Lydie

    2013-11-13

    Highly controlled mixed molecular layers are crucial to study the role of material surface chemistry in biointerfaces, such as bacteria and subsequent biofilms interacting with biomaterials. Silanes with non-nucleophilic functional groups are promising to form self-assembled monolayers (SAMs) due to their low sensitivity to side-reactions. Nevertheless, the real control of surface chemistry, layer structure, and organization has not been determined. Here, we report a comprehensive synthesis and analysis of undecyltrichlorosilane- and 11-bromoundecyltrichlorosilane-based mixed SAMs on silicon substrates. The impact of the experimental conditions on the control of surface chemistry, layer structure, and organization was investigated by combining survey and high-resolution X-ray photoelectron spectroscopy analysis, wettability measurements, and ellipsometry. The most appropriate conditions were first determined for elaborating highly reproducible, but easily made, pure 11-bromoundecyltrichlorosilane SAMs. We have demonstrated that the control is maintained on more complex surfaces, i.e., surfaces revealing various chemical densities, which were obtained with different ratios of undecyltrichlorosilane and 11-bromoundecyltrichlorosilane. The control is also maintained after bromine to amine group conversion via SN2 bromine-to-azide reactions. The appropriateness of such highly controlled amino- and methyl-group revealing platforms (NH2-X%/CH3) for biointerface studies was shown by the higher reproducibility of bacterial adhesion on NH2-100%/CH3 SAMs compared to bacterial adhesion on molecular layers of overall similar surface chemistry but less control at the molecular scale.

  19. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4⁺ T cells.

    Science.gov (United States)

    Hepworth, Matthew R; Fung, Thomas C; Masur, Samuel H; Kelsen, Judith R; McConnell, Fiona M; Dubrot, Juan; Withers, David R; Hugues, Stephanie; Farrar, Michael A; Reith, Walter; Eberl, Gérard; Baldassano, Robert N; Laufer, Terri M; Elson, Charles O; Sonnenberg, Gregory F

    2015-05-29

    Inflammatory CD4(+) T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. Although selection of self-specific T cells in the thymus limits responses to mammalian tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here, we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells and that MHCII(+) ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4(+) T cells in the intestine and suggest that this process is dysregulated in human IBD.

  20. Quantitative detection of Streptococcus mutans and bacteria of dental caries and no caries groups in permanent teeth from a north China population

    Institute of Scientific and Technical Information of China (English)

    WANG Zhan-yong; WANG Jian-qiu; ZHOU Yan; ZHAO Dong; XIAO Bai

    2012-01-01

    Background Streptococcus mutans (S.mutans) is the prime pathogen of dental caries.There are few reports that studied the relationship between S.mutans,bacteria and dental caries in permanent teeth when compared to those in primary teeth.This study aimed to detect S.mutans and bacteria of dental caries and non-caries groups in permanent teeth from a north China population by real-time polymerase chain reaction (PCR) and compare the relationship between the number of these bacteria and the prevalence of dental caries in permanent teeth.Methods Human saliva samples were collected from 142 subjects with permanent teeth.According to their dental tooth (DT),142 subjects were divided into a dental caries group (DT≥1) and a non-caries group (DT=0).With specific primers for S.mutans and 16S rRNA,the total number of S.mutans and total bacteria of 142 saliva samples were detected by real-time PCR and statistically analyzed.Results There was no significant difference between the detection rates of S.mutans (P=0.118) and medians of S.mutans (P=0.115).The ratio of S.mutans to total bacteria in people with dental caries was significantly higher than in those without caries (P <0.001),but the total number of bacteria in people with dental caries was significantly lower than in those without caries (P <0.001).Conclusions S.mutans had different effects on caries in the permanent teeth of several individuals from a north China population.The ratios of S.mutans to total bacteria in saliva detected by real-time PCR with Sm479F/R and 16S RNA primers were closely associated with the prevalence of dental caries in the same population.These assays may be useful for the assessment of an individual's risk of dental caries.

  1. 水质污染指示菌--总大肠菌群%Indicator Bacteria of Water Fecal Pollution---The Total Coliform Group

    Institute of Scientific and Technical Information of China (English)

    胡睿娟

    2015-01-01

    ABSTRACT:This paper analyzes the reasons why the total coliform group is regarded as the indicator bacteria of water fecal pollution, compares several methods for detecting the total coliform group, and introduces the significance of the detection of the total coliform group, thermotoletant coliform bacteria and Escherichia coli and the relationship among them.%分析了总大肠菌群作为水质污染指示菌的原因,比较了总大肠菌群的几种检测方法,介绍了总大肠菌群、耐热大肠菌群、大肠埃希氏菌的检测意义以及它们之间的关系。

  2. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.

    Science.gov (United States)

    Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T

    2009-01-01

    Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research.

  3. Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents

    NARCIS (Netherlands)

    Harmsen, HJM; Prieur, D; Jeanthon, C

    1997-01-01

    Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems, We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the

  4. Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents

    NARCIS (Netherlands)

    Harmsen, HJM; Prieur, D; Jeanthon, C

    1997-01-01

    Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems, We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the

  5. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application.

    Science.gov (United States)

    Pepe, Olimpia; Ventorino, Valeria; Blaiotta, Giuseppe

    2013-07-01

    Although several reports are available concerning the composition and dynamics of the microflora during the composting of municipal solid wastes, little is known about the microbial diversity during the composting of agro-industrial refuse. For this reason, the first parts of this study included the quantification of microbial generic groups and of the main functional groups of C and N cycle during composting of agro-industrial refuse. After a generalized decrease observed during the initial phases, a new bacterial growth was observed in the final phase of the process. Ammonifiers and (N2)-fixing aerobic groups predominated outside of the piles whereas, nitrate-reducing group increased inside the piles during the first 23days of composting. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), showed an opposite trend of growth since ammonia oxidation decreased with the increase of the nitrite oxidation activity. Pectinolytics, amylolytics and aerobic cellulolytic were present in greater quantities and showed an upward trend in both the internal and external part of the heaps. Several free-living (N2)-fixing bacteria were molecularly identify as belonging especially to uncommon genera of nitrogen-fixing bacteria as Stenotrophomonas, Xanthomonas, Pseudomonas, Klebsiella, Alcaligenes, Achromobacter and Caulobacter. They were investigated for their ability to fix atmospheric nitrogen to employ as improvers of quality of compost. Some strains of Azotobacter chrococcum and Azotobacter salinestris were also tested. When different diazotrophic bacterial species were added in compost, the increase of total N ranged from 16% to 27% depending on the selected microbial strain being used. Such microorganisms may be used alone or in mixtures to provide an allocation of plant growth promoting rhizobacteria in soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Safe use of genetically modified lactic acid bacteria in food: Bridging the gap between consumers, green groups, and industry

    OpenAIRE

    Sybesma, W; Hugenholtz, J; de Vos; Smid, E J

    2006-01-01

    Within the European Union (EU), the use of genetically modified organisms (GMOs) in food production is not widely applied and accepted. In contrast to the United States of America, the current EU legislation limits the introduction of functional foods derived from GMOs that may bring a clear benefit to the consumer. Genetically modified lactic acid bacteria (GM-LAB) can be considered as a different class of GMOs, and the European Union is preparing regulations for the risk assessment of genet...

  7. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group.

    Science.gov (United States)

    Schikora, Adam; Schenk, Sebastian T; Hartmann, Anton

    2016-04-01

    Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.

  8. The group A3 chondrules of Krymka: Further evidence for major evaporative loss during the formation of chondrules

    Science.gov (United States)

    Huang, S.; Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    Like Semarkona (type 3.0), Krymka (type 3.1) contains two distinct types of chondrule (namely groups A and B) which differ in their bulk compositions, phase compositions, and CL properties. The group A chondrules in both meteorites show evidence for major loss of material by evaporation(i.e. elemental abundance patterns, size, redox state, olivine-pyroxene abundances). Group A and B chondrules probably formed from common or very similar precursors by the same processes acting with different intensities, group A suffering greater mass-loss by evaporation and reduction of FeO and SiO2. While Krymka chondrules share many primary mineralogical and compositional properties with Semarkona chondrules, the minimal metamorphism it has suffered has also had a significant effect on its chondrules.

  9. Optimized synthesis of phosphorothioate oligodeoxyribonucleotides substituted with a 5'-protected thiol function and a 3'-amino group.

    Science.gov (United States)

    Aubert, Y; Bourgerie, S; Meunier, L; Mayer, R; Roche, A C; Monsigny, M; Thuong, N T; Asseline, U

    2000-02-01

    A new deprotection procedure enables a medium scale preparation of phosphodiester and phosphor-othioate oligonucleotides substituted with a protected thiol function at their 5'-ends and an amino group at their 3'-ends in good yield (up to 72 OD units/micromol for a 19mer phosphorothioate). Syntheses of 3'-amino-substituted oligonucleotides were carried out on a modified support. A linker containing the thioacetyl moiety was manually coupled in two steps by first adding its phosphor-amidite derivative in the presence of tetrazole followed by either oxidation or sulfurization to afford the bis-derivatized oligonucleotide bound to the support. Deprotection was achieved by treating the fully protected oligonucleotide with a mixture of 2,2'-dithiodipyridine and concentrated aqueous ammonia in the presence of phenol and methanol. This proced-ure enables (i) cleavage of the oligonucleotide from the support, releasing the oligonucleotide with a free amino group at its 3'-end, (ii) deprotection of the phosphate groups and the amino functions of the nucleic bases, as well as (iii) transformation of the 5'-terminal S -acetyl function into a dithiopyridyl group. The bis-derivatized phosphorothioate oligomer was further substituted through a two-step procedure: first, the 3'-amino group was reacted with fluorescein isothiocyanate to yield a fluoresceinylated oligo-nucleotide; the 5'-dithio-pyridyl group was then -quantitatively reduced to give a free thiol group which was then substituted by reaction with an N alpha-bromoacetyl derivative of a signal peptide containing a KDEL sequence to afford a fluoresceinylated peptide-oligonucleotide conjugate.

  10. The career paths of a group of Romanian nurses in Italy: a 3-year follow-up study.

    Science.gov (United States)

    Palese, A; Barba, M; Mesaglio, M

    2008-06-01

    The objective of this study was to describe for how long a homogeneous group of 17 Romanian nurses who first arrived at the 'Teaching Hospital' in Italy in 2003, stayed in the same hospital/ward of the host country, why and when they decided to move from one hospital to another, and their levels of competence in core skills, after either 6 months or 3 years. A longitudinal study design was adopted. The first phase was carried out in 2004, the second in 2006. We used an anonymous questionnaire. Only ten of the 17 nurses, who had started working in Italy 3 years before, remained in the same Hospital where they first started working. In spite of being given the opportunity to stay, some decided to move to hospitals where it is possible to earn more money or where they could save more by living in less expensive towns. The first nurse left the hospital in the first year, five in the second and one in the third year. Levels of perceived professional independence after 3 years are very good: the permanent group had improved their skills in all areas even though they felt a lack of confidence during the first 6 months. This study, within the limits of the sample and the methods, shows that foreign nurses are highly mobile in the host country and this revolves around the opportunity to earn more. With increasing recruitment of nurses from within the European continent, it is necessary to continue studying the factors that sustain foreign nurses, to find out how they can be helped, how to value their imported professional skills, how to reduce the initial lack of faith in their own abilities and to discover which strategies would encourage them to stay in the hospital where they arrived.

  11. Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Many investigations across natural and artificial plant diversity gradients have reported that both soil physicochemical factors and plant community composition affect soil microbial communities. To test the effect of plant diversity loss on soil bacterial communities, we conducted a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia (China. We found that the number and composition type of plant functional groups had no effect on bacterial diversity and community composition, or on the relative abundance of major taxa. In contrast, bacterial community patterns were significantly structured by soil water content differences among plots. Our results support researches that suggest that water availability is the key factor structuring soil bacterial communities in this semi-arid ecosystem.

  12. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups.

    Science.gov (United States)

    Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G; Constant, Philippe

    2016-01-01

    Soil microbial communities are continuously exposed to H2 diffusing into the soil from the atmosphere. N2-fixing nodules represent a peculiar microniche in soil where H2 can reach concentrations up to 20,000 fold higher than in the global atmosphere (0.530 ppmv). In this study, we investigated the impact of H2 exposure on soil bacterial community structure using dynamic microcosm chambers simulating soil H2 exposure from the atmosphere and N2-fixing nodules. Biphasic kinetic parameters governing H2 oxidation activity in soil changed drastically upon elevated H2 exposure, corresponding to a slight but significant decay of high affinity H2-oxidizing bacteria population, accompanied by an enrichment or activation of microorganisms displaying low-affinity for H2. In contrast to previous studies that unveiled limited response by a few species, the relative abundance of 958 bacterial ribotypes distributed among various taxonomic groups, rather than a few distinct taxa, was influenced by H2 exposure. Furthermore, correlation networks showed important alterations of ribotype covariation in response to H2 exposure, suggesting that H2 affects microbe-microbe interactions in soil. Taken together, our results demonstrate that H2-rich environments exert a direct influence on soil H2-oxidizing bacteria in addition to indirect effects on other members of the bacterial communities.

  13. Increasing antimicrobial resistance in clinical isolates of Staphylococcus intermedius group bacteria and emergence of MRSP in the UK.

    Science.gov (United States)

    Beever, L; Bond, R; Graham, P A; Jackson, B; Lloyd, D H; Loeffler, A

    2015-02-14

    Frequencies of antimicrobial resistance were determined amongst 14,555 clinical Staphylococcus intermedius group (SIG) isolates from UK dogs and cats to estimate resistance trends and quantify the occurrence of meticillin-resistant Staphylococcus pseudintermedius (MRSP). Reports from two diagnostic laboratories (13,313 general submissions, 1242 referral centre only submissions) were analysed retrospectively (2003/2006-2012). MRSP were defined by phenotypic resistance to meticillin and concurrent broad β-lactam resistance; a subset was confirmed genetically (SIG-specific nuc and mecA). Trends were analysed by Cochran-Armitage test. Resistance remained below 10 per cent for cefalexin, amoxicillin-clavulanic acid and the fluoroquinolones. Increasing resistance trends were seen in both laboratories for ampicillin/amoxicillin (both PResistance to cefalexin increased over time in referral hospital isolates (Presistance to important antimicrobials was identified overtime and the emergence of MRSP from UK clinical cases was confirmed. Attention to responsible use of antibacterial therapy in small animal practice is urgently needed. British Veterinary Association.

  14. Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia.

    Science.gov (United States)

    Juvonen, Riikka; Koivula, Teija; Haikara, Auli

    2008-07-15

    The strictly anaerobic brewery contaminants of the genera Pectinatus, Megasphaera, Selenomonas and Zymophilus in the class Clostridia constitute an important group of spoilage bacteria of unpasteurised, packaged beers. The aim of this study was to develop and evaluate group-specific PCR methods to detect and differentiate these bacteria in beer. A group-specific primer pair targeting a 342-bp variable region of the 16S rRNA gene was designed and evaluated in end-point PCR with gel electrophoresis and in real-time PCR with SYBR Green I dye. Significant cross-reactions with DNAs from any of the forty-two brewery-related, non-target microbes or from real brewery samples were not detected in either PCR system. The group-specific end-point and real-time PCR products could be differentiated according to species/genus and spoilage potential using restriction fragment length polymorphism (KpnI, XmnI, BssHII, ScaI) and melting point curve analysis, respectively. In combination with a rapid DNA extraction method, the PCR reactions detected ca 10(0)-10(3) CFU per 25 ml of beer depending on the strain and on the PCR system. The end-point and real-time PCR analysis took 6-7 h and 2-3 h, respectively. Pre-PCR enrichment of beer samples for 1-3 days ensured the detection of even a single cultivable cell. The PCR and cultivation results of real brewery samples were mostly congruent but the PCR methods were occasionally more sensitive. The PCR methods developed allow the detection of all the nine beer-spoilage Pectinatus, Megasphaera, Selenomonas and Zymophilus species in a single reaction and their differentiation below group level and reduce the analysis time for testing of their presence in beer samples by 1-2 days. The methods can be applied for brewery routine quality control and for studying occurrence, diversity and numbers of the strictly anaerobic beer spoilers in the brewing process.

  15. Adsorption of Cu(II) to ferrihydrite and ferrihydrite-bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments

    Science.gov (United States)

    Moon, Ellen M.; Peacock, Caroline L.

    2012-09-01

    mass ratio of the composite. EXAFS shows that Cu adsorbs to ferrihydrite as an inner-sphere, (CuO4Hn)n - 6 bidentate edge-sharing complex; and to ferrihydrite composites as an inner-sphere, (CuO5Hn)n - 8 monodentate complex with carboxyl surface functional groups present on the bacterial fraction plus the bidentate edge-sharing complex on the ferrihydrite fraction. Our new results combined with previous work on Cu sorption to bacteria, humic substances and iron (hydr)oxides coated with humics, demonstrate the universal importance of the carboxyl moiety for Cu sorption and mobility in natural environments. Taken together these results show that Cu-carboxyl binding is the predominant mechanism by which Cu interacts with abiotic and biotic organic matter, and provides a ubiquitous control on Cu fate and mobility in natural waters, soils and sediments. Our results indicate that in environments where a significant proportion of iron (hydr)oxides are intimately intermixed with an organic fraction, we must consider Cu sequestration by these composites in addition to pure mineral phases.

  16. Effect of the ortho-hydroxy group of salicylaldehyde in the A3 coupling reaction: A metal-catalyst-free synthesis of propargylamine

    Directory of Open Access Journals (Sweden)

    Sujit Ghosh

    2017-03-01

    Full Text Available The synthesis of propargylamines via A3 coupling mostly under metal-catalyzed procedures is well known. This work invented an unprecedented effect of salicylaldehyde, one of the A3 coupling partners, which could lead to the formation of propargylamine, an important pharmaceutical building block, in the absence of any metal catalyst and under mild conditions. The role of the hydroxy group in ortho position of salicylaldehyde has been explored, which presumably activates the Csp–H bond of the terminal alkyne leading to the formation of propargylamines in good to excellent yields, thus negating the function of the metal catalyst. This observation is hitherto unknown, tested for a variety of salicylaldehyde, amine and acetylene, established as a general protocol, and is believed to be of interest for synthetic chemists from green chemistry.

  17. Stereochemical conversion of C3-vinyl group to 1-hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited-light environments.

    Science.gov (United States)

    Harada, Jiro; Teramura, Misato; Mizoguchi, Tadashi; Tsukatani, Yusuke; Yamamoto, Ken; Tamiaki, Hitoshi

    2015-12-01

    Photosynthetic green sulfur bacteria inhabit anaerobic environments with very low-light conditions. To adapt to such environments, these bacteria have evolved efficient light-harvesting antenna complexes called as chlorosomes, which comprise self-aggregated bacteriochlorophyll c in the model green sulfur, bacterium Chlorobaculum tepidum. The pigment possess a hydroxy group at the C3(1) position that produces a chiral center with R- or S-stereochemistry and the C3(1) -hydroxy group serves as a connecting moiety for the self-aggregation. Chlorobaculum tepidum carries the two possible homologous genes for C3-vinyl hydratase, bchF and bchV. In the present study, we constructed deletion mutants of each of these genes. Pigment analyses of the bchF-inactivated mutant, which still has BchV as a sole hydratase, showed higher ratios of S-epimeric bacteriochlorophyll c than the wild-type strain. The heightened prevalence of S-stereoisomers in the mutant was more remarkable at lower light intensities and caused a red shift of the chlorosomal Qy absorption band leading to advantages for light-energy transfer. In contrast, the bchV-mutant possessing only BchF showed a significant decrease of the S-epimers and accumulations of C3-vinyl BChl c species. As trans- criptional level of bchV was upregulated at lower light intensity, the Chlorobaculum tepidum adapted to low-light environments by control of the bchV transcription. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  18. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  19. Comparison of a 3-D multi-group SN particle transport code with Monte Carlo for intracavitary brachytherapy of the cervix uteri.

    Science.gov (United States)

    Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas

    2009-12-03

    A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.

  20. South-Seeking Magnetic Bacteria

    OpenAIRE

    Kirschvink, J.L.

    1980-01-01

    Magnetotactic bacteria, originally discovered by Blakemore (1975), are by far the most convincing and abundant example of magnetically sensitive organisms in existence. Their magnetite crystals passively align the bacteria with the earth's magnetic field like a 3-dimensional compass (Frankel et al. 1979). These microaerophilic bacteria normally live in the soupy, oxygen-poor mud/water transition zone in many freshwater and marine environments. If the mud is disturbed so that the bacteria are ...

  1. Rhizosphere Bacteria

    Directory of Open Access Journals (Sweden)

    N.V. Feoktistova

    2016-06-01

    Full Text Available The review deals with the analysis of modern literature data on rhizosphere bacteria and their role in plant life. The structure of rhizosphere has been characterized. The role of plants as the centers of formation of microbial communities has been shown. Data on the main groups of microorganisms inhabiting the rhizosphere have been provided. The associative relationship between rhizobacteria and partner plants has been investigated. The modern concept of holobiont defined as the whole host plant organism and microorganisms associated with it has been reviewed. The role of rhizobacteria in the processes of nitrogen fixation has been discussed in detail. The mechanisms of direct stimulation of plant growth by biosynthesis of phytohormones, improvement of phosphorus and nitrogen nutrition, increase in resistance to stress, and stimulation mediated by antagonism against pathogenic microorganisms have been analyzed. The criteria for selection of rhizobacteria for practical purposes have been discussed.

  2. Baiting of bacteria with hyphae of common soil fungi revealed a diverse group of potentially mycophagous secondary consumers in the rhizosphere

    NARCIS (Netherlands)

    Rudnick, M.B.; van Veen, J.A.; de Boer, W.

    2015-01-01

    Abstract Fungi and bacteria are primary consumers of plant-derived organic compounds and therefore considered as basal members of soil food webs. Trophic interactions among these microorganisms could, however, induce shifts in food web energy flows. Given increasing evidence for a prominent role of

  3. 大学生群体不同BMI部分肠道细菌数量差异调查%Differences in the Number of Intestinal Bacteria in the Different BMI Groups of College Students

    Institute of Scientific and Technical Information of China (English)

    王尧; 林燕楠; 王丽艳; 张玉倩; 公丕昊; 王秋波

    2015-01-01

    Objective To investigate the quantity variance of segmental intestinal bacteria in undergraduate with dif erent BMI.Methods According to the Body Mass Index (BMI) criteria,Fecal samples were col ected from 16 students as BMI≥24(overweight group),11 students with BMI≤18.5 (lean group)and 19 students with 18.5≤BMI≤24(normal group).Bacteria which cultured by TSC、PS and EMB mediums respectively under aerobic condition were counted through live bacteria counting method.The quantity variances between groups were compared.Results Bacteria's number in three kinds of medium with disparate BMI exist dif erences. Using pairwise comparison,in TSC mediums,the counts of bacteria colony in overweight and lean group were both higher than normal group,but without statistical significance ( >0.05);In PS mediums,the counts of bacteria colony in lean group contained significant increase than normal group ( <0.05);In EMB mediums,the counts of bacteria colony in lean group were significant more than both normal and overweight group,besides,with the development of BMI index,a decreased trend showed in number of bacteria.Conclusion There are quantity variances of bacterial structure in undergraduates' excrement with dif erent BMI.%目的探讨不同BMI大学生群体部分肠道细菌数量差异。方法依据身高体重指数(BMI),于大学生群体中随机选择BMI≥24的16例(超重组),BMI≤18.5的11例(偏瘦组),18.5≤BMI≤24的19例(正常组),以此为研究对象,采集新鲜粪便,运用活菌计数法统计其需氧条件下在TSC、PS、EMB培养基上细菌的生长数量,比较三组间细菌生长数量差异。结果三种培养基上不同BMI组间细菌数量均存在差异,其中各组间进行两两比较,TSC培养基上,超重组和偏瘦组的细菌菌落数比正常体重组均有升高,但无统计学意义(跃0.05);PS培养基上,偏瘦组比正常体重组细菌菌落数明显升高(<0.05);EMB培养基上,偏瘦组比正常体重组和超重

  4. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  5. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  6. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  7. 不同菌种组合对酸奶品质的影响研究%The Effects of Different Groups of Bacteria to Yogurt

    Institute of Scientific and Technical Information of China (English)

    胡豆; 林凤英; 梁钻好; 刘玉冰; 杜冰

    2015-01-01

    This research has performed to study the effect of co-culture of different probiotics bacteria combination on the quality of yogurt. The Bacillus coagulans was inoculated into milk alone or with different lactic acid bacteria such as Lactobacillus bulgaricus and Streptococcus thermophiles, Lactobacillus plantarum and Lactobacillus rhamnosus, respectively. The determination of texture, pH and sensory evaluation of the fermented yogurt has been conducted. We found that co-culture of the combination of Bacillus coagulans with Lactobacillus bulgaricus and Streptococcus thermophilus to be the accepted one, which turned out to be similar to yogurts at present markets.%本文将新型益生菌凝结芽孢杆菌和多种酸奶发酵菌种相组合,通过测定发酵酸奶的质构、酸度,并配以感官评定等三项指标,研究不同菌种组合对酸奶品质的影响。结果表明,在传统型酸奶(保加利亚乳杆菌、嗜热链球菌发酵)基础上加入凝结芽孢杆菌的酸奶在对比组中表现最为出色,与市场所售酸奶品质相仿。

  8. Lipopolysaccharides in diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Rodrigo Vassoler Serrato

    2014-09-01

    Full Text Available Biological nitrogen fixation is a process in which the atmospheric nitrogen (N2 is transformed into ammonia (NH3 by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS and lipochitooligosaccharides (LCO produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS, anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  9. Lipopolysaccharides in diazotrophic bacteria.

    Science.gov (United States)

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  10. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    , Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  11. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  12. Use of single-strand conformation polymorphism of amplified 16S rDNA for grouping of bacteria isolated from foods.

    Science.gov (United States)

    Takahashi, Hajime; Kimura, Bon; Tanaka, Yuichiro; Mori, Mayumi; Yokoi, Asami; Fujii, Tateo

    2008-04-01

    The grouping method for isolated strains from foods using single-strand conformation polymorphism (SSCP) after PCR amplification of a portion of 16S rDNA was developed. This method was able to group the strains from various food samples based on 16S rDNA sequence. As 97.8% of the isolated strains from various foods were grouped correctly, use of the PCR-SSCP method enables the prompt and labor-saving analysis of microbial population of food-derived bacterial strains. Advantages in speed and accuracy of bacterial population identification by the PCR-SSCP method have practical application for food suppliers and testing laboratories.

  13. Testing the Metabolic Theory of Ecology with marine bacteria: Different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2017-08-24

    Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short-term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying capacities of four phylogenetic groups: SAR11, Rhodobacteraceae, Gammaproteobacteria and Bacteroidetes. SAR11 was the most abundant group year-round as analysed by CARD-FISH, with maximum abundances in summer, while the other taxa peaked in spring. All groups, including SAR11, showed high temperature-sensitivity of growth rates and/or carrying capacities in spring, under phytoplankton bloom or post-bloom conditions. In that season, Rhodobacteraceae showed the strongest temperature response in growth rates, estimated here as activation energy (E, 1.43 eV), suggesting an advantage to outcompete other groups under warmer conditions. In summer E values were in general lower than 0.65 eV, the value predicted by the Metabolic Theory of Ecology (MTE). Contrary to MTE predictions, carrying capacity tended to increase with warming for all bacterial groups. Our analysis confirms that resource availability is key when addressing the temperature response of heterotrophic bacterioplankton. We further show that even under nutrient-sufficient conditions, warming differentially affected distinct bacterioplankton taxa. This article is protected by copyright. All rights reserved.

  14. Characterization of Xiphinema americanum group species (Nematoda: Dorylaimida) and co-evolution of bacteria from the genus ‘Candidatus Xiphinematobacter’ with these nematodes

    Science.gov (United States)

    The Xiphinema americanum group contains over two-dozen different species of nematode. They are economically important because they vector nepoviruses, which cause damage to several crops. Taxonomic differentiation among species of the X. americanum complex is problematic because many of the species ...

  15. Development of a quantitative real-time polymerase chain reaction assay to target a novel group of ammonia-producing bacteria found in poultry litter.

    Science.gov (United States)

    Rothrock, M J; Cook, K L; Lovanh, N; Warren, J G; Sistani, K

    2008-06-01

    Ammonia production in poultry houses has serious implications for flock health and performance, nutrient value of poultry litter, and energy costs for running poultry operations. In poultry litter, the conversion of organic N (uric acid and urea) to NH(4)-N is a microbially mediated process. The urease enzyme is responsible for the final step in the conversion of urea to NH(4)-N. Cloning and analysis of 168 urease sequences from extracted genomic DNA from poultry litter samples revealed the presence of a novel, dominant group of ureolytic microbes (representing 90% of the urease clone library). Specific primers and a probe were designed to target this novel poultry litter urease producer (PLUP) group, and a new quantitative real-time PCR assay was developed. The assay allowed for the detection of 10(2) copies of target urease sequences per PCR reaction (approximately 1 x 10(4) cells per gram of poultry litter), and the reaction was linear over 8 orders of magnitude. Our PLUP group was present only in poultry litter and was not present in environmental samples from diverse agricultural settings. This novel PLUP group represented between 0.1 to 3.1% of the total microbial populations (6.0 x 10(6) to 2.4 x 10(8) PLUP cells per gram of litter) from diverse poultry litter types. The PLUP cell concentrations were directly correlated to the total cell concentrations in the poultry litter and were found to be influenced by the physical parameters of the litters (bedding material, moisture content, pH), as well as the NH(4)-N content of the litters, based on principal component analysis. Chemical parameters (organic N, total N, total C) were not found to be influential in the concentrations of our PLUP group in the diverse poultry litters Future applications of this assay could include determining the efficacy of current NH(4)-N-reducing litter amendments or in designing more efficient treatment protocols.

  16. NAS agar is more suitable than McKay agar for primary culture of Streptococcus milleri group (SMG) fastidious bacteria, S. intermedius in particular.

    Science.gov (United States)

    Raclavsky, Vladislav; Novotny, Radko; Stary, Lubomir; Navratilova, Lucie; Zatloukal, Jaromir; Jakubec, Petr; Zapalka, Martin; Kopriva, Frantisek; Kolek, Vitezslav

    2017-01-01

    Streptococcus milleri group (SMG) is a group of three streptococcal species (S. anginosus, intermedius and constellatus) that act as opportunist pathogens, among others in cystic fibrosis. Due to their fastidious character, they are both difficult to cultivate and to differentiate from less pathogenic streptococcal species, therefore being most probably underdiagnosed. Semi-selective McKay agar and NAS agar were developed to facilitate SMG recovery from clinical samples; however, direct comparison of recovery rates has not been published yet. We tested the performance of both media on 123 patient samples and demonstrated general superiority of NAS agar for SMG recovery during primary cultivation convincingly. This observation was also confirmed by quantitative drop tests during subculture. Despite the undisputed overall superiority of NAS agar over McKay agar, a smaller fraction of strains grew better on McKay agar. Inter-strain differences were the most probable explanation. Therefore, when economic conditions are not limiting and maximum recovery rate is desirable, both plates are advised to be used in parallel for primary cultivation of clinical samples.

  17. 由乳酸菌制备维生素B类化合物的研究进展%Research Progress of B-Group Vitamins Produced by Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    夏亚穆; 杜康健; 夏军

    2012-01-01

    B-Group vitamins are a group of human essential substances that play important roles in cell metabolism. They can be externally obtained from food and medicine. Most lactic acid bacteria(LAB) can produce B-group vitamins which are natural,various and easy to be absorbed in human body. This review shows current research progress of B-group vitamins produced by LAB. It provides some references for the study of screening LAB strains and for the improvement of the metabolic engineering.%雄生素B类化合物是人体必需物质,主要通过外源性的食物或药物来补充.选育得到的乳酸菌能产生天然的人体易于吸收的不同类型维生素B.介绍了近年来通过乳酸菌生物合成维生素B类化合物的研究进展,为进一步研究产维生素B类化合物乳酸菌菌种选育和代谢工程改造提供参考.

  18. Bacillus anthracis-like bacteria and other B. cereus group members in a microbial community within the International Space Station: a challenge for rapid and easy molecular detection of virulent B. anthracis.

    Science.gov (United States)

    van Tongeren, Sandra P; Roest, Hendrik I J; Degener, John E; Harmsen, Hermie J M

    2014-01-01

    For some microbial species, such as Bacillus anthracis, the etiologic agent of the disease anthrax, correct detection and identification by molecular methods can be problematic. The detection of virulent B. anthracis is challenging due to multiple virulence markers that need to be present in order for B. anthracis to be virulent and its close relationship to Bacillus cereus and other members of the B. cereus group. This is especially the case in environments where build-up of Bacillus spores can occur and several representatives of the B. cereus group may be present, which increases the chance for false-positives. In this study we show the presence of B. anthracis-like bacteria and other members of the B. cereus group in a microbial community within the human environment of the International Space Station and their preliminary identification by using conventional culturing as well as molecular techniques including 16S rDNA sequencing, PCR and real-time PCR. Our study shows that when monitoring the microbial hygiene in a given human environment, health risk assessment is troublesome in the case of virulent B. anthracis, especially if this should be done with rapid, easy to apply and on-site molecular methods.

  19. Bacillus anthracis-like bacteria and other B. cereus group members in a microbial community within the International Space Station: a challenge for rapid and easy molecular detection of virulent B. anthracis.

    Directory of Open Access Journals (Sweden)

    Sandra P van Tongeren

    Full Text Available For some microbial species, such as Bacillus anthracis, the etiologic agent of the disease anthrax, correct detection and identification by molecular methods can be problematic. The detection of virulent B. anthracis is challenging due to multiple virulence markers that need to be present in order for B. anthracis to be virulent and its close relationship to Bacillus cereus and other members of the B. cereus group. This is especially the case in environments where build-up of Bacillus spores can occur and several representatives of the B. cereus group may be present, which increases the chance for false-positives. In this study we show the presence of B. anthracis-like bacteria and other members of the B. cereus group in a microbial community within the human environment of the International Space Station and their preliminary identification by using conventional culturing as well as molecular techniques including 16S rDNA sequencing, PCR and real-time PCR. Our study shows that when monitoring the microbial hygiene in a given human environment, health risk assessment is troublesome in the case of virulent B. anthracis, especially if this should be done with rapid, easy to apply and on-site molecular methods.

  20. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to Botrytis cinerea.

    Science.gov (United States)

    Ouyang, Zhigang; Liu, Shixia; Huang, Lihong; Hong, Yongbo; Li, Xiaohui; Huang, Lei; Zhang, Yafen; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    The Ethylene-Responsive Factors (ERFs) comprise a large family of transcriptional factors that play critical roles in plant immunity. Gray mold disease caused by Botrytis cinerea, a typical necrotrophic fungal pathogen, is the serious disease that threatens tomato production worldwide. However, littler is known about the molecular mechanism regulating the immunity to B. cinerea in tomato. In the present study, virus-induced gene silencing (VIGS)-based functional analyses of 18 members of B3 group (also called Group IX) in tomato ERF family were performed to identify putative ERFs that are involved in disease resistance against B. cinerea. VIGS-based silencing of either SlERF.B1 or SlERF.C2 had lethal effect while silencing of SlERF.A3 (Pit4) significantly suppressed vegetative growth of tomato plants. Importantly, silencing of SlERF.A1, SlERF.A3, SlERF.B4, or SlERF.C3 resulted in increased susceptibility to B. cinerea, attenuated the B. cinerea-induced expression of jasmonic acid/ethylene-mediated signaling responsive defense genes and promoted the B. cinerea-induced H2O2 accumulation. However, silencing of SlERF.A3 also decreased the resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 but silencing of SlERF.A1, SlERF.B4 or SlERF.C3 did not affect the resistance to this bacterial pathogen. Expression of SlERF.A1, SlERF.A3, SlERF.B4, or SlERF.C3 was induced by B. cinerea and by defense signaling hormones such as salicylic acid, methyl jasmonate, and 1-aminocyclopropane-1-carboxylic acid (an ethylene precursor). SlERF.A1, SlERF.B4, SlERF.C3, and SlERF.A3 proteins were found to localize in nucleus of cells and possess transactivation activity in yeasts. These data suggest that SlERF.A1, SlERF.B4, and SlERF.C3, three previously uncharacterized ERFs in B3 group, and SlERF.A3, a previously identified ERF with function in immunity to Pst DC3000, play important roles in resistance against B. cinerea in tomato.

  1. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  2. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    OpenAIRE

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  3. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  4. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  5. Early management of type 2 diabetes based on a SMBG strategy: the way to diabetes regression--the St Carlos study : a 3-year, prospective, randomized, clinic-based, interventional study with parallel groups.

    Science.gov (United States)

    García de la Torre, Nuria; Durán, Alejandra; Del Valle, Laura; Fuentes, Manuel; Barca, Idoya; Martín, Patricia; Montañez, Carmen; Perez-Ferre, Natalia; Abad, Rosario; Sanz, Fuencisla; Galindo, Mercedes; Rubio, Miguel A; Calle-Pascual, Alfonso L

    2013-08-01

    The aims are to define the regression rate in newly diagnosed type 2 diabetes after lifestyle intervention and pharmacological therapy based on a SMBG (self-monitoring of blood glucose) strategy in routine practice as compared to standard HbA1c-based treatment and to assess whether a supervised exercise program has additional effects. St Carlos study is a 3-year, prospective, randomized, clinic-based, interventional study with three parallel groups. Hundred and ninety-five patients were randomized to the SMBG intervention group [I group; n = 130; Ia: SMBG (n = 65) and Ib: SMBG + supervised exercise (n = 65)] and to the HbA1c control group (C group) (n = 65). The primary outcome was to estimate the regression rate of type 2 diabetes (HbA1c 4 kg was 3.6 (1.8-7); p < 0.001. This study shows that the use of SMBG in an educational program effectively increases the regression rate in newly diagnosed type 2 diabetic patients after 3 years of follow-up. These data suggest that SMBG-based programs should be extended to primary care settings where diabetic patients are usually attended.

  6. Lactic Acid Bacteria in the Gut

    NARCIS (Netherlands)

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  7. Lactic Acid Bacteria in the Gut

    NARCIS (Netherlands)

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  8. Group B streptococcus - pregnancy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000511.htm Group B streptococcus - pregnancy To use the sharing features on this page, please enable JavaScript. Group B streptococcus (GBS) is a type of bacteria that ...

  9. Composition and distribution of TCBS bacteria groups from sediments of Jiulong River estuary%九龙江口沉积物TCBS(Thiosulfate Citrate Bile Salts Sucrose)菌群的分布

    Institute of Scientific and Technical Information of China (English)

    陈明霞; 李和阳; 马云飞; 史莹鑫; 傅毅凌; 郑天凌; 郑森林; 陈彬

    2012-01-01

    [Objective]To investigate potential pathogens in waters of Xiamen from Jiulong River, and to provide useful information for the prevention and control of potential pathogen infections. [Methods] All samples were spread on Thiosulfate Citrate Bile Salts Sucrose (TCBS) agar plates, and then incubated at 26 ± 1℃ for 24 ±2 h. In total 158 TCBS strains were isolated from TCBS agar plates and pure-cultivated on 2216E agar plates. All strains were identified using the 16S rRNA gene- Restriction fragment length polymorphism (RFLP) , 16S rRNA sequence analysis, GenBank database Basic Local Alignment Search Tool (BLAST) and phylogenetic analysis. [Results] The results show that 158 TCBS strains from the sediments of Jiulong River estuary were classfied as 7 genus, which were Pseudomonas (28%), Aeromonas (24%) , Pseudoalteromonas (19%) , Shewanella (13%) , Bacillus (11%) , Vibrio (4%) and Psychrobacter (1%). The composition and distribution of TCBS bacteria groups varied with stations. Non-halophilic or haloduric bacteria groups were dominant in the upper area of Jiulong River estuary, and halophilic and haloduric bacteria were dominant in the lower area, which characterized a typical estuary feature. The salinity played a key role in the distribution of TCBS groups. Vibrios did not constitute a significant proportion (6% - 19%) of the total TCBS strains at different stations, and most of the them distributed at the lower region. [Conclusion] There were a lot of potential pathogens in Jiulong River estuary. Aeromonas, a typical genus of halotolerant bacteria, was the potentially terrigenous bacteria contamination to the waters of Xiamen. Most Vibrio specieses were marine aborigines, which was not directly contaminated from the runoff of Jiulong River.%[目的]调查九龙江流域对厦门海域潜在的病原菌“污染”,为相关侵染性病害的预防和控制提供有价值的资料.[方法]通过TCBS(Thiosulfate Citrate Bile Salts Sucrose)培养基从九龙

  10. Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation.

    Science.gov (United States)

    Gamalier, Juliana P; Silva, Thiago P; Zarantonello, Victor; Dias, Felipe F; Melo, Rossana C N

    2017-01-01

    Secretion of membrane vesicles is an important biological process of both eukaryotic and prokaryotic cells. This process has been characterized in pathogenic bacteria, but is less clear in non-pathogenic bacteria from aquatic ecosystems. Here, we investigated, for the first time, the process of formation of outer membranes vesicles (OMVs), nanoscale vesicles extruded from the outer membrane (OM) of gram-negative bacteria, in cultures of freshwater bacteria after exposure or not to ultraviolet radiation (UVR) as an environmental stressor. Non-axenic cultures of freshwater bacteria isolated from a Brazilian aquatic ecosystem (Funil reservoir) were exposed or not to UVR (UVA+UVB) over a 3h period, during which cell density, viability and ultrastructure were analyzed. First, we showed that UVR induce bacterial death. UVR triggered significant negative effect on cell density after 3h of UVR treatment. This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe that enables the distinction of live/dead bacteria. Transmission electron microscopy (TEM) revealed changes indicative of cell death after 3h of UVR exposure, with significant increase of damaged cells compared to the control group. Second, we demonstrated that gram-negative bacteria release OMVs during normal growth and after UVR exposure. OMVs were clearly identified as round, membrane-bound vesicles budding off from the bacterial OM as isolated or clustered vesicles or free in the extracellular medium. Remarkably, quantitative TEM analyses showed that bacteria respond to UVR with increased formation of OMVs. Moreover, while OMVs numbers per intact or damaged cell did not differ in the untreated group, UVR led to a higher vesiculation by bacteria in process of death. This means that degenerating bacteria release OMVs before lysis and that this secretion might be an adaptive/protective response to rapid changes in environmental conditions such as UV radiation. Copyright

  11. Serological studies on chloridazon-degrading bacteria.

    Science.gov (United States)

    Layh, G; Böhm, R; Eberspächer, J; Lingens, F

    1983-01-01

    Agglutination tests and immunofluorescence tests with antisera against four strains of chloridazon-degrading bacteria revealed the serological uniformity of a group of 22 chloridazon-degrading bacterial strains. No serological relationship could be found between chloridazon-degrading bacteria and representatives of other Gram-negative bacteria. This was demonstrated by agglutination tests, including testing of the antiserum against Acinetobacter calcoaceticus, and by immunofluorescence tests, including testing of the sera against Pseudomonas and Acinetobacter strains. The tests were performed with 31 representatives of different Gram-negative bacteria, and with 22 strains of chloridazon-degrading bacteria as antigens. Differences in the extent of agglutination reactions and antibody titres among chloridazon-degrading bacterial strains together with cross-adsorption xperiments, suggest a rough classification of chloridazon-degrading bacteria into two subgroups. On the basis of immunofluorescence data, a linkage-map was worked out to represent serological relationships in the group of chloridazon-degrading strains.

  12. The rulB gene of plasmid pWW0 is a hotspot for the site-specific insertion of integron-like elements found in the chromosomes of environmental Pseudomonas fluorescens group bacteria.

    Science.gov (United States)

    Rhodes, Glenn; Bosma, Hester; Studholme, David; Arnold, Dawn L; Jackson, Robert W; Pickup, Roger W

    2014-08-01

    The rulAB operon of Pseudomonas spp. confers fitness traits on the host and has been suggested to be a hotspot for insertion of mobile elements that carry avirulence genes. Here, for the first time, we show that rulB on plasmid pWW0 is a hotspot for the active site-specific integration of related integron-like elements (ILEs) found in six environmental pseudomonads (strains FH1-FH6). Integration into rulB on pWW0 occurred at position 6488 generating a 3 bp direct repeat. ILEs from FH1 and FH5 were 9403 bp in length and contained eight open reading frames (ORFs), while the ILE from FH4 was 16 233 bp in length and contained 16 ORFs. In all three ILEs, the first 5.1 kb (containing ORFs 1-4) were structurally conserved and contained three predicted site-specific recombinases/integrases and a tetR homologue. Downstream of these resided ORFs of the 'variable side' with structural and sequence similarity to those encoding survival traits on the fitness enhancing plasmid pGRT1 (ILE(FH1) and ILE(FH5)) and the NR-II virulence region of genomic island PAGI-5 (ILE(FH4)). Collectively, these ILEs share features with the previously described type III protein secretion system effector ILEs and are considered important to host survival and transfer of fitness enhancing and (a)virulence genes between bacteria.

  13. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria

    Institute of Scientific and Technical Information of China (English)

    QI Yun; ZHAO Lin; OJEKUNLE Z.Olusheyi; TAN Xin

    2007-01-01

    A study Was conducted to compare the diversity of 2-,3-,and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge.These samples contained strikingly different populations of mono-chlorobenzoate degraders.Although fewer cultures were isolated in the uncontaminated soils than contaminated one,the ability of microbial populations to mineralize chlorobenzoate was widespread.The 3-and 4-chlorobenzoate degraders were more diverse than me 2-chlorobenzoate degraders.One of the strains isolated from the sewage sludge was obtained.Based on its phenotype.chemotaxonomic properties and 16S rRNA gene,the organism S-7was classified as Rhodococcus erythropolis.The strain can grow at temperature from 4 to 37℃.C.It can utilize several(halo)aromatic compounds.Moreover,strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions.The psychrotolerant ability was significant for bioremediation in low temperature regions.Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain,but no(chloro)catechol 2,3-dioxygenase activities was detected.Spectral conversion assays with extracts from R.erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate.On the basis of these results,we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.

  14. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  15. Filtrating forms of soil bacteria

    Science.gov (United States)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  16. Cable Bacteria in Freshwater Sediments.

    Science.gov (United States)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.

  17. Bacteriophages of methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tyutikow, F.M. (All-Union Research Inst. for Genetics and Selection of Industrial Microorganisms, Moscow, USSR); Bespalova, I.A.; Rebentish, B.A.; Aleksandrushkina, N.N.; Krivisky, A.S.

    1980-10-01

    Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups.

  18. Bacteria isolated from amoebae/bacteria consortium

    Science.gov (United States)

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  19. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  20. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  1. Group B Strep Infection in Adults

    Science.gov (United States)

    ... and women. Spread to Others The sources of disease caused by group B strep bacteria are unknown. Group B strep bacteria are common ... the body that is infected. Below are common diseases caused by group B strep bacteria in adults and their symptoms. Bacteremia and sepsis ( ...

  2. Primary arsenic(V) preserved in 3.26 billion-year-old shallow marine cherts of the Fig Tree Group demonstrates a complete Paleoarchean arsenic cycle driven by photosynthetic bacteria

    Science.gov (United States)

    Myers, K. D.; Tice, M. M.; Bostick, B. C.

    2016-12-01

    Microbial arsenic (As) redox cycling is hypothesized to have been widespread in oxygen-free Archean environments, yet our understanding of Archean As cycles is hindered by a poor sedimentary record of As. Concentrations of up to 1.6 wt % As were discovered in chert clasts of a fan delta conglomerate sourced from shallow-water coastal environments in the 3.26-3.23 Ga Fig Tree Group of the Barberton Greenstone Belt, South Africa. Arsenic is associated at the outcrop-scale with Fe-bearing conglomerate pebbles and underlying banded ferruginous cherts, whereas low-Fe chert clasts, underlying low-Fe banded black and white cherts, bedded barites, and overlying ash deposits lack As. Bulk As and Fe K-edge X-ray absorption spectroscopy and 1-100 μm scale μ-X-ray fluorescence mapping were used to determine the abundance, oxidation state, and mineralogy of As in relation to sedimentary textures and bulk Fe mineralogy. Arsenic concentration is strongly linked to lithology: hematite (Fe2O3)-rich pebbles contain higher Fe:As ratios ( 10:1-100:1) than sideritic pebbles with little to no Fe2O3 (Fe:As 1:1-10:1). Arsenopyrite (FeAsS), orpiment (As2S3), As(III), and As(V) line pre-erosional textures and early dewatering structures. Significantly, As(V) is associated with hematite, pyrite, and siderite but not with products of recent oxidative weathering such as goethite. These results are best explained by As(V) adsorption to Fe-oxide phases during deposition or very early diagenesis, prior to silicification. Microbially-mediated SO42- and As(V) reduction led to As2S3 precipitation, known to occur in modern reducing and arsenic-bearing aquifers. Later metamorphic alteration of As2S3 led to partial replacement, likely isomorphously, with FeAsS. The presence of minerals formed during different stages of As(V) reduction associated with early sedimentary textures show that a complete biogeochemical As redox cycle was possible by 3.2 Ga. The As(V)/As(III) pair has a more positive

  3. Intracellular Bacteria in Protozoa

    Science.gov (United States)

    Görtz, Hans-Dieter; Brigge, Theo

    Intracellular bacteria in humans are typically detrimental, and such infections are regarded by the patients as accidental and abnormal. In protozoa it seems obvious that many bacteria have coevolved with their hosts and are well adapted to the intracellular way of life. Manifold interactions between hosts and intracellular bacteria are found, and examples of antibacterial resistance of unknown mechanisms are observed. The wide diversity of intracellular bacteria in protozoa has become particularly obvious since they have begun to be classified by molecular techniques. Some of the bacteria are closely related to pathogens; others are responsible for the production of toxins.

  4. A computerised system for the identification of lactic acid bacteria.

    NARCIS (Netherlands)

    Wijtzes, T.; Bruggeman, M.R.; Nout, M.J.R.; Zwietering, M.H.

    1997-01-01

    A generic computerised system for the identification of bacteria was developed. The system is equipped with a key to the identification of lactic acid bacteria. The identification is carried out in two steps. The first step distinguishes groups of bacteria by following a decision tree with general i

  5. [Spectrum and susceptibility of preoperative conjunctival bacteria].

    Science.gov (United States)

    Fernández-Rubio, M E; Cuesta-Rodríguez, T; Urcelay-Segura, J L; Cortés-Valdés, C

    2013-12-01

    To describe the conjunctival bacterial spectrum of our patients undergoing intraocular surgery and their antibiotic sensitivity during the study period. A retrospective study of preoperative conjunctival culture of patients consecutively scheduled for intraocular surgery from 21 February 2011 to 1 April 2013. Specimens were directly seeded onto blood-agar and MacConkey-agar (aerobiosis incubation, 2 days), and on chocolate-agar (6% CO2 incubation, 7 days). The identified bacteria were divided into 3 groups according to their origin; the bacteria susceptibility tests were performed on those more pathogenic and on some of the less pathogenic when more than 5 colonies were isolated. The sensitivity of the exigent growing bacteria was obtained with disk diffusion technique, and for of the non-exigent bacteria by determining their minimum inhibitory concentration. The Epidat 3.1 program was used for statistical calculations. A total of 13,203 bacteria were identified in 6,051 cultures, with 88.7% being typical colonizers of conjunctiva (group 1), 8.8% typical of airways (group 2), and the remaining 2.5% of undetermined origin (group 3). 530 cultures (8.8%) were sterile. The sensitivity of group 1 was: 99% vancomycin, 95% rifampicin, 87% chloramphenicol, 76% tetracycline. Levels of co-trimoxazole, aminoglycosides, quinolones, β-lactams and macrolides decreased since 2007. The group 2 was very sensitive to chloramphenicol, cefuroxime, rifampicin, ciprofloxacin and amoxicillin/clavulanate. In group 3, to levofloxacin 93%, ciprofloxacin 89%, tobramycin 76%, but ceftazidime 53% and cefuroxime 29% decreased. None of the tested antibiotics could eradicate all possible conjunctival bacteria. Bacteria living permanently on the conjunctiva (group 1) have achieved higher resistance than the eventual colonizers. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  6. New polycomb group protein enhancer of zeste homolog (EZH) 2-derived peptide with the potential to induce cancer-reactive cytotoxic T lymphocytes in prostate cancer patients with HLA-A3 supertype alleles.

    Science.gov (United States)

    Minami, Takafumi; Minami, Tomoko; Shimizu, Nobutaka; Yamamoto, Yutaka; De Velasco, Marco A; Nozawa, Masahiro; Yoshimura, Kazuhiro; Harashima, Nanae; Harada, Mamoru; Uemura, Hirotsugu

    2015-05-01

    Analyses on reactivity of anti-cancer cytotoxic T lymphocytes (CTLs) and clinical application of peptide-based anti-cancer vaccine have been mainly focused on patients with HLA-A2 or -A24 alleles. In this study, we identified an enhancer of zeste homolog (EZH) 2-derived peptide applicable for anti-cancer vaccine for prostate cancer patients with HLA-A3 supertype alleles. Five EZH2-derived peptides that were prepared based on the binding motif to the HLA-A3 supertype alleles (HLA-A11, -A31, and -A33) were functionally screened for their potential to induce peptide-specific CTLs from peripheral blood mononuclear cells (PBMCs) of HLA-A3 supertype allele(+) prostate cancer patients. As a result, EZH2733-741 peptide was found to efficiently induce peptide-specific CTLs. The EZH2733-741 peptide-stimulated and purified CD8(+) T cells from PBMCs of HLA-A3 supertype allele(+) prostate cancer patients showed higher cytotoxicity against HLA-A3 supertype allele-expressing LNCaP prostate cancer cells than against parental LNCaP cells. This cytotoxicity against HLA-A3 supertype allele-expressing LNCaP cells was partially but significantly inhibited by the addition of EZH2733-741 peptide-pulsed competitive cells. These results indicate that the EZH2733-741 peptide could be a promising candidate for peptide-based immunotherapy for HLA-A3 supertype allele(+) prostate cancer patients.

  7. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  8. How honey kills bacteria

    NARCIS (Netherlands)

    P.H.S. Kwakman; A.A. te Velde; L. de Boer; D. Speijer; C.M.J.E. Vandenbroucke-Grauls; S.A.J. Zaat

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria t

  9. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    黎向锋; 李雅芹; 蔡军; 张德远

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  10. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  11. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A

    2004-01-01

    Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria...... (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus...... and carotenoid species also allow the functions of these pigments to be studied in vivo....

  12. Equivalence Comparison Between Two Methods for Detecting Thermotolerant Coliform Group Bacteria in Water%两种检测水中耐热大肠菌群方法的等效性比较

    Institute of Scientific and Technical Information of China (English)

    冯玫; 杨玮

    2011-01-01

    Two detection methods, multiple-tube fermentation technique and enzyme substrate technique are applied to thermotolerant coliform bacteria detection in source water, and their detection effects are compared. Results demonstrate that multiple-tube fermentation technique shows equivalence with enzyme substrate technique. It is proposal that enzyme substrate technique can be used as an alternative method to evaluate water microbiological pollution evaluation which comes from fecal.%用多管发酵法和酶底物法检测水源水样本中耐热大肠菌群,比较了两者检测结果的等效性.结果表明,多管发酵法与酶底物法检测水中耐热大肠菌群的结果是等效的.酶底物法可以用作评价水中粪源性微生物污染的可替代方法.

  13. [Darwin and bacteria].

    Science.gov (United States)

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  14. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  15. Characterization of Mediterranean Magnetotactic Bacteria

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Magnetotactic bacteria are a diverse group of motile prokaryotes that are ubiquitous in aquatic habitats and cosmopolitan in distribution. In this study, we collected magnetotactic bacteria from the Mediterranean Sea. A remarkable diversity of morphotypes was observed, including muiticellular types that seemed to differ from those previously found in North and South America. Another interesting organism was one with magnetosomes arranged in a six-stranded bundle which occupied one third of the cell width. The magnetosome bundle was evident even under optic microscopy. These cells were connected together and swam as a linear entire unit. Magnetosomes did not always align up to form a straight linear chain. A chain composed of rectangle magnetosomes bent at a position with an oval crystal. High resolution transmission electron microscopy analysis of the crystal at the pivotal position suggested uncompleted formation of the crystal. This is the first report of Mediterranean magnetotactic bacteria, which should be useful for studies of biogeochemical cycling and geohistory of the Mediterranean Sea.

  16. Hessian fly-associated bacteria: transmission, essentiality, and composition.

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    Full Text Available Plant-feeding insects have been recently found to use microbes to manipulate host plant physiology and morphology. Gall midges are one of the largest groups of insects that manipulate host plants extensively. Hessian fly (HF, Mayetiola destructor is an important pest of wheat and a model system for studying gall midges. To examine the role of bacteria in parasitism, a systematic analysis of bacteria associated with HF was performed for the first time. Diverse bacteria were found in different developmental HF stages. Fluorescent in situ hybridization detected a bacteriocyte-like structure in developing eggs. Bacterial DNA was also detected in eggs by PCR using primers targeted to different bacterial groups. These results indicated that HF hosted different types of bacteria that were maternally transmitted to the next generation. Eliminating bacteria from the insect with antibiotics resulted in high mortality of HF larvae, indicating that symbiotic bacteria are essential for the insect to survive on wheat seedlings. A preliminary survey identified various types of bacteria associated with different HF stages, including the genera Enterobacter, Pantoea, Stenotrophomonas, Pseudomonas, Bacillus, Ochrobactrum, Acinetobacter, Alcaligenes, Nitrosomonas, Arcanobacterium, Microbacterium, Paenibacillus, and Klebsiella. Similar bacteria were also found specifically in HF-infested susceptible wheat, suggesting that HF larvae had either transmitted bacteria into plant tissue or brought secondary infection of bacteria to the wheat host. The bacteria associated with wheat seedlings may play an essential role in the wheat-HF interaction.

  17. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  18. Molecular and morphological characterisation of Xiphinema americanum group species (Nematoda:Dorylaimida)from California and other regions and co-evolution of bacteria from the genus Candidata Xiphinemobacter with nematodes.

    Science.gov (United States)

    The Xiphinema americanum group is a large species complex containing more than two dozen nematode species. They are economically important because they are vectors of nepoviruses. The species differentiation of X. americanum group is problematic because the species share similar morphological charac...

  19. Polymer-like structures of LiSCN, NaSCN, KSCN, RbSCN, and CsSCN complexes with an armed monoaza-15-crown-5 ether bearing a 3',5'-difluoro-4'-hydroxybenzyl group.

    Science.gov (United States)

    Habata, Yoichi; Okazaki, Chizuko; Ogura, Kinuko; Akabori, Sadatoshi; Zhang, Xian X; Bradshaw, Jerald S

    2007-10-01

    Structures of LiSCN, NaSCN, KSCN, RbSCN, and CsSCN complexes with 3',5'-difluoro-4'-hydroxybenzyl-armed monoaza-15-crown-5 ether (5) were investigated. The Li+ and Na+ complexes are (1:1)n polymer-like complexes bridged by hydrogen bonding. On the other hand, the K+, Rb+, and Cs+ complexes are polymer-like complexes bridged by the fluorine atoms of the side arms. The titration calorimetry and 19F NMR titration experiments suggest that one or both fluorine atoms along with the oxygen atom of the phenolic OH group coordinate to the alkali metal ions incorporated in the crown part of a second armed ligand to give polymer-like complexes in solution. The FAB-MS data indicated that larger alkali metal ions form more stable polymer-like complexes.

  20. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov

    Science.gov (United States)

    Gosink, J. J.; Woese, C. R.; Staley, J. T.

    1998-01-01

    Several psychrophilic, gas vacuolate strains of the Cytophage-Flavobacterium-Bacteroides (CFB) phylogenetic group were isolated from sea ice and water from the Arctic and the Antarctic. The closest taxonomically defined species by 16S rRNA sequence analysis is 'Flectobacillus glomeratus'. However, 'Flc. glomeratus' is phylogenetically distant from the Flectobacillus type species, Flc. major. On the basis of phenotypic, genotypic and 16S rRNA sequence analyses we propose a new genus, Polaribacter, with three new species, Polaribacter irgensii strain 23-P (ATCC 700398), Polaribacter franzmannii strain 301 (ATCC 700399) and Polaribacter filamentus strain 215 (ATCC 700397). P. filamentus is the type species of the genus. None of these species exhibits a cosmopolitan or bipolar distribution. This is the first taxonomic description of gas vacuolate bacteria in the CFB group. Additionally, we propose that 'Flc. glomeratus' be reclassified to the genus Polaribacter as P. glomeratus, comb. nov.

  1. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov

    Science.gov (United States)

    Gosink, J. J.; Woese, C. R.; Staley, J. T.

    1998-01-01

    Several psychrophilic, gas vacuolate strains of the Cytophage-Flavobacterium-Bacteroides (CFB) phylogenetic group were isolated from sea ice and water from the Arctic and the Antarctic. The closest taxonomically defined species by 16S rRNA sequence analysis is 'Flectobacillus glomeratus'. However, 'Flc. glomeratus' is phylogenetically distant from the Flectobacillus type species, Flc. major. On the basis of phenotypic, genotypic and 16S rRNA sequence analyses we propose a new genus, Polaribacter, with three new species, Polaribacter irgensii strain 23-P (ATCC 700398), Polaribacter franzmannii strain 301 (ATCC 700399) and Polaribacter filamentus strain 215 (ATCC 700397). P. filamentus is the type species of the genus. None of these species exhibits a cosmopolitan or bipolar distribution. This is the first taxonomic description of gas vacuolate bacteria in the CFB group. Additionally, we propose that 'Flc. glomeratus' be reclassified to the genus Polaribacter as P. glomeratus, comb. nov.

  2. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  3. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  4. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  5. Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  6. Mycophagous soil bacteria

    NARCIS (Netherlands)

    Rudnick, M.B.

    2015-01-01

    Abstract

    Soil microorganisms evolved several strategies to compete for limited nutrients in soil. Bacteria of the genus Collimonas developed a way to exploit fungi as a source of organic nutrients. This strategy has been termed “mycophagy&r

  7. Taxonomy of phototrophic green and purple bacteria: a review.

    Science.gov (United States)

    Pfennig, N; Trüper, H G

    1983-01-01

    The presently existing classification for the green and purple bacteria comprises physiological-ecological assemblages of phototrophic bacteria with anoxygenic photosynthesis. The taxonomic units of the different levels were based entirely on common phenotypic traits, including morphological, cytological, physiological and biochemical characteristics. Since degrees of resemblance form the basis of the grouping, this classification cannot reflect the genetic or evolutionary relatedness of these bacteria, neither among themselves nor with other bacteria. The advantage of the artificial system, however, is the use of features which can be established in most laboratories and which allow the comparison and identification of newly isolated strains with those already studied and described. The four existing families correspond to the four major recognized, ecophysiological groups, the Chlorobiaceae and Chloroflexaceae among the green bacteria, and the Chromatiaceae and Rhodospirillaceae among the purple bacteria. Our knowledge of all these groups is incomplete; this is reflected by the fact that seven new species have been described during the past three years (6th Newsletter on phot. bacteria, Trüper and Hansen, 1982). The description of the new genus and species Erythrobacter longus (Shiba and Simidu, 1982) is also interesting, as it comprises aerobic chemoorganotrophic marine bacteria which form bacteriochlorophyll a and carotenoids; however, no strains were able to grow phototrophilcally. Significant success is currently being obtained in the different approaches toward elucidating the genetic relationships within and outside of the purple and green bacteria. Detailed studies of the lipopolysaccharides of several species and genera of the Rhodospirillaceae (Weckesser et al., 1979, and more recent paper) have proven to be very useful for the recognition of relationships or dissimilarities between the species of a genus or between different genera. Amino acid sequence

  8. HERBASPIRILLUM-LIKE BACTERIA IN BANANA PLANTS

    Directory of Open Access Journals (Sweden)

    Weber Olmar B.

    2001-01-01

    Full Text Available Diazotrophic bacteria isolated from banana plants were characterized by morphological and physiological aspects. Three different groups of these plant-bacteria could be established. Two of them showed similarity to species of the Herbaspirillum genus. The third one was different because used only a few carbon substrates and produced water diffusible compounds that fluoresced under UV light. All three bacterial groups were thin rods with mono or bipolar flagella, presented negative reaction in Gram stain, showed catalase activity, were able to reduce nitrate and grew better in semi-solid JNFb medium at 31ºC. The nitrogenase activity was detected in semi-solid N-free JNFb medium and expressed higher values when pH ranged from 6.5 to 7.0 (groups I and II and 6.0 to 6.5 (group III. The diazotrophs isolated from banana plants were distinct from species of Herbaspirillum previously identified in gramineous plants.

  9. Bacteriocins of lactic acid bacteria : extending the family

    NARCIS (Netherlands)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-01-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceo

  10. Lactic Acid Bacteria : embarking on 30 more years of research

    NARCIS (Netherlands)

    Kok, Jan; Johansen, Eric; Kleerebezem, Michiel; Teusink, Bas

    2014-01-01

    The 11th International Symposium on Lactic Acid Bacteria Lactic Acid Bacteria play important roles in the pro- duction of food and feed and are increasingly used as health-promoting probiotics. The incessant scientific interest in these microorganisms by academic research groups as well as by indust

  11. Bacteriocins of lactic acid bacteria : extending the family

    NARCIS (Netherlands)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-01-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are

  12. Classification of methanogenic bacteria by 16S ribosomal RNA characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fox, G.E.; Magrum, L.J.; Balch, W.E.; Wolfe, R.S.; Woese, C.R.

    1977-10-01

    The 16S ribosomal RNAs from 10 species of methanogenic bacteria have been characterized in terms of the oligonucleotides produced by T/sub 1/ RNase digestion. Comparative analysis of these data reveals the methanogens to constitute a distinct phylogenetic group containing two major divisions. These organisms appear to be only distantly related to typical bacteria.

  13. Functional genomics of lactic acid bacteria: from food to health

    NARCIS (Netherlands)

    Douillard, F.P.; Vos, de W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria a

  14. Functional genomics of lactic acid bacteria: from food to health

    NARCIS (Netherlands)

    Douillard, F.P.; Vos, de W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria

  15. Bacteriocins of lactic acid bacteria : extending the family

    NARCIS (Netherlands)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-01-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceo

  16. Lactic Acid Bacteria : embarking on 30 more years of research

    NARCIS (Netherlands)

    Kok, Jan; Johansen, Eric; Kleerebezem, Michiel; Teusink, Bas

    2014-01-01

    The 11th International Symposium on Lactic Acid Bacteria Lactic Acid Bacteria play important roles in the pro- duction of food and feed and are increasingly used as health-promoting probiotics. The incessant scientific interest in these microorganisms by academic research groups as well as by

  17. Reducing gas content of coal deposits by means of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska-Lipowa, A.A.; Kozlowski, B.

    1981-07-01

    This paper discusses the results of experiments carried out in Poland under laboratory conditions on efficiency of methane control using bacteria from Methanosarcina and Methanomonas groups. Malashenko and Whittenburry culture mediums were used. Bacteria growth in an atmosphere of air and methane (48.2%, 8.6% and 5.21%) was observed. Temperature ranged from 19 to 20 C. Investigations show that the bacteria are characterized by high oxidation activity. Depending on methane concentration in the air the bacteria consume from 75% to 100% of methane during biosynthesis. The bacteria reduce methane and oxygen content and increase carbon dioxide content in the air. Using bacteria methane concentration in the air was reduced from 48.2% to 12.3%, from 8.6% to 0.0% and from 5.21% to 0.01%. (7 refs.) (In Polish)

  18. Is Your ATM Dispensing Bacteria?

    Science.gov (United States)

    ... news/fullstory_162067.html Is Your ATM Dispensing Bacteria? Study in New York City found most of ... keypads in New York City were covered in bacteria, researchers reported, with most of the microbes coming ...

  19. Exopolysaccharides from Marine Bacteria

    Institute of Scientific and Technical Information of China (English)

    CHI Zhenming; FANG Yan

    2005-01-01

    Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives,textiles, pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc This paper gives a brief summary of the information about the EPSs produced by marine bacteria,including their chemical compositions, properties and structures, together with their potential applications in industry.

  20. Genomics of oral bacteria.

    Science.gov (United States)

    Duncan, Margaret J

    2003-01-01

    Advances in bacterial genetics came with the discovery of the genetic code, followed by the development of recombinant DNA technologies. Now the field is undergoing a new revolution because of investigators' ability to sequence and assemble complete bacterial genomes. Over 200 genome projects have been completed or are in progress, and the oral microbiology research community has benefited through projects for oral bacteria and their non-oral-pathogen relatives. This review describes features of several oral bacterial genomes, and emphasizes the themes of species relationships, comparative genomics, and lateral gene transfer. Genomics is having a broad impact on basic research in microbial pathogenesis, and will lead to new approaches in clinical research and therapeutics. The oral microbiota is a unique community especially suited for new challenges to sequence the metagenomes of microbial consortia, and the genomes of uncultivable bacteria.

  1. Effect of chitosan coating on a bacteria-based alginate microrobot.

    Science.gov (United States)

    Park, Sung Jun; Lee, Yu Kyung; Cho, Sunghoon; Uthaman, Saji; Park, In-Kyu; Min, Jung-Joon; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-04-01

    To develop an efficient bacteria-based microrobot, first, therapeutic bacteria should be encapsulated into microbeads using biodegradable and biocompatible materials; second, the releasing rate of the encapsulated bacteria for theragnostic function should be regulated; and finally, flagellated bacteria should be attached on the microbeads to ensure the motility of the microrobot. For the therapeutic bacteria encapsulation, an alginate can be a promising candidate as a biodegradable and biocompatible material. Owing to the non-regulated releasing rate of the encapsulated bacteria in alginate microbeads and the weak attachment of flagellated bacteria on the surface of alginate microbeads, however, the alginate microbeads cannot be used as effective cargo for a bacteria-based microrobot. In this paper, to enhance the stability of the bacteria encapsulation and the adhesion of flagellated bacteria in alginate microbeads, we performed a surface modification of alginate microbeads using chitosan coating. The bacteria-encapsulated alginate microbeads with 1% chitosan coating maintained their structural integrity up to 72 h, whereas the control alginate microbead group without chitosan coating showed severe degradations after 24 h. The chitosan coating in alginate microbeads shows the enhanced attachment of flagellated bacteria on the surface of alginate microbeads. The bacteria-actuated microrobot with the enhanced flagellated bacteria attachment could show approximately 4.2 times higher average velocities than the control bacteria-actuated microrobot without chitosan coating. Consequently, the surface modification using chitosan coating enhanced the structural stability and the motility of the bacteria-based alginate microrobots.

  2. Cable Bacteria in Freshwater Sediments

    OpenAIRE

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the fre...

  3. A-3 Construction

    Science.gov (United States)

    2009-01-01

    Workers erect the first beams of structural steel for the 235-foot tall A-3 Test Stand on Oct. 29, 2008. Ground work for the stand was broken in August 2008 and the final structural steel beam was placed on April 9, 2009.

  4. Bacteria counting method based on polyaniline/bacteria thin film.

    Science.gov (United States)

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Brotes germinados y bacterias

    OpenAIRE

    García Olmedo, Francisco

    2011-01-01

    Ante la confusión y el revuelo asociados al último incidente causado por una cepa de la bacteria Escherichia coli (E. coli) en Alemania, tal vez no esté de más esta carta para recordar y actualizar escritos míos anteriores aparecidos en Revista de Libros sobre los riesgos alimentarios en general y sobre los peligros de dicho microorganismo en particular. 1 . Aunque es cierto que la proporción de cepas peligrosas de E. coli es quizás inferior a la de delincuentes entre los humanos, exi...

  6. When bacteria devastate the purification station; Quand les bacteries ravagent la Step

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-05-01

    Isolated, the bacteria contribute to purify waste waters. Grouped together, the thread bacteria make the basins foam and damage to the right effluents decantation. There are some solutions to overcome these intrusive bacteria, they are given in this article. (N.C.)

  7. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.

  8. Chemical communication in bacteria

    Science.gov (United States)

    Suravajhala, Srinivasa Sandeep; Saini, Deepak; Nott, Prabhu

    Luminescence in Vibrio fischeri is a model for quorum-sensing-gene-regulation in bacteria. We study luminescence response of V. fischeri to both internal and external cues at the single cell and population level. Experiments with ES114, a wild-type strain, and ainS mutant show that luminescence induction in cultures is not always proportional to cell-density and there is always a basal level of luminescence. At any given concentration of the exogenously added signals, C6-HSL and C8-HSL, luminescence per cell reaches a maximum during the exponential phase and decreases thereafter. We hypothesize that (1) C6-HSL production and LuxR activity are not proportional to cell-density, and (2) there is a shift in equilibrium from C6-HSL to C8-HSL during the later stages of growth of the culture. RT-PCR analysis of luxI and luxR shows that the expression of these genes is maximum corresponding to the highest level of luminescence. The shift in equilibrium is shown by studying competitive binding of C6-HSL and C8-HSL to LuxR. We argue that luminescence is a unicellular behaviour, and an intensive property like per cell luminescence is more important than gross luminescence of the population in understanding response of bacteria to chemical signalling. Funding from the Department of Science and Technology, India is acknowledged.

  9. Replication Restart in Bacteria.

    Science.gov (United States)

    Michel, Bénédicte; Sandler, Steven J

    2017-07-01

    In bacteria, replication forks assembled at a replication origin travel to the terminus, often a few megabases away. They may encounter obstacles that trigger replisome disassembly, rendering replication restart from abandoned forks crucial for cell viability. During the past 25 years, the genes that encode replication restart proteins have been identified and genetically characterized. In parallel, the enzymes were purified and analyzed in vitro, where they can catalyze replication initiation in a sequence-independent manner from fork-like DNA structures. This work also revealed a close link between replication and homologous recombination, as replication restart from recombination intermediates is an essential step of DNA double-strand break repair in bacteria and, conversely, arrested replication forks can be acted upon by recombination proteins and converted into various recombination substrates. In this review, we summarize this intense period of research that led to the characterization of the ubiquitous replication restart protein PriA and its partners, to the definition of several replication restart pathways in vivo, and to the description of tight links between replication and homologous recombination, responsible for the importance of replication restart in the maintenance of genome stability. Copyright © 2017 American Society for Microbiology.

  10. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  11. Invasion of dentinal tubules by oral bacteria.

    Science.gov (United States)

    Love, R M; Jenkinson, H F

    2002-01-01

    Bacterial invasion of dentinal tubules commonly occurs when dentin is exposed following a breach in the integrity of the overlying enamel or cementum. Bacterial products diffuse through the dentinal tubule toward the pulp and evoke inflammatory changes in the pulpo-dentin complex. These may eliminate the bacterial insult and block the route of infection. Unchecked, invasion results in pulpitis and pulp necrosis, infection of the root canal system, and periapical disease. While several hundred bacterial species are known to inhabit the oral cavity, a relatively small and select group of bacteria is involved in the invasion of dentinal tubules and subsequent infection of the root canal space. Gram-positive organisms dominate the tubule microflora in both carious and non-carious dentin. The relatively high numbers of obligate anaerobes present-such as Eubacterium spp., Propionibacterium spp., Bifidobacterium spp., Peptostreptococcus micros, and Veillonella spp.-suggest that the environment favors growth of these bacteria. Gram-negative obligate anaerobic rods, e.g., Porphyromonas spp., are less frequently recovered. Streptococci are among the most commonly identified bacteria that invade dentin. Recent evidence suggests that streptococci may recognize components present within dentinal tubules, such as collagen type I, which stimulate bacterial adhesion and intra-tubular growth. Specific interactions of other oral bacteria with invading streptococci may then facilitate the invasion of dentin by select bacterial groupings. An understanding the mechanisms involved in dentinal tubule invasion by bacteria should allow for the development of new control strategies, such as inhibitory compounds incorporated into oral health care products or dental materials, which would assist in the practice of endodontics.

  12. The Digestion of Guar Gum by Individual Strains of Colonic Bacteria

    OpenAIRE

    Tomlin, J.; Read, N W; Edwards, C. A.; Duerden, B. I.

    2011-01-01

    Experiments were carried out to determine the range of human colonic bacteria that could ferment the viscous polysaccharide, guar gum, and to seek evidence for collaboration between different strains of colonic bacteria. Single strains of a variety of species of bacteria isolated from human faeces were incubated with guar gum. Only seven ofthe 57 different strains of bacteria tested could alter the viscosity and pH of guar gum. These seven strains were all of the fragilis group of the genus B...

  13. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    OpenAIRE

    Martínez-Rodríguez,Julia del C.; Marcela De la Mora-Amutio; Luis A. Plascencia-Correa; Esmeralda Audelo-Regalado; Guardado, Francisco R.; Elías Hernández-Sánchez; Peña-Ramírez, Yuri J.; Adelfo Escalante; Miguel J. Beltrán-García; Tetsuya Ogura

    2015-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria in...

  14. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  15. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...

  16. Bacteria transport under unsaturated conditions

    OpenAIRE

    Gargiulo, Grazia

    2007-01-01

    The aim of this work was to study the bacteria transport behaviour in different conditions using an unsaturated porous media. A column based system able to keep the unsaturated conditions was designed and developed to perform the experiments. Two bacteria strains Deinococcus radiodurans and Rhodococcus rhodochrous strongly different in hydrophobicity were employed. During the experiments the bacteria concentration in the outflow was continuously on-line measured and after the experiment the c...

  17. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  18. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  19. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Science.gov (United States)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  20. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Directory of Open Access Journals (Sweden)

    Jeppe Madura Larsen

    Full Text Available Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp., healthy lungs (commensal Prevotella spp. or both (commensal Veillonella spp. and Actinomyces spp.. All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp. reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  1. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics

    DEFF Research Database (Denmark)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq

    2017-01-01

    , and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion...... and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P bacteria in autumn and winter...... indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The “Candidatus Brocadia� genus of ANAMMOX bacteria was mainly recovered in spring and summer...

  2. The Preliminary Report on Rumen Protozoa Grazing Rate on Bacteria with a Fluorescence-Labeled Technique

    Institute of Scientific and Technical Information of China (English)

    WANG Meng-zhi; WANG Hong-rong; LI Guo-xiang; CAO Heng-chun; LU Zhan-jun

    2008-01-01

    Studies on the bacterial predation rate by rumen protozoa were carried out under laboratory conditions using a technique of fluorescence-labeled bacteria (FLB). Four Xuhuai goats were used in this experiment to obtain rumen protozoa and bacteria. Two groups were designed as follows: One group was the whole bacteria which were labeled using fluorescence through removing free bacteria from rumen fluid (WFLB); the other group was the bacteria which were labeled using fluorescence without removing free bacteria from rumen fluid (FLB). The result indicated that the bacterial predation rates of rumen Protozoa was 398.4 cells/(cell h) for the group WFLB, 230.4 cells/(cell h) for the group FLB, when the corresponding values expressed as bacteria-N, they were 2.15Pg N/(cell h) for the group WFLB, and 1.24Pg N/(cell h) for the group FLB, respectively. Extrapolating the assimilation quantity of nitrogen by ciliates on bacteria of Xuhuai goat, there were 103.2mg N/(d capita) for the group WFLB, and 59.5mg N/(d capita) for the group FLB, respectively. It was estimated that protein losses due to microbial recycling were 0.645g pro/(d capita) for the group WFLB and 0.372g pro/(d capita) for the group FLB, respectively. In addition, the fluorescence-labeled technique would be a potential assay for the determination of bacterial predation rate by rumen protozoa.

  3. Effects of Ethanolic Ferolagu angulata Extract on Pathogenic Gastrointestinal Bacteria and Probiotic Bacteria in Skimmed Milk Medium

    Directory of Open Access Journals (Sweden)

    Reza Naghiha

    2016-12-01

    Full Text Available Background:    Due to excessive consumption of synthetic drugs, drug resistance rate of pathogenic bacteria is increasing and there is an ever-increasing need to find new safe compounds to tackle this problem. This study was conducted to investigate the consequences of chavill extract on the growth and viability of gastrointestinal pathogenic bacterium and probiotics bacteria. Methods:    The experiment contained three levels of the chavill extract concentrations (0, 1 and 3% which were added to the milk free fat in accompany with three probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei and lactobacillus plantaram and a pathogenic gastrointestinal bacterium (Salmonella typhimurium. Bacterial inoculums (1×107 CFU/ml with different concentrations of chavill extract were added to skimmed milk medium and bacteria growth were enumerated. Results:  The concentration of 1% chavill extract significantly increased the total count of probiotic bacteria compared to the control group, while the number of pathogenic bacteria was decreased. At 3% chavill extract the growth of Lactobacillus acidophilus and Lactobacillus plantaram were increased. On the other hand, it prevented the growth of Salmonella typhimurium Conclusion:   Chavill extracts would play as an alternative to antibiotics in pharmacological studies to decreases harmful bacteria and increase probiotic bacteria.

  4. Swimming bacteria in liquid crystal

    Science.gov (United States)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  5. Ecophysiology of the anammox bacteria

    NARCIS (Netherlands)

    Kartal, Mustafa Boran

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a cost-effecti

  6. Money and transmission of bacteria

    NARCIS (Netherlands)

    Gedik, H.; Voss, T.A.; Voss, A.

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria

  7. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  8. Bacteria associated with Amblyomma cajennense tick eggs

    Directory of Open Access Journals (Sweden)

    Erik Machado-Ferreira

    2015-01-01

    Full Text Available AbstractTicks represent a large group of pathogen vectors that blood feed on a diversity of hosts. In the Americas, the Ixodidae ticks Amblyomma cajennense are responsible for severe impact on livestock and public health. In the present work, we present the isolation and molecular identification of a group of culturable bacteria associated with A. cajennense eggs from females sampled in distinct geographical sites in southeastern Brazil. Additional comparative analysis of the culturable bacteria from Anocentor nitens, Rhipicephalus sanguineus and Ixodes scapularis tick eggs were also performed. 16S rRNA gene sequence analyses identified 17 different bacterial types identified as Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Enterobacter spp., Micrococcus luteus, Ochrobactrum anthropi, Bacillus cereus and Staphylococcus spp., distributed in 12 phylogroups. Staphylococcus spp., especially S. sciuri,was the most prevalent bacteria associated with A. cajennenseeggs, occurring in 65% of the samples and also frequently observed infecting A. nitens eggs. S. maltophilia, S. marcescens and B. cereus occurred infecting eggs derived from specific sampling sites, but in all cases rising almost as pure cultures from infected A. cajennense eggs. The potential role of these bacterial associations is discussed and they possibly represent new targets for biological control strategies of ticks and tick borne diseases.

  9. Lactic acid bacteria found in fermented fish in Thailand.

    Science.gov (United States)

    Tanasupawat, Somboon; Okada, Sanae; Komagata, Kazuo

    1998-06-01

    Forty-seven strains of homofermentative rod-shaped and 5 heterofermentative sphere-shaped lactic acid bacteria were isolated from 4 kinds of fermented fish (pla-ra, pla-chom, kung-chom, and hoi-dong) in Thailand. These bacteria were separated into four groups by phenotypic and chemotaxonomic characteristics, including fluorometric DNA-DNA hybridization. Five strains (Group I) contained meso-diaminopimelic acid in the cell wall. Four strains were identified as Lactobacillus pentosus, and one strain was L. plantarum. Tested strains of this group produced DL-lactic acid. The rest of the rod-shaped bacteria, 23 strains (Group II) and 19 strains (Group III), lacked meso-diaminopimelic acid in the cell wall and were identified as L. farciminis and Lactobacillus species, respectively. The tested strains of these groups produced L-lactic acid. The amount of cellular fatty acids of C16:0 and C18:1, and the DNA base compositions were significant for differentiating the strains in Groups II and III. Five strains of cocci in chains (Group IV) produced gas from glucose. The tested strains of this group produced d-lactic acid. They were identified as a Leuconostoc species. The distribution of these bacteria in fermented fish in Thailand is discussed.

  10. Comparative cytotoxicity of periodontal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.H.; Hammond, B.F.

    1988-11-01

    The direct cytotoxicity of sonic extracts (SE) from nine periodontal bacteria for human gingival fibroblasts (HGF) was compared. Equivalent dosages (in terms of protein concentration) of SE were used to challenge HGF cultures. The cytotoxic potential of each SE was assessed by its ability to (1) inhibit HGF proliferation, as measured by direct cell counts; (2) inhibit 3H-thymidine incorporation in HGF cultures; or (3) cause morphological alterations of the cells in challenged cultures. The highest concentration (500 micrograms SE protein/ml) of any of the SEs used to challenge the cells was found to be markedly inhibitory to the HGFs by all three of the criteria of cytotoxicity. At the lowest dosage tested (50 micrograms SE protein/ml); only SE from Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, and Fusobacterium nucleatum caused a significant effect (greater than 90% inhibition or overt morphological abnormalities) in the HGFs as determined by any of the criteria employed. SE from Capnocytophaga sputigena, Eikenella corrodens, or Wolinella recta also inhibited cell proliferation and thymidine incorporation at this dosage; however, the degree of inhibition (5-50%) was consistently, clearly less than that of the first group of three organisms named above. The SE of the three other organisms tested (Actinomyces odontolyticus, Bacteroides intermedius, and Streptococcus sanguis) had little or no effect (0-10% inhibition) at this concentration. The data suggest that the outcome of the interaction between bacterial components and normal resident cells of the periodontium is, at least in part, a function of the bacterial species.

  11. Commensal ocular bacteria degrade mucins.

    Science.gov (United States)

    Berry, M; Harris, A; Lumb, R; Powell, K

    2002-12-01

    Antimicrobial activity in tears prevents infection while maintaining a commensal bacterial population. The relation between mucin and commensal bacteria was assessed to determine whether commensals possess mucinolytic activity, how degradation depends on mucin integrity, and whether mucins affect bacterial replication. Bacteria were sampled from healthy eyes and contact lenses from asymptomatic wearers. Intracellular mucins were extracted and purified from cadaver conjunctivas, and surface mucins from extended wear contact lenses. After exposure to bacteria, changes in mucin hydrodynamic volume (proteolytic cleavage) and subunit charge (oligosaccharide degradation) were assayed by size exclusion and ion exchange chromatography. The effect of mucin on bacterial replication was followed for up to 24 hours from the end of incubation with purified ocular mucins. Ocular bacteria decreased the hydrodynamic volume of intracellular and contact lens adherent mucins, irrespective of glycosylation density. A decrease in mucin sialylation was observed after exposure to commensal bacteria. Subunit charge distributions were generally shifted to lesser negative charge, consistent with loss of charged epitopes. Subunits with high negative charge, observed after digesting lightly adhering contact lens mucins with bacteria, suggest preferential cleavage sites in the mucin molecule. The presence of purified ocular mucin in the medium inhibited bacterial growth. Bacteria in the healthy ocular surface possess mucinolytic activity on both intact and surface processed mucins, targeted to discrete sites in the mucin molecule. Inhibition of bacterial growth by ocular mucins can be seen as part of the mucosal control of microbiota.

  12. Sampling bacteria with a laser

    Science.gov (United States)

    Schwarzwälder, Kordula; Rutschmann, Peter

    2014-05-01

    Water quality is a topic of high interest and it's getting more and more important due to climate change and the implementation of European Water Framework Directive (WFD). One point of interest here is the inflow of bacteria into a river caused by combined sewer overflows which lead untreated wastewater including bacteria directly into a river. These bacteria remain in the river for a certain time, they settle down and can be remobilised again. In our study we want to investigate these processes of sedimentation and resuspension and use the results for the development of a software module coupled with the software Flow3D. Thereby we should be able to simulate and therefore predict the water quality influenced by combined sewer overflows. Hence we need to get information about the bacteria transport and fate. We need to know about the size of the bacteria or of the bacteria clumps and the size of the particles the bacteria are attached to. The agglomerates lead to different characteristics and velocities of settlement. The timespan during this bacteria can be detected in the bulk phase depends on many factors like the intensity of UV light, turbidity of the water, the temperature of the water, if there are grazers and a lot more. The size, density and composition of the agglomerates is just a part of all these influencing factors, but it is extremely difficult to differ between the other effects if we have no information about the simple sedimentation in default of these basic information. However we have a big problem getting the data. The chaining between bacteria or bacteria and particles is not too strong, so filtering the water to get a sieving curve may destroy these connections. We did some experiments similar to PIV (particle image velocimetry) measurements and evaluated the pictures with a macro written for the software ImageJ. Doing so we were able to get the concentration of bacteria in the water and collect information about the size of the bacteria. We

  13. Motility of Electric Cable Bacteria

    OpenAIRE

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner; Schramm, Andreas; Nielsen, Lars Peter

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces with a highly variable speed of 0.5 ± 0.3 μm s−1 (mean ± standard deviation) and time between reversals of 155 ± 108 s. They frequently moved forward in loops, and formation of twisted loops revealed ...

  14. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  15. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Mega

  16. Analysis of molecular interactions between yoghurt bacteria by an integrated genomics approach

    NARCIS (Netherlands)

    Sieuwerts, S.

    2009-01-01

    The lactic acid bacteria (LAB) are a group of Gram-positive bacteria that ferment sugars such as lactose to produce mainly lactic acid. LAB are a group of industrially important microorganisms that are applied for the production of many fermented foods. These include foods produced with substrates f

  17. Differentiating the growth phases of single bacteria using Raman spectroscopy

    Science.gov (United States)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  18. Enumeration and characterization of standard plate count bacteria in chlorinated and raw water supplies.

    Science.gov (United States)

    LeChevallier, M W; Seidler, R J; Evans, T M

    1980-11-01

    Nearly 700 standard plate count (SPC) bacteria were isolated from drinking water and untreated surface water and identified according to a scheme developed to permit the rapid, simple classification of microorganisms to genus, species, or group. Actinomycetes and Aeromonas species were the two most common groups of SPC bacteria in chlorinated distribution water. Aeromonas spp. and Enterobacter agglomerans were the two most common groups of SPC bacteria in raw water. Identification of bacterial populations before and after contact with chlorine (1 to 2 mg/liter) for 1 h revealed that chlorination selected for gram-positive bacteria. Water that contained high densities of bacteria known to be antagonistic to coliforms had low coliform isolation rates. The membrane filtration technique for enumerating SPC bacteria recovered significantly higher numbers (P standard pour plate technique.

  19. Cultivable Bacteria from Milk from Slovenian Breastfeeding Mothers

    Directory of Open Access Journals (Sweden)

    Bojana Bogovič Matijašić

    2014-01-01

    Full Text Available The human milk microbiota plays an important role in the development of infant´s intestinal microbiota and in the protection of infants against pathogenic microorganisms. The aim of this study is to investigate the microbial composition of human milk from 47 breastfeeding mothers, sampled separately from the left (L and the right (R breast, on the 30th day after giving birth. We quantified some major bacterial groups in human milk, compared the cultivable bacteria from the left and the right breast and identified strain diversity of lactobacilli. The results revealed that human milk contains lactic acid bacteria, bifidobacteria and mesophilic aerobic bacteria, of which the last were the most abundant group. Although the microbial composition of human milk in L and R breast samples was comparable, the concentration of bacteria in the two samples from the same mother might vary, therefore milk sample taken from one breast only does not reflect the average microbial composition. Using random amplified polymorphic DNA (RAPD, 86 presumptive isolates of lactobacilli from representative samples of human milk from 11 mothers were classified into 11 groups. Moreover, representatives of different RAPD groups were identified using 16S rDNA sequencing. Out of 11 RAPD groups, 4 groups (21 % of all isolates belonged to the species Lactobacillus gasseri. The most representative RAPD profile (48 % of isolates was found to belong to the species Lactobacillus fermentum. Other RAPD groups were associated with L. salivarius, L. reuteri, Enterococcus faecium, Staphylococcus epidermidis and Bifidobacterium breve species.

  20. Sewage-pollution indicator bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Rodrigues, V.; Alwares, E.; Rodrigues, C.; Baksh, R.; Jayan, S.; Mohandass, C.

    Spatial distribution and annual cycle of sewage pollution indicator (total coliforms and total fecal coliforms) and human pathogenic bacteria (Escherichia coli and Streptococcus faecalis) in water and sediment samples in the Mandovi and Zuari...

  1. Electron microscopic examination of uncultured soil-dwelling bacteria.

    Science.gov (United States)

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  2. Geobiology of Marine Magnetotactic Bacteria

    Science.gov (United States)

    2006-06-01

    Coast. Shelf Sci., 45:769-788. [38] Overmann, J. and H. van Gemerden. 2000. Microbial interactions involving sulfur bacteria: implications for the...1998) Organic acids in the rhizosphere : a critical review. Plant and Soil 205: 25-44. J0rgensen BB, Kuenen JG, Cohen Y (1979) Microbial ...my advisor Katrina Edwards for taking a chance on someone who initially knew nothing about magnetotactic bacteria, microbial ecology, or microbiology

  3. A comparative effect of 3 disinfectants on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicated that high purity chlorine dioxide was the most effective biocide in the 3 disinfectants, and with a dosage of 0.5mg/L, chlorine dioxide could obtain perfect effect. High purity chloride dioxide could have the excellent effect with the pH value of 6 to 10, and could keep it within 72 h. Chlorine and their mixture couldn't reach the effect of chlorine dioxide.

  4. Emerging roles of immunostimulatory oral bacteria in periodontitis development.

    Science.gov (United States)

    Jiao, Yizu; Hasegawa, Mizuho; Inohara, Naohiro

    2014-03-01

    Periodontitis is a common dental disease which results in irreversible alveolar bone loss around teeth, and subsequent tooth loss. Previous studies have focused on bacteria that damage the host and the roles of commensals to facilitate their colonization. Although some immune responses targeting oral bacteria protect the host from alveolar bone loss, recent studies show that particular host defense responses to oral bacteria can induce alveolar bone loss. Host-damaging and immunostimulatory oral bacteria cooperatively induce bone loss by inducing gingival damage followed by immunostimulation. In mouse models of experimental periodontitis induced by either Porphyromonas gingivalis or ligature, γ-proteobacteria accumulate and stimulate host immune responses to induce host damage. Here we review the differential roles of individual bacterial groups in promoting bone loss through the induction of host damage and immunostimulation.

  5. Lipase Activity among Bacteria Isolated from Amazonian Soils

    Directory of Open Access Journals (Sweden)

    André Luis Willerding

    2011-01-01

    Full Text Available The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41% lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C. The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP. A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation.

  6. Lactic acid bacteria as a cell factory for riboflavin production.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production.

  7. Bioreporter bacteria for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S. [Oak Ridge National Lab., TN (United States); Youngblood, T. [Frisby Technologies, Aiken, SC (United States); Lamothe, D. [American Technologies, Inc., Huntsville, AL (United States). Ordnance/Explosives Environmental Services Div.

    1998-04-01

    Landmines (and other UXO) gradually leak explosive chemicals into the soil at significant concentrations. Bacteria, which have adapted to scavenge low concentrations of nutrients, can detect these explosive chemicals. Uptake of these chemicals results in the triggering of specific bacterial genes. The authors have created genetically recombinant bioreporter bacteria that detect small concentrations of energetic chemicals. These bacteria are genetically engineered to produce a bioluminescent signal when they contact specific explosives. A gene for a brightly fluorescent compound can be substituted for increased sensitivity. By finding the fluorescent bacteria, you find the landmine. Detection might be accomplished using stand-off illumination of the minefield and GPS technology, which would result in greatly reduced risk to the deminers. Bioreporter technology has been proven at the laboratory scale, and will be tested under field conditions in the near future. They have created a bacterial strain that detects sub-micromolar concentrations of o- and p-nitrotoluene. Related bacterial strains were produced using standard laboratory protocols, and bioreporters of dinitrotoluene and trinitrotoluene were produced, screening for activity with the explosive compounds. Response time is dependent on the growth rate of the bacteria. Although frill signal production may require several hours, the bacteria can be applied over vast areas and scanned quickly, producing an equivalent detection speed that is very fast. This technology may be applicable to other needs, such as locating buried explosives at military and ordnance/explosive manufacturing facilities.

  8. Isolation and Identification of Concrete Environment Bacteria

    Science.gov (United States)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  9. Group X

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  10. Glutathione transferases in bacteria.

    Science.gov (United States)

    Allocati, Nerino; Federici, Luca; Masulli, Michele; Di Ilio, Carmine

    2009-01-01

    Bacterial glutathione transferases (GSTs) are part of a superfamily of enzymes that play a key role in cellular detoxification. GSTs are widely distributed in prokaryotes and are grouped into several classes. Bacterial GSTs are implicated in a variety of distinct processes such as the biodegradation of xenobiotics, protection against chemical and oxidative stresses and antimicrobial drug resistance. In addition to their role in detoxification, bacterial GSTs are also involved in a variety of distinct metabolic processes such as the biotransformation of dichloromethane, the degradation of lignin and atrazine, and the reductive dechlorination of pentachlorophenol. This review article summarizes the current status of knowledge regarding the functional and structural properties of bacterial GSTs.

  11. Group morphology

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2000-01-01

    In its original form, mathematical morphology is a theory of binary image transformations which are invariant under the group of Euclidean translations. This paper surveys and extends constructions of morphological operators which are invariant under a more general group TT, such as the motion group

  12. [Genetic resources of nodule bacteria].

    Science.gov (United States)

    Rumiantseva, M L

    2009-09-01

    Nodule bacteria (rhizobia) form highly specific symbiosis with leguminous plants. The efficiency of accumulation of biological nitrogen depends on molecular-genetic interaction between the host plant and rhizobia. Genetic characteristics of microsymbiotic strains are crucial in developing highly productive and stress-resistant symbiotic pairs: rhizobium strain-host plant cultivar (species). The present review considers the issue of studying genetic resources of nodule bacteria to identify genes and their blocks, responsible for the ability of rhizobia to form highly effective symbiosis in various agroecological conditions. The main approaches to investigation of intraspecific and interspecific genetic and genomic diversity of nodule bacteria are considered, from MLEE analysis to the recent methods of genomic DNA analysis using biochips. The data are presented showing that gene centers of host plants are centers of genetic diversification of nodule bacteria, because the intraspecific polymorphism of genetic markers of the core and the accessory rhizobial genomes is extremely high in them. Genotypic features of trapped and nodule subpopulations of alfalfa nodule bacteria are discussed. A survey of literature showed that the genomes of natural strains in alfalfa gene centers exhibit significant differences in genes involved in control of metabolism, replication, recombination, and the formation of defense response (hsd genes). Natural populations of rhizobia are regarded as a huge gene pool serving as a source of evolutionary innovations.

  13. Antimicrobial-resistant bacteria in wild game in Slovenia

    Science.gov (United States)

    Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.

    2017-09-01

    Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.

  14. Selective adsorption of bacteria on sulfide minerals surface

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yun; WEI De-zhou; LIU Wen-gang; HAN Cong; GAO Shu-ling; WANG Yu-juan

    2008-01-01

    The adsorption of bacteria on sulfide minerals surface was studied, and the selective adsorption mechanism of cells on the sulfide minerals was investigated by means of FTIR, UVS and XPS. The results show that the three strains of bacteria adsorbed more preferentially on pyrite than on other two sulfide minerals surface at neutral and alkaline pH conditions. FTIR and UVS of three strains of bacteria indicate that there are more functional groups on their surface, such as O-H, C=O, N-H, C-O, and the content of saccharide is more than that of protein. The state of every element on sulfide minerals surface was analyzed by XPS. The empty orbital number of electronic shell of metal ions on minerals surface is important in selective adsorption process, and some stable constants of metal coordinates can be used to explain the contribution of some groups in saccharide of cell wall to the selective adsorption.

  15. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  16. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  17. IDENTIFICATION OF BACTERIA IN LATEX PAINTS

    Directory of Open Access Journals (Sweden)

    Rojas, J.

    2008-01-01

    Full Text Available The bacteria are prokaryote organisms with a high capacity to colonize many types of habits. This research was developed with the object to identify extremophiles bacteria presents in latex paint. The bacteria were cultivated in culture mediums TSA, Blood Agar, Mc Conkey and finally the biochemical proof API-NF® for bacteria's isolation and identification, respectively. Characterization showed bacterial profile of Pasteurella sp. Hypothesis that could be found extremophiles bacteria in latex paint were demonstrated.

  18. Analysis of bacteria contaminating ultrapure water in industrial systems.

    Science.gov (United States)

    Kulakov, Leonid A; McAlister, Morven B; Ogden, Kimberly L; Larkin, Michael J; O'Hanlon, John F

    2002-04-01

    Bacterial populations inhabiting ultrapure water (UPW) systems were investigated. The analyzed UPW systems included pilot scale, bench scale, and full size UPW plants employed in the semiconductor and other industries. Bacteria present in the polishing loop of the UPW systems were enumerated by both plate counts and epifluorescence microscopy. Assessment of bacterial presence in UPW by epifluorescence microscopy (cyanotolyl tetrazolium chloride [CTC] and DAPI [4',6'-diamidino-2-phenylindole] staining) showed significantly higher numbers (10 to 100 times more bacterial cells were detected) than that determined by plate counts. A considerable proportion of the bacteria present in UPW (50 to 90%) were cells that did not give a positive signal with CTC stain. Bacteria isolated from the UPW systems were mostly gram negative, and several groups seem to be indigenous for all of the UPW production systems studied. These included Ralstonia pickettii, Bradyrhizobium sp., Pseudomonas saccharophilia, and Stenotrophomonas strains. These bacteria constituted a significant part of the total number of isolated strains (>or=20%). Two sets of primers specific to R. pickettii and Bradyrhizobium sp. were designed and successfully used for the detection of the corresponding bacteria in the concentrated UPW samples. Unexpectedly, nifH gene sequences were found in Bradyrhizobium sp. and some P. saccharophilia strains isolated from UPW. The widespread use of nitrogen gas in UPW plants may be associated with the presence of nitrogen-fixing genes in these bacteria.

  19. Infected neonatal cephalohematomas caused by anaerobic bacteria.

    Science.gov (United States)

    Brook, Itzhak

    2005-01-01

    To present the microbiological and clinical features of six children with infected cephalohematomas (IC) caused by anaerobic bacteria. Presentation of a case series. Polymicrobial infection was present in all instances, where the number of isolates varied from two to four. Two patients had anaerobes only and the other four had mixed flora of strict anaerobes and facultatives. There were 16 bacterial isolates (12 anaerobic, 4 aerobic). The anaerobic isolates were Peptostreptococcus spp. (5 isolates), Prevotella spp. (4), Bacteroides fragilis group (2), and Propionibacterium acnes (1). The aerobic isolates were E. coli (2), Staphylococcus aureus (1) and group B streptococci (1). Blood cultures were positive for three patients. The most common predisposing conditions were vacuum extraction and amnionitis (4 instances of each), instrumental delivery (3), electronic fetal monitoring (2), prolonged delivery (1), and premature rupture of membranes (1). All patients underwent drainage, and four also had surgical incision and drainage of the IC. Osteomyelitis developed in one instance and scalp abscess developed in two patients, both of whom had electronic fetal monitoring. All patients eventually recovered from infection after receiving parenteral and subsequent oral antibiotic therapy for a total of 14-38 days. This study highlights the polymicrobial nature and potential importance of anaerobic bacteria in IC in newborns.

  20. A3 Altitude Test Facility

    Science.gov (United States)

    Dulreix, Lionel J.

    2009-01-01

    This slide presentation shows drawings, diagrams and photographs of the A3 Altitude Test Facility. It includes a review of the A3 Facility requirements, and drawings of the various sections of the facility including Engine Deck and Superstructure, Test Cell and Thrust Takeout, Structure and Altitude Support Systems, Chemical Steam generators, and the subscale diffuser. There are also pictures of the construction site, and the facility under construction. A Diagram of the A3 Steam system schematic is also shown

  1. Adaptation, Bacteria and Maxwell's Demons

    Science.gov (United States)

    Galajda, Peter; Keymer, Juan E.; Austin, Robert H.

    2007-03-01

    We propose a method to study the adaptation of bacterial populations with an asymmetric wall of Maxwell Demon openings. A Maxwell Demon opening is a funnel which is easier to enter than to leave. The interaction of swimming cells with such a Maxwell Demon Wall results in a population density separation, in apparent (but not real) violation of the Second Law of Thermodynamics, as we will show. Bacteria can be exposed to spatial challenges in order to move to e. g. higher food levels. The question we address in these experiments is: do the bacteria adapt and overcome the Maxwell Demon Wall?

  2. Bacteria in surface infections of neonates.

    Science.gov (United States)

    Ghosh, S; Chatterjee, B D; Chakraborty, C K; Chakravarty, A; Khatua, S P

    1995-04-01

    A bacteriological work on surface infections was done among live births (study group I) and neonates admitted in hospital (study group II). Out of 134 cases of conjunctivitis in group I Gram-negative bacilli predominated (48.5%) with Escherichia coli accounting for 29 (14.9%) cases, Klebsiella species 15 (11.2%) cases, Citrobacter freundii 3 (2.2%) cases, Pseudomons aeruginosa 18 (13.4%) cases and Aeromonas hydrophila 3 (2.2%) amongst pure isolates (73.9%). Gonococcus was noted in 2 (1.5%) cases. In group II, 41.7% were Staphylococcus aureus in pure growth (75%), compared to only 9.0% in group I. Skin infections were caused by both Staphylococcus aureus and Staphylococcus epidermidis. Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa were the principal insolates from umbilical sepsis. Pseudomonas aeruginosa was isolated as pure growth from local site of noma neonatorum. Anaerobic cultures were negative in all except in 2 cases of umbilical sepsis with tetanus neonatorum revealing Clostridium tetani which however proved to be non-toxigenic. Blood cultures were positive in 4 out of 14 cases bearing 50% correlation with bacteria from surface infections. A source study established partial correlation with the cases of pseudomonas conjunctivitis. Phage typing of Staphylococcus aureus and biochemical typing failed to detect any definite marker of clinical entities, except that the skin infections were caused by group III phages predominantly (65.0%).

  3. Associations of Europium(III) with gram-negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, T.; Ohnuki, T. [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Kimura, T. [Department of Materials Science, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Takahashi, Y. [Department of Earth and Planetary Systems Science, Hiroshima University, Hiroshima 739- 8526 (Japan); Francis, A.J. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2005-07-01

    Full text of publication follows: Migration of radionuclides in the environment is greatly affected by bacteria. Gram-negative bacteria are ubiquitous in the environment and can preferentially bind radionuclides because of the presence of the cell envelop consisting of two membrane bilayers with an intervening thin peptidoglycan layer, where carboxyl and phosphate functional groups are mainly involved in metal cation adsorption. In this study, we investigated the association of Eu(III) with four Gram-negative bacteria Pseudomonas fluorescens, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans. Europium(III) is a good analogue of Am(III) and Cm(III). The association of Eu(III) with the bacteria were determined by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The kinetics study showed that the Eu(III) adsorption on the bacteria proceeded rapidly. The Eu(III) adsorption on P. fluorescens at pH 3, A. faecalis and P. denitrificans at pHs 3, 4, and 5, and S. putrefaciens at pHs 4 and 5 reached a maximum within 5 minutes after contact. For P. denitrificans, the percent adsorption of Eu(III) decreased after the maximum percent adsorption was attained, which suggests the existence of exudates with an affinity with Eu(III). TRLFS showed that the coordination of Eu(III) on these bacteria is multi-dentate through an inner-spherical process. The ligand field of Eu(III) on P. denitrificans was as strong as the ones observed for halo-philic microorganisms, while that of P. fluorescens, A. faecalis, and S. putrefaciens was the typical one observed for non-halo-philic microorganisms. The coordination environment of Eu(III) on the bacteria differed from each other, though they are categorized as Gram-negative bacteria with the similar cell wall components. (authors)

  4. Group devaluation and group identification

    NARCIS (Netherlands)

    Leach, C.W.; Rodriguez Mosquera, P.M.; Vliek, M.L.W.; Hirt, E.

    2010-01-01

    In three studies, we showed that increased in-group identification after (perceived or actual) group devaluation is an assertion of a (preexisting) positive social identity that counters the negative social identity implied in societal devaluation. Two studies with real-world groups used order manip

  5. Enhanced diffusion of non-swimmers in a 3D bath of motile bacteria

    CERN Document Server

    Jepson, A; Schwarz-Linek, J; Morozov, A; Poon, W C K

    2013-01-01

    We show using differential dynamic microscopy that the diffusive motion of non-motile cells in a three-dimensional population of motile E. coli is enhanced by an amount that is strictly proportional to the active cell flux. While non-motile mutants without flagella and mutants with paralysed flagella have quite different thermal diffusivities and therefore hydrodynamic radii, their diffusivities are enhanced to the same extent by swimmers in the regime of cell densities explored here. Integrating the motion of non-swimmers caused by swimmers with finite persistence-length trajectories predicts quantitatively the observed linear dependence of enhanced diffusivity and active cell flux.

  6. Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains.

    Science.gov (United States)

    Del Piano, Mario; Carmagnola, Stefania; Andorno, Silvano; Pagliarulo, Michela; Tari, Roberto; Mogna, Luca; Strozzi, Gian Paolo; Sforza, Filomena; Capurso, Lucio

    2010-09-01

    Beneficial findings concerning probiotics are increasing day by day. However, one of the most important parameter which affects the probiotic activity of a microorganism is its survival during the gastroduodenal transit. Some microencapsulation techniques could be applied to bacterial cells to improve this parameter. A comparison between the intestinal colonization by microencapsulated bacteria and the same not microencapsulated strains has been conducted in a double blind, randomized, cross-over study. The study (April to July 2005) involved 44 healthy volunteers. In particular, participants were divided into 2 groups: group A (21 participants) received a mix of probiotic strains Lactobacillus plantarum LP01 (LMG P-21021) and Bifidobacterium breve BR03 (DSM 16604) in an uncoated form, group B (23 participants) was given the same strains microencapsulated with a gastroresistant material. The not microencapsulated strains were administered at 5 x 10(9) colony forming units/strain/d for 21 days, whereas the microencapsulated bacteria were given at 1 x 10(9) colony forming units/strain/d for 21 days. At the end of the first period of treatment with probiotics a 3 weeks washout phase has been included in the study protocol. At the end of the washout period the groups were crossed: in detail, group A had the microencapsulated and group B the uncoated bacteria. The administered amounts of each strain were the same as the first treatment. The quantitative evaluation of intestinal colonization by strains microencapsulated or not microencapsulated was made by fecal samples examination at the beginning of the clinical trial, after 10 and 21 days of each treatment period. In particular, fecal heterofermentative Lactobacilli and Bifidobacteria have been counted. A statistically significant increase in the fecal amounts of Lactobacilli and Bifidobacteria was recorded in both groups at the end of each treatment compared with d0 or d42 (Ptechnique used in this study is a valid

  7. Salivary Periodontopathic Bacteria in Children and Adolescents with Down Syndrome

    Science.gov (United States)

    Lopes Devito, Karina; Ribeiro, Luiz Cláudio

    2016-01-01

    Objective To assess and compare salivary periodontopathic bacteria between groups of Down syndrome and non-Down syndrome children and adolescents. Materials and Methods This study included a sample of 30 Down syndrome children and adolescents (G-DS) and 30 age- and sex-matched non-Down syndrome subjects (G-ND). Clinical examination determined the gingival bleeding index (GBI) and plaque index. Unstimulated whole saliva samples were collected from all participants. The fluorescence in situ hybridization (FISH) technique identified the presence and density of eight periodontopathic bacteria in saliva. The statistical analysis included chi-square and Mann-Whitney U tests. Results In the G-DS group, bleeding on probing was more frequent (p = 0.037) and higher densities of Campylobacter rectus (p = 0.013), Porphyromonas gingivalis (p = 0.025), Treponema denticola (p = 0.026), Fusobacterium nucleatum (p = 0.013), Prevotella intermedia (p = 0.001) and Prevotella nigrescens (p = 0.008) were observed. Besides, in the G-DS, the densities of bacteria from the orange complex were significantly higher in the age group 3–7 years for F. nucleatum (p = 0.029), P. intermedia (p = 0.001) and P. nigrescens (p = 0.006). C. rectus was higher in the age group 8–12 years (p = 0.045). Conclusion The results showed that children and adolescents with Down syndrome have higher susceptibility to periodontal disease and number of periodontopathic bacteria. PMID:27727287

  8. Distribution, organization and ecology of bacteria in chronic wounds

    DEFF Research Database (Denmark)

    Kirketerp-Møller, Klaus; Jensen, Peter Ø.; Fazli, Mustafa;

    2008-01-01

    Between 1 and 2% of the population in the developed world experiences a nonhealing or chronic wound characterized by an apparent arrest in a stage dominated by inflammatory processes. Lately, research groups have proposed that bacteria might be involved in and contribute to the lack of healing...

  9. Nitrification and Nitrifying Bacteria in a Coastal Microbial Mat

    NARCIS (Netherlands)

    Fan, H.; Bolhuis, H.; Stal, L.J.

    2015-01-01

    The first step of nitrification, the oxidation of ammonia to nitrite, can be performed by ammonia-oxidizing archaea (AOA) or ammonium-oxidizing bacteria (AOB). We investigated the presence of these two groups in three structurally different types of coastal microbial mats that develop along the tida

  10. Manipulating Genetic Material in Bacteria

    Science.gov (United States)

    1998-01-01

    Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  11. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...

  12. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  13. Functional genomics of intracellular bacteria.

    Science.gov (United States)

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  14. Hydrocarbon degradation by antarctic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, J.A.E.; Nichols, P.D.; McMeekin, T.A.; Franzmann, P.D. [Univ. of Tasmania (Australia)] [and others

    1996-12-31

    Bacterial cultures obtained from sediment samples collected during a trial oil spill experiment conducted at Airport beach, Eastern Antarctica were selectively enriched for n-alkane-degrading and phenanthrenedegrading bacteria. Samples were collected from a control site and sites treated with different hydrocarbon mixtures - Special Antarctic blend (SAB), BP-Visco and orange roughy oils. One set of replicate sites was also treated with water from Organic Lake which had previously been shown to contain hydrocarbon-degrading bacteria. No viable bacteria were obtained from samples collected from sites treated with orange roughy oil. Extensive degradation of n-alkanes by enrichment cultures obtained from sites treated with SAB and BP-Visco occurred at both 25{degrees}C and 10{degrees}C. Extensive degradation of phenanthrene also occurred in enrichment cultures from these sites grown at 25{degrees}C. Concurrent increases of polar lipid in these cultures were also observed. The presence of 1,4-naphthaquinone and 1-naphthol during the growth of the cultures on phenanthrene is unusual and warrants further investigation of the mechanism of phenanthrene-degradation by these Antarctic bacteria.

  15. Deodorant bacteria; Des bacteries desodorisantes

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole Nationale Superieure des Mines, 30 - Ales (France)

    1998-02-01

    Purifying bacteria: if this concept is not new, its application to gases cleansing has only been developed recently. This method allows to eliminate the volatile organic compounds and the gaseous effluents odors which come from industrial sites. Three bioreactors types exist at the present time. Their principles are explained. (O.M.) 6 refs.

  16. Engineering robust lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Bokhorst-van de Veen, van H.; Wels, M.; Kleerebezem, M.

    2011-01-01

    For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged,

  17. Photoreceptor proteins from purple bacteria

    NARCIS (Netherlands)

    Hendriks, J.; van der Horst, M.A.; Chua, T.K.; Ávila Pérez, M.; van Wilderen, L.J.; Alexandre, M.T.A.; Groot, M.-L.; Kennis, J.T.M.; Hellingwerf, K.J.; Hunter, C.N.; Daldal, F.; Thurnauer, M.C.; Beatty, J.T.

    2009-01-01

    Purple bacteria contain representatives of four of the six main families of photoreceptor proteins: phytochromes, BLUF domain containing proteins, xanthopsins (i.e., photoactive yellow proteins), and phototropins (containing one or more light, oxygen, or voltage (LOV) domains). Most of them have a

  18. Synthetic Biology in Streptomyces Bacteria

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that

  19. SYNTHETIC BIOLOGY IN STREPTOMYCES BACTERIA

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko; Voigt, C

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer. Genome sequencing has revealed that t

  20. Purification and Characterization of Bacteriocin Produced by Weissella confusa A3 of Dairy Origin.

    Directory of Open Access Journals (Sweden)

    Hweh Fen Goh

    Full Text Available A dramatic increase in bacterial resistance towards currently available antibiotics has raised worldwide concerns for public health. Therefore, antimicrobial peptides (AMPs have emerged as a promisingly new group of therapeutic agents for managing infectious diseases. The present investigation focusses on the isolation and purification of a novel bacteriocin from an indigenous sample of cow milk and it's mode of action. The bacteriocin was isolated from Weissella confusa A3 that was isolated from the sample and was shown to have inhibitory activity towards pathogenic bacteria namely Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Micrococcus luteus. The bacteriocin was shown to be heat stable and functioned well at low pH (2 to 6. Reduction of activity was shown after treatment with proteinase K, trypsin and peptidase that confirmed the proteinaceous nature of the compound. MALDI-TOF analysis of the sample gave a mass approximating 2.7 kDa. The membrane of the bacteria was disrupted by the bacteriocin causing SYTOX® green dye to enter the cell and bind to the bacterial DNA giving fluorescence signal. Bacterial cell treated with the bacteriocin also showed significant morphological changes under transmission electron microscope. No virulence and disease related genes can be detected from the genome of the strain.

  1. Purification and Characterization of Bacteriocin Produced by Weissella confusa A3 of Dairy Origin

    Science.gov (United States)

    Goh, Hweh Fen; Philip, Koshy

    2015-01-01

    A dramatic increase in bacterial resistance towards currently available antibiotics has raised worldwide concerns for public health. Therefore, antimicrobial peptides (AMPs) have emerged as a promisingly new group of therapeutic agents for managing infectious diseases. The present investigation focusses on the isolation and purification of a novel bacteriocin from an indigenous sample of cow milk and it’s mode of action. The bacteriocin was isolated from Weissella confusa A3 that was isolated from the sample and was shown to have inhibitory activity towards pathogenic bacteria namely Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Micrococcus luteus. The bacteriocin was shown to be heat stable and functioned well at low pH (2 to 6). Reduction of activity was shown after treatment with proteinase K, trypsin and peptidase that confirmed the proteinaceous nature of the compound. MALDI-TOF analysis of the sample gave a mass approximating 2.7 kDa. The membrane of the bacteria was disrupted by the bacteriocin causing SYTOX® green dye to enter the cell and bind to the bacterial DNA giving fluorescence signal. Bacterial cell treated with the bacteriocin also showed significant morphological changes under transmission electron microscope. No virulence and disease related genes can be detected from the genome of the strain. PMID:26474074

  2. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria

    DEFF Research Database (Denmark)

    Gaspar, Paula; Carvalho, Ana L.; Vinga, Susana

    2013-01-01

    The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of compr...

  3. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects.

    Science.gov (United States)

    Tian, Baoyu; Yang, Jinkui; Zhang, Ke-Qin

    2007-08-01

    As a group of important natural enemies of nematode pests, nematophagous bacteria exhibit diverse modes of action: these include parasitizing; producing toxins, antibiotics, or enzymes; competing for nutrients; inducing systemic resistance of plants; and promoting plant health. They act synergistically on nematodes through the direct suppression of nematodes, promoting plant growth, and facilitating the rhizosphere colonization and activity of microbial antagonists. This review details the nematophagous bacteria known to date, including parasitic bacteria, opportunistic parasitic bacteria, rhizobacteria, Cry protein-forming bacteria, endophytic bacteria and symbiotic bacteria. We focus on recent research developments concerning their pathogenic mechanisms at the biochemical and molecular levels. Increased understanding of the molecular basis of the various pathogenic mechanisms of the nematophagous bacteria could potentially enhance their value as effective biological control agents. We also review a number of molecular biological approaches currently used in the study of bacterial pathogenesis in nematodes. We discuss their merits, limitations and potential uses.

  4. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, M.; Rosenvinge, F. S.; Spillum, E.

    2015-01-01

    Background: Antibiotics of the beta-lactam group are able to alter the shape of the bacterial cell wall, e.g. filamentation or a spheroplast formation. Early determination of antimicrobial susceptibility may be complicated by filamentation of bacteria as this can be falsely interpreted as growth...... displaying different resistant profiles and differences in filamentation kinetics were used to study a novel image analysis algorithm to quantify length of bacteria and bacterial filamentation. A total of 12 beta-lactam antibiotics or beta-lactam-beta-lactamase inhibitor combinations were analyzed...

  5. COMMUNITY ANALYSIS OF AGGREGATED BACTERIA IN SOUTHERN LAKE BAIKAL

    Institute of Scientific and Technical Information of China (English)

    Ahn; T.S.; Kim; O.S.; Spiglazov; L.P; Drucker; V.V

    2006-01-01

    Bacteria in lake ecosystems can be classified asfree-living and attached.Aggregated bacteria are oftenlarger,present in higher local concentrations and aremore active on a per-cell basis than free-living bacteriain surrounding water[1].Higher specific exoenzyme ac-tivities have also been found with macroaggregates[2].Thus they may have an important role in carbon cyclingin aquatic ecosystems.Recently,new molecular techniques such as fluo-rescent in situ hybridization(FISH)with group-specificfluorescent-labe...

  6. Algebraic Groups

    DEFF Research Database (Denmark)

    2007-01-01

    The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject...... of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group......-theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology...

  7. Group Grammar

    Science.gov (United States)

    Adams, Karen

    2015-01-01

    In this article Karen Adams demonstrates how to incorporate group grammar techniques into a classroom activity. In the activity, students practice using the target grammar to do something they naturally enjoy: learning about each other.

  8. MUYANG GROUP

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ With its headquarters in the historic city of Yangzhou,Jiangsu Muyang Group Co.,Ltd has since its founding in 1967 grown into a well-known group corporation whose activities cover research&development.project design,manufacturing,installation and services in a multitude of industries including feed machinery and engineering,storage engineering,grain machinery and engineering,environmental protection,conveying equipment and automatic control systems.

  9. A-3 Construction Time Lapse

    Science.gov (United States)

    2009-01-01

    A time lapse from start to finish of steel erection for the 235-foot tall A-3 Test Stand. Ground work for the stand was broken in August 2008 and the final structural steel beam was placed April 9, 2009.

  10. Abelian groups

    CERN Document Server

    Fuchs, László

    2015-01-01

    Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of undecidability problems. The treatment of the latter trend includes Shelah’s seminal work on the undecidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups, and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, th...

  11. Bactericidal properties of group IIA and group V phospholipases A2

    NARCIS (Netherlands)

    Grönroos, J.O.; Laine, V.J.O.; Janssen, M.J.W.; Egmond, M.R.; Nevalainen, T.J.

    2010-01-01

    Group V phospholipase A2 (PLA2) is a recently characterized 14-kDa secretory PLA2 of mammalian heart and macrophage-derived cells. Group IIA PLA2, which is structurally close to group V PLA2, has been shown to kill Gram-positive bacteria in vitro and to prevent symptoms of Gram-positive infection in

  12. Detection of phenols using engineered bacteria

    Science.gov (United States)

    Wise, Arlene A.; Kuske, Cheryl R.; Terwilliger, Thomas C.

    2007-12-04

    Detection of phenols using engineered bacteria. A biosensor can be created by placing a reporter gene under control of an inducible promoter. The reporter gene produces a signal when a cognate transcriptional activator senses the inducing chemical. Creation of bacterial biosensors is currently restricted by limited knowledge of the genetic systems of bacteria that catabolize xenobiotics. By using mutagenic PCR to change the chemical specificity of the Pseudomonas species CF600 DmpR protein, the potential for engineering novel biosensors for detection of phenols has been demonstrated. DmpR, a well-characterized transcriptional activator of the P. CF600's dmp operon mediates growth on simple phenols. Transcription from Po, the promoter heading the dmp operon, is activated when the sensor domain of DmpR interacts with phenol and mono-substituted phenols. By altering the sensor domain of the DmpR, a group of DmpR derivatives that activate transcription of a Po-lacZ fusion in response to eight of the EPA's eleven priority pollutant phenols has been created. The assays and the sensor domain mutations that alter the chemical specificity of DmpR is described.

  13. STUDY ON ADHERENCE ABILITY OF PERIODONTAL PATHOGENS AND CARIOGENIC BACTERIA TO HYDROXYAPATITE DISKS

    Institute of Scientific and Technical Information of China (English)

    WANG Min-feng; LI De-yi; LI Zong-lin

    2006-01-01

    Objective To study the adherence activity of six representative periodontopathic and cariogenic bacteria to hydroxyapatite disks. Methods Six periodontopathic and cariogenic bacteria of P. gingivalis, A.actinomycetemcomitans, F. nucleatum, S. sanguis, A. viscosus and S. mutans were cultured in modified MD-300 chemostat according to total fifteen experimental groups of single-specie and each pair of periodontal pathogens and cariogenic bacteria, respectively. After 1h attached live bacteria on removable hydroxyapatite disks was analyzed by culture technologies to evaluate the adherence level. Results The adherence activity of periodontopathic and cariogenic bacteria to HA was in the following order: S. sanguis > A. viscosus > S. mutans > A. actinomycetemcomitans > F. nucleatum > P. gingivalis. The number of periodontopathic bacteria to HA was enhanced by S.sanguis and A. viscosus, respectively. When mix-cultivated with S. mutans, the colonization of P. gingivalis was reduced significantly( P<0.001 ). Periodontopathic bacteria had no effect on the adherence activity of S. mutans and A. viscosus, except S. sanguis. Conclusion It was showed that the adherence activity of periodontal pathogens was weaker than that of cariogenic bacteria and emphasized the importance of bacterial adherence in determining the level of bacterial colonization on tooth surfaces. It was suggested that periodontopathic bacteria can utilize initial colonizers to become those predominant bacteria in periodontal ecosystem, which maybe have close relation to the periodontopathic mechanism.

  14. Growth ability of Gram negative bacteria in free-living amoebae.

    Science.gov (United States)

    Zeybek, Zuhal; Binay, Ali Rıza

    2014-11-01

    When bacteria and free-living amoebae (FLAs) live both in natural waters and man-made aquatic systems, they constantly interact with each other. Some bacteria can survive and grow within FLAs. Therefore, it has recently been thought that FLAs play an important role in spreading pathogenic bacteria in aquatic systems. In this study we investigated the intracellular growing ability of 7 different Gram-negative bacteria (Pseudomonas fluorescens, Pseudomonas putida, Pasteurella pneumotropica, Aeromonas salmonicida, Legionella pneumophila serogroup 1, L. pneumophila serogroup 3, L. pneumophila serogroup 6) in four different FLA isolates (A1-A4). Among these, four bacterial isolates (P. fluorescens, P.putida, P.pneumotropica, A.salmonicida) and two free-living amoebae isolates (A3, A4) were isolated from the tap water in our city (Istanbul). It was found that 4 different Gram-negative bacteria could grow in A1, 2 different Gram-negative bacteria could grow in A2, 4 different Gram-negative bacteria could grow in A3, 1 Gram-negative bacterium could grow in A4. In conclusion, we think that this ability of growth could vary according to the characteristics of both bacteria and FLA isolates. Also, other factors such as environmental temperature, bacterial concentration, and extended incubation period may play a role in these interactions. This situation can be clarified with future studies.

  15. Exploration of the core metabolism of symbiotic bacteria.

    Science.gov (United States)

    Klein, Cecilia Coimbra; Cottret, Ludovic; Kielbassa, Janice; Charles, Hubert; Gautier, Christian; Ribeiro de Vasconcelos, Ana Tereza; Lacroix, Vincent; Sagot, Marie-France

    2012-08-31

    A large number of genome-scale metabolic networks is now available for many organisms, mostly bacteria. Previous works on minimal gene sets, when analysing host-dependent bacteria, found small common sets of metabolic genes. When such analyses are restricted to bacteria with similar lifestyles, larger portions of metabolism are expected to be shared and their composition is worth investigating. Here we report a comparative analysis of the small molecule metabolism of symbiotic bacteria, exploring common and variable portions as well as the contribution of different lifestyle groups to the reduction of a common set of metabolic capabilities. We found no reaction shared by all the bacteria analysed. Disregarding those with the smallest genomes, we still do not find a reaction core, however we did find a core of biochemical capabilities. While obligate intracellular symbionts have no core of reactions within their group, extracellular and cell-associated symbionts do have a small core composed of disconnected fragments. In agreement with previous findings in Escherichia coli, their cores are enriched in biosynthetic processes whereas the variable metabolisms have similar ratios of biosynthetic and degradation reactions. Conversely, the variable metabolism of obligate intracellular symbionts is enriched in anabolism. Even when removing the symbionts with the most reduced genomes, there is no core of reactions common to the analysed symbiotic bacteria. The main reason is the very high specialisation of obligate intracellular symbionts, however, host-dependence alone is not an explanation for such absence. The composition of the metabolism of cell-associated and extracellular bacteria shows that while they have similar needs in terms of the building blocks of their cells, they have to adapt to very distinct environments. On the other hand, in obligate intracellular bacteria, catabolism has largely disappeared, whereas synthetic routes appear to have been selected for

  16. Pesticide Exposures May Alter Mouth Bacteria

    Science.gov (United States)

    ... fullstory_162249.html Pesticide Exposures May Alter Mouth Bacteria Study of Washington farm workers finds alterations persist ... News) -- Pesticide exposure may change the makeup of bacteria in the mouths of farm workers, a new ...

  17. Smokeless Tobacco May Contain Potentially Harmful Bacteria

    Science.gov (United States)

    ... 160769.html Smokeless Tobacco May Contain Potentially Harmful Bacteria Infections, diarrhea and vomiting are possible consequences, FDA ... products can harbor several species of potentially harmful bacteria, researchers warn. Two types in particular -- Bacillus licheniformis ...

  18. Certain Bacteria May Affect Preterm Birth Risk

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_163401.html Certain Bacteria May Affect Preterm Birth Risk Bad 'bugs' tied ... Feb. 3, 2017 (HealthDay News) -- Certain types of bacteria in a pregnant woman's cervix and vagina can ...

  19. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light......-driven proton translocation across the cell membrane. So far, proteorhodopsin genes have been well documented only in proteobacteria and a few other bacterial groups. Here we report the presence and distribution of proteorhodopsin genes in Archaea affiliated with the order Thermoplasmatales, in the ocean......'s upper water column. The genomic context and phylogenetic relationships of the archaeal and proteobacterial proteorhodopsins indicate its probable lateral transfer between planktonic Bacteria and Archaea. About 10% of the euryarchaeotes in the photic zone contained the proteorhodopsin gene adjacent...

  20. Horizontal functional gene transfer from bacteria to fishes.

    Science.gov (United States)

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W; He, Shun-Min; Huang, Da-Wei

    2015-12-22

    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution.

  1. Aggregation Patterns in Stressed Bacteria

    CERN Document Server

    Tsimring, L S; Aranson, I S; Ben-Jacob, E; Cohen, I; Shochet, O; Tsimring, Lev; Levine, Herbert; Aranson, Igor; Ben-Jacob, Eshel; Cohen, Inon; Shochet, Ofer

    1995-01-01

    We study the formation of spot patterns seen in a variety of bacterial species when the bacteria are subjected to oxidative stress due to hazardous byproducts of respiration. Our approach consists of coupling the cell density field to a chemoattractant concentration as well as to nutrient and waste fields. The latter serves as a triggering field for emission of chemoattractant. Important elements in the proposed model include the propagation of a front of motile bacteria radially outward form an initial site, a Turing instability of the uniformly dense state and a reduction of motility for cells sufficiently far behind the front. The wide variety of patterns seen in the experiments is explained as being due the variation of the details of the initiation of the chemoattractant emission as well as the transition to a non-motile phase.

  2. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  3. Dissipative Shocks behind Bacteria Gliding

    CERN Document Server

    Virga, Epifanio G

    2014-01-01

    Gliding is a means of locomotion on rigid substrates utilized by a number of bacteria includingmyxobacteria and cyanobacteria. One of the hypotheses advanced to explain this motility mechanism hinges on the role played by the slime filaments continuously extruded from gliding bacteria. This paper solves in full a non-linear mechanical theory that treats as dissipative shocks both the point where the extruded slime filament comes in contact with the substrate, called the filament's foot, and the pore on the bacterium outer surface from where the filament is ejected. We prove that kinematic compatibility for shock propagation requires that the bacterium uniform gliding velocity (relative to the substrate) and the slime ejecting velocity (relative to the bacterium) must be equal, a coincidence that seems to have already been observed.

  4. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  5. Compartmentalization of bacteria in microcapsules.

    Science.gov (United States)

    van Wijk, Judith; Heunis, Tiaan; Harmzen, Elrika; Dicks, Leon M T; Meuldijk, Jan; Klumperman, Bert

    2014-12-18

    Lactobacillus plantarum strain 423 was encapsulated in hollow poly(organosiloxane) microcapsules by templating water-in-oil Pickering emulsion droplets via the interfacial reaction of alkylchlorosilanes. The bacteria were suspended in growth medium or buffer to protect the cells against pH changes during the interfacial reactions with alkylchlorosilanes. The results of this work open up novel avenues for the encapsulation of microbial cells.

  6. Endocytosis of Viruses and Bacteria

    Science.gov (United States)

    Cossart, Pascale; Helenius, Ari

    2014-01-01

    Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens. PMID:25085912

  7. Functional genomics of lactic acid bacteria: from food to health.

    Science.gov (United States)

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  8. Efficacy of Miswak toothpaste and mouthwash on cariogenic bacteria

    Science.gov (United States)

    Al-Dabbagh, Samim A.; Qasim, Huda J.; Al-Derzi, Nadia A.

    2016-01-01

    Objectives: To evaluate the efficacy of Salvadora persica (Miswak) products on cariogenic bacteria in comparison with ordinary toothpaste. Methods: The study was conducted in Zakho city, Kurdistan region, Iraq during the period from October 2013 to January 2014. A randomized controlled clinical trial of 40 students randomly allocated into 4 groups. They were instructed to use Mismark toothpaste, Miswak mouthwash, and ordinary toothpaste with water or with normal saline. Salivary samples were collected at 3-time intervals: before, immediately after use, and after 2 weeks of use. The effect of each method on Streptococcus mutans and Lactobacilli was evaluated by using caries risk test. Results: One-way repeated measure analysis of variance (ANOVA), one-way ANOVA, and least significant difference tests were used. Miswak wash has a significant reduction effect on both bacteria immediately and after 2 weeks of use. Miswak paste has a similar effect on Lactobacilli, while Streptococcus mutans showed a significant decrease only after 2 weeks of use. Ordinary paste showed a non significant effect on both bacteria at both time intervals; while the addition of normal saline showed a significant effect on both bacteria only after 2 weeks of use. Conclusion: Miswak products, especially mouth wash, were more effective in reducing the growth of cariogenic bacteria than ordinary toothpaste. PMID:27570858

  9. Group Anonymity

    CERN Document Server

    Chertov, Oleg; 10.1007/978-3-642-14058-7_61

    2010-01-01

    In recent years the amount of digital data in the world has risen immensely. But, the more information exists, the greater is the possibility of its unwanted disclosure. Thus, the data privacy protection has become a pressing problem of the present time. The task of individual privacy-preserving is being thoroughly studied nowadays. At the same time, the problem of statistical disclosure control for collective (or group) data is still open. In this paper we propose an effective and relatively simple (wavelet-based) way to provide group anonymity in collective data. We also provide a real-life example to illustrate the method.

  10. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in common that

  11. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  12. Ecology of mycophagous collimonas bacteria in soil

    NARCIS (Netherlands)

    Höppener-Ogawa, Sachie

    2008-01-01

    Bacteria belonging to the genus Collimonas consist of soil bacteria that can grow at expense of living fungal hyphae i.e. they are mycophagous. This PhD studies deals with the ecology of mycophagous bacteria in soil using collimonads as model organisms. Collimonads were found to be widely distribut

  13. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  14. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in micro

  15. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bact

  16. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  17. Quantification of Faecalibacterium prausnitzii- and Subdoligranulum variabile-like bacteria in the cecum of chickens by real-time PCR

    DEFF Research Database (Denmark)

    Lund, Marianne; Friis-Holm, Lotte Bjerrum; Pedersen, Karl

    2010-01-01

    , and in hatcher material. Quantification of this group of F. prausnitzii-S. variabile-like bacteria has not been performed before by real-time PCR, but results confirm previous results obtained by cloning and sequencing showing that the F. prausnitzii-S. variabile-like group of bacteria constitutes a major...

  18. Informal groups

    NARCIS (Netherlands)

    E. van den Berg; P. van Houwelingen; J. de Hart

    2011-01-01

    Original title: Informele groepen Going out running with a group of friends, rather than joining an official sports club. Individuals who decide to take action themselves rather than giving money to good causes. Maintaining contact with others not as a member of an association, but through an Inter

  19. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    Science.gov (United States)

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed.

  20. Unicellular cyanobacteria synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Sageer, S.; Jasmin, C.; Vijayan, V.; Pavanan, P.; Athiyanathil, S.; Nair, S.

    unicellular cyanobacterium Synechocystis sp. that came from a heavy metal contaminated region of Cochin estuary, southwest coast of India. Based on 16S rRNA gene sequence similarities, the heterotrophic bacteria were grouped into three phyla: namely...

  1. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, S.; Karunya, E.; AmitKumar; Singh, S.K.; Jose, J.

    Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria...

  2. Abundance of sewage-pollution indicator and human pathogenic bacteria in a tropical estuarine complex

    Digital Repository Service at National Institute of Oceanography (India)

    Nagvenkar, G.S.; Ramaiah, N.

    Studies on abundance and types of various pollution indicator bacterial populations from tropical estuaries are rare. This study was aimed to estimate current levels of pollution indicator as well as many groups of human pathogenic bacteria...

  3. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira

    DEFF Research Database (Denmark)

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads

    2015-01-01

    Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II...

  4. Endobiotic bacteria and their pathogenic potential in cnidarian tentacles

    Science.gov (United States)

    Schuett, Christian; Doepke, Hilke

    2010-09-01

    Endobiotic bacteria colonize the tentacles of cnidaria. This paper provides first insight into the bacterial spectrum and its potential of pathogenic activities inside four cnidarian species. Sample material originating from Scottish waters comprises the jellyfish species Cyanea capillata and C. lamarckii, hydrozoa Tubularia indivisa and sea anemone Sagartia elegans. Mixed cultures of endobiotic bacteria, pure cultures selected on basis of haemolysis, but also lyophilized samples were prepared from tentacles and used for DGGE-profiling with subsequent phylogenetic analysis of 16S rDNA fragments. Bacteria were detected in each of the cnidarian species tested. Twenty-one bacterial species including four groups of closely related organisms were found in culture material. The species within these groups could not be differentiated from each other (one group of Pseudoalteromonas spp., two groups of Shewanella spp., one group of Vibrio spp.). Each of the hosts exhibits a specific endobacterial spectrum. Solely Cyanea lamarckii harboured Moritella viscosa. Only in Cyanea capillata, members of the Shewanella group #2 and the species Pseudoalteromonas arctica, Shewanella violacea, Sulfitobacter pontiacus and Arcobacter butzleri were detected. Hydrozoa Tubularia indivisa provided an amazingly wide spectrum of nine bacterial species. Exclusively, in the sea anemone Sagartia elegans, the bacterial species P. aliena was found. Overall eleven bacterial species detected were described recently as novel species. Four 16S rDNA fragments generated from lyophilized material displayed extremely low relationship to their next neighbours. These organisms are regarded as members of the endobiotic “terra incognita”. Since the origin of cnidarian toxins is unclear, the possible pathogenic activity of endobiotic bacteria has to be taken into account. Literature data show that their next neighbours display an interesting diversity of haemolytic, septicaemic and necrotic actions including

  5. A3 TEST STAND CONSTRUCTION

    Science.gov (United States)

    2008-01-01

    THIS IMAGE SHOWS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE AT STENNIS SPACE CENTER, MISSISSIPPI. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.

  6. A3 TEST STAND CONSTRUCTION

    Science.gov (United States)

    2008-01-01

    THIS IMAGE SHOWS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE AT STENNIS SPACE CENTER, MISSISSIPPI. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.

  7. A-3 steel work completed

    Science.gov (United States)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  8. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    The CMS Communications Group, established at the start of 2010, has been busy in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure There are now 55 CMS Centres worldwide that are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin, is the centre of the CMS offline and computing operations, hosting dedicated analysis efforts such as during the CMS Heavy Ion lead-lead running. With a majority of CMS sub-detectors now operating in a “shifterless” mode, many monitoring operations are now routinely performed from there, rather than in the main Control Room at P5. The CMS Communications Group, CERN IT and the EVO team are providing excellent videoconferencing support for the rapidly-increasing number of CMS meetings. In parallel, CERN IT and ...

  9. Lego Group

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Pedersen, Torben; Slepniov, Dmitrij

    2010-01-01

    The last years’ rather adventurous journey from 2004 to 2009 had taught the fifth-largest toy-maker in the world - the LEGO Group - the importance of managing the global supply chain effectively. In order to survive the largest internal financial crisis in its roughly 70 years of existence......, the management had, among many initiatives, decided to offshore and outsource a major chunk of its production to Flextronics. In this pursuit of rapid cost-cutting sourcing advantages, the LEGO Group planned to license out as much as 80 per cent of its production besides closing down major parts...... of the production in high cost countries. Confident with the prospects of the new partnership, the company signed a long-term contract with Flextronics. This decision eventually proved itself to have been too hasty, however. Merely three years after the contracts were signed, LEGO management announced that it would...

  10. Group play

    DEFF Research Database (Denmark)

    Tychsen, Anders; Hitchens, Michael; Brolund, Thea

    2008-01-01

    of group dynamics, the influence of the fictional game characters and the comparative play experience between the two formats. The results indicate that group dynamics and the relationship between the players and their digital characters, are integral to the quality of the gaming experience in multiplayer......Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects...... of the various formats used by RPGs on the gaming experience. This article presents the results of an empirical study, examining how multi-player tabletop RPGs are affected as they are ported to the digital medium. Issues examined include the use of disposition assessments to predict play experience, the effect...

  11. Bartonella-like bacteria carried by domestic mite species.

    Science.gov (United States)

    Kopecký, Jan; Nesvorná, Marta; Hubert, Jan

    2014-01-01

    Bacteria of the genus Bartonella are carried by haematophagous mites, ticks, fleas and flies, and attack the erythrocytes of mammals. Here we describe a Bartonella-like clade, a distinct group related to Bartonellaceae, in stored-product mites (Acari: Astigmata) and a predatory mite Cheyletus eruditus (Acari: Prostigmata) based on the analysis of cloned 16S rRNA gene sequences. By using the clade-specific primers, closely related Bartonella-like 16S rRNA sequences were amplified from both laboratory colonies and field strains of three synanthropic mite species (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and a predatory mite. Altogether, sequences of Bartonella-like bacteria were found in 11 strains, but were not detected in Dermatophagoides farinae and D. pteronyssinus and two strains of L. destructor. All obtained sequences formed a separate cluster branching as a sister group to Bartonellaceae and related to other separate clusters comprising uncultured bacterial clones from human skin and hemipteran insects (Nysius plebeius and Nysius sp.). The classification of sequences into operational taxonomic units (OTUs) showed a difference between A. siro and T. putrescentiae suggesting that the Bartonella-like bacteria are different in these two mite species. However, species specific sequences in separate OTUs were observed also for C. eruditus. Possible symbiotic interactions between Bartonella-like bacteria and their mite hosts are discussed.

  12. 'Rare biosphere' bacteria as key phenanthrene degraders in coastal seawaters.

    Science.gov (United States)

    Sauret, Caroline; Séverin, Tatiana; Vétion, Gilles; Guigue, Catherine; Goutx, Madeleine; Pujo-Pay, Mireille; Conan, Pascal; Fagervold, Sonja K; Ghiglione, Jean-François

    2014-11-01

    By coupling DNA-SIP and pyrosequencing approaches, we identified Cycloclasticus sp. as a keystone degrader of polycyclic aromatic hydrocarbons (PAH) despite being a member of the 'rare biosphere' in NW Mediterranean seawaters. We discovered novel PAH-degrading bacteria (Oceanibaculum sp., Sneathiella sp.) and we identified other groups already known to possess this function (Alteromonas sp., Paracoccus sp.). Together with Cycloclasticus sp., these groups contributed to potential in situ phenanthrene degradation at a rate >0.5 mg l(-1) day(-1), sufficient to account for a considerable part of PAH degradation. Further, we characterized the PAH-tolerant bacterial communities, which were much more diverse in the polluted site by comparison to unpolluted marine references. PAH-tolerant bacteria were also members of the rare biosphere, such as Glaciecola sp. Collectively, these data show the complex interactions between PAH-degraders and PAH-tolerant bacteria and provide new insights for the understanding of the functional ecology of marine bacteria in polluted waters.

  13. [Bacteria ecology in planting-culturing system].

    Science.gov (United States)

    Huang, Fenglian; Xia, Beicheng; Dai, Xin; Chen, Guizhu

    2004-06-01

    Planting-culturing system in inter-tidal zone is a new type eco-culturing model. The survey on bacteria biomass and water quality in the designed planting-culturing system in inter-tidal zone showed that the mangrove planted in the system improved water quality and made water quality to II-III type, better than the IV and V type in the control pond. Designed ponds made heterotrophic bacteria, vibrio, phosphorus bacteria and enzyme-producing bacteria populations 1-2 order lower than the control pond without mongrove planting. Correlation analyses with CORREL software showed that the biomass of these bacteria was positively related with the nitrogen and phosphorus contents in water of the system, and the correlation coefficient for heterogeneous bacteria and vibrio was up to 0.9205. Heterotrophic bacteria and vibrio could be used as the water-quality monitoring organisms.

  14. Group Connections: Whole Group Teaching.

    Science.gov (United States)

    Griffiths, Dorothy

    2002-01-01

    A learner-centered approach to adult group instruction involved learners in investigating 20th-century events. The approach allowed learners to concentrate on different activities according to their abilities and gave them opportunities to develop basic skills and practice teamwork. (SK)

  15. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised

    Science.gov (United States)

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2005-01-01

    The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

  16. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites.

    Science.gov (United States)

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L; Huang, Qiaoyun

    2016-01-21

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a "blocking effect" between humic acid and bacterial cells. Large positive entropies (68.1~114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria.

  17. Cultivation-independent detection of autotrophic hydrogen-oxidizing bacteria by DNA stable-isotope probing.

    Science.gov (United States)

    Pumphrey, Graham M; Ranchou-Peyruse, Anthony; Spain, Jim C

    2011-07-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation.

  18. The Effects of Shrimp Gut Probiotic Bacteria on the Shrimp Larvae (Penaeus Chinensis)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The survival rates of shrimp larvae in different stage are higher than those of control groups when probiotic bacteria strains X4B-1 and X1B-1 which are isolated from gut of adult shrimp are added into the little volume rearing sea water of shrimp larvae. The effects of probiotic bacteria are evaluated by challenge test (pathogenic bacteria Z3G2 isolated from disease shrimp larvae in the hatchery of Jimo town) and low salinity stress resistance tests on shrimp larvae, the survival rate and lengths of the shrimp larvae in the experiment are determined. Results indicate that 1. The survival rate, ability of resistant to low salinity, lengths of the delivered shrimp larvae are improved after the strains of probiotic bacteria, X4B-1 or X1B-1, are added into the rearing sea water of hatchery. 2. The addition of the probiotic bacteria could not influence the change of the bacteria number, NH3-N and COD value in the rearing sea water. 3. The probiotic bacteria used in the experiment have many enzymes such as Lipase, Amylase, Gelatinase and Lecithinase. These enzymes may help the probiotic bacteria to digest the food components fed to shrimp larvae and increase the digestive efficiency of post larvae. This may be one of the reasons why these probiotic bacteria are beneficial to the shrimp larvae.

  19. Bacteria and vampirism in cinema.

    Science.gov (United States)

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database.

    Science.gov (United States)

    Pan, Xubin; Jones, Kim D

    2012-01-01

    Bacteria are one of the major causes of surface water impairments in the USA. Over the past several years, best management practices, including detention basins, manufactured devices, grass swales, filters and bioretention cells have been used to remove bacteria and other pollutants from stormwater runoff. However, there are data gaps in the comprehensive studies of bacteria concentrations in stormwater runoff. In this paper, the event mean concentration (EMC) of fecal indicator bacteria (Enterococcus, Escherichia coli, fecal Streptococcus group bacteria, and fecal coliform) across the USA was retrieved from the international stormwater best management practices database to analyze the seasonal variations of inflow and outflow event mean concentrations and removal efficiencies. The Kruskal-Wallis test was employed to determine the seasonal variations of bacteria indicator concentrations and removals, and the two-sample Kolmogorov-Smirnov test was used for comparing different seasonal outcomes. The results indicate that all the inflow EMC of FIB in stormwater runoff is above the water quality criteria. The seasonal differences of fecal Streptococcus group bacteria and fecal coliform are significant. Summer has the potential to increase the bacteria EMC and illustrate the seasonal differences.

  1. Effects of Ruminal Infusion of Garlic Oil on Fermentation Dynamics, Fatty Acid Profile and Abundance of Bacteria Involved in Biohydrogenation in Rumen of Goats

    OpenAIRE

    Zhu, Zhi; Mao, Shengyong; Zhu, Weiyun

    2012-01-01

    This study aimed to investigate the effects of ruminal infusion of garlic oil (GO) on fermentation dynamics, fatty acid (FA) profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal...

  2. COMMUNITY ANALYSIS OF AGGREGATED BACTERIA IN SOUTHERN LAKE BAIKAL%韩国贝加尔湖南部群集细菌的群落分析

    Institute of Scientific and Technical Information of China (English)

    Ahn T. S.; Kim O. S.; Spiglazov L. P; Drucker V. V.; Hong S-H.

    2006-01-01

    This study focuses on the community structure of aggregated bacteria in Lake Baikal and relationships with free-living bacteria.Fluorescent in situ hybridization (FISH) methods were used in samples of bacteria taken in April, 2001. Bacterial counts of free-living ranged from 52.3 to 74.1% in free-living bacteria and from 39.6 to 66.7% in aggregated bacteria, respectively. Community composition of aggregated bacteria was very different from free-living bacteria, especially at 25m depth where highest phytoplankton numbers were observed. The vertical profile of aggregated bacteria community was very characteristic. Beta-Proteobacteria increased with depth down to 100m. At 250m, gamma-Proteobacteria was 44% of DAPI bound cells, while other groups were less than 1%. We conclude that community structures of free-living and aggregated bacteria were different, and they may sustain the ecosystem in independent ways.

  3. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    The CMS Communications Group has been busy in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure The 55 CMS Centres worldwide are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin, is the centre of the CMS Offline and Computing operations, and a number of subdetector shifts can now take place there, rather than in the main Control Room at P5. A new CMS meeting room has been equipped for videoconferencing in building 42, next to building 40. Our building 28 meeting room and the facilities at P5 will be refurbished soon and plans are underway to steadily upgrade the ageing equipment in all 15 CMS meeting rooms at CERN. The CMS evaluation of the Vidyo tool indicates that it is not yet ready to be considered as a potential replacement for EVO. The Communications Group provides the CMS-TV (web) cha...

  4. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2010-01-01

    The CMS Communications Group, established at the start of 2010, has been strengthening the activities in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure The Communications Group has invested a lot of effort to support the operations needs of CMS. Hence, the CMS Centres where physicists work on remote CMS shifts, Data Quality Monitoring, and Data Analysis are running very smoothly. There are now 55 CMS Centres worldwide, up from just 16 at the start of CMS data-taking. The latest to join are Imperial College London, the University of Iowa, and the Università di Napoli. The CMS Centre@CERN in Meyrin, which is now full repaired after the major flooding at the beginning of the year, has been at the centre of CMS offline and computing operations, most recently hosting a large fraction of the CMS Heavy Ion community during the lead-lead run. A number of sub-detector shifts can now take pla...

  5. Amino acid composition of rumen bacteria and protozoa in cattle.

    Science.gov (United States)

    Sok, M; Ouellet, D R; Firkins, J L; Pellerin, D; Lapierre, H

    2017-07-01

    Because microbial crude protein (MCP) constitutes more than 50% of the protein digested in cattle, its AA composition is needed to adequately estimate AA supply. Our objective was to update the AA contributions of the rumen microbial AA flowing to the duodenum using only studies from cattle, differentiating between fluid-associated bacteria (FAB), particle-associated bacteria (PAB), and protozoa, based on published literature (53, 16, and 18 treatment means were used for each type of microorganism, respectively). In addition, Cys and Met reported concentrations were retained only when an adequate protection of the sulfur groups was performed before the acid hydrolysis. The total AA (or true protein) fraction represented 82.4% of CP in bacteria. For 10 AA, including 4 essential AA, the AA composition differed between protozoa and bacteria. The most noticeable differences were a 45% lower Lys concentration and 40% higher Ala concentration in bacteria than in protozoa. Differences between FAB and PAB were less pronounced than differences between bacteria and protozoa. Assuming 33% FAB, 50% PAB, and 17% of protozoa in MCP duodenal flow, the updated concentrations of AA would decrease supply estimates of Met, Thr, and Val originating from MCP and increase those of Lys and Phe by 5 to 10% compared with those calculated using the FAB composition reported previously. Therefore, inclusion of the contribution of PAB and protozoa to the duodenal MCP flow is needed to adequately estimate AA supply from microbial origin when a factorial method is used to estimate duodenal AA flow. Furthermore, acknowledging the fact that hydrolysis of 1 kg of true microbial protein yields 1.16 kg of free AA substantially increases the estimates of AA supply from MCP. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Evolution of the Kdo2-lipid A Biosynthesis in Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    S Opiyo; R Pardy; H Moriyama; E Moriyama

    2011-12-31

    BACKGROUND: Lipid A is the highly immunoreactive endotoxic center of lipopolysaccharide (LPS). It anchors the LPS into the outer membrane of most Gram-negative bacteria. Lipid A can be recognized by animal cells, triggers defense-related responses, and causes Gram-negative sepsis. The biosynthesis of Kdo2-lipid A, the LPS substructure, involves with nine enzymatic steps. RESULTS: In order to elucidate the evolutionary pathway of Kdo2-lipid A biosynthesis, we examined the distribution of genes encoding the nine enzymes across bacteria. We found that not all Gram-negative bacteria have all nine enzymes. Some Gram-negative bacteria have no genes encoding these enzymes and others have genes only for the first four enzymes (LpxA, LpxC, LpxD, and LpxB). Among the nine enzymes, five appeared to have arisen from three independent gene duplication events. Two of such events happened within the Proteobacteria lineage, followed by functional specialization of the duplicated genes and pathway optimization in these bacteria. CONCLUSIONS: The nine-enzyme pathway, which was established based on the studies mainly in Escherichia coli K12, appears to be the most derived and optimized form. It is found only in E. coli and related Proteobacteria. Simpler and probably less efficient pathways are found in other bacterial groups, with Kdo2-lipid A variants as the likely end products. The Kdo2-lipid A biosynthetic pathway exemplifies extremely plastic evolution of bacterial genomes, especially those of Proteobacteria, and how these mainly pathogenic bacteria have adapted to their environment.

  7. Inhibitory effect for proliferation of oral bacteria in dogs by tooth brushing and application of toothpaste

    Science.gov (United States)

    WATANABE, Kazuhiro; KIJIMA, Saku; NONAKA, Chie; MATSUKAWA, Yuki; YAMAZOE, Kazuaki

    2016-01-01

    To investigate inhibitory effect for oral bacterial proliferation, we divided 12 dogs into 3 groups; scaling alone (C; control group), brushing (B) and application of toothpaste (P). Before scaling (Pre) and at 0 to 8 weeks after scaling (0–8 w), we collected oral bacteria from the dental surface every week and counted them using a bacterial counter. The results demonstrated a significant reduction in the number of oral bacteria for group B relative to Pre and group C, as well as for group P relative to group C at 5–7 w. Consequently, brushing may inhibit an increase in the number of oral bacteria, and toothpaste may be effective at a certain level, although not more than that of brushing. PMID:27062999

  8. DMTB: the magnetotactic bacteria database

    Science.gov (United States)

    Pan, Y.; Lin, W.

    2012-12-01

    Magnetotactic bacteria (MTB) are of interest in biogeomagnetism, rock magnetism, microbiology, biomineralization, and advanced magnetic materials because of their ability to synthesize highly ordered intracellular nano-sized magnetic minerals, magnetite or greigite. Great strides for MTB studies have been made in the past few decades. More than 600 articles concerning MTB have been published. These rapidly growing data are stimulating cross disciplinary studies in such field as biogeomagnetism. We have compiled the first online database for MTB, i.e., Database of Magnestotactic Bacteria (DMTB, http://database.biomnsl.com). It contains useful information of 16S rRNA gene sequences, oligonucleotides, and magnetic properties of MTB, and corresponding ecological metadata of sampling sites. The 16S rRNA gene sequences are collected from the GenBank database, while all other data are collected from the scientific literature. Rock magnetic properties for both uncultivated and cultivated MTB species are also included. In the DMTB database, data are accessible through four main interfaces: Site Sort, Phylo Sort, Oligonucleotides, and Magnetic Properties. References in each entry serve as links to specific pages within public databases. The online comprehensive DMTB will provide a very useful data resource for researchers from various disciplines, e.g., microbiology, rock magnetism and paleomagnetism, biogeomagnetism, magnetic material sciences and others.

  9. Mitochondria are not captive bacteria.

    Science.gov (United States)

    Harish, Ajith; Kurland, Charles G

    2017-12-07

    Lynn Sagan's conjecture (1967) that three of the fundamental organelles observed in eukaryote cells, specifically mitochondria, plastids and flagella were once free-living primitive (prokaryotic) cells was accepted after considerable opposition. Even though the idea was swiftly refuted for the specific case of origins of flagella in eukaryotes, the symbiosis model in general was accepted for decades as a realistic hypothesis to describe the endosymbiotic origins of eukaryotes. However, a systematic analysis of the origins of the mitochondrial proteome based on empirical genome evolution models now indicates that 97% of modern mitochondrial protein domains as well their homologues in bacteria and archaea were present in the universal common ancestor (UCA) of the modern tree of life (ToL). These protein domains are universal modular building blocks of modern genes and genomes, each of which is identified by a unique tertiary structure and a specific biochemical function as well as a characteristic sequence profile. Further, phylogeny reconstructed from genome-scale evolution models reveals that Eukaryotes and Akaryotes (archaea and bacteria) descend independently from UCA. That is to say, Eukaryotes and Akaryotes are both primordial lineages that evolved in parallel. Finally, there is no indication of massive inter-lineage exchange of coding sequences during the descent of the two lineages. Accordingly, we suggest that the evolution of the mitochondrial proteome was autogenic (endogenic) and not endosymbiotic (exogenic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The mycorrhiza helper bacteria revisited.

    Science.gov (United States)

    Frey-Klett, P; Garbaye, J; Tarkka, M

    2007-01-01

    In natural conditions, mycorrhizal fungi are surrounded by complex microbial communities, which modulate the mycorrhizal symbiosis. Here, the focus is on the so-called mycorrhiza helper bacteria (MHB). This concept is revisited, and the distinction is made between the helper bacteria, which assist mycorrhiza formation, and those that interact positively with the functioning of the symbiosis. After considering some examples of MHB from the literature, the ecological and evolutionary implications of the relationships of MHB with mycorrhizal fungi are discussed. The question of the specificity of the MHB effect is addressed, and an assessment is made of progress in understanding the mechanisms of the MHB effect, which has been made possible through the development of genomics. Finally, clear evidence is presented suggesting that some MHB promote the functioning of the mycorrhizal symbiosis. This is illustrated for three critical functions of practical significance: nutrient mobilization from soil minerals, fixation of atmospheric nitrogen, and protection of plants against root pathogens. The review concludes with discussion of future research priorities regarding the potentially very fruitful concept of MHB.

  11. Stress Physiology of Lactic Acid Bacteria.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.

  12. Abundant oligonucleotides common to most bacteria.

    Directory of Open Access Journals (Sweden)

    Colin F Davenport

    Full Text Available BACKGROUND: Bacteria show a bias in their genomic oligonucleotide composition far beyond that dictated by G+C content. Patterns of over- and underrepresented oligonucleotides carry a phylogenetic signal and are thus diagnostic for individual species. Patterns of short oligomers have been investigated by multiple groups in large numbers of bacteria genomes. However, global distributions of the most highly overrepresented mid-sized oligomers have not been assessed across all prokaryotes to date. We surveyed overrepresented mid-length oligomers across all prokaryotes and normalised for base composition and embedded oligomers using zero and second order Markov models. PRINCIPAL FINDINGS: Here we report a presumably ancient set of oligomers conserved and overrepresented in nearly all branches of prokaryotic life, including Archaea. These oligomers are either adenine rich homopurines with one to three guanine nucleosides, or homopyridimines with one to four cytosine nucleosides. They do not show a consistent preference for coding or non-coding regions or aggregate in any coding frame, implying a role in DNA structure and as polypeptide binding sites. Structural parameters indicate these oligonucleotides to be an extreme and rigid form of B-DNA prone to forming triple stranded helices under common physiological conditions. Moreover, the narrow minor grooves of these structures are recognised by DNA binding and nucleoid associated proteins such as HU. CONCLUSION: Homopurine and homopyrimidine oligomers exhibit distinct and unusual structural features and are present at high copy number in nearly all prokaryotic lineages. This fact suggests a non-neutral role of these oligonucleotides for bacterial genome organization that has been maintained throughout evolution.

  13. Antibacterial effect of Gracilaria verrucosa bioactive on fish pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Maftuch

    2016-12-01

    Full Text Available Gracilaria verrucosa seaweed is a type of seaweed commonly found in water. This study was conducted to investigate the effect of G. verrucosa on fish pathogenic bacteria to support fish farming. The method used in this research was the separation of G. verrucosa fractions using column chromatography. The active antibacterial fraction of G. verrucosa which is obtained from column chromatography indicated fractions containing antibacterial compounds. It was fraction number 3 by using an eluent 16 (ethanol: 4 (ethyl acetate. Furthermore, based on phytochemical screening, ultraviolet spectrophotometer and LC–MS analysis, antibacterial compounds contained in those fraction number 3 are Alkaloid, Flavonoid, Tannin, Phenolic compound. Based on LC–MS and UV–Vis analysis, flavonoid group, Quercetin-7-methyl-ether is a dominant group of the antibacterial compound on fraction no. 3. This fraction had moderate antibacterial activity against Aeromonas hydrophila, Pseudomonas aeruginosa, Pseudomonas putida and had weak antibacterial activity against Vibrio harveyi and Vibrio algynoliticus bacteria.

  14. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Science.gov (United States)

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  15. Lactic acid bacteria as a cell factory for riboflavin production

    OpenAIRE

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for r...

  16. Metabolic Pathways in Methanococcus jannaschii and Other Methanogenic Bacteria

    OpenAIRE

    Sprott, G. Dennis; Ekiel, Irena; Patel, Girishchandra B

    1993-01-01

    Eleven strains of methanogenic bacteria were divided into two groups on the basis of the directionality (oxidative or reductive) of their citric acid pathways. These pathways were readily identified for most methanogens from the patterns of carbon atom labeling in glutamate, following growth in the presence of [2-13C]acetate. All used noncyclic pathways, but members of the family Methanosarcinaceae were the only methanogens found to use the oxidative direction. Methanococcus jannaschii failed...

  17. Biomagnetic Recovery and Bioaccumulation of Selenium Granules in Magnetotactic Bacteria.

    Science.gov (United States)

    Tanaka, Masayoshi; Knowles, William; Brown, Rosemary; Hondow, Nicole; Arakaki, Atsushi; Baldwin, Stephen; Staniland, Sarah; Matsunaga, Tadashi

    2016-07-01

    Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd(2+) adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to

  18. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  19. Coryneform bacteria associated with canine otitis externa

    DEFF Research Database (Denmark)

    Aalbæk, Bent; Bemis, David A.; Schjærff, Mette

    2010-01-01

    of coryneform bacteria was 16% among 55 cases of canine otitis externa examined at the Danish hospital during 2007. In contrast, detectable levels of coryneform bacteria were not demonstrated in samples from the acustic meatus of 35 dogs with apparently healthy ears, attending the hospital during the same year......This study aims to investigate the occurrence of coryneform bacteria in canine otitis externa. A combined case series and case-control study was carried out to improve the current knowledge on frequency and clinical significance of coryneform bacteria in samples from canine otitis externa. A total...... of 16 cases of otitis externa with involvement of coryneform bacteria were recorded at two referral veterinary hospitals in Denmark and the US, respectively. Coryneform bacteria were identified by partial 16S rRNA gene sequencing. Corynebacterium auriscanis was the most common coryneform species (10...

  20. Endophytic bacteria in Coffea arabica L.

    Science.gov (United States)

    Vega, Fernando E; Pava-Ripoll, Monica; Posada, Francisco; Buyer, Jeffrey S

    2005-01-01

    Eighty-seven culturable endophytic bacterial isolates in 19 genera were obtained from coffee plants collected in Colombia (n = 67), Hawaii (n = 17), and Mexico (n = 3). Both Gram positive and Gram negative bacteria were isolated, with a greater percentage (68%) being Gram negative. Tissues yielding bacterial endophytes included adult plant leaves, various parts of the berry (e.g., crown, pulp, peduncle and seed), and leaves, stems, and roots of seedlings. Some of the bacteria also occurred as epiphytes. The highest number of bacteria among the berry tissues sampled was isolated from the seed, and includes Bacillus , Burkholderia , Clavibacter , Curtobacterium , Escherichia , Micrococcus , Pantoea , Pseudomonas , Serratia , and Stenotrophomonas . This is the first survey of the endophytic bacteria diversity in various coffee tissues, and the first study reporting endophytic bacteria in coffee seeds. The possible role for these bacteria in the biology of the coffee plant remains unknown.

  1. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    Communications Infrastructure The 55 CMS Centres worldwide are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin is particularly busy at the moment, hosting about 50 physicists taking part in the heavy-ion data-taking and analysis. Three new CMS meeting room will be equipped for videoconferencing in early 2012: 40/5B-08, 42/R-031, and 28/S-029. The CMS-TV service showing LHC Page 1, CMS Page 1, etc. (http://cmsdoc.cern.ch/cmscc/projector/index.jsp) is now also available for mobile devices: http://cern.ch/mcmstv. Figure 12: Screenshots of CMS-TV for mobile devices Information Systems CMS has a new web site: (http://cern.ch/cms) using a modern web Content Management System to ensure content and links are managed and updated easily and coherently. It covers all CMS sub-projects and groups, replacing the iCMS internal pages. It also incorporates the existing CMS public web site (http:/...

  2. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2012-01-01

      Outreach and Education We are fortunate that our research has captured the public imagination, even though this inevitably puts us under the global media spotlight, as we saw with the Higgs seminar at CERN in December, which had 110,000 distinct webcast viewers. The media interest was huge with 71 media organisations registering to come to CERN to cover the Higgs seminar, which was followed by a press briefing with the DG and Spokespersons. This event resulted in about 2,000 generally positive stories in the global media. For this seminar, the CMS Communications Group prepared up-to-date news and public material, including links to the CMS results, animations and event displays [http://cern.ch/go/Ch8thttp://cern.ch/go/Ch8t]. There were 44,000 page-views on the CMS public website, with the Higgs news article being by far the most popular item. CMS event displays from iSpy are fast becoming the iconic media images, featuring on numerous major news outlets (BBC, CNN, MSN...) as well as in the sci...

  3. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2010-01-01

    The recently established CMS Communications Group, led by Lucas Taylor, has been busy in all three of its main are areas of responsibility: Communications Infrastructure, Information Systems, and Outreach and Education Communications Infrastructure The damage caused by the flooding of the CMS Centre@CERN on 21st December has been completely repaired and all systems are back in operation. Major repairs were made to the roofs, ceilings and one third of the floor had to be completely replaced. Throughout these works, the CMS Centre was kept operating and even hosted a major press event for first 7 TeV collisions, as described below. Incremental work behind the scenes is steadily improving the quality of the CMS communications infrastructure, particularly Webcasting, video conferencing, and meeting rooms at CERN. CERN/IT is also deploying a pilot service of a new videoconference tool called Vidyo, to assess whether it might provide an enhanced service at a lower cost, compared to the EVO tool currently in w...

  4. Assessment of ifsh coproductsSardina pilchardus as the source of lactic acid bacteria

    Institute of Scientific and Technical Information of China (English)

    Hamza Belkhodja; Mohamed Allam; Fatima Sahnouni; Ouardia Boukhari

    2016-01-01

    Objective:To recover the waste (edges, heads and guts) of a species of pelagic fishSardina pilchardus as a source of lactic bacteria. Methods:The microbiological control of the fish waste was carried out. Then, the fish waste was assessed as a source of bacteria of industrial interest among other lactic bacteria. The standard protocol for researches of these microorganisms was adopted which comprised enrichment, isolation, identification, purification and conservation. Results:The results of the microbiological control indicated the presence of some species as part of the normal flora of the fish. The physiological and biochemical characterization has presented 2 different groups of lactic bacteria:Lactobacillus fermentum andLactobacillusspp. Conclusions:The assessment of fish waste can give us the opportunity to obtain different species of useful bacteria.

  5. Simulating Experiments on Enrichment of Gold by Bacteria and Their Geochemical Significance

    Institute of Scientific and Technical Information of China (English)

    张景荣; 陆建军; 等

    1997-01-01

    The experiments on the enrichment of gold by bacteria indicate that bacteria have a very intense capacity of enriching gold and act as an arrester of trace gold in sea water,Bacteria enrich gold in two forms:absorption and adsorption.Absorption means that gold finds its way into organisms and it is combined with the mercapto group of protein,whereas adsorption means that gold is adsorbed on organisma by amino acid secreted by cell walls,Bacteria are organisms with very high vitality and reproductive capacity and huge productivity in nature Bacteria,which are important geolgical agents for gold enrichment and can exert effects on geological environments by their metabolism,are of important geochemical significance for the formation of gold-bearing black rock series.

  6. Arsenic interception by cell wall of bacteria observed with surface-enhanced Raman scattering.

    Science.gov (United States)

    Tian, Haixia; Zhuang, Guoqiang; Ma, Anzhou; Jing, Chuanyong

    2012-06-01

    The purpose of this study was to determine the interactions between arsenic (As) resistant bacteria and As, using surface-enhanced Raman scattering (SERS) and Fourier transform infrared (FTIR) spectroscopy. According to our 16S rDNA results, eight bacteria isolated from the environment can be identified to four genera (Arthrobacter, Pseudomonas, Sphingomonas, and Acinetobacter). The bacteria were separated into cell wall and protoplast in the study to assess the As(V) attack. The As(V) stress on bacteria could be identified with SERS, but not with FTIR. The bacteria in our study primarily resist As(V) through sequestration of As(V) by the cell wall. The change in SERS peaks and their relationships with cell wall suggested that As(V) mainly interacts with functional groups on the cell wall including polysaccharides and flavin derivates.

  7. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  8. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    Science.gov (United States)

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-09

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean.

  9. Antibacterial and biofilm inhibitory activities of bacteria associated with polychaetes

    Directory of Open Access Journals (Sweden)

    Chellamnadar Vaikundavasagom Sunjaiy Shankar

    2015-06-01

    Full Text Available Objective: To study the antibacterial and antibiofilm activities expressed by epibiotic bacteria associated with the polychaetes Platynereis dumerilii and Syllis sp. Methods: A total of 32 cultivable bacterial strains were isolated from the two polychaete species. The crude extracts were tested for antibacterial activity and biofilm inhibitory activity against pathogenic and biofilm-forming bacterial strains. Extracts of the strains which showed strong activity were analyzed by thin-layer chromatography (TLC and the bacterial strains were identified based on 16S rRNA gene sequencing. Results: Extracts of 13 bacterial strains showed inhibitory activity against pathogenic and biofilm-forming bacteria. The crude extracts also affected the synthesis of extracellular polymeric substances and cell surface hydrophobicity of the Alteromonas sp. isolated from marine biofilm. The adhesion of Alteromonas sp. on glass surface showed significant variation between surface-associated bacterial crude extract treatment and control groups. Among the 13 bacteria, two strains PA8 and PA19 were further analyzed for bioactive fractions. Thinlayer chromatography indicated the presence of a single active fraction in the crude extract of both the bacterial strains. The epibiotic bacterial strains P8 and P19 were identified as Exiguobacterium sp. and Actinobacterium sp. respectively based on 16S rRNA gene sequencing. Conclusions: The present study indicates that bacteria associated with marine invertebrates inhabiting the coastal waters could be used as a potential source for the isolation of bioactive metabolites.

  10. Psychrotrophic bacteria in milk: How much do we really know?

    Science.gov (United States)

    de Oliveira, Gislene B.; Favarin, Luciana; Luchese, Rosa H.; McIntosh, Douglas

    2015-01-01

    The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens) has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know? PMID:26273245

  11. Psychrotrophic bacteria in milk: How much do we really know?

    Directory of Open Access Journals (Sweden)

    Gislene B. de Oliveira

    2015-06-01

    Full Text Available The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know?

  12. Antibacterial and bioiflm inhibitory activities of bacteria associated with polychaetes

    Institute of Scientific and Technical Information of China (English)

    Sathianeson Satheesh; Nadarajan Viju

    2015-01-01

    Objective:To study the antibacterial and antibiofilm activities expressed by epibiotic bacteria associated with the polychaetes Platynereis dumerilii and Syllis sp. Methods:A total of 32 cultivable bacterial strains were isolated from the two polychaete species. The crude extracts were tested for antibacterial activity and biofilm inhibitory activity against pathogenic and biofilm-forming bacterial strains. Extracts of the strains which showed strong activity were analyzed by thin-layer chromatography (TLC) and the bacterial strains were identified based on 16S rRNA gene sequencing. Results:Extracts of 13 bacterial strains showed inhibitory activity against pathogenic and biofilm-forming bacteria. The crude extracts also affected the synthesis of extracellular polymeric substances and cell surface hydrophobicity of the Alteromonas sp. isolated from marine biofilm. The adhesion of Alteromonas sp. on glass surface showed significant variation between surface-associated bacterial crude extract treatment and control groups. Among the 13 bacteria, two strains PA8 and PA19 were further analyzed for bioactive fractions. Thin-layer chromatography indicated the presence of a single active fraction in the crude extract of both the bacterial strains. The epibiotic bacterial strains P8 and P19 were identified as Exiguobacterium sp. and Actinobacterium sp. respectively based on 16S rRNA gene sequencing. Conclusions:The present study indicates that bacteria associated with marine invertebrates inhabiting the coastal waters could be used as a potential source for the isolation of bioactive metabolites.

  13. Energetics and Application of Heterotrophy in Acetogenic Bacteria.

    Science.gov (United States)

    Schuchmann, Kai; Müller, Volker

    2016-07-15

    Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens.

  14. Lactic acid bacteria as a cell factory for riboflavin production

    Science.gov (United States)

    Thakur, Kiran; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  15. Collective motion and density fluctuations in swimming bacteria

    Science.gov (United States)

    Zhang, Hepeng

    2011-03-01

    The emergence of collective motion such as in fish schools, mammal herds, and insect swarms is a ubiquitous self-organization phenomenon. Such collective behavior plays an important role in a range of problems, such as spreading of deceases in animal or fish groups. Current models have provided a qualitative understanding of collective motion, but progress in quantitative modeling in hindered by the lack of experimental data. Here we examine a model microscopic system, where we are able to measure simultaneously the positions, velocities, and orientations of up to a thousand bacteria in a colony. The motile bacteria form closely-packed dynamic clusters within which they move cooperatively. The number of bacteria in a cluster exhibits a power-law distribution truncated by an exponential tail, and the probability of finding large clusters grows markedly as bacterial density increases. Mobile clusters cause anomalous fluctuations in bacterial density as found in mathematical theories and numerical models. Our results demonstrate that bacteria are an excellent system to study general phenomena of collective motion.

  16. Characteristics of airborne bacteria in Mumbai urban environment.

    Science.gov (United States)

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM.

  17. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  18. Survival of soil bacteria during prolonged desiccation.

    Science.gov (United States)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  19. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  20. Coryneform bacteria associated with canine otitis externa.

    Science.gov (United States)

    Aalbæk, Bent; Bemis, David A; Schjærff, Mette; Kania, Stephen A; Frank, Linda A; Guardabassi, Luca

    2010-10-26

    This study aims to investigate the occurrence of coryneform bacteria in canine otitis externa. A combined case series and case-control study was carried out to improve the current knowledge on frequency and clinical significance of coryneform bacteria in samples from canine otitis externa. A total of 16 cases of otitis externa with involvement of coryneform bacteria were recorded at two referral veterinary hospitals in Denmark and the US, respectively. Coryneform bacteria were identified by partial 16S rRNA gene sequencing. Corynebacterium auriscanis was the most common coryneform species (10 cases). Small colony variants of this species were also observed. Other coryneform isolates were identified as Corynebacterium amycolatum (3 cases), Corynebacterium freneyi (2 cases) and an Arcanobacterium-like species (1 case). The coryneform bacteria were in all cases isolated together with other bacteria, mainly Staphylococcus pseudintermedius alone (n=5) or in combination with Malassezia pachydermatis (n=5). Some coryneform isolates displayed resistance to fusidic acid or enrofloxacin, two antimicrobial agents commonly used for the treatment of otitis externa in dogs. The frequency of isolation of coryneform bacteria was 16% among 55 cases of canine otitis externa examined at the Danish hospital during 2007. In contrast, detectable levels of coryneform bacteria were not demonstrated in samples from the acustic meatus of 35 dogs with apparently healthy ears, attending the hospital during the same year. On basis of the current knowledge, these coryneform bacteria should be regarded as potential secondary pathogens able to proliferate in the environment of an inflamed ear canal.

  1. Single Bacteria as Turing Machines

    Science.gov (United States)

    Bos, Julia; Zang, Qiucen; Vyawahare, Saurabh; Austin, Robert

    2014-03-01

    In Allan Turing's famous 1950 paper on Computing Machinery and Intelligence, he started with the provocative statement: ``I propose to consider the question, `Can machines think?' This should begin with definitions of the meaning of the terms `machine' and `think'.'' In our own work on exploring the way that organisms respond to stress and evolve, it seems at times as if they come to remarkably fast solutions to problems, indicating some sort of very clever computational machinery. I'll discuss how it would appear that bacteria can indeed create a form of a Turing Machine, the first example of a computer, and how they might use this algorithm to do rapid evolution to solve a genomics problem.

  2. Cell Size Regulation in Bacteria

    Science.gov (United States)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  3. Mitochondria: a target for bacteria.

    Science.gov (United States)

    Lobet, Elodie; Letesson, Jean-Jacques; Arnould, Thierry

    2015-04-01

    Eukaryotic cells developed strategies to detect and eradicate infections. The innate immune system, which is the first line of defence against invading pathogens, relies on the recognition of molecular patterns conserved among pathogens. Pathogen associated molecular pattern binding to pattern recognition receptor triggers the activation of several signalling pathways leading to the establishment of a pro-inflammatory state required to control the infection. In addition, pathogens evolved to subvert those responses (with passive and active strategies) allowing their entry and persistence in the host cells and tissues. Indeed, several bacteria actively manipulate immune system or interfere with the cell fate for their own benefit. One can imagine that bacterial effectors can potentially manipulate every single organelle in the cell. However, the multiple functions fulfilled by mitochondria especially their involvement in the regulation of innate immune response, make mitochondria a target of choice for bacterial pathogens as they are not only a key component of the central metabolism through ATP production and synthesis of various biomolecules but they also take part to cell signalling through ROS production and control of calcium homeostasis as well as the control of cell survival/programmed cell death. Furthermore, considering that mitochondria derived from an ancestral bacterial endosymbiosis, it is not surprising that a special connection does exist between this organelle and bacteria. In this review, we will discuss different mitochondrial functions that are affected during bacterial infection as well as different strategies developed by bacterial pathogens to subvert functions related to calcium homeostasis, maintenance of redox status and mitochondrial morphology.

  4. Bacterias solubilizadoras de fosfato inorgánico aisladas de suelos de la región sojera Phosphate inorganic solubilizing bacteria isolated from soybean region soils

    Directory of Open Access Journals (Sweden)

    Leticia Andrea Fernández

    2005-07-01

    Full Text Available En el presente trabajo se estudia la habilidad fisiológica para solubilizar fosfato inorgánico de diferentes grupos bacterianos así como de cepas de Bradyrhizobium sp. aislados de suelos sojeros. Se recolectaron muestras de suelo y se determinó el número de la microflora total así como el total de bacterias, hongos y de solubilizadores. La capacidad de solubilizar fosfato tricálcico de los grupos de bacterias predominantes en el suelo, de 250 cepas de Bradyrhizobium sp. y de 10 cepas de colección se probó en placa de Petri conteniendo el medio NBRIP con 5 g L -1 de fosfato tricálcico. Se midió el tamaño de los halos de solubilización y se aislaron aquellas colonias que mostraban halos mayores a los 4 mm. El fósforo solubilizado se estimó cuantitativamente en medio líquido con y sin agregado de solución tampón y se comparó con una cepa comercial. El valor medio de bacterias totales fue 5,1 106 (0,06% solubilizadoras mientras que el valor medio de hongos totales alcanzó a 3.3 104 (9.70% solubilizadores. No se encontraron diferencias significativas en el número de bacterias solubilizadoras de fosfato en los distintos suelos. Se obtuvieron 14 aislamientos solubilizadores: 10 de la microflora y 4 de Bradyrhizobium sp. y sus halos oscilaron entre 4 y 15 mm. Todas las cepas de colección excepto MSDJ G 49 solubilizaron fosfato en placa de Petri. Las cantidades de fosfato solubilizadas por las bacterias de la microflora variaron entre 3% y 24,1% en un medio líquido sin solución tamponada mientras que en un medio tamponado variaron entre 0,07% y 4,82%. En un medio líquido sin solución reguladora, los aislamientos de Bradyrhizobium sp. solubilizaron en porcentajes que variaron entre 7,1% y 8,5% mientras que en un medio tamponado oscilaron entre 0,1% y 0,16%. No se observaron diferencias significativas en las cantidades de fosfato solubilizadas por los aislamientos de Bradyrhizobium en un medio tamponado con respecto a la mayor

  5. Marine Bacteria from Eastern Indonesia Waters and Their Potential Use in Biotechnology

    Directory of Open Access Journals (Sweden)

    Yosmina H Tapilatu

    2016-05-01

    Full Text Available Indonesian vast marine waters, which constitute 81% of the country’s total area, have a great potential in terms of marine bacteria biodiversity. However, marine bacteria are still under-explored in Indonesia, especially in its eastern area. Known as one of the biodiversity hotspots worldwide, this area surely harbors various marine bacteria of particular interest. Despite the growing number of oceanic expeditions carried out in this area, only little attention has been attributed to marine bacteria. Limited literatures exist on the isolation of marine bacteria producing compounds with potential biotechnological applications from the aforementioned waters. There are two main causes of this problem, namely lack of infrastructures and limited competent human resources. In this paper, I will highlight the preliminary results of isolation and bioprospecting attempts on this group of bacteria during the last fifteen years. These results indicate that research activities on marine bacteria in this area need to be intensified, to uncover their potential applications in various biotechnological fields. Keywords: marine bacteria, eastern Indonesian waters, biotechnological application

  6. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 oC and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  7. More, smaller bacteria in response to ocean's warming?

    KAUST Repository

    Moran, Xose Anxelu G.

    2015-06-10

    Heterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations in temperate Atlantic coastal waters revealed strong seasonal patterns in the abundance, size and biomass of the ubiquitous flow-cytometric groups of low (LNA) and high nucleic acid (HNA) content bacteria. Over this relatively short period, we also found that bacterioplankton cells were significantly smaller, a trend that is consistent with the hypothesized temperature-driven decrease in body size. Although decadal cell shrinking was observed for both groups, it was only LNA cells that were strongly coherent, with ecological theories linking temperature, abundance and individual size on both the seasonal and interannual scale. We explain this finding because, relative to their HNA counterparts, marine LNA bacteria are less diverse, dominated by members of the SAR11 clade. Temperature manipulation experiments in 2012 confirmed a direct effect of warming on bacterial size. Concurrent with rising temperatures in spring, significant decadal trends of increasing standing stocks (3% per year) accompanied by decreasing mean cell size (-1% per year) suggest a major shift in community structure, with a larger contribution of LNA bacteria to total biomass. The increasing prevalence of these typically oligotrophic taxa may severely impact marine foodwebs and carbon fluxes by an overall decrease in the efficiency of the biological pump. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Progress in Research of Bacteria Fertilizer Strengthening Resistance of Plants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Bacteria fertilizer is used most widely among all kinds of microbial fertilizers. We summarize the research headway of bacteria fertilizer. It mainly focuses on bacteria fertilizer improving the stress resistance of plant. Then we can offer basis to research and exploit bacteria fertilizer. These bacteria include azotobacter, photosynthetic bacteria, Bacillus mucilaginosus siliceous, phosphorus bacteria, plant growth-promoting rhizobacteria(PGPR), effective microorganism(EM).

  9. Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile†

    Science.gov (United States)

    Webster, Nicole S.; Wilson, Kate J.; Blackall, Linda L.; Hill, Russell T.

    2001-01-01

    Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge. PMID:11133476

  10. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water.

    Science.gov (United States)

    Iwane, T; Urase, T; Yamamoto, K

    2001-01-01

    Escherichia coli and coliform group bacteria resistant to seven antibiotics were investigated in the Tama River, a typical urbanized river in Tokyo, Japan, and at a wastewater treatment plant located on the river. The percentages of antibiotic resistance in the wastewater effluent were, in most cases, higher than the percentages in the river water, which were observed increasing downstream. Since the possible increase in the percentages in the river was associated with treated wastewater discharges, it was concluded that the river, which is contaminated by treated wastewater with many kinds of pollutants, is also contaminated with antibiotic resistant coliform group bacteria and E. coli. The percentages of resistant bacteria in the wastewater treatment plant were mostly observed decreasing during the treatment process. It was also demonstrated that the percentages of resistance in raw sewage are significantly higher than those in the river water and that the wastewater treatment process investigated in this study works against most of resistant bacteria in sewage.

  11. A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema

    DEFF Research Database (Denmark)

    Trojan, Daniela; Schreiber, Lars; Bjerg, Jesper Tataru;

    2016-01-01

    Cable bacteria are long, multicellular filaments that can conduct electric currents over centimeter-scale distances. All cable bacteria identified to date belong to the deltaproteobacterial family Desulfobulbaceae and have not been isolated in pure culture yet. Their taxonomic delineation and exact......RNA gene sequences of 16 individual cable bacteria filaments from freshwater, salt marsh, and marine sites of four geographic locations are presented. These sequences formed a distinct, monophyletic sister clade to the genus Desulfobulbus and could be divided into six coherent, species-level clusters......, arranged as two genus-level groups. The same grouping was retrieved by phylogenetic analysis of full or partial dsrAB genes encoding the dissimilatory sulfite reductase. Based on these results, it is proposed to accommodate cable bacteria within two novel candidate genera: the mostly marine “Candidatus...

  12. Stress responses of subsurface bacteria. Final report, June 1, 1995--February 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Chesbro, W.

    1998-07-01

    Five questions were investigated in this research: (1) can subsurface bacteria and phylogenetically related surface strains be cultured on a single carbon/energy substrate; (2) is the behavior of subsurface bacteria the same as phylogenetically related surface strains when both are subjected to progressive, chronic carbon/energy source starvation; (3) which phyllogenetic groups survive better; (4) do other factors affect survival in the degree that phyllogeny does (5) do dormant forms appear during starvation; (6) is ppGpp present in subsurface bacteria and what is its persistence in carbon/energy starvation?

  13. History, Current Knowledge, and Future Directions on Bacteriocin Research in Lactic Acid Bacteria

    Science.gov (United States)

    Nes, Ingolf F.

    All organisms, both eukaryotic organisms and bacteria, are able to produce ribosomally antimicrobial peptides. In bacteria, such compounds are referred to as bacteriocins. The history of bacteriocins goes back to the early 1920s. One has experienced many disappointments in the efforts how to put these compounds into practical use despite being one of the most promising groups of antimicrobial agents to fight bacterial pathogens. However, today, we see new possibilities how to take advantage of such peptides for the benefit of man and animals. Bacteriocin production has become an important property of probiotic bacteria, and targeted use of bacteriocins to fight certain pathogens may have a future.

  14. A clinical study of sepsis patients with hypophosphatemia infected by different bacteria

    Institute of Scientific and Technical Information of China (English)

    张晓丽

    2014-01-01

    Objective To compare hypophosphatemia between the sepsis patients and the non-sepsis patients,and between the subgroups of sepsis patients.Methods We collected 312 sepsis cases and 300 non-sepsis cases by stratified random sampling method yearly.In the sepsis cases,the number infected by gram-negative bacteria was 170,and by gram-positive bacteria was 142,containing 4 different bacteria infected cases in each one.Serum phosphorus of cases in each group were collected.

  15. Anaerobic facultative bacteria isolated from the gut of rabbits fed different diets.

    Science.gov (United States)

    Canganella, F; Zirletta, G; Gualterio, L; Massa, S; Trovatelli, L D

    1992-11-01

    Anaerobic facultative bacteria colonizing the intestinal tract of conventional rabbits fed three different diets (standard pellet, hay and pellet/hay mixture) were enumerated in brain heart infusion agar. Colony counts recovered from homogenized samples of small intestine, caecum and rectum differed with reference to the diet given. Among anaerobic groups, identified from rabbit fed pellet/hay mixture, Enterococci (E. faecalis, E. avium, E. faecium and E. durans) represented the predominant flora. Enterobacters (E. cloacae and E. aerogenes) accounted for about 10 to 25% of the bacteria in the rectum and colon respectively, whereas Staphylococci (S. intermedius, S. epidermidis and S. lentus) represented 11% of the bacteria isolated from colon.

  16. Quorum sensing signal-response systems in Gram-negative bacteria.

    Science.gov (United States)

    Papenfort, Kai; Bassler, Bonnie L

    2016-08-11

    Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.

  17. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.

    Science.gov (United States)

    Kis, Mariann; Sipka, Gábor; Maróti, Péter

    2017-05-01

    Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca(2+) channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H(+) ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 10(5)) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM)(-1) and 1 (mM)(-1), respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.

  18. HBV subgenotype misclassification expands quasi-subgenotype A3.

    Science.gov (United States)

    Pourkarim, M R; Amini-Bavil-Olyaee, S; Lemey, P; Maes, P; Van Ranst, M

    2011-06-01

    Recently, we proposed a new classification for 'subgenotype A' of hepatitis B virus (HBV), in which the novel 'quasi-subgenotype A3' group comprising HBV 'subgenotype A3', 'tentative A4', and A5 was introduced. Newly 'Tentative subgenotype A7' strains from Cameroon were introduced by Hubschen et al. However, our meticulous phylogenetic analysis demonstrated that these isolates should also be classified into 'quasi-subgenotype A3'. Such misclassification can be avoided by following established principles for HBV subgenotyping. Moreover, their close evolutionary relationship with A3 highlights our hypothesis that geographical origin may be an important factor in further classification of HBV subgenotypes.

  19. Characterization of (per)chlorate-reducing bacteria

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.

    2004-01-01

    Some bacteria can use (per)chlorateas terminal electron acceptor for growth. These bacteria convert perchlorate via chlorate and chlorite into chloride and molecular oxygen. Oxygen formation in microbial respiration is unique. In this study two chlorate-reducing strains belo

  20. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  1. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  2. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  3. Symbiosis: Gut Bacteria Manipulate Host Behaviour.

    Science.gov (United States)

    Yuval, Boaz

    2017-08-07

    Bacteria resident in the gut of Drosophila modify the fly's innate chemosensory responses to nutritional stimuli. In effect, the gut microbiome compels the host to forage on food patches that favour particular assemblages of bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Why do bacteria engage in homologous recombination?

    NARCIS (Netherlands)

    Vos, M.

    2009-01-01

    Microbiologists have long recognized that the uptake and incorporation of homologous DNA from outside the cell is a common feature of bacteria, with important implications for their evolution. However, the exact reasons why bacteria engage in homologous recombination remain elusive. This Opinion

  5. Energy transduction in lactic acid bacteria

    NARCIS (Netherlands)

    Poolman, Bert

    In the discovery of some general principles of energy transduction, lactic acid bacteria have played an important role. In this review, the energy transducing processes of lactic acid bacteria are discussed with the emphasis on the major developments of the past 5 years. This work not only includes

  6. Method of dispersing a hydrocarbon using bacteria

    Science.gov (United States)

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  7. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B. T.; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  8. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  9. Why do bacteria engage in homologous recombination?

    NARCIS (Netherlands)

    Vos, M.

    2009-01-01

    Microbiologists have long recognized that the uptake and incorporation of homologous DNA from outside the cell is a common feature of bacteria, with important implications for their evolution. However, the exact reasons why bacteria engage in homologous recombination remain elusive. This Opinion art

  10. Bacteria dispersal by hitchhiking on zooplankton

    DEFF Research Database (Denmark)

    Grossart, Hans-Peter; Dziallas, Claudia; Leunert, Franziska;

    2010-01-01

    and nonpathogenic bacteria has shown that direct association with zooplankton has significant influences on the bacteria's physiology and ecology. We used stratified migration columns to study vertical dispersal of hitchhiking bacteria through migrating zooplankton across a density gradient that was otherwise...... impenetrable for bacteria in both upward and downward directions (conveyor-belt hypothesis). The strength of our experiments is to permit quantitative estimation of transport and release of associated bacteria: vertical migration of Daphnia magna yielded an average dispersal rate of 1.3 x 10(5) x cells x...... Daphnia(-1) x migration cycle(-1) for the lake bacterium Brevundimonas sp. Bidirectional vertical dispersal by migrating D. magna was also shown for two other bacterial species, albeit at lower rates. The prediction that diurnally migrating zooplankton acquire different attached bacterial communities from...

  11. Hydrocarbon Degrading Bacteria: Isolation and Identification

    Directory of Open Access Journals (Sweden)

    Lies Indah Sutiknowati

    2007-11-01

    Full Text Available There is little information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spills. We have used gravel which contaminated oil mousse from Beach Simulator Tank, in Marine Biotechnology Institute, Kamaishi, Japan, and grown on enrichment culture. Biostimulation with nutrients (N and P was done to analyze biodegradation of hydrocarbon compounds: Naphthalene, Phenanthrene, Trichlorodibenzofuran and Benzo[a]pyrene. Community of bacteria from enrichment culture was determined by DGGE. Isolating and screening the bacteria on inorganic medium contain hydrocarbon compounds and determination of bacteria by DAPI (number of cells and CFU. DNA was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Twenty nine strains had been sequence and have similarity about 90-99% to their closest taxa by homology Blast search and few of them have suspected as new species.

  12. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  13. Chryseobacterium indologenes, novel mannanase-producing bacteria

    Directory of Open Access Journals (Sweden)

    Surachai Rattanasuk

    2009-10-01

    Full Text Available Mannanase is a mannan degrading enzyme which is produced by microorganisms, including bacteria. This enzyme can be used in many industrial processes as well as for improving the quality of animal feeds. The aim of the present study was toscreen and characterize the mannanase-producing bacteria. Two genera of bacteria were isolated from Thai soil samples,fermented coconut, and fertilizer. Screening was carried out on agar plates containing mannan stained with iodine solution.The bacteria were identified by partial 16S rRNA gene sequence, biochemical test and morphology, respectively. The mannanase activity was determined by zymogram and DNS method. Two strains of bacteria with mannanase activity were identified as Bacillus and Chryseobacterium. This is the first report of mannanase-producing Chryseobacterium.

  14. Hyphae colonizing bacteria associated with Penicillium bilaii

    DEFF Research Database (Denmark)

    Ghodsalavi, Behnoushsadat

    shown that mycorrhizal helper bacteria presenting in mycorrhizal fungi could stimulate fungal growth, promote establishment of root-fungus symbiosis and enhance plant production. But it is unknown if the comparable relationship exist between the non-mycorrhizal fungus P. bilaii and its hyphae associated...... bacteria. In the current PhD thesis, we assumed that hyphae-associated microbiome of P. bilaii might harbor helper bacteria with ability to improve fungal growth and P solubilization performance. Therefore, we aimed to isolate bacteria associated with the P. bilaii hyphae and identify the fungal growth...... stimulating bacteria with the perspective of promoting efficiency of Jumpstart in soil – plant system. For this purpose, most of the work within the current project was carried out by development of suitable model systems by mimicking the natural soil habitat to reach to the reliable performance in soil...

  15. Genome level analysis of bacteriocins of lactic acid bacteria.

    Science.gov (United States)

    Singh, Neetigyata Pratap; Tiwari, Abhay; Bansal, Ankiti; Thakur, Shruti; Sharma, Garima; Gabrani, Reema

    2015-06-01

    Bacteriocins are antimicrobial peptides which are ribosomally synthesized by mainly all bacterial species. LABs (lactic acid bacteria) are a diverse group of bacteria that include around 20 genera of various species. Though LABs have a tremendous potential for production of anti-microbial peptides, this group of bacteria is still underexplored for bacteriocins. To study the diversity among bacteriocin encoding clusters and the putative bacteriocin precursors, genome mining was performed on 20 different species of LAB not reported to be bacteriocin producers. The phylogenetic tree of gyrB, rpoB, and 16S rRNA were constructed using MEGA6 software to analyze the diversity among strains. Putative bacteriocins operons identified were found to be diverse and were further characterized on the basis of physiochemical properties and the secondary structure. The presence of at least two cysteine residues in most of the observed putative bacteriocins leads to disulphide bond formation and provide stability. Our data suggests that LABs are prolific source of low molecular weight non modified peptides.

  16. Occurrence and role of lactic acid bacteria in seafood products.

    Science.gov (United States)

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  17. Protect Your Baby from Group B Strep

    Centers for Disease Control (CDC) Podcasts

    2011-05-12

    In this podcast, Tarayn Fairlie, a pediatrician and mom, talks about group B strep in pregnant women, the serious effects it can have on newborns, how you can find out if you have group B strep bacteria in your body and what to do to prevent spreading it to your infant.  Created: 5/12/2011 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 5/12/2011.

  18. Association of bacteria with marine invertebrates: Implications for ballast water management

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    -zooplankton and bacteria as indirectly connected functional groups (Azam and Malfatti 2007), they are closely related in occurrence and ecological functions (Harris 1993; Tang et al. 2009). Microbial decomposition of zooplankton carcasses provides an alternative... of Plankton Research 14(8): 1067-1084 Harris JM (1993) The presence, nature and role of gut microflora in aquatic invertebrates: a synthesis. Microbial Ecology 25: 195-231 Heidelberg JF, Heidelberg KB and Colwell RR (2002) Bacteria of the gamma...

  19. From mapping class groups to automorphism groups of free groups

    DEFF Research Database (Denmark)

    Wahl, Nathalie

    2005-01-01

    We show that the natural map from the mapping class groups of surfaces to the automorphism groups of free groups, induces an infinite loop map on the classifying spaces of the stable groups after plus construction. The proof uses automorphisms of free groups with boundaries which play the role...... of mapping class groups of surfaces with several boundary components....

  20. Plant growth promoting bacteria in Brachiaria brizantha.

    Science.gov (United States)

    Silva, Mylenne Calciolari Pinheiro; Figueiredo, Aline Fernandes; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2013-01-01

    Brachiaria brizantha is considered one of the preferred fodders among farmers for having high forage yield and large production of root mass. The association of beneficial bacteria with these grasses can be very valuable in the recovery of the pasture areas with nutritional deficiency. With the aim of studying this possibility, we carried out the sampling of soil and roots of B. brizantha in three areas (Nova Odessa-SP, São Carlos-SP and Campo Verde-MT, Brazil). Seventy-two bacterial strains were isolated and used in tests to evaluate their biotechnological potential. Almost all isolates presented at least one positive feature. Sixty-eight isolates produced analogues of indole-3-acetic acid, ten showed nitrogenase activity when subjected to the method of increasing the concentration of total nitrogen (total N) in the culture medium and sixty-five isolates showed nitrogenase activity when subjected to acetylene reduction technique. The partial sequencing of 16S rRNA of these isolates allowed the identification of seven main groups, with the prevalence of those affiliated to the genus Stenotrophomonas (69 %). At the end, this work elected the strains C4 (Pseudomonadaceae) and C7 (Rhodospirillaceae) as promising organisms for the development of inoculants due to their higher nitrogenase activity.

  1. Plutonium speciation affected by environmental bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Neu, M.P.; Icopini, G.A.; Boukhalfa, H. [Chemistry Div., C-SIC, Los Alamos National Lab., Los Alamos, NM (United States)

    2005-07-01

    Plutonium has no known biological utility, yet it has the potential to interact with bacterial cellular and extracellular structures that contain metal-binding groups, to interfere with the uptake and utilization of essential elements, and to alter cell metabolism. These interactions can transform plutonium from its most common forms, solid, mineral-adsorbed, or colloidal Pu(IV), to a variety of biogeochemical species that have much different physico-chemical properties. Organic acids that are extruded products of cell metabolism can solubilize plutonium and then enhance its environmental mobility, or in some cases facilitate plutonium transfer into cells. Phosphate- and carboxylate-rich polymers associated with cell walls can bind plutonium to form mobile biocolloids or Pu-laden biofilm/mineral solids. Bacterial membranes, proteins or redox agents can produce strongly reducing electrochemical zones and generate molecular Pu(III/IV) species or oxide particles. Alternatively, they can oxidize plutonium to form soluble Pu(V) or Pu(VI) complexes. This paper reviews research on plutonium-bacteria interactions and closely related studies on the biotransformation of uranium and other metals. (orig.)

  2. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  3. Bacteriocins of lactic acid bacteria: extending the family.

    Science.gov (United States)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-04-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.

  4. Susceptibility of Select Agents to Predation by Predatory Bacteria

    Directory of Open Access Journals (Sweden)

    Riccardo Russo

    2015-12-01

    Full Text Available Select Agents are microorganisms and toxins considered to be exploitable as biological weapons. Although infections by many Select Agents can be treated by conventional antibiotics, the risk of an emerging or engineered drug resistant strain is of great concern. One group of microorganisms that is showing potential to control drug resistant Gram-negative bacteria are the predatory bacteria from the genera Bdellovibrio spp. and Micavibrio spp. In this study, we have examined the ability of Bdellovibrio bacteriovorus (B. bacteriovorus strain 109J, HD100 and Micavibrio aeruginosavorus (M. aeruginosavorus ARL-13 to prey on a variety of Select Agents. Our findings demonstrate that B. bacteriovorus and M. aeruginosavorus are able to prey efficiently on Yersinia pestis and Burkholderia mallei. Modest predation was also measured in co-cultures of B. bacteriovorus and Francisella tularensis. However, neither of the predators showed predation when Burkholderia pseudomallei and Brucella melitensis were used as prey.

  5. Zooplankton and aggregates as refuge for aquatic bacteria: protection from UV, heat and ozone stresses used for water treatment.

    Science.gov (United States)

    Tang, Kam W; Dziallas, Claudia; Grossart, Hans-Peter

    2011-02-01

    Aggregates and zooplankton may provide refuge for aquatic bacteria against external hazards. The ability of attached bacteria to survive and recover from stressors commonly used for water treatment was tested in the laboratory. Without zooplankton or aggregates, both UV and ozone significantly reduced abundance of free-living bacteria in both freshwater and marine medium. The presence of zooplankton carcasses and aggregates, however, allowed some of the attached bacteria to survive and recover quickly within 3 days. Heat exposure was the least effective as both free-living and attached bacteria were able to recover quickly. Selective survival of bacterial phylotypes led to large changes in bacterial community composition after stress exposures, and some of the bacteria that recovered belonged to groups with known pathogens. This study demonstrates that zooplankton and aggregates protected various aquatic bacteria from external stressors, and organic remains generated from zooplankton and aggregates after stress exposure even enabled the surviving bacteria to quickly regrow and subsequently be released into the surrounding water. Hence, water disinfection treatments that overlooked the potential persistence of bacteria associated with organisms and aggregates may not be effective in preventing the spread of undesirable bacteria.

  6. Study of frequency of bacteria isolated from blood culture and their antibiotic susceptibility pattern in a university hospital in Tehran

    Directory of Open Access Journals (Sweden)

    Hoorieh Saderi

    2009-12-01

    Full Text Available Introduction: Determining frequency of bacteria, isolated from blood culture and their antibiotic susceptibility patterns, has epidemiological significance and can help in selecting empirical therapy. This study was aimed to assess, the frequency of bacteria isolated from blood culture of patients suspected to bacteremia and their antibiotic susceptibility patterns. Methods: Culture of blood and determination of antibiotic susceptibility was done by standard methods. In this study, a variety of isolated bacteria types, antibiotic susceptibility, as well as age, sex and type of admission of patients were analyzed in a university hospital from 21 March, 2006 to 20 March, 2007. Results: During one year, blood culture was done for 5116 patients and bacteria were isolated in 912 cases (17.8%. Three most frequently groups of bacteria in blood cultures of patients were non-fermentative gram negative bacteria (Pseudomonas and Acintobacter spp, coliforms (Escherichia coli and enterobacter and klebsiella spp. and coagulase negative staphylococci, respectively, which were isolated in 63.4%, 17.0% and 12.8% of patients, and constituted 93.2% of positive blood cultures. Higher resistance was shown in bacteria isolated from inpatients compare to outpatients. Conclusion: This study showed the influence of age, sex and type of admission (outpatient or inpatient in a variety of isolated bacteria in blood culture. The result of this study were the same as the other studies in Iran and other countries in respect of the variety of isolated bacteria and antibiotic susceptibility and show increase of antibiotic resistance in these bacteria.

  7. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Alix M Denoncourt

    2014-05-01

    Full Text Available Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  8. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria.

    Science.gov (United States)

    Denoncourt, Alix M; Paquet, Valérie E; Charette, Steve J

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  9. Effects of seasonal temperature variation on nitrification, anammox process, and bacteria involved in a pilot-scale constructed wetland.

    Science.gov (United States)

    Wang, Ling; Li, Tian

    2015-03-01

    Effects of seasonal temperature (especially low temperature) variation on nitrogen removal process and bacteria involved in an experimental domestic wastewater treatment wetland were investigated in this study. Three different functional groups of bacteria, namely anammox bacteria, ammonia-oxidizing bacteria (AOB), and Nitrospira sp., were involved. Anammox process was seriously inhibited with mean temperature lower than 15 °C. However, obvious adaptation of anammox bacteria also appeared after a long time operation under low temperatures. Contrary to anammox bacteria, AOB were more abundant in winter than in summer. Nitrospira sp. was the least prevalent and showed the lowest level of variation. Distinct nitrate accumulation observed under winter temperatures was likely due to inhibition of anammox process, comparative advantage of Nitrospira sp. in winter, and the presence of cold-tolerant AOB species.

  10. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations

    Directory of Open Access Journals (Sweden)

    Ray eKeren

    2015-02-01

    Full Text Available Sponges are potent filter feeders and as such are exposed to high fluxes of toxic trace elements, which can accumulate in their body over time. Such is the case of the Red Sea sponge Theonella swinhoei, which has been shown to accumulate up to 8500 mg/Kg of the highly toxic element arsenic. T. swinhoei is known to harbor a multitude of sponge-associated bacteria, so it is hypothesized that the associated-bacteria will be tolerant to high arsenic concentration. This study also investigates the fate of the arsenic accumulated in the sponge to test if the associated-bacteria have an important role in the arsenic accumulation process of their host, since bacteria are key players in the natural arsenic cycle. Separation of the sponge to sponge cells and bacteria enriched fractions showed that arsenic is accumulated by the bacteria. Sponge-associated, arsenic-tolerant bacteria were cultured in the presence of 5 mM of either arsenate or arsenite (equivalent to 6150 mg/Kg arsenic, dry weight. The 54 isolated bacteria were grouped to 15 OTUs and isolates belonging to 12 OTUs were assessed for tolerance to arsenate at increased concentrations up to 100 mM. Eight of the 12 OTUs tolerated an order of magnitude increase in the concentration of arsenate, and some exhibited external biomineralization of arsenic-magnesium salts. The biomineralization of this unique mineral was directly observed in bacteria for the first time. These results may provide an explanation for the ability of the sponge to accumulate considerable amounts of arsenic. Furthermore arsenic-mineralizing bacteria can potentially be used for the study of bioremediation, as arsenic toxicity affects millions of people worldwide.

  11. Evidence supporting a role for dormant bacteria in the pathogenesis of spondylarthritis.

    Science.gov (United States)

    Berthelot, Jean-Marie; de la Cochetière, Marie-France; Potel, Gilles; Le Goff, Benoît; Maugars, Yves

    2013-03-01

    Spondylarthritis is still viewed as a reaction to infectious agents, as opposed to an infection by persistent bacteria, for several reasons: (a) an infection is considered proven only when the organism can be cultured; (b) no studies have identified dormant bacteria in the tissues targeted by spondylarthritis; (c) the bacterial persistence hypothesis has no therapeutic implications at the time being, since antibiotics are effective neither on dormant bacteria nor on the manifestations of spondylarthritis; and (d) the high prevalence of borderline disorders combining features of spondylarthritis and of psoriatic arthritis, or even rheumatoid arthritis (RA), would indicate a role for dormant bacteria in these last two diseases. However, recent data on dormant bacteria have rekindled interest in the bacterial persistence hypothesis. Dormant bacteria cannot be cultured, because they express only a small group of genes, known as the regulon, which includes genes for transcription factors that block the expression of the usual bacterial genes. Certain forms of cell stress, such as molecule misfolding, promote the entry of bacteria into a state of dormancy, which induces the low-level release by the host cells of cytokines such as TNF. Whether HLA-B27 misfolding facilitates the persistence of dormant bacteria within spondylarthritis tissue targets remains to be determined. If it does, then treatments that reactivate dormant bacteria might make these organisms susceptible to appropriate antibiotics and might therefore serve as useful adjuncts to nonsteroidal anti-inflammatory drugs and TNFα antagonists. TNFα antagonists rarely reactivate dormant bacteria, with the exception of Mycobacterium tuberculosis, which, together with metastatic cells, is the most extensively studied latency model to date.

  12. Classification of Bacteria and Archaea: past, present and future.

    Science.gov (United States)

    Schleifer, Karl Heinz

    2009-12-01

    The late 19th century was the beginning of bacterial taxonomy and bacteria were classified on the basis of phenotypic markers. The distinction of prokaryotes and eukaryotes was introduced in the 1960s. Numerical taxonomy improved phenotypic identification but provided little information on the phylogenetic relationships of prokaryotes. Later on, chemotaxonomic and genotypic methods were widely used for a more satisfactory classification. Archaea were first classified as a separate group of prokaryotes in 1977. The current classification of Bacteria and Archaea is based on an operational-based model, the so-called polyphasic approach, comprised of phenotypic, chemotaxonomic and genotypic data, as well as phylogenetic information. The provisional status Candidatus has been established for describing uncultured prokaryotic cells for which their phylogenetic relationship has been determined and their authenticity revealed by in situ probing. The ultimate goal is to achieve a theory-based classification system based on a phylogenetic/evolutionary concept. However, there are currently two contradictory opinions about the future classification of Bacteria and Archaea. A group of mostly molecular biologists posits that the yet-unclear effect of gene flow, in particular lateral gene transfer, makes the line of descent difficult, if not impossible, to describe. However, even in the face of genomic fluidity it seems that the typical geno- and phenotypic characteristics of a taxon are still maintained, and are sufficient for reliable classification and identification of Bacteria and Archaea. There are many well-defined genotypic clusters that are congruent with known species delineated by polyphasic approaches. Comparative sequence analysis of certain core genes, including rRNA genes, may be useful for the characterization of higher taxa, whereas various character genes may be suitable as phylogenetic markers for the delineation of lower taxa. Nevertheless, there may still be

  13. Culturing marine bacteria - an essential prerequisite for biodiscovery.

    Science.gov (United States)

    Joint, Ian; Mühling, Martin; Querellou, Joël

    2010-09-01

    The potential for using marine microbes for biodiscovery is severely limited by the lack of laboratory cultures. It is a long-standing observation that standard microbiological techniques only isolate a very small proportion of the wide diversity of microbes that are known in natural environments from DNA sequences. A number of explanations are reviewed. The process of establishing laboratory cultures may destroy any cell-to-cell communication that occurs between organisms in the natural environment and that are vital for growth. Bacteria probably grow as consortia in the sea and reliance on other bacteria for essential nutrients and substrates is not possible with standard microbiological approaches. Such interactions should be considered when designing programmes for the isolation of marine microbes. The benefits of novel technologies for manipulating cells are reviewed, including single cell encapsulation in gel micro-droplets. Although novel technologies offer benefits for bringing previously uncultured microbes into laboratory culture, many useful bacteria can still be isolated using variations of plating techniques. Results are summarized for a study to culture bacteria from a long-term observatory station in the English Channel. Bacterial biodiversity in this assemblage has recently been characterized using high-throughput sequencing techniques. Although Alphaproteobacteria dominated the natural bacterial assemblage throughout the year, Gammaproteobacteria were the most frequent group isolated by plating techniques. The use of different gelling agents and the addition of ammonium to seawater-based agar did lead to the isolation of a higher proportion of Alphaproteobacteria. Variation in medium composition was also able to increase the recovery of other groups of particular interest for biodiscovery, such as Actinobacteria.

  14. Interaction of aerobic soil bacteria with plutonium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Panak, P.J. [Lawrence Berkeley National Lab., Berkeley, CA (United States). Chemical Sciences Div.; Nitsche, H. [Lawrence Berkeley National Lab., Berkeley, CA (United States). Chemical Sciences Div.; California Univ., Berkeley, CA (United States). Dept. of Chemistry

    2001-07-01

    We studied the interaction of Pu(VI) with Pseudomonas stutzeri ATCC 17588 and Bacillus sphaericus ATCC 14577, representatives of the main aerobic groups of soil bacteria present in the upper soil layers. The biosorption studies have shown that these soil bacteria accumulate high amounts of Pu(VI). The relative sorption efficiency toward Pu(VI) related to the amount of biomass used decreased with increasing biomass concentration due to increased agglomeration of the bacteria resulting in a decrease of the number of available complexing groups. Spores of Bacillus sphaericus showed a higher biosorption than the vegetative cells at low biomass concentration which decreased significantly with increasing biomass concentration. At higher biomass concentrations (> 0.7 g/L), the vegetative cells of both strains and the spores of B. sphaericus showed comparable sorption efficiencies. Investigations on the pH dependency of the biosorption and extraction studies with 0.01 M EDTA solution have shown that the biosorption of plutonium is a reversible process and the plutonium is bound by surface complexation. Optical absorption spectroscopy showed that one third of the initially present Pu(VI) was reduced to Pu(V) after 24 hours. Kinetic studies and solvent extraction to separate different oxidation states of Pu after contact with the biomass provided further information on the yield and the kinetics of the bacteria-mediated reduction. Long-term studies showed that also 16% of Pu(IV) was formed after one month. The slow kinetics of this process indicate that under our experimental conditions the Pu(IV) was not a produced by microbial reduction but seemed to be rather the result of the disproportionation of the formed Pu(V) or autoreduction of Pu(VI). (orig.)

  15. Culturing marine bacteria – an essential prerequisite for biodiscovery

    Science.gov (United States)

    Joint, Ian; Mühling, Martin; Querellou, Joël

    2010-01-01

    Summary The potential for using marine microbes for biodiscovery is severely limited by the lack of laboratory cultures. It is a long‐standing observation that standard microbiological techniques only isolate a very small proportion of the wide diversity of microbes that are known in natural environments from DNA sequences. A number of explanations are reviewed. The process of establishing laboratory cultures may destroy any cell‐to‐cell communication that occurs between organisms in the natural environment and that are vital for growth. Bacteria probably grow as consortia in the sea and reliance on other bacteria for essential nutrients and substrates is not possible with standard microbiological approaches. Such interactions should be considered when designing programmes for the isolation of marine microbes. The benefits of novel technologies for manipulating cells are reviewed, including single cell encapsulation in gel micro‐droplets. Although novel technologies offer benefits for bringing previously uncultured microbes into laboratory culture, many useful bacteria can still be isolated using variations of plating techniques. Results are summarized for a study to culture bacteria from a long‐term observatory station in the English Channel. Bacterial biodiversity in this assemblage has recently been characterized using high‐throughput sequencing techniques. Although Alphaproteobacteria dominated the natural bacterial assemblage throughout the year, Gammaproteobacteria were the most frequent group isolated by plating techniques. The use of different gelling agents and the addition of ammonium to seawater‐based agar did lead to the isolation of a higher proportion of Alphaproteobacteria. Variation in medium composition was also able to increase the recovery of other groups of particular interest for biodiscovery, such as Actinobacteria. PMID:21255353

  16. Folate Production by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2011-01-01

    Full Text Available Probiotic bacteria, mostly belonging to the genera Lactobacillus and Bifidobacterium, confer a number of health benefits to the host, including vitamin production. With the aim to produce folate-enriched fermented products and/or develop probiotic supplements that accomplish folate biosynthesis in vivo within the colon, bifidobacteria and lactobacilli have been extensively studied for their capability to produce this vitamin. On the basis of physiological studies and genome analysis, wild-type lactobacilli cannot synthesize folate, generally require it for growth, and provide a negative contribution to folate levels in fermented dairy products. Lactobacillus plantarum constitutes an exception among lactobacilli, since it is capable of folate production in presence of para-aminobenzoic acid (pABA and deserves to be used in animal trials to validate its ability to produce the vitamin in vivo. On the other hand, several folate-producing strains have been selected within the genus Bifidobacterium, with a great variability in the extent of vitamin released in the medium. Most of them belong to the species B. adolescentis and B. pseudocatenulatum, but few folate producing strains are found in the other species as well. Rats fed a probiotic formulation of folate-producing bifidobacteria exhibited increased plasma folate level, confirming that the vitamin is produced in vivo and absorbed. In a human trial, the same supplement raised folate concentration in feces. The use of folate-producing probiotic strains can be regarded as a new perspective in the specific use of probiotics. They could more efficiently confer protection against inflammation and cancer, both exerting the beneficial effects of probiotics and preventing the folate deficiency that is associated with premalignant changes in the colonic epithelia.

  17. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  18. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  19. Light scattering by marine heterotrophic bacteria

    Science.gov (United States)

    Ulloa, Osvaldo; Sathyendranath, Shubha; Platt, Trevor; Quinones, Renato A.

    1992-01-01

    Mie theory is applied to estimate scattering by polydispersions of marine heterotrophic bacteria, and a simple expression is derived for the bacterial scattering coefficient. The error incurred in deriving bacterial optical properties by use of the van de Hulst approximations is computed. The scattering properties of natural bacterial assemblages in three marine environments, Georges Bank, Northeast Channel, and Sargasso Sea, are assessed by applying Mie theory to field data on bacterial size and abundance. Results are used to examine the potential contribution of bacteria to the scattering properties of seawater. The utility of using pigment data to predict the magnitude of scattering by bacteria is discussed.

  20. Do symbiotic bacteria subvert host immunity?

    Science.gov (United States)

    Hooper, Lora V

    2009-05-01

    The mammalian intestine is home to dense and complex indigenous bacterial communities. Most of these bacteria establish beneficial symbiotic relationships with their hosts, making important contributions to host metabolism and digestive efficiency. The vast numbers of intestinal bacteria and their proximity to host tissues raise the question of how symbiotic host-bacterial relationships are established without eliciting potentially harmful immune responses. In light of the varied ways in which pathogenic bacteria manipulate host immunity, this Opinion article explores the role of immune suppression, subversion and evasion in the establishment of symbiotic host-bacterial associations.

  1. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  2. Anaerobic bacteria, the colon and colitis.

    Science.gov (United States)

    Roediger, W E

    1980-02-01

    Anaerobic bacteria constitute more than 90% of the bacteria in the colon. An anaerobic environment is needed to maintain their growth and the production of short-chain fatty acids by these bacteria from carbohydrates. Short-chain fatty acids are rapidly absorbed and essential for metabolic as well as functional welfare of the colonic mucosa. The importance of these acids in water absorption and in the patogenesis of colitis is discussed in relation to the concept of "energy deficiency diseases" of the colonic mucosa.

  3. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  4. Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin.

    Science.gov (United States)

    Li, Ping; Gu, Qing

    2016-07-10

    Lactobacillus plantarum LZ95 is a potential probiotic isolated from newborn infant fecal and it is identified to produce riboflavin with great antimicrobial activity. The complete genome sequence of this strain was reported in the present study. The genome contains a 3,261,418-bp chromosome and two plasmids. Genes, related to the biosynthesis of bacteriocins and riboflavin, were identified. This work will facilitate to reveal the biosynthetic mechanism of bacteriocins and B-group vitamins in lactic acid bacteria and provide evidence for its potential application in food industry.

  5. Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR.

    Science.gov (United States)

    Wéry, Nathalie; Lhoutellier, Claire; Ducray, Florence; Delgenès, Jean-Philippe; Godon, Jean-Jacques

    2008-01-01

    Two enteric pathogens, Salmonella spp. and Campylobacter jejuni, and two bacteria commonly used as indicators, Escherichia coli and Clostridium perfringens, were monitored using quantitative real-time PCR during municipal wastewater treatment and sludge composting. The results were compared with those obtained using standard culture methods. A reduction of all bacteria was observed during wastewater treatment and during the thermophilic phase of composting. However, the bacterial groups studied behaved differently during the process, and the main differences were observed during biological treatment in activated sludge basins. In particular, Salmonella spp. and C. jejuni survived better during activated sludge treatment than E. coli. C. jejuni was the most resistant to wastewater treatment among the four bacterial groups. Overall, differences in survival were observed for all bacteria studied, when submitted to the same environmental pressure. This holds both for differences between indicators and pathogenic bacteria and between pathogenic bacteria. These results show the difficulty in defining reliable indicators.

  6. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community.

    Science.gov (United States)

    Xie, Meili; Ren, Minglei; Yang, Chen; Yi, Haisi; Li, Zhe; Li, Tao; Zhao, Jindong

    2016-01-01

    Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.

  7. Genetic diversity of bacteria associated with the hindgut of the terrestrial crustacean Porcellio scaber (Crustacea: Isopoda).

    Science.gov (United States)

    Kostanjsek, Rok; Strus, Jasna; Avgustin, Gorazd

    2002-06-01

    Molecular approaches were used to examine the genetic diversity of bacteria associated with the gut wall of the terrestrial isopod Porcellio scaber and to determine whether an autochthonous microflora exists in the P. scaber hindgut. 16S ribosomal genes were amplified from the total DNA isolated from thoroughly washed papillate regions of the hindgut, where the highest concentrations of bacteria are commonly found. The amplified genes were cloned, sequenced and phylogenetically analysed. The results implied an unexpectedly large diversity of microflora associated with the cuticle of the hindgut. Almost half of the retrieved sequences were found to be less than 80% homologous with any of the known sequences available at DNA data banks. Most of these sequences were clustered in one of three groups, and were clearly distant from the sequences of other bacterial taxa, indicating that they could represent novel bacterial species or even genera. More than two thirds of the sequences were found to be phylogenetically related to sequences from bacteria typically isolated from human and animal intestines, e.g. streptococci, enterococci, and members of the genus Bacteroides. The majority of the remaining sequences were most closely related to typical soil bacteria, e.g. bacilli and pseudomonads. The facts that a large proportion of the retrieved sequences was related to the sequences of bacteria, which are autochthonous to intestinal ecosystems, and that bacteria, specifically attached to the cuticular spines, were observed, indicate that truly autochthonous bacteria may well be present in the hindgut of P. scaber.

  8. Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae).

    Science.gov (United States)

    Lu, Fang; Kang, Xiaoying; Jiang, Cong; Lou, Binggan; Jiang, Mingxing; Way, Michael O

    2013-10-01

    Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.

  9. Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core

    Institute of Scientific and Technical Information of China (English)

    XIANG; Shurong; YAO; Tandong; AN; Lizhe; WU; Guangjian; XU

    2005-01-01

    Vertical distribution of the main bacteria isolated from the Muztagata ice core (about 22.4 m) was investigated by means of cultivation and 16S rRNA sequence analysis. The results showed that the amount of culturable bacteria fluctuated with ice core depth, and was more in dirty layer than in clean ice, which suggested the close corresponding relationship between high input of the bacteria deposited by wind and snowflow and dirty layer. Most of the bacteria were psychrophiles and psychrotolerants, including α- and γ-proteobacteria, Cryobacterium psychrophilum, CFB (Cytophaga-Flavobacterium-Bacteroides) group, high-G+C gram-positive bacteria (HGC). Acinetobacter sp. And HGC repeatly occurred in different ice depths, and their quantitative distribution was consistent with the change of the total amount of culturable bacteria with depth, which suggested the main bio-indicator; while Flavobacterium, Cryobacterium psychrophilum, and α-proteobacteria, also functioned as a secondary indicator of climatic and environmental changes. This study is the first report concerning continuous quantitative variation and pattern of the main culturable bacteria in ice core section.

  10. Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community

    Directory of Open Access Journals (Sweden)

    Meili eXie

    2016-02-01

    Full Text Available Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.

  11. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  12. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures

    CSIR Research Space (South Africa)

    Kostinek, M

    2007-03-01

    Full Text Available A total of 375 lactic acid bacteria were isolated from fermenting cassava in South Africa, Benin, Kenya and Germany, and were characterised by phenotypic and genotypic tests. These could be divided into five main groups comprising strains...

  13. New PCR primers targeting hydrazine synthase and cytochrome c biogenesis proteins in anammox bacteria.

    Science.gov (United States)

    Zhou, Zhichao; Chen, Jing; Meng, Han; Dvornyk, Volodymyr; Gu, Ji-Dong

    2017-02-01

    PCR primers targeting genes encoding the two proteins of anammox bacteria, hydrazine synthase and cytochrome c biogenesis protein, were designed and tested in this study. Three different ecotypes of samples, namely ocean sediments, coastal wetland sediments, and wastewater treatment plant (WWTP) samples, were used to assess the primer efficiency and the community structures of anammox bacteria retrieved by 16S ribosomal RNA (rRNA) and the functional genes. Abundances of hzsB gene of anammox bacteria in South China Sea (SCS) samples were significantly correlated with 16S rRNA gene by qPCR method. And hzsB and hzsC gene primer pair hzsB364f-hzsB640r and hzsC745f-hzsC862r in combination with anammox bacterial 16S rRNA gene primers were recommended for quantifying anammox bacteria. Congruent with 16S rRNA gene-based community study, functional gene hzsB could also delineate the coastal-ocean distributing pattern, and seawater depth was positively associated with the diversity and abundance of anammox bacteria from shallow- to deep-sea. Both hzsC and ccsA genes could differentiate marine samples between deep and shallow groups of the Scalindua sp. clades. As for WWTP samples, non-Scalindua anammox bacteria reflected by hzsB, hzsC, ccsA, and ccsB gene-based libraries showed a similar distribution pattern with that by 16S rRNA gene. NH4(+) and NH4(+)/Σ(NO3(-) + NO2(-)) positively correlated with anammox bacteria gene diversity, but organic matter contents correlated negatively with anammox bacteria gene diversity in SCS. Salinity was positively associated with diversity indices of hzsC and ccsB gene-harboring anammox bacteria communities and could potentially differentiate the distribution patterns between shallow- and deep-sea sediment samples. SCS surface sediments harbored considerably diverse community of Scalindua. A new Mai Po clade representing coastal estuary wetland anammox bacteria group based on 16S rRNA gene phylogeny is proposed. Existence of anammox

  14. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean, carn

  15. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  16. Bioluminescent hydrocarbonclastic bacteria of the Niger Delta

    African Journals Online (AJOL)

    Administrator

    2007-02-19

    Feb 19, 2007 ... Bioluminescence is the chemical emission of light by organisms (Lang and Lange, ... (TNT) – contaminated soils by two different erated comp- .... Effect of phosphate levels on growth of bioluminescent bacteria. Phosphate ...

  17. ISOLATION AND CHARACTERIZATION OF BACTERIA FROM THE ...

    African Journals Online (AJOL)

    xx

    Key words: Drosophila melanogaster, gut-bacteria, larval development, Lysinibacillus sp. P-011 .... each test, 50 1st instar larvae and three replications were used. All the tests ..... molecules are produced by the blood-sucking insect Stomoxys.

  18. Discovering lactic acid bacteria by genomics

    NARCIS (Netherlands)

    Klaenhammer, T.; Altermann, E.; Arigoni, F.; Bolotin, A.; Breidt, F.; Broadbent, J.; Cano, R.; Chaillou, S.; Deutscher, J.; Gasson, M.; Guchte, van de M.; Guzzo, J.; Hartke, A.; Hawkins, T.; Hols, P.; Hutkins, R.; Kleerebezem, M.; Kok, J.; Kuipers, O.; Lubbers, M.; Maguin, E.; McKay, L.; Mills, D.; Nauta, A.; Overbeek, R.; Pel, H.; Pridmore, D.; Saier, M.; Sinderen, van D.; Sorokin, A.; Steele, J.; O'Sullivan, D.; Vos, de W.; Weimer, B.; Zagorec, M.; Siezen, R.

    2002-01-01

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, nvironmental habitat, and its role in

  19. Discovering lactic acid bacteria by genomics

    NARCIS (Netherlands)

    Klaenhammer, T; Altermann, E; Arigoni, F; Bolotin, A; Breidt, F; Broadbent, J; Cano, R; Chaillou, S; Deutscher, J; Gasson, M; van de Guchte, M; Guzzo, J; Hartke, A; Hawkins, T; Hols, P; Hutkins, R; Kleerebezem, M; Kok, J; Kuipers, O; Maguin, E; McKay, L; Mills, D; Nauta, A; Overbeek, R; Pel, H; Pridmore, D; Saier, M; van Sinderen, D; Sorokin, A; Steele, J; O'Sullivan, D; de Vos, W; Weimer, B; Zagorec, M; Siezen, R

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in

  20. Abundance, viability and culturability of Antarctic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; DeSouza, M.J.B.D.; Nair, S.; Chandramohan, D.

    The viability of total number of bacteria decide the mineralisation rate in any ecosystem and ultimately the fertility of the region. This study aims at establishing the extent of viability in the standing stock of the Antarctic bacterial population...

  1. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...... and particularly higher organisms, covering a variety of functions ranging from pathogenic to symbiotic interactions. The detailed knowledge of these bacterial communication systems has opened completely new perspectives for controlling undesired microbial activities....

  2. Protection of probiotic bacteria in synbiotic matrices

    Science.gov (United States)

    Probiotics, like Lactobacillus acidophilus, Lactobacillus reuteri, Bifidobacterium breve, Bifidobacterium longum, when encapsulated with prebiotic fibers such as fructo-oligosaccharides (FOS), inulin (I) and pectic-oligosaccharides (POS), formed a synbiotic matrix system that protected the bacteria ...

  3. Distribution of phytopathogenic bacteria in infested seeds

    Science.gov (United States)

    Populations of phytopathogenic bacteria representing five host-pathogen combinations were assessed to determine if there was a mathematical relationship common across seedborne bacterial diseases. Bacterial populations were estimated from naturally-infested seeds of cowpea (Vigna unguiculata), peppe...

  4. Preparation of genomic DNA from bacteria.

    Science.gov (United States)

    Andreou, Lefkothea-Vasiliki

    2013-01-01

    The purpose of this protocol is the isolation of bulk cellular DNA from bacteria (alternatively see Preparation of genomic DNA from Saccharomyces cerevisiae or Isolation of Genomic DNA from Mammalian Cells protocols). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Do bacteria, not fish, produce 'fish kairomone'?

    NARCIS (Netherlands)

    Ringelberg, J.; Van Gool, E.

    1998-01-01

    Fish-associated chemicals enhance phototactic downward swimming in Daphnia. If perch were treated with the antibiotic ampicillin, this enhancement was significantly decreased. Therefore, not fish, but bacteria associated with fish, seem to produce this kairomone. [KEYWORDS: Diel vertical migration;

  6. Lactic acid bacteria: microbiological and functional aspects

    National Research Council Canada - National Science Library

    Lahtinen, Sampo

    2012-01-01

    "Updated with the substantial progress made in lactic acid and bacteria research since the third edition, this fourth volume discusses improved insights in genetics and new molecular biological techniques...

  7. Quorum sensing in Gram-negative bacteria

    Institute of Scientific and Technical Information of China (English)

    WU Hong; SONG Zhijun; Niels HФIBY; Michael GIVSKOV

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community,and the mechanism is referred to as quorum sensing (QS).Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal molecules.Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread.These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment and particularly higher organisms,covering a variety of functions ranging from pathogenic to symbiotic interactions.The detailed knowledge of these bacterial communication systems has opened completely new perspectives for controlling undesired microbial activities.

  8. T cell polarizing properties of probiotic bacteria.

    Science.gov (United States)

    Barberi, Chiara; Campana, Stefania; De Pasquale, Claudia; Rabbani Khorasgani, Mohammad; Ferlazzo, Guido; Bonaccorsi, Irene

    2015-12-01

    Different commensal bacteria employed as probiotics have been shown to be endowed with immunomodulatory properties and to actively interact with antigen presenting cells, such as dendritic cells and macrophages. In particular, different strains of probiotic bacteria may induce the secretion of a discrete cytokine profile able to induce divergent T cell polarization. Here, we briefly review current knowledge regarding the effects of different species and strains of probiotic bacteria on T cell polarization. Given that the loss of intestinal homeostasis is frequently associated with an aberrant T cell polarization profile, a comprehensive knowledge of the immunomodulatory potential of these bacteria is crucial for their employment in the management of human immune-mediated pathologies, such as allergies or inflammatory bowel diseases.

  9. Distribution of urease producing bacteria in the

    African Journals Online (AJOL)

    higher proportion of bacteria associated with the caecal wall. (63%) were facultative .... Of even more importance is the role that the domestic rabbit can and ... Until more is known about digestion of plant foods in the monogastric herbivore ...

  10. Lactic Acid Bacteria in Health and Disease

    African Journals Online (AJOL)

    reports demonstrating the health promoting effects of ... therapy. In 1908, élie Metchinkoff, proposed that the acid-producing organisms (lactic acid bacteria) ... Phage resistance aids in .... In a study conducted [29] in children aged 3 it was found.

  11. Ecology: Electrical Cable Bacteria Save Marine Life.

    Science.gov (United States)

    Nielsen, Lars Peter

    2016-01-11

    Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide.

  12. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    Science.gov (United States)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M.; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.

    2016-08-01

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.

  13. Endo-and exoglucanase activities in bacteria from mangrove sediment

    Directory of Open Access Journals (Sweden)

    Fábio Lino Soares Júnior

    2013-09-01

    Full Text Available The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis, and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil. To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium, both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates than exoglycolytic (19 isolates, and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.

  14. Survival of human-associated bacteria in SLS

    Science.gov (United States)

    Fu, Yuming; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..; Khizhnyak, Sergey; Kovalev, Vladimir

    2016-07-01

    Management of microbial communities to minimize the potential for risk to the crew and to the plants to be used for supporting the crew is an essential component of successful bioregenerative life support systems (BLSS). Previously it was shown that soil-like substrate (SLS), obtained as a result of bioconversion of non-edible plant biomass in the higher plants based BLSS, demonstrates strong anti-fungal activity against soil-borne plant pathogens (Nesterenko et al., 2009). The present study is devoted to the estimation of anti-bacterial activity of SLS against gram-negative (presented with Escherichia coli) and gram-positive (presented with Staphylococcus aureus) human-associated bacteria, both of which belong to the group of opportunistic pathogen. In vitro effects of different types of SLS on E. coli and S. aureus and in situ survival curves of the bacteria with corresponding math models are presented. Additionally we have examined the influence of community richness (the indigenous community of SLS) on the ability of introduced human-associated bacteria to persist within SLS. The work was carried out within the frames of the state task on the subject No 56.1.4 of the Basic Research Program (Section VI) of Russian State Academies for 2013-2020.

  15. Bacterial hybrid histidine kinases in plant-bacteria interactions.

    Science.gov (United States)

    Borland, Stéphanie; Prigent-Combaret, Claire; Wisniewski-Dyé, Florence

    2016-10-01

    Two-component signal transduction systems are essential for many bacteria to maintain homeostasis and adapt to environmental changes. Two-component signal transduction systems typically involve a membrane-bound histidine kinase that senses stimuli, autophosphorylates in the transmitter region and then transfers the phosphoryl group to the receiver domain of a cytoplasmic response regulator that mediates appropriate changes in bacterial physiology. Although usually found on distinct proteins, the transmitter and receiver modules are sometimes fused into a so-called hybrid histidine kinase (HyHK). Such structure results in multiple phosphate transfers that are believed to provide extra-fine-tuning mechanisms and more regulatory checkpoints than classical phosphotransfers. HyHK-based regulation may be crucial for finely tuning gene expression in a heterogeneous environment such as the rhizosphere, where intricate plant-bacteria interactions occur. In this review, we focus on roles fulfilled by bacterial HyHKs in plant-associated bacteria, providing recent findings on the mechanistic of their signalling properties. Recent insights into understanding additive regulatory properties fulfilled by the tethered receiver domain of HyHKs are also addressed.

  16. Plant growth-promoting bacteria as inoculants in agricultural soils.

    Science.gov (United States)

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  17. Plant growth-promoting bacteria as inoculants in agricultural soils

    Directory of Open Access Journals (Sweden)

    Rocheli de Souza

    2015-01-01

    Full Text Available AbstractPlant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  18. Screening and isolation of halophilic bacteria producing industrially important enzymes

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2012-12-01

    Full Text Available Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases. Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  19. Endo- and exoglucanase activities in bacteria from mangrove sediment

    Science.gov (United States)

    Júnior, Fábio Lino Soares; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose. PMID:24516466

  20. The antibiotics relo in bacteria resistance

    OpenAIRE

    Santana, Vinicius Canato; CESUMAR

    2007-01-01

    The paper explains how antibiotics help us to combat bacteriosis, and also presents a brief historical report about the emergence of the antibiotic era with the discovery of penicillin. It introduces the problem of bacteria resistance, and brings the concept of antibiotics and its that produce these substance, and brings the concept of antibiotics and its main function. It questions about the self-defense of the organisms that produce these substances. relates the bacteria structures attacked...

  1. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  2. How do bacteria tune translation efficiency?

    OpenAIRE

    Li, Gene-Wei

    2015-01-01

    Bacterial proteins are translated with precisely determined rates to meet cellular demand. In contrast, efforts to express recombinant proteins in bacteria are often met with large unpredictability in their levels of translation. The disconnect between translation of natural and synthetic mRNA stems from the lack of understanding of the strategy used by bacteria to tune translation efficiency. The development of array-based oligonucleotide synthesis and ribosome profiling provides new approac...

  3. ORAL BACTERIA AND SYSTEMS DISEASES: A REVIEW

    OpenAIRE

    Moromi Nakata, Hilda; Profesor Principal de Microbiología, jefe de la sección de C. Dinámicas. D.A. Ciencia Básicas. Miembro permanente del Instituto de Investigaciones Estomatológicas de la Facultad de Odontología de la Universidad Nacional Mayor de San Marcos. Lima. Perú.

    2014-01-01

    In order to show a global vision of oral bacteria in systemic diseases, it is important to analyze the presence and consequences of these microorganisms in relation with: bacteremia, endocarditis, cardiovascular disease, cerebrovascular disease, bacterial pneumonia, neonatal weight, nefritis, arthritis, dermatitis and diabetes mellitus, reaching conclusions for each one of them. Con el objeto de presentar una visión general de la bacterias orales en los procesos sistémicos, se analiza la p...

  4. Quorum sensing mechanism in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hatice Yılmaz - Yıldıran

    2015-04-01

    and detection occurs as a consecution it is hard to understand their QS mechanism. In this review, connection between QS mechanism and some characteristics of lactic acid bacteria are evaluated such as concordance with its host, inhibition of pathogen development and colonization in gastrointestinal system, bacteriocin production, acid and bile resistance, adhesion to epithelium cells. Understanding QS mechanism of lactic acid bacteria will be useful to design metabiotics which is defined as novel probiotics.

  5. Study of Lactobacillus as Probiotic Bacteria

    OpenAIRE

    J Nowroozi; M Mirzaii; M. Norouzi

    2004-01-01

    Because of inhibitory effect, selected probiotic lactobacilli may be used as biological preservative, so, the aim of this study was to present some data on lactobacillus as probiotic bacteria. Lactic acid bacteria were isolated from sausage. Each isolate of lactobacillus species was identified by biochemical tests and comparing their sugar fermentation pattern. Antibacterial activities were done by an agar spot, well diffusion and blank disk method. Enzyme sensitivity of supernatant fluid and...

  6. Ecology: Electrical Cable Bacteria Save Marine Life

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2016-01-01

    Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide.......Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide....

  7. Quantifying the structure of the mesopelagic microbial loop from observed depth profiles of bacteria and protozoa

    Directory of Open Access Journals (Sweden)

    T. F. Thingstad

    2004-08-01

    Full Text Available t is widely recognized that organic carbon exported to the ocean aphotic layer is significantly consumed by heterotrophic organisms such as bacteria and zooplankton in the mesopelagic layer. However, very little is known for the trophic link between bacteria and zooplankton or the structure of the microbial loop in this layer. In the northwestern Mediterranean, recent studies have shown that viruses, bacteria, heterotrophic nanoflagellates, and ciliates distribute down to 2000 m with group-specific depth-dependent decreases, and that bacterial production decreases with depth down to 1000 m. Here we show that such data can be analyzed using a simple steady-state food chain model to quantify the carbon flow from bacteria to zooplankton over the mesopelagic layer. The model indicates that a similar amount of bacterial production is allocated to viruses and heterotrophic nanoflagellates, and that heterotrophic nanoflagellates are the important remineralizers.

  8. Transcriptome analysis of Sinorhizobium meliloti nodule bacteria in nifA mutant background

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhexian; WANG Yiping; ZOU Huasong; LI Jian; ZHANG Yuantao; LIU Ying; YU Guanqiao; ZHU Jiabi; R(U)BERG Silvia; BECKER Anke

    2006-01-01

    Gene expression profiles of a Sinorhizobium meliloti 1021 nifA mutant and wild type nodule bacteria were compared using whole genome microarrays. The results revealed a large scale alteration of gene expression (601 genes) in the nifA minus background. The loss of NifA altered the expression of many functional groups of genes (macromolecular metabolism, TCA cycle and respiration,nodulation and nitrogen fixation) and may lead to quite different life stages of the nodule bacteria.Upregulation of fixK and its associated genes was observed in the nifA mutant nodule bacteria. Additional quantitative real-time PCR experiments revealed that the transcript levels of fixLJ were significantly upshifted in the nifA mutant nodule bacteria.Putative NifA binding sites were predicted by a statistical method in the upstream sequences of 13 differentially regulated genes from the nifA- transcriptome.

  9. Study of Lactobacillus as Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    J Nowroozi

    2004-07-01

    Full Text Available Because of inhibitory effect, selected probiotic lactobacilli may be used as biological preservative, so, the aim of this study was to present some data on lactobacillus as probiotic bacteria. Lactic acid bacteria were isolated from sausage. Each isolate of lactobacillus species was identified by biochemical tests and comparing their sugar fermentation pattern. Antibacterial activities were done by an agar spot, well diffusion and blank disk method. Enzyme sensitivity of supernatant fluid and concentrated cell free culture after treatment with α-amylase, lysozyme and trypsin was determined. The isolated bacteria were Lacto. plantarum, Lacto delbruekii, Lacto. acidophilus, Lacto. brevis. The isolated bacteria had strong activity against indicator strains. The antibacterial activity was stable at 100ºC for 10 min and at 56ºC for 30 min, but activity was lost after autoclaving. The maximum production of plantaricin was obtained at 25 - 30ºC at pH 6.5. Because, lactobacilli that used to process sausage fermentation are producing antimicrobial activity with heat stability bacteriocin, so, these bacteria may be considered to be a healthy probiotic diet. Lactobacilli originally isolated from meat products are the best condidates as probiotic bacteria to improve the microbiological safety of these foods.

  10. Tyramine and phenylethylamine biosynthesis by food bacteria.

    Science.gov (United States)

    Marcobal, Angela; De las Rivas, Blanca; Landete, José María; Tabera, Laura; Muñoz, Rosario

    2012-01-01

    Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.

  11. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum as solidif......Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum...... as solidifying agents, and enumerated bacteria from seawater and algal exudates. We tested if culturability could be influenced by addition of quorum sensing signals (AHLs). All plates were incubated at 15°C. Bacterial counts (CFU/g) from algal exudates from brown algae were highest on media containing algal...... polymers. In general, bacteria isolated from algal exudates preferred more rich media than bacteria isolated from seawater. Overall, culturability ranged from 0.01 to 0.8% as compared to total cell count. Substitution of agar with gellan gum increased the culturability of seawater bacteria approximately...

  12. Endophytic bacteria in toxic South African plants: identification, phylogeny and possible involvement in gousiekte.

    Science.gov (United States)

    Verstraete, Brecht; Van Elst, Daan; Steyn, Hester; Van Wyk, Braam; Lemaire, Benny; Smets, Erik; Dessein, Steven

    2011-04-26

    South African plant species of the genera Fadogia, Pavetta and Vangueria (all belonging to Rubiaceae) are known to cause gousiekte (literally 'quick disease'), a fatal cardiotoxicosis of ruminants characterised by acute heart failure four to eight weeks after ingestion. Noteworthy is that all these plants harbour endophytes in their leaves: nodulating bacteria in specialized nodules in Pavetta and non-nodulating bacteria in the intercellular spaces between mesophyll cells in Fadogia and Vangueria. Isolation and analyses of these endophytes reveal the presence of Burkholderia bacteria in all the plant species implicated in gousiekte. Although the nodulating and non-nodulating bacteria belong to the same genus, they are phylogenetically not closely related and even fall in different bacterial clades. Pavetta harborii and Pavetta schumanniana have their own specific endophyte--Candidatus Burkholderia harborii and Candidatus Burkholderia schumanniana--while the non-nodulating bacteria found in the other gousiekte-inducing plants show high similarity to Burkholderia caledonica. In this group, the bacteria are host specific at population level. Investigation of gousiekte-inducing plants from other African countries resulted in the discovery of the same endophytes. Several other plants of the genera Afrocanthium, Canthium, Keetia, Psydrax, Pygmaeothamnus and Pyrostria were tested and were found to lack bacterial endophytes. The discovery and identification of Burkholderia bacteria in gousiekte-inducing plants open new perspectives and opportunities for research not only into the cause of this economically important disease, but also into the evolution and functional significance of bacterial endosymbiosis in Rubiaceae. Other South African Rubiaceae that grow in the same area as the gousiekte-inducing plants were found to lack bacterial endophytes which suggests a link between bacteria and gousiekte. The same bacteria are consistently found in gousiekte-inducing plants

  13. Oral Administration of Lipopolysaccharide of Acetic Acid Bacteria Protects Pollen Allergy in a Murine Model.

    Science.gov (United States)

    Amano, Satoko; Inagawa, Hiroyuki; Nakata, Yoko; Ohmori, Masaki; Kohchi, Chie; Soma, Gen-Ichiro

    2015-08-01

    Lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria, is known to possess strong immune-regulatory activity. We have found and reported the existence of biologically-active LPS in acetic acid bacteria. The LPS shows Limulus-positive activity and activation of macrophages to produce nitric oxide and tumor necrosis factor. In this study, we investigated the anti-allergic effect of an orally-administrated acetic acid bacteria extract containing LPS; the cedar pollinosis model was used. Acetic acid bacteria were isolated from various fruits by Nodai kaihen medium. Then, the anti-allergic effect of acetic acid bacteria extracts was investigated. BALB/c mice were immunized with a mixture of cedar pollen and alum into their peritoneal cavity; they also received additional immunizations of pollen to nasal cavity. After immunizing the mice with pollen into their nasal cavity to trigger an allergic reaction, the frequency of nose scratching was counted for 5 min. The bacteria were cultured and prepared and the water-extract contained about 1-10 mg/ml of Limulus positive substances. The extract of acetic acid bacteria induced higher levels of interleukin (IL)-10 and FOXP3 mRNA expression in macrophages (RAW246.7 cell), as assessed by DNA microarray analysis. Oral administration of the acetic acid bacteria extract demonstrated significantly less scratching numbers than control water group with pollen immunization. These results showed that LPS in acetic acid bacteria has the potential to protect from an allergic reaction, especially from cedar pollinosis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Synergistic Antibacterial Effect between Silibinin and Antibiotics in Oral Bacteria

    Directory of Open Access Journals (Sweden)

    Young-Soo Lee

    2012-01-01

    Full Text Available Silibinin is a composition of the silymarin group as a hepatoprotective agent, and it exhibits various biological activities, including antibacterial activity. In this study, the antibacterial activities of silibinin were investigated in combination with two antimicrobial agents against oral bacteria. Silibinin was determined with MIC and MBC values ranging from 0.1 to 3.2 and 0.2 to 6.4 μg/mL, ampicillin from 0.125 to 64 and 0.5 to 64 μg/mL, gentamicin from 2 to 256 and 4 to 512 μg/mL, respectively. The ranges of MIC50 and MIC90 were 0.025–0.8 μg/mL and 0.1–3.2 μg/mL, respectively. The antibacterial activities of silibinin against oral bacteria were assessed using the checkerboard and time-kill methods to evaluate the synergistic effects of treatment with ampicillin or gentamicin. The results were evaluated showing that the combination effects of silibinin with antibiotics were synergistic (FIC index <0.5 against all tested oral bacteria. Furthermore, a time-kill study showed that the growth of the tested bacteria was completely attenuated after 2–6 h of treatment with the MBC of silibinin, regardless of whether it was administered alone or with ampicillin or gentamicin. These results suggest that silibinin combined with other antibiotics may be microbiologically beneficial and not antagonistic.

  15. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  16. Non-classical protein secretion in bacteria

    Directory of Open Access Journals (Sweden)

    Fausbøll Anders

    2005-10-01

    Full Text Available Abstract Background We present an overview of bacterial non-classical secretion and a prediction method for identification of proteins following signal peptide independent secretion pathways. We have compiled a list of proteins found extracellularly despite the absence of a signal peptide. Some of these proteins also have known roles in the cytoplasm, which means they could be so-called "moon-lightning" proteins having more than one function. Results A thorough literature search was conducted to compile a list of currently known bacterial non-classically secreted proteins. Pattern finding methods were applied to the sequences in order to identify putative signal sequences or motifs responsible for their secretion. We have found no signal or motif characteristic to any majority of the proteins in the compiled list of non-classically secreted proteins, and conclude that these proteins, indeed, seem to be secreted in a novel fashion. However, we also show that the apparently non-classically secreted proteins are still distinguished from cellular proteins by properties such as amino acid composition, secondary structure and disordered regions. Specifically, prediction of disorder reveals that bacterial secretory proteins are more structurally disordered than their cytoplasmic counterparts. Finally, artificial neural networks were used to construct protein feature based methods for identification of non-classically secreted proteins in both Gram-positive and Gram-negative bacteria. Conclusion We present a publicly available prediction method capable of discriminating between this group of proteins and other proteins, thus allowing for the identification of novel non-classically secreted proteins. We suggest candidates for non-classically secreted proteins in Escherichia coli and Bacillus subtilis. The prediction method is available online.

  17. Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy.

    Science.gov (United States)

    Yang, Kewei; Gitter, Burkhard; Rüger, Ronny; Wieland, Gerhard D; Chen, Ming; Liu, Xiangli; Albrecht, Volker; Fahr, Alfred

    2011-10-01

    Photodynamic antimicrobial chemotherapy (PACT) and antimicrobial peptides (AMPs) are two promising strategies to combat the increasing prevalence of antibiotic-resistant bacteria. To take advantage of these two strategies, we integrated a novel antimicrobial peptide (WLBU2) and a potent generation II photosensitizer (temoporfin) into liposomes by preparing WLBU2-modified liposomes, aiming at bacteria targeted delivery of temoporfin for PACT. WLBU2 was successfully coupled to temoporfin-loaded liposomes using a functional phospholipid. The delivery of temoporfin to bacteria was confirmed by fluorescence microscopy and flow cytometry, thus demonstrating that more temoporfin was delivered to bacteria by WLBU2-modified liposomes than by unmodified liposomes. Consequently, the WLBU2-modified liposomes eradicated all methicillin-resistant Staphylococcus aureus (MRSA) and induced a 3.3 log(10) reduction of Pseudomonas aeruginosa in the in vitro photodynamic inactivation test. These findings demonstrate that the use of AMP-modified liposomes is promising for bacteria-targeted delivery of photosensitizers and for improving the PACT efficiency against both gram-positive and gram-negative bacteria in the local infections.

  18. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    Science.gov (United States)

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.

  19. Cultivation-Independent Detection of Autotrophic Hydrogen-Oxidizing Bacteria by DNA Stable-Isotope Probing ▿

    Science.gov (United States)

    Pumphrey, Graham M.; Ranchou-Peyruse, Anthony; Spain, Jim C.

    2011-01-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of 13CO2 was H2 dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from 13C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H2 concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787

  20. Optimized Composition of Functional Bacteria for Bioremediation of Sediment Environment of Shrimp Culture

    Institute of Scientific and Technical Information of China (English)

    李秋芬; 辛福言; 邹玉霞; 陈民山; 唐启升

    2004-01-01

    After the single-strain abilities of organic-pollutant-degrading bacteria in bioremediation of sediment environment of shrimp culture are determined, the multistrain degrading effect of the compositions of different strains is measured. The results indicate that the multi-strains groups have higher degrading ability than the single-strain groups. Three-strain groups are better than two-strain groups, and fourstrain groups are better than three-strain groups and five-strain groups, the groups composed of strains Lt7222, Lt7511, Fc6308 and Gy7018 has the best degrading effect, the CODMn removal rate is 73.2 % in 66 h, and gets to 82.7 % in 114 h, 30 % higher than that of the best single-strain group; Groups of Lt7222, Lt7511, Lt7451 and Gy7018 are the second, whose CODMn removal rate is 82.1% in 114 h, It is suggested that multi-species bacteria be used as functional bacteria in biorernediation ofmariculture environment.

  1. Antioxidant activity of Sphaerococcus coronopifolius associated bacteria

    Directory of Open Access Journals (Sweden)

    Nádia Fino

    2014-06-01

    Full Text Available Associated bacteria living on macroalgae surfaces are an interesting source of new secondary metabolites with biological activities. The aim of this study was the isolation and identification of epiphytic bacteria from the marine algae Sphaerococcus coronopifolius and the evaluation of the antioxidant activity of the bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. Antioxidant activity was evaluated by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbent capacity (ORAC. The extracts with higher antioxidant activity were tested on MCF-7 and HepG-2 cell lines in oxidative stress conditions induced by H2O2 at 0.2 mM and 0.5 mM, respectively. In total were isolated 21 Sphaerococcus coronopifolius associated bacteria and identified as Vibrio sp. (28.57%, Shewanella sp. (23.81%, Pseudoalteromonas sp. (19.05%, Bacillus sp. (9.52% and Halomonas sp. (9.52%. Two (9.52% of them presented less than 90% Basic Local Alignment Search Tool (BLAST match. The epiphytic bacteria with the most antioxidant potential evaluated by ORAC and DPPH methods were Sp2, Sp12, Sp23, Sp25 and Sp27. The strain Sp4 show high antioxidant activity in all antioxidant methods (ORAC, DPPH and TPC. In oxidative stress conditions on MCF-7 cell line, the extracts of bacteria (1mg.ml-1: 24hours Sp4 (16.15%, Sp25 (17.95% and Sp27 (10.65% prevented the cell death induced by H2O2. In the HepG-2 cell line was the extracts of Sp2 (9.01%, Sp4 (11.21%, Sp12 (7.20% and Sp23 (8.81% bacteria that high prevented the oxidative stress condition induced by H2O2. In conclusion, the Sphaerococcus coronopifolius associated bacteria can be an interesting and excellent source of marine natural compounds with antioxidant activity.

  2. Investigating the presence of predatory bacteria on algal bloom samples using a T6SS gene marker.

    Science.gov (United States)

    Hendricks, J.; Sison-Mangus, M.; Mehic, S.; McMahon, E.

    2015-12-01

    Predation is considered to be a major driving force in evolution and ecology, which has been observed affecting individual organisms, communities, and entire ecosystems. The type VI secretion system (T6SS) is an intermembranal protein complex identified in certain bacteria, which appears to have evolved strictly as a mechanism of predation. The effects of bacteria on phytoplankton physiology are still understudied, however, studies have shown that the interactions between bacteria that inhabit the phycosphere of phytoplankton can possibly result in coevolution of native host and microbiota. It is unclear if bacteria can prey upon other bacteria to gain advantages during periods of high phytoplankton density. Here, we investigate the predatory interactions between bacteria and analyze environmental samples for the presence of predatory bacterial genes in an effort to understand bacteria-bacteria and phytoplankton interactions during algal blooms. DNA were extracted from bacterial samples collected weekly from size-fractionated samples using 3.0 um and 0.2 um membrane filters at the Santa Cruz wharf. PCR amplification and gel visualization for the presence of T6SS gene was carried out on bloom and non-bloom samples. Moreover, we carried out a lab- based experiment to observe bacteria-bacteria interaction that may hint for the presence of predatory behavior between bacterial taxa. We observed what appeared to be a predatory biofilm formation between certain bacterial species. These bacteria, however, did not contain the T6SS genes. On the contrary the T6SS gene was discovered in some of the bloom samples gathered from the Santa Cruz wharf. It is still unclear if the predatory mechanisms facilitate the abundance of certain groups of bacteria that contain the T6SS genes during algal blooms, but our evidence suggest that bacterial predation through T6SS mechanism is present during bloom events.

  3. Multidrug-Resistant Gram-Negative Bacteria Colonization of Healthy US Military Personnel in the US and Afghanistan

    Science.gov (United States)

    2013-02-05

    Randrianirina F, Ratovoson R, et al: Rectal carriage of extended- spectrum beta-lactamase-producing gram - negative bacilli in community settings in...FEB 2013 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Multidrug-resistant gram - negative bacteria colonization of healthy US...98) Prescribed by ANSI Std Z39-18 Multidrug-resistant gram - negative bacteria colonization of healthy US military personnel in the US and

  4. Integrated Groups and Smooth Distribution Groups

    Institute of Scientific and Technical Information of China (English)

    Pedro J. MIANA

    2007-01-01

    In this paper, we prove directly that α-times integrated groups define algebra homo-morphisms. We also give a theorem of equivalence between smooth distribution groups and α-times integrated groups.

  5. Nanotextile membranes for bacteria Escherichia coli capturing

    Directory of Open Access Journals (Sweden)

    Jaroslav Lev

    2010-01-01

    Full Text Available The article describes an experimental study dealing with the possibility of nanotextile materials usa­ge for microbiologically contaminated water filtration. The aim of the study is to verify filtration ability of different nanotextile materials and evaluate the possibilities of practical usage. Good detention ability of these materials in the air filtration is the presumption for nanotextile to be used for bacteria filtration from a liquid. High nanotextile porosity with the nanotextile pores dimensions smaller than a bacteria size predicates the possibility of a successful usage of these materials. For the experiment were used materials made from electrospinning nanofibres under the label PA612, PUR1, PUR2 s PUR3 on the supporting unwoven textiles (viscose and PP. As a model simulation of the microbial contamination, bacteria Escherichia coli was chosen. Contaminated water was filtered during the overpressure activity of 105Pa on the input side of the filter from the mentioned material. After three-day incubation on the nutrient medium, cultures found in the samples before and after filtration were compared. In the filtrated water, bacteria E. coli were indicated, which did not verify the theoretical presumptions about an absolut bacteria detention. However, used materials caught at least 94% of bacteria in case of material PUR1 and up to 99,996% in case of material PUR2. These results predict the possibility of producing effective nanotextile filters for microbiologically contaminated water filtration.Recommendation: For the production of materials with better filtrating qualities, experiments need to be done, enabling better understanding of the bacteria detention mechanisms on the nanotextile material, and parameters of the used materials that influence the filtrating abilities need to be verified.

  6. Flagellated ectosymbiotic bacteria propel a eucaryotic cell.

    Science.gov (United States)

    Tamm, S L

    1982-09-01

    A devescovinid flagellate from termites exhibits rapid gliding movements only when in close contact with other cells or with a substrate. Locomotion is powered not by the cell's own flagella nor by its remarkable rotary axostyle, but by the flagella of thousands of rod bacteria which live on its surface. That the ectosymbiotic bacteria actually propel the protozoan was shown by the following: (a) the bacteria, which lie in specialized pockets of the host membrane, bear typical procaryotic flagella on their exposed surface; (b) gliding continues when the devescovinid's own flagella and rotary axostyle are inactivated; (c) agents which inhibit bacterial flagellar motility, but not the protozoan's motile systems, stop gliding movements; (d) isolated vesicles derived from the surface of the devescovinid rotate at speeds dependent on the number of rod bacteria still attached; (e) individual rod bacteria can move independently over the surface of compressed cells; and (f) wave propagation by the flagellar bundles of the ectosymbiotic bacteria is visualized directly by video-enhanced polarization microscopy. Proximity to solid boundaries may be required to align the flagellar bundles of adjacent bacteria in the same direction, and/or to increase their propulsive efficiency (wall effect). This motility-linked symbiosis resembles the association of locomotory spirochetes with the Australian termite flagellate Mixotricha (Cleveland, L. R., and A. V. Grimstone, 1964, Proc. R. Soc. Lond. B Biol. Sci., 159:668-686), except that in our case propulsion is provided by bacterial flagella themselves. Since bacterial flagella rotate, an additional novelty of this system is that the surface bearing the procaryotic rotary motors is turned by the eucaryotic rotary motor within.

  7. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR

    DEFF Research Database (Denmark)

    O'Brien Andersen, L.; Karim, A. B.; Roager, Henrik Munch

    2016-01-01

    Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, w...... of Bifidobacterium was subsequently performed, and the relative abundance of these bacteria across the four groups was compared. The relative abundance of Bacteroides in B- D- samples was significantly higher compared with B+ D- and B+ D+ samples (P ...

  8. Group typicality, group loyalty and cognitive development.

    Science.gov (United States)

    Patterson, Meagan M

    2014-09-01

    Over the course of childhood, children's thinking about social groups changes in a variety of ways. Developmental Subjective Group Dynamics (DSGD) theory emphasizes children's understanding of the importance of conforming to group norms. Abrams et al.'s study, which uses DSGD theory as a framework, demonstrates the social cognitive skills underlying young elementary school children's thinking about group norms. Future research on children's thinking about groups and group norms should explore additional elements of this topic, including aspects of typicality beyond loyalty.

  9. Which finite simple groups are unit groups?

    DEFF Research Database (Denmark)

    Davis, Christopher James; Occhipinti, Tommy

    2014-01-01

    We prove that if G is a finite simple group which is the unit group of a ring, then G is isomorphic to either (a) a cyclic group of order 2; (b) a cyclic group of prime order 2^k −1 for some k; or (c) a projective special linear group PSLn(F2) for some n ≥ 3. Moreover, these groups do all occur...

  10. Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia.

    Science.gov (United States)

    Klubal, Radek; Kopecky, Jan; Nesvorna, Marta; Sparagano, Olivier A E; Thomayerova, Jana; Hubert, Jan

    2016-01-01

    Bacteria associated with the tick Ixodes ricinus were assessed in specimens unattached or attached to the skin of cats, dogs and humans, collected in the Czech Republic. The bacteria were detected by PCR in 97 of 142 pooled samples including 204 ticks, i.e. 1-7 ticks per sample, collected at the same time from one host. A fragment of the bacterial 16S rRNA gene was amplified, cloned and sequenced from 32 randomly selected samples. The most frequent sequences were those related to Candidatus Midichloria midichlori (71% of cloned sequences), followed by Diplorickettsia (13%), Spiroplasma (3%), Rickettsia (3%), Pasteurella (3%), Morganella (3%), Pseudomonas (2%), Bacillus (1%), Methylobacterium (1%) and Phyllobacterium (1%). The phylogenetic analysis of Spiroplasma 16S rRNA gene sequences showed two groups related to Spiroplasma eriocheiris and Spiroplasma melliferum, respectively. Using group-specific primers, the following potentially pathogenic bacteria were detected: Borellia (in 20% of the 142 samples), Rickettsia (12%), Spiroplasma (5%), Diplorickettsia (5%) and Anaplasma (2%). In total, 68% of I. ricinus samples (97/142) contained detectable bacteria and 13% contained two or more putative pathogenic groups. The prevalence of tick-borne bacteria was similar to the observations in other European countries.

  11. Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria.

    Science.gov (United States)

    Hubert, Jan; Erban, Tomas; Kopecky, Jan; Sopko, Bruno; Nesvorna, Marta; Lichovnikova, Martina; Schicht, Sabine; Strube, Christina; Sparagano, Olivier

    2017-05-22

    Blood feeding red poultry mites (RPM) serve as vectors of pathogenic bacteria and viruses among vertebrate hosts including wild birds, poultry hens, mammals, and humans. The microbiome of RPM has not yet been studied by high-throughput sequencing. RPM eggs, larvae, and engorged adult/nymph samples obtained in four poultry houses in Czechia were used for microbiome analyses by Illumina amplicon sequencing of the 16S ribosomal RNA (rRNA) gene V4 region. A laboratory RPM population was used as positive control for transcriptome analysis by pyrosequencing with identification of sequences originating from bacteria. The samples of engorged adult/nymph stages had 100-fold more copies of 16S rRNA gene copies than the samples of eggs and larvae. The microbiome composition showed differences among the four poultry houses and among observed developmental stadia. In the adults' microbiome 10 OTUs comprised 90 to 99% of all sequences. Bartonella-like bacteria covered between 30 and 70% of sequences in RPM microbiome and 25% bacterial sequences in transcriptome. The phylogenetic analyses of 16S rRNA gene sequences revealed two distinct groups of Bartonella-like bacteria forming sister groups: (i) symbionts of ants; (ii) Bartonella genus. Cardinium, Wolbachia, and Rickettsiella sp. were found in the microbiomes of all tested stadia, while Spiroplasma eriocheiris and Wolbachia were identified in the laboratory RPM transcriptome. The microbiomes from eggs, larvae, and engorged adults/nymphs differed. Bartonella-like symbionts were found in all stadia and sampling sites. Bartonella-like bacteria was the most diversified group within the RPM microbiome. The presence of identified putative pathogenic bacteria is relevant with respect to human and animal health issues while the identification of symbiontic bacteria can lead to new control methods targeting them to destabilize the arthropod host.

  12. Indicator bacteria and associated water quality constituents in stormwater and snowmelt from four urban catchments

    Science.gov (United States)

    Galfi, H.; Österlund, H.; Marsalek, J.; Viklander, M.

    2016-08-01

    Four indicator bacteria were measured in association with physico-chemical constituents and selected inorganics during rainfall, baseflow and snowmelt periods in storm sewers of four urban catchments in a northern Swedish city. The variation patterns of coliforms, Escherichia coli, enterococci and Clostridium perfringens concentrations were assessed in manually collected grab samples together with those of phosphorus, nitrogen, solids, and readings of pH, turbidity, water conductivity, temperature and flow rates to examine whether these constituents could serve as potential indicators of bacteria sources. A similar analysis was applied to variation patterns of eight selected inorganics typical for baseflow and stormwater runoff to test the feasibility of using these inorganics to distinguish between natural and anthropogenic sources of inflow into storm sewers. The monitored catchments varied in size, the degree of development, and land use. Catchment and season (i.e., rainy or snowmelt periods) specific variations were investigated for sets of individual stormwater samples by the principal component analysis (PCA) to identify the constituents with variation patterns similar to those of indicator bacteria, and to exclude the constituents with less similarity. In the reduced data set, the similarities were quantified by the clustering correlation analysis. Finally, the positive/negative relationships found between indicator bacteria and the identified associated constituent groups were described by multilinear regressions. In the order of decreasing concentrations, coliforms, E. coli and enterococci were found in the highest mean concentrations during both rainfall and snowmelt generated runoff. Compared to dry weather baseflow, concentrations of these three indicators in stormwater were 10 (snowmelt runoff) to 102 (rain runoff) times higher. C. perfringens mean concentrations were practically constant regardless of the season and catchment. The type and number of

  13. Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China.

    Science.gov (United States)

    Tang, Jing Yan; Ma, Jing; Li, Xue Dong; Li, Yan Hong

    2016-11-16

    Previous studies on the bacteria associated with the bryophytes showed that there were abundant bacteria inhabited in/on these hosts. However, the type of bacteria and whether these discriminate between different bryophytes based on a particular factor remains largely unknown. This study was designed to analyze the biodiversity and community of the bacteria associated with ten liverworts and ten mosses using Illumina-sequencing techniques based on bacterial 16S rRNA gene. A total of 125,762 high quality sequences and 437 OTUs were obtained from twenty bryophytes. Generally, there were no obvious differences between the richness of bacteria associated with liverworts and mosses; however, the diversity was significantly higher in liverworts than in mosses. The taxonomic analyses showed that there were abundant bacteria inhabited with each bryophyte and those primarily detected in all samples were within the phyla Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Armatimonadetes and Planctomycetes. In addition, bacteria assigned to Chloroflexi, Fibrobacteres, Gemmatimonadetes, Chlamydiae, group of TM6 and WCHB1-60 also appeared in part of the bryophytes. The assigned bacteria included those adapted to aquatic, anaerobic and even extreme drought environments, which is consistent with the bryophyte transition from aquatic to terrestrial conditions. Of them, approximately 10 recognized genera were shared by all the samples in a higher proportion, such as Burkholderia, Novosphingobium, Mucilaginibacter, Sorangium, Frankia, Frondihatitans, Haliangium, Rhizobacter, Granulicella and Hafnia, and 11 unclassified genera were also detected in all samples, which exhibited that large amounts of unclassified bacteria could interact with the bryophytes. The Heatmap and Principle Coordinate Analyses showed that bacteria associated with six mosses displayed a higher community similarity. Notably, the bacteria associated with another four mosses exhibited higher similarity

  14. Management of group B streptococcal bacteriuria in pregnancy.

    Science.gov (United States)

    Allen, Victoria M; Yudin, Mark H

    2012-05-01

    To provide information regarding the management of group B streptococcal (GBS) bacteriuria to midwives, nurses, and physicians who are providing obstetrical care. The outcomes considered were neonatal GBS disease, preterm birth, pyelonephritis, chorioamnionitis, and recurrence of GBS colonization. Medline, PubMed, and the Cochrane database were searched for articles published in English to December 2010 on the topic of GBS bacteriuria in pregnancy. Bacteriuria is defined in this clinical practice guideline as the presence of bacteria in urine, regardless of the number of colony-forming units per mL (CFU/mL). Low colony counts refer to bacteriuria to optimize maternal and perinatal outcomes, to reduce the occurrences of antibiotic anaphylaxis, and to prevent increases in antibiotic resistance to GBS and non-GBS pathogens. No cost-benefit analysis is provided. 1. Treatment of any bacteriuria with colony counts ≥ 100 000 CFU/mL in pregnancy is an accepted and recommended strategy and includes treatment with appropriate antibiotics. (II-2A) 2. Women with documented group B streptococcal bacteriuria (regardless of level of colony-forming units per mL) in the current pregnancy should be treated at the time of labour or rupture of membranes with appropriate intravenous antibiotics for the prevention of early-onset neonatal group B streptococcal disease. (II-2A) 3. Asymptomatic women with urinary group B streptococcal colony counts bacteriuria should not be re-screened by genital tract culture or urinary culture in the third trimester, as they are presumed to be group B streptococcal colonized. (II-2D).

  15. 15 CFR 4a.3 - Classification levels.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Classification levels. 4a.3 Section 4a.3 Commerce and Foreign Trade Office of the Secretary of Commerce CLASSIFICATION, DECLASSIFICATION, AND PUBLIC AVAILABILITY OF NATIONAL SECURITY INFORMATION § 4a.3 Classification levels. Information...

  16. 32 CFR 242a.3 - Open meetings.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Open meetings. 242a.3 Section 242a.3 National... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.3 Open meetings. (a) Members shall not jointly conduct or dispose of business of the Board...

  17. 42 CFR 2a.3 - Application; coordination.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Application; coordination. 2a.3 Section 2a.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.3 Application; coordination. (a) Any person engaged in (or who intends...

  18. Learning from bacteria about natural information processing.

    Science.gov (United States)

    Ben-Jacob, Eshel

    2009-10-01

    Under natural growth conditions, bacteria live in complex hierarchical communities. To conduct complex cooperative behaviors, bacteria utilize sophisticated communication to the extent that their chemical language includes semantic and even pragmatic aspects. I describe how complex colony forms (patterns) emerge through the communication-based interplay between individual bacteria and the colony. Individual cells assume newly co-generated traits and abilities that are not prestored in the genetic information of the cells, that is, not all the information required for efficient responses to all environmental conditions is stored. To solve newly encountered problems, they assess the problem via collective sensing, recall stored information of past experience, and then execute distributed information processing of the 10(9)-10(12) bacteria in the colony--transforming the colony into a "super-brain." I show illuminating examples of swarming intelligence of live bacteria in which they solve optimization problems that are beyond what human beings can solve. This will lead to a discussion about the special nature of bacterial computational principles compared to Turing algorithm computational principles, in particular about the role of distributed information processing.

  19. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  20. COMPETITION BETWEEN ANOXYGENIC PHOTOTROPHIC BACTERIA AND COLORLESS SULFUR BACTERIA IN A MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; VANDENENDE, FP; SCHAUB, BEM; VANGEMERDEN, H

    1992-01-01

    The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0-5 mm layer of the mat: 2.0 X 10(9) cells CM-3 sediment, and 4.0 X 10(7) cells cm-3 sediment for th

  1. COMPETITION BETWEEN ANOXYGENIC PHOTOTROPHIC BACTERIA AND COLORLESS SULFUR BACTERIA IN A MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; VANDENENDE, FP; SCHAUB, BEM; VANGEMERDEN, H

    The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0-5 mm layer of the mat: 2.0 X 10(9) cells CM-3 sediment, and 4.0 X 10(7) cells cm-3 sediment for

  2. Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.; Mohanram, A.; Gao, X.; Chorover, J.

    2011-01-01

    Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 ??m diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 ??M linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 ??M Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere's attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ??, of -44 to -49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L-1. The most hydrophilic (0.52 HI) and negatively charged (?? -38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ??. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer

  3. Role of dissolved organic carbon upon re-entrainment and surface properties of aquifer bacteria and bacteria-sized microspheres during subsurface transport (Invited)

    Science.gov (United States)

    Harvey, R. W.; Metge, D. W.; Mohanram, A.; Gao, X.; Chorover, J.

    2010-12-01

    Susceptibilities for in-situ re-entrainment of attached 0.2 and 1.0 μm (diameter) microspheres and groundwater bacteria (Pseudomonas stuzeri and uncultured, native bacteria) were assessed during transport studies involving an organically contaminated, sandy aquifer in Cape Cod, MA. Aquifer sediments between pairs of injection and sampling wells were initially loaded with fluorescently labeled, carboxylated microspheres and bacteria that had been stained with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole. In response to subsequent hydrodynamic perturbations and injections of deionized water (ionic strength reduction), anionic surfactants (77 μM linear alkylbenzene sulfonates, LAS) and non-ionic surfactant (76 μM polyoxyethylene sorbitan monooleate, Tween 80), differing patterns of re-entrainment were evident for the two colloids. Injections of anionic surfactant and deionized water were the most efficient in causing detachment of the highly hydrophilic and negatively charged microspheres, but largely ineffective in causing re-entrainment of bacteria. In contrast, the nonionic surfactant was highly effective in re-entraining bacteria, but not microspheres. The hydrophobicities and zeta potentials of the indigenous bacteria were highly sensitive to modest concentration changes (0.6 to 1.3 mg L-1) in groundwater dissolved organic carbon (DOC), whereas the microspheres were largely unaffected. The most hydrophilic and negatively charged bacterial community was isolated from groundwater having the lowest DOC. FTIR spectra indicated that the community from the lowest DOC groundwater also had the highest average density of surface carboxyl groups. This indicates that DOC may have a biological effect on native bacteria resulting in changes to surface structures or changes in the makeup of the bacterial community.

  4. Phylogeny of culturable estuarine bacteria catabolizing riverine organic matter in the northern Baltic Sea.

    Science.gov (United States)

    Kisand, Veljo; Cuadros, Rocio; Wikner, Johan

    2002-01-01

    The objective of our study was to isolate and determine the phylogenetic affiliation of culturable estuarine bacteria capable of catabolizing riverine dissolved organic matter (RDOM) under laboratory conditions. Additions of RDOM consistently promoted the growth of estuarine bacteria in carbon-limited dilution cultures, with seasonal variation in growth rates and yields. At least 42 different taxa were culturable on solid agar media and, according to quantitative DNA-DNA hybridizations, constituted 32 to 89% of the total bacterial number in the enriched treatments. Five species in the Cytophaga-Flexibacter-Bacteroides group and one in the gamma-proteobacteria phylogenetic group (Marinomonas sp.) were numerically dominant during the stationary phase of the RDOM-enriched dilution cultures but not in the control cultures. Four of the isolates in Cytophaga-Flexibacter-Bacteroides group were putatively affiliated with the genus FLAVOBACTERIUM: All dominating isolates were determined to be new species based on comparison to the current databases. The same group of species dominated independently of the season investigated, suggesting a low diversity of bacteria catabolizing RDOM in the estuary. It also suggested a broad tolerance of the dominating species to seasonal variation in hydrography, chemistry, and competition with other species. Taken together, our results suggest that a limited group of bacteria, mainly in the Flavobacterium genus, played an important role in introducing new energy and carbon to the marine system in the northern Baltic Sea.

  5. Fossil bacteria in Xuanlong iron ore deposits of Hebei Province

    Institute of Scientific and Technical Information of China (English)

    DAI Yongding; SONG Haiming; SHEN Jiying

    2004-01-01

    Discovered in Early Proterozoic Xuanlong iron ore deposits are six genera of fossil iron bacteria, i. e. sphere (coenobium of) rod-shaped (monomer) Naumanniella, ellipsoid elliptical Ochrobium, sphere spherical Siderocapsa and chain spherical Siderococcus, chain rod-shaped Leptothrix and Lieskeella, and six genera of fossil blue bacteria, namely sphere spherical Gloeocapsa, Synechocystis and Globobacter, chain spherical Anabaena and Nostoc, and constrictive septate tubular Nodularia. The biomineralized monomers and coenobia of the two categories of bacteria, together with hematite plates made up the bacteria pelletal, bacteria silky,bacteria fibrous and clasty bacteria pelletal textural lamina. The bacteria pelletal laminae combined with other bacteria laminae to make up oncolite, stromatolite and laminate. The precipitation of iron oxide was accelerated due to iron and blue bacteria cohabiting on microbial film or mat. The Xuanlong iron ore deposits are microbial binding ore deposits of ocean source.

  6. Group Cohesion in Experiential Growth Groups

    Science.gov (United States)

    Steen, Sam; Vasserman-Stokes, Elaina; Vannatta, Rachel

    2014-01-01

    This article explores the effect of web-based journaling on changes in group cohesion within experiential growth groups. Master's students were divided into 2 groups. Both used a web-based platform to journal after each session; however, only 1 of the groups was able to read each other's journals. Quantitative data collected before and…

  7. Studies on ultrasmall bacteria in relation to the presence of bacteria in the stratosphere

    Science.gov (United States)

    Alshammari, Fawaz; Wainwright, Milton; Alabri, Khalid; Alharbi, Sulamain A.

    2011-04-01

    Recent studies confirm that bacteria exist in the stratosphere. It is generally assumed that these bacteria are exiting from Earth, although it is possible that some are incoming from space. Most stratospheric bacterial isolates belong to the spore-forming genus Bacillus, although non-spore formers have also been isolated. Theoretically, the smaller a bacterium is, the more likely it is to be carried from Earth to the stratosphere. Ultrasmall bacteria have been frequently isolated from Earth environments, but not yet from the stratosphere. This is an anomalous situation, since we would expect such small bacteria to be over represented in the stratosphere-microflora. Here, we show that ultrasmall bacteria are present in the environment on Earth (i.e. in seawater and rainwater) and discuss the paradox of why they have not been isolated from the stratosphere.

  8. Comparison of the Morphology and Deoxyribonucleic Acid Composition of 27 Strains of Nitrifying Bacteria1

    Science.gov (United States)

    Watson, Stanley W.; Mandel, Manley

    1971-01-01

    The gross morphology, fine structure, and per cent guanine plus cytosine (GC) composition of deoxyribonucleic acid of 27 strains of nitrifying bacteria were compared. Based on morphological differences, the ammonia-oxidizing bacteria were separated into four genera. Nitrosomonas species and Nitrosocystis species formed one homogenous group, and Nitrosolobus species and Nitrosospira species formed a second homogenous group in respect to their deoxyribonucleic acid GC compositions. Similarly, the nitrite-oxidizing bacteria were separated into three genera based on their morphology. The members of two of these nitrite-oxidizing genera, Nitrobacter and Nitrococcus, had similar GC compositions, but Nitrospina gracilis had a significantly lower GC composition than the members of the other two genera. Images PMID:4939767

  9. Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria.

    Science.gov (United States)

    Watson, S W; Mandel, M

    1971-08-01

    The gross morphology, fine structure, and per cent guanine plus cytosine (GC) composition of deoxyribonucleic acid of 27 strains of nitrifying bacteria were compared. Based on morphological differences, the ammonia-oxidizing bacteria were separated into four genera. Nitrosomonas species and Nitrosocystis species formed one homogenous group, and Nitrosolobus species and Nitrosospira species formed a second homogenous group in respect to their deoxyribonucleic acid GC compositions. Similarly, the nitrite-oxidizing bacteria were separated into three genera based on their morphology. The members of two of these nitrite-oxidizing genera, Nitrobacter and Nitrococcus, had similar GC compositions, but Nitrospina gracilis had a significantly lower GC composition than the members of the other two genera.

  10. In vitro study of natural plant products against oral bacteria

    Institute of Scientific and Technical Information of China (English)

    Siddiqui R; Siti AsmaH; Tang L; Jie CC; Rosliza AR; Roziawati Y

    2009-01-01

    Objective:To analyze the effect of selected plant product against several bacterial which commonly causes oral infection.It was hope that in future,this product will become the remedy for treatment of oral infection and with the hope that it can substitute antibiotics.Methods:A total of 5 species of oral bacteria from American Type Culture Collection (ATCC)were employed in this study(S.mutans,S.aureus,P.aeruginosa,S.sobri-nus and L.salivarius).Three types of natural plants crude extracts were used (garlic,curry leaves and cloves).Bactericidal and bacteriostatic effects of these herbs were tested.Results:It was shown garlic had an-tibacterial effects on all bacteria.The Minimal Inhibitory Concentration (MIC in g/mL)of garlic towards S. aureus,P.aeruginosa,S.mutans,S.sobrinus and L.salivarius were 0.3,1.8,1.2,0.5 and 1.8,respectively. There was significant difference among the MIC of garlic on tested bacteria.It was more potent toward S.au-reus.The curry leaf solution on the other hand,did not show any zone of inhibition in all bacteria plates but adversely showed enhanced growth of those bacteria.Clove had shown its antibacterial effects on S.aureus and P.aeruginosa.The clove was more potent toward S.aureus with the MIC of 0.45 g/mL.P.aeruginosa was more sensitive to clove compared to garlic.For S.aureus,it was more sensitive to garlic compared to clove. Conclusion:The antibacterial activity of garlic and clove crude extracts shown in our study further confirm these natural plants'potential usage in therapeutic use for oral diseases or infections.This could be the platform for the interested party to do research and development on it and to produce oral health products which are more affordable for lower economic income groups and with fewer side effects as seen in synthetic drug.

  11. Group Work Publication-1991.

    Science.gov (United States)

    Zimpfer, David G.

    1992-01-01

    Lists 21 new publications in group work, of which 9 are reviewed. Those discussed include publications on group counseling and psychotherapy, structured groups, support groups, psychodrama, and social group work. (Author/NB)

  12. High Life Expectancy of Bacteria on Lichens.

    Science.gov (United States)

    Cernava, Tomislav; Berg, Gabriele; Grube, Martin

    2016-10-01

    Self-sustaining lichen symbioses potentially can become very old, sometimes even thousands of years in nature. In the joint structures, algal partners are sheltered between fungal structures that are externally colonized by bacterial communities. With this arrangement lichens survive long periods of drought, and lichen thalli can be revitalized even after decades of dry storage in a herbarium. To study the effects of long-term ex situ storage on viability of indigenous bacterial communities we comparatively studied herbarium-stored material of the lung lichen, Lobaria pulmonaria. We discovered that a significant fraction of the lichen-associated bacterial community survives herbarium storage of nearly 80 years, and living bacteria can still be found in even older material. As the bacteria reside in the upper surface layers of the lichen material, we argue that the extracellular polysaccharides of lichens contribute to superior life expectancy of bacteria. Deeper understanding of underlying mechanisms could provide novel possibilities for biotechnological applications.

  13. Encapsulation of probiotic bacteria in biopolymeric system.

    Science.gov (United States)

    Huq, Tanzina; Khan, Avik; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique

    2013-01-01

    Encapsulation of probiotic bacteria is generally used to enhance the viability during processing, and also for the target delivery in gastrointestinal tract. Probiotics are used with the fermented dairy products, pharmaceutical products, and health supplements. They play a great role in maintaining human health. The survival of these bacteria in the human gastrointestinal system is questionable. In order to protect the viability of the probiotic bacteria, several types of biopolymers such as alginate, chitosan, gelatin, whey protein isolate, cellulose derivatives are used for encapsulation and several methods of encapsulation such as spray drying, extrusion, emulsion have been reported. This review focuses on the method of encapsulation and the use of different biopolymeric system for encapsulation of probiotics.

  14. [Bacteriocins produced by lactic acid bacteria].

    Science.gov (United States)

    Bilková, Andrea; Sepova, Hana Kinová; Bilka, Frantisek; Balázová, Andrea

    2011-04-01

    Lactic acid bacteria comprise several genera of gram-positive bacteria that are known for the production of structurally different antimicrobial substances. Among them, bacteriocins are nowadays in the centre of scientific interest. Bacteriocins, proteinaceous antimicrobial substances, are produced ribosomally and have usually a narrow spectrum of bacterial growth inhibition. According to their structure and the target of their activity, they are divided into four classes, although there are some suggestions for a renewed classification. The most interesting and usable class are lantibiotics. They comprise the most widely commercially used and well examined bacteriocin, nisin. The non-pathogenic character of lactic acid bacteria is advantageous for using their bacteriocins in food preservation as well as in feed supplements or in veterinary medicine.

  15. Inorganic nanoparticles engineered to attack bacteria.

    Science.gov (United States)

    Miller, Kristen P; Wang, Lei; Benicewicz, Brian C; Decho, Alan W

    2015-11-01

    Antibiotics were once the golden bullet to constrain infectious bacteria. However, the rapid and continuing emergence of antibiotic resistance (AR) among infectious microbial pathogens has questioned the future utility of antibiotics. This dilemma has recently fueled the marriage of the disparate fields of nanochemistry and antibiotics. Nanoparticles and other types of nanomaterials have been extensively developed for drug delivery to eukaryotic cells. However, bacteria have very different cellular architectures than eukaryotic cells. This review addresses the chemistry of nanoparticle-based antibiotic carriers, and how their technical capabilities are now being re-engineered to attack, kill, but also non-lethally manipulate the physiologies of bacteria. This review also discusses the surface functionalization of inorganic nanoparticles with small ligand molecules, polymers, and charged moieties to achieve drug loading and controllable release.

  16. Microgravity effects on pathogenicity of bacteria

    Directory of Open Access Journals (Sweden)

    Ya-juan WANG

    2013-01-01

    Full Text Available Microgravity is one of the important environmental conditions during spaceflight. A series of studies have shown that many kinds of bacteria could be detected in space station and space shuttle. Space environment or simulated microgravity may throw a certain influence on those opportunistic pathogens and lead to some changes on their virulence, biofilm formation and drug tolerance. The mechanism of bacteria response to space environment or simulated microgravity has not been defined. However, the conserved RNA-binding protein Hfq has been identified as a likely global regulator involved in the bacteria response to this environment. In addition, microgravity effects on bacterial pathogenicity may threaten astronauts' health. The present paper will focus on microgravity-induced alterations of pathogenicity and relative mechanism in various opportunistic pathogens.

  17. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  18. Monitoring of environmental pollutants by bioluminescent bacteria.

    Science.gov (United States)

    Girotti, Stefano; Ferri, Elida Nora; Fumo, Maria Grazia; Maiolini, Elisabetta

    2008-02-04

    This review deals with the applications of bioluminescent bacteria to the environmental analyses, published during the years 2000-2007. The ecotoxicological assessment, by bioassays, of the environmental risks and the luminescent approaches are reported. The review includes a brief introduction to the characteristics and applications of bioassays, a description of the characteristics and applications of natural bioluminescent bacteria (BLB), and a collection of the main applications to organic and inorganic pollutants. The light-emitting genetically modified bacteria applications, as well as the bioluminescent immobilized systems and biosensors are outlined. Considerations about commercially available BLB and BLB catalogues are also reported. Most of the environmental applications, here mentioned, of luminescent organisms are on wastewater, seawater, surface and ground water, tap water, soil and sediments, air. Comparison to other bioindicators and bioassay has been also made. Various tables have been inserted, to make easier to take a rapid glance at all possible references concerning the topic of specific interest.

  19. Lethal photosensitization of biofilm-grown bacteria

    Science.gov (United States)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  20. Threats and opportunities of plant pathogenic bacteria.

    Science.gov (United States)

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R

    2007-01-01

    Recent claims of cultivable ancient bacteria within sealed environments highlight our limited understanding of the mechanisms behind long-term cell survival. It remains unclear how dormancy, a favored explanation for extended cellular persistence, can cope with spontaneous genomic decay over......-term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence...... that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability....

  2. Using Fluorescent Viruses for Detecting Bacteria in Water

    Science.gov (United States)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  3. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    OpenAIRE

    Wessel, Stefan W.; van der Mei, Henny C.; David Morando; Slomp, Anje M.; Betsy van de Belt-Gritter; Amarnath Maitra; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-...

  4. Bacteriocins From Lactic Acid Bacteria: Interest For Food Products Biopreservation

    OpenAIRE

    Dortu, C.; Thonart, Philippe

    2009-01-01

    Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Bacteriocins from lactic acid bacteria are low molecular weight antimicrobial peptides. They have inhibitory activity against the bacteria that are closed related to the producer strains and a narrow inhibitory spectrum. Nevertheless, most of them have activity against some food-born pathogenic bacteria as Listeria monocytogenes. The application of bacteriocins or bacteriocin producing lactic acid bacteria in ...

  5. Cell biology of unique anammox bacteria that contain an energy conserving prokaryotic organelle.

    Science.gov (United States)

    van Niftrik, Laura

    2013-10-01

    Anammox bacteria obtain their energy for growth from the anaerobic oxidation of ammonium with nitrite to dinitrogen gas. This property has made anammox bacteria very valuable for industry where they are applied for the removal of nitrogen compounds from industrial and domestic wastewaters. Anammox bacteria are also important in nature where they contribute significantly to oceanic nitrogen loss. Further, anammox bacteria have similarities to both Archaea and Eukarya, making them extremely interesting from a cell biological perspective. The anammox cell does not conform to the typical prokaryotic cell plan: single bilayer membranes divide the anammox cell into three distinct cellular compartments that possibly also have distinct cellular functions. The innermost and largest compartment, the anammoxosome, is the location of the energy metabolism. The middle compartment, the riboplasm, contains the nucleoid and ribosomes and thus has a genetic, information processing function. Finally, the outermost compartment, the paryphoplasm, has an as yet unknown function. In addition, anammox bacteria are proposed to have an atypical cell wall devoid of both peptidoglycan and a typical outer membrane. Here, I review the current knowledge on the cell biology of this enigmatic group of bacteria.

  6. The importance of Gram positive bacteria as the cause of canine pyometra

    Directory of Open Access Journals (Sweden)

    Marcos Cezar Sant' anna

    2017-05-01

    Full Text Available E. coli is the main bacteria isolated from infected uterus and bacterial endotoxin can lead to fatal endotoxic shock. Systemic inflammatory response syndrome (SIRS precedes the endotoxic shock. Thus, early recognition of SIRS is important for patient treatment and prognostic. In Brazil, Gram positive bacteria are responsible for approximately 20% of all pyometra cases, and there is limited information about pathophysiology of shock and tissue injury. The aim of this study was to investigate the capacity of Gram positive bacteria to cause SIRS in bitches with pyometra. A prospective follow-up of 67 bitches with pyometra was performed, which were classified as SIRS + and SIRS- on admission. All bitches were surgically treated (ovariohysterectomy, uterine contents were collected in a sterile manner and the material was submitted to microbiological evaluation. Were identified in 55.2% of bitches E. coli (G1, 23.9% other Gram negative bacteria (G2 and 20.9% Gram positive bacteria (G3. The leukocyte profile, serum biochemistry and prevalence of SIRS were similar between the groups. It is concluded that Gram positive bacteria have the capacity to promote tissue damage and can lead the patient to death after SIRS and shock, as well as by E. coli and other Gram negative.

  7. Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update

    Directory of Open Access Journals (Sweden)

    Antonio Molinaro

    2007-09-01

    Full Text Available Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs, or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the γ-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga- Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups, to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments.

  8. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera).

    Science.gov (United States)

    Rozas, Enrique E; Mendes, Maria A; Nascimento, Claudio A O; Espinosa, Denise C R; Oliveira, Renato; Oliveira, Guilherme; Custodio, Marcio R

    2017-05-05

    The bacteria isolated from Hymeniacidon heliophila sponge cells showed bioleaching activity. The most active strain, Hyhel-1, identified as Bacillus sp., was selected for bioleaching tests under two different temperatures, 30°C and 40°C, showing rod-shaped cells and filamentous growth, respectively. At 30°C, the bacteria secreted substances which linked to the leached copper, and at 40°C metallic nanoparticles were produced inside the cells. In addition, infrared analysis detected COOH groups and linear peptides in the tested bacteria at both temperatures. The Hyhel-1 strain in presence of electronic waste (e-waste) induced the formation of crust, which could be observed due to bacteria growing on the e-waste fragment. SEM-EDS measurements showed that the bacterial net surface was composed mostly of iron (16.1% w/w), while a higher concentration of copper was observed in the supernatant (1.7% w/w) and in the precipitated (49.8% w/w). The substances linked to copper in the supernatant were sequenced by MALDI-TOF-ms/ms and identified as macrocyclic surfactin-like peptides, similar to the basic sequence of Iturin, a lipopeptide from Bacillus subtilis. Finally, the results showed that Hyhel-1 is a bioleaching bacteria and cooper nanoparticles producer and that this bacteria could be used as a copper recovery tool from electronic waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Characterization of predominant bacteria isolates from clean rooms in a pharmaceutical production unit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aims: To screen for the predominant bacteria strains distributed in clean rooms and to analyze their phylogenetic relationships. Methods and Results: The bacteria distributed in air, surfaces and personnel in clean rooms were routinely monitored using agar plates. Five isolates frequently isolated from the clean rooms of an aseptic pharmaceutical production workshop were selected based on their colony and cell morphology characteristics. Their physiological and biochemical properties, as well as partial 16S rDNA sequences, were analyzed. Results showed that all the five isolates belong to Gram positive bacteria, of which three were Staphylococcus, one Microbacterium and one Bacillus species. Sensitivity tests for these bacteria isolates to 3 disinfectants showed that isolate F03 was obtuse, and had low susceptivity to UV irradiation, while isolates F02, F01 and F04 were not sensitive to phenol treatment. Isolates F04, F01 and F05 were resistant to chlorhexidine gluconate. Conclusion: Bacteria widely distributed in clean rooms are mainly a group of Gram positive strains, showing high resistance to selected disinfectants. Significance and impact of the study: Clean rooms are essential in aseptic pharmaceutical and food production. Screening bacteria isolates and identifying them is part of good manufacturing practices, and will aid in finding a more effective disinfection method.

  10. Naturally fermented Jijelian black olives: microbiological characteristics and isolation of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Karam, Nour-Eddine

    2009-12-01

    Full Text Available A study of the microflora of traditionally fermented black olives in Eastern Algeria is presented. A count of the following microbial groups was carried out: mesophilic bacteria, enterobacteria, lactic acid bacteria (LAB, staphylococci and yeast. In a second phase, the identification and assessment of the technological traits of LAB was performed. Seventeen lactic acid bacteria were isolated and identified. These isolates were represented by two genera: Lactobacillus and Leuconostoc. The results showed that Lactobacillus plantarum was the predominant species in this traditional product.Un estudio sobre la microflora de aceitunas negras fermentada por métodos tradicionales en el Este de Argelia es presentado. Se realizo el siguiente recuento de grupos de microorganismos: bacterias mesófilas, enterobacterias, bacterias ácido lácticas (LAB, staphylococcus y levaduras. En una segunda fase, la identificación y evaluación de aspectos tecnológicos de LAB fue realizada. Setenta bacterias ácido lácticas fueron aisladas e identificadas. Estos aislados contenían principalmente dos géneros: Lactobacillus y Leuconostoc. Los resultados mostraron que Lactobacillus plantarum fue la especie predominante en este producto tradicional.

  11. Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells.

    Science.gov (United States)

    Saldías, M Soledad; Valvano, Miguel A

    2009-09-01

    Burkholderia cenocepacia is a member of the B. cepacia complex (Bcc), a group of opportunistic bacteria that infect the airways of patients with cystic fibrosis (CF) and are extraordinarily resistant to almost all clinically useful antibiotics. Infections in CF patients with Bcc bacteria generally lead to a more rapid decline in lung function, and in some cases to the 'cepacia syndrome', a virtually deadly exacerbation of the lung infection with systemic manifestations. These characteristics of Bcc bacteria contribute to higher morbidity and mortality in infected CF patients. In the last 10 years considerable progress has been made in understanding the interactions between Bcc bacteria and mammalian host cells. Bcc isolates can survive either intracellularly within eukaryotic cells or extracellularly in host tissues. They survive within phagocytes and respiratory epithelial cells, and they have the ability to breach the respiratory epithelium layer. Survival and persistence of Bcc bacteria within host cells and tissues are believed to play a key role in pulmonary infection and to contribute to the persistent inflammation observed in patients with CF. This review summarizes recent findings concerning the interaction between Bcc bacteria and epithelial and phagocytic cells.

  12. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    Directory of Open Access Journals (Sweden)

    Anaïs Castagnola

    2014-01-01

    Full Text Available This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae and Bacillus (Firmicutes: Bacillaceae. Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol.

  13. The in Vitro Antimicrobial Efficacy of PDT against Periodontopathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Philippe A. Haag

    2015-11-01

    Full Text Available Periodontitis, an inflammatory disease, is caused by biofilms with a mixed microbial etiology and involves the progressive destruction of the tooth-supporting tissues. A rising number of studies investigate the clinical potential of photodynamic therapy (PDT as an adjunct during active therapy. The aim of the present review was to evaluate the available literature for the in vitro antimicrobial efficacy of photodynamic therapy focusing on the periodontopathogenic bacteria Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. The focused question was: “Is it possible to decrease (at least 3 log steps or 99.9% or even eliminate bacterial growth by photodynamic therapy in vitro when compared to untreated control groups or control groups treated by placebo?” In general, PDT resulted in a substantial reduction of surviving bacteria. However, not all studies showed the desired reduction or elimination. The ranges of log10-reduction were 0.38 (58% to a complete eradication (100% for P. gingivalis, 0.21 (39% to 100% for A. actinomycetemcomitans and 0.3 (50% to 100% for F. nucleatum. In conclusion, further and particularly more comparable studies are needed to evaluate if PDT can be clinically successful as an adjuvant in periodontal therapy.

  14. Genetic tools for the investigation of Roseobacter clade bacteria

    Directory of Open Access Journals (Sweden)

    Tielen Petra

    2009-12-01

    Full Text Available Abstract Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria.

  15. Biodegradation of Complex Bacteria on Phenolic Derivatives in River Water

    Institute of Scientific and Technical Information of China (English)

    GUANG-HUA LU; CHAO WANG; ZHE SUN

    2009-01-01

    Objective To isolate, incubate, and identify 4-chlorophenol-degrading complex bacteria, determine the tolerance of these bacteria to phenolic derivatives and study their synergetic metabolism as well as the aboriginal microbes and co-metabolic degradation of mixed chlorophenols in river water. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicants. Biodegradability of phenolic derivatives was determined by adding 4-chlorophenol-degrading bacteria in river water. Results The complex bacteria were identified as Mycopiana, Alcaligenes, Pseudvmonas, and Flavobacterium. The domesticated complex bacteria were more tolerant to phenolic derivatives than the aboriginal bacteria from Qinhuai River. The biodegradability of chlorophenols, dihydroxybenzenes and nitrophenols under various aquatic conditions was determined and compared. The complex bacteria exhibited a higher metabolic efficiency on chemicals than the aboriginal microbes, and the final removal rate of phenolic derivatives was increased at least by 55% when the complex bacteria were added into river water. The metabolic relationship between dominant mixed bacteria and river bacteria was studied. Conclusion The complex bacteria domesticated by 4-chlorophenol can grow and be metabolized to take other chlorophenols, dihydroxybenzenes and nitrophenols as the sole carbon and energy source. There is a synergetic metabolism of most compounds between the aboriginal microbes in river water and the domesticated complex bacteria. 4-chlorophenol-degrading bacteria can co-metabolize various chlorophenols in river water.

  16. Pervasive transcription: detecting functional RNAs in bacteria.

    Science.gov (United States)

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  17. Bacteriophage biosensors for antibiotic-resistant bacteria.

    Science.gov (United States)

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  18. Bacteria Provide Cleanup of Oil Spills, Wastewater

    Science.gov (United States)

    2010-01-01

    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  19. Fatty acid composition of selected prosthecate bacteria.

    Science.gov (United States)

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  20. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... material is demonstrated by the bacteria‐triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self‐regulating system provides the basis for the development of device‐relevant polymeric materials, which only release antibiotics...... in dependency of the titer of bacteria surrounding the medical device....