WorldWideScience

Sample records for groundwater transport overland

  1. Grain transport mechanics in shallow overland flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  2. Stress in African catfish (Clarias gariepinus) following overland transportation.

    Science.gov (United States)

    Manuel, Remy; Boerrigter, Jeroen; Roques, Jonathan; van der Heul, Jan; van den Bos, Ruud; Flik, Gert; van de Vis, Hans

    2014-02-01

    Of the many stressors in aquaculture, transportation of fish has remained poorly studied. The objective of this study was therefore to assess the effects of a (simulated) commercial transportation on stress physiology of market-size African catfish (Clarias gariepinus). Catfish weighing approximately 1.25 kg were returned to the farm after 3 h of truck-transportation, and stress-related parameters were measured for up to 72 h following return. Recovery from transportation was assessed through blood samples measuring plasma cortisol, glucose and non-esterified fatty acids (NEFA) and gill histology. Also, the number of skin lesions was compared before and after transport. Pre-transport handling and sorting elevated plasma cortisol levels compared to unhandled animals (before fasting). Plasma cortisol levels were further increased due to transportation. In control fish, plasma cortisol levels returned to baseline values within 6 h, whereas it took 48 h to reach baseline values in transported catfish. Plasma glucose and NEFA levels remained stable and were similar across all groups. Transported catfish did not, on average, have more skin lesions than the handling group, but the number of skin lesions had increased compared to unhandled animals. The macroscopic condition of the gills was similar in control, transported and unhandled catfish; however, light microscopy and immunohistochemistry revealed atypical morphology and chloride cell migration normally associated with adverse water conditions. From our data, we conclude that transportation may be considered a strong stressor to catfish that may add to other stressors and thus inflict upon the welfare of the fish.

  3. A phenomenological study of sediment transport in shallow overland flow

    Science.gov (United States)

    Soil erosion is a highly complicated phenomenon consisting of many component processes. On upland areas, these processes are usually thought of as detachment and transport of soil particles by rainfall and surface flow. One of the most difficult processes to quantify is sediment transport. This proc...

  4. Stress in African catfish (clarias gariepinus) following overland transportation

    NARCIS (Netherlands)

    Manuel, R.; Boerrigter, J.; Roques, J.; Heul, van der J.W.; Bos, van den R.; Flik, G.; Vis, van de J.W.

    2014-01-01

    Of the many stressors in aquaculture, transportation of fish has remained poorly studied. The objective of this study was therefore to assess the effects of a (simulated) commercial transportation on stress physiology of market-size African catfish (Clarias gariepinus). Catfish weighing

  5. Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo HE; Gokmen TAYFUR; Qi-hua RAN; Hao-xuan WENG

    2013-01-01

    Pollutant transport in overland flow over surfaces with spatially varying microtopography,roughness,and infiltration was investigated using the diffusion wave equation and transport rate-based equation.The finite volume method in space and an implicit backward difference scheme in time were employed in the numerical solution of the 2D governing equations.The developed model was first tested against an analytical solution and an experimental study involving overland flow and the associated pollutant transport,subsequently a series of numerical tests were carried out.Non-point source pollution was investigated under spatially varying microtopography,roughness,and infiltration.The simulation results showed that microtopography and roughness were the dominant factors causing significant spatial variations in solute concentration.When the spatially varying microtopography was replaced by a smooth surface,the result was an overestimation of the solute rate at the outlet of the upland.On the other hand,when the spatially varying roughness was replaced by the average roughness and spatially varying infiltration rate by the average infiltration rate,the pollutant discharge at the outlet of the upland was not significantly affected.The numerical results further showed that one cannot ignore the spatial variations of slope and roughness when investigating the local pollutant concentration distribution.

  6. A tidal creek water budget: Estimation of groundwater discharge and overland flow using hydrologic modeling in the Southern Everglades

    Science.gov (United States)

    Michot, Béatrice; Meselhe, Ehab A.; Rivera-Monroy, Victor H.; Coronado-Molina, Carlos; Twilley, Robert R.

    2011-07-01

    Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (˜1 km 2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999-2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999-2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory

  7. Impacts of rural land-use on overland flow and sediment transport

    Science.gov (United States)

    Fraser, S. L.; Jackson, B. M.; Norton, K. P.

    2013-12-01

    The loss of fertile topsoil over time, due to erosive processes, could have a major impact on New Zealand's economy as well as being devastating to individual land owners. Improved management of land use is needed to provide protection of soil from erosion by overland flow and aeolian processes. Effects of soil erosion and sedimentation result in an annual nationwide cost of NZ$123 million. Many previous New Zealand studies have focused on large scale soil movement from land sliding and gully erosion, including identifying risk areas. However, long term small scale erosion and degradation has been largely overlooked in the literature. Although small scale soil erosion is less apparent than mass movement, cumulative small scale soil loss over many years may have a significant impact for future land productivity. One approach to assessing the role of soil degradation is through the application of landscape models. Due to the time consuming collection of data and limited scales over which data can be collected, many models created are unique to a particular land type, land use or locality. Collection of additional datasets can broaden the use of such models by informing model representation and enhancing parameterisation. The Land Use Capability Index (LUCI), developed by Jackson et al (2013) is an example of a model that will benefit from additional data sets. LUCI is a multi-criteria GIS tool, designed to inform land management decisions by identifying areas of potential change, based on land characteristics and land use options. LUCI topographically routes overland flow and sediment using existing land characteristic maps and additionally incorporating sub-field scale data. The model then has the ability to utilise these data to enhance prediction at landscape scale. This study focuses on the influence of land use on small scale sediment transport and enhancing process representation and parameterisation to improve predictive ability of models, such as LUCI. Data

  8. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds

    Science.gov (United States)

    Ali, M.; Sterk, G.; Seeger, M.; Boersema, M.; Peters, P.

    2012-02-01

    Sediment transport is an important component of the soil erosion process, which depends on several hydraulic parameters like unit discharge, mean flow velocity, and slope gradient. In most of the previous studies, the impact of these hydraulic parameters on transport capacity was studied for non-erodible bed conditions. Hence, this study aimed to examine the influence of unit discharge, mean flow velocity and slope gradient on sediment transport capacity for erodible beds and also to investigate the relationship between transport capacity and composite force predictors, i.e. shear stress, stream power, unit stream power and effective stream power. In order to accomplish the objectives, experiments were carried out in a 3.0 m long and 0.5 m wide flume using four well sorted sands (0.230, 0.536, 0.719, 1.022 mm). Unit discharges ranging from 0.07 to 2.07 × 10-3 m2 s-1 were simulated inside the flume at four slopes (5.2, 8.7, 13.2 and 17.6%) to analyze their impact on sediment transport rate. The sediment transport rate measured at the bottom end of the flume by taking water and sediment samples was considered equal to sediment transport capacity, because the selected flume length of 3.0 m was found sufficient to reach the transport capacity. The experimental result reveals that the slope gradient has a stronger impact on transport capacity than unit discharge and mean flow velocity due to the fact that the tangential component of gravity force increases with slope gradient. Our results show that unit stream power is an optimal composite force predictor for estimating transport capacity. Stream power and effective stream power can also be successfully related to the transport capacity, however the relations are strongly dependent on grain size. Shear stress showed poor performance, because part of shear stress is dissipated by bed irregularities, bed form evolution and sediment detachment. An empirical transport capacity equation was derived, which illustrates that

  9. Overland flow and sediment transport in an agricultural lowland catchments: a focus on tile drain export

    Science.gov (United States)

    Vandromme, Rosalie; Grangeon, Thomas; Cerdan, Olivier; Manière, Louis; Salvador Blanes, Sébastien; Foucher, Anthony; Chapalain, Marion; Evrard, Olivier; Le Gall, Marion

    2016-04-01

    Rural landscapes have been extensively modified by human activities in Western Europe since the beginning of the 20th century in order to intensify agricultural production. Cultivated areas often expanded at the expense of grassland and wetlands located in lowland areas (de Groot et al., 2002). Therefore, large modifications were made to the agricultural landscapes: stream redesign, land consolidation, removal of hedges, and installation of tile drainage networks to drain the hydromorphic soils. These changes modified sediment processes and resulted in large morphological alterations (e.g. channel bed incision, deposition of fine sediment, channel bank erosion). Accordingly, these alterations threaten water quality and prevent to meet the requirements of the European directives. Improving water quality requires a clear understanding of the hydrosedimentary dynamics in these lowland cultivated catchments. However, few studies were conducted in drained environments. To fill this research gap, a pilot study was started in cultivated catchment of the Loire River basin, France, where tile drain densities are very high (> 1.5 km/km²). Six hydro-sedimentary monitoring stations were installed in the Louroux catchment (24 km²). One of them was specifically dedicated to measuring water/sediment fluxes from tile drains. Water level and turbidity were continuously monitored and sediments were sampled during floods and low stage periods. Samples were measured for particle size distribution, and sediment tracing studies are currently being developed to quantify the contribution of potential sources (e.g. surface vs subsurface, lithologies) to river sediment. Hydro-sedimentary fluxes were quantified and modelled for some selected events. The catchment hydrosedimentary fluxes and their properties were shown to be impacted by tile drain sediment transport, especially regarding particle size distribution, with the dominant export of very fine particles (< 2 μm) from tile drains

  10. Reliability Analyses of Groundwater Pollutant Transport

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Panagiotis

    1997-12-31

    This thesis develops a probabilistic finite element model for the analysis of groundwater pollution problems. Two computer codes were developed, (1) one using finite element technique to solve the two-dimensional steady state equations of groundwater flow and pollution transport, and (2) a first order reliability method code that can do a probabilistic analysis of any given analytical or numerical equation. The two codes were connected into one model, PAGAP (Probability Analysis of Groundwater And Pollution). PAGAP can be used to obtain (1) the probability that the concentration at a given point at a given time will exceed a specified value, (2) the probability that the maximum concentration at a given point will exceed a specified value and (3) the probability that the residence time at a given point will exceed a specified period. PAGAP could be used as a tool for assessment purposes and risk analyses, for instance the assessment of the efficiency of a proposed remediation technique or to study the effects of parameter distribution for a given problem (sensitivity study). The model has been applied to study the greatest self sustained, precipitation controlled aquifer in North Europe, which underlies Oslo`s new major airport. 92 refs., 187 figs., 26 tabs.

  11. High-resolution modeling of overland flow and sediment transport following wildfire: Insights into initiation mechanisms and sediment sources for runoff-generated debris flows

    Science.gov (United States)

    McGuire, L.; Kean, J. W.; Staley, D. M.; Rengers, F. K.

    2015-12-01

    Sediment transport in steep landscapes may be facilitated by both water-dominated flows and debris-flow processes. Given the differences in erosion potential and mobility possessed by runoff and debris flows, knowledge of the conditions that determine the runoff-to-debris-flow transition has important implications for hazard assessment as well as our understanding of the long-term evolution of steep bedrock channels. Debris flows in alpine areas and burned steeplands are frequently triggered by runoff following high-intensity rainfall, but the mechanics by which runoff generates a debris flow are not well understood. To examine the connections between runoff and debris flow initiation, we developed a numerical model that couples overland flow with sediment transport and debris-flow processes. We applied the model to study erosion and debris-flow initiation that occurred during a rainfall event that produced numerous debris flows within a burned drainage basin in the San Gabriel Mountains, CA, USA. Input data for the numerical model was constrained by rain gauges, stage measurements at the basin outlet, soil-moisture sensors, and high-resolution topographic data obtained using a terrestrial laser scanner (TLS). Numerical model predictions, which compare well with TLS-derived measurements of topographic change, indicate that hillslope erosion at our study site was primarily the result of raindrop-induced sediment transport. Further, results indicate that the majority of sediment eroded from the hillslopes was deposited within the channel system during the storm with only minor amounts being transported out of the basin in suspension. Based on model results, we hypothesize that numerous debris flows were generated from the mass failure of sediment dams that built up within the channel system throughout the storm. This study adds to our understanding of sediment transport in steep landscapes and provides insight into the topographic and hydrologic factors that

  12. Porosity, Dispersivity, and Contaminant Transport in Groundwater

    Institute of Scientific and Technical Information of China (English)

    MOIWO Juana P.

    2001-01-01

    Porosity (n) and Dispersivity (D) were modeled in relation to Solute Transport Time (t) in a saturated, homogeneous, isotropic, unconfined aquifer using the MOC model. It was noted that n and D have an important influence on solute transport time t in groundwater, with a consistently strong and direct relationship between n, D, and t. In the case of porosity, the relationship was found to be directly related to t when other aquifer properties remained unchanged. This was also mathematically argued using a form of the flow equation put forward by Henry Darcy (1856). Dispersivity on the other hand had somehow the same relationship with solute transport time t as porosity, but with much less effect. That is, higher dispersions lead to longer solute transport time within the aquifer system. This was because as the individual solute particles set off from the average seepage velocity, they traversed through longer distances due to tortuosity, mechanical mixing, diffusion, and microscopic heterogeneity latent in the porous media. Also when n and D were co- treated over t, n was noted to be dominant over D with regard t. This follows that the effect of porosity on solute transport time far out shadowed that of dispersivity. Stated in other words, the dispersivity of a substance in any porous medium is to a large extent a function of the porosity of that medium.

  13. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the setup of mass balances...... to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out, in order to estimate concentrations in the soilplant- air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  14. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2017-06-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  15. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2016-12-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  16. Groundwater and contaminant transport modelling at the Sydney Tar Ponds

    Energy Technology Data Exchange (ETDEWEB)

    King, M. [Groundwater Insight Inc., Halifax, NS (Canada); Check, G. [Jacques Whitford Environment Ltd., Halifax, NS (Canada); Carey, G. [Environmental Inst. for Continuing Education, Waterloo, ON (Canada); Abbey, D. [Waterloo Hydrogeologic, Waterloo, ON (Canada); Baechler, F. [ADI Ltd., Sydney, NS (Canada)

    2003-07-01

    The Muggah Creek Watershed, a tidal estuary located in Sydney, Nova Scotia, is known locally as the Tar Ponds. Over the past century, the Tar Ponds have accumulated contaminants in the contributing watershed from the iron, steel and coke manufacturing. There are sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). A groundwater modelling program was developed to estimate current contaminant fluxes to the estuary and site streams, through groundwater. Attempts were made to incorporate a complex stratigraphic profile, where groundwater flow and contaminant transport is strongly controlled by shallow fractured bedrock, into the conceptual model developed for the site. This conceptual model for groundwater flow and contaminant transport at the Sydney Tar Ponds site was presented. The complex flow patterns between bedrock and overburden, and between the bedrock units and surface water bodies were illustrated with model simulations. It was found that groundwater flow was dominated by discharge to the streams and the estuary. 6 refs., 2 tabs., 11 figs.

  17. 紫色土坡耕地可溶性有机碳径流迁移特征%Characteristics of dissolved organic carbon transport via overland flow and interflow on sloping cropland of purple soil

    Institute of Scientific and Technical Information of China (English)

    花可可; 朱波; 王小国

    2013-01-01

    Runoff is a major driver for Dissolved Organic Carbon (DOC) diffusing into aquatic ecosystems. The transportation of DOC during storm events could have measurable impacts on the global carbon cycle, but the magnitude and pathway of the impacts remain uncertain due to a lack of data. A better understanding of DOC transport via overland flow or interflow on sloping cropland is favorable for the carbon sequestration of cultivated upland. This study aimed to gain insight into the process and flux of transport of DOC in runoff as affected by rainfall characteristics. An experiment was conducted to monitor DOC transport via overland flow and interflow on sloping cropland of purple soil with free-drain lysimeter at Yanting Agro-ecological Experimental Station, Chinese Academy of Science. The experimental plots were conducted in traditional mineral fertilizer treatment (NPK) with fertilization rates at 130 kg/hm2 of N, 90 kg/hm2 of P2O5, 36 kg/hm2 of K2O for wheat and 150 kg/hm2 of N, 90 kg/hm2 of P2O5, 36 kg/hm2 of K2O for maize growing seasons, respectively. DOC transport via overland flow and interflow was continuously monitored from 2010 to 2011 in the rainy seasons by determining DOC concentrations via means of flow injection analysis (FIA) technology by Auto Analyzer3 (AA3, Bran+Lubbe, Norderstedt, Germany). Results indicated that DOC concentration was greatly affected by overland flow and interflow process. DOC concentrations in the drainage water of overland flow exhibited sharp declines at the initial period, whereas those in interflow increased at the initial period of a rainfall event and declined steadily. Transport processes of DOC were greatly affected by rain intensity. DOC concentration in the initial stage of overland flow was high while the peak DOC concentration in interflow was higher and occurred earlier in storm rain compared with heavy rain event. Average annual cumulative discharge of overland and interflow from 2010 to 2011 was 61.2、300.3 mm

  18. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  19. Numerical model simulating water flow and contaminant and sediment transport in watershed systems of 1-d stream-river network, 2-d overland regime, and 3-d subsurface media (WASH123d: version 1.0). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.; Cheng, H.; Cheng, J.; Lin, H.C.; Martin, W.D.

    1998-07-01

    This report presents the development of a numerical model simulating water flow and contaminant and sediment transport in watershed systems of one-dimensional river/stream network, two-dimensional overland regime, and three-dimensional subsurface media. The model is composed of two modules: flow and transport. Three options are provided in modeling the flow module in river/ stream network and overland regime: the kinematic wave approach, diffusion wave approach, and dynamic wave approach. The kinematic and diffusion wave approaches are known to be numerically robust in terms of numerical convergency and stability; i.e., they can generate convergent and stable simulations over a wide range of ground surface slopes in the entire watershed. The question is the accuracy of these simulations. The kinematic wave approach usually produces accurate solutions only over the region of steep slopes. The diffusion wave approach normally gives accurate solutions over the region of mild to steep slopes. However, neither approach has the ability to yield accurate solutions over the region of small slopes, in which the inertial forces are no longer negligible compared to the gravitational forces. The kinematic wave approach cannot address the problems of backwater effects. On the other hand, a dynamic wave approach, having included all forces, can theoretically have the potential to generate accurate simulations over all ranges of slopes in a watershed. The subsurface flow is described by Richard`s equation where water flow through saturated-unsaturated porous media is accounted for.

  20. Experimental observations and modeling of ponding and overland flow in flat, permeable soil fields

    Science.gov (United States)

    Appels, Willemijn; Bogaart, Patrick; van der Zee, Sjoerd

    2015-04-01

    In flat well-drained agricultural terrain, overland flow is a relatively rare phenomenon, yet still a potentially important driver of sediment and nutrient transport. Under these conditions, periods of intense rainfall, shallow groundwater dynamics and local combinations of meso- and microtopography control whether water in ponds will become connected to streams and ditches. Combining overland flow measurements at agricultural fields with a new modeling approach, we explored: (i) what rainfall conditions relate to overland flow and (ii) how does flow route connectivity develop for various types of runoff generation and meso/microtopography? For this purpose, we assessed overland flow at two field sites in flat, lowland catchments in the sandy part of the Netherlands and developed a dynamic model (FAST-runoff) to simulate redistribution of water over a heterogeneous surface with infiltration and soil water storage. Experimentally, it appeared that most overland flow occurred as saturation excess runoff during long wet periods, though infiltration excess runoff generation may have played a role during snowmelt periods that generated small amounts of runoff. For both fields, the contributing area during the saturation excess events was large and flow paths long, irrespective of the profoundly different microtopographies. We explored this behaviour with our FAST-Runoff model and found that under saturation excess conditions, mesotopographic features, such as natural depressions or those caused by tillage, gain importance at the expense of the spatial organization of microtopography. The surface topographies of our experimental fields were equal in terms of standard topographic analytical measures such as Curvature, Convergence Index, and Topographic Wetness Index. However, the fields could be distinguished when analysed with a quantitative indicator of flow for hydrological connectivity. Also, the fields had different dynamics related to the runoff generating mechanism

  1. [Solute transport modeling application in groundwater organic contaminant source identification].

    Science.gov (United States)

    Wang, Shu-Fang; Wang, Li-Ya; Wang, Xiao-Hong; Lin, Pei; Liu, Jiu-Rong; Xin, Bao-Dong; He, Guo-Ping

    2012-03-01

    Investigation and numerical simulation, based on RT3D (reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene (PCE) and trichloroethylene (TCE) in the groundwater of a city in the north of China and reverse the input intensity. Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab. The results indicate that the factories and industries are the source of the PCE and TCE in groundwater. Natural attenuation was identified and the natural attenuation rates are 93.15%, 61.70% and 61.00% for PCE, and 70.05%, 73.66% and 63.66% for TCE in 173 days. The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period. The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater. The PCE and TCE concentration are found to be 0 and 5 mg x kg(-1) from surface to 35 cm in vadose zone. All above results suggest that PCE and TCE in groundwater are from the source in the surface. Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater, and the rest was transported to groundwater through vadose zone. Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand, pebble and gravel of the Quaternary.

  2. Transport and biodegradation of benzene in the saturated groundwater layer

    Directory of Open Access Journals (Sweden)

    Khongnakorn, W.

    2004-11-01

    Full Text Available The objective of this study was to investigate the biotic and abiotic processes that affected benzene transportation in the saturated groundwater layer. The study was performed in the laboratory using synthetic groundwater and soil sample from Maptaput Industrial Estate, Rayong. This study was divided into 3 parts; batch test, column test and computer modeling. The biotic, biodegradation, and the abiotic processes were studied in the batch system. The column experiment was performed to investigate the transport behavior of benzene. The computer program, CXTFIT, with parameters acquired from batch and column experiments was used to simulate the benzene transport behavior. It was found that benzene adsorption followed the linear adsorption isotherm with its coefficient (Kd of 0.544 cm3/g and the retardation factor of 5.43. The biodegradation rate could be estimated using the firstorder biodegradation rate equation with the degradation rate of 0.0009- 0.0092 per day. The dispersion coefficient estimated from column experiments was 0.0102 cm2/s. The results from computer simulation did not fit the experimental data well. It can be concluded that the transport of benzene was a non-equilibrium transport. It was also found that biodegradation of benzene had significant effect on benzene transportation in saturated groundwater. The simulated transport with biodegradation process fitted the data fairly.

  3. Transport and Degradation of Phenol in Groundwater at Four Ashes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Drift deposits and Triassic Sandstone of the Bromsgrove and Wildmoor Formations, 700m thick, form the main aquifers at Four Ashes. The coal tar and products from early plant and tank storage facilities constructed over unprotected ground directly and indirectly caused significant groundwater pollution. The organic pollutants include phenol, cresol, and xylenol. The maximum phenol concentration in the groundwater reached 12000mg/L, with an average of 1300mg/L, which accounts for 40%-60% of the total organic contaminants. Three computer codes, Visual Modflow, MT3D, and BioRedox, which solute transport model to groundwater flow were used to simulate and predict the distribution, transport, and degradation of phenol in the polluted groundwater. Over about 46 years, the phenol moved from the pollutant source to the plume front and it will take 220 years to reach the main pumping wells. The BioRebox model was used to simulate the aerobic, sulfidogenic, nitrate-reducing, ferrogenic, manganogenic, and methanogenic zones. The residual mass in the groundwater will decrease from 1600 t to 400 t by the year 2080, with 80% of total phenol eventually lost with maximum concentration declining from 15000mg/L to 2000mg/L.

  4. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    Science.gov (United States)

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood

  5. Overland flow : interfacing models with measurements

    NARCIS (Netherlands)

    Loon, van E.E.

    2002-01-01

    Index words: overland flow, catchment scale, system identification, ensemble simulations.This study presents new techniques to identify scale-dependent overland flow models and use these for ensemble-based predictions. The techniques are developed on the basis of overland flow, rain, discharge, soil

  6. Modeling Reactive Transport in Coupled Groundwater-Conduit Systems

    Science.gov (United States)

    Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.

    2002-05-01

    Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from

  7. Groundwater transport modeling with nonlinear sorption and intraparticle diffusion

    Science.gov (United States)

    Singh, Anshuman; Allen-King, Richelle M.; Rabideau, Alan J.

    2014-08-01

    Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of "dual mode" sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including "dual mode" and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.

  8. Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions.

    NARCIS (Netherlands)

    Weerd, van de H.; Leijnse, A.; Riemsdijk, van W.H.

    1998-01-01

    Transport of reactive colloids in groundwater may enhance the transport of contaminants in groundwater. Often, the interpretation of results of transport experiments is not a simple task as both reactions of colloids with the solid matrix and reactions of contaminants with the solid matrix and

  9. Measurement and modeling of phosphorous transport in shallow groundwater environments.

    Science.gov (United States)

    Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI=2098μg/L and REI-SD=2048μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of

  10. Scaling of flow and transport behavior in heterogeneous groundwater systems

    Science.gov (United States)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  11. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  12. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  13. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  14. Applying dispersive changes to Lagrangian particles in groundwater transport models

    Science.gov (United States)

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.

  15. Filtered density function approach for reactive transport in groundwater

    Science.gov (United States)

    Suciu, Nicolae; Schüler, Lennart; Attinger, Sabine; Knabner, Peter

    2016-04-01

    Spatial filtering may be used in coarse-grained simulations (CGS) of reactive transport in groundwater, similar to the large eddy simulations (LES) in turbulence. The filtered density function (FDF), stochastically equivalent to a probability density function (PDF), provides a statistical description of the sub-grid, unresolved, variability of the concentration field. Besides closing the chemical source terms in the transport equation for the mean concentration, like in LES-FDF methods, the CGS-FDF approach aims at quantifying the uncertainty over the whole hierarchy of heterogeneity scales exhibited by natural porous media. Practically, that means estimating concentration PDFs on coarse grids, at affordable computational costs. To cope with the high dimensionality of the problem in case of multi-component reactive transport and to reduce the numerical diffusion, FDF equations are solved by particle methods. But, while trajectories of computational particles are modeled as stochastic processes indexed by time, the concentration's heterogeneity is modeled as a random field, with multi-dimensional, spatio-temporal sets of indices. To overcome this conceptual inconsistency, we consider FDFs/PDFs of random species concentrations weighted by conserved scalars and we show that their evolution equations can be formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. Numerical solutions can then be approximated by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. Instead of sequential particle methods we use a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. We illustrate the general FDF approach and the GRW numerical solution for a reduced complexity problem consisting of the transport of a single scalar in groundwater

  16. Model-data integration for predictive assessment of groundwater reactive transport systems

    NARCIS (Netherlands)

    Carniato, L.

    2014-01-01

    Predicting the evolution of groundwater contamination is a major concern for society, in particular when investments are made to remediate the contamination. Groundwater reactive transport models are valuable tools to integrate the available measurements in a consistent framework, improving our unde

  17. Metropol, a computer code for the simulation of transport of contaminants with groundwater

    NARCIS (Netherlands)

    Sauter FJ; Hassanizadeh SM; Leijnse A; Glasbergen P; Slot AFM

    1990-01-01

    In this report a description is given of the computer code METROPOL. This code simulates the three dimensional flow of groundwater with varying density and the simultaneous transport of contaminants in low concentration and is based on the finite element method. The basic equations for groundwater

  18. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  19. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    Science.gov (United States)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  20. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a

  1. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a grou

  2. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  3. Modelling regional transport of pesticide residues in groundwater

    NARCIS (Netherlands)

    Leistra, M.; Beltman, W.H.J.; Boesten, J.J.T.I.; Matser, A.M.; Zee, van der S.E.A.T.M.

    1996-01-01

    The movement of pesticides through soil and groundwater to pumping wells for drinking-water supply was modelled. Most of the retardation and transformation occurs when a pesticide moves through the unsaturated zone. Computed leaching to groundwater increased when soil heterogeneity was taken into

  4. Solutions to Overland Flow Incorporating Infiltration

    Science.gov (United States)

    Boyraz, Uǧur; Gülbaz, Sezar; Melek Kazezyılmaz-Alhan, Cevza

    2017-04-01

    Overland flow is represented by flood wave propagation and plays an important role in hydrology and hydraulics. Flood wave propagation concerns many disciplines and thus, scientists such as hydrologists, city planners, irrigation practitioners and hydraulic and environmental engineers are studying on developing accurate solutions for flood wave equations. The dynamic wave equations consist of continuity and momentum equations and describe unsteady and non-uniform flow conditions. Diffusion wave equations can be derived from the dynamic wave equations by neglecting the local and convective acceleration terms in the momentum equation. The kinematic wave model obtained by ignoring both inertial and pressure terms is the simplest routing method which substitutes a steady uniform flow relationship in the momentum equation. In order to calculate the overland flow, these three types of flood wave equations are solved with many different numerical techniques. Nevertheless, the dynamic interaction between surface flow and infiltration is not sufficiently investigated. In this study, the effect of infiltration on overland flow is explored by incorporating the integrated Horton equation into the flood wave equations. Integrated Horton method calculates infiltration under variable rainfall intensity. MacCormack explicit finite difference method is employed in solving the coupled infiltration-overland flow problem. Hydrographs for overland flow with and without infiltration effects are obtained under different rainfall intensities and soil conditions and compared. It is found that infiltration affects both the peak and the shape of hydrographs considerably. Furthermore, the effect of rainfall intensity and soil conditions on overland flow is also observed. Keywords: Overland flow; MacCormack; infiltration; Integrated Horton Method; Kinematic waves, Diffusion waves, Dynamic waves.

  5. Groundwater recharge and nutrient transport in a tile drained field: The Las Nutrias Groundwater Project, Las Nutrias, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Roth, T.L.; Bowman, R.S. [New Mexico Tech, Socorro, NM (United States). Dept. of Geoscience

    1995-12-31

    With the rapid growth of the Albuquerque region, groundwater contamination from nonpoint sources has become an increasing concern. Agriculture, one major land usage of the basin area, can abe responsible for the leaching of nutrients and chemicals to shallow groundwater via irrigation return flows. Even so, there is almost no available information regarding agricultural impacts on groundwater quality in New Mexico. The major objective of this project has been to develop a data base pertaining to this issue. The main goals of this project are: to adapt the tile drainage system to allow for the collection of irrigation return flows on an actual, operating farm; to utilize the tile drain sampling system to quantify nutrient and pesticide levels in the irrigation return flow; to determine the local hydrology in an around the field site; and to use the collected field data to test the two-dimensional water flow and chemical transport model (CHAIN 2-D).

  6. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  7. Formation and mechanics of granular waves in gravity and shallow overland flow

    Science.gov (United States)

    Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of s...

  8. Mercury speciation and transport via submarine groundwater discharge at a southern California coastal lagoon system

    Science.gov (United States)

    Ganguli, P.M.; Conaway, C.H.; Swarzenski, P.W.; Izbicki, J.A.; Flegal, A.R.

    2012-01-01

    We measured total mercury (Hg T) and monomethylmercury (MMHg) concentrations in coastal groundwater and seawater over a range of tidal conditions near Malibu Lagoon, California, and used 222Rn-derived estimates of submarine groundwater discharge (SGD) to assess the flux of mercury species to nearshore seawater. We infer a groundwater-seawater mixing scenario based on salinity and temperature trends and suggest that increased groundwater discharge to the ocean during low tide transported mercury offshore. Unfiltered Hg T (U-Hg T) concentrations in groundwater (2.2-5.9 pM) and seawater (3.3-5.2 pM) decreased during a falling tide, with groundwater U-Hg T concentrations typically lower than seawater concentrations. Despite the low Hg T in groundwater, bioaccumulative MMHg was produced in onshore sediment as evidenced by elevated MMHg concentrations in groundwater (0.2-1 pM) relative to seawater (???0.1 pM) throughout most of the tidal cycle. During low tide, groundwater appeared to transport MMHg to the coast, resulting in a 5-fold increase in seawater MMHg (from 0.1 to 0.5 pM). Similarly, filtered Hg T (F-Hg T) concentrations in seawater increased approximately 7-fold during low tide (from 0.5 to 3.6 pM). These elevated seawater F-Hg T concentrations exceeded those in filtered and unfiltered groundwater during low tide, but were similar to seawater U-Hg T concentrations, suggesting that enhanced SGD altered mercury partitioning and/or solubilization dynamics in coastal waters. Finally, we estimate that the SGD Hg T and MMHg fluxes to seawater were 0.41 and 0.15 nmol m -2 d -1, respectively - comparable in magnitude to atmospheric and benthic fluxes in similar environments. ?? 2012 American Chemical Society.

  9. Evaluation of Monensin Transport to Shallow Groundwater after Irrigation with Dairy Lagoon Water.

    Science.gov (United States)

    Hafner, Sarah C; Harter, Thomas; Parikh, Sanjai J

    2016-03-01

    Animal waste products from concentrated animal feeding operations are a significant source of antibiotics to the environment. Monensin, an ionophore antibiotic commonly used to increase feed efficiency in livestock, is known to have varied toxicological effects on nontarget species. The current study builds on prior studies evaluating the impact of dairy management on groundwater quality by examining the transport of monensin in an agricultural field with coarse-textured soils during irrigation with lagoon wastewater. The dairy is located in California's San Joaquin Valley, where groundwater can be encountered Groundwater samples were collected from a network of monitoring wells installed throughout the dairy and adjacent to irrigated fields before and after an irrigation event, which allowed for measurement of monensin potentially reaching the shallow groundwater as a direct result of irrigation with lagoon water. Monensin was extracted from water samples via hydrophilic-lipophilic balance solid-phase extraction and quantified with liquid chromatography-mass spectrometry. Irrigation water was found to contain up to 1.6 μg L monensin, but monensin was only detected in monitoring wells surrounding the waste storage lagoon. Water chemistry changes in the wells bordering the irrigated field suggest that up to 7% of irrigation water reached groundwater within days of irrigation. The study suggests that contamination of groundwater with monensin can occur primarily by compromised waste storage systems and that rapid transport of monensin to groundwater is not likely to occur from a single irrigation event.

  10. Characteristic monitoring of groundwater-salt transportation and input-output in inland arid irrigation area.

    Science.gov (United States)

    Xu, Cundong; Zhang, Hongyang; Han, Liwei; Zhai, Luxin

    2014-11-01

    The rules of microscopic water-salt transportation can be revealed and the impact on the macroscopic water and soil resources can be further predicted by selecting a typical study area and carrying out continuous monitoring. In this paper, Jingtaichuan Electrical Lifting Irrigation District in Gansu Province (hereinafter called as JingDian irrigation district (JID)) located at the inland desert region of northwest China was selected as study area. Based on the groundwater-salt transportation data of representative groundwater monitoring wells in different hydrogeological units, the groundwater-salt evolution and transportation tendency in both closed and unclosed hydrogeological units were analyzed and the quantity relative ratio relationship of regional water-salt input-excretion was calculated. The results showed that the salt brought in by artificial irrigation accounts for the highest proportion of about 63.99% and the salt carried off by the discharge of irrigation water accounts for 66.42%, namely, the water-salt evolution and transportation were mainly controlled by artificial irrigation. As the general features of regional water-salt transportation, groundwater salinity and soil salt content variation were mainly decided by the transportation of soil soluble salt which showed an obvious symbiosis gathering regularity, but the differentiation with insoluble salt components was significant in the transportation process. Besides, groundwater salinity of the unclosed hydrogeological unit presented a periodically fluctuating trend, while the groundwater salinity and soil salt content in water and salt accumulation zone of the closed hydrogeological unit showed an increasing tendency, which formed the main occurrence area of soil secondary salinization.

  11. On Limiting Behavior of Contaminant Transport Models in Coupled Surface and Groundwater Flows

    Directory of Open Access Journals (Sweden)

    Vincent J. Ervin

    2015-11-01

    Full Text Available There has been a surge of work on models for coupling surface-water with groundwater flows which is at its core the Stokes-Darcy problem. The resulting (Stokes-Darcy fluid velocity is important because the flow transports contaminants. The analysis of models including the transport of contaminants has, however, focused on a quasi-static Stokes-Darcy model. Herein we consider the fully evolutionary system including contaminant transport and analyze its quasi-static limits.

  12. GENERALIZED UPWIND SCHEME WITH FRACTIONAL STEPS FOR 3-D PROBLEM OF CONVECTION DOMINATING GROUNDWATER TRANSPORT

    Institute of Scientific and Technical Information of China (English)

    姚磊华

    1997-01-01

    A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation. These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.

  13. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt

    Directory of Open Access Journals (Sweden)

    S.M. Ghoraba

    2013-06-01

    Full Text Available Groundwater contamination is a major problem related strongly to both; protection of environment and the need of water. In the present study groundwater quality was investigated in the central part of the Nile Delta (El-Gharbiya Governorate. El-Gharbiya Governorate is an agricultural land and its densely populated area inhabited, includes small communities which totally not served by public sewers. Hydrochemical analyses were used to assess the quality of water in samples taken from the canals, drains and groundwater. A laboratory study and mathematical modeling works were presented. Two numerical computer models by the applying of finite difference method were adopted. Both models deal with the flow as a three-dimensional and unsteady. Results obtained include determining the levels of water and the values of solute concentration and distribution of it in the region at different times. The groundwater model MODFLOW was used to deal with the hydrodynamics of the flow through porous media. A solute transport model which can be communicated with MODFLOW through data files MT3DMS, was used to solve the problem of contaminants transport and the change of their concentrations with time. A proposed groundwater remediation scheme by using group of extraction wells was suggested at Birma region where the concentration values of ammonium contaminant are the up most according to hydrochemical analyses results. Proposed scenario for cleaning is to use a set of wells to pump contaminated groundwater extraction for treatment and reused to irrigation.

  14. Groundwater quality across scales: impact on nutrient transport to large water bodies

    Science.gov (United States)

    Dürr, Hans; Moosdorf, Nils; Mallast, Ulf

    2017-04-01

    High concentrations of dissolved nutrients such as nitrogen (N) and phosphorus (P) in groundwater are an increasing concern in many areas of the world. Especially regions with high agriculture impact see widespread declining groundwater quality, with considerable uncertainty mainly regarding the impact of phosphorus (P). Implications reach from direct impacts on different water users to discharge of nutrient-rich groundwater to rivers, lakes and coastal areas, where it can contribute to eutrophication, hypoxia or harmful algal blooms. While local-scale studies are abundant and management options exist, quantitative approaches at regional to continental scales are scarce and frequently have to deal with data inconsistencies or are temporally sparse. Here, we present the research framework to combine large databases of local groundwater quality to data sets of climatical, hydrological, geological or landuse parameters. Pooling of such information, together with robust methods such as water balances and groundwater models, can provide constraints such as upper boundaries and likely ranges of nutrient composition in various settings, or for the nutrient transport to large water bodies. Remote Sensing can provide spatial information on the location of groundwater seepage. Results will eventually help to identify focus areas and lead to improved understanding of the role of groundwater in the context of global biogeochemical cycles.

  15. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    NARCIS (Netherlands)

    Jansen, Gijs M.C.; Del Val Alonso, Laura; Griffioen, Jasper; Groenendijk, P.

    2012-01-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented simulation model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emission

  16. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  17. Quantification of conservative and reactive transport using a single groundwater tracer test in a fractured media

    Science.gov (United States)

    Chatton, Eliot; Labasque, Thierry; Guillou, Aurélie; Béthencourt, Lorine; de La Bernardie, Jérôme; Boisson, Alexandre; Koch, Florian; Aquilina, Luc

    2017-04-01

    Identification of biogeochemical reactions in aquifers and determining kinetics is important for the prediction of contaminant transport in aquifers and groundwater management. Therefore, experiments accounting for both conservative and reactive transport are essential to understand the biogeochemical reactivity at field scale. This study presents the results of a groundwater tracer test using the combined injection of dissolved conservative and reactive tracers (He, Xe, Ar, Br-, O2 and NO3-) in order to evaluate the transport properties of a fractured media in Brittany, France. Dissolved gas concentrations were continuously monitored in situ with a CF-MIMS (Chatton et al, 2016) allowing a high frequency (1 gas every 2 seconds) multi-tracer analysis (N2, O2, CO2, CH4, N2O, H2, He, Ne, Ar, Kr, Xe) over a large resolution (6 orders of magnitude). Along with dissolved gases, groundwater biogeochemistry was monitored through the sampling of major anions and cations, trace elements and microbiological diversity. The results show breakthrough curves allowing the combined quantification of conservative and reactive transport properties. This ongoing work is an original approach investigating the link between heterogeneity of porous media and biogeochemical reactions at field scale. Eliot Chatton, Thierry Labasque, Jérôme de La Bernardie, Nicolas Guihéneuf, Olivier Bour and Luc Aquilina; Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow; Environmental Science & Technology, in press, 2016.

  18. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  19. Modeling transport effects of perfluorinated and hydrocarbon surfactants in groundwater by using micellar liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Rashad N. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States); McGuffin, Victoria L. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States)], E-mail: jgshabus@aol.com

    2007-11-05

    The effects of hydrocarbon and perfluorinated surfactants, above their critical micelle concentration (CMC), on the transport of neutral environmental pollutants are compared. Reversed-phase micellar liquid chromatography is used to model the groundwater system. The octadecylsilica stationary phase serves to simulate soil particles containing organic matter, whereas the aqueous surfactant mobile phases serve to simulate groundwater containing a surfactant at varying concentrations. Sodium dodecyl sulfate and lithium perfluorooctane sulfonate are used as representatives of the hydrocarbon and perfluorinated surfactants, respectively. Benzene, mono- and perhalogenated benzenes, and polycyclic aromatic hydrocarbons are used as models for environmental pollutants. Transport effects were elucidated from the retention factor, k, and the equilibrium constant per micelle, K{sub eq}, of the model pollutants in the individual surfactants. Based on k values, the transport of the model pollutants increased in both surfactant solutions in comparison to pure water. As the concentration of the surfactants increased, the transport of the pollutants increased as well. Notably, the K{sub eq} values of the pollutants in the perfluorinated surfactant were at least an order of magnitude less than those in the hydrocarbon surfactant. Overall, these results suggest that the presence of a perfluorinated surfactant, above its CMC, increases the transport of pollutants in a groundwater system. However, the perfluorinated surfactant exhibits a lesser transport effect than the hydrocarbon surfactant.

  20. Submarine groundwater discharge and solute transport under a transgressive barrier island

    Science.gov (United States)

    Evans, Tyler B.; Wilson, Alicia M.

    2017-04-01

    Many recent investigations of groundwater dynamics in beaches employed groundwater models that assumed isotropic, numerically-convenient hydrogeological conditions. Real beaches exhibit local variability with respect to stratigraphy, sediment grain size and associated topographic profile, so that groundwater flow may diverge significantly from idealized models. We used a combination of hydrogeologic field methods and a variable-density, saturated-unsaturated, transient groundwater flow model to investigate SGD and solute transport under Cabretta Beach, a small transgressive barrier island seaward of Sapelo Island, Georgia. We found that the inclusion of real beach heterogeneity drove important deviations from predictions based on theoretical beaches. Cabretta Beach sustained a stronger upper saline plume than predicted due to the presence of a buried silty mud layer beneath the surface. Infiltration of seawater was greater for neap tides than for spring tides due to variations in beach slope. The strength of the upper saline plume was greatest during spring tides, contrary to recent model predictions. The position and width of the upper saline plume was highly dynamic through the lunar cycle. Our results suggest that field measurements of salinity gradients may be useful for estimating rates of tidally and density driven recirculation through the beach. Finally, our results indicate that several important biogeochemical cycles recently studied at Cabretta Beach were heavily influenced by groundwater flow and associated solute transport.

  1. Nitrate Biogeochemistry and Reactive Transport in California Groundwater: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Esser, B K; Beller, H; Carle, S; Cey, B; Hudson, G B; Leif, R; LeTain, T; Moody-Bartel, C; Moore, K; McNab, W; Moran, J; Tompson, A

    2006-02-24

    Nitrate is the number one drinking water contaminant in the United States. It is pervasive in surface and groundwater systems,and its principal anthropogenic sources have increased dramatically in the last 50 years. In California alone, one third of the public drinking-water wells has been lost since 1988 and nitrate contamination is the most common reason for abandonment. Effective nitrate management in groundwater is complicated by uncertainties related to multiple point and non-point sources, hydrogeologic complexity, geochemical reactivity, and quantification of denitrification processes. In this paper, we review an integrated experimental and simulation-based framework being developed to study the fate of nitrate in a 25 km-long groundwater subbasin south of San Jose, California, a historically agricultural area now undergoing rapid urbanization with increasing demands for groundwater. The modeling approach is driven by a need to integrate new and archival data that support the hypothesis that nitrate fate and transport at the basin scale is intricately related to hydrostratigraphic complexity, variability of flow paths and groundwater residence times, microbial activity, and multiple geochemical reaction mechanisms. This study synthesizes these disparate and multi-scale data into a three-dimensional and highly resolved reactive transport modeling framework.

  2. Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models

    Science.gov (United States)

    Kolditz, Olaf; Ratke, Rainer; Diersch, Hans-Jörg G.; Zielke, Werner

    This work examines variable density flow and corresponding solute transport in groundwater systems. Fluid dynamics of salty solutions with significant density variations are of increasing interest in many problems of subsurface hydrology. The mathematical model comprises a set of non-linear, coupled, partial differential equations to be solved for pressure/hydraulic head and mass fraction/concentration of the solute component. The governing equations and underlying assumptions are developed and discussed. The equation of solute mass conservation is formulated in terms of mass fraction and mass concentration. Different levels of the approximation of density variations in the mass balance equations are used for convection problems (e.g. the Boussinesq approximation and its extension, fully density approximation). The impact of these simplifications is studied by use of numerical modelling. Numerical models for nonlinear problems, such as density-driven convection, must be carefully verified in a particular series of tests. Standard benchmarks for proving variable density flow models are the Henry, Elder, and salt dome (HYDROCOIN level 1 case 5) problems. We studied these benchmarks using two finite element simulators - ROCKFLOW, which was developed at the Institute of Fluid Mechanics and Computer Applications in Civil Engineering and FEFLOW, which was developed at the Institute for Water Resources Planning and Systems Research Ltd. Although both simulators are based on the Galerkin finite element method, they differ in many approximation details such as temporal discretization (Crank-Nicolson vs predictor-corrector schemes), spatial discretization (triangular and quadrilateral elements), finite element basis functions (linear, bilinear, biquadratic), iteration schemes (Newton, Picard) and solvers (direct, iterative). The numerical analysis illustrates discretization effects and defects arising from the different levels of the density of approximation. We contribute

  3. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.; Miller, Charles W.; Baker, S.

    2015-01-14

    The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is a continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.

  4. Simulation Of Groundwater Flow And Reactive Transport In A Tidally Influenced Estuarine Aquifer

    Science.gov (United States)

    Mao, X.; Barry, D. A.; Enot, P.; Li, L.

    2003-12-01

    Existing groundwater monitoring data from an estuarine sandy aquifer situated below an old industrial landfill (Scotland) showed that (1) leaching from sulphurous waste located in the landfill has generated an acidic plume; (2) associated with the low pH, metal contaminants within the acidic plume are slowly migrating towards the estuary; and (3) the groundwater fluctuations are influenced by the tidal oscillations of the estuary. In order to test the possible influence of rainfall/precipitation, tidal fluctuation and salt water intrusion on the groundwater flow and reactive chemical transport, a model for multi-component reactive transport with density dependent flow was developed and applied to the site. The groundwater flow and chemical transport in this coastal aquifer were simulated. Both the field observations and numerical simulations showed that the tidal influence on the groundwater table fluctuations was great even far inland. This influence could not be explained by standard analytical solutions. It is expected that the local morphology and hydro-geological conditions cause this behaviour. The simulation performed with a conservative tracer showed that it took much less time to reach the estuary than the acidic plume originating from the landfill, with the rate of movement influenced by recharge and tidal oscillations. Due to buffering reactions occurring in the geochemical system during the migration of the contaminants (ion exchange, mineral precipitation/dissolution and oxidation/reduction), the movement of the acidic plume and associated metals is strongly retarded. Sharp differences are apparent in chemical concentrations, pH and pe, between the plume location and unaffected areas.

  5. Nitrate Transport Modeling in Deep Aquifers. Comparison between Model Results and Data from the Groundwater Monitoring Network

    NARCIS (Netherlands)

    Uffink GJM; Romkens PFAM; LBG

    2001-01-01

    Nitrate measurements from the Netherlands Groundwater Monitoring Network and model simulations were compared for deep aquifers in the eastern part of the Netherlands. The area studied measured 40 x 30 km2. The model describes advective-dispersive solute transport in groundwater and utilizes a first-

  6. TOUGH2. Unsaturated Groundwater and Heat Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

    1991-05-01

    TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.

  7. Effects of alongshore morphology on groundwater flow and solute transport in a nearshore aquifer

    Science.gov (United States)

    Zhang, Ying; Li, Ling; Erler, Dirk V.; Santos, Isaac; Lockington, David

    2016-02-01

    Variations of beach morphology in both the cross-shore and alongshore directions, associated with tidal creeks, are common at natural coasts, as observed at a field site on the east coast of Rarotonga, Cook Islands. Field investigations and three-dimensional (3-D) numerical simulations were conducted to study the nearshore groundwater flow and solute transport in such a system. The results show that the beach morphology, combined with tides, induced a significant alongshore flow and modified local pore water circulation and salt transport in the intertidal zone substantially. The bathymetry and hydraulic head of the creek enabled further and more rapid landward intrusion of seawater along the creek than in the aquifer, which created alongshore hydraulic gradient and solute concentration gradient to drive pore water flow and salt transport in the alongshore direction within the aquifer. The effects of the creek led to the formation of a saltwater plume in groundwater at an intermediate depth between fresher water zones on a cross-shore transect. The 3-D pore water flow in the nearshore zone was also complicated by the landward hydraulic head condition, resulting in freshwater drainage across the inland section of the creek while seawater infiltrating the seaward section. These results provided new insights into the complexity, intensity, and time scales of mixing among fresh groundwater, recirculating seawater and creek water in three dimensions. The 3-D characteristics of nearshore pore water flow and solute transport have important implications for studies of submarine groundwater discharge and associated chemical input to the coastal sea, and for evaluation of the beach habitat conditions.

  8. Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Drici, Warda

    2003-08-01

    This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  9. RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Chilakapati, A

    1995-07-01

    This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

  10. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    Directory of Open Access Journals (Sweden)

    T. Doppler

    2012-02-01

    Full Text Available During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most.

    Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2 with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process.

    Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached

  11. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    Science.gov (United States)

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  12. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  13. Transport of Nitrogen and Phosphorus from Onsite Wastewater Treatment Systems to Shallow Groundwater

    Science.gov (United States)

    Toor, G.

    2014-12-01

    The knowledge about the nutrients transport from the vadose zone of onsite wastewater treatment systems (commonly called septic systems) is crucial to protect groundwater quality as 25% of US population uses septic systems to discharge household wastewater. For example, our preliminary data showed that about 47% of applied water was recovered at 60-cm below drainfield of septic systems. This implies that contaminants present in wastewater, if not attenuated in the vadose zone, can be transported to shallow groundwater. This presentation will focus on the biophysical and hydrologic controls on the transport of nitrogen (N) and phosphorus (P) from the vadose of two conventional (drip dispersal, gravel trench) and an advanced (with aerobic and anaerobic medias) system. These systems were constructed using two rows of drip pipe (37 emitters/mound) placed 0.3 m apart in the center of 6 m x 0.6 m drainfield. Each system received 120 L of wastewater per day. During 20-month period (May 2012 to December 2013), soil-water samples were collected from the vadose zone using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected from piezometers installed at 3-3.30 m depth below the drainfield. A complimentary 1-year study using smaller drainfields (0.5 m long, 0.9 m wide, 0.9 m high) was conducted to obtain better insights in the vadose zone. A variety of instruments (multi-probe sensors, suction cup lysimeters, piezometers, tensiometers) were installed in the vadose zones. Results showed that nitrification controlled N evolution in drainfield and subsequent transport of N plumes (>10 mg/L) into groundwater. Most of the wastewater applied soluble inorganic P (>10 mg/L) was quickly attenuated in the drainfield due to fixation (sorption, precipitation) in the vadose zone (advanced system was extremely effective as it removed >95% N from wastewater, but was less effective at removing P. This presentation will conclude with

  14. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C.; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L.; Miller, Richard S.

    2014-09-01

    A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies.

  15. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2016-12-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  16. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2017-06-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  17. Genesis and transport of hexavalent chromium in the system ophiolitic rocks - groundwater

    Science.gov (United States)

    Shchegolikhina, Anastasia; Guadagnini, Laura; Guadagnini, Alberto

    2015-04-01

    Our study aims at contributing to the quantification and characterization of chromium transport processes from host rocks and soil matrices to groundwater. We focus on dissolved hexavalent chromium detected in groundwaters of geological regions with ophiolitic rocks (ophiolites and serpentinites) inclusions due to its critical ecological impact. (Oze et al., 2004). Despite the large number of analyses on the occurrence of high concentrations of hazardous hexavalent chromium ions in natural waters, only few studies were performed with the objective of identifying and investigating the geochemical reactions which could occur in the natural system rock - groundwater - dissolved chromium (Fantoni et al., 2002, Stephen and James, 2004, Lelli et al., 2013). In this context, there is a need for integration of results obtained from diverse studies in various regions and settings to improve our knowledge repository. Our theoretical analyses are grounded and driven by practical scenarios detected in subsurface reservoirs exploited for civil and industrial use located in the Emilia-Romagna region (Italy). Available experimental datasets are complemented with data from other international regional-scale settings (Altay mountains region, Russia). Modeling of chromium transformation and migration particularly includes characterization of the multispecies geochemical system. A key aspect of our study is the analysis of the complex competitive sorption processes governing heavy metal evolution in groundwater. The results of the research allow assessing the critical qualitative features of the mechanisms of hexavalent chromium ion mobilization from host rocks and soils and the ensuing transformation and migration to groundwater under the influence of diverse environmental factors. The study is then complemented by the quantification of the main sources of uncertainty associated with prediction of heavy metal contamination levels in the groundwater system explored. Fantoni, D

  18. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    Science.gov (United States)

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the

  19. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    Science.gov (United States)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  20. Modeling Overland Erosion on Disturbed Rangeland

    Science.gov (United States)

    Al-Hamdan, O. Z.; Hernandez, M.; Pierson, F. B.; Nearing, M.; Stone, J. J.; Williams, C. J.; Boll, J.; Weltz, M.

    2012-12-01

    The Rangeland Hydrology and Erosion Model (RHEM) is a new process-based model developed by the USDA-ARS primarily for undisturbed rangeland. Greater sediment detachment rates are usually generated by concentrated flow rather than by sheet flow. Disturbance on rangeland such as fire and tree encroachment can increase overland flow erosion rate by increasing the likelihood of concentrated flow formation on a more erodible surface. In this study, we made advancement to RHEM by developing a new version of the model to predict concentrated flow erosion rate from disturbed rangelands. The model was conceptualized based on observations and results of experimental studies on rangelands disturbed by fire and/or by tree encroachment. A logistic equation was used to partition overland flow into concentrated flow and sheet flow. The equation predicts the probability of overland flow to become concentrated based on slope angle, percentage bare soil, and flow discharge per unit width. Sediment detachment rate from concentrated flow was calculated using soil erodibility of the site and hydraulic parameters of the flow such as flow width and stream power. Soil detachment was assumed to start when concentrated flow starts (i.e. no threshold concept for initiating detachment was used). Width of concentrated flow was determined by flow discharge and slope using an equation which was developed specifically for rangeland. A dynamic erodibility concept was used where concentrated flow erodibility was set to be high at the beginning of the event and then decrease exponentially due to the reduction of availability of disturbance-source-sediment. Initial erodibility was estimated using an empirical parameterization equation as a function of readily available vegetation cover and surface soil texture data. Detachment rate from rain splash and sheet flow was determined by rainfall intensity and sheet flow discharge. A dynamic partial differential sediment continuity equation was used to

  1. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  2. Groundwater Flow and Salt Transport at a Sand Tailings Dam: Field Observations and Modelling Results.

    Science.gov (United States)

    Price, A. C.; Mendoza, C. A.

    2004-05-01

    Large volumes of sand tailings are produced during the extraction of bitumen from the oil sands of Northeastern Alberta. The long-term groundwater response and subsequent movement of water and solutes within the large permeable sand tailings storage areas is uncertain. At the Southwest Sand Storage (SWSS) Facility, located at Syncrude's Mildred Lake operations near Ft. McMurray, there is concern that salts from the tailings water may discharge to newly placed reclamation material that covers the sand tailings. This saline discharge water could destroy the reclamation soil structure and negatively impact vegetation. The steady-state groundwater flow and transient movement of salts at the local (bench and slope) and intermediate (pile) scales in the SWSS are investigated. Water levels, seepage and groundwater quality (including TDS) have been measured for over a year along two transects of piezometers installed in the SWSS. The field data have been used to complete traditional hydrogeological interpretations of the site, and to develop a conceptual model of flow and transport. The local and intermediate flow systems and salt transport in the dam are being evaluated with numerical models. The models will allow possible future hydrogeological behaviour of the structure to be tested. Preliminary results show differences in flow systems and salinity distribution that depend on the deposition of the SWSS. This research will facilitate better long-term environmental management of this and similar sites.

  3. Australian topography from Seasat overland altimetry

    Science.gov (United States)

    Frey, Herbert; Brenner, Anita C.

    1990-01-01

    Retracking of overland returns from the Seasat altimeter using algorithms originally developed for recovering elevations over ice has led to the successful recovery of high quality continental topography over Australia and other continents. Cross-over analysis both before and after orbit adjustment shows the altimetric data over land to have a 2-3 m quality. Direct comparison of gridded Seasat data with surface data re-averaged in the same way shows excellent agreement except where Seasat data are sparse, due either to poor track spacing or to dropouts caused by loss of tracker lock over steeply sloping ground. These results suggest that useful topographic data can be derived from Seasat and the more recent Geosat altimeters for parts of the world where surface data are few or of poor quality.

  4. Reduction of the ambiguity of karst aquifer modeling through pattern matching of groundwater flow and transport

    Science.gov (United States)

    Oehlmann, Sandra; Geyer, Tobias; Licha, Tobias; Sauter, Martin

    2014-05-01

    Distributive numerical simulations are an effective, process-based method for predicting groundwater resources and quality. They are based on conceptual hydrogeological models that characterize the properties of the catchment area and aquifer. Karst systems play an important role in water supply worldwide. Conceptual models are however difficult to build because of the highly developed heterogeneity of the systems. The geometry and properties of highly conductive karst conduits are generally unknown and difficult to characterize with field experiments. Due to these uncertainties numerical models of karst areas usually cannot simulate the hydraulic head distribution in the area, spring discharge and tracer breakthrough curves simultaneously on catchment scale. Especially in complex hydrogeological systems, this approach would reduce model ambiguity, which is prerequisite to predict groundwater resources and pollution risks. In this work, a distributive numerical groundwater flow and transport model was built for a highly heterogeneous karst aquifer in south-western Germany. For this aim, a solute transport interface for one-dimensional pipes was implemented in the software Comsol Multiphysics® and coupled to the standard three-dimensional solute transport interface for domains. The model was calibrated and hydraulic parameters could be obtained. The simulation was matched to the steady-state hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyze their influence in a large-scale heterogeneous karst system. Results show that it is not only possible to derive a consistent flow and transport model for a 150 km2 karst area to be employed as a

  5. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems

    Energy Technology Data Exchange (ETDEWEB)

    TP Clement

    1999-06-24

    RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in

  6. Climate Change Impacts on Transportation; Groundwater Elevation, Road Performance, and Robust Adaptation

    Science.gov (United States)

    Kirshen, P. H.; Knott, J. F.; Ray, P.; Elshaer, M.; Daniel, J.; Jacobs, J. M.

    2016-12-01

    Transportation climate change vulnerability and adaptation studies have primarily focused on surface-water flooding from sea-level rise (SLR); little attention has been given to the effects of climate change and SLR on groundwater and subsequent impacts on the unbound foundation layers of coastal-road infrastructure. The magnitude of service-life reduction depends on the height of the groundwater in the unbound pavement materials, the pavement structure itself, and the loading. Using a steady-state groundwater model, and a multi-layer elastic pavement evaluation model, the strain changes in the layers can be determined as a function of parameter values and the strain changes translated into failure as measured by number of loading cycles to failure. For a section of a major coastal road in New Hampshire, future changes in sea-level, precipitation, temperature, land use, and groundwater pumping are characterized by deep uncertainty. Parameters that describe the groundwater system such as hydraulic conductivity can be probabilistically described while road characteristics are assumed to be deterministic. To understand the vulnerability of this road section, a bottom-up planning approach was employed over time where the combinations of parameter values that cause failure were determined and their plausibility of their occurring was analyzed. To design a robust adaptation strategy that will function reasonably well in the present and the future given the large number of uncertain parameter values, performance of adaptation options were investigated. Adaptation strategies that were considered include raising the road, load restrictions, increasing pavement layer thicknesses, replacing moisture-sensitive materials with materials that are not moisture sensitive, improving drainage systems, and treatment of the underlying materials.

  7. Virus in Groundwater: Characterization of transport mechanisms and impacts on an agricultural area in Uruguay

    Science.gov (United States)

    Gamazo, P. A.; Colina, R.; Victoria, M.; Alvareda, E.; Burutaran, L.; Ramos, J.; Lopez, F.; Soler, J.

    2014-12-01

    In many areas of Uruguay groundwater is the only source of water for human consumption and for industrial-agricultural economic activities. Traditionally considered as a safe source, due to the "natural filter" that occurs in porous media, groundwater is commonly used without any treatment. The Uruguayan law requires bacteriological analysis for most water uses, but virological analyses are not mentioned in the legislation. In the Salto district, where groundwater is used for human consumption and for agricultural activities, bacterial contamination has been detected in several wells but no viruses analysis have been performed. The Republic University (UDELAR), with the support of the National Agency for Research and Innovation (ANII), is studying the incidence of virus in groundwater on an intensive agriculture area of the Salto district. In this area water is pumped from the "Salto Aquifer", a free sedimentary aquifer. Below this sedimentary deposit is the "Arapey" basaltic formation, which is also exploited for water productions on its fractured zones. A screening campaign has been performed searching for bacterial and viral contamination. Total and fecal coliforms have been found on several wells and Rotavirus and Adenovirus have been detected. A subgroup of the screening wells has been selected for an annual survey. On this subgroup, besides bacteria and viruses analysis, a standard physical and chemical characterization was performed. Results show a significant seasonal variation on microbiological contamination. In addition to field studies, rotavirus circulation experiments on columns are being performed. The objective of this experiments is to determinate the parameters that control virus transport in porous media. The results of the study are expected to provide an insight into the impacts of groundwater on Salto's viral gastroenterocolitis outbreaks.

  8. Long-term transport behavior of psychoactive compounds in sewage-affected groundwater

    Science.gov (United States)

    Nham, Hang Thuy Thi; Greskowiak, Janek; Hamann, Enrico; Meffe, Raffaella; Hass, Ulrike; Massmann, Gudrun

    2016-11-01

    The present study provides a model-based characterization of the long-term transport behavior of five psychoactive compounds (meprobamate, pyrithyldione, primidone, phenobarbital and phenylethylmalonamide) introduced into groundwater via sewage irrigation in Berlin, Germany. Compounds are still present in the groundwater despite the sewage farm closure in the year 1980. Due to the limited information on (i) compound concentrations in the source water and (ii) substance properties, a total of 180 cross-sectional model realizations for each compound were carried out, covering a large range of possible parameter combinations. Results were compared with the present-day contamination patterns in the aquifer and the most likely scenarios were identified based on a number of model performance criteria. The simulation results show that (i) compounds are highly persistent under the present field conditions, and (ii) sorption is insignificant. Thus, back-diffusion from low permeability zones appears as the main reason for the compound retardation.

  9. Mathematical model to predict the transport of dissolved arsenic in groundwater influenced by seepage velocity

    Directory of Open Access Journals (Sweden)

    Solomon Ndubuisi Eluozo

    2012-11-01

    Full Text Available Development of mathematical model to predict the transport of dissolved arsenic in groundwater influenced by seepage velocity has been carried out. This model was developed to monitor the rate of concentration at different period and depths. High and low concentrations were observed at different periods and depth as presented in the figures. These conditions can be attributed to soil stratification deposition in the study location and the influence of man-made activities. Based on these facts, it is recommended that risk assessment should be thoroughly done for soil and water and the predicted model should be applied in design and construction of groundwater system in the study area. 

  10. 2D-Cell Experiment on Methyl Tert-Butyl Ether Transport in Saturated Zone of Groundwater

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As an additive of gasoline, methyl tert-butyl ether (MTBE) has a higher solubility in water, which is about 20 times as high as that of benzene. This characteristic results in MTBE dissolving out of the gasoline into the soil and groundwater. Due to relative unique physicochemical behavior of MTBE it would be an ideal candidate for use in environmental forensic investigations. In order to study the transport and distribution of MTBE in saturated zone of ground water, a two-dimensional experimental cell was setup to simulate the real environment of the groundwater flow.The effects of soil and groundwater flow velocity on the MTBE transport were investigated. The results show that the mobile distance of MTBE in vertical direction was smaller than that in horizontal direction paralleling with the groundwater flow. Because the main dynamics of groundwater flow direction was convection and dispersion, the movement of MTBE is also diffusion in the vertical direction. In addition, the transport of MTBE was more quick in high permeability porous media, and the increase of groundwater flow velocity can accelerate the MTBE plume development, but the irregularity and randomness of the plume are enhanced synchronously. These research results can give some helps for the investigation of MTBE movement in the groundwater, also can make some references for other petroleum contamination behavior.

  11. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers.

    Science.gov (United States)

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies.

  12. The role of groundwater chemistry in the transport of bacteria to water-supply wells

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.

    1999-01-01

    Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.

  13. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    Directory of Open Access Journals (Sweden)

    T. Doppler

    2012-07-01

    Full Text Available During rain events, herbicides can be transported from their point of application to surface waters, where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may vary considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most.

    Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2 with intensive crop production in the Swiss Plateau. Water samples were collected at different locations in the catchment (overland flow, tile drains and open channel for two months after application in 2009, with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess.

    Despite the frequent and wide-spread occurrence of overland flow, most of this water did not reach the channel directly, but was retained in small depressions in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and storm drains for road and farmyard runoff acted as

  14. Transport behavior of groundwater protozoa and protozoan-sized microspheres in sandy aquifer sediments

    Science.gov (United States)

    Harvey, R.W.; Kinner, N.E.; Bunn, A.; MacDonald, D.; Metge, D.

    1995-01-01

    Transport behaviors of unidentified flagellated protozoa (flagellates) and flagellate-sized carboxylated microspheres in sandy, organically contaminated aquifer sediments were investigated in a small-scale (1 to 4-m travel distance) natural-gradient tracer test on Cape Cod and in flow-through columns packed with sieved (0.5-to 1.0-mm grain size) aquifer sediments. The minute (average in situ cell size, 2 to 3 ??m) flagellates, which are relatively abundant in the Cape Cod aquifer, were isolated from core samples, grown in a grass extract medium, labeled with hydroethidine (a vital eukaryotic stain), and coinjected into aquifer sediments along with bromide, a conservative tracer. The 2-??m flagellates appeared to be near the optimal size for transport, judging from flowthrough column experiments involving a polydispersed (0.7 to 6.2 ??m in diameter) suspension of carboxylated microspheres. However, immobilization within the aquifer sediments accounted for a log unit reduction over the first meter of travel compared with a log unit reduction over the first 10 m of travel for indigenous, free-living groundwater bacteria in earlier tests. High rates of flagellate immobilization in the presence of aquifer sediments also was observed in the laboratory. However, immobilization rates for the laboratory-grown flagellates (initially 4 to 5 ??m) injected into the aquifer were not constant and decreased noticeably with increasing time and distance of travel. The decrease in propensity for grain surfaces was accompanied by a decrease in cell size, as the flagellates presumably readapted to aquifer conditions. Retardation and apparent dispersion were generally at least twofold greater than those observed earlier for indigenous groundwater bacteria but were much closer to those observed for highly surface active carboxylated latex microspheres. Field and laboratory results suggest that 2- ??m carboxylated microspheres may be useful as analogs in investigating several abiotic

  15. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  16. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation

    Directory of Open Access Journals (Sweden)

    Hengzhen Li

    2013-12-01

    Full Text Available Micro-nano bubbles (MNBs are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

  17. Estimation of overland flow metrics at semiarid condition: Patagonian Monte

    Directory of Open Access Journals (Sweden)

    M. J. Rossi

    2012-05-01

    Full Text Available Water infiltration and overland flow (WIOF processes are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological management. WIOF processes in arid and semiarid regions present regional characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina was performed in order to estimate infiltration-overland descriptive flow parameters. The micro-relief of undisturbed field plots at z-scale <1 mm was characterized through close-range stereo-photogrammetry and geo-statistical modelling. The overland flow areas produced by experimental runoff events were video-recorded and the runoff speed was measured with ortho-image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the soil at the upper vadose zone were estimated. Field data were used to calibrate a physically-based, time explicit model of water balance in the upper soil and overland flows with a modified Green-Ampt (infiltration and Chezy's (overland flow algorithms. Modelling results satisfy validation criteria based on the observed overland flow areas, runoff-speed, water mass balance of the upper vadose zone, infiltration depth, slope along runoff-plume direction, and depression storage intensity. The experimental procedure presented supplies plot-scale estimates of overland flow and infiltration intensities at various intensities of water input which can be incorporated in larger-scale hydrological grid-models of arid regions. Findings were: (1 Overland flow velocities as well as infiltration-overland flow mass balances are consistently modelled by considering variable infiltration rates corresponding to depression storage and/or non-ponded areas. (2 The statistical relations presented

  18. The atmospheric transport of iodine-129 from Fukushima to British Columbia, Canada and its deposition and transport into groundwater

    Science.gov (United States)

    Herod, Matt N.; Suchy, Martin; Cornett, R. Jack; Kieser, W. E.; Clark, Ian D.; Graham, Gwyn

    2015-12-01

    The Fukushima-Daiichi nuclear accident (FDNA) released iodine-129 (15.7 million year half-life) and other fission product radionuclides into the environment in the spring and summer of 2011. 129I is recognized as a useful tracer for the short-lived radiohazard 131I, which has a mobile geochemical behavior with potential to contaminate water resources. To trace 129I released by the FDNA reaching Canada, pre-accident and post-accident rain samples collected in Vancouver, on Saturna Island and from the National Atmospheric Deposition Program in Washington State were measured. Groundwater from the Abbotsford-Sumas Aquifer was sampled to determine the fate of 129I that infiltrates below the root zone. Modeling of vadose zone transport was performed to constrain the travel time and retardation of 129I. The mean pre-accident 129I concentration in rain was 31 × 106 atoms/L (n = 4). Immediately following the FDNA, 129I values increased to 211 × 106 atoms/L and quickly returned to near-background levels. However, pulses of elevated 129I continued for several months. The increases in 129I concentrations from both Vancouver and Saturna Island were synchronized, and occurred directly after the initial release from the FDNA. The 129I in shallow (3H/3He age March 2013 with an average of 3.2 × 106 atoms/L (n = 32) that was coincident with modeled travel times for Fukushima 129I. The groundwater response and the modeling results suggest that 129I was partially attenuated in soil, which is consistent with its geochemical behavior; however, we conclude that the measured variability may be due to Fukushima 129I entering groundwater.

  19. A NEW NUMERICAL METHOD FOR GROUNDWATER FIOW AND SOLUTE TRANSPORT USING VELOCITY FIELD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian-fei; LAN Shou-qi; WANG Yan-ming; XU Yong-fu

    2008-01-01

    A new numerical method for groundwater flow analysis was introduced to estimate simultaneously velocity vectors and water pressure head. The method could be employed to handle the vertical flow under variably saturated conditions and for horizontal flow as well. The method allows for better estimation of velocities at the element nodes which can be used as direct input to transport models. The advection-dispersion process was treated by the Eulerian-Lagrangian approach with particle tracking technique using the velocities at FEM nodes. The method was verified with the classical one dimensional model and applied to simulate contaminant transport process through a slurry wall as a barrier to prevent leachate pollution from a sanitary landfill.

  20. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  1. Evaluation of oscillatory integrals for analytical groundwater flow and mass transport models

    Science.gov (United States)

    Ledder, Glenn; Zlotnik, Vitaly A.

    2017-06-01

    Modeling of transient dynamics of an interface between fluids of identical density and viscosity, but different otherwise, is of great interest in aquifer hydraulic, and advective contaminant transport, and has broad application. Closed-form solutions are often available for problems with simple, practically important geometry, but the integrals that appear in such solutions often have integrands with two or more oscillatory factors. Such integrals pose difficulties for numerical evaluation because the positive and negative contributions of the integrand largely cancel and the integrands decay very slowly in the integration domain. Some problems with integrands with a single oscillatory factor were tackled in the past with an integration/summation/extrapolation (ISE) method: breaking the integrand at consecutive zeros to obtain an alternating series and then using the Shanks algorithm to accelerate convergence of the series. However, this technique is ineffective for problems with multiple oscillatory factors. We present a comprehensive strategy for evaluation of such integrals that includes a better ISE method, an interval truncation method, and long-time asymptotics; this strategy is applicable to a large class of integrals with either single or multiple oscillatory factors that arise in modeling of groundwater flow and transport. The effectiveness of this methodology is illustrated by examples of integrals used in well hydraulics, groundwater recharge design, and particle tracking.

  2. Reactive chemical transport in ground-water hydrology: Challenges to mathematical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Apps, J.A.

    1990-07-01

    For a long time, earth scientists have qualitatively recognized that mineral assemblages in soils and rocks conform to established principles of chemistry. In the early 1960's geochemists began systematizing this knowledge by developing quantitative thermodynamic models based on equilibrium considerations. These models have since been coupled with advective-dispersive-diffusive transport models, already developed by ground-water hydrologists. Spurred by a need for handling difficult environmental issues related to ground-water contamination, these models are being improved, refined and applied to realistic problems of interest. There is little doubt that these models will play an important role in solving important problems of engineering as well as science over the coming years. Even as these models are being used practically, there is scope for their improvement and many challenges lie ahead. In addition to improving the conceptual basis of the governing equations, much remains to be done to incorporate kinetic processes and biological mediation into extant chemical equilibrium models. Much also remains to be learned about the limits to which model predictability can be reasonably taken. The purpose of this paper is to broadly assess the current status of knowledge in modeling reactive chemical transport and to identify the challenges that lie ahead.

  3. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    Science.gov (United States)

    Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.

    2012-12-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emissions of greenhouse gasses. It is the leading nutrient fate and transport code in the Netherlands where it is used primarily for the evaluation of fertilization related legislation. In addition, the code is applied frequently in international research projects. MT3DMS is probably the most commonly used groundwater solute transport package worldwide. The on-line model coupling ANIMO-MT3DMS combines the state-of-the-art descriptions of the biogeochemical cycles in ANIMO with the advantages of using a 3D approach for the transport through the saturated domain. These advantages include accounting for regional lateral transport, considering groundwater-surface water interactions more explicitly, and the possibility of using MODFLOW to obtain the flow fields. An additional merit of the on-line coupling concept is that it preserves feedbacks between the saturated and unsaturated zone. We tested ANIMO-MT3DMS by simulating nutrient transport for the period 1970-2007 in a Dutch agricultural polder catchment covering an area of 118 km2. The transient groundwater flow field had a temporal resolution of one day and was calculated with MODFLOW-MetaSWAP. The horizontal resolution of the model grid was 100x100m and consisted of 25 layers of varying thickness. To keep computation times manageable, we prepared MT3DMS for parallel computing, which in itself is a relevant development for a large community of groundwater transport modelers. For the parameterization of the soil, we applied a standard classification approach, representing the area by 60 units with unique combinations of soil type, land use and geohydrological setting. For the geochemical parameterization of the deeper subsurface, however, we

  4. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  5. Overland Flow Direction Information for the Upper Colorado River Basin in Daymet Climate Data resolution (overland_flow_direction_UCRB_daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — overland_flow_direction_UCRB_daymet_resolution.txt is an Esri ASCII grid representing overland flow direction in the Upper Colorado River Basin using the D8...

  6. Overland Flow Direction Information for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (overland_flow_direction_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — overland_flow_direction_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing overland flow direction in the Upper Colorado River Basin using the D8...

  7. Accounting for Mass Transfer Kinetics when Modeling the Impact of Low Permeability Layers in a Groundwater Source Zone on Dissolved Contaminant Fate and Transport

    Science.gov (United States)

    2014-03-27

    Web: http://www.epa.gov/superfund/sites/rods/fulltext/e1098040. pdf InsideEPA.com. "EPA Seeks To Ease Groundwater Cleanup Policy Following NAS...PERMEABILITY LAYERS IN A GROUNDWATER SOURCE ZONE ON DISSOLVED CONTAMINANT FATE AND TRANSPORT THESIS James M. Bell, Captain, USAF AFIT-ENV-14-M-08...MODELING THE IMPACT OF LOW PERMEABILITY LAYERS IN A GROUNDWATER SOURCE ZONE ON DISSOLVED CONTAMINANT FATE AND TRANSPORT THESIS Presented

  8. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  9. Simulation of Tritium Transport and Groundwater Age in a Variably Saturated 3D Model, Lake Rotorua Catchment, New Zealand

    Science.gov (United States)

    Daughney, C.; Toews, M. W.; Morgenstern, U.; Cornaton, F. J.; Jackson, B. M.

    2013-12-01

    Lake Rotorua is a focus of culture and tourism in New Zealand. The lake's water quality has declined since the 1970s, partly due to nutrient inputs that reach the lake via the groundwater system. Improved land use management within the catchment requires prediction of the spatial variations of groundwater transit time from land surface to the lake, and from this the prediction of current and future nutrient inflows to the lake. This study combines the two main methods currently available for determination of water age: numerical groundwater models and hydrological tracers. A steady-state 3D finite element model was constructed to simulate groundwater flow and transport of tritium and age at the catchment scale (555 km2). The model materials were defined using a 3D geologic model and included ignimbrites, rhyolites, alluvial and lake bottom sediments. The steady-state saturated groundwater flow model was calibrated using observed groundwater levels in boreholes (111 locations) and stream flow measurements from groundwater-fed streams and springs (61 locations). Hydraulic conductivities and Cauchy boundary conditions associated with the streams, springs and lake were parameterized. The transport parameters for the model were calibrated using 191 tritium samples from 105 locations (springs, streams and boreholes), with most locations having two sample dates. The transport model used steady-state flow, but simulated the transient transport and decay of tritium from rainfall recharge between 1945 and 2012. An additional 1D unsaturated sub-model was added to account for tritium decay from the ground surface to the water table. The sub-model is linked on top of the 3D model, and uses the water table depths and material properties from the 3D model. The adjustable calibration parameters for the transport model were porosity and van Genuchten parameters related to the unsaturated sub-models. Calibration of the flow model was achieved using a combination of automated least

  10. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  11. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    Science.gov (United States)

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  12. Characterizing the Occurrence and Transport of Brackish Groundwater in Southwest Bangladesh

    Science.gov (United States)

    worland, S.; Hornberger, G. M.

    2013-12-01

    Bangladesh is host to the largest and the most active delta system in the world. The morphology of the southern part of the country is characterized by low lying deltaic plains partitioned by the distributary networks of the Ganges, Brahmaputra and Meghna river systems. Much of the tidal mangrove forest ecosystem of the lower delta has been converted into poldered islands that sustain shrimp farming and rice production. The polder inhabitants depend on shallow groundwater as a primary source for drinking water and sanitation. Understanding the origin and hydrologic controls on the distribution of the brackish water and freshwater on the polder is a necessary step to ensuring a sustainable and potable freshwater source for drinking and irrigation. Preliminary sampling from shallow tube wells on Polder 32 in southwest Bangladesh suggests sporadic lateral apportioning of fresh water in the primarily brackish aquifer. This research characterizes the occurrence, transport and fate of the brackish groundwater through a combination of 3H and 14C dating, geochemical signatures, subsurface mapping using inversions from electromagnetic induction, and a 1D finite difference model and a 2D finite element model. The geochemical analysis and radiometric dating suggest that the salt water originates from paleo-brackish estuarine water deposited ~5000 years ago along with the sediments that compose the shallow aquifer. Inversions of electromagnetic survey data show potential freshwater recharge areas where the clay cap pinches out. The finite difference model demonstrates that recharge from the distributary channels is unlikely due to the low transmissivity of the clay channel beds. The finite element model gives reasonable estimates of the flushing rates of the connate brackish water beneath the polder. Inversion of electromagnetic data from a two hundred meter transect taken on Polder 32 Head gradient and groundwater flow vectors for fixed head boundary conditions across Polder

  13. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  14. Factors Controlling the Groundwater Transport of U, Th, Ra, and Rn

    Indian Academy of Sciences (India)

    A Tricca; D Porcelli; G J Wasserburg

    2000-03-01

    A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the 238U and 232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, -recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the 238U and 232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance $\\bar{x}_i$, characteristic of each nuclide. Where $\\bar{x}_i$ is much longer than the aquifer length, (for 238U, 234U, and 232Th), the activities grow linearly with distance. Where $\\bar{x}_i$ is short compared to the aquifer length, (for 234Th, 230Th, 228Th, 228Ra, and 224Ra), the activities rapidly reach a constant or quasi-constant activity value. For 226Ra and 222Rn, the limiting activity is reached after 1 km. High 234U values (proportional to the ratio 234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios 230Th/232Th, 228Ra/226Ra and 224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for 228Ra

  15. Assessment model validity document. NAMMU: A program for calculating groundwater flow and transport through porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cliffe, K.A.; Morris, S.T.; Porter, J.D. [AEA Technology, Harwell (United Kingdom)

    1998-05-01

    NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised.

  16. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  17. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and domes

  18. Microrelief-Controlled Overland Flow Generation: Laboratory and Field Experiments

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available Surface microrelief affects overland flow generation and the related hydrologic processes. However, such influences vary depending on other factors such as rainfall characteristics, soil properties, and initial soil moisture conditions. Thus, in-depth research is needed to better understand and evaluate the combined effects of these factors on overland flow dynamics. The objective of this experimental study was to examine how surface microrelief, in conjunction with the factors of rainfall, soil, and initial moisture conditions, impacts overland flow generation and runoff processes in both laboratory and field settings. A series of overland flow experiments were conducted for rough and smooth surfaces that represented distinct microtopographic characteristics and the experimental data were analyzed and compared. Across different soil types and initial moisture conditions, both laboratory and field experiments demonstrated that a rough soil surface experienced a delayed initiation of runoff and featured a stepwise threshold flow pattern due to the microrelief-controlled puddle filling-spilling-merging dynamics. It was found from the field experiments that a smooth plot surface was more responsive to rainfall variations especially during an initial rainfall event. However, enhanced capability of overland flow generation and faster puddle connectivity of a rough field plot occurred during the subsequent rain events.

  19. Three-dimensional model for multi-component reactive transport with variable density groundwater flow

    Science.gov (United States)

    Mao, X.; Prommer, H.; Barry, D.A.; Langevin, C.D.; Panteleit, B.; Li, L.

    2006-01-01

    PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. ?? 2004 Elsevier Ltd. All rights reserved.

  20. The effect of EDTA on the groundwater transport of thorium through sand.

    Science.gov (United States)

    May, Colin C; Young, Lindsay; Worsfold, Paul J; Heath, Sarah; Bryan, Nick D; Keith-Roach, Miranda J

    2012-10-01

    The effect of the anthropogenic complexing agent EDTA on thorium transport in groundwater has been studied using sand-packed columns and flow rates in the range of 20-100 m y⁻¹. The concentrations injected into the columns were in the range of 0.4-4 mM for Th and 4-40 mM for EDTA, and with EDTA:Th ratios in the range 1:1 to 10:1. The results show that EDTA can significantly increase Th transport, but two very different behaviours are observed at Th concentrations of 0.4 and 4 mM. At the lower concentration, Th breakthrough is retarded with respect to a conservative tracer, with a peak width that is consistent with a single K(d) value, followed by a longer tail, and the behaviour is very sensitive to the flow rate. However at 4 mM Th, the breakthrough peak appears near to that of the tracer, and the width of the peak is consistent with a distribution of K(d) values and/or a larger dispersivity than the tracer. Speciation and transport modelling have been used to interpret the data, and a model was developed that could explain the 0.4 mM behaviour. This suggests that ternary surface complexes are important in these systems, with at least two different species involved, although the complexity of Th speciation in these systems leads to significant uncertainty in the values of the equilibrium and kinetic parameters. For the 4 mM systems, the rapid transport observed could not be explained by a simple chemical model; instead it is likely that EDTA plays an important role in stabilising and transporting thorium colloids and clusters.

  1. Groundwater flood hazards in lowland karst terrains

    Science.gov (United States)

    Naughton, Owen; McCormack, Ted

    2016-04-01

    The spatial and temporal complexity of flooding in karst terrains pose unique flood risk management challenges. Lowland karst landscapes can be particularly susceptible to groundwater flooding due to a combination of limited drainage capacity, shallow depth to groundwater and a high level of groundwater-surface water interactions. Historically the worst groundwater flooding to have occurred in the Rep. of Ireland has been centred on the Gort Lowlands, a karst catchment on the western coast of Ireland. Numerous notable flood events have been recorded throughout the 20th century, but flooding during the winters of 2009 and 2015 were the most severe on record, inundating an area in excess of 20km2 and causing widespread and prolonged disruption and damage to property and infrastructure. Effective flood risk management requires an understanding of the recharge, storage and transport mechanisms during flood conditions, but is often hampered by a lack of adequate data. Using information gathered from the 2009 and 2015 events, the main hydrological and geomorphological factors which influence flooding in this complex lowland karst groundwater system under are elucidated. Observed flood mechanisms included backwater flooding of sinks, overland flow caused by the overtopping of sink depressions, high water levels in turlough basins, and surface ponding in local epikarst watersheds. While targeted small-scale flood measures can locally reduce the flood risk associated with some mechanisms, they also have the potential to exacerbate flooding down-catchment and must be assessed in the context of overall catchment hydrology. This study addresses the need to improve our understanding of groundwater flooding in karst terrains, in order to ensure efficient flood prevention and mitigation in future and thus help achieve the aims of the EU Floods Directive.

  2. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  3. Global Sensitivity Analysis of a model of radionuclide transport in groundwater bodies by Polynomial Chaos Expansion

    Science.gov (United States)

    Ciriello, V.; Di Federico, V.; Riva, M.; Cadini, F.; De Sanctis, J.; Zio, E.; Guadagnini, A.

    2012-04-01

    We perform a Global Sensitivity Analysis (GSA) of a transport model used to compute the peak radionuclide concentration at a given control location in a randomly heterogeneous aquifer, following a release from a near surface repository of radioactive waste and subsequent contaminant migration within the host porous medium. We illustrate how uncertainty stemming from incomplete characterization of (a) the correlation scale of the variogram of hydraulic conductivity, (b) the partition coefficient associated with sorption of the migrating radionuclide, and (c) the effective dispersivity at the scale of interest propagates to the first two (ensemble) moments of the peak solute concentration detected at a target location within a two-dimensional randomly heterogeneous hydraulic conductivity field. We treat the uncertain system parameters as independent random variables and perform a variance-based GSA within a numerical Monte Carlo framework. Groundwater flow and transport are solved by randomly sampling the space of the uncertain parameters for an ensemble of generated hydraulic conductivity realizations. The Sobol indices are adopted as sensitivity measures. These are calculated by employing a Polynomial Chaos Expansion (PCE) technique. The PCE-based representation of the response surface of the adopted transport model is then adopted as a surrogate model of the transport process to reduce the computational burden associated with a standard Monte Carlo solution of the original governing equations. This methodology allows identifying the relative influence of the selected uncertain parameters on the target (ensemble) moments of peak concentrations. Our results suggest that the ensemble mean of peak concentration is strongly influenced by the partition coefficient and the longitudinal dispersivity for the scenario analyzed. On the other hand, the hydraulic conductivity correlation scale plays an important role in the variance of the calculated peak concentration values

  4. SEAWAT: A Computer Program for Simulation of Variable-Density Groundwater Flow and Multi-Species Solute and Heat Transport

    Science.gov (United States)

    Langevin, Christian D.

    2009-01-01

    SEAWAT is a MODFLOW-based computer program designed to simulate variable-density groundwater flow coupled with multi-species solute and heat transport. The program has been used for a wide variety of groundwater studies including saltwater intrusion in coastal aquifers, aquifer storage and recovery in brackish limestone aquifers, and brine migration within continental aquifers. SEAWAT is relatively easy to apply because it uses the familiar MODFLOW structure. Thus, most commonly used pre- and post-processors can be used to create datasets and visualize results. SEAWAT is a public domain computer program distributed free of charge by the U.S. Geological Survey.

  5. Reactive transport modeling of biogeochemical dynamics in subterranean estuaries: Implications for submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.

    2007-01-01

    The quality of groundwater, in particular in coastal areas, is increasingly deteriorating due to the input of nutrients (NO3-, NH4+ and PO4) from septic systems and agricultural leaching. The discharge of groundwater to coastal waters, termed submarine groundwater discharge (SGD), is now recognized

  6. Towards a filtered density function approach for reactive transport in groundwater

    Science.gov (United States)

    Suciu, N.; Schüler, L.; Attinger, S.; Knabner, P.

    2016-04-01

    Evolution equations for probability density functions (PDFs) and filtered density functions (FDFs) of random species concentrations weighted by conserved scalars are formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. This approach provides consistent numerical PDF/FDF solutions, given by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. The solutions are obtained by a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. The general FDF approach and the GRW numerical solution are illustrated for a reduced complexity problem consisting of the transport of a single scalar in groundwater. Randomness is induced by the stochastic parameterization of the hydraulic conductivity, characterized by short range correlations and small variance. The objective is to infer the statistics of the random concentration sampled at the plume center of mass, integrated over the transverse dimension of a two-dimensional spatial domain. The PDF/FDF problem can therefore be formulated in a two-dimensional domain as well, a spatial dimension and one in the concentration space. The upscaled drift and diffusion coefficients describing the PDF transport in the physical space are estimated on single-trajectories of diffusion in velocity fields with short-range correlations, owing to their self-averaging property. The mixing coefficients describing the PDF transport in concentration spaces are parameterized by the trend and the noise inferred from the statistical analysis of an ensemble of simulated concentration time series, as well as by classical mixing models. A Gaussian spatial filter applied to a Kraichnan velocity field generator is used to construct coarse-grained simulations (CGS) for FDF problems. The purposes of the CGS simulations are

  7. Practical Implementation of New Particle Tracking Method to the Real Field of Groundwater Flow and Transport.

    Science.gov (United States)

    Suk, Heejun

    2012-01-01

    In articles published in 2009 and 2010, Suk and Yeh reported the development of an accurate and efficient particle tracking algorithm for simulating a path line under complicated unsteady flow conditions, using a range of elements within finite elements in multidimensions. Here two examples, an aquifer storage and recovery (ASR) example and a landfill leachate migration example, are examined to enhance the practical implementation of the proposed particle tracking method, known as Suk's method, to a real field of groundwater flow and transport. Results obtained by Suk's method are compared with those obtained by Pollock's method. Suk's method produces superior tracking accuracy, which suggests that Suk's method can describe more accurately various advection-dominated transport problems in a real field than existing popular particle tracking methods, such as Pollock's method. To illustrate the wide and practical applicability of Suk's method to random-walk particle tracking (RWPT), the original RWPT has been modified to incorporate Suk's method. Performance of the modified RWPT using Suk's method is compared with the original RWPT scheme by examining the concentration distributions obtained by the modified RWPT and the original RWPT under complicated transient flow systems.

  8. Fate of Uranium During Transport Across the Groundwater-Surface Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Peter R. [Princeton Univ., NJ (United States); Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-30

    Discharge of contaminated groundwater to surface waters is of concern at many DOE facilities. For example, at F-Area and TNX-Area on the Savannah River Site, contaminated groundwater, including uranium, is already discharging into natural wetlands. It is at this interface where contaminants come into contact with the biosphere. These this research addressed a critical knowledge gap focusing on the geochemistry of uranium (or for that matter, any redox-active contaminant) in wetland systems. Understanding the interactions between hydrological, microbial, and chemical processes will make it possible to provide a more accurate conceptual and quantitative understanding of radionuclide fate and transport under these unique conditions. Understanding these processes will permit better long-term management and the necessary technical justification for invoking Monitored Natural Attenuation of contaminated wetland areas. Specifically, this research did provide new insights on how plant-induced alterations to the sediment biogeochemical processes affect the key uranium reducing microorganisms, the uranium reduction, its spatial distribution, the speciation of the immobilized uranium, and its long-term stability. This was achieved by conducting laboratory mesocosm wetland experiments as well as field measurements at the SRNL. Results have shown that uranium can be immobilized in wetland systems. To a degree some of the soluble U(VI) was reduced to insoluble U(IV), but the majority of the immobilized U was incorporated into iron oxyhydroxides that precipitated onto the root surfaces of wetland plants. This U was immobilized mostly as U(VI). Because it was immobilized in its oxidized form, results showed that dry spells, resulting in the lowering of the water table and the exposure of the U to oxic conditions, did not result in U remobilization.

  9. Bayesian methods for model choice and propagation of model uncertainty in groundwater transport modeling

    Science.gov (United States)

    Mendes, B. S.; Draper, D.

    2008-12-01

    The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission

  10. Modeling substrate-bacteria-grazer interactions coupled to substrate transport in groundwater

    Science.gov (United States)

    Bajracharya, Bijendra M.; Lu, Chuanhe; Cirpka, Olaf A.

    2014-05-01

    Models of microbial dynamics coupled to solute transport in aquifers typically require the introduction of a bacterial capacity term to prevent excessive microbial growth close to substrate-injection boundaries. The factors controlling this carrying capacity, however, are not fully understood. In this study, we propose that grazers or bacteriophages may control the density of bacterial biomass in continuously fed porous media. We conceptualize the flow-through porous medium as a series of retentostats, in which the dissolved substrate is advected with water flow whereas the biomasses of bacteria and grazers are considered essentially immobile. We first model a single retentostat with Monod kinetics of bacterial growth and a second-order grazing law, which shows that the system oscillates but approaches a stable steady state with nonzero concentrations of substrate, bacteria, and grazers. The steady state concentration of the bacteria biomass is independent of the substrate concentration in the inflow. When coupling several retentostats in a series to mimic a groundwater column, the steady state bacteria concentrations thus remain at a constant level over a significant travel distance. The one-dimensional reactive transport model also accounts for substrate dispersion and a random walk of grazers influenced by the bacteria concentration. These dispersive-diffusive terms affect the oscillations until steady state is reached, but hardly the steady state value itself. We conclude that grazing, or infection by bacteriophages, is a possible explanation of the maximum biomass concentration frequently needed in bioreactive transport models. Its value depends on parameters related to the grazers or bacteriophages and is independent of bacterial growth parameters or substrate concentration, provided that there is enough substrate to sustain bacteria and grazers.

  11. A reactive transport model for the quantification of risks induced by groundwater heat pump systems in urban aquifers

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Ayora, Carlos; Garrido, Eduardo; Vázquez-Suñé, Enric; Huggenberger, Peter; Gimenez, Ana Cristina

    2016-11-01

    Shallow geothermal resource exploitation through the use of groundwater heat pump systems not only has hydraulic and thermal effects on the environment but also induces physicochemical changes that can compromise the operability of installations. This study focuses on chemical clogging and dissolution subsidence processes observed during the geothermal re-injection of pumped groundwater into an urban aquifer. To explain these phenomena, two transient reactive transport models of a groundwater heat pump installation in an alluvial aquifer were used to reproduce groundwater-solid matrix interactions occurring in a surrounding aquifer environment during system operation. The models couple groundwater flow, heat and solute transport together with chemical reactions. In these models, the permeability distribution in space changes with precipitation-dissolution reactions over time. The simulations allowed us to estimate the calcite precipitation rates and porosity variations over space and time as a function of existent hydraulic gradients in an aquifer as well as the intensity of CO2 exchanges with the atmosphere. The results obtained from the numerical model show how CO2 exolution processes that occur during groundwater reinjection into an aquifer and calcite precipitation are related to hydraulic efficiency losses in exploitation systems. Finally, the performance of reinjection wells was evaluated over time according to different scenarios until the systems were fully obstructed. Our simulations also show a reduction in hydraulic conductivity that forces re-injected water to flow downwards, thereby enhancing the dissolution of evaporitic bedrock and producing subsidence that can ultimately result in a dramatic collapse of the injection well infrastructure.

  12. Estimating overland flow erosion capacity using unit stream power

    Institute of Scientific and Technical Information of China (English)

    Hui-Ming SHIH; Chih Ted YANG

    2009-01-01

    Soil erosion caused by water flow is a complex problem.Both empirical and physically based approaches were used for the estimation of surface erosion rates.Their applications are mainly limited to experimental areas or laboratory studies.The maximum sediment concentration overland flow can carry is not considered in most of the existing surface erosion models.The lack of erosion capacity limitation may cause over estimations of sediment concentration.A correlation analysis is used in this study to determine significant factors that impact surface erosion capacity.The result shows that the unit stream power is the most dominant factor for overland flow erosion which is consistent with experimental data.A bounded regression formula is used to reflect the limits that sediment concentration cannot be less than zero nor greater than a maximum value.The coefficients used in the model are calibrated using published laboratory data.The computed results agree with laboratory data very well.A one dimensional overland flow diffusive wave model is used in conjunction with the developed soil erosion equation to simulate field experimental results.This study concludes that the non-linear regression method using unit stream power as the dominant factor performs well for estimating overland flow erosion capacity.

  13. Pareto optimal calibration of highly nonlinear reactive transport groundwater models using particle swarm optimization

    Science.gov (United States)

    Siade, A. J.; Prommer, H.; Welter, D.

    2014-12-01

    Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site

  14. Combining Wireless Sensor Networks and Groundwater Transport Models: Protocol and Model Development in a Simulative Environment

    Science.gov (United States)

    Barnhart, K.; Urteaga, I.; Han, Q.; Porta, L.; Jayasumana, A.; Illangasekare, T.

    2007-12-01

    Groundwater transport modeling is intended to aid in remediation processes by providing prediction of plume location and by helping to bridge data gaps in the typically undersampled subsurface environment. Increased availability of computer resources has made computer-based transport models almost ubiquitous in calculating health risks, determining cleanup strategies, guiding environmental regulatory policy, and in determining culpable parties in lawsuits. Despite their broad use, very few studies exist which verify model correctness or even usefulness, and those that have shown significant discrepancies between predicted and actual results. Better predictions can only be gained from additional and higher quality data, but this is an expensive proposition using current sampling techniques. A promising technology is the use of wireless sensor networks (WSNs) which are comprised of wireless nodes (motes) coupled to in-situ sensors that are capable of measuring hydrological parameters. As the motes are typically battery powered, power consumption is a major concern in routing algorithms. By supplying predictions about the direction and arrival time of the contaminant, the application-driven routing protocol would then become more efficient. A symbiotic relationship then exists between the WSN, which is supplying the data to calibrate the transport model, and the model, which may be supplying predictive information to the WSN for optimum monitoring performance. Many challenges exist before the above can be realized: WSN protocols must mature, as must sensor technology, and inverse models and tools must be developed for integration into the system. As current model calibration, even automatic calibration, still often requires manual tweaking of calibration parameters, implementing this in a real-time closed-loop process may require significant work. Based on insights from a previous proof-of-concept intermediate-scale tank experiment, we are developing the models, tools

  15. Estimating groundwater exchange with lakes: 2. Calibration of a three-dimensional, solute transport model to a stable isotope plume

    Science.gov (United States)

    Krabbenhoft, David P.; Anderson, Mary P.; Bowser, Carl J.

    1990-01-01

    A three-dimensional groundwater flow and solute transport model was calibrated to a plume of water described by measurements of δ18O and used to calculate groundwater inflow and outflow rates at a lake in northern Wisconsin. The flow model was calibrated to observed hydraulic gradients and estimated recharge rates. Calibration of the solute transport submodel to the configuration of a stable isotope (18O) plume in the contiguous aquifer on the downgradient side of the lake provides additional data to constrain the model. A good match between observed and simulated temporal variations in plume configuration indicates that the model closely simulated the dynamics of the real system. The model provides information on natural variations of rates of groundwater inflow, lake water outflow, and recharge to the water table. Inflow and outflow estimates compare favorably with estimates derived by the isotope mass balance method (Krabbenhoft et al., this issue). Model simulations agree with field observations that show groundwater inflow rates are more sensitive to seasonal variations in recharge than outflow.

  16. Modeling the release of Escherichia coli from soil into overland flow under raindrop impact

    Science.gov (United States)

    Wang, C.; Parlange, J.-Y.; Rasmussen, E. W.; Wang, X.; Chen, M.; Dahlke, H. E.; Walter, M. T.

    2017-08-01

    Pathogen transport through the environment is complicated, involving a variety of physical, chemical, and biological processes. This study considered the transfer of microorganisms from soil into overland flow under rain-splash conditions. Although microorganisms are colloidal particles, they are commonly quantified as colony-forming units (CFUs) per volume rather than as a mass or number of particles per volume, which poses a modeling challenge. However, for very small particles that essentially remain suspended after being ejected into ponded water and for which diffusion can be neglected, the Gao model, originally derived for solute transfer from soil, describes particle transfer into suspension and is identical to the Hairsine-Rose particle erosion model for this special application. Small-scale rainfall experiments were conducted in which an Escherichia coli (E. coli) suspension was mixed with a simple soil (9:1 sand-to-clay mass ratio). The model fit the experimental E. coli data. Although re-conceptualizing the Gao solute model as a particle suspension model was convenient for accommodating the unfortunate units of CFU ml-1, the Hairsine-Rose model is insensitive to assumptions about E. coli per CFU as long as the assumed initial mass concentration of E. coli is very small compared to that of the soil particle classes. Although they undoubtedly actively interact with their environment, this study shows that transport of microorganisms from soil into overland storm flows can be reasonably modeled using the same principles that have been applied to small mineral particles in previous studies.

  17. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    Science.gov (United States)

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature

  18. Regional modeling of groundwater flow and arsenic transport in the Bengal Basin: challenges of scale and complexity (Invited)

    Science.gov (United States)

    Michael, H. A.; Voss, C. I.

    2009-12-01

    Widespread arsenic poisoning is occurring in large areas of Bangladesh and West Bengal, India due to high arsenic levels in shallow groundwater, which is the primary source of irrigation and drinking water in the region. The high-arsenic groundwater exists in aquifers of the Bengal Basin, a huge sedimentary system approximately 500km x 500km wide and greater than 15km deep in places. Deeper groundwater (>150m) is nearly universally low in arsenic and a potential source of safe drinking water, but evaluation of its sustainability requires understanding of the entire, interconnected regional aquifer system. Numerical modeling of flow and arsenic transport in the basin introduces problems of scale: challenges in representing the system in enough detail to produce meaningful simulations and answer relevant questions while maintaining enough simplicity to understand controls on processes and operating within computational constraints. A regional groundwater flow and transport model of the Bengal Basin was constructed to assess the large-scale functioning of the deep groundwater flow system, the vulnerability of deep groundwater to pumping-induced migration from above, and the effect of chemical properties of sediments (sorption) on sustainability. The primary challenges include the very large spatial scale of the system, dynamic monsoonal hydrology (small temporal scale fluctuations), complex sedimentary architecture (small spatial scale heterogeneity), and a lack of reliable hydrologic and geologic data. The approach was simple. Detailed inputs were reduced to only those that affect the functioning of the deep flow system. Available data were used to estimate upscaled parameter values. Nested small-scale simulations were performed to determine the effects of the simplifications, which include treatment of the top boundary condition and transience, effects of small-scale heterogeneity, and effects of individual pumping wells. Simulation of arsenic transport at the large

  19. Groundwater Flow and Solute Transport in a Tidally influenced gravel beach in Prince William Sound, Alaska

    Science.gov (United States)

    Bobo, A. M.; Boufadel, M. C.; Abdollahi Nasab, A.

    2009-12-01

    We investigated beach hydraulics in a gravel beach on Eleanor Island, Prince William Sound, Alaska that was previously polluted with the Exxon Valdez oil spill in 1989. The beach contains trace amounts of oil such that they don’t affect beach hydraulics. Measurements of water pressure and salinity were analyzed and simulated using the model SUTRA (Saturated-Unsaturated Groundwater Flow and Solute Transport). The results indicated that the beach consists of two layers with contrasting hydraulic properties: an upper layer with a hydraulic conductivity of 10-2 m/s, and a lower layer with a hydraulic conductivity of 10-5 m/s. The presence of the layer of low hydraulic conductivity constrained the fall of the water table resulting in a water table fluctuation that is almost independent of distance from the shoreline. This is unlike previous studies, which occurred in sandy beaches, and where the fluctuation decreased going landward. The water table remained above the layers’ interface, which suggests that the oil did not penetrate the lower layer. This could explain the presence of only tracer amount of oil in the beach. A sudden seaward increase of the slope of the two layers’ interface resulted in water leaving the lower layer near the mid-intertidal zone, and draining to the sea through the upper layer. This created the effect of a hydraulic rupture separating the hydraulics in the seaward portion of the beach from the rest of beach, especially at low tide.

  20. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments

    Science.gov (United States)

    Friedly, J.C.; Davis, J.A.; Kent, D.B.

    1995-01-01

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be

  1. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER: VOLUME 3 MULTICOMPONENT REACTIVE TRANSPORT MODELING

    Science.gov (United States)

    Reactive transport modeling has been conducted to describe the performance of the permeable reactive barrier at the Coast Guard Support Center near Elizabeth City, NC. The reactive barrier was installed to treat groundwater contaminated by hexavalent chromium and chlorinated org...

  2. The Performance of Four Different Mineral Liners on the Transportation of Chlorinated Phenolic Compounds to Groundwater in Landfills.

    Science.gov (United States)

    Adar, Elanur; Bilgili, Mehmet Sinan

    2015-01-01

    The aim of this study was to investigate the efficiency of four different mineral liners (clay, bentonite, kaoline, and zeolite) which could be utilized to prevent the transport of phenolic compounds to groundwater through alternative liner systems. Four laboratory-scale HDPE reactors with 80 cm height and 40 cm inner diameter were operated for a period of 180 days. Results indicated that the transport of mono- or dichlorophenols is significantly prevented by the liner systems used, while the transport of highly chlorinated phenolic compounds cannot be prevented by the landfill liner system effectively. Highly chlorinated phenolic compounds in groundwater can be found in higher concentrations than the leachate, as a result of the degradation and transformation of these compounds. Thus, the analysis of highly chlorinated phenolic compounds such as 2,4,6-TCP, 2,3,6-TCP, 3,4,5-TCP, and PCP is of great significance for the studies to be conducted on the contamination of groundwater around landfills.

  3. The Performance of Four Different Mineral Liners on the Transportation of Chlorinated Phenolic Compounds to Groundwater in Landfills

    Directory of Open Access Journals (Sweden)

    Elanur Adar

    2015-01-01

    Full Text Available The aim of this study was to investigate the efficiency of four different mineral liners (clay, bentonite, kaoline, and zeolite which could be utilized to prevent the transport of phenolic compounds to groundwater through alternative liner systems. Four laboratory-scale HDPE reactors with 80 cm height and 40 cm inner diameter were operated for a period of 180 days. Results indicated that the transport of mono- or dichlorophenols is significantly prevented by the liner systems used, while the transport of highly chlorinated phenolic compounds cannot be prevented by the landfill liner system effectively. Highly chlorinated phenolic compounds in groundwater can be found in higher concentrations than the leachate, as a result of the degradation and transformation of these compounds. Thus, the analysis of highly chlorinated phenolic compounds such as 2,4,6-TCP, 2,3,6-TCP, 3,4,5-TCP, and PCP is of great significance for the studies to be conducted on the contamination of groundwater around landfills.

  4. Tracing natural gas transport into shallow groundwater using dissolved nitrogen and alkane chemistry in Parker County, Texas

    Science.gov (United States)

    Larson, T.; Nicot, J. P.; Mickler, P. J.; Darvari, R.

    2015-12-01

    Dissolved methane in shallow groundwater drives public concern about the safety of hydraulic fracturing. We report dissolved alkane and nitrogen gas concentrations and their stable isotope values (δ13C and δ15N, respectively) from 208 water wells in Parker county, Texas. These data are used to differentiate 'stray' natural gas and low temperature microbial methane, and (2) estimate the ratio of stray gas to groundwater. The ratio of (gas-phase) stray natural gas to groundwater is estimated by correlating dissolved methane and nitrogen concentrations and dissolved nitrogen δ15N values. Our hypothesis is groundwater exposed to high volumes of stray natural gas have high dissolved methane concentrations and low dissolved nitrogen concentrations and δ15N values. Alternatively, groundwater exposed to low volumes of stray gas-phase natural gas have elevated dissolved methane, but the concentration of dissolved nitrogen and its d15N value is atmospheric. A cluster of samples in Parker county have high concentrations of dissolved methane (>10mg/L) with d13Cmethane and alkane ratios (C1/C2+C3) typical of natural gas from the Barnett Shale and the Strawn Formation. Coupling dissolved nitrogen concentrations and δ15N values with these results, we suggest that few of the wells in this cluster preserve large gas to water ratios. Many samples with high dissolved methane concentrations have atmospheric dissolved nitrogen concentrations and δ15N values, providing evidence against high flux natural gas transport into shallow groundwater. These results demonstrate that dissolved nitrogen chemistry, in addition to dissolved alkane and noble gas measurements, may be useful to discern sources of dissolved methane and estimate ratios of stray natural gas-water ratios.

  5. Assessing the Impact of Topography on Groundwater Salinization Due to Storm Surge Inundation

    Science.gov (United States)

    Yu, X.; Yang, J.; Graf, T.; Koneshloo, M.; O'Neal, M. A.; Michael, H. A.

    2015-12-01

    The sea-level rise and increase in the frequency and intensity of coastal storms due to climate change are likely to exacerbate adverse effects of storm surges on low-lying coastal areas. The landward flow of water during storm surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topography (e.g. ponds, dunes, canals) likely has a strong impact on overwash and salinization processes, but is generally highly simplified in modeling studies. To understand the topographic impacts on groundwater salinization, we modeled overwash and variable-density groundwater flow and salt transport in 3D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering processes such as overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density flow. To represent various coastal landscape types, we started with realistic coastal topography from Delaware, USA, and then generated synthetic fields with differing shore-perpendicular connectivity and surface depressions. The groundwater salinization analysis suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, depression storage of surface water mainly controls the time for infiltrated salt to flush from the aquifer. The results indicate that for a range of synthetic conditions, topography increases the flushing time of salt by 20-300% relative to an equivalent "simple slope" in which topographic variation is absent. Our study suggests that topography have a significant impact on overwash salinization, with important implications for land management at local scales and groundwater vulnerability assessment at regional to global scales.

  6. Stochastic uncertainties and sensitivities of a regional-scale transport model of nitrate in groundwater

    NARCIS (Netherlands)

    Brink, C.v.d.; Zaadnoordijk, W.J.; Burgers, S.; Griffioen, J.

    2008-01-01

    Groundwater quality management relies more and more on models in recent years. These models are used to predict the risk of groundwater contamination for various land uses. This paper presents an assessment of uncertainties and sensitivities to input parameters for a regional model. The model had

  7. Advective Heat Transport in an Unconfined Aquifer Induced by the Field Injection of an Open-Loop Groundwater Heat Pump

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2010-01-01

    Full Text Available Problem statement: The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas. The impact on the groundwater temperature in the surrounding area of the re-injection well is directly linked to the aquifer properties. Physical processes affecting heat transport within an aquifer include advection (or convection and hydrodynamic thermodispersion (diffusion and mechanical dispersion. If the groundwater flows, the advective components tend to dominate the heat transfer process within the aquifer and the diffusion can be considered negligible. This study illustrates the experimental results derived from the groundwater monitoring in the surrounding area of an injection well connected to an open-loop GWHP plant which has been installed in the "Politecnico di Torino" (NW Italy for cooling some of the university buildings. Groundwater pumping and injection interfere only with the upper unconfined aquifer. Approach: After the description of the hydrogeological setting the authors examined the data deriving from multiparameter probes installed inside the pumping well (P2, the injection well (P4 and a downgradient piezometer (S2. Data refers to the summer 2009. To control the aquifer thermal stratification some multi-temporal temperature logs have been performed in the S2. Results: After the injection of warm water in P4 the plume arrived after 30 days in the S2. That delay is compatible with the calculated plume migration velocity (1.27 m d-1 and their respective distance (35 m. The natural temperature in the aquifer due to the switching-off of the GWHP plant has been reached after two month. The Electrical Conductivity (EC values tend to vary out of phase with the temperature. The temperature logs in the S2 highlighted a thermal stratification in the aquifer due to a low vertical

  8. A Combined Approach to Model Reduction for Nonlinear Groundwater Flow and Solute Transport Simulations Using POD and DEIM.

    Science.gov (United States)

    Stanko, Z.; Boyce, S. E.; Yeh, W. W. G.

    2015-12-01

    Model reduction techniques using proper orthogonal decomposition (POD) have been very effective in applications to confined groundwater flow models. These techniques consist of performing a projection of the solution of the full model onto a reduced basis. POD combined with the snapshot approach has been successfully applied to highly discretized linear models. In many cases, the reduced model is orders of magnitude smaller than the full model and runs 1,000 times faster. For nonlinear models, such as the unconfined groundwater flow, direct application of POD requires additional calls to the full model to generate additional snapshots. This is time consuming and increases the dimension of the reduced model. The discrete empirical interpolation method (DEIM) is a technique that avoids the additional full model calls and captures the dynamics of the nonlinear term while reducing the dimensions. Here, POD and DEIM are combined to reduce both the nonlinear unconfined groundwater flow and solute transport equations. To prove the concept, simple one-dimensional models are created for MODFLOW and MT3DMS separately. The dual approach is then tested on a density-dependent flow and transport simulation using the LMT package developed for MODFLOW. For each iteration of the nonlinear flow solver and the transport solver, the respective reduced models are solved instead. Numerical experiments show that significant reduction is obtainable before errors become too large. This method is well suited for a coastal aquifer seawater intrusion scenario, where nonlinearities only exist in small subregions of the model domain. A fine discretization can be utilized and POD will effectively eliminate unnecessary parameterization by projecting the full model system matrix onto a subspace with fewer column dimensions. DEIM can then reduce the row dimension of the original system by using only those state variable nodes with the most influence. This combined approach allows for full

  9. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  10. Identification and Characterization of Potential Discharge Areas for Radionuclide Transport by Groundwater from a Nuclear Waste Repository in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Sten [HydroResearch AB, Taeby (Sweden)], E-mail: sten.berglund@hydroresearch.se; Bosson, Emma; Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm (Sweden); Sassner, Mona [DHI Sverige AB, Stockholm (Sweden)

    2013-05-15

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  11. Hydrogeologic Setting of A/M Area: Framework for Groundwater Transport. Book 1

    Energy Technology Data Exchange (ETDEWEB)

    Van Pelt, R.; Lewis, S.E.; Aadland, R.K.

    1994-03-11

    This document includes a brief summary of the regional geology within a 200--mile radius of the A/M Area, a summary of stratigraphy and hydrostratigraphic nomenclature as it applies to the A/M Area, and a summary of stratigraphy and hydrostratigraphy specific to the A/M Area. Five different stratigraphic cross sections show site-specific geology of the Tertiary section of the Upper Atlantic Coastal Plain geologic province within the A/M Area. The Cretaceous section lacks detail because the deepest wells penetrate only the uppermost part of the Upper Cretaceous sediments. Most of the wells are confined to the Tertiary section. The A/M Area is located in the northwestern corner of the Savannah River Site (SRS). The area serves as a main administrative hub for the site. Between 1958 and 1985, approximately 2,000,000 pounds of volatile organic solvents (metal degreasers, primarily trichloroethylene and tetrachloroethylene) were routed to the M Area Settling Basin. Between 1954 and 1958, effluent also was discharged to Tim`s Branch via the A014 Outfall. In the main M Area Solvent Handling/Storage Area, a significant amount of leakage occurred from drums stored during this time period. Extensive quantities of solvents were transported, via the Process Sewer Line, to the M Area Settling Basin, and leaks occurred along this line as well. A smaller source area has been identified and is centered around the Savannah River Laboratory (SRL) (now called the Savannah River Technology Center [SRTC]) Complex. All of these source areas are represented by solvent contamination in the groundwater system. (Abstract Truncated)

  12. An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guannan [ORNL; Webster, Clayton G [ORNL; Gunzburger, Max D [ORNL

    2012-09-01

    Although Bayesian analysis has become vital to the quantification of prediction uncertainty in groundwater modeling, its application has been hindered due to the computational cost associated with numerous model executions needed for exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, we utilize a compactly supported higher-order hierar- chical basis to construct the surrogate system, resulting in a significant reduction in the number of computational simulations required. In addition, we use hierarchical surplus as an error indi- cator to determine adaptive sparse grids. This allows local refinement in the uncertain domain and/or anisotropic detection with respect to the random model parameters, which further improves computational efficiency. Finally, we incorporate a global optimization technique and propose an iterative algorithm for building the surrogate system for the PPDF with multiple significant modes. Once the surrogate system is determined, the PPDF can be evaluated by sampling the surrogate system directly with very little computational cost. The developed method is evaluated first using a simple analytical density function with multiple modes and then using two synthetic groundwater reactive transport models. The groundwater models represent different levels of complexity; the first example involves coupled linear reactions and the second example simulates nonlinear ura- nium surface complexation. The results show that the aSG-hSC is an effective and efficient tool for Bayesian inference in groundwater modeling in comparison with conventional

  13. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  14. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...... because of the occurrence of redox gradients, strongly reductive conditions and high biological activity. In order to meet the expectations of the EU Water Framework Directive, an evaluation of the impact of such plumes on surface water is needed. The aim of this work is to develop a groundwater transport...... number of geochemical processes, allows the simulation of soil geochemical transformations when microbial by-products are released to surface water, and the consideration of non-linear feedbacks on bacterial growth and pollutant transformations. Sensitivity analysis is performed through Monte Carlo...

  15. The importance of coupled modelling of variably saturated groundwater flow-heat transport for assessing river-aquifer interactions

    Science.gov (United States)

    Engeler, I.; Hendricks Franssen, H. J.; Müller, R.; Stauffer, F.

    2011-02-01

    SummaryThis paper focuses on the role of heat transport in river-aquifer interactions for the study area Hardhof located in the Limmat valley within the city of Zurich (Switzerland). On site there are drinking water production facilities of Zurich water supply, which pump groundwater and infiltrate bank filtration water from river Limmat. The artificial recharge by basins and by wells creates a hydraulic barrier against the potentially contaminated groundwater flow from the city. A three-dimensional finite element model of the coupled variably saturated groundwater flow and heat transport was developed. The hydraulic conductivity of the aquifer and the leakage coefficient of the riverbed were calibrated for isothermal conditions by inverse modelling, using the pilot point method. River-aquifer interaction was modelled using a leakage concept. Coupling was considered by temperature-dependent values for hydraulic conductivity and for leakage coefficients. The quality of the coupled model was tested with the help of head and temperature measurements. Good correspondence between simulated and measured temperatures was found for the three pumping wells and seven piezometers. However, deviations were observed for one pumping well and two piezometers, which are situated in an area, where zones with important hydrogeological heterogeneity are expected. A comparison of simulation results with isothermal leakage coefficients with those of temperature-dependent leakage coefficients shows that the temperature dependence is able to reduce the head residuals close to the river by up to 30%. The largest improvements are found in the zone, where the river stage is considerably higher than the groundwater level, which is in correspondence with the expectations. Additional analyses also showed that the linear leakage concept cannot reproduce the seepage flux in a downstream section during flood events. It was found that infiltration is enhanced during flood events, which is

  16. "A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models"

    Science.gov (United States)

    Briseño, Jessica; Herrera, Graciela S.

    2010-05-01

    Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one

  17. Overland flow in plot- to hillslope-scale hydrology: what are the major knowledge gaps?

    Science.gov (United States)

    Dunkerley, David

    2016-04-01

    Though overland flow has been studied systematically for more than 70 years, knowledge has been built in a piecemeal fashion, through studies exploring only particular aspects of overland flow. Holistic investigations have been notably lacking. An overview of the literature suggests that the occurrence of overland flow on hillslopes is frequently characterised by very large spatio-temporal variability, reflecting the many factors that influence overland flow behaviour. These include rainfall intensity, duration, event profile, and other properties; antecedent soil moisture and soil hydraulic properties; the influence of vegetation canopies, ground litter, and associated throughfall, stemflow, and percolates; microtopography and soil surface roughness; soil erodibility; runon and interactive infiltration; raindrop impact; and surface detention and afterflow. Overland flow may be patchy and discontinuous over the groundsurface. The integration all of these influences, with support from suitable distributed data collected during rainfall, remains an unrealised need. Progress has been slowed by a lack of suitable field data collection apparatus, especially for the recording of flow depths and speeds in overland flows that are commonly < 1-3 mm deep. There is also a need to develop a view of overland flow that accords with existing field observations showing that in many cases overland flow does not result from soil infiltrability being exceeded. In this context, a new descriptive term for transitory forms of overland flow arising from other mechanisms is suggested - facilitated overland flow.

  18. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.

    Science.gov (United States)

    Rolle, Massimo; Chiogna, Gabriele; Hochstetler, David L; Kitanidis, Peter K

    2013-10-01

    Mixing processes significantly affect and limit contaminant transport and transformation rates in the subsurface. The correct quantification of mixing in groundwater systems must account for diffusion, local-scale dispersion and the flow variability in heterogeneous flow fields (e.g., flow-focusing in high-conductivity and de-focusing in low-conductivity zones). Recent results of multitracer laboratory experiments revealed the significant effect of compound-specific diffusive properties on the physical displacement of dissolved species across a representative range of groundwater flow velocities. The goal of this study is to investigate the role of diffusion and compound-specific mixing for solute transport across a range of scales including: (i) pore-scale (~10⁻² m), (ii) laboratory bench-scale (~10⁰ m) and (iii) field-scale (~10² m). We investigate both conservative and mixing-controlled reactive transport using pore-scale modeling, flow-through laboratory experiments and simulations, and field-scale numerical modeling of complex heterogeneous hydraulic conductivity fields with statistical properties similar to the ones reported for the extensively investigated Borden aquifer (Ontario, Canada) and Columbus aquifer (Mississippi, USA, also known as MADE site). We consider different steady-state and transient transport scenarios. For the conservative cases we use as a metric of mixing the exponential of the Shannon entropy to quantify solute dilution either in a given volume (dilution index) or in a given solute flux (flux-related dilution index). The decrease in the mass and the mass-flux of the contaminant plumes is evaluated to quantify reactive mixing. The results show that diffusive processes, occurring at the small-scale of a pore channel, strongly affect conservative and reactive solute transport at larger macroscopic scales. The outcomes of our study illustrate the need to consider and properly account for compound-specific diffusion and mixing

  19. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

    Directory of Open Access Journals (Sweden)

    M. A. Gusyev

    2013-03-01

    Full Text Available Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000–2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages

  20. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written to provide guidance to managers and site operators on how ground-water transport codes should be selected for assessing burial site performance. There is a need for a formal approach to selecting appropriate codes from the multitude of potentially useful ground-water transport codes that are currently available. Code selection is a problem that requires more than merely considering mathematical equation-solving methods. These guidelines are very general and flexible and are also meant for developing systems simulation models to be used to assess the environmental safety of low-level waste burial facilities. Code selection is only a single aspect of the overall objective of developing a systems simulation model for a burial site. The guidance given here is mainly directed toward applications-oriented users, but managers and site operators need to be familiar with this information to direct the development of scientifically credible and defensible transport assessment models. Some specific advice for managers and site operators on how to direct a modeling exercise is based on the following five steps: identify specific questions and study objectives; establish costs and schedules for achieving answers; enlist the aid of professional model applications group; decide on approach with applications group and guide code selection; and facilitate the availability of site-specific data. These five steps for managers/site operators are discussed in detail following an explanation of the nine systems model development steps, which are presented first to clarify what code selection entails.

  1. Evaluating conceptual modeling frameworks for farm scale groundwater pathogen transport associated with animal farming and municipal wastewater recharge

    Science.gov (United States)

    Cook, S. J.; Li, X.; Watanabe, N.; Atwill, R.; Puente, C. E.; Harter, T.

    2010-12-01

    Land applications to crops of diluted animal manure associated with concentrated animal feeding operations (CAFOs) and field discharges from municipal wastewater treatment plants are potential pathways for the contamination of shallow domestic and agricultural wells by pathogenic microorganisms. Sampling of soil and groundwater for the indicator and pathogenic microorganisms; Enterococcus spp., Escherichia coli, Campylobacter spp. and Salmonella was undertaken at two CAFOs in the San Joaquin Valley, California between 2006 and 2009. Observed concentrations are highly variable in both magnitude and frequency of detection and indicated no clear relationship to field applications or seasonal effects. To investigate if the observed variability in microorganism concentrations in groundwater could be attributed to aquifer heterogeneity, we developed multiple conceptual frameworks employing nonpoint source loading functions and groundwater transport models to simulate a shallow agricultural monitoring well catchment. We developed both, homogenous and heterogeneous aquifer representations, the latter using stochastic transition probability Markov chain representation. Also, we developd homogeneous and spatio-temporally heterogeneous loading models. Model sensitivity to conceptual frameworks, transport parameters, and spatio-temporal variations in diffuse pathogen loading at the water table was determined by comparing simulated frequency of pathogen detection with measured monitoring well breakthrough curves. Model results indicate that field scale aquifer heterogeneity cannot fully account for the variation in concentrations observed in shallow monitoring wells and that microorganism loading at the water table must also be highly heterogeneous. A two dimensional Neyman-Scott cluster process was found to provide the best representation of heterogeneity in recharge concentration and is conceptually consistent with the presence of low attenuation transport pathways in the

  2. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  3. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  4. A groundwater flow and transport model of long-term radionuclide migration in central Frenchman flat, Nevada test site

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, Edward Michael [Los Alamos National Laboratory; Becker, Naomi M [Los Alamos National Laboratory; Ruskauff, Gregory [NAVARRO-INTERA, LLC.; De Novio, Nicole [GOLDER AND ASSOC.; Wilborn, Bill [US DOE NNSA NSO

    2010-11-10

    A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.

  5. Simulation of groundwater and nuclide transport in the near-field of the high-level radioactive waste repository with TOUGHREACT

    Institute of Scientific and Technical Information of China (English)

    LI Xun; YANG Zeping; ZHENG Zhihong; WU Hongmei

    2008-01-01

    In order to know the mechanism of groundwater transport and the variation of ion concentrations in the near-field of the high-level radioactive waste repository, the whole process was simulated by EOS3 module of TOUGHREACT. Generally, the pH and cation concentrations vary obviously in the near-field saturated zone due to interaction between groundwater and bentonite. Moreover, the simulated results showed that calcite precipitation could not cause obvious variations in the porosity of media in the near-filed if the chemical components and their concentrations of groundwater and bentonite pore water are similar to those used in this study.

  6. California GAMA Program: Sources and transport of nitrate in shallow groundwater in the Llagas Basin of Santa Clara County, California

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; McNab, W; Esser, B; Hudson, G; Carle, S; Beller, H; Kane, S; Tompson, A B; Letain, T; Moore, K; Eaton, G; Leif, R; Moody-Bartel, C; Singleton, M

    2005-06-29

    A critical component of the State Water Resource Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program is to assess the major threats to groundwater resources that supply drinking water to Californians (Belitz et al., 2004). Nitrate is the most pervasive and intractable contaminant in California groundwater and is the focus of special studies under the GAMA program. This report presents results of a study of nitrate contamination in the aquifer beneath the cities of Morgan Hill and Gilroy, CA, in the Llagas Subbasin of Santa Clara County, where high nitrate levels affect several hundred private domestic wells. The main objectives of the study are: (1) to identify the main source(s) of nitrate that issue a flux to the shallow regional aquifer (2) to determine whether denitrification plays a role in the fate of nitrate in the subbasin and (3) to assess the impact that a nitrate management plan implemented by the local water agency has had on the flux of nitrate to the regional aquifer. Analyses of 56 well water samples for major anions and cations, nitrogen and oxygen isotopes of nitrate, dissolved excess nitrogen, tritium and groundwater age, and trace organic compounds, show that synthetic fertilizer is the most likely source of nitrate in highly contaminated wells, and that denitrification is not a significant process in the fate of nitrate in the subbasin except in the area of recycled water application. In addition to identifying contaminant sources, these methods offer a deeper understanding of how the severity and extent of contamination are affected by hydrogeology and groundwater management practices. In the Llagas subbasin, the nitrate problem is amplified in the shallow aquifer because it is highly vulnerable with high vertical recharge rates and rapid lateral transport, but the deeper aquifers are relatively more protected by laterally extensive aquitards. Artificial recharge delivers low-nitrate water and provides a means of

  7. Real-time monitoring of nitrate transport in the deep vadose zone under a crop field - implications for groundwater protection

    Science.gov (United States)

    Turkeltaub, Tuvia; Kurtzman, Daniel; Dahan, Ofer

    2016-08-01

    Nitrate is considered the most common non-point pollutant in groundwater. It is often attributed to agricultural management, when excess application of nitrogen fertilizer leaches below the root zone and is eventually transported as nitrate through the unsaturated zone to the water table. A lag time of years to decades between processes occurring in the root zone and their final imprint on groundwater quality prevents proper decision-making on land use and groundwater-resource management. This study implemented the vadose-zone monitoring system (VMS) under a commercial crop field. Data obtained by the VMS for 6 years allowed, for the first time known to us, a unique detailed tracking of water percolation and nitrate migration from the surface through the entire vadose zone to the water table at 18.5 m depth. A nitrate concentration time series, which varied with time and depth, revealed - in real time - a major pulse of nitrate mass propagating down through the vadose zone from the root zone toward the water table. Analysis of stable nitrate isotopes indicated that manure is the prevalent source of nitrate in the deep vadose zone and that nitrogen transformation processes have little effect on nitrate isotopic signature. The total nitrogen mass calculations emphasized the nitrate mass migration towards the water table. Furthermore, the simulated pore-water velocity through analytical solution of the convection-dispersion equation shows that nitrate migration time from land surface to groundwater is relatively rapid, approximately 5.9 years. Ultimately, agricultural land uses, which are constrained to high nitrogen application rates and coarse soil texture, are prone to inducing substantial nitrate leaching.

  8. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    Energy Technology Data Exchange (ETDEWEB)

    KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY N. [Los Alamos National Laboratory; BURIAN, STEVEN J. [NON LANL

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  9. Digital-transport model study of Diisopropylmethylphosphonate (DIMP) ground-water contamination at the Rocky Mountain Arsenal, Colorado

    Science.gov (United States)

    Warner, James W.

    1979-01-01

    Diisopropylmethylphosphonate (DIMP) is an organic compound produced as a by-product of the manufacture and detoxification of GB nerve gas. Ground-water contamination by DIMP from the disposal of wastes into unlined surface ponds at the Rocky Mountain Arsenal occurred from 1952 to 1956. A digital-transport model was used to determine the effects on ground-water movement and on DIMP concentrations in the ground water of a bentonite barrier in the aquifer near the northern boundary of the arsenal. The transport model is based on an iterative-alternating-direction-implicit mathematical solution of the ground-water-flow equation coupled with a method-of-characteristics solution of the solute-transport equation. The model assumes conservative (nonreactive) transient transport of DIMP and steady-state ground-water flow. In the model simulations, a bentonite barrier was assumed that was impermeable and penetrated the entire saturated thickness of the aquifer. Ground water intercepted by the barrier was assumed to be pumped by wells located south (upgradient) of the barrier, to be treated to remove DIMP, and to be recharged by pits or wells to the aquifer north (downgradient) of the barrier. The amount of DIMP transported across the northern boundary of the arsenal was substantially reduced by a ground-water-barrier system of this type. For a 1,500-foot-long bentonite barrier located along the northern boundary of the arsenal near D Street, about 50 percent of the DIMP that would otherwise cross the boundary would be intercepted by the barrier. This barrier configuration and location were proposed by the U.S. Army. Of the ground water with DIMP concentrations greater than 500 micrograms per liter, the safe DIMP-concentration level determined by the U.S. Army, about 72 percent would be intercepted by the barrier system. The amount of DIMP underflow intercepted may be increased to 65 percent by doubling the pumpage, or to 73 percent by doubling the length of the barrier

  10. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    Science.gov (United States)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn

  11. Effects of climate and sewer condition on virus transport to groundwater

    Science.gov (United States)

    Pathogen contamination from leaky sanitary sewers poses a threat to groundwater quality in urban areas, yet the spatial and temporal dimensions of this contamination are not well understood. In this study, 16 monitoring wells and six municipal wells were repeatedly sampled for human enteric viruses....

  12. Effect of hydrochemical conditions in transport properties of viruses in groundwater

    NARCIS (Netherlands)

    Sadeghi, G.R.

    2012-01-01

    Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of drinking water wells and to adequately protect groundwater resources. Laboratory and field experiments are necessary to obtain values for kinetic parameters needed to describe virus

  13. A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality.

    Science.gov (United States)

    Foose, Gary J

    2010-01-01

    New adaptations of analytical equations for predicting the impact of solute transport through composite landfill liners on groundwater quality for steady-state conditions are presented. Analytical equations are developed for evaluating average concentration and mass flow rate in an underlying aquifer resulting from diffusion of volatile organic compounds (VOCs) through intact composite liners and transport of inorganic constituents through defects in composite liners. The equations are applied to evaluate the effectiveness and equivalency of composite liners having either a 0.6 m-thick compacted soil liner or a 6.5 mm-thick geosynthetic clay liner (GCL) overlying an intermediate attenuation layer and an aquifer having horizontal flow. Example analyses for designing composite liners meeting particular performance criteria are also provided. The analytical equations are relatively simple to apply and can be used for preliminary design and analysis, to evaluate experimental results, and to possibly verify more complex numerical models for evaluating the impact of landfills on groundwater quality if consistency of the assumptions of the analytical equations and the more complex numerical models can be specified.

  14. Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site

    Science.gov (United States)

    Zhu, Chen; Hu, Fang Q.; Burden, David S.

    2001-11-01

    Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH) 3(a), and Fe(OH) 3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO 42- transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.

  15. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

    Science.gov (United States)

    Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel

    2016-12-01

    Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  16. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

    Science.gov (United States)

    Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel

    2017-05-01

    Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  17. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  18. A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan

    2003-01-01

    Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and

  19. Groundwater contributions to metal transport in a small river affected by mining and smelting waste

    Energy Technology Data Exchange (ETDEWEB)

    Coynel, A.; Schafer, J.; Dabrin, A.; Girardot, N.; Blanc, G. [University of Bordeaux, Talence (France)

    2007-08-15

    The Riou Mort watershed, strongly affected by former coal mining and ZEE ore treatment, has been the major source of the historical polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system. Two decades after the end of ore treatment, the former industrial area still contributes important amounts of metals/metalloids from various, partly unidentified, sources to the downstream river system. This study presents the high spatial variability of metal/metalloid (Cd, Zn, As, Sb, U, V) concentrations in water and suspended particulate matter (SPM) from eight observation sites during a short, intense flood event. Despite important dilution effects, the observed concentration levels at the different sites suggested additional Cd and Zn inputs, probably from polluted groundwater. This formerly unknown metal source was then localized and characterized by sampling water and SPM along two longitudinal profiles during different hydrological situations. Groundwater inputs of 'truly dissolved' (<0.02pm) Cd and Zn occurred along -200m, contributing 43% and 28% to the total annual (2004) Cd and Zn fluxes in the Riou Mort River. The estimated groundwater concentrations of Cd and Zn (2500-6700 and 83,000-170,000 mu g1{sup -1}, respectively) in the source zone were consistent with values measured in samples from the near aquifer (5400-13,000 and 200,000-400,000 mu g1{sup -1}). The present work induced concrete remediation actions (pumping and treatment of the polluted groundwater), that are expected to strongly reduce dissolved Cd and Zn emissions into the Riou Mort River.

  20. Groundwater contributions to metal transport in a small river affected by mining and smelting waste.

    Science.gov (United States)

    Coynel, Alexandra; Schäfer, Jörg; Dabrin, Aymeric; Girardot, Naïg; Blanc, Gérard

    2007-08-01

    The Riou Mort watershed, strongly affected by former coal mining and Zn ore treatment, has been the major source of the historical polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system. Two decades after the end of ore treatment, the former industrial area still contributes important amounts of metals/metalloids from various, partly unidentified, sources to the downstream river system. This study presents the high spatial variability of metal/metalloid (Cd, Zn, As, Sb, U, V) concentrations in water and suspended particulate matter (SPM) from eight observation sites during a short, intense flood event. Despite important dilution effects, the observed concentration levels at the different sites suggested additional Cd and Zn inputs, probably from polluted groundwater. This formerly unknown metal source was then localized and characterized by sampling water and SPM along two longitudinal profiles during different hydrological situations. Groundwater inputs of "truly dissolved" (treatment of the polluted groundwater), that are expected to strongly reduce dissolved Cd and Zn emissions into the Riou Mort River.

  1. The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst

    Science.gov (United States)

    Gondwe, Bibi R. N.; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

    2011-03-01

    SummaryGroundwater management in karst is often based on limited hydrologic understanding of the aquifer. The geologic heterogeneities controlling the water flow are often insufficiently mapped. As karst aquifers are very vulnerable to pollution, groundwater protection and land use management are crucial to preserve water resources and maintain ecosystem services. Multiple Model Simulation highlights the impact of model structure uncertainty on management decisions using several plausible conceptual models. Multiple Model Simulation was used for this purpose on the Yucatan Peninsula, which is one of the world's largest karstic aquifers. The aquifer is the only available fresh water source for human users and ecosystems on the Peninsula. One of Mexico's largest protected areas, the groundwater-dependent Sian Ka'an Biosphere Reserve (5280 km 2) is fed by the aquifer's thin freshwater lens. Increasing groundwater abstractions and pollution threatens the fresh water resource, and consequently the ecosystem integrity of both Sian Ka'an and the adjacent coastal environment. Seven different catchment-scale conceptual models were implemented in a distributed hydrological modelling approach. Equivalent porous medium conceptualizations with uniform and heterogeneous distributions of hydraulic conductivities were used. The models demonstrated that Sian Ka'an's wetlands are indeed groundwater-fed. The water quantities in the wetlands and the flooding dynamics are determined by the larger groundwater catchment. The overall water balance for the model domain showed that recharge constitutes 4400 ± 700 million m 3/year. Of this, 4-12% exits as overland flow, and 88-96% exits as groundwater flow. Net groundwater outflow from the model domain to the north via the Holbox fracture zone appears as an important cross-basin transfer between regions of the Peninsula. Probability maps of Sian Ka'an's catchment were obtained through automatic calibration and stochastic modelling

  2. Processes controlling the episodic streamwater transport of atrazine and other agrichemicals in an agricultural watershed

    Science.gov (United States)

    Hyer, Kenneth E.; Hornberger, George M.; Herman, Janet S.

    2001-12-01

    Episodic streamwater transport of atrazine (a common agricultural herbicide) and nutrients has been observed throughout agricultural watersheds in the United States and poses a serious threat to the quality of its water resources. Catchment-scale atrazine and nutrient transport processes after agricultural application are still poorly understood, and predicting episodic streamwater composition remains an elusive goal. We instrumented a 1.2-km 2 agricultural catchment near Harrisonburg, Virginia, and examined streamwater, overland flow, soil water, groundwater, and rainfall during the summer of 1998. Storm chemographs demonstrated different patterns for constituents derived primarily from weathering (silica and calcium), compared to constituents derived primarily from early spring land applications (nitrate, atrazine, DOC, potassium, chloride, and sulfate). During storms, the concentrations of silica and calcium decreased, the atrazine response was variable, and the concentrations of nitrate, DOC, potassium, chloride, and sulfate increased; the elevated nitrate signal lagged several hours behind the other elevated constituents. Graphical and statistical analyses indicated a relatively stable spring-fed baseflow was modified by a mixture of overland flow and soil water. A rapid, short-duration overland-flow pulse dominated the streamflow early in the event and contributed most of the potassium, DOC, chloride, suspended sediment, and atrazine. A longer-duration soil-water pulse dominated the streamflow later in the event and contributed the nitrate as well as additional potassium, DOC, sulfate, and atrazine. The contributions to the episodic streamflow were quantified using a flushing model in which overland-flow and soil-water concentrations decreased exponentially with time during an episode. Flushing time constants for the overland-flow and soil-water reservoirs were calculated on a storm-by-storm basis using separate tracers for each time-variable reservoir

  3. Overland flow under rainfall: some aspects related to modelling and conditioning factors.

    NARCIS (Netherlands)

    Lima, de J.L.M.P.

    1989-01-01

    This study concerns the theory and some practical aspects of overland flow under rainfall. Of the conditioning factors and processes which govern the generation of overland flow, the following were studied: depression storage, infiltration, morphology and wind. Special attention was paid to wind-dri

  4. Groundwater flow and solute transport modelling from within R: Development of the RMODFLOW and RMT3DMS packages.

    Science.gov (United States)

    Rogiers, Bart

    2015-04-01

    Since a few years, an increasing number of contributed R packages is becoming available, in the field of hydrology. Hydrological time series analysis packages, lumped conceptual rainfall-runoff models, distributed hydrological models, weather generators, and different calibration and uncertainty estimation methods are all available. Also a few packages are available for solving partial differential equations. Subsurface hydrological modelling is however still seldomly performed in R, or with codes interfaced with R, despite the fact that excellent geostatistical packages, model calibration/inversion options and state-of-the-art visualization libraries are available. Moreover, other popular scientific programming languages like matlab and python have packages for pre- and post-processing files of MODFLOW (Harbaugh 2005) and MT3DMS (Zheng 2010) models. To fill this gap, we present here the development versions of the RMODFLOW and RMT3DMS packages, which allow pre- and post-processing MODFLOW and MT3DMS input and output files from within R. File reading and writing functions are currently available for different packages, and plotting functions are foreseen making use of the ggplot2 package (plotting system based on the grammar of graphics; Wickham 2009). The S3 generic-function object oriented programming style is used for this. An example is provided, making modifications to an existing model, and visualization of the model output. References Harbaugh, A. (2005). MODFLOW-2005: The US Geological Survey Modular Ground-water Model--the Ground-water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16 (p. 253). Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York, 2009. Zheng, C. (2010). MT3DMS v5.3, a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Supplemental User's Guide. (p. 56).

  5. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection. The Glen Canyon aquifer within the study area is conceptualized in two parts-an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter. Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  6. Simulation of ground-water flow and transport of chlorinated hydrocarbons at Graces Quarters, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, Frederick J.; Fleck, William B.

    2001-01-01

    Military activity at Graces Quarters, a former open-air chemical-agent facility at Aberdeen Proving Ground, Maryland, has resulted in ground-water contamination by chlorinated hydrocarbons. As part of a ground-water remediation feasibility study, a three-dimensional model was constructed to simulate transport of four chlorinated hydrocarbons (1,1,2,2-tetrachloroethane, trichloroethene, carbon tetrachloride, and chloroform) that are components of a contaminant plume in the surficial and middle aquifers underlying the east-central part of Graces Quarters. The model was calibrated to steady-state hydraulic head at 58 observation wells and to the concentration of 1,1,2,2-tetrachloroethane in 58 observation wells and 101direct-push probe samples from the mid-1990s. Simulations using the same basic model with minor adjustments were then run for each of the other plume constituents. The error statistics between the simulated and measured concentrations of each of the constituents compared favorably to the error statisticst,1,2,2-tetrachloroethane calibration. Model simulations were used in conjunction with contaminant concentration data to examine the sources and degradation of the plume constituents. It was determined from this that mixed contaminant sources with no ambient degradation was the best approach for simulating multi-species solute transport at the site. Forward simulations were run to show potential solute transport 30 years and 100 years into the future with and without source removal. Although forward simulations are subject to uncertainty, they can be useful for illustrating various aspects of the conceptual model and its implementation. The forward simulation with no source removal indicates that contaminants would spread throughout various parts of the surficial and middle aquifers, with the100-year simulation showing potential discharge areas in either the marshes at the end of the Graces Quarters peninsula or just offshore in the estuaries. The

  7. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    Science.gov (United States)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality was not predictably related to imperviousness or catchment size. Rather, rainfall depth and duration, time since antecedent rainfall, and stream channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited

  8. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for

  9. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    Science.gov (United States)

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  10. A New Paradigm of Modeling Two-Dimensional Overland Watershed Water Quality

    Science.gov (United States)

    Zhang, F.; Yeh, G. G.

    2003-12-01

    This paper presents the development of sediment and reactive chemical transport under non-isotherm condition in two-dimensional overland watershed system. Through decomposition of reaction network via Gauss-Jordan column reduction, (a) redundant fast reactions and irrelevant kinetic reactions are removed from the system; (b) fast reactions and slow reactions can be decoupled; (c) species reaction equations are transformed into two sets: equilibrium species mass action equations and kinetic-variable reaction equations. This enable our model to include as many types of reactions as possible, choose kinetic-variables instead of chemical species as primary dependent variables, and simplify the reaction terms in transport equations. In our model two options are provided to solve the advection-dispersion transport equation: Lagrangian-Eulerian approach, and Finite Element Method in Conservative Form, and three options to deal with the reaction term: Fully-implicit, Predictor-corrector, and Operator-splitting methods. The production-consumption rate of chemical species is determined by reaction-based formulations. One example problem is employed to demonstrate the design capability of the model and the robustness of the numerical simulations.

  11. Validation, Proof-of-Concept, and Postaudit of the Groundwater Flow and Transport Model of the Project Shoal Area

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan

    2004-09-01

    The groundwater flow and radionuclide transport model characterizing the Shoal underground nuclear test has been accepted by the State of Nevada Division of Environmental Protection. According to the Federal Facility Agreement and Consent Order (FFACO) between DOE and the State of Nevada, the next steps in the closure process for the site are then model validation (or postaudit), the proof-of-concept, and the long-term monitoring stage. This report addresses the development of the validation strategy for the Shoal model, needed for preparing the subsurface Corrective Action Decision Document-Corrective Action Plan and the development of the proof-of-concept tools needed during the five-year monitoring/validation period. The approach builds on a previous model, but is adapted and modified to the site-specific conditions and challenges of the Shoal site.

  12. Global sampling to assess the value of diverse observations in conditioning a real-world groundwater flow and transport model

    Science.gov (United States)

    Delsman, Joost R.; Winters, Pieter; Vandenbohede, Alexander; Oude Essink, Gualbert H. P.; Lebbe, Luc

    2016-03-01

    The use of additional types of observational data has often been suggested to alleviate the ill-posedness inherent to parameter estimation of groundwater models and constrain model uncertainty. Disinformation in observational data caused by errors in either the observations or the chosen model structure may, however, confound the value of adding observational data in model conditioning. This paper uses the global generalized likelihood uncertainty estimation methodology to investigate the value of different observational data types (heads, fluxes, salinity, and temperature) in conditioning a groundwater flow and transport model of an extensively monitored field site in the Netherlands. We compared model conditioning using the real observations to a synthetic model experiment, to demonstrate the possible influence of disinformation in observational data in model conditioning. Results showed that the value of different conditioning targets was less evident when conditioning to real measurements than in a measurement error-only synthetic model experiment. While in the synthetic experiment, all conditioning targets clearly improved model outcomes, minor improvements or even worsening of model outcomes was observed for the real measurements. This result was caused by errors in both the model structure and the observations, resulting in disinformation in the observational data. The observed impact of disinformation in the observational data reiterates the necessity of thorough data validation and the need for accounting for both model structural and observational errors in model conditioning. It further suggests caution when translating results of synthetic modeling examples to real-world applications. Still, applying diverse conditioning data types was found to be essential to constrain uncertainty, especially in the transport of solutes in the model.

  13. A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water

    OpenAIRE

    Gusyev, M. A.; D. Abrams; Toews, M. W.; U. Morgenstern; M. K. Stewart

    2014-01-01

    The purpose of this study is to simulate tritium concentrations and groundwater transit times in river water with particle-tracking (MODPATH) and compare them to solute transport (MT3DMS) simulations. Tritium measurements in river water are valuable for the calibration of particle-tracking and solute transport models as well as for understanding of watershed storage dynamics. In a previous study, we simulated tritium concentrations in river water of the western Lake Taupo...

  14. Task force on modelling of groundwater flow and transport of solutes. Task 5 Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden)

    2003-02-01

    The Aespoe Hard Rock Laboratory is located in the Simpevarp area, southeast Sweden, some 35 km north of Oskarshamn. Construction of the underground laboratory commenced in 1990 and was completed in 1995, consisting of a 3.6 km. long tunnel excavated in crystalline rock to a depth of approximately 460 m. Prior to, during and subsequent to completion, research concerning the deep geological disposal of nuclear waste in fractured crystalline rock has been carried out. Central to this research has been the characterisation of the groundwater flow system and the chemistry of the groundwaters at Aespoe prior to excavation (Pre-investigation Phase) and subsequently to monitor changes in these parameters during the evolution of laboratory construction (Construction Phase). The principle aim of the Aespoe Task 5 modelling exercise has been to compare and ultimately integrate hydrogeochemistry and hydrogeology using the input data from the pre-investigation and construction phases. The main objectives were: to assess the consistency of groundwater-flow models and hydrogeochemical mixing-reaction models through integration and comparison of hydraulic and hydrogeochemical data obtained before and during tunnel construction, and to develop a procedure for integration of hydrological and hydrogeochemical information which could be used for disposal site assessments. Task 5 commenced in 1998 and was finalised in 2002. Participating modelling teams in the project represented ANDRA (France; three modelling teams - ANTEA, ITASCA, CEA), BMWi/BGR (Germany), ENRESA (Spain), JNC (Japan), CRIEPI (Japan), Posiva (Finland) and SKB (Sweden; two modelling teams - CFE and Intera (now GeoPoint)). Experience from Task 5 has highlighted several important aspects for site investigations facilitating the possibilities for mathematically integrated modelling and consistency checks that should be taken into account for future repository performance assessments. Equally important is that Task 5 has

  15. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    Science.gov (United States)

    Stream riparian zones are often thought of as areas that provide natural remediation for groundwater contaminants, especially agricultural nitrogen (N). While denitrification and vegetative uptake tend to be efficient N removal processes in slow moving shallow groundwater, these mechanisms decrease ...

  16. An Isotopic view of water and nitrogen transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nit...

  17. Review of strategies for handling geological uncertainty in groundwater flow and transport modeling

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Christensen, Steen; Sonnenborg, Torben O.;

    2012-01-01

    The geologically related uncertainty in groundwater modeling originates from two main sources: geological structures and hydraulic parameter values within these structures. Within a geological structural element the parameter values will always exhibit local scale heterogeneity, which can...... be accounted for, but is often neglected, in assessments of prediction uncertainties. Strategies for assessing prediction uncertainty due to geologically related uncertainty may be divided into three main categories, accounting for uncertainty due to: (a) the geological structure; (b) effective model...... parameters; and (c) model parameters including local scale heterogeneity. The most common methodologies for uncertainty assessments within each of these categories, such as multiple modeling, Monte Carlo analysis, regression analysis and moment equation approach, are briefly described with emphasis...

  18. Modeling contaminant transport in a three-phase groundwater system with the Freundlich-type retardation factor.

    Science.gov (United States)

    Kim, M; Kim, S B

    2007-02-01

    Colloid-facilitated contaminant transport was simulated in this study for the three-phase groundwater system where one or more sorption processes can be described with nonlinear sorption isotherm (Freundlich isotherm). A concise form of contaminant transport equation was derived from the mass balance equation of the contaminant. The developed model was numerically solved by the finite difference method along with the Picard iteration. The simulation results were used to quantitatively analyze the previously reported column data showing nonlinear sorption behavior. The analysis led to the following observations: (i) increases of the distribution coefficient of contaminant between the aqueous and solid phases (K(S)c) and the one between the dissolved natural organic matters and solid phase ( K(S)OM) generate less facilitation (i.e., late arrival of contaminant breakthrough curves (BTCs), and the distribution coefficient of contaminant between the aqueous and the solid phases (K(OM)c) gives the opposite result; (ii) the increase of the Freundlich constant for the sorption isotherm between the aqueous and the solid phases (N(S)c) yields the late arrival of BTC, and the other two Freundlich constants produce the opposite results; (iii) the Freundlich constants generally yield a sharper front as the BTC arrives at later pore volumes, while the distribution coefficients generally yield a more spread of the BTC as it arrives at later volumes. This modeling study shows that transport modeling provides a more efficient analyzing tool than the retardation factor alone concerning the colloid-facilitated contaminant transport with nonlinear sorption processes.

  19. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  20. Hydrogeochemical characterization of groundwaters and porewaters beneath the Bruce nuclear site: evidence for diffusion-dominated transport in the Ordovician

    Energy Technology Data Exchange (ETDEWEB)

    Clark, I. [Univ. of Ottawa, Ottawa, ON (Canada); Al, T. [Univ. of New Brunswick, Fredericton, NB (Canada); Jensen, M.; Kennell, L. [Nuclear Waste Management Organization, Toronto, ON (Canada); Raven, K. [Geofirma Engineering Limited, Ottawa, ON (Canada)

    2011-07-01

    Investigations of the controls on solute transport in porewater and groundwater below the Bruce nuclear site involved laboratory-scale diffusion measurements, as well as measurements of natural tracer (δ{sup 18}O, δ{sup 2}H, {sup 87}Sr/{sup 86}Sr, Cl and Br) distributions and isotopic compositions of CH{sub 4}, CO{sub 2} and helium ({sup 3}He/{sup 4}He) in the porewaters and groundwaters. The analyses were performed on samples collected from drilled boreholes, DGR-1 through DGR-6, during site characterization activities and the results are summarized below. With the exception of just a few samples from the Upper Silurian, the effective diffusion coefficient (D {sub e}) values measured from DGR cores are all less than 10{sup -11} m{sup 2}/s, which is approximately one order of magnitude lower than measured De values from international programs in sedimentary rock. The majority of the data are in the range 10{sup -13} < D{sub e} < 10{sup -11} m{sup 2}/s, with Lower Silurian and Upper Ordovician shale samples representing the higher end of this range because of their relatively high porosity (7 to 9%). The low porosity of the Middle Ordovician limestone (< 2%) results in low D{sub e} values, clustering in the range 10{sup -13} < D{sub e} < 10{sup -12} m{sup 2}/s. The δ{sup 18}O, Cl, and Br profiles in the Middle Ordovician carbonates define trends of decreasing δ{sup 18}O values and tracer concentrations with depth, and are interpreted to result from an extremely long period of diffusion-dominated transport (~300 Ma). Near the base of the Middle Ordovician carbonates the δ{sup 2}H data display a slight enrichment, which could represent upward diffusion of deuterium-enriched water originating in the underlying Precambrian shield. A Precambrian shield influence on the Ordovician porewater chemistry is inferred from the measured {sup 87}Sr/{sup 86}Sr ratios in the Middle Ordovician carbonates, which are elevated above values expected for porewater in equilibrium

  1. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Heng [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Ye, Ming [Department of Scientific Computing, Florida State University, Tallahassee Florida USA; Song, Xuehang [Pacific Northwest National Laboratory, Richland Washington USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA

    2017-05-01

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level of the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.

  2. Scale effect on overland flow connectivity, at the interill scale

    Science.gov (United States)

    Penuela Fernandez, A.; Bielders, C.; Javaux, M.

    2012-04-01

    The relative surface connection function (RSC) was proposed by Antoine et al. (2009) as a functional indicator of runoff flow connectivity. For a given area, it expresses the percentage of the surface connected to the outlet (C) as a function of the degree of filling of the depression storage. This function explicitly integrates the flow network at the soil surface and hence provides essential information regarding the flow paths' connectivity. It has been shown that this function could help improve the modeling of the hydrogram at the square meter scale, yet it is unknown how the scale affects the RSC function, and whether and how it can be extrapolated to other scales. The main objective of this research is to study the scale effect on overland flow connectivity (RSC function). For this purpose, digital elevation data of a real field (9 x 3 m) and three synthetic fields (6 x 6 m) with contrasting hydrological responses was used, and the RSC function was calculated at different scales by changing the length (L) or width (l) of the field. Border effects were observed for the smaller scales. In most of cases, for L or l smaller than 750mm, increasing L or l, resulted in a strong increase or decrease of the maximum depression storage, respectively. There was no scale effect on the RSC function when changing l. On the contrary, a remarkable scale effect was observed in the RSC function when changing L. In general, for a given degree of filling of the depression storage, C decreased as L increased. This change in C was inversely proportional to the change in L. This observation applied only up to approx. 50-70% (depending on the hydrological response of the field) of filling of depression storage, after which no correlation was found between C and L. The results of this study help identify the critical scale to study overland flow connectivity. At scales larger than the critical scale, the RSC function showed a great potential to be extrapolated to other scales.

  3. Scale effect on overland flow connectivity at the plot scale

    Science.gov (United States)

    Peñuela, A.; Javaux, M.; Bielders, C. L.

    2013-01-01

    A major challenge in present-day hydrological sciences is to enhance the performance of existing distributed hydrological models through a better description of subgrid processes, in particular the subgrid connectivity of flow paths. The Relative Surface Connection (RSC) function was proposed by Antoine et al. (2009) as a functional indicator of runoff flow connectivity. For a given area, it expresses the percentage of the surface connected to the outflow boundary (C) as a function of the degree of filling of the depression storage. This function explicitly integrates the flow network at the soil surface and hence provides essential information regarding the flow paths' connectivity. It has been shown that this function could help improve the modeling of the hydrograph at the square meter scale, yet it is unknown how the scale affects the RSC function, and whether and how it can be extrapolated to other scales. The main objective of this research is to study the scale effect on overland flow connectivity (RSC function). For this purpose, digital elevation data of a real field (9 × 3 m) and three synthetic fields (6 × 6 m) with contrasting hydrological responses were used, and the RSC function was calculated at different scales by changing the length (l) or width (w) of the field. To different extents depending on the microtopography, border effects were observed for the smaller scales when decreasing l or w, which resulted in a strong decrease or increase of the maximum depression storage, respectively. There was no scale effect on the RSC function when changing w, but a remarkable scale effect was observed in the RSC function when changing l. In general, for a given degree of filling of the depression storage, C decreased as l increased, the change in C being inversely proportional to the change in l. However, this observation applied only up to approx. 50-70% (depending on the hydrological response of the field) of filling of depression storage, after which no

  4. Scale effect on overland flow connectivity at the plot scale

    Directory of Open Access Journals (Sweden)

    A. Peñuela

    2012-06-01

    Full Text Available A major challenge in present-day hydrological sciences is to enhance the performance of existing distributed hydrological models through a better description of subgrid processes, in particular the subgrid connectivity of flow paths. The relative surface connection function (RSC was proposed by Antoine et al. (2009 as a functional indicator of runoff flow connectivity. For a given area, it expresses the percentage of the surface connected to the outflow boundary (C as a function of the degree of filling of the depression storage. This function explicitly integrates the flow network at the soil surface and hence provides essential information regarding the flow paths' connectivity. It has been shown that this function could help improve the modeling of the hydrogram at the square meter scale, yet it is unknown how the scale affects the RSC function, and whether and how it can be extrapolated to other scales. The main objective of this research is to study the scale effect on overland flow connectivity (RSC function. For this purpose, digital elevation data of a real field (9 × 3 m and three synthetic fields (6 × 6 m with contrasting hydrological responses were used, and the RSC function was calculated at different scales by changing the length (l or width (w of the field. Border effects, at different extents depending on the microtopography, were observed for the smaller scales, when decreasing l or w, which resulted in a strong decrease or increase of the maximum depression storage, respectively. There was no scale effect on the RSC function when changing w. On the contrary, a remarkable scale effect was observed in the RSC function when changing l. In general, for a given degree of filling of the depression storage, C decreased as l increased. This change in C was inversely proportional to the change in l. This observation applied only up to approx. 50–70

  5. Formation and mechanics of granular waves in gravity and shallow overland flow

    Science.gov (United States)

    Römkens, Mathias J. M.; Suryadevara, Madhu R.; Prasad, Shyam N.

    2010-05-01

    Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of sediment movement under different hydraulic regimes in channel flow for use in soil erosion and sediment transport prediction models. Relatively few studies have focused on the more basic aspects of sediment movement in which particle-to-particle, particle-to-boundary, and particle-to-fluid interactions determine in an important way the nature of the movement. Our experimental work under highly controlled experimental conditions with both gravity flow of granular material (glass beads) in air and sediment transport (sand particles and glass beads) in shallow overland flow have shown that sediment movement is not a simple phenomenon solely determined by flow rates on a proportional basis, but that it is represented by a highly structured and organized regime determined by sedimentary fluid mechanical principles which yield very characteristic waves during transport. In the gravity flow case involving granular chute flow, two-dimensional grain waves developed into the rolling and saltating moving grain mass at certain grain concentrations. This phenomenon appeared to be related to an energy exchange process as a result of collisions between moving grain particles that led to reduced kinetic velocities. As a result, particle concentration differences in the direction of flow developed that were noted as denser zones. In these zones, particles dropped out at the upstream part of these denser zones to resume their accelerating motion once they reached the downstream part of the zone until, during the next collision event, the process is repeated. Thus a periodic granular wave structure evolved. Depending on the addition rate, the granular flow regime may be a fluidized

  6. Monitoring of Emerging and Legacy Contaminants in Groundwater and Tap Water of the Karst Region in Northern Puerto Rico for Assessment of Sources and Fate and Transport Processes

    Science.gov (United States)

    Padilla, I. Y.; Cotto, I.; Torres, P. M.

    2014-12-01

    tap water (30%). Results indicated that most CVOCs on tap water come from groundwater sources. Spatial-temporal analysis of CVOC data shows that transport through karst system is highly heterogeneous variable, and reflect high capacity of the system to store and slowly release contaminants through rate-limited mass transport process.

  7. FullSWOF: A software for overland flow simulation / FullSWOF : un logiciel pour la simulation du ruissellement

    CERN Document Server

    Delestre, Olivier; Darboux, Frédéric; Du, Mingxuan; James, Francois; Laguerre, Christian; Lucas, Carine; Planchon, Olivier

    2012-01-01

    Overland flow on agricultural fields may have some undesirable effects such as soil erosion, flood and pollutant transport. To better understand this phenomenon and limit its consequences, we developed a code using state-of-the-art numerical methods: FullSWOF (Full Shallow Water equations for Overland Flow), an object oriented code written in C++. It has been made open-source and can be downloaded from http://www.univ-orleans.fr/mapmo/soft/FullSWOF/. The model is based on the classical system of Shallow Water (SW) (or Saint-Venant system). Numerical difficulties come from the numerous dry/wet transitions and the highly-variable topography encountered inside a field. It includes runon and rainfall inputs, infiltration (modified Green-Ampt equation), friction (Darcy-Weisbach and Manning formulas). First we present the numerical method for the resolution of the Shallow Water equations integrated in FullSWOF_2D (the two-dimension version). This method is based on hydrostatic reconstruction scheme, coupled with a ...

  8. A comparison of four inverse approaches to groundwater flow and transport parameter identification

    DEFF Research Database (Denmark)

    Keidser, Allan; Rosbjerg, Dan

    1991-01-01

    of the log transmissivities are obtained by repeating the optimization of stage one. The formulated objective functions are minimized using Levenberg-Marquardt's algorithm. The models are applied to synthetic two-dimensional transport problems in steady state flow regimes. The "true" log transmissivity...

  9. Stability and transport of graphene oxide nanoparticles in groundwater and surface water

    Science.gov (United States)

    A transport study investigating the effects of natural organic matter (NOM) in the presence of monovalent (KCl) and divalent (CaCl2) salts was performed in a packed bed column. The electrophoretic mobility (EPM) and effective diameter of the graphene oxide nanoparticles (GONPs) were measured as a fu...

  10. The South Central Overland Trail in western Utah, 1850-1900

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following report is a discussion of the South Central Overland Trail, which goes west from Salt Lake City and skirts the worst of the salt desert, stopping at...

  11. Supplementary report on Pony Express-Overland Stage sites in western Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following report is a description by site of Pony Express and Overland Stage stations between Rush Valley and Deep Creek, Utah. Descriptions, including...

  12. Infiltration-excess overland flow estimated by TOPMODEL for the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This 5-kilometer resolution raster (grid) dataset for the conterminous United States represents the average percentage of infiltration-excess overland flow in total...

  13. Saturation overland flow estimated by TOPMODEL for the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This 5-kilometer resolution raster (grid) dataset for the conterminous United States represents the average percentage of saturation overland flow in total...

  14. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The...

  15. Characteristics of overland flow generation on steep forested hillslopes of central Japan

    Science.gov (United States)

    Gomi, Takashi; Sidle, Roy C.; Ueno, Masayasu; Miyata, Shusuke; Kosugi, Ken'ichirou

    2008-11-01

    SummaryOverland flow generation was monitored in large plots (8 × 25 m) on four hillslopes in a 4.9-ha catchment in Mie Prefecture, Japan. Three Japanese cypress (hinoki, Chamaecyparis obtusa) treatments (including three different understory conditions) and one deciduous forest treatment were studied. For all plots, including deciduous hillslopes, we observed overland flow even for small storm events (180 mm, runoff from Japanese cypress plots with dense fern understory exhibited a delayed and higher peak associated with return flow. The dominance of hillslope-scale flow contribution to catchment runoff was also affected by changes in the dominance of overland flow and return flow. Understory vegetation cover and the availability of a litter layer altered the amount of overland flow, which was mediated by soil water repellency and soil moisture. Observations at the hillslope scale are essential for conceptualization of runoff mechanisms and pathways in forested headwaters.

  16. An efficient method for DEM-based overland flow routing

    Science.gov (United States)

    Huang, Pin-Chun; Lee, Kwan Tun

    2013-05-01

    The digital elevation model (DEM) is frequently used to represent watershed topographic features based on a raster or a vector data format. It has been widely linked with flow routing equations for watershed runoff simulation. In this study, a recursive formulation was encoded into the conventional kinematic- and diffusion-wave routing algorithms to permit a larger time increment, despite the Courant-Friedrich-Lewy condition having been violated. To meet the requirement of recursive formulation, a novel routing sequence was developed to determine the cell-to-cell computational procedure for the DEM database. The routing sequence can be set either according to the grid elevation in descending order for the kinematic-wave routing or according to the water stage of the grid in descending order for the diffusion-wave routing. The recursive formulation for 1D runoff routing was first applied to a conceptual overland plane to demonstrate the precision of the formulation using an analytical solution for verification. The proposed novel routing sequence with the recursive formulation was then applied to two mountain watersheds for 2D runoff simulations. The results showed that the efficiency of the proposed method was significantly superior to that of the conventional algorithm, especially when applied to a steep watershed.

  17. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  18. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  19. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  20. Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia

    Science.gov (United States)

    Simmons, Craig; Narayan, Kumar; Woods, Juliette; Herczeg, Andrew

    2002-03-01

    Saline groundwater and drainage effluent from irrigation are commonly stored in some 200 natural and artificial saline-water disposal basins throughout the Murray-Darling Basin of Australia. Their impact on underlying aquifers and the River Murray, one of Australia's major water supplies, is of serious concern. In one such scheme, saline groundwater is pumped into Lake Mourquong, a natural groundwater discharge complex. The disposal basin is hydrodynamically restricted by low-permeability lacustrine clays, but there are vulnerable areas in the southeast where the clay is apparently missing. The extent of vertical and lateral leakage of basin brines and the processes controlling their migration are examined using (1) analyses of chloride and stable isotopes of water (2H/1H and 18O/16O) to infer mixing between regional groundwater and lake water, and (2) the variable-density groundwater flow and solute-transport code SUTRA. Hydrochemical results indicate that evaporated disposal water has moved at least 100 m in an easterly direction and that there is negligible movement of brines in a southerly direction towards the River Murray. The model is used to consider various management scenarios. Salt-load movement to the River Murray was highest in a "worst-case" scenario with irrigation employed between the basin and the River Murray. Present-day operating conditions lead to little, if any, direct movement of brine from the basin into the river. Résumé. Les eaux souterraines salées et les effluents de drainage de l'irrigation sont stockés dans environ 200 bassins naturels ou artificiels destinés à retenir les eaux salines dans tout le bassin de Murray-Darling, en Australie. Leur impact sur les aquifères sous-jacents et sur la rivière Murray, l'une des principales ressources en eau d'Australie, constitue un problème grave. Dans une telle situation, les eaux souterraines salines sont pompées dans le lac Mourquong, complexe dans lequel les nappes se d

  1. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs.

  2. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    Science.gov (United States)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish thermogenic and microbial methane.

  3. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  4. Quantification of anthropogenic impact on groundwater-dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modelling

    Science.gov (United States)

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2015-02-01

    Groundwater-dependent ecosystems (GDEs) have important functions in all climatic zones as they contribute to biological and landscape diversity and provide important economic and social services. Steadily growing anthropogenic pressure on groundwater resources creates a conflict situation between nature and man which are competing for clean and safe sources of water. Such conflicts are particularly noticeable in GDEs located in densely populated regions. A dedicated study was launched in 2010 with the main aim to better understand the functioning of a groundwater-dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Błoto fen). It relies mostly on groundwater from the shallow Quaternary aquifer and possibly from the deeper Neogene (Bogucice Sands) aquifer. In July 2009 a cluster of new pumping wells abstracting water from the Neogene aquifer was set up 1 km to the northern border of the fen. A conceptual model of the Wielkie Błoto fen area for the natural, pre-exploitation state and for the envisaged future status resulting from intense abstraction of groundwater through the new well field was developed. The main aim of the reported study was to probe the validity of the conceptual model and to quantify the expected anthropogenic impact on the studied GDTE. A wide range of research tools was used. The results obtained through combined geologic, geophysical, geochemical, hydrometric and isotope investigations provide strong evidence for the existence of upward seepage of groundwater from the deeper Neogene aquifer to the shallow Quaternary aquifer supporting the studied GDTE. Simulations of the groundwater flow field in the study area with the aid of a 3-D flow and transport model developed for Bogucice Sands (Neogene) aquifer and calibrated using environmental tracer data and observations of hydraulic head in three different locations on the study area

  5. Simulations of Groundwater Flow and Radionuclide Transport in the Vadose and Saturated Zones beneath Area G, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kay H. Birdsell; Kathleen M. Bower; Andrew V. Wolfsberg; Wendy E. Soll; Terry A. Cherry; Tade W. Orr

    1999-07-01

    Numerical simulations are used to predict the migration of radionuclides from the disposal units at Material Disposal Area G through the vadose zone and into the main aquifer in support of a radiological performance assessment and composite analysis for the site. The calculations are performed with the finite element code, FEHM. The transport of nuclides through the vadose zone is computed using a three-dimensional model that describes the complex mesa top geology of the site. The model incorporates the positions and inventories of thirty-four disposal pits and four shaft fields located at Area G as well as those of proposed future pits and shafts. Only three nuclides, C-14, Tc-99, and I-129, proved to be of concern for the groundwater pathway over a 10,000-year period. The spatial and temporal flux of these three nuclides from the vadose zone is applied as a source term for the three-dimensional saturated zone model of the main aquifer that underlies the site. The movement of these nuclides in the aquifer to a downstream location is calculated, and aquifer concentrations are converted to doses. Doses related to aquifer concentrations are six or more orders of magnitude lower than allowable Department of Energy performance objectives for low-level radioactive waste sites. Numerical studies were used to better understand vadose-zone flow through the dry mesa-top environment at Area G. These studies helped define the final model used to model flow and transport through the vadose zone. The study of transient percolation indicates that a steady flow vadose-zone model is adequate for computing contaminant flux to the aquifer. The fracture flow studies and the investigation of the effect of basalt and pumice properties helped us define appropriate hydrologic properties for the modeling. Finally, the evaporation study helped to justify low infiltration rates.

  6. UNCERT: geostatistics, uncertainty analysis and visualization software applied to groundwater flow and contaminant transport modeling

    Science.gov (United States)

    Wingle, William L.; Poeter, Eileen P.; McKenna, Sean A.

    1999-05-01

    UNCERT is a 2D and 3D geostatistics, uncertainty analysis and visualization software package applied to ground water flow and contaminant transport modeling. It is a collection of modules that provides tools for linear regression, univariate statistics, semivariogram analysis, inverse-distance gridding, trend-surface analysis, simple and ordinary kriging and discrete conditional indicator simulation. Graphical user interfaces for MODFLOW and MT3D, ground water flow and contaminant transport models, are provided for streamlined data input and result analysis. Visualization tools are included for displaying data input and output. These include, but are not limited to, 2D and 3D scatter plots, histograms, box and whisker plots, 2D contour maps, surface renderings of 2D gridded data and 3D views of gridded data. By design, UNCERT's graphical user interface and visualization tools facilitate model design and analysis. There are few built in restrictions on data set sizes and each module (with two exceptions) can be run in either graphical or batch mode. UNCERT is in the public domain and is available from the World Wide Web with complete on-line and printable (PDF) documentation. UNCERT is written in ANSI-C with a small amount of FORTRAN77, for UNIX workstations running X-Windows and Motif (or Lesstif). This article discusses the features of each module and demonstrates how they can be used individually and in combination. The tools are applicable to a wide range of fields and are currently used by researchers in the ground water, mining, mathematics, chemistry and geophysics, to name a few disciplines.

  7. Groundwater chemistry of the Okélobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modelling.

    Science.gov (United States)

    Salas, J; Ayora, C

    2004-03-01

    The stability of uranium-bearing minerals in natural environments is of interest to evaluate the feasibility of radioactive waste repositories. The uraninite bodies, UO2(s), in the Oklo district (Gabon) are the result of a natural fission process, which took place 1970 Ma ago. These deposits can be regarded as natural analogues for spent fuel. One of the uraninite bodies, the Okélobondo deposit, is located at a depth of 300 m. Groundwater samples from boreholes located at shallow depths (100-200 m) show neutral to basic pH, anoxic conditions (Eh = 0.10 to -0.05 V) and are saturated with respect to uraninite. In contrast, deeper samples collected in the vicinity of the ore body are oxidising (Eh = 0.32-0.47 V), slightly basic (pH = 7.0-8.5) and undersaturated with respect to uraninite. These oxidising conditions at depth, if present under repository conditions, may affect the stability of uranium oxide. In order to improve our understanding of the observed site geochemistry, the available information on the lithology and groundwater flow was integrated in a reactive transport model. The chemical composition and the pH-Eh values of the water sampled above and in the western side of the Okélobondo deposit can be explained by the interaction of meteoric recharge with pelites, dolomites and sandstones. The dissolution of Fe(II)-silicates and the oxidation of the Fe(II)-aqueous species maintained the pH-Eh distribution along the Fe(2+)-Fe(OH)3(am) equilibrium, with the result that uraninite does not dissolve. This may explain the lower uranium content in the water samples from pelites and dolomites above the Okélobondo deposit. The high Mn/Fe ratio and the high pH-Eh values of the water sampled at depth, close to the Okélobondo deposit, suggest a control by the Mn(2+)-MnOOH(s) equilibrium. This control is attributed to the dissolution of a large rhodochrosite, MnCO3(s), and manganite, MnOOH(s) deposit in the recharge area on the eastern side.

  8. Groundwater chemistry of the Okélobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modelling

    Science.gov (United States)

    Salas, J.; Ayora, C.

    2004-03-01

    The stability of uranium-bearing minerals in natural environments is of interest to evaluate the feasibility of radioactive waste repositories. The uraninite bodies, UO 2(s), in the Oklo district (Gabon) are the result of a natural fission process, which took place 1970 Ma ago. These deposits can be regarded as natural analogues for spent fuel. One of the uraninite bodies, the Okélobondo deposit, is located at a depth of 300 m. Groundwater samples from boreholes located at shallow depths (100-200 m) show neutral to basic pH, anoxic conditions (Eh=0.10 to -0.05 V) and are saturated with respect to uraninite. In contrast, deeper samples collected in the vicinity of the ore body are oxidising (Eh=0.32-0.47 V), slightly basic (pH=7.0-8.5) and undersaturated with respect to uraninite. These oxidising conditions at depth, if present under repository conditions, may affect the stability of uranium oxide. In order to improve our understanding of the observed site geochemistry, the available information on the lithology and groundwater flow was integrated in a reactive transport model. The chemical composition and the pH-Eh values of the water sampled above and in the western side of the Okélobondo deposit can be explained by the interaction of meteoric recharge with pelites, dolomites and sandstones. The dissolution of Fe(II)-silicates and the oxidation of the Fe(II)-aqueous species maintained the pH-Eh distribution along the Fe 2+-Fe(OH) 3(am) equilibrium, with the result that uraninite does not dissolve. This may explain the lower uranium content in the water samples from pelites and dolomites above the Okélobondo deposit. The high Mn/Fe ratio and the high pH-Eh values of the water sampled at depth, close to the Okélobondo deposit, suggest a control by the Mn 2+-MnOOH(s) equilibrium. This control is attributed to the dissolution of a large rhodochrosite, MnCO 3(s), and manganite, MnOOH(s) deposit in the recharge area on the eastern side.

  9. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus

  10. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  11. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden); Modelos conceptuales y numericos de flujo y transporte de solutos en zonas de fractura: aplicacion a la isla de Aspo (Suecia)

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, J.; Samper, J.

    2003-07-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  12. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    Science.gov (United States)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  13. Electrical characterization of non-Fickian transport in groundwater and hyporheic systems

    Science.gov (United States)

    Singha, Kamini; Pidlisecky, Adam; Day-Lewis, Frederick D.; Gooseff, Michael N.

    2008-04-01

    Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot-scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile-immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field-scale transport in aquifer and fluvial systems subject to rate-limited mass transfer.

  14. Electrical characterization of non-Fickian transport in groundwater and hyporheic systems

    Science.gov (United States)

    Singha, K.; Pidlisecky, A.; Day-Lewis, F. D.; Gooseff, M.N.

    2010-01-01

    Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot-scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile-immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field-scale transport in aquifer and fluvial systems subject to rate-limited mass transfer.

  15. Effects of Aging and Colloids on Iron Nanoparticle Transport in Groundwater

    Science.gov (United States)

    Johnson, R. L.; Tratnyek, P. G.; Nurmi, J. T.

    2007-12-01

    Most studies of manufactured nanoparticle transport in aquifer materials have used "fresh" particles in homogenous solutions. However, the role of particle aging and the presence of other colloidal materials may have a significant impact on mobility. We have examined both of these processes using reactive nano-iron particles (RNIP), dynamic light scattering, column studies, and deep-bed filtration theory. In the absence of colloidal materials, RNIP are rapidly removed from porous media by coagulation and attachment to aquifer materials (due in part to their magnetic properties). However, upon aging (in the presence of oxidants ranging in strength from water to carbon tetrachloride), the outer shell of the RNIP will be converted to oxides that are less magnetic and have very different surface charges that result in different sticking coefficients. The presence of colloids (both organic and inorganic) may modify the surfaces of aquifer materials and/or bind with the nanoparticles, and as a consequence, aggregation and sticking coefficients of the nanoparticles can also be significantly altered.

  16. Quantification of anthropogenic impact on groundwater dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modeling

    Directory of Open Access Journals (Sweden)

    A. J. Zurek

    2014-08-01

    Full Text Available A dedicated study was launched in 2010 with the main aim to better understand the functioning of groundwater dependent terrestrial ecosystem (GDTE located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest and associated wetland (Wielkie Bloto fen. A wide range of tools (environmental tracers, geochemistry, geophysics, 3-D flow and transport modeling was used. The research was conducted along three major directions: (i quantification of the dynamics of groundwater flow in various parts of the aquifer associated with GDTE, (ii quantification of the degree of interaction between the GDTE and the aquifer, and (iii 3-D modeling of groundwater flow in the vicinity of the studied GDTE and quantification of possible impact of enhanced exploitation of the aquifer on the status of GDTE. Environmental tracer data (tritium, stable isotopes of water strongly suggest that upward leakage of the aquifer contributes significantly to the present water balance of the studied wetland and associated forest. Physico-chemical parameters of water (pH, conductivity, Na / Cl ratio confirm this notion. Model runs indicate that prolonged groundwater abstraction through the newly-established network of water supply wells, conducted at maximum permitted capacity (ca. 10 000 m3 d−1, may trigger drastic changes in the ecosystem functioning, eventually leading to its degradation.

  17. Quantification of anthropogenic impact on groundwater dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modeling

    Science.gov (United States)

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2014-08-01

    A dedicated study was launched in 2010 with the main aim to better understand the functioning of groundwater dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Bloto fen). A wide range of tools (environmental tracers, geochemistry, geophysics, 3-D flow and transport modeling) was used. The research was conducted along three major directions: (i) quantification of the dynamics of groundwater flow in various parts of the aquifer associated with GDTE, (ii) quantification of the degree of interaction between the GDTE and the aquifer, and (iii) 3-D modeling of groundwater flow in the vicinity of the studied GDTE and quantification of possible impact of enhanced exploitation of the aquifer on the status of GDTE. Environmental tracer data (tritium, stable isotopes of water) strongly suggest that upward leakage of the aquifer contributes significantly to the present water balance of the studied wetland and associated forest. Physico-chemical parameters of water (pH, conductivity, Na / Cl ratio) confirm this notion. Model runs indicate that prolonged groundwater abstraction through the newly-established network of water supply wells, conducted at maximum permitted capacity (ca. 10 000 m3 d-1), may trigger drastic changes in the ecosystem functioning, eventually leading to its degradation.

  18. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  19. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    Science.gov (United States)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  20. Upscaling the overland flow resistance coefficient for vegetated surfaces

    Science.gov (United States)

    Kim, J.; Ivanov, V. Y.; Katopodes, N.

    2011-12-01

    Estimation of hydraulic resistance for overland flows plays a crucial role in modeling rainfall-runoff, flood routing, and soil erosion processes. The resistance affects not only the accurate calculations of flow variables, but also the predictions of their derivative outcomes. In particular, resistance is highly spatially variable and controlled by local flow conditions and bed characteristics in hillslopes vegetated with patches of shrubs or woody plants. Numerous studies sought general ways of relating hydraulic resistance to roughness coefficients. A typical approach in determining the Darcy-Weisbach friction factor (f) is to relate it to the Reynolds number (Re). The case is applicable when flow completely submerges roughness elements. On the other hand, when the surface covered with stones, organic litter, or vegetation is not fully submerged by the flow, the f-Re relationship does not hold. Flow dimensionless variables other than Re may become predominant in determining the resistance. There is little information on how to determine the roughness coefficient of vegetated hillslopes of arbitrary scale as a function of flow variables and bed characteristics. Although many field or laboratory studies have attempted to address the problem, most of them were carried out in channels and over a limited range of possible flow conditions. The objective of this study was to investigate the upscaling properties of the resistance coefficient by resolving the details of the flow process at an extremely fine-scale. The domain was conceptualized as a sloped plane with a number of "obstacles" of centimeter scale (i.e., representing vegetation stems) that have infinitely long height. A number of simulations were designed with a numerical model resolving the two-dimensional form of Saint-Venant equations representing the propagation of dynamic wave. The simulations explored how the resistance coefficient varied with different vegetation covers, domain slopes, flow rates and

  1. Reactive transport of uranium in a groundwater bioreduction study: Insights from high-temporal resolution 238U/235U data

    Science.gov (United States)

    Shiel, A. E.; Johnson, T. M.; Lundstrom, C. C.; Laubach, P. G.; Long, P. E.; Williams, K. H.

    2016-08-01

    We conducted a detailed investigation of U isotopes in conjunction with a broad geochemical investigation during field-scale biostimulation and desorption experiments. This investigation was carried out in the uranium-contaminated alluvial aquifer of the Rifle field research site. In this well-characterized setting, a more comprehensive understanding of U isotope geochemistry is possible. Our results indicate that U isotope fractionation is consistently observed across multiple experiments at the Rifle site. Microbially-mediated reduction is suggested to account for most or all of the observed fractionation as abiotic reduction has been demonstrated to impart much smaller, often near-zero, isotopic fractionation or isotopic fractionation in the opposite direction. Data from some time intervals are consistent with a simple model for transport and U(VI) reduction, where the fractionation factor (ε = +0.65‰ to +0.85‰) is consistent with experimental studies. However, during other time intervals the observed patterns in our data indicate the importance of other processes in governing U concentrations and 238U/235U ratios. For instance, we demonstrate that departures from Rayleigh behavior in groundwater systems arise from the presence of adsorbed species. We also show that isotope data are sensitive to the onset of oxidation after biostimulation ends, even in the case where reduction continues to remove contaminant uranium downstream. Our study and the described conceptual model support the use of 238U/235U ratios as a tool for evaluating the efficacy of biostimulation and potentially other remedial strategies employed at Rifle and other uranium-contaminated sites.

  2. Transport and removal of viruses in saturated sand columns under oxic and anoxic conditions--Potential implications for groundwater protection.

    Science.gov (United States)

    Frohnert, Anne; Apelt, Susann; Klitzke, Sondra; Chorus, Ingrid; Szewzyk, Regine; Selinka, Hans-Christoph

    2014-11-01

    To protect groundwater as a drinking water resource from microbiological contamination, protection zones are installed. While travelling through these zones, concentrations of potential pathogens should decline to levels that pose no risks to human health. Removal of viruses during subsurface passage is influenced by physicochemical conditions, such as oxygen concentration, which also affects virus survival. The aim of our study was to evaluate the effect of redox conditions on the removal of viruses during sand filtration. Experiments in glass columns filled with medium-grained sand were conducted to investigate virus removal in the presence and absence of dissolved oxygen. Bacteriophages MS2 and PhiX174, as surrogates for human enteric viruses were spiked in pulsed or in continuous mode and pumped through the columns at a filter velocity of about 1m/d. Virus breakthrough curves were analyzed by calculating total viral elimination and fitted using one-dimensional transport models (CXTFIT and HYDRUS-1D). While short-term experiments with pulsed virus application showed only small differences with regard to virus removal under oxic and anoxic conditions, a long-term experiment with continuous dosing revealed a clearly lower elimination of viruses under anoxic conditions. These findings suggest that less inactivation and less adsorption of viruses in anoxic environments affect their removal. Therefore, in risk assessment studies aimed to secure drinking water resources from viral contamination and optimization of protection zones, the oxic and anoxic conditions in the subsurface should also be considered. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Groundwater seepage landscapes from distant and local sources in experiments and on Mars

    NARCIS (Netherlands)

    Marra, W. A.; McLelland, S. J.; Parsons, D. R.; Murphy, B. J.; Hauber, E.; Kleinhans, M. G.

    2015-01-01

    Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of

  4. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    Science.gov (United States)

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  5. The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOCS) to shallow groundwater

    Science.gov (United States)

    Pankow, J.F.; Thomson, N.R.; Johnson, R.L.; Baehr, A.L.; Zogorski, J.S.

    1997-01-01

    Infiltration and dispersion (including molecular diffusion) can transport volatile organic compounds (VOCs) from urban air into shallow groundwater. The gasoline additive methyl-tert-butyl ether (MTBE) is of special interest because of its (1) current levels in some urban air, (2) strong partitioning from air into water, (3) resistance to degradation, (4) use as an octane-booster since the 1970s, (5) rapidly increasing use in the 1990s to reduce CO and O3 in urban air, and (6) its frequent detection rat lOW microgram per liter levels in shallow urban groundwater in Denver, New England, and elsewhere. Numerical simulations were conducted using a l-D model domain set in medium sand (depth to water table = 5 m) to provide a test of whether MTBE and other atmospheric VOCs could move to shallow groundwater within the 10-15 y time frame over which MTBE has now been used in large amounts. Degradation and sorption were assumed negligible. In case 1 (no infiltration, steady atmospheric source), 10 y was not long enough to permit significant VOC movement by diffusion into shallow groundwater. Case 2 considered a steady atmospheric source plus 36 cm/y of net infiltration; groundwater at 2 m below the water table became nearly saturated with atmospheric levels of VOC within 5 y. Case 3 was similar to case 2, but considered the source to be seasonal being 'on' for only 5 of 12 months each year, as with the use of MTBE during the winter fuel-oxygenate season; groundwater at 2 m below the water table became equilibrated with 5/12 of the 'source-on' concentration within 5 y. Cases 4 and 5 added an evapotranspiration (ET) loss of 36 cm/y, resulting in no net recharge. Case 4 took the ET from the surface, and case 5 took the ET from the capillary fringe at a depth of 3.5 m. Net VOC mass transfer to shallow groundwater after 5 y was less for both cases 4 and 5 than for case 3. However, it was significantly greater for cases 4 and 5 than for case 1, even though cases 1, 4, add 5 were

  6. Geochemical evidence of groundwater flow paths and the fate and transport of constituents of concern in the alluvial aquifer at Fort Wingate Depot Activity, New Mexico, 2009

    Science.gov (United States)

    Robertson, Andrew J.; Henry, David W.; Langman, Jeffery B.

    2013-01-01

    As part of an environmental investigation at Fort Wingate Depot Activity, New Mexico, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, interpreted aqueous geochemical concentrations to better understand the groundwater flow paths and the fate and transport of constituents of concern in the alluvial aquifer underlying the study area. The fine-grained nature of the alluvial matrix creates a highly heterogeneous environment, which adds to the difficulty of characterizing the flow of groundwater and the fate of aqueous constituents of concern. The analysis of the groundwater geochemical data collected in October 2009 provides evidence that is used to identify four groundwater flow paths and their extent in the aquifer and indicates the dominant attenuation processes for the constituents of concern. The extent and interaction of groundwater flow paths were delineated by the major ion concentrations and their relations to each other. Four areas of groundwater recharge to the study area were identified based on groundwater elevations, hydrogeologic characteristics, and geochemical and isotopic evidence. One source of recharge enters the study area from the saturated alluvial deposits underlying the South Fork of the Puerco River to the north of the study area. A second source of recharge is shown to originate from a leaky cistern containing production water from the San Andres-Glorieta aquifer. The other two sources of recharge are shown to enter the study area from the south: one from an arroyo valley draining an area to the south and one from hill-front recharge that passes under the reported release of perchlorate and explosive constituents. The spatial extent and interaction of groundwater originating from these various sources along identified flow paths affect the persistence and attenuation of constituents of concern. It was determined that groundwater originating in the area of a former explosives’ wash-out operation and an

  7. Impacts of physical and chemical aquifer heterogeneity on basin-scale solute transport: Vulnerability of deep groundwater to arsenic contamination in Bangladesh

    Science.gov (United States)

    Michael, Holly A.; Khan, Mahfuzur R.

    2016-12-01

    Aquifer heterogeneity presents a primary challenge in predicting the movement of solutes in groundwater systems. The problem is particularly difficult on very large scales, across which permeability, chemical properties, and pumping rates may vary by many orders of magnitude and data are often sparse. An example is the fluvio-deltaic aquifer system of Bangladesh, where naturally-occurring arsenic (As) exists over tens of thousands of square kilometers in shallow groundwater. Millions of people in As-affected regions rely on deep (≥150 m) groundwater as a safe source of drinking water. The sustainability of this resource has been evaluated with models using effective properties appropriate for a basin-scale contamination problem, but the extent to which preferential flow affects the timescale of downward migration of As-contaminated shallow groundwater is unknown. Here we embed detailed, heterogeneous representations of hydraulic conductivity (K), pumping rates, and sorptive properties (Kd) within a basin-scale numerical groundwater flow and solute transport model to evaluate their effects on vulnerability and deviations from simulations with homogeneous representations in two areas with different flow systems. Advective particle tracking shows that heterogeneity in K does not affect average travel times from shallow zones to 150 m depth, but the travel times of the fastest 10% of particles decreases by a factor of ∼2. Pumping distributions do not strongly affect travel times if irrigation remains shallow, but increases in the deep pumping rate substantially reduce travel times. Simulation of advective-dispersive transport with sorption shows that deep groundwater is protected from contamination over a sustainable timeframe (>1000 y) if the spatial distribution of Kd is uniform. However, if only low-K sediments sorb As, 30% of the aquifer is not protected. Results indicate that sustainable management strategies in the Bengal Basin should consider impacts of both

  8. Considerations in regional integrated hydrologic modeling: grid resolution, topography, and overland flow processes

    Science.gov (United States)

    Seck, A.; Welty, C.; Maxwell, R. M.

    2010-12-01

    Highly resolved regional distributed hydrologic models have become increasingly attainable with ongoing advances in high performance computing, GIS, and remote sensing technologies. These models have been gaining interest owing to management needs in large river basins, the context of pervasive global environmental change, and the perspective of the coupling with land surface and atmospheric models, as well as their potential usefulness as virtual laboratories in hydrologic research and education. These models present challenges inherent to the applicability of the governing equations to different scales. We address some of those challenges as a part of an ongoing effort to construct an integrated hydrologic model of the Chesapeake Bay watershed (382,976 sq km), using ParFlow, a parallel three dimensional, and variably saturated subsurface - surface flow model. We present here the considerations related to the overland flow component of the model, with regard to the spatial discretization. 4-km, 2-km, and 1-km gridding schemes with a vertical discretization of 1 m were evaluated for a homogeneous domain with a net recharge input. DEMs preprocessed with various techniques were used to generate topography. Model results show that only the 1-km grid can provide a representation of the landscape to generate a saturation field at the land surface that allows formation of rivers and proper drainage. However, results were variable across the five physiographic provinces that comprise the domain. It appears that better drainage is manifested in the Coastal Plain and the Appalachian Plateau. Drainage and river formation becomes more problematic in high reliefs, especially in the Blue Ridge physiographic province and along topographic divides. The need of such a relatively fine discretization is accompanied by greater computational needs. The 1-km grid model (more than 700,000,000 cells) requires about 768 GB of memory and use of 256 processors on the distributed memory

  9. Evaluation of Some Organic Pollutants Transport into the Shallow Groundwater and Surface Water of Jiaxing Landfill Area

    Directory of Open Access Journals (Sweden)

    Souleymane Keita

    2009-01-01

    Full Text Available Problem statement: Hangjiahu regions belong to the Yangtze River Delta region in Zhejiang Province in China. The vast majority of this region is flat, so surface and groundwater both have a low flow rate. With the rapid economic development of the area, a large number of industrial and domestic garbage are generated. These landfill or garbage are exposed and stacked. Because of mismanagement of environment, the atmosphere under the leaching rainfall, results in harmful gases and leachate. A serious pollution of the atmosphere surrounding the dump, soil, surface water and groundwater occurred. By studying the area under different hydro geological conditions this groundwater pollution due to the landfill can be stopped and prevented. This research can also provide a scientific basis. Approach: Some samples were taken to some specific sampling points in order to do chemical analysis. A hydro geological investigation was done on the study area. By using all these data, groundwater pollution was evaluated and predicted through numerical simulation software: Groundwater Modeling System (GMS, from 2006-2007. Results: A total of six main organic pollutants were found in the entire study area including: toluene, dichloropropane, benzene, dichloroethane, chloroform and dichloromethane. There concentration increased form 2006 to 2007 and is higher in surface water than groundwater. Conclusion/Recommendations: Experimental and simulation results were compared and showed that close agreement between these two values were obtained. The application of ecological methods to remove harmful substances such as the cultivation of suitable plants is also necessary.

  10. Modeling the Impact of Cracking in Low Permeability Layers in a Groundwater Contamination Source Zone on Dissolved Contaminant Fate and Transport

    Science.gov (United States)

    Sievers, K. W.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2011-12-01

    Dense Non-Aqueous Phase Liquids (DNAPLs), which are chemicals and chemical mixtures that are heavier than and only slightly soluble in water, are a significant source of groundwater contamination. Even with the removal or destruction of most DNAPL mass, small amounts of remaining DNAPL can dissolve into flowing groundwater and continue as a contamination source for decades. One category of DNAPLs is the chlorinated aliphatic hydrocarbons (CAHs). CAHs, such as trichloroethylene and carbon tetrachloride, are found to contaminate groundwater at numerous DoD and industrial sites. DNAPLs move through soils and groundwater leaving behind residual separate phase contamination as well as pools sitting atop low permeability layers. Recently developed models are based on the assumption that dissolved CAHs diffuse slowly from pooled DNAPL into the low permeability layers. Subsequently, when the DNAPL pools and residual DNAPL are depleted, perhaps as a result of a remediation effort, the dissolved CAHs in these low permeability layers still remain to serve as long-term sources of contamination, due to so-called "back diffusion." These recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more DNAPL and/or dissolved CAH is stored in the low permeability zones than can be explained on the basis of diffusion alone. One explanation for these field observations is that there is enhanced transport of dissolved CAHs and/or DNAPL into the low permeability layers due to cracking. Cracks may allow for advective flow of water contaminated with dissolved CAHs into the layer as well as possible movement of pure phase DNAPL into the layer. In this study, a multiphase numerical flow and transport model is employed in a dual domain (high and low permeability layers) to investigate the impact of cracking on DNAPL and CAH movement. Using literature values, the crack geometry and spacing was varied to model

  11. Impact of Transport Costs on International Trade: The Case of Spanish Ceramic Exports

    OpenAIRE

    I. Martínez-Zarzoso; L García-Menéndez; C. Suárez-Burguet

    2003-01-01

    This paper aims to investigate the determinants of maritime and overland transport costs and the role they play in deterring trade across countries. We estimate a transport cost function using data on maritime and overland transport of the ceramic sector (tiles) obtained from interviews held with Spanish logistics operators. We also study the relationship between transport costs and trade and estimate an import demand model for ceramic products. Additionally, we present a discussion on the se...

  12. Hydrogeochemistry of the Overland Flow in Soil at Agroecosystems in Eastern Amazon

    Science.gov (United States)

    Costa, C. F. G. D.; Figueiredo, R. O.; Oliveira, F. D. A.

    2014-12-01

    In the watershed of the Timboteua and Buiuna streams, northeast of Pará state, Amazon, it was characterized the overland flow dissolved material by some hydrogeochemical variables: electrical conductivity (EC), pH, chloride (Cl-), nitrate (NO3-), phosphate (PO43-), and sulfate (SO42-). In two small holder properties three overland flow experimental plots (1m2) were placed in each of the six evaluated ecosystems under similar biophysical conditions, totaling 18 plots. There was also installed three rainwater collectors and two rain gauges in a nearby area. In the rainy season were collected 234 samples of rainwater and overland flow. The evaluation of the measured variables promote the hydrogeochemical characterization of the overland flow at soil under chop-and-mulch and slash-and-burn practices in the different ecosystems found in the familiar agriculture of this watershed, in which it was identified some distinct hydrogeochemical characteristics of the overland flow. The lowest losses of NO3- (variation range = 0.07 to 2.57 μM) was found in agroecosystem - chop-and-mulch, this nutrient obtained higher values in agroecosystem - slash-and-burn (RQ). In agroecosystem (RQ) initially, there was a high value of PO43- (8.87 μM); EC (121 μS cm-1) and a subsequent sharp decline. Secondary successional forest (CP) of 20 years presented in overland flow pH 4.8 and EC 25 μS cm-1 (average 6 months), low loss of NO3- (0.2 μM) and PO43- (0.05 μM), and large range of variation of SO42- (0.7 to 21.5 μM). While Cl- and SO42- overland flow concentrations were affect by the rainfall variation, the increase of NO3- and PO43-concentrations were more related to the ecosystem management, with the first element responding to the presence of nitrogen-fixing species and the second responding to the burning practices. In summary: This study was efficient to characterize the hydrogeochemical of the overland flow and its relation to the altered ecosystems by Amazonian family farming.

  13. 76 FR 76711 - Overland Trail Transmission, LLC; Notice of Motion for Extension of Rate Case Filing Deadline

    Science.gov (United States)

    2011-12-08

    ...-003] Overland Trail Transmission, LLC; Notice of Motion for Extension of Rate Case Filing Deadline Take notice that on November 30, 2011, Overland Trail Transmission, LLC (OTTCO) filed a request for an... rates charges by section 311 and Hinshaw pipelines to extend the cycle for such reviews from three...

  14. Assessment of well vulnerability for groundwater source protection based on a solute transport model: a case study from Jilin City, northeast China

    Science.gov (United States)

    Huan, Huan; Wang, Jinsheng; Lai, Desheng; Teng, Yanguo; Zhai, Yuanzheng

    2015-05-01

    Well vulnerability assessment is essential for groundwater source protection. A quantitative approach to assess well vulnerability in a well capture zone is presented, based on forward solute transport modeling. This method was applied to three groundwater source areas (Jiuzhan, Hadawan and Songyuanhada) in Jilin City, northeast China. The ratio of the maximum contaminant concentration at the well to the released concentration at the contamination source ( c max/ c 0) was determined as the well vulnerability indicator. The results indicated that well vulnerability was higher close to the pumping well. The well vulnerability in each groundwater source area was low. Compared with the other two source areas, the cone of depression at Jiuzhan resulted in higher spatial variability of c max/ c 0 and lower minimum c max/ c 0 by three orders of magnitude. Furthermore, a sensitivity analysis indicated that the denitrification rate in the aquifer was the most sensitive with respect to well vulnerability. A process to derive a NO3-N concentration at the pumping well is presented, based on determining the maximum nitrate loading limit to satisfy China's drinking-water quality standards. Finally, the advantages, disadvantages and prospects for improving the precision of this well vulnerability assessment approach are discussed.

  15. Assessment of groundwater pathways and contaminant transport in Florida and Georgia using multiple chemical and microbiological indicators

    Science.gov (United States)

    Mahon, Gary L.

    2011-01-01

    The hydrogeology of Florida, especially in the northern part of the state, and southwestern Georgia is characterized by a predominance of limestone aquifers overlain by varying amounts of sands, silts, and clays. This karstic system of aquifers and their associated springs is particularly vulnerable to contamination from various anthropogenic activities at the land surface. Numerous sinkholes, disappearing streams, and conduit systems or dissolution pathways, often associated with large spring systems, allow rapid movement of contaminants from the land surface to the groundwater system with little or no attenuation or degradation. The fate of contaminants in the groundwater system is not fully understood, but traveltimes from sources are greatly reduced when conduits are intercepted by pumping wells and springs. Contaminant introduction to groundwater systems in Florida and Georgia is not limited to seepage from land surface, but can be associated with passive (drainage wells) and forced subsurface injection (aquifer storage and recovery, waste-water disposal).

  16. Groundwater-derived nutrient and trace element transport to a nearshore Kona coral ecosystem: Experimental mixing model results

    Science.gov (United States)

    Prouty, Nancy G.; Swarzenski, Peter W.; Fackrell, Joseph; Johannesson, Karen H.; Palmore, C. Diane

    2017-01-01

    Study regionThe groundwater influenced coastal waters along the arid Kona coast of the Big Island, Hawai’i.Study focusA salinity-and phase partitioning-based mixing experiment was constructed using contrasting groundwater endmembers along the arid Konacoast of the Big Island, Hawai’i and local open seawater to better understand biogeochemical and physicochemical processes that influence the fate of submarine groundwater discharge (SGD)-derived nutrients and trace elements.New Hydrological Insights for the RegionTreated wastewater effluent was the main source for nutrient enrichment downstream at the Honokōhau Harbor site. Conservative mixing for some constituents, such as nitrate + nitrite, illustrate the effectiveness of physical mixing to maintain oceanic concentrations in the colloid (0.02–0.45 μm) and truly dissolved (

  17. Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.; Mohanram, A.; Gao, X.; Chorover, J.

    2011-01-01

    Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 ??m diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 ??M linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 ??M Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere's attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ??, of -44 to -49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L-1. The most hydrophilic (0.52 HI) and negatively charged (?? -38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ??. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer

  18. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

    Science.gov (United States)

    González Paloma, Hueso; Juan Francisco, Martinez-Murillo; Damian, Ruiz-Sinoga Jose; Hanoch, Lavee

    2015-04-01

    Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. This research demonstrates the role played by the treatments in overland flow generation mechanism (runoff, overland flow and soil moisture along the soil profile). The general overland flow characteristics showed that in the C plots the average overland flow was 8.0 ± 22.0 l per event, and the HP plots produced a similar mean value (8.1 ± 20.1 l). The average overland flow per event was significantly less for soil amended with SM, PM or RU (2.7 ± 8.3 l; 1.3 ± 3.5 l and 2.2 ± 5.9 l, respectively). There was a similar trend with respect to the maximum overland flow. The mean sediment yield per event was relatively high in the C and HP plots (8.6 ± 27.8 kg and 14.8 ± 43.4 kg, respectively), while significantly lower values were registered in the SM, PM and RU plots (0.4 ± 1.0 kg; 0.2 ± 0.3 kg and 0.2 ± 0.3 kg, respectively). Very similar trends were found for the maximum sediment yield. Regarding to the soil moisture values, there was a difference in the trends between the C and HP plots and the SM, PM and RU plots. In the C and HP plots the general trend was for a decrease in soil moisture downward through the soil profile, while in the SM, PM and RU plots the soil moisture remained relatively constant or increased, except for the RU treatment in which the soil moisture

  19. A disaggregating approach to describe overland flow occurrence within a catchment

    NARCIS (Netherlands)

    Vigiak, O.; Romanowicz, R.; van Loon, E.E.; Sterk, G.; Beven, K.J.

    2006-01-01

    A parametrically parsimonious, data-based model was built on observations at hillslope and catchment scale to simulate the distribution of overland flow within a small East African Highlands catchment (Kwalei, Tanzania). A rainfall-flow Data Based Mechanistic model identified catchment effective rai

  20. 76 FR 79675 - Overland Trail Transmission, LLC; Notice of Extension of Time

    Science.gov (United States)

    2011-12-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Overland Trail Transmission, LLC; Notice of Extension of Time On November 30... given that an extension of time for OTTCO to file its section 284.123 rate petition is granted to...

  1. Water repellency under coniferous and deciduous forest - Experimental assessment and impact on overland flow

    NARCIS (Netherlands)

    Butzen, Verena; Seeger, Manuel; Marruedo, Amaia; Jonge, de Lianne; Wengel, René; Ries, Johannes B.; Casper, Markus C.

    2015-01-01

    Current climate change makes it necessary to gain a deeper understanding of the runoff generation processes in Central European forests. A changing climate might affect soil water repellency (SWR) which can be seen as an import trigger for overland flow generation in forested areas. In this study

  2. Overland flow dynamics through visual observation using time-lapse photographs

    Science.gov (United States)

    Silasari, Rasmiaditya; Blöschl, Günter

    2016-04-01

    Overland flow process on agricultural land is important to be investigated as it affects the stream discharge and water quality assessment. During rainfall events the formation of overland flow may happen through different processes (i.e. Hortonian or saturation excess overland flow) based on the governing soil hydraulic parameters (i.e. soil infiltration rate, soil water capacity). The dynamics of the soil water state and the processes will affect the surface runoff response which can be analyzed visually by observing the saturation patterns with a camera. Although visual observation was proven useful in laboratory experiments, the technique is not yet assessed for natural rainfall events. The aim of this work is to explore the use of time-lapse photographs of naturally occurring-saturation patterns in understanding the threshold processes of overland flow generation. The image processing produces orthographic projection of the saturation patterns which will be used to assess the dynamics of overland flow formation in relation with soil moisture state and rainfall magnitude. The camera observation was performed at Hydrological Open Air Laboratory (HOAL) catchment at Petzenkirchen, Lower Austria. The catchment covers an area of 66 ha dominated with agricultural land (87%). The mean annual precipitation and mean annual flow at catchment outlet are 750 mm and 4 l/s, respectively. The camera was set to observe the overland flow along a thalweg on an arable field which was drained in 1950s and has advantages of: (1) representing agricultural land as the dominant part of the catchment, (2) adjacent to the stream with clear visibility (no obstructing objects, such as trees), (3) drained area provides extra cases in understanding the response of tile drain outflow to overland flow formation and vice versa, and (4) in the vicinity of TDT soil moisture stations. The camera takes a picture with 1280 x 720 pixels resolution every minute and sends it directly in a PC via fiber

  3. A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water

    Science.gov (United States)

    Gusyev, M. A.; Abrams, D.; Toews, M. W.; Morgenstern, U.; Stewart, M. K.

    2014-08-01

    The purpose of this study is to simulate tritium concentrations and groundwater transit times in river water with particle-tracking (MODPATH) and compare them to solute transport (MT3DMS) simulations. Tritium measurements in river water are valuable for the calibration of particle-tracking and solute transport models as well as for understanding of watershed storage dynamics. In a previous study, we simulated tritium concentrations in river water of the western Lake Taupo catchment (WLTC) using a MODFLOW-MT3DMS model (Gusyev et al., 2013). The model was calibrated to measured tritium in river water at baseflows of the Waihaha, Whanganui, Whareroa, Kuratau, and Omori river catchments of the WLTC. Following from that work we now utilized the same MODFLOW model for the WLTC to calculate the pathways of groundwater particles (and their corresponding tritium concentrations) using steady-state particle tracking MODPATH model. In order to simulate baseflow tritium concentrations with MODPATH, transit time distributions (TTDs) are necessary to understand the lag time between the entry and discharge points of a tracer and are generated for the river networks of the five WLTC outflows. TTDs are used in the convolution integral with an input tritium concentration time series obtained from the precipitation measurements. The resulting MODPATH tritium concentrations yield a very good match to measured tritium concentrations and are similar to the MT3DMS-simulated tritium concentrations, with the greatest variation occurring around the bomb peak. MODPATH and MT3DMS also yield similar mean transit times (MTTs) of groundwater contribution to river baseflows, but the actual shape of the TTDs is strikingly different. While both distributions provide valuable information, the methodologies used to derive the TTDs are fundamentally different and hence must be interpreted differently. With the current MT3DMS model settings, only the methodology used with MODPATH provides the true TTD

  4. Preliminary investigation of groundwater flow and trichloroethene transport in the Surficial Aquifer System, Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota

    Science.gov (United States)

    King, Jeffrey N.; Davis, J. Hal

    2016-05-16

    Industrial practices at the Naval Industrial Reserve Ordnance Plant, in Fridley, Minnesota, caused soil and groundwater contamination. Some volatile organic compounds from the plant might have discharged to the Mississippi River, forced by the natural hydraulic gradient in the surficial aquifer system. The U.S. Environmental Protection Agency included the Naval Industrial Reserve Ordnance Plant on the Superfund National Priorities List in 1989.

  5. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...

  6. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.

    Science.gov (United States)

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2012-12-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination.

  7. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

    Science.gov (United States)

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2013-01-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  8. Screening for suitable areas for Aquifer Thermal Energy Storage within the Brussels Capital Region, Belgium using coupled groundwater flow and heat transport modelling tools

    Science.gov (United States)

    Anibas, Christian; Kukral, Janik; Touhidul Mustafa, Syed Md; Huysmans, Marijke

    2017-04-01

    Urban areas have a great potential for shallow geothermal systems. Their energy demand is high, but currently they have only a limited potential to cover their own energy demand. The transition towards a low-carbon energy regime offers alternative sources of energy an increasing potential. Urban areas however pose special challenges for the successful exploitation of shallow geothermal energy. High building densities limit the available space for drillings and underground investigations. Urban heat island effects and underground structures influence the thermal field, groundwater pollution and competing water uses limit the available subsurface. To tackle these challenges in the Brussels Capital Region, Belgium two projects 'BruGeo' and the recently finished 'Prospective Research of Brussels project 2015-PRFB-228' address the investigation in urban geothermal systems. They aim to identify the key factors of the underground with respect to Aquifer Thermal Energy Storage (ATES) installations like thermal properties, aquifer thicknesses, groundwater flow velocities and their heterogeneity. Combined numerical groundwater and heat transport models are applied for the assessment of both open and closed loop shallow geothermal systems. The Brussels Capital Region comprises of the Belgian Capital, the City of Brussels and 18 other municipalities covering 161 km2 with almost 1.2 million inhabitants. Beside the high population density the Brussels Capital Region has a pronounced topography and a relative complex geology. This is both a challenge and an opportunity for the exploitation of shallow geothermal energy. The most important shallow hydrogeological formation in the Brussels-Capital Region are the Brussels Sands with the Brussels Sands Aquifer. Scenarios where developed using criteria for the hydrogeological feasibility of ATES installations such as saturated aquifer thickness, groundwater flow velocity and the groundwater head below surface. The Brussels Sands

  9. Implementation of agronomical and geochemical modules into a 3D groundwater code for assessing nitrate storage and transport through unconfined Chalk aquifer

    Science.gov (United States)

    Picot-Colbeaux, Géraldine; Devau, Nicolas; Thiéry, Dominique; Pettenati, Marie; Surdyk, Nicolas; Parmentier, Marc; Amraoui, Nadia; Crastes de Paulet, François; André, Laurent

    2016-04-01

    Chalk aquifer is the main water resource for domestic water supply in many parts in northern France. In same basin, groundwater is frequently affected by quality problems concerning nitrates. Often close to or above the drinking water standards, nitrate concentration in groundwater is mainly due to historical agriculture practices, combined with leakage and aquifer recharge through the vadose zone. The complexity of processes occurring into such an environment leads to take into account a lot of knowledge on agronomy, geochemistry and hydrogeology in order to understand, model and predict the spatiotemporal evolution of nitrate content and provide a decision support tool for the water producers and stakeholders. To succeed in this challenge, conceptual and numerical models representing accurately the Chalk aquifer specificity need to be developed. A multidisciplinary approach is developed to simulate storage and transport from the ground surface until groundwater. This involves a new agronomic module "NITRATE" (NItrogen TRansfer for Arable soil to groundwaTEr), a soil-crop model allowing to calculate nitrogen mass balance in arable soil, and the "PHREEQC" numerical code for geochemical calculations, both coupled with the 3D transient groundwater numerical code "MARTHE". Otherwise, new development achieved on MARTHE code allows the use of dual porosity and permeability calculations needed in the fissured Chalk aquifer context. This method concerning the integration of existing multi-disciplinary tools is a real challenge to reduce the number of parameters by selecting the relevant equations and simplifying the equations without altering the signal. The robustness and the validity of these numerical developments are tested step by step with several simulations constrained by climate forcing, land use and nitrogen inputs over several decades. In the first time, simulations are performed in a 1D vertical unsaturated soil column for representing experimental nitrates

  10. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    Science.gov (United States)

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in

  11. Sorption reactions in groundwater: various aspects to modelling the transport behaviour of zinc; Sorptionsreaktionen im Grundwasser: Unterschiedliche Aspekte bei der Modellierung des Transportverhaltens von Zink

    Energy Technology Data Exchange (ETDEWEB)

    Hadeler, A.

    1999-08-01

    The dispersal of trace substance in groundwater may be limited by dissolution and precipitation and, of particular interest in this paper, by sorption and desorption processes. These surface-active processes, which have a decisive influence on groundwater quality, depend on the concomitant geochemical conditions prevailing in the water, the constituents of the aquifer and on the surface properties of the solids. Taking the geochemical conditions prevailing naturally in brown coal mining areas as a point of departure this study was aimed at examining the influence of acidification processes on the transport behaviour inorganic pollutants for the example of zinc. For this purpose oxic column trials were carried out on sandy aquifer material. The data were supplemented by a detailed characterisation of the solid surfaces and modelled on the basis of a transport-reaction model as well as mechanistically with due regard to surface complexing. [German] Die Ausbreitung von Spurenstoffen im Grundwasser wird ausser durch Loesungs- und Faellungsprozesse vor allem durch Sorptions- bzw. Desorptionsvorgaenge limitiert. Diese fuer die Grundwasserqualitaet entscheidenden oberflaechenaktiven Prozesse sind von den variablen geochemischen Randbedingungen im Wasser, vom Stoffbestand des Aquifers und von den Oberflaecheneigenschaften der Feststoffe abhaengig. In Anlehnung an die natuerlichen im Bereich von Braunkohle-Abbaugebieten herrschenden geochemischen Bedingungen wurde der Einfluss von Versauerungsprozessen auf das Transportverhalten von anorganischen Schadstoffen, am Beispiel von Zink, auf der Basis von oxischen Saeulenversuchen an sandigem Aquifermaterial untersucht. Die Daten wurden durch eine detaillierte Charakterisierung der Feststoff-Oberflaechen ergaenzt und sowohl mit Hilfe eines Transport-Reaktionsmodells als auch mechanistisch unter Einbeziehung der Oberflaechenkomplexierung modelliert. (orig.)

  12. The transport of nuclear power plant components. [via airships

    Science.gov (United States)

    Keating, S. J., Jr.

    1975-01-01

    The problems of transporting nuclear power plant components to landlocked sites where the usual mode of transport by barge cannot be used are considered. Existing methods of ground-based overland transport are discussed and their costs presented. Components are described and traffic density projections made to the year 2000. Plots of units transported versus distance transported are provided for units booked in 1973 and booked and proposed in 1974. It is shown that, for these cases, overland transport requirements for the industry will be over 5,000,000 ton-miles/year while a projection based on increasing energy demands shows that this figure will increase significantly by the year 2000. The payload size, distances, and costs of existing overland modes are significant enough to consider development of a lighter than air (LTA) mode for transporting NSSS components.

  13. Uncertainties in vertical groundwater fluxes from 1-D steady state heat transport analyses caused by heterogeneity, multidimensional flow, and climate change

    Science.gov (United States)

    Irvine, Dylan J.; Cartwright, Ian; Post, Vincent E. A.; Simmons, Craig T.; Banks, Eddie W.

    2016-02-01

    Steady state 1-D analytical solutions to estimate groundwater fluxes from temperature profiles are an attractive option because they are simple to apply, with no complex boundary or initial conditions. Steady state solutions have been applied to estimate both aquifer scale fluxes as well as to estimate groundwater discharge to streams. This study explores the sources of uncertainty in flux estimates from regional scale aquifers caused by sensor precision, aquifer heterogeneity, multidimensional flow and variations in surface temperature due to climate change. Synthetic temperature profiles were generated using 2-D groundwater flow and heat transport models with homogeneous and heterogeneous hydraulic and thermal properties. Temperature profiles were analyzed assuming temperature can be determined with a precision between 0.1°C and 0.001°C. Analysis of synthetic temperature profiles show that the Bredehoeft and Papadopulos (1965) method can provide good estimates of the mean vertical Darcy flux over the length of the temperature profile. Reliable flux estimates were obtained when the ratio of vertical to horizontal flux was as low as 0.1, and in heterogeneous media, providing that temperature at the upper boundary was constant in time. However, temporal increases in surface temperature led to over-estimation of fluxes. Overestimates increased with time since the onset of, and with the rate of surface warming. Overall, the Bredehoeft and Papadopulos (1965) method may be more robust for the conditions with constant temperature distributions than previously thought, but that transient methods that account for surface warming should be used to determine fluxes in shallow aquifers.

  14. AN ANALYTICAL SOLUTION OF KINEMATIC WAVE EQUATIONS FOR OVERLAND FLOW UNDER GREEN-AMPT INFILTRATION

    Directory of Open Access Journals (Sweden)

    Giorgio Baiamonte

    2010-03-01

    Full Text Available This paper deals with the analytical solution of kinematic wave equations for overland flow occurring in an infiltrating hillslope. The infiltration process is described by the Green-Ampt model. The solution is derived only for the case of an intermediate flow regime between laminar and turbulent ones. A transitional regime can be considered a reliable flow condition when, to the laminar overland flow, is also associated the effect of the additional resistance due to raindrop impact. With reference to the simple case of an impervious hillslope, a comparison was carried out between the present solution and the non-linear storage model. Some applications of the present solution were performed to investigate the effect of main parameter variability on the hillslope response. Particularly, the effect of hillslope geometry and rainfall intensity on the time to equilibrium is shown.

  15. Large scale groundwater flow and hexavalent chromium transport modeling under current and future climatic conditions: the case of Asopos River Basin.

    Science.gov (United States)

    Dokou, Zoi; Karagiorgi, Vasiliki; Karatzas, George P; Nikolaidis, Nikolaos P; Kalogerakis, Nicolas

    2016-03-01

    In recent years, high concentrations of hexavalent chromium, Cr(VI), have been observed in the groundwater system of the Asopos River Basin, raising public concern regarding the quality of drinking and irrigation water. The work described herein focuses on the development of a groundwater flow and Cr(VI) transport model using hydrologic, geologic, and water quality data collected from various sources. An important dataset for this goal comprised an extensive time series of Cr(VI) concentrations at various locations that provided an indication of areas of high concentration and also served as model calibration locations. Two main sources of Cr(VI) contamination were considered in the area: anthropogenic contamination originating from Cr-rich industrial wastes buried or injected into the aquifer and geogenic contamination from the leaching process of ophiolitic rocks. The aquifer's response under climatic change scenario A2 was also investigated for the next two decades. Under this scenario, it is expected that rainfall, and thus infiltration, will decrease by 7.7 % during the winter and 15 % during the summer periods. The results for two sub-scenarios (linear and variable precipitation reduction) that were implemented based on A2 show that the impact on the study aquifer is moderate, resulting in a mean level decrease less than 1 m in both cases. The drier climatic conditions resulted in higher Cr(VI) concentrations, especially around the industrial areas.

  16. Efficient evaluation of small failure probability in high-dimensional groundwater contaminant transport modeling via a two-stage Monte Carlo method: FAILURE PROBABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Lin, Guang [Department of Mathematics and School of Mechanical Engineering, Purdue University, West Lafayette Indiana USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2017-03-01

    In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters. To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen–Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.

  17. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Saturation Excess-Overland Flow, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the average value of saturation overland flow, in percent of total streamflow, compiled for every catchment of NHDPlus for the conterminous...

  18. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Mean Infiltration-Excess Overland Flow, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every catchment of...

  19. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [ORNL; Yeh, Gour-Tsyh [University of Central Florida, Orlando; Parker, Jack C [ORNL; Brooks, Scott C [ORNL; Pace, Molly [ORNL; Kim, Young Jin [ORNL; Jardine, Philip M [ORNL; Watson, David B [ORNL

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  20. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C.; Pace, Molly N.; Kim, Young-Jin; Jardine, Philip M.; Watson, David B.

    2007-06-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M- NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  1. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    The key role of small-scale processes like molecular diffusion and electrochemical migration has been increasingly recognized in multicomponent reactive transport in saturated porous media. In this study, we propose a two-dimensional multicomponent reactive transport model taking into account...... the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code...

  2. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    Science.gov (United States)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-12-01

    The key role of small-scale processes like molecular diffusion and electrochemical migration has been increasingly recognized in multicomponent reactive transport in saturated porous media. In this study, we propose a two-dimensional multicomponent reactive transport model taking into account the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively, conservative and reactive transport examples are presented to demonstrate the capability of the proposed model to simulate transport of charged species in heterogeneous porous media with spatially variable physical and chemical properties. The results reveal that the Coulombic cross-coupling between dispersive fluxes can significantly influence conservative as well as reactive transport of charged species both at the laboratory and at the field scale.

  3. The influence of digital elevation model resolution on overland flow networks for modelling urban pluvial flooding.

    Science.gov (United States)

    Leitão, J P; Boonya-Aroonnet, S; Prodanović, D; Maksimović, C

    2009-01-01

    This paper presents the developments towards the next generation of overland flow modelling of urban pluvial flooding. Using a detailed analysis of the Digital Elevation Model (DEM) the developed GIS tools can automatically generate surface drainage networks which consist of temporary ponds (floodable areas) and flow paths and link them with the underground network through inlets. For different commercially-available Rainfall-Runoff simulation models, the tool will generate the overland flow network needed to model the surface runoff and pluvial flooding accurately. In this paper the emphasis is placed on a sensitivity analysis of ponds and preferential overland flow paths creation. Different DEMs for three areas were considered in order to compare the results obtained. The DEMs considered were generated using different acquisition techniques and hence represent terrain with varying levels of resolution and accuracy. The results show that DEMs can be used to generate surface flow networks reliably. As expected, the quality of the surface network generated is highly dependent on the quality and resolution of the DEMs and successful representation of buildings and streets.

  4. Effects of Na+/K+ Ratio of Groundwaters on the Gill Ion-Transport Enzyme Activity, Plasma Osmolality and Growth of Cynoglossus semilaevis Juveniles

    Institute of Scientific and Technical Information of China (English)

    YANG Huizan; PAN Luqing; HU Fawen; LIU Hongyu

    2008-01-01

    The effects of environmental Na+/K+ ratio on the gill ion-transport enzyme activity,plasma osmolality and growth ofCynoglossus semi/aevis juveniles were investigated.The results showed that,plasma osmolality was similar among flounder adaptedto different Na+/K+ ratios of saline groundwaters (P>0.05),while the growth,gill Na+,K+-ATPase and HCO,3'--ATPase activities wereaffected by Na+/K+ ratio significantly (P<0.05).The gill Na+,K+-ATPase activity reached its maximum on day 3,then decreasedgradually from day 3 to day 9 and remained constant from day 9 to day 15.The peak values of gill Na+,K+-ATPase activity weredetected on day 3 for all Na+/K+ ratios of saline groundwaters,then the enzyme activities descended,and on day 9 the enzyme activi-ties achieved steady state,and the gill HCO,3--ATPase activity increased rapidly and achieved steady state after one day.Duringsteady state,the gill Na+,K+-ATPase and HCO,3--ATPase activity of Na+/K+ ratios 20 and 40 treatments were significantly higherthan those in the control group (Na+/K+ ratio 27.5),while there were no significant differences between the Na+/K+ ratio 30 treatmentand the control group; the gill Na+,K+-ATPase activity of Na+/K+ ratio 20 and 40 treatments were significantly higher than that forratio 30 treatment,but there were no significant differences of gill HCO3-ATPase activity among these treatments.At the end of the15-day experiment,the weight gain (%) and specific growth rate (SGR) of flounders maintained in seawater were significantly higherthan those in groundwaters; significant differences also occurred among the treatments; Na+/K+ ratio 30 treatment had the highestvalues (33.7% and 1.94 respectively),which were significantly higher than those under Na+/K+ ratios 20 and 40 treatments.There-fore,for the saline groundwater used in this experiment,it is suggested that the Na+/K+ ratio be adjusted to approximately 30,I.e.,asclose to that of natural seawater as possible in the culture of flounder.

  5. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs.

  6. Depression storage and infiltration effects on overland flow depth-velocity-friction at desert conditions: field plot results and model

    Directory of Open Access Journals (Sweden)

    M. J. Rossi

    2012-09-01

    Full Text Available Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1 overland flow and infiltration parameters were obtained in undisturbed field conditions; (2 field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3 the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying

  7. Characteristic Time Scales of Transport Processes for Chemotactic Bacteria in Groundwater: Analysis of Pore-scale to Field-scale Experimental Data

    Science.gov (United States)

    Ford, R. M.

    2010-12-01

    Many processes contribute to the transport of microorganisms in groundwater environments. One process of interest is chemotaxis, whereby motile bacteria are able to detect and swim toward increasing concentrations of industrial hydrocarbons that they perceive as food sources. By enabling bacteria to migrate to the sources of pollutants that they degrade, chemotaxis has the potential to enhance bioremediation efforts, especially in less permeable zones where contamination may persist. To determine the field conditions under which chemotaxis might be exploited in a bioremediation scheme requires an understanding of the characteristic time scales in the system. We defined a dimensionless chemotaxis number that compares the time over which a bacterial population is exposed to a chemical gradient to the time required for a bacterial population to migrate a significant distance in response to a chemical gradient. The exposure time and the response time are dependent upon the experimental conditions and properties of the bacteria and chemical attractant. Experimental data was analyzed for a range of groundwater flow rates over a wide scope of experimental systems including a single-pore with NAPL source, a microfluidic channel with and without a porous matrix, a laboratory column, a bench-scale microcosm and a field-scale study. Chemical gradients were created transverse to the flow direction. Distributions of chemotactic and nonchemotactic bacteria were compared to determine the extent of migration due to chemotaxis. Under some conditions at higher flow rates, the effect of chemotaxis was diminished to the point of not being detected. The goal of the study was to determine a critical value for the dimensionless chemotaxis number (which is independent of scale) that can be used as a design criterion to ascertain a priori the conditions under which a chemotactic response will impact bacterial transport relative to other processes such as advection and dispersion.

  8. Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

    2005-04-01

    This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

  9. Simulation of groundwater flow and chloride transport in the “1,200-foot” sand with scenarios to mitigate saltwater migration in the “2,000-foot” sand in the Baton Rouge area, Louisiana

    Science.gov (United States)

    Heywood, Charles E.; Lovelace, John K.; Griffith, Jason M.

    2015-07-16

    Groundwater withdrawals have caused saltwater to encroach into freshwater-bearing aquifers beneath Baton Rouge, Louisiana. The 10 aquifers beneath the Baton Rouge area, which includes East and West Baton Rouge Parishes, Pointe Coupee Parish, and East and West Feliciana Parishes, provided about 184.3 million gallons per day (Mgal/d) for public supply and industrial use in 2012. Groundwater withdrawals from the “1,200-foot” sand in East Baton Rouge Parish have caused water-level drawdown as large as 177 feet (ft) north of the Baton Rouge Fault and limited saltwater encroachment from south of the fault. The recently developed groundwater model for simulating transport in the “2,000-foot” sand was rediscretized to also enable transport simulation within the “1,200-foot” sand and was updated with groundwater withdrawal data through 2012. The model was recalibrated to water-level observation data through 2012 with the parameter-estimation code PEST and calibrated to observed chloride concentrations at observation wells within the “1,200-foot” sand and “2,000-foot” sand. The model is designed to evaluate strategies to control saltwater migration, including changes in the distribution of groundwater withdrawals and installation of scavenger wells to intercept saltwater before it reaches existing production wells.

  10. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  11. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  12. Assessment of Carbon Tetrachloride Groundwater Transport in Support of the Hanford Carbon Tetrachloride Innovative Technology Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Murray, Christopher J.; Cole, Charles R.; Cameron, Richard J.; Johnson, Michael D.; Skeen, Rodney S.; Johnson, Christian D.

    2001-07-13

    Groundwater modeling was performed in support of the Hanford Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program. The ITRD program is facilitated by Sandia National Laboratory for the Department of Energy Office of Science and Technology. This report was prepared to document the results of the modeling effort and facilitate discussion of characterization and remediation options for the carbon tetrachloride plume among the ITRD participants. As a first step toward implementation of innovative technologies for remediation of the carbon tetrachloride (CT) plume underlying the 200-West Area, this modeling was performed to provide an indication of the potential impact of the CT source on the compliance boundary approximately 5000 m distant. The primary results of the modeling bracket the amount of CT source that will most likely result in compliance/non-compliance at the boundary and the relative influence of the various modeling parameters.

  13. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... of the evolution in natural baseline properties in groundwater....

  14. Experiments on the movement of pesticides in sandy soils to groundwater : prospects of testing preferential transport models

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2012-01-01

    Many agricultural areas with humic-sandy and loamy-sandy soils are used also for the extraction of water for drinking-water supply. Model concepts have been developed for the fast preferential transport of plant protection products (pesticides) in such soils, e.g. by fingered and funneled flow. An i

  15. USE OF FLUORESCENT POLYCYLIC AROMATIC HYDROCARBON PROBES IN STUDYING THE IMPACT OF COLLOIDS ON POLLUTANT TRANSPORT IN GROUNDWATER

    Science.gov (United States)

    A fluorescence-quenching method was developed to assess the hydrophobic organic pollutant binding potential of organic colloids (OC) in unaltered natural waters. This method allows (1) direct assessment of the importance of OC-enhanced pollutant transport for environmental sam- p...

  16. Isotopic evolution of groundwater in a telogenetic karst aquifer: A method to study recharge and contaminant transport

    Science.gov (United States)

    There exists a limited understanding of hydrogeologic flow and contaminant transport within karst aquifers, particularly in the epikarst zone, which are highly susceptible to natural and anthropogenic contamination, such as agricultural runoff, due to the interconnected nature of the surface and sub...

  17. Estimating Age Distributions of Base Flow in Watersheds Underlain by Single and Dual Porosity Formations Using Groundwater Transport Simulation and Weighted Weibull Functions

    Science.gov (United States)

    Sanford, W. E.

    2015-12-01

    Age distributions of base flow to streams are important to estimate for predicting the timing of water-quality responses to changes in distributed inputs of nutrients or pollutants at the land surface. Simple models of shallow aquifers will predict exponential age distributions, but more realistic 3-D stream-aquifer geometries will cause deviations from an exponential curve. In addition, in fractured rock terrains the dual nature of the effective and total porosity of the system complicates the age distribution further. In this study shallow groundwater flow and advective transport were simulated in two regions in the Eastern United States—the Delmarva Peninsula and the upper Potomac River basin. The former is underlain by layers of unconsolidated sediment, while the latter consists of folded and fractured sedimentary rocks. Transport of groundwater to streams was simulated using the USGS code MODPATH within 175 and 275 watersheds, respectively. For the fractured rock terrain, calculations were also performed along flow pathlines to account for exchange between mobile and immobile flow zones. Porosities at both sites were calibrated using environmental tracer data (3H, 3He, CFCs and SF6) in wells and springs, and with a 30-year tritium record from the Potomac River. Carbonate and siliciclastic rocks were calibrated to have mobile porosity values of one and six percent, and immobile porosity values of 18 and 12 percent, respectively. The age distributions were fitted to Weibull functions. Whereas an exponential function has one parameter that controls the median age of the distribution, a Weibull function has an extra parameter that controls the slope of the curve. A weighted Weibull function was also developed that potentially allows for four parameters, two that control the median age and two that control the slope, one of each weighted toward early or late arrival times. For both systems the two-parameter Weibull function nearly always produced a substantially

  18. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Tasks 6D, 6E, 6F and 6F2

    Energy Technology Data Exchange (ETDEWEB)

    Hodgkinson, David (Quintessa, Henley-on-Thames (GB))

    2007-09-15

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization and performance assessment approaches to modelling solute transport in fractured rock. The objectives of Task 6 are: To assess simplifications used in Performance Assessment (PA) models. To determine how, and to what extent, experimental tracer and flow experiments can constrain the range of parameters used in PA models. To support the design of Site Characterisation (SC) programmes to ensure that the results have optimal value for performance assessment calculations. To improve the understanding of site-specific flow and transport behaviour at different scales using site characterisation models. The present report is concerned with Tasks 6D, 6E, 6F and 6F2. It follows on from two previous reviews of Tasks 6A, 6B and 6B2, and Task 6C. In Task 6D the transport of tracers through a fracture network is modelled using the conditions of the C2 TRUE-Block Scale tracer test, based on the synthetic structural model developed in Task 6C. Task 6E extends the Task 6D transport calculations to a reference set of PA time scales and boundary conditions. Task 6F consists of a series of 'benchmark' studies on single features from the Task 6C hydrostructural model in order to improve the understanding of differences between the participating models. Task 6F2 utilises models set up for Tasks 6E and 6F to perform additional sensitivity studies with the aim of increasing the understanding of how models behave, the reason for differences in modelling results, and the sensitivity of models to various assumptions and parameter values. Eight modelling teams representing five organisations participated in this exercise using Discrete Fracture Network (DFN), continuum and channel network concepts implemented in a range of different

  19. Simulating Groundwater Recharge Across the Southern High Plains

    Science.gov (United States)

    Smidt, S. J.; Haacker, E. M.; Kendall, A. D.; Hyndman, D. W.

    2015-12-01

    Quantifying recharge and water availability across the Southern High Plains is a difficult, but necessary, challenge for future groundwater and agricultural projections. Overland flow is not common due to limited precipitation, dry soils, and high evapotranspiration. The majority of runoff is temporarily stored in playa lakes, leading to the bulk of recharge across the region occurring in localized infiltration zones beneath these lakes. Despite the importance of regional recharge estimates, limited information exists that integrates complex characteristics of the land, climate, and hydrology in order to quantify recharge across the entire Southern High Plains aquifer. This study applies the Landscape Hydrology Model (LHM) to capture these characteristics and simulate surface water flow and groundwater recharge. This model simulates the complete water cycle across large regions, including irrigation estimates, establishing a framework to estimate recharge and groundwater availability in the Southern High Plains region. Results from this study can be used to predict the likely impacts of climate change and improve water management strategies.

  20. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.

    Science.gov (United States)

    Busch, J; Meißner, T; Potthoff, A; Bleyl, S; Georgi, A; Mackenzie, K; Trabitzsch, R; Werban, U; Oswald, S E

    2015-10-01

    The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 5.3m in a confined, natural aquifer. The injection/extraction rate was 500L/h. Approximately 1.2kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Management of groundwater in-situ bioremediation system using reactive transport modelling under parametric uncertainty: field scale application

    Science.gov (United States)

    Verardo, E.; Atteia, O.; Rouvreau, L.

    2015-12-01

    In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in

  2. Steady-State and Transient Groundwater Flow and Advective Transport, Eastern Snake River Plain Aquifer, Idaho National Laboratory and Vicinity, Idaho

    Science.gov (United States)

    Fisher, J. C.; Ackerman, D. J.; Rousseau, J. P.; Rattray, G. W.

    2009-12-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport through the fractured basalts and interbedded sediments of the Eastern Snake River Plain (ESRP) aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The model domain covers an area of 1,940 square miles that includes most of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. Numerical models simulated 1980 steady-state conditions and transient flow for 1980-95. In the transient model, streamflow infiltration was the major stress. The models were calibrated using the parameter-estimation program incorporated in MODFLOW-2000. The steady-state model reasonably simulated the observed water-table altitude and gradients. Simulation of transient conditions reproduced changes in the flow system resulting from episodic infiltration from the Big Lost River. Analysis of simulations shows that flow is (1) dominantly horizontal through interflow zones in basalt, vertical anisotropy resulting from contrasts in hydraulic conductivity of different types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. Particle-tracking simulations were used to evaluate how simulated groundwater flow paths and travel times differ between the steady-state and transient flow models, and how well model-derived groundwater flow directions and velocities compare to independently-derived estimates. Particle tracking also was used to simulate the growth of tritium plumes originating at two INL facilities over a 16 year period under steady-state and transient flow conditions (1953-68). The shape, dimensions, and areal extent of these plumes were compared to a map of the plumes for 1968 from tritium releases beginning in 1952

  3. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling

  4. Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990-2006

    Science.gov (United States)

    Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.

    2010-01-01

    Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to

  5. Effect of sheet and rill erosion on overland flow connectivity in bare agricultural plots

    Science.gov (United States)

    Penuela Fernandez, Andres; Rocio Rodriguez Pleguezuelo, Carmen; Javaux, Mathieu; Bielders, Charles L.

    2014-05-01

    Rill erosion processes generate preferential flow paths that may increase the degree of connectivity of the soil surface and hence strongly modify its hydrological response. However, few studies have tried to quantify the effect of rill development on overland flow connectivity. For this purpose, changes in surface microtopography were monitored on three bare agricultural plots (3 m wide x 10 m long and 11% of slope) in Louvain-la-Neuve (Belgium) under natural rainfall conditions. Digital elevation models of these plots were obtained on a monthly basis over a 1-year period by photogrammetry using the Micmac software. Runoff was collected at the plot outlets. To characterize the hydrological connectivity, a functional connectivity indicator was used, called the relative surface connection function (RSCf). This indicator, which relates the area connected to the outflow boundary to the degree of filling of maximum depression storage (MDS), is fast to compute and was previously shown to be able to capture runoff-relevant connectivity properties. The RSC function was calculated for each DEM and the evolution of overland flow connectivity was quantified and compared to the measured runoff. The results of this study showed that the changes in microtopography resulting from sheet and rill erosion have a strong impact on the hydrological connectivity as reflected in the RSCf. A higher volume of runoff was generated as a consequence of surface sealing and the decrease of the MDS. More rapid runoff initiation was observed as the RSCf evolved from a concave to a convex shape.

  6. Chemical composition of overland flow produced on soils covered with vegetative ash

    Directory of Open Access Journals (Sweden)

    M.B. Bodí

    2013-05-01

    Full Text Available The objective of this study was to ascertain the differences between the soluble elements of ash obtained under laboratory conditions and the dissolved in overland flow from soils covered with a layer of ash. The overland flow was obtained during series of rainfall simulations over soils covered with two different types of ash. This study indicates that the soluble elements released from ash can modify water quality increasing its pH, electrical conductivity and especially cation content. The nutrients solubilised are not necessarily the same as the elemental composition of ash itself. Runoff composition depends on the volume of water produced, on the solubility of the ash components and on the chemical interactions with water from rainfall and soil. After the first intense rain event, most of the elements are solubilised and lixiviated or washed out, however, some of them may increase in the runoff or soil water some weeks later due to chemical interactions with water from rainfall and soil nutrients.

  7. Challenges of Airline Reservation System and Possible Solutions (A Case Study of Overland Airways

    Directory of Open Access Journals (Sweden)

    Abisoye Blessing O.

    2017-01-01

    Full Text Available An Airline Reservation system is very important because it has the strong ability to reduce errors that might have occurred when using a manual system of reservation and helps speed up the boarding process. Overland Airways has an existing Airline Reservation System, but this paper analyzed the problems of the existing system. The problems are: inability of passengers to select their preferred seat(s from the reservation system, No option of passengers printing their boarding pass from the existing system, non-notification of passengers of flight cancellation or delays and passengers don‘t have access to aircraft maintenance report to ease the fears associated with air travel and its disasters. In this paper, an Improved Airline Reservation System that is convenient for passengers to solve the aforementioned problems was designed. The Improved Airline Reservation system is designed and implemented using data obtained from interviewing airline personnel, passengers, and materials on Airline Reservation Systems. In this regard, the Improved Airline Reservation System will assist Overland Airways in variety of airline administration tasks and service needs from time of initial reservation through completion of the task. The following programming languages were used: PHP, JavaScript, HTML and CSS for designing the interface of the system, and SQL for the database. The designed airline system was tested with 50 passengers.

  8. Non-uniform overland flow-infiltration model for roadside swales

    Science.gov (United States)

    García-Serrana, María; Gulliver, John S.; Nieber, John L.

    2017-09-01

    There is a need to quantify the hydrologic performance of vegetated roadside swales (drainage ditches) as stormwater control measures (SCMs). To quantify their infiltration performance in both the side slope and the channel of the swale, a model has been developed for coupling a Green-Ampt-Mein-Larson (GAML) infiltration submodel with kinematic wave submodels for both overland flow down the side slope and open channel flow for flow in the ditch. The coupled GAML submodel and overland flow submodel has been validated using data collected in twelve simulated runoff tests in three different highways located in the Minneapolis-St. Paul metropolitan area, MN. The percentage of the total water infiltrated into the side slope is considerably greater than into the channel. Thus, the side slope of a roadside swale is the main component contributing to the loss of runoff by infiltration and the channel primarily conveys the water that runs off the side slope, for the typical design found in highways. Finally, as demonstrated in field observations and the model, the fraction of the runoff/rainfall infiltrated (Vi∗) into the roadside swale appears to increase with a dimensionless saturated hydraulic conductivity (Ks∗), which is a function of the saturated hydraulic conductivity, rainfall intensity, and dimensions of the swale and contributing road surface. For design purposes, the relationship between Vi∗ and Ks∗ can provide a rough estimate of the fraction of runoff/rainfall infiltrated with the few essential parameters that appear to dominate the results.

  9. Testing of a reactive transport processes module for a coupled (groundwater/surface water) physically based model on a vegetative buffer strip (Beaujolais, France).

    Science.gov (United States)

    Gatel, L.; Lauvernet, C.; Carluer, N.; Paniconi, C.

    2016-12-01

    In the context of the European Water Framework Directive (WFD, 2000/60/EC), which aims to achieve a good ecological and chemical status for all natural aquatic environments, tools to help understand and quantify pesticide transfers in agricultural watersheds are necessary. Models which are physically based and spatially distributed can be particularly useful for representing in detail processes and interactions between the soil surface and subsurface and thus to evaluate the management of landscape elements remediation. The present study aims to test and validate a recently added reactive transport to the coupled surface water/groundwater model CATHY, in order to represent pesticide transfers. Contaminant reactions implemented in CATHY for this study are linear adsorption and degradation (first order kinetics). The advection part of the model is solved according to the finite volume method and reactions are computed on volumes using a sequential non-iterative approach. The CATHY model has been tested on laboratory data and with a Morris sensitivity analysis and is applied now in real field conditions, on a vegetative buffer strip monitored by Irstea in a vineyard catchment (Beaujolais, France). The site is instrumented with lysimeters, flow and solute concentration measurement devices. This test represents a complex step into the model validation, initial and boundary conditions are not fully controlled, and field parameters measurement are not fully known.

  10. Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas

    Science.gov (United States)

    Leitão, João P.; Moy de Vitry, Matthew; Scheidegger, Andreas; Rieckermann, Jörg

    2016-04-01

    Precise and detailed digital elevation models (DEMs) are essential to accurately predict overland flow in urban areas. Unfortunately, traditional sources of DEM, such as airplane light detection and ranging (lidar) DEMs and point and contour maps, remain a bottleneck for detailed and reliable overland flow models, because the resulting DEMs are too coarse to provide DEMs of sufficient detail to inform urban overland flows. Interestingly, technological developments of unmanned aerial vehicles (UAVs) suggest that they have matured enough to be a competitive alternative to satellites or airplanes. However, this has not been tested so far. In this study we therefore evaluated whether DEMs generated from UAV imagery are suitable for urban drainage overland flow modelling. Specifically, 14 UAV flights were conducted to assess the influence of four different flight parameters on the quality of generated DEMs: (i) flight altitude, (ii) image overlapping, (iii) camera pitch, and (iv) weather conditions. In addition, we compared the best-quality UAV DEM to a conventional lidar-based DEM. To evaluate both the quality of the UAV DEMs and the comparison to lidar-based DEMs, we performed regression analysis on several qualitative and quantitative metrics, such as elevation accuracy, quality of object representation (e.g. buildings, walls and trees) in the DEM, which were specifically tailored to assess overland flow modelling performance, using the flight parameters as explanatory variables. Our results suggested that, first, as expected, flight altitude influenced the DEM quality most, where lower flights produce better DEMs; in a similar fashion, overcast weather conditions are preferable, but weather conditions and other factors influence DEM quality much less. Second, we found that for urban overland flow modelling, the UAV DEMs performed competitively in comparison to a traditional lidar-based DEM. An important advantage of using UAVs to generate DEMs in urban areas is

  11. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    Science.gov (United States)

    Harvey, Ronald W.; Metge, David W.; Barber, Larry B.; Aiken, George R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  12. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer.

    Science.gov (United States)

    Harvey, Ronald W; Metge, David W; Barber, L B; Aiken, George R

    2010-02-01

    The effects of a dilute (ionic strength=5x10(-3)M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 microg/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only approximately 3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  13. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater

    Science.gov (United States)

    Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.

    2008-01-01

    Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.

  14. Understanding arsenic mobilization using reactive transport modeling of groundwater hydrochemistry in the Datong basin study plot, China.

    Science.gov (United States)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Zhu, Yapeng

    2016-03-01

    This paper discusses the reactive transport and evolution of arsenic along a selected flow path in a study plot within the central part of Datong basin. The simulation used the TOUGHREACT code. The spatial and temporal trends in hydrochemistry and mineral volume fraction along a flow path were observed. Furthermore, initial simulation of major ions and pH fits closely to the measured data. The study shows that equilibrium conditions may be attained at different stress periods for each parameter simulated. It is noted that the variations in ionic chemistry have a greater impact on arsenic distribution while reducing conditions drive the mobilization of arsenic. The study concluded that the reduction of Fe(iii) and As(v) and probably SO4/HS cycling are significant factors affecting localized mobilization of arsenic. Besides cation exchange and water-rock interaction, incongruent dissolution of silicates is also a significant control mechanism of general chemistry of the Datong basin aquifer.

  15. Preliminary simulation of chloride transport in the Equus Beds aquifer and simulated effects of well pumping and artificial recharge on groundwater flow and chloride transport near the city of Wichita, Kansas, 1990 through 2008

    Science.gov (United States)

    Klager, Brian J.; Kelly, Brian P.; Ziegler, Andrew C.

    2014-01-01

    The Equus Beds aquifer in south-central Kansas is a primary water-supply source for the city of Wichita. Water-level declines because of groundwater pumping for municipal and irrigation needs as well as sporadic drought conditions have caused concern about the adequacy of the Equus Beds aquifer as a future water supply for Wichita. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project, a plan to artificially recharge the aquifer with excess water from the Little Arkansas River. Artificial recharge will raise groundwater levels, increase storage volume in the aquifer, and deter or slow down a plume of chloride brine approaching the Wichita well field from the Burrton, Kansas area caused by oil production activities in the 1930s. Another source of high chloride water to the aquifer is the Arkansas River. This study was prepared in cooperation with the city of Wichita as part of the Equus Beds Aquifer Storage and Recovery project. Chloride transport in the Equus Beds aquifer was simulated between the Arkansas and Little Arkansas Rivers near the Wichita well field. Chloride transport was simulated for the Equus Beds aquifer using SEAWAT, a computer program that combines the groundwater-flow model MODFLOW-2000 and the solute-transport model MT3DMS. The chloride-transport model was used to simulate the period from 1990 through 2008 and the effects of five well pumping scenarios and one artificial recharge scenario. The chloride distribution in the aquifer for the beginning of 1990 was interpolated from groundwater samples from around that time, and the chloride concentrations in rivers for the study period were interpolated from surface water samples. Five well-pumping scenarios and one artificial-recharge scenario were assessed for their effects on simulated chloride transport and water levels in and around the Wichita well field. The scenarios were: (1) existing 1990 through 2008 pumping conditions, to serve as a

  16. Grain transport mechanics in shallow flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  17. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Erik [Dept. of Forest Ecology, Univ. of Helsinki (Finland)

    2007-02-15

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  18. Characterization of groundwater flow and transport in the General Separations Area, Savannah River Plant: Effect of groundwater withdrawals on the Tuscaloosa-Congaree aquifer head reversal in H Area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, C.P.; Duffield, G.M.; Shaw, S.T. [GeoTrans, Inc., Herndon, VA (United States)

    1988-01-01

    The Savannah River Plant (SRP) has maintained a number of sites used for land disposal of various waste materials. The General Separations Area at SRP, located between the Upper Three Runs and Four Mile Creeks, has served as an active area for waste storage for about thirty years. The Tuscaloosa aquifer, which lies beneath the General Separations Area, is a water source for SRP and the surrounding area. The isolation of the Tuscaloosa aquifer has been maintained by an upward hydraulic gradient from the Tuscaloosa aquifer to the overlying Congaree aquifer. This upward gradient is referred to as a hydraulic head reversal in the General Separations Area, i.e., hydraulic heads in the upper Tuscaloosa are higher than hydraulic heads in the Congaree. This head reversal has declined in recent years due to increased groundwater pumping in the upper and lower Tuscaloosa formations. The objective of this investigation is to assess the effects of pumping within the General Separations Area on the Congaree/upper Tuscaloosa head reversal. Methods of maintaining future Tuscaloosa aquifer isolation through the optimization of groundwater withdrawal location and rate were studied. Steady-state and transient groundwater flow models were used to characterize past and potential future groundwater conditions. Future groundwater conditions were simulated for a variety of pumping scenarios.

  19. On the sensitivity of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager channels to overland rainfall

    Science.gov (United States)

    You, Yalei; Liu, Guosheng; Wang, Yu; Cao, Jie

    2011-06-01

    The response of brightness temperatures at different microwave frequencies to overland precipitation is investigated by using the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI) data. The Spearman correlation coefficients between observations at TMI channels or channel combinations and PR-measured near-surface rain are computed using 3 years of TRMM data. The results showed that the brightness temperature combinations from 19 and 37 GHz, that is, V19-V37 (the letter V denotes vertical polarization, and the numbers denote frequency in GHz) or V21-V37, can explain ˜10% more variance of near-surface rainfall rate than can the V85 brightness temperature. Also, the global distribution of the above correlation revealed that over almost all of the tropical land area covered by TRMM satellite, the V19-V37 channel has a closer response to the overland rainfall than does the V85 channel. This result is somewhat counterintuitive, because it has been long believed that the dominant signature of overland rainfall is the brightness temperature depression caused by ice scattering at high microwave frequencies (e.g., 85 GHz). To understand the underlying physics of this better low-frequency response, data analysis and radiative transfer modeling have been conducted to assess the influence on brightness temperatures from clouds with different ice and liquid water partitions. The results showed that under the condition of low frozen water and medium liquid water in the atmospheric column, the signal from the V19-V37 channel responded better to rainfall rate than did the one from the V85 channel. A plausible explanation to this result is that in addition to ice scattering signature, the V19-V37 channel contains liquid water information as well, which is more directly related to surface rain than to ice water aloft. At heavy rainfall conditions, the V19-V37, V37, and V85 channels all are correlated with near-surface rain reasonably well

  20. Modeling overland flow-driven erosion across a watershed DEM using the Landlab modeling framework.

    Science.gov (United States)

    Adams, J. M.; Gasparini, N. M.; Tucker, G. E.; Hobley, D. E. J.; Hutton, E. W. H.; Nudurupati, S. S.; Istanbulluoglu, E.

    2015-12-01

    Many traditional landscape evolution models assume steady-state hydrology when computing discharge, and generally route flow in a single direction, along the path of steepest descent. Previous work has demonstrated that, for larger watersheds or short-duration storms, hydrologic steady-state may not be achieved. In semiarid regions, often dominated by convective summertime storms, landscapes are likely heavily influenced by these short-duration but high-intensity periods of rainfall. To capture these geomorphically significant bursts of rain, a new overland flow method has been implemented in the Landlab modeling framework. This overland flow method routes a hydrograph across a landscape, and allows flow to travel in multiple directions out of a given grid node. This study compares traditional steady-state flow routing and incision methods to the new, hydrograph-driven overland flow and erosion model in Landlab. We propose that for short-duration, high-intensity precipitation events, steady-state, single-direction flow routing models will significantly overestimate discharge and erosion when compared with non-steady, multiple flow direction model solutions. To test this hypothesis, discharge and erosion are modeled using both steady-state and hydrograph methods. A stochastic storm generator is used to generate short-duration, high-intensity precipitation intervals, which drive modeled discharge and erosion across a watershed imported from a digital elevation model, highlighting Landlab's robust raster-gridding library and watershed modeling capabilities. For each storm event in this analysis, peak discharge at the outlet, incision rate at the outlet, as well as total discharge and erosion depth are compared between methods. Additionally, these results are organized by storm duration and intensity to understand how erosion rates scale with precipitation between both flow routing methods. Results show that in many cases traditional steady-state methods overestimate

  1. Groundwater Data Package for the 2004 Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, Paul D.

    2004-08-11

    This report presents data and information that supports the groundwater module. The conceptual model of groundwater flow and transport at the Hanford Site is described and specific information applied in the numerical implementation module is provided.

  2. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...... into the pristine groundwater residing deeper in the aquifer. Reactant-to-product ratios across reaction fronts are altered by dispersive mixing and transience in reactant input functions. Modelling therefore allowed a direct comparison of observed and simulated ratios of concentrations of NO3 (reactant...

  3. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  4. An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations

    Science.gov (United States)

    Xia, Xilin; Liang, Qiuhua; Ming, Xiaodong; Hou, Jingming

    2017-05-01

    Numerical models solving the full 2-D shallow water equations (SWEs) have been increasingly used to simulate overland flows and better understand the transient flow dynamics of flash floods in a catchment. However, there still exist key challenges that have not yet been resolved for the development of fully dynamic overland flow models, related to (1) the difficulty of maintaining numerical stability and accuracy in the limit of disappearing water depth and (2) inaccurate estimation of velocities and discharges on slopes as a result of strong nonlinearity of friction terms. This paper aims to tackle these key research challenges and present a new numerical scheme for accurately and efficiently modeling large-scale transient overland flows over complex terrains. The proposed scheme features a novel surface reconstruction method (SRM) to correctly compute slope source terms and maintain numerical stability at small water depth, and a new implicit discretization method to handle the highly nonlinear friction terms. The resulting shallow water overland flow model is first validated against analytical and experimental test cases and then applied to simulate a hypothetic rainfall event in the 42 km2 Haltwhistle Burn, UK.

  5. Modeling rain-driven overland flow: empirical versus analytical friction terms in the shallow water approximation

    CERN Document Server

    Kirstetter, G; Delestre, O; Darboux, F; Lagrée, P -Y; Popinet, S; Fullana, J -M; Josserand, C

    2016-01-01

    Modeling and simulating overland flow fed by rainfall is a common issue in watershed surface hydrology. Modelers have to choose among various friction models when defining their simulation framework. The purpose of this work is to compare the simulation quality for the Manning, Darcy-Weisbach, and Poiseuille friction models on the simple case of a constant rain on a thin experimental flume. Results show that the usual friction law of Manning is not suitable for this type of flow. The Poiseuille friction model gave the best results both on the flux at the outlet and the velocity and depth profile along the flume. The Darcy-Weisbach model shows good results for laminar flow. Additional testing should be carried out for turbulent cases.

  6. A multidimensional discontinuous Galerkin modeling framework for overland flow and channel routing

    Science.gov (United States)

    West, Dustin W.; Kubatko, Ethan J.; Conroy, Colton J.; Yaufman, Mariah; Wood, Dylan

    2017-04-01

    In this paper, we present the development and application of a new multidimensional, unstructured-mesh model for simulating coupled overland/open-channel flows in the kinematic wave approximation regime. The modeling approach makes use of discontinuous Galerkin (DG) finite element spatial discretizations of variable polynomial degree p, paired with explicit Runge-Kutta time steppers, and is supported by advancements made to an automatic mesh generation tool, ADMESH +, that is used to construct constrained triangulations for channel routing. The developed modeling framework is applied to a set of four test cases, where numerical results are found to compare well with known analytic solutions, experimental data and results from another well-established (structured, finite difference) model within the area of application. The numerical results obtained demonstrate the accuracy and robustness of the developed modeling framework and highlight the potential benefits of using p (polynomial) refinement for hydrological simulations.

  7. One- and two-dimensional modelling of overland flow in semiarid shrubland, Jornada basin, New Mexico

    Science.gov (United States)

    Howes, David A.; Abrahams, Athol D.; Pitman, E. Bruce

    2006-03-01

    Two distributed parameter models, a one-dimensional (1D) model and a two-dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event-based and represent each watershed by an array of 1-m2 cells, in which the cell size is approximately equal to the average area of the shrubs.Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite-difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second-order predictor-corrector finite-difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions.The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large-scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration.

  8. The impact of surface water - groundwater interactions on nitrate cycling assessed by means of hydrogeologic and isotopic techniques in the Alento river basin (Italy)

    Science.gov (United States)

    Stellato, Luisa; Di Rienzo, Brunella; Di Fusco, Egidio; Rubino, Mauro; Marzaioli, Fabio; Terrasi, Filippo; D'Onofrio, Antonio; De Vita, Pantaleone; Allocca, Vincenzo; Salluzzo, Antonio; Rimauro, Juri; Romano, Nunzio; Celico, Fulvio

    2017-04-01

    Currently a major concern of water resources managers is to understand the fate and dynamics of nutrients in riverine ecosystems because of their potential impacts on both river quality and human health (e.g., European Council Directive 91/676/EEC). Nutrients are released within a catchment (or river basin) mainly by agricultural practices and urban/industrial activities, in addition to natural sources such as soils and organic matter. They are discharged into surface water bodies by means of nutrient-rich groundwater inflows and/or overland flow pathways, which can be important controls on hot moment/hot spot type biogeochemical behaviors. Groundwater has been recognized to have a major role in controlling stream ecosystem health since it influences stream ecology when surface and subsurface water are hydraulically connected. In particular, processes occurring at the reach or sub-reach scale more directly influence nutrient transport to rivers than larger scale processes. In this general context, the main scope of this study, within the framework of the IAEA Coordinated Research Project (CRP) "Environmental Isotopes and Age Dating Methods to Assess Nitrogen Pollution and Other Quality Issues in Rivers", was to spatially and temporally quantify groundwater inflows to the Alento river (Southern Italy) to characterize sw-gw interactions in the catchment in order to finally assess nitrates contamination of a groundwater dependent river ecosystem. Four sampling campaigns have been carried out in July and October 2014, in April 2015 and in June 2016 during which 1 spring, rain water, 17 surface water and 27 groundwater points were sampled all over the plain. The piezometric reconstruction has been realized by means of the monitoring of groundwater levels in 43 domestic and agricultural wells (10-15 m deep). The preliminary hydrogeological (water table morphology and stream discharge measurements), physico-chemical (T and EC), hydrochemical and isotopic (222Rn, δD and

  9. Testing and validation of numerical models of groundwater flow, solute transport and chemical reactions in fractured granites: A quantitative study of the hydrogeological and hydrochemical impact produced

    Energy Technology Data Exchange (ETDEWEB)

    Molinero Huguet, J.

    2001-07-01

    This work deals with numerical modeling of groundwater flow, solute transport and chemical reactions through fractured media. These models have been developed within the framework of research activities founded by ENRESA , the Spanish Company for Nuclear Waste Management. This project is the result of a collaborative agreement between ENRESA and his equivalent Swedish Company (SKB) through the research project Task Force 5 of the Aspo Underground Laboratory. One of the objectives of this project is to assess quantitatively th hydrogeological and hydrochemical impact produced by the construction of a Deep Geological Repository in fractured granites. This is important because the new conditions altered construction impact will constitute the initial conditions for the repository closure stage. A second goo l of this work deals with testing the ability of current numerical tools to cope simultaneously with the complex hydrogeological and hydrochemical settlings, which are expected to take place in actual nuclear waste underground repositories constructed in crystalline fractured bed racks. This study has been undertaken through the performance of numerical models, which have subsequently been applied to simulate the hydrogeological and hydrochemical behavior of a granite massif, at a kilo metrical scale, during construction of the Aspo Hard Rock Underground Laboratory (Sweden). The Aspo Hard Rock Laboratory is a prototype, full-scale underground facility launched and operated by SKB. The main aim of the laboratory is to provide an opportunity for research, development and demonstration in a realistic rock environment down to the depth planned for the future deep repository. The framework of this underground facility provides a unique opportunity to attempt the objectives of the present dissertation. (Author)

  10. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    Science.gov (United States)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area

  11. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Drici, Warda

    2004-02-01

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  12. Simulated groundwater flow paths, travel time, and advective transport of nitrogen in the Kirkwood-Cohansey aquifer system, Barnegat Bay–Little Egg Harbor Watershed, New Jersey

    Science.gov (United States)

    Voronin, Lois M.; Cauller, Stephen J.

    2017-07-31

    Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base

  13. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  14. PRESTO-II: a low-level waste environmental transport and risk assessment code

    Energy Technology Data Exchange (ETDEWEB)

    Fields, D.E.; Emerson, C.J.; Chester, R.O.; Little, C.A.; Hiromoto, G.

    1986-04-01

    PRESTO-II (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code designed for the evaluation of possible health effects from shallow-land and, waste-disposal trenches. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population for a 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion, surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach. Data are included for three example sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. A code listing and example input for each of the three sites are included in the appendices to this report.

  15. Using rainfall simulation to monitor the effect of fire on overland flow and erosion through time

    Science.gov (United States)

    Ferreira, Carla; Shakesby, Rick; Walsh, Rory; Ferreira, António; Urbanek, Emilia

    2010-05-01

    The Mediterranean region is highly susceptible to wildfires, which can lead to serious soil degradation as a result of physico-chemical soil property changes. Soil reacts in a complex way to changes brought about by fire, but removal of much or all of the vegetation cover and heating effects on the soil usually cause increased overland flow and increased losses of sediment and nutrients. The consequences may be not only loss of minerogenic material, organic matter and nutrients from the soil leading to loss of soil productivity but also reduced downstream water quality. In Portugal, one of the most popular techniques used in recent years by the forestry service to limit wildfire occurrence is the control of the fuel load using prescribed fire. The aim is to reduce the biomass whilst minimising impacts on the soil. Although there have been many studies focusing on wildfire effects on soil properties and overland flow, there has been less interest in prescribed fire effects. To assess changes in hydrology and soil losses caused by prescribed fire, an experimental burn was carried out in a small (9 ha) catchment (Vale Torto) in central Portugal in February 2009. The catchment has steep slopes (up to c. 25°) on schist bedrock and the soil is water-repellent, thin (water-repellent conditions (4.6 g/m2 compared with 1.2 g/m2), which is probably a consequence of the greater efficacy of rainsplash detachment when the soil is dry. Immediately after the fire, the mean runoff coefficient was approximately the same as during wet antecedent conditions before the fire, but the erosion rate was eight times higher (14.2 g/m2). Three months after the fire, despite a lower runoff coefficient (36%, almost the same as in the dry period before the fire), the erosion rate increased sharply (35.2 g/m2), which can be attributed to the continued exposure of unvegetated erodible sediment within the plots (provided by inwash from upslope between measurements; such an erosion rise would not

  16. Solute transport into the Jiulong River estuary via pore water exchange and submarine groundwater discharge: New insights from 224Ra/228Th disequilibrium

    Science.gov (United States)

    Hong, Qingquan; Cai, Pinghe; Shi, Xiangming; Li, Qing; Wang, Guizhi

    2017-02-01

    Pore water exchange (PEX) and submarine groundwater discharge (SGD) represent two mechanisms for solute transport from the seabed into the coastal ocean. However, their relative importance remains to be assessed. In this study, we pursued the recently developed 224Ra/228Th disequilibrium approach to quantify PEX fluxes of 224Ra into the Jiulong River estuary, China. By constructing a full mass balance of water column 224Ra, we were allowed to put various source terms, i.e., SGD, diffusive and advective pore water flow (PEX), and river input in a single context. This led to the first quantitative assessment of the relative importance of PEX vs. SGD in the delivery of solutes into an estuary. We carried out two surveys in the Jiulong River estuary: one in January 2014 (winter survey), the other in August 2014 (summer survey). By virtue of a 1-D mass balance model of 224Ra in the sediment column, we demonstrated that PEX fluxes of 224Ra were highly variable, both temporally and spatially, and can change by 1-2 orders of magnitude in our study area. Moreover, we identified a strong correlation between 224Ra-based irrigation rate and 234Th-based sediment mixing rate. Our results highlighted irrigation as the predominant PEX process for solute transfer across the sediment-water interface. Total PEX flux of 224Ra (in 1010 dpm d-1) into the Jiulong River estuary was estimated to be 22.3 ± 3.0 and 33.7 ± 5.5 during the winter and summer surveys, respectively. In comparison, total SGD flux of 224Ra (in 1010 dpm d-1) was 11.3 ± 8.6 and 49.5 ± 16.3 in the respective seasons. By multiplying the PEX fluxes of 224Ra by the ratio of the concentration gradients of component/224Ra at the sediment-water interface, we quantified the total PEX fluxes of dissolved inorganic carbon (DIC) and nutrients (NH4+, NO3-, and H4SiO4) into the Jiulong River estuary. In the meantime, net export of DIC and nutrients via SGD were estimated by multiplying the SGD fluxes of 224Ra by the DIC

  17. Factors Effecting the Fate and Transport of CL-20 in the Vadose Zone and Groundwater: Final Report 2002 - 2004 SERDP Project CP-1255

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.; Girvin, Donald C.; Resch, Charles T.; Campbell, James A.; Fredrickson, Herbert L.; Thompson, Karen T.; Crocker, Fiona H.; Qasim, Mohammad M.; Gamerdinger, Amy P.; Lemond, Luke A.

    2005-06-01

    This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurface terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates

  18. Effect of flow discharge and median grain size on mean flow velocity under overland flow

    Science.gov (United States)

    Ali, M.; Sterk, G.; Seeger, M.; Stroosnijder, L.

    2012-07-01

    SummaryPrecise estimation of mean flow velocity (Umean) is imperative for accurate prediction of hydrographs and sediment yield. For overland flow, Umean is normally estimated by multiplying the dye or salt based velocity measurement with a correction factor (α). A wide range of correction factors is available in the literature, all of which were derived under different experimental conditions. The selection of a suitable α has become a main challenge for accurate mean flow calculations. This study aimed to assess the variability of α with grain size (D50) and slope (S), and to evaluate the dependency of Umean on flow rate (Q), D50 and S by regression analysis. Flume experiments were performed at Q varying from 33 to 1033 × 10-6 m3 s-1, S ranging from 3° to 10°, and D50 ranging from 0.233 to 1.022 mm. Flow velocities were measured directly with the dye tracing technique (Udye), and derived indirectly from flow depth measurements (Udepth). The Udepth measurements were considered as Umean. The derived α (Udepth/Udye) values did not remain constant with sediment size and increase significantly with the increase of D50. The mean α values for 0.230, 0.536, 0.719 and 1.022 mm sands were 0.44, 0.77, 0.82 and 0.82, respectively. Hence, due to the substantial variation of α with D50, no absolute α value is applicable to all hydraulic and sedimentary conditions. However, mean α values for 0.230, 0.536 and 0.719 mm sands were found comparable with α values available in the literature for similar grain sizes. The influence of Q, S, and D50 on Umean was studied by regression analysis. Regression analysis depicted the significant influence of Q and D50 on Umean, while the effect of slope was found to be non-significant. Comparison of the derived regression equation with five literature datasets showed that the model can predict mean flow velocities in overland flow at a reasonable accuracy as long as the mean velocity is below 0.4 m s-1. At higher velocities the

  19. Thermal management of an urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2012-06-01

    Full Text Available This study presents a management concept for the sustainable thermal use of an urban groundwater body. The concept is designed to be applied for shallow thermal groundwater use and is based on (1 a characterization of the present thermal state of the investigated urban groundwater body; (2 the definition of development goals for specific aquifer regions, including future aquifer use and urbanization; and (3 an evaluation of the thermal use potential for these regions.

    The investigations conducted in the city of Basel (Switzerland focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the aquifer as well as the thermal influence of river-groundwater interaction. Investigation methods include: (1 short- and long-term data analysis; (2 high-resolution multilevel groundwater temperature monitoring; as well as (3 3-D numerical groundwater flow and heat-transport modeling and scenario development. The combination of these methods allows quantifying the thermal influence on the investigated urban groundwater body, including the influences of thermal groundwater use and additional heat from urbanization. Subsequently, management strategies for minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal use potential are discussed.

  20. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  1. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  2. Development of nuclear spent fuel Maritime transportation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Min; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability.

  3. Tracing man's impact on groundwater dependent ecosystem using geochemical an isotope tools combined with 3D flow and transport modeling: case study from southern Poland

    Science.gov (United States)

    Zurek, Anna; Witczak, Stanislaw; Kania, Jaroslaw; Wachniew, Przemyslaw; Rozanski, Kazimierz; Dulinski, Marek; Jench, Olga

    2013-04-01

    Thorough understanding of the link between terrestrial ecosystems and underlying groundwater reservoirs is an important element of sustainable management of groundwater resources in the light of ever growing anthropogenic pressure on groundwater reserves, both with respect to quantity and quality of this vital resource. While association of terrestrial ecosystems with surface water (rivers, streams, lakes, etc.) is visible and recognized, their link to underground components of the hydrological cycle is often forgotten and not appreciated. The presented study was aimed at investigating possible adverse effects of intensive exploitation of porous sandy aquifer on groundwater dependent terrestrial ecosystem (GDTE) consisting of a valuable forest stand and associated wetlands. The Bogucice Sands aquifer and the associated GDTE (Niepolomice Forest) are located in the south of Poland. The principal economic role of the aquifer, consisting of two water-bearing strata is to provide potable water for public and private users. Eastern part of the shallow phreatic aquifer is occupied by Niepolomice Forest. The Niepolomice Forest is a lowland forest covering around 110 km2. It is protected as a Natura 2000 Special Protection Area "Puszcza Niepołomicka" (PLB120002) which supports bird populations of European importance. Additionally, a fen in the western part of the forest comprises a separate Natura 2000 area "Torfowisko Wielkie Bloto" (PLH120080), a significant habitat of endangered butterfly species associated with wet meadows. Dependence of the Niepolomice Forest stands on groundwater is enhanced by low available water capacity and low capillary rise of soils. Groundwater conditions in the Niepolomice Forest, including Wielkie Bloto fen have been affected by meliorations carried out mostly after the Second World War and by forest management. In September 2009 a cluster of new pumping wells (Wola Batorska well-field) has been set up close to the northern boundary of

  4. Integration of FULLSWOF2D and PeanoClaw: Adaptivity and Local Time-Stepping for Complex Overland Flows

    KAUST Repository

    Unterweger, K.

    2015-01-01

    © Springer International Publishing Switzerland 2015. We propose to couple our adaptive mesh refinement software PeanoClaw with existing solvers for complex overland flows that are tailored to regular Cartesian meshes. This allows us to augment them with spatial adaptivity and local time-stepping without altering the computational kernels. FullSWOF2D—Full Shallow Water Overland Flows—here is our software of choice though all paradigms hold for other solvers as well.We validate our hybrid simulation software in an artificial test scenario before we provide results for a large-scale flooding scenario of the Mecca region. The latter demonstrates that our coupling approach enables the simulation of complex “real-world” scenarios.

  5. High performance shallow water kernels for parallel overland flow simulations based on FullSWOF2D

    KAUST Repository

    Wittmann, Roland

    2017-01-25

    We describe code optimization and parallelization procedures applied to the sequential overland flow solver FullSWOF2D. Major difficulties when simulating overland flows comprise dealing with high resolution datasets of large scale areas which either cannot be computed on a single node either due to limited amount of memory or due to too many (time step) iterations resulting from the CFL condition. We address these issues in terms of two major contributions. First, we demonstrate a generic step-by-step transformation of the second order finite volume scheme in FullSWOF2D towards MPI parallelization. Second, the computational kernels are optimized by the use of templates and a portable vectorization approach. We discuss the load imbalance of the flux computation due to dry and wet cells and propose a solution using an efficient cell counting approach. Finally, scalability results are shown for different test scenarios along with a flood simulation benchmark using the Shaheen II supercomputer.

  6. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Rodwell, William; Swift, Ben [Serco Assurance, Harwell (United Kingdom); Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-12-15

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period around 9,000 AD. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events. Additional calculations were performed to assess the impact of the effects of gas and heat generation in the repository on groundwater flow.

  7. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Infiltration-Excess Overland Flow, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every MRB_E2RF1...

  8. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Saturation Excess-Overland Flow, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the average value of saturation overland flow, in percent of total streamflow, compiled for every MRB_E2RF1 catchment of selected...

  9. Modeling anisotropy in free-surface overland and shallow inundation flows

    Science.gov (United States)

    Viero, Daniele Pietro; Valipour, Mohammad

    2017-06-01

    Regular patterns, which are found in both natural and man-modified environments, are strongly interwoven with free-surface flows. Examples are ridge and slough landscapes, cultivated terrains with ditches and furrows, and urban areas, with many of them characterized by a marked anisotropy. Simulation of overland and shallow inundation flows in these contexts is complex and demanding, especially if very different spatial scales are involved. Anisotropic effects are introduced to cope with two-dimensional shallow water models and, particularly, with the subgrid modeling technique. Application to schematic test cases shows the key role played by anisotropy in shallow flows, and second, that anisotropy can be effectively captured by the subgrid model with low computational effort and preserving mesh-independentness. High-resolution model results are accurately reproduced on coarser meshes using one fiftieth of the original computational elements, with a speed-up of more than 20. The subgrid approach could serve in view of physically based, large-scale modeling of floodplain inundation processes, in irrigation science, and in high-resolution hydrodynamic-hydrological simulations at the basin scale.

  10. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Science.gov (United States)

    The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The EPA Office of Research & Development (ORD) modified the original model from NOAA to fit the model parameters for the Buzzards Bay region. The models show storm surge extent for the Mattapoisett area and therefore the flooding area was reduced to the study area. Areas of flooding that were not connected to the main water body were removed. The files in the geodatabase are:Cat2_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 2 hurricane with 0 ft sea level riseCat4_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 4 hurricane with 0 ft sea level riseCat4_SLR4_Int_Feet_dissolve_Mattapoisett: Future Category 4 hurricane with 4 feet sea level riseThe features support the Weather Ready Mattapoisett story map, which can be accessed via the following link:https://epa.maps.arcgis.com/apps/MapJournal/index.html?appid=1ff4f1d28a254cb689334799d94b74e2

  11. Development and Use of Overland Traversing Capabilities As a Science Platform on the Greenland Ice Sheet

    Science.gov (United States)

    Mercer, J. L.; Haggerty, P.; Crain, R.; Olsen, R.; Burnside, J.; Wisneski, S.; Joyner, J.; Phillips, G.; Lever, J. H.; Weale, J.

    2012-12-01

    The National Science Foundation's Arctic Sciences Research Support and Logistics office, along with their prime support contractor (CH2MHill Polar Services) and the US Army Cold Regions Research and Engineering Laboratory (CRREL), has been developing heavy-haul overland traversing capabilities on the Greenland Ice Sheet since 2007. In the past 5 years, logistical, technological and environmental challenges have been overcome to develop efficient, well-functioning and safe traverse capabilities aimed at delivering fuel and cargo resupply to inland research stations. The next phase of this effort entails the development and implementation of science support using the traverse as a platform. With rapid changes occurring on the ice sheet, an increase in science interests over long sections of Greenland is anticipated. The traverse provides a potential platform for onboard instrumentation and integrated data collection systems, installation and routine maintenance of monitoring stations on the ice sheet, sample and data collection over transects along the ice sheet, or movement of large/heavy science equipment. This presentation will provide an overview and discussion of current and future traverse science support capabilities, as well as potential options for implementing science support using the traverse as a platform.

  12. Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall

    Science.gov (United States)

    Pan, Chengzhong; Ma, Lan; Wainwright, John; Shangguan, Zhouping

    2016-04-01

    It is still unclear how slope steepness (S) and revegetation affect resistance (f) to overland flow. A series of experiments on runoff hydraulics was conducted on granular surfaces (bare soil and sandpaper) and grassed surfaces, including grass plots (GP), GP with litter (GL), and GP without leaves (GS) under simulated rainfall and inflow (30grass plots. A greater f occurred at the gentle and steep slopes for the granular surfaces, while f decreased with increasing slopes for the grass treatments. The different f-S relations suggest that f is not a simple function of S. When Re≈1000, the sowing rye grass with level lines increased f by approximately 100 times and decreased bed shear stress to approximately 5%. The contribution of grass leaves, stems, litter, and grain surface to total resistance in the grass plots were averagely 52%, 32%, 16%, and 1%. The greater resistance from leaves may result from the leaves lying at the plot surface impacted by raindrop impact. These results are beneficial to understand the dynamics of runoff and erosion on hillslopes impacted by vegetation restoration.

  13. Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey.

    Science.gov (United States)

    Guney, Mert; Onay, Turgut T; Copty, Nadim K

    2010-05-01

    The purpose of this study was to investigate the impact of overland traffic on the spatial distribution of heavy metals in urban soils (Istanbul, Turkey). Road dust, surface, and subsurface soil samples were collected from a total of 41 locations along highways with dense traffic and secondary roads with lower traffic and analyzed for lead (Pb), zinc (Zn), and copper (Cu) concentrations. Statistical evaluation of the heavy metal concentrations observed along highways and along the secondary roads showed that the data were bimodally distributed. The maximum observed Pb, Zn, and Cu concentrations were 1,573, 522 and 136 mg/kg, respectively, in surface soils along highways and 99.3, 156, and 38.1 mg/kg along secondary roads. Correlation analysis of the metal concentrations in road dust, surface and 20-cm depth soils suggests the presence of a common pollution source. However, metal concentrations in the deeper soils were substantially lower than those observed at the surface, indicating low mobility of heavy metals, especially for Pb and Zn. A modified kriging approach that honors the bimodality of the data was used to estimate the spatial distribution of the surface concentrations of metals, and to identify hotspots. Results indicate that despite the presence of some industrial zones within the study area, traffic is the main heavy metal pollution source.

  14. Taking into account the temporal variation of hydraulic conductivity when calibrating overland flow models on tilled fields.

    Science.gov (United States)

    Chahinian, N.; Andrieux, P.; Moussa, R.; Voltz, M.

    2003-04-01

    Tillage operations are known to change the structure of agricultural soils. In this paper we seek a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled field located in southern France. The study site is a 3240 m2 vineyard equipped with a Venturi flume and a tipping bucket rain gauge. 20 monitored rainfall events were used for the study, equally divided between calibration and validation sets. The overland flow model used consists of a modified Green &Ampt equation to simulate infiltration, a surface detention module, and an overland flow routing module based on the unit hydrograph concept. The model parameters that were calibrated for each event are the saturated hydraulic conductivity and the random roughness. The calibrated Ks values decreased monotonously according to the total amount of rainfall since tillage. No clear relationship was observed between the random roughness and cumulated rainfall. A regression curve was fitted to the calibrated Ks values. This curve was then used to determine Ks values for any rainfall event considering the total rainfall since tillage. Fairly good agreement was observed between the simulated and measured hydrographs of the calibration set. The validation results were relatively poorer but remain satisfactory given the uncertainties related to the initial soil moisture conditions. The calibration methodology developed seems robust and may be transposed to other sites.

  15. Arsenic Speciation in Groundwater: Role of Thioanions

    Science.gov (United States)

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  16. Hydrologic modeling of pathogen fate and transport.

    Science.gov (United States)

    Dorner, Sarah M; Anderson, William B; Slawson, Robin M; Kouwen, Nicholas; Huck, Peter M

    2006-08-01

    A watershed-scale fate and transport model has been developed for Escherichia coli and several waterborne pathogens: Cryptosporidiumspp., Giardiaspp., Campylobacter spp, and E. coli O157:H7. The objectives were to determine the primary sources of pathogenic contamination in a watershed used for drinking water supply and to gain a greater understanding of the factors that most influence their survival and transport. To predict the levels of indicator bacteria and pathogens in surface water, an existing hydrologic model, WATFLOOD, was augmented for pathogen transport and tested on a watershed in Southwestern Ontario, Canada. The pathogen model considered transport as a result of overland flow, subsurface flow to tile drainage systems, and in-stream routing. The model predicted that most microorganisms entering the stream from land-based sources enter the stream from tile drainage systems rather than overland transport. Although the model predicted overland transport to be rare, when it occurred, it corresponded to the highest observed and modeled microbial concentrations. Furthermore, rapid increases in measured E. coli concentrations during storm events suggested that the resuspension of microorganisms from stream sediments may be of equal or greater importance than land-based sources of pathogens.

  17. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  18. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT)

    Science.gov (United States)

    Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing

    2003-01-01

    SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.

  19. The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems

    Science.gov (United States)

    Bochet, E.

    2015-01-01

    Since seeds are the principle means by which plants move across the landscape, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals of this review paper are (1) to offer an updated conceptual model of seed fate with a focus on seed destiny in and on the soil; (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches in arid and semiarid patchy ecosystems; and finally (3) to point out directions for future research. This review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Susceptibility of seed removal varies highly between species and is mainly related to seed traits, including seed size, seed shape, presence of appendages, and ability of a seed to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life by favouring species with seeds able to resist

  20. Assessment of overland flow variation and blue water production in a farmed semi-arid water harvesting catchment

    Science.gov (United States)

    Mekki, I.; Albergel, J.; Ben Mechlia, N.; Voltz, M.

    Upgrading agriculture in semi-arid areas and ensuring its sustainability require an optimal management of rainfall partition between blue and green waters in the farmed water harvesting catchment. The main objective of this study is to analyze the influence of heterogeneous land use on the spatial and temporal variation of rainfall partitioning and blue water production within a typical farmed catchment located in north-eastern Tunisia. The catchment has an area of 2.6 km 2 and comprises at its outlet a dam, which retains the runoff water in a reservoir. Overland flow and soil water balance components were monitored during two cropping seasons (2000/2001 and 2001/2002) on a network of eleven plots of 2 m 2 each with different land use and soil characteristics. The hydrological balances of both the catchment and reservoir have been monitored since 1994. Observed data showed a very large temporal and spatial variability of overland flow within the catchment reflecting the great importance of total rainfall as well as land use. During the 2001/2002 season the results showed a large variation of the number of observed runoff events, from 27 to 39, and of the annual overland flow depths, from 8 mm (under vineyard on calcaric cambisols) up to 43 mm (under shrubs-pasture on haplic regosols), between the plots. The annual runoff amounts were moderate; they always corresponded to less than 15% of the annual rainfall amount whatever the observation scale. It was also observed that changes in land use in years with similar rainfall could lead to significant differences in blue water flow. An attempt for predicting the overland flow by the general linear regression approach showed an r2 of 31%, the predictors used are the class of soil infiltration capacity, the initial moisture saturation ratio of the soil surface layer and the total rainfall amounts. These experimental results indicate that the variation in land use in a semi-arid catchment is a main factor of variation in

  1. Groundwater seepage landscapes from distant and local sources in experiments and on Mars

    Science.gov (United States)

    Marra, W. A.; McLelland, S. J.; Parsons, D. R.; Murphy, B. J.; Hauber, E.; Kleinhans, M. G.

    2015-08-01

    Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis.

  2. Integration of In Situ Radon Modeling with High Resolution Aerial Remote Sensing for Mapping and Quantifying Local to Regional Flow and Transport of Submarine Groundwater Discharge from Coastal Aquifers

    Science.gov (United States)

    Glenn, C. R.; Kennedy, J. J.; Dulaiova, H.; Kelly, J. L.; Lucey, P. G.; Lee, E.; Fackrell, J.

    2015-12-01

    Submarine groundwater discharge (SGD) is a principal conduit for huge volumes of fresh groundwater loss and is a key transport mechanism for nutrient and contaminant pollution to coastal zones worldwide. However, the volumes and spatially and temporally variable nature of SGD is poorly known and requires rapid and high-resolution data acquisition at the scales in which it is commonly observed. Airborne thermal infrared (TIR) remote sensing, using high-altitude manned aircraft and low-altitude remote-controlled unmanned aerial vehicles (UAVs or "Drones") are uniquely qualified for this task, and applicable wherever 0.1°C temperature contrasts exist between discharging and receiving waters. We report on the use of these technologies in combination with in situ radon model studies of SGD volume and nutrient flux from three of the largest Hawaiian Islands. High altitude manned aircraft results produce regional (~300m wide x 100s km coastline) 0.5 to 3.2 m-resolution sea-surface temperature maps accurate to 0.7°C that show point-source and diffuse flow in exquisite detail. Using UAVs offers cost-effective advantages of higher spatial and temporal resolution and instantaneous deployments that can be coordinated simultaneously with any ground-based effort. We demonstrate how TIR-mapped groundwater discharge plume areas may be linearly and highly correlated to in situ groundwater fluxes. We also illustrate how in situ nutrient data may be incorporated into infrared imagery to produce nutrient distribution maps of regional worth. These results illustrate the potential for volumetric quantification and up-scaling of small- to regional-scale SGD. These methodologies provide a tremendous advantage for identifying and differentiating spring-fed, point-sourced, and/or diffuse groundwater discharge into oceans, estuaries, and streams. The integrative techniques are also important precursors for developing best-use and cost-effective strategies for otherwise time-consuming in

  3. A high loading overland flow system: Impacts on soil characteristics, grass constituents, yields and nutrient removal.

    Science.gov (United States)

    Wen, C G; Chen, T H; Hsu, F H; Lu, C H; Lin, J B; Chang, C H; Chang, S P; Lee, C S

    2007-04-01

    The objectives of this paper are to determine effects of different grass species and their harvests on pollutant removal, elucidate impacts on soil characteristics and grass constituents, observe grass yield and quantify nutrient uptake by vegetation in an overland flow system (OLFS). Polluted creek water was applied to eight channels in the OLFS, which were planted with Paragrass, Nilegrass, Cattail, and Vetiver, with each two channels being randomly planted with a given grass species. The grass in one channel was harvested while that in the other channel was not. At a high rate of 27.8 m d(-1) hydraulic loading, the removal efficiencies of conventional pollutants such as BOD, COD, suspended solids (SS), and total coliforms in wastewater are not affected by the type of the grasses species, but those of nitrogen and phosphorus are affected by different species. Overall average removal efficiencies of BOD, COD, SS, ammonia, total nitrogen, total phosphorus and total coliforms through the OLFS are 42%, 48%, 78%, 47%, 40%, 33% and 89%, respectively. The concentration of nitrate, however, increases due to nitrification. Soil characteristics in OLFS have been changed significantly; specific conductivity, organic matter, exchangeable magnesium, extractable copper and zinc in soils all increase with time while pHs decrease. During the winter season, there is a significant accumulation of nitrate in grass with the subsequent reduction during the active growing season (Spring). The contents of nitrate and phosphorus in grass tissue are higher than those of grass in general pastureland, probably due to nutrient luxury uptake by grass. The overall grass yield, growth rate and nutrient uptake are quantified and implication of such high rate OLFS discussed.

  4. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  5. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    Science.gov (United States)

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  6. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  7. MODFLOW-2000, the U.S. Geological Survey modular ground-water model : user guide to the LMT6 package, the linkage with MT3DMS for multi-species mass transport modeling

    Science.gov (United States)

    Zheng, Chunmiao; Hill, Mary Catherine; Hsieh, Paul A.

    2001-01-01

    MODFLOW-2000, the newest version of MODFLOW, is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium using a finite-difference method. MT3DMS, the successor to MT3D, is a computer program for modeling multi-species solute transport in three-dimensional ground-water systems using multiple solution techniques, including the finite-difference method, the method of characteristics (MOC), and the total-variation-diminishing (TVD) method. This report documents a new version of the Link-MT3DMS Package, which enables MODFLOW-2000 to produce the information needed by MT3DMS, and also discusses new visualization software for MT3DMS. Unlike the Link-MT3D Packages that coordinated previous versions of MODFLOW and MT3D, the new Link-MT3DMS Package requires an input file that, among other things, provides enhanced support for additional MODFLOW sink/source packages and allows list-directed (free) format for the flow model produced flow-transport link file. The report contains four parts: (a) documentation of the Link-MT3DMS Package Version 6 for MODFLOW-2000; (b) discussion of several issues related to simulation setup and input data preparation for running MT3DMS with MODFLOW-2000; (c) description of two test example problems, with comparison to results obtained using another MODFLOW-based transport program; and (d) overview of post-simulation visualization and animation using the U.S. Geological Survey?s Model Viewer.

  8. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment

    Science.gov (United States)

    Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.

    2015-06-01

    Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.

  9. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  10. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Swift, Ben [Serco Assurance, Harwell (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-12-15

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period at around 20,000 AD for the Laxemar area. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events.

  11. Modeling the effects of atmospheric emissions on groundwater composition

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.J.

    1994-12-31

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  12. Evaluation of modeling for groundwater flow and tetrachloroethylene transport in the Milford-Souhegan glacial-drift aquifer at the Savage Municipal Well Superfund site, Milford, New Hampshire, 2011

    Science.gov (United States)

    Harte, Philip T.

    2012-01-01

    The U.S. Geological Survey and the New Hampshire Department of Environmental Services entered into a cooperative agreement to assist in the evaluation of remedy simulations of the MSGD aquifer that are being performed by various parties to track the remedial progress of the PCE plume. This report summarizes findings from this evaluation. Topics covered include description of groundwater flow and transport models used in the study of the Savage Superfund site (section 2), evaluation of models and their results (section 3), testing of several new simulations (section 4), an assessment of the representation of models to simulate field conditions (section 5), and an assessment of models as a tool in remedial operational decision making (section 6).

  13. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in Subei Lake Basin, Ordos energy base, Northwestern China

    Directory of Open Access Journals (Sweden)

    F. Liu

    2014-05-01

    Full Text Available A hydrochemical and isotopic study was conducted in Subei Lake Basin, northwestern China, to identify the origin and geochemical evolution of groundwater. Water samples were collected, major ions and stable isotopes (δ18O, δ D were analyzed. In terms of hydrogeological conditions in study area, groundwater can be classified into three types: the Quaternary groundwater, the shallow Cretaceous groundwater, the deep Cretaceous groundwater. Piper diagram and correlation analysis were used to reveal the hydrochemical characteristics of water resources. The dominant water type of lake water was Na-Cl type, which was controlled by strong evaporation and recharge from overland flow and groundwater; the predominant hydrochemical types for groundwater were Ca-HCO3, Na-HCO3, and mixed Ca · Na · Mg-HCO3 types, the groundwater chemistry is mainly controlled by dissolution/precipitation of anhydrite, gypsum, halite and calcite. The dedolomitization and cation exchange are also important factors. Rock weathering is confirmed to play a leading role in the mechanisms responsible for the chemical compositions of groundwater. The stable isotopic values of oxygen and hydrogen in groundwater are close to the local meteoric water line, showing that groundwater is of meteoric origin. The deep Cretaceous groundwater is depleted in heavy isotopes, compared to shallow Cretaceous groundwater. The hydrogen and oxygen isotopes signatures in deep Cretaceous groundwater may show a paleorecharge effect that the deep Cretaceous groundwater was recharged during a geologic period when the climate was wetter and colder than today. Due to strong evaporation effect and dry climatic conditions, heavy isotopes are more enriched in lake water than groundwater. The hydrochemical and isotopic information of utmost importance has been provided to decision-makers by the present study so that a sustainable water resources management policy could be designed for the Ordos energy base.

  14. Scoping Calculations for Potential Groundwater Impacts from Operation of the APT Facility at SRS

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, J.J.

    1999-10-07

    The purpose of this study was to determine the potential travel times and paths of the postulated activated groundwater beneath the facility and to examine the fate and transport of this activated groundwater.

  15. Solute Transport Modeling Application in Groundwater Organic Contaminant Source Identification%溶质迁移模型在地下水有机污染源识别中的应用

    Institute of Scientific and Technical Information of China (English)

    王树芳; 王丽亚; 王晓红; 林沛; 刘久荣; 辛宝东; 贺国平

    2012-01-01

    Investigation and numerical simulation,based on RT3D(reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene(PCE) and trichloroethylene(TCE) in the groundwater of a city in the north of China and reverse the input intensity.Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab.The results indicate that the factories and industries are the source of the PCE and TCE in groundwater.Natural attenuation was identified and the natural attenuation rates are 93.15%、 61.70% and 61.00% for PCE,and 70.05%、 73.66% and 63.66% for TCE in 173 days.The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period.The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater.The PCE and TCE concentration are found to be 0 and 5 mg·kg-1from surface to 35 cm in vadose zone.All above results suggest that PCE and TCE in groundwater are from the source in the surface.Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater,and the rest was transported to groundwater through vadose zone.Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand,pebble and gravel of the Quaternary.%采用现场调查与数值模拟的方法,借助RT3D(reactive transport in 3-dimensions),对我国北方某城市局部地区地下水中的四氯乙烯(PCE)和三氯乙烯(TCE)污染来源进行了识别,对污染输入强度进行了反演,并利用Matlab中的Stepwise函数,对影响污染物输入强度的因素进行了多元回归分析.研究结果显示,研究区地下水中的PCE和TCE主要来源于区内使用有机溶剂的工厂和企业.地下水

  16. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  17. Transport of a nematicide in surface and ground waters in a farmed tropical catchment with volcanic substratum

    Science.gov (United States)

    Charlier, J.-B.; Cattan, P.; Voltz, M.; Moussa, R.

    2009-04-01

    the hydrographic network. Two successive phases of stream water contamination were observed, corresponding to two distinct contamination mechanisms: an event-dominated contamination phase (of less than 30 days) when transport was linked to overland flow during precipitation shortly after application, and a stabilized contamination phase when transport originated mainly from the drainage of the shallow aquifer. Lastly, comparing the losses of the two phases during 2003 and 2006 showed that shallow groundwater, which is promoted in such permeable soils under abundant tropical rainfalls, seems to be the main contributor to stream contamination.

  18. The role of watercourse versus overland dispersal and niche effects on ostracod distribution in Mediterranean streams (eastern Iberian Peninsula)

    Science.gov (United States)

    Castillo-Escrivà, Andreu; Rueda, Juan; Zamora, Laia; Hernández, Ramón; Moral, Mónica del; Mesquita-Joanes, Francesc

    2016-05-01

    The processes behind the heterogeneous distribution of species involve a combination of environmental and spatial effects. In the spatial context, stream networks constitute appropriate systems to compare the relative importance of two dispersal modes in aquatic organisms: overland and watercourse dispersal. In the present study, we analyzed the distribution of ostracod species in a river network in the eastern Iberian Peninsula, with variation partitioning between environmental and spatial factors, using Moran and Asymmetric Eigenvector Maps (MEMs, AEMs) as spatial variables. Our aims were to determine the relative importance of environmental and spatial control and to compare the importance of overland and watercourse dispersal for species distribution of passively-dispersing aquatic organisms. Our results suggest that watercourse was the most important dispersal mode, favoring mass-effects. The role of species sorting was significant and related to temperature, stream width and water quality, measured as a biotic index (IBMWP). These results stress the major importance of connectivity, besides niche-related factors, in structuring riverine communities of passively-dispersing aquatic organisms.

  19. From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment.

    Science.gov (United States)

    Ribolzi, Olivier; Evrard, Olivier; Huon, Sylvain; de Rouw, Anneke; Silvera, Norbert; Latsachack, Keo Oudone; Soulileuth, Bounsamai; Lefèvre, Irène; Pierret, Alain; Lacombe, Guillaume; Sengtaheuanghoung, Oloth; Valentin, Christian

    2017-06-21

    Soil erosion supplies large quantities of sediments to rivers of Southeastern Asia. It reduces soil fertility of agro-ecosystems located on hillslopes, and it degrades, downstream, water resource quality and leads to the siltation of reservoirs. An increase in the surface area covered with commercial perennial monocultures such as teak plantations is currently observed at the expanse of traditional slash-and-burn cultivation systems in steep montane environments of these regions. The impacts of land-use change on the hydrological response and sediment yields have been investigated in a representative catchment of Laos monitored for 13 years. After the gradual conversion of rice-based shifting cultivation to teak plantation-based systems, overland flow contribution to stream flow increased from 16 to 31% and sediment yield raised from 98 to 609 Mg km(-2). This result is explained by the higher kinetic energy of raindrops falling from the canopy, the virtual absence of understorey vegetation cover to dissipate drop energy and the formation of an impermeable surface crust accelerating the formation and concentration of overland flow. The 25-to-50% lower (137)Cs activities measured in soils collected under mature teak plantations compared to soils under other land uses illustrate the severity of soil erosion processes occurring in teak plantations.

  20. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data

    Science.gov (United States)

    Cea, L.; Legout, C.; Darboux, F.; Esteves, M.; Nord, G.

    2014-05-01

    This paper presents a validation of a two-dimensional overland flow model using empirical laboratory data. Unlike previous publications in which model performance is evaluated as the ability to predict an outlet hydrograph, we use high resolution 2D water depth and velocity data to analyze to what degree the model is able to reproduce the spatial distribution of these variables. Several overland flow conditions over two impervious surfaces of the order of one square meter with different micro and macro-roughness characteristics are studied. The first surface is a simplified representation of a sinusoidal terrain with three crests and furrows, while the second one is a mould of a real agricultural seedbed terrain. We analyze four different bed friction parameterizations and we show that the performance of formulations which consider the transition between laminar, smooth turbulent and rough turbulent flow do not improve the results obtained with Manning or Keulegan formulas for rough turbulent flow. The simulations performed show that using Keulegan formula with a physically-based definition of the bed roughness coefficient, a two-dimensional shallow water model is able to reproduce satisfactorily the flow hydrodynamics. It is shown that, even if the resolution of the topography data and numerical mesh are high enough to include all the small scale features of the bed surface, the roughness coefficient must account for the macro-roughness characteristics of the terrain in order to correctly reproduce the flow hydrodynamics.

  1. Evaluation of modelling of the TRUE-1 radially converging tests with sorbing tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4E and 4F

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M.; Svensson, Haakan [Kemakta Konsult AB, Stockholm (Sweden)

    2001-05-01

    The Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4E and 4F is evaluated, which comprised predictive modelling of the tracer tests (STT-1, STT-1b and STT-2) performed within the TRUE-1 project using sorbing and non-sorbing tracers. The tests were made between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). Nine modelling teams representing eight organisations have performed predictive modelling of the tracer tests using different modelling approaches and models. The modelling groups were initially given data from the site characterisation, data from preliminary tracer tests performed with non-sorbing tracers and data on the experimental set-up of the sorbing tracer tests. Based on this information, model predictions were made of drawdown, tracer mass recovery and tracer breakthrough. For the predictions of the STT-1b and STT-2 tests results from previous tracer tests with sorbing tracer were also available. The predictions of the sorbing tracer breakthrough in the initial tracer test (STT-1) generally underestimated the breakthrough time, suggesting the need to include additional processes and evaluate the application of the laboratory data. As a result of model calibration and modification the predictions were considerably improved for the latter tracer tests (STT-1b and STT-2). Task 4E and 4F have proved to be very valuable in increasing the understanding of non-sorbing tracer transport in fractured rock. There is a general consensus on the major processes responsible for

  2. Assessing the quality of Digital Elevation Models obtained from mini-Unmanned Aerial Vehicles for overland flow modelling in urban areas

    Science.gov (United States)

    Leitão, J. P.; Moy de Vitry, M.; Scheidegger, A.; Rieckermann, J.

    2015-06-01

    Precise and detailed Digital Elevation Models (DEMs) are essential to accurately predict overland flow in urban areas. Unfortunately, traditional sources of DEM remain a bottleneck for detailed and reliable overland flow models, because the resulting DEMs are too coarse to provide DEMs of sufficient detail to inform urban overland flows. Interestingly, technological developments of Unmanned Aerial Vehicles (UAVs) suggest that they have matured enough to be a competitive alternative to satellites or airplanes. However, this has not been tested so far. In this this study we therefore evaluated whether DEMs generated from UAV imagery are suitable for urban drainage overland flow modelling. Specifically, fourteen UAV flights were conducted to assess the influence of four different flight parameters on the quality of generated DEMs: (i) flight altitude, (ii) image overlapping, (iii) camera pitch and (iv) weather conditions. In addition, we compared the best quality UAV DEM to a conventional Light Detection and Ranging (LiDAR)-based DEM. To evaluate both the quality of the UAV DEMs and the comparison to LiDAR-based DEMs, we performed regression analysis on several qualitative and quantitative metrics, such as elevation accuracy, quality of object representation (e.g., buildings, walls and trees) in the DEM, which were specifically tailored to assess overland flow modelling performance, using the flight parameters as explanatory variables. Our results suggested that, first, as expected, flight altitude influenced the DEM quality most, where lower flights produce better DEMs; in a similar fashion, overcast weather conditions are preferable, but weather conditions and other factors influence DEM quality much less. Second, we found that for urban overland flow modelling, the UAV DEMs performed competitively in comparison to a traditional LiDAR-based DEM. An important advantage of using UAVs to generate DEMs in urban areas is their flexibility that enables more frequent

  3. Evaluation of modelling of the TRUE-1 radially converging and dipole tests with conservative tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4C and 4D

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-05-01

    The `Aespoe task force on modelling of groundwater flow and transport of solutes` is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4C and 4D is evaluated, which comprised predictive modelling of the radially converging tracer tests and dipole tracer tests performed within the TRUE-1 tests using non-sorbing tracers. The tests were performed between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). These tests are to a great extent preparatory steps for the subsequent tests with sorbing radioactive tracers. In Tasks 4E and 4F of the Aespoe Modelling Task Force predictive modelling of the sorbing tracer tests is performed. Eight modelling teams representing seven organisations have performed predictive modelling using different modelling approaches and models. The modelling groups were initially given data from the site characterisation and data on the experimental set-up of the tracer tests. Based on this information model predictions were performed of drawdown, tracer mass recovery and tracer breakthrough. The performed predictions shows that the concept of Feature A as a singular well-connected feature with limited connectivity to its surroundings is quite adequate for predictions of drawdown in boreholes and conservative tracer breakthrough. Reasonable estimates were obtained using relatively simple models. However, more elaborate models with calibration or conditioning of transmissivities and transport apertures are required for more accurate predictions. The general flow and transport processes are well understood, but the methodology to derive the

  4. Groundwater in geologic processes, 2nd edition

    Science.gov (United States)

    Ingebritsen, Steven E.; Sanford, Ward E.; Neuzil, Christopher E.

    2006-01-01

    Interest in the role of Groundwater in Geologic Processes has increased steadily over the past few decades. Hydrogeologists and geologists are now actively exploring the role of groundwater and other subsurface fluids in such fundamental geologic processes as crustal heat transfer, ore deposition, hydrocarbon migration, earthquakes, tectonic deformation, diagenesis, and metamorphism.Groundwater in Geologic Processes is the first comprehensive treatment of this body of inquiry. Chapters 1 to 4 develop the basic theories of groundwater motion, hydromechanics, solute transport, and heat transport. Chapter 5 applies these theories to regional groundwater flow systems in a generic sense, and Chapters 6 to 13 focus on particular geologic processes and environments. Relative to the first edition of Groundwater in Geologic Processes , this second edition includes a much more comprehensive treatment of hydromechanics (the coupling of groundwater flow and deformation). It also includes new chapters on "compaction and diagenesis," "metamorphism," and "subsea hydrogeology." Finally, it takes advantage of the substantial body of published research that has appeared since the first edition in 1998. The systematic presentation of theory and application, and the problem sets that conclude each chapter, make this book ideal for undergraduate- and graduate-level geology courses (assuming that the students have some background in calculus and introductory chemistry). It also serves as an invaluable reference for researchers and other professionals in the field

  5. Overland flow connectivity in a forest plantation before and after tree thinning (Tochigi Prefecture, central Japan)

    Science.gov (United States)

    López-Vicente, Manuel; Onda, Yuichi; Sun, Xinchao; Kato, Hiroaki; Gomi, Takashi; Hiraoka, Marino

    2016-04-01

    Overland flow connectivity is a key factor to understand the redistribution dynamics of sediments, nutrients, radiotracers, etc., in the different compartments at channel, hillslope and catchment scales. Human organization of landscape elements has a significant control on runoff and soil redistribution processes. Construction of trails, forest roads and firewalls influence runoff connectivity (RC) in forested catchments. In this study we simulated RC in two forested catchments, called K2 (19.3 ha) and K3 (13.6 ha), located on the Mount Karasawa, in the Tochigi Prefecture in central Japan. Forest plantation includes Japanese cypress and cedar and covers 59% of the total area. Native broad-leaved trees (28%) and mixed forest occupy the rest of the study area. We selected the Index of runoff and sediment Connectivity (IC) of Borselli et al. (2008) to simulate three temporal scenarios: i) Sc-2011, before tree thinning (TT); ii) Sc-2012 after TT in most part of the forest plantation in K2 (32% of the total area); and iii) Sc-2013 after TT in some areas of the K3 catchment, affecting 38% of the total area. The study areas were defined from the coalescence point (139⁰ 36' 04" E, 36⁰ 22' 03" N) of both catchments upslope. Elevation ranges from 75 to 287 m a.s.l. and the mean slope steepness is of 67 and 65% in K2 and K3. Three different high resolution DEM-LiDAR maps at 0.5 x 0.5 m of cell size were used to run the IC model in each scenario. The permanent streams in the study area have a total length of 2123 m. The mean C-RUSLE factor was of 0.0225 in Sc-2011 and 21% and 25% higher in Sc-2012 and Sc-2013. The total length of the landscape linear elements incremented from 2482 m in Sc-2011 to 3151 m in Sc-2012 and Sc-2013 due to the construction of new skid trails in K2. The mean RC in the study area was of -4.536 in Sc-2011 and increased 7.4% and 8.9% in the Sc-2012 and Sc-2013, respectively, due to the tree thinning operations and the construction of new skid trails

  6. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  7. Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2009-04-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  8. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-10-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  9. An Integrated Hydrologic Modeling Approach to Cesium-137 Transport in Forested Fukushima Watersheds

    Science.gov (United States)

    Siirila-Woodburn, E. R.; Steefel, C. I.; Williams, K. H.; Birkholzer, J. T.

    2015-12-01

    The 2011 Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in Japan resulted in a significant dissemination of cesium-137 (Cs-137) over a wide area west of the plant, including the contamination of many watersheds and the subsequent evacuation of many communities. Today approximately 90% of on-land Cs-137 fallout following the accident resides in the upper 5 cm of forest soils. While this can be partially attributed to the forested composition of the prefecture (70%), there is also difficulty in cleanup efforts in these regions due to a lack of understanding and predictive capability of radioisotopes transport at the catchment to watershed scale. Subsequently, there is an uncertain, but likely long-term impact on local communities with implications for the use of nuclear energy use worldwide. Due to the complex nature of forest eco-hydrology, sophisticated modeling tools to accurately predict Cs-137 fluxes across different spatial and temporal scales are required. High fidelity, high resolution numerical modeling techniques in conjunction with parallel high performance computing is required to accurately determine transport and feedbacks in these complex systems. To better understand the fundamental transport of Cs-137, a watershed near the FDNPP is modeled with an integrated hydrologic model that includes variably saturated groundwater and overland flow in addition to atmospheric and vegetative processes via a coupled land surface model. Of specific interest is the impact of land cover type on hydrologic flow in the area, which will likely play an important role in erosion patterns and the consequent transport of Cs-137 strongly sorbed to surface soils. Risk management practices (for example, passive remediation versus active remediation such as targeted logging) for two principal tree types (evergreen and deciduous) are informed given the simulated responses to flow patterns assuming different quantities and spatial distribution patterns of each tree type.

  10. A mechanistic study of nonlinear solute transport in a groundwater-surface water system Under steady state and transient hydraulic conditions

    Science.gov (United States)

    Boufadel, Michel C.

    2000-09-01

    Two laboratory experiments were conducted to investigate the effects of tides and buoyancy on beach hydraulics in the presence of a seaward groundwater flow due to an elevated "regional" water table. In the first experiment, case 1, the difference in concentration between the salt water at sea and the water of the regional aquifer was small, 2.4 g L-1, such that it did not engender density gradients; the salt acts as a tracer in this case. In the second experiment, case 2, the difference was ˜32.0 g L-1, which creates a significant density gradient. This case corresponds to the presence of fresh groundwater in the subsurface of the coasts of the continental United States. The experiments were numerically simulated by the marine unsaturated (MARUN) model, a numerical model for density-and-viscosity-dependent flows in two-dimensional variably saturated media. The long-term experimental and numerical results showed that the seawater plume entered the beach from the sea and occupied most of the intertidal zone. The maximum depth of the seawater plume was near the midsection of the intertidal zone, and it decreased near the low and high tide lines. When viewed in the context of case 2, these results indicate an inverted salinity distribution in beaches subjected to tides with salt water from sea overtopping the freshwater lens. For both cases, water from the regional aquifer moved seaward beneath the seawater in the intertidal zone and pinched out near the low tide mark. We also noted that beach hydraulics are highly two dimensional with water entering the beach at a near-vertical angle and leaving it at a near-horizontal angle, which casts doubts on analyses of beach hydraulics based on the Dupuit assumption. Findings from this work have direct implications within the practice of bioremediation of oil spills on beaches. We found that applying dissolved nutrients on the beach surface at low tide is superior to applying them in a trench landward of the beach. This is

  11. First-order kinetics-controlled multiple species reactive transport of dissolved organic compounds in groundwater: Development and application of a numerical model

    Energy Technology Data Exchange (ETDEWEB)

    McNab, W.W. Jr.

    1990-05-01

    Reactive chemical transport models developed over the past decade have generally relied on the assumption that local thermodynamic equilibrium is achieved at all times between aqueous species in a given system. Consequently, homogeneous aqueous systems characterized by a number of kinetically slow reactions, particularly problems involving organic species, cannot be satisfactorily modeled. In this study, we present a prototype computer model, KINETRAN, which is designed to handle kinetically-controlled homogeneous reactions in the aqueous phase, along with the transport of the various species involved, through geologic media. 31 refs., 53 figs., 10 tabs.

  12. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  13. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-09-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  14. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns.

    Science.gov (United States)

    Georgi, Anett; Schierz, Ariette; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2015-08-01

    Colloidal activated carbon can be considered as a versatile adsorbent and carrier material for in-situ groundwater remediation. In analogy to other nanoremediation approaches, activated carbon colloids (ACC) can be injected into the subsurface as aqueous suspensions. Deposition of ACC on the sediment creates a sorption barrier against further spreading of hydrophobic pollutants. This study deals with the optimization of ACC and their suspensions with a focus on suspension stability, ACC mobility in saturated porous media and sorption efficiency towards organic contaminants. ACC with an appropriate particle size range (d50=0.8μm) were obtained from a commercial powdered activated carbon product by means of wet-grinding. Among the various methods tested for stabilization of ACC suspensions, addition of humic acid (HA) and carboxymethyl cellulose (CMC) showed the best results. Due to electrosteric stabilization by adsorption of CMC, suspensions remained stable even at high ACC concentrations (11gL(-1)) and conditions typical of very hard water (5mM divalent cations). Furthermore, CMC-stabilized ACC showed high mobility in a water-saturated sandy sediment column (filter coefficient λ=0.2m(-1)). Such mobility is a pre-requisite for in-situ installation of sorption or reaction barriers by simple injection-well or direct-push application of ACC suspensions. Column experiments with organic model compounds proved the efficacy of ACC deposits on sediment for contaminant adsorption and retardation under flow-through conditions.

  15. Quagga and zebra mussel risk via veliger transfer by overland hauled boats

    Directory of Open Access Journals (Sweden)

    Larry B. Dalton

    2013-04-01

    Full Text Available Invasive quagga and zebra mussels (Dreissena rostriformis bugensis and Dreissena polymorpha, respectively pose a great threat to USwaters. Recreational boats constitute a significant risk for spreading the organisms. Recreational boats circulate large amounts of raw waterwhen in use, and if not drained and dried correctly can transport many mussel larvae, called veligers. Veligers experience very high mortality rates; however, the number of potentially transported veligers can be a serious risk to non-infested bodies of water, especially if multiple boats are involved. The risk of veliger transport was calculated for Lake Mead and Lake Michigan using boat capacities for water circulation and specific veliger density data. Results illustrate the importance of draining, drying, and/or decontaminating recreational boats after use.

  16. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  17. DO TRANSPORT COSTS HAVE A DIFFERENTIAL EFFECT ON TRADE AT THE SECTORAL LEVEL?

    OpenAIRE

    Martínez-Zarzoso, Inmaculada; Pérez-Garcia, Eva María; Suárez-Burguet, Celestino

    2008-01-01

    Abstract This paper aims to analyse the determinants of transport costs and to investigate their influence in international trade with a sample of disaggregate trade data. First, we estimate a transport cost function using cross-section data on maritime and overland transport for four sectors: agro-industry, ceramic tiles, motor vehicle parts and accessories, and electrical and mechanical household appliances, obtained from interviews held with Spanish exporters and logistics opera...

  18. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    local palaeohydrogeological conditions. It is likely that inland areas have had longer durations of post-glacial fresh water infiltration than coastal areas, possibly causing greater degrees of dilution and dispersion of preexisting groundwaters and thus overprinting their hydrochemical and isotopic 'fingerprints'. Lower post-glacial hydraulic gradients relative to inland sites may account for the occurrence of more relict cold-climate water at coastal sites. Some general observations are based on rather thin evidence and therefore speculative. Firstly, it seems that glacial melt water penetrated many hundreds of metres and in some places to at least 1,000 m depth. However the low remaining proportions of melt water and of much older saline Shield water suggest that melt water flux did not fully displace pre-existing groundwaters at these depths. Secondly, where there has been post-glacial infiltration of palaeo-Baltic sea water, the density stratification or compartmentalisation effect coupled with low hydraulic gradient has reduced rates of subsequent fresh water circulation after shoreline recession. There are many uncertainties in interpreting these geochemical indicators in terms of the penetration depths of glacial melt waters and the degree to which they replace preexisting groundwaters, of other aspects of groundwater stability, and of comparisons between inland and coastal groundwater systems. Uncertainties derive partly from the reliability of groundwater samples as being representative of in situ conditions, and partly from the non-uniqueness of interpretative models. Future investigations using these approaches need to improve sampling, to make conjunctive use of geochemical and isotopic indicators which have varying timescales and sensitivities, and to integrate these indicators with palaeohydrogeological modelling to support the development of reliable groundwater flow and solute transport models for Performance Assessment.

  19. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    Directory of Open Access Journals (Sweden)

    L. Merino-Martín

    2012-05-01

    Full Text Available Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment source patches and sinks are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted field research to study the hydrological role of patches and slopes along an "overland flow gradient" (gradient of overland flow routing through the slopes caused by different amounts of run-on coming from upslope in three reclaimed mining slopes of Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated with seven vegetation patches (characterized by plant community types and cover. Two types of sink patches were identified: shrub Genista scorpius patches could be considered as "deep sinks", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata. Finally, we identified the volume of overland flow routing along the slope as a major controlling factor of "hydrological diversity" (heterogeneity of hydrological behaviours quantified as Shannon diversity index: when overland flow increases at the slope scale hydrological diversity diminishes.

  20. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    Science.gov (United States)

    Merino-Martín, L.; Moreno-de las Heras, M.; Pérez-Domingo, S.; Espigares, T.; Nicolau, J. M.

    2012-05-01

    Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment source patches and sinks are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted field research to study the hydrological role of patches and slopes along an "overland flow gradient" (gradient of overland flow routing through the slopes caused by different amounts of run-on coming from upslope) in three reclaimed mining slopes of Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated with seven vegetation patches (characterized by plant community types and cover). Two types of sink patches were identified: shrub Genista scorpius patches could be considered as "deep sinks", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil) to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata). Finally, we identified the volume of overland flow routing along the slope as a major controlling factor of "hydrological diversity" (heterogeneity of hydrological behaviours quantified as Shannon diversity index): when overland flow increases at the slope scale hydrological diversity diminishes.

  1. Modelling Urban diffuse pollution in groundwater

    Science.gov (United States)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  2. Predicting rapid herbicide leaching to surface waters from an artificially drained headwater catchment using a one dimensional two-domain model coupled with a simple groundwater model.

    Science.gov (United States)

    Tediosi, A; Whelan, M J; Rushton, K R; Gandolfi, C

    2013-02-01

    Pesticide losses to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water supply. The relative role of different transfer pathways (spray drift, spills, overland flow and leaching from soils) is often uncertain, and there is a need for experimental observation and modelling to ensure that processes are understood under a range of conditions. Here we examine the transport of propyzamide and carbetamide in a small (15.5 ha) headwater sub-catchment dominated by an artificially drained field with strongly undulating topography (topographic gradients >1:10). Specifically, we explore the validity of the "field-scale lysimeter" analogy by applying the one dimensional mathematical model MACRO. Although one dimensional representation has been shown to be reasonable elsewhere, the scale and topography of the monitored system challenge many of the underlying assumptions. MACRO considers two interacting flow domains: micropores and macropores. The effect of subsurface drains can also be included. A component of the outflow from the main drain was identified as originating from an upslope permeable shallow aquifer which was represented using a simple groundwater model. Predicted herbicide losses were sensitive to drain spacing and the organic carbon to water partition coefficient, K(OC). The magnitude of the peak water and herbicide transport and their timing were simulated satisfactorily, although model performance was poor following a period of one month when snow covered the ground and precipitation was underestimated by the rain gauge. Total herbicide loads were simulated adequately by MACRO, suggesting that the field-scale lysimeter analogy is valid at this scale, although baseflow contributions to flow needed to be accounted for separately in order to adequately represent hydrological response.

  3. Thermal management of an unconsolidated shallow urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2013-05-01

    Full Text Available This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland. The concept of the investigations is based on (1 a characterization of the present thermal state of the urban groundwater body, and (2 the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the subsurface as well as the thermal influence of river–groundwater interaction. Investigation methods include (1 short- and long-term data analysis, (2 high-resolution multilevel groundwater temperature monitoring, as well as (3 3-D numerical groundwater flow and heat transport modeling and scenario development. The combination of these methods allows for the quantifying of the thermal influences on the investigated urban groundwater body, including the influences of thermal groundwater use and heated subsurface constructions. Subsequently, first implications for management strategies are discussed, including minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal potential.

  4. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  5. Situ treatment of contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  6. Baseline groundwater model update for p-area groundwater operable unit, NBN

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. [Savannah River Site (SRS), Aiken, SC (United States); Amidon, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-09-01

    This report documents the development of a numerical groundwater flow and transport model of the hydrogeologic system of the P-Area Reactor Groundwater Operable Unit at the Savannah River Site (SRS) (Figure 1-1). The P-Area model provides a tool to aid in understanding the hydrologic and geochemical processes that control the development and migration of the current tritium, tetrachloroethene (PCE), and trichloroethene (TCE) plumes in this region.

  7. Addendum for the Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0 (page changes)

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-05-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: • Plate 4: Disregard the repeat of legend text ‘Drill Hole Name’ and ‘Drill Hole Location’ in the lower left corner of the map. • Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. • Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted.

  8. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Prickett, T.A.

    1980-04-01

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  9. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River basin, Maryland

    Science.gov (United States)

    McFarland, Randolph E.

    1997-01-01

    In an effort to improve water quality in Chesapeake Bay, agricultural practices are being promoted that are intended to reduce contaminant transport to the Bay. The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River basin, Maryland, during 1986-92. Nitrogen load was larger in ground water than in surface runoff at both sites. At the study site in the Piedmont Province, nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pound per acre per year) as corn under no-till cultivation was replaced by no-till soybeans, continuous alfalfa, and contoured strip crops alternated among corn, alfalfa, and soybeans. At the study site in the Coastal Plain Province, no-till soybeans resulted in a nitrogen load in ground water of 12.55 (lb/acre)/yr, whereas conventional-till soybeans resulted in a nitrogen load in ground water of 11.51 (lb/acre)/yr.

  10. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    Science.gov (United States)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of the Tararua and

  11. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 2. Comprehensive analysis of field data using reactive transport modeling

    Science.gov (United States)

    Gandhi, Rahul K.; Hopkins, Gary D.; Goltz, Mark N.; Gorelick, Steven M.; McCarty, Perry L.

    2002-04-01

    We present an analysis of an extensively monitored full-scale field demonstration of in situ treatment of trichloroethylene (TCE) contamination by aerobic cometabolic biodegradation. The demonstration was conducted at Edwards Air Force Base in southern California. There are two TCE-contaminated aquifers at the site, separated from one another by a clay aquitard. The treatment system consisted of two recirculating wells located 10 m apart. Each well was screened in both of the contaminated aquifers. Toluene, oxygen, and hydrogen peroxide were added to the water in both wells. At one well, water was pumped from the upper aquifer to the lower aquifer. In the other well, pumping was from the lower to the upper aquifer. This resulted in a ``conveyor belt'' flow system with recirculation between the two aquifers. The treatment system was successfully operated for a 410 day period. We explore how well a finite element reactive transport model can describe the key processes in an engineered field system. Our model simulates TCE, toluene, oxygen, hydrogen peroxide, and microbial growth/death. Simulated processes include advective-dispersive transport, biodegradation, the inhibitory effect of hydrogen peroxide on biomass growth, and oxygen degassing. Several parameter values were fixed to laboratory values or values from previous modeling studies. The remaining six parameter values were obtained by calibrating the model to 7213 TCE concentration data and 6997 dissolved oxygen concentration data collected during the demonstration using a simulation-regression procedure. In this complex flow field involving reactive transport, TCE and dissolved oxygen concentration histories are matched very well by the calibrated model. Both simulated and observed toluene concentrations display similar high-frequency oscillations due to pulsed toluene injection approximately one half hour during each 8 hour period. Simulation results indicate that over the course of the demonstration, 6.9 kg

  12. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing-Cheng [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Huang, Guohe, E-mail: huang@iseis.org [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Huang, Yuefei [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Hua [College of Science and Engineering, Texas A& M University — Corpus Christi, Corpus Christi, TX 78412-5797 (United States); Li, Zhong [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Chen, Qiuwen [Center for Eco-Environmental Research, Nanjing Hydraulics Research Institute, Nanjing 210029 (China)

    2015-08-15

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  13. Effects of Small-scale Vegetation-related Roughness on Overland Flow and Infiltration in Semi-arid Grassland and Shrublands

    Science.gov (United States)

    Bedford, D.

    2012-12-01

    We studied the effects of small-scale roughness on overland flow/runoff and the spatial pattern of infiltration. Our semi-arid sites include a grassland and shrubland in Central New Mexico and a shrubland in the Eastern Mojave Desert. Vegetation exerts strong controls on small-scale surface roughness in the form of plant mounds and other microtopography such as depressions and rills. We quantified the effects of densely measured soil surface heterogeneity using model simulations of runoff and infiltration. Microtopographic roughness associated with vegetation patterns, on the scale of mm-cm's in height, has a larger effect on runoff and infiltration than spatially correlated saturated conductivity. The magnitude and pattern of the effect of roughness largely depends on the vegetation and landform type, and rainfall depth and intensity. In all cases, runoff and infiltration amount and patterns were most strongly affected by depression storage. In the grassland we studied in central New Mexico, soil surface roughness had a large effect on runoff and infiltration where vegetation mounds coalesced, forming large storage volumes that require filling and overtopping in order for overland flow to concentrate into runoff. Total discharge over rough surfaces was reduced 100-200% compared to simulations in which no surface roughness was accounted for. For shrublands, total discharge was reduced 30-40% by microtopography on gently sloping alluvial fans and only 10-20% on steep hillslopes. This difference is largely due to the lack of storage elements on steep slopes. For our sites, we found that overland flow can increase infiltration by up to 2.5 times the total rainfall by filling depressions. The redistribution of water via overland flow can affect up to 20% of an area but varies with vegetation type and landform. This infiltration augmentation by overland flow tends to occur near the edges of vegetation canopies where overland flow depths are deep and infiltration rates

  14. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive

  15. A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite

    Science.gov (United States)

    Engesgaard, Peter; Kipp, Kenneth L.

    1992-01-01

    A one-dimensional prototype geochemical transport model was developed in order to handle simultaneous precipitation-dissolution and oxidation-reduction reactions governed by chemical equilibria. Total aqueous component concentrations are the primary dependent variables, and a sequential iterative approach is used for the calculation. The model was verified by analytical and numerical comparisons and is able to simulate sharp mineral fronts. At a site in Denmark, denitrification has been observed by oxidation of pyrite. Simulation of nitrate movement at this site showed a redox front movement rate of 0.58 m yr−1, which agreed with calculations of others. It appears that the sequential iterative approach is the most practical for extension to multidimensional simulation and for handling large numbers of components and reactions. However, slow convergence may limit the size of redox systems that can be handled.

  16. Using 137Cs to Trace Soil Redistribution by Overland Flow in Qilian Mountains, N.W. China

    Science.gov (United States)

    Geng, H.; Pan, B.; Huang, B.; Milledge, D.; Dietrich, W.

    2012-12-01

    Many previous studies have suggested theoretic coupling between tectonics, climate, and erosion in long-term landscape evolution. The critical question is: how do tectonics and climate effect erosion? Accordingly, erosion rates derived from modern sediment yield, river incision, cosmogenic nuclides and thermochronological data are estimated in tectonically active mountain ranges to address the question. Erosion rates are useful but time and space scale dependent. Moreover, many measures describe basin averaged erosion so that representation of intra-basin variability of erosion processes is difficult. Mountainous environments generally comprise many processes (e.g frost creep, gelifluction, rock fall, debris flow and overland flow etc). The spatial variability of these processes, makes the relationship between erosion rates and either climate or tectonics difficult to unpack. The Qilian Mountains, located along the northeast margin of the Qinghai-Tibetan Plateau, have been experiencing an average rate of regional uplift of at least 0.2mm/a since the Late Cenozoic. Previous studies have indicated that topographic control (i.e. mean local relief) plays a dominant role in spatial distribution of decadal-scale erosion rates. We now hope to begin to examine the processes that drive landscape evolution in the Qilian Mountains and their relation to catchment properties. Our observations suggest that overland flow is one of the dominant processes in the lower elevation regions of the Qilan Mountains, which are soil-mantled, have a semi-arid climate, and are subject to grazing by domestic animals. We use 137Cs to trace soil redistribution in the top 20 cm of a series of soil-mantled slopes in the Xiying Basin (eastern Qilan Mountains, China). We chose 23 transects across a range of gradients and land covers, collecting bulk samples to a depth of 0.2 m at 5 m intervals (total n=245). We also collected samples at a reference (no erosion) site at 0.01 m intervals to 0.2 m

  17. Formation and Control of Self-Sealing High Permeability Groundwater Mounds in Impermeable Sediment: Implications for SUDS and Sustainable Pressure Mound Management

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2009-10-01

    Full Text Available A groundwater mound (or pressure mound is defined as a volume of fluid dominated by viscous flow contained within a sediment volume where the dominant fluid flow is by Knudsen Diffusion. High permeability self-sealing groundwater mounds can be created as part of a sustainable urban drainage scheme (SUDS using infiltration devices. This study considers how they form, and models their expansion and growth as a function of infiltration device recharge. The mounds grow through lateral macropore propagation within a Dupuit envelope. Excess pressure relief is through propagating vertical surge shafts. These surge shafts can, when they intersect the ground surface result, in high volume overland flow. The study considers that the creation of self-sealing groundwater mounds in matrix supported (clayey sediments (intrinsic permeability = 10–8 to 10–30 m3 m–2 s–1 Pa–1 is a low cost, sustainable method which can be used to dispose of large volumes of storm runoff (<20→2,000 m3/24 hr storm/infiltration device and raise groundwater levels. However, the inappropriate location of pressure mounds can result in repeated seepage and ephemeral spring formation associated with substantial volumes of uncontrolled overland flow. The flow rate and flood volume associated with each overland flow event may be substantially larger than the associated recharge to the pressure mound. In some instances, the volume discharged as overland flow in a few hours may exceed the total storm water recharge to the groundwater mound over the previous three weeks. Macropore modeling is used within the context of a pressure mound poro-elastic fluid expulsion model in order to analyze this phenomena and determine (i how this phenomena can be used to extract large volumes of stored filtered storm water (at high flow rates from within a self-sealing high permeability pressure mound and (ii how self-sealing pressure mounds (created using storm water infiltration can be used to

  18. Optimal dynamic management of groundwater pollutant sources.

    Science.gov (United States)

    Gorelick, S.M.; Remson, I.

    1982-01-01

    The linear programing-superposition method is presented for managing multiple sources of groundwater pollution over time. The method uses any linear solute transport simulation model to generate a unit source-concentration response matrix that is incorporated into a management model. -from Authors

  19. Uncertainty in deterministic groundwater transport models due to the assumption of macrodispersive mixing: evidence from the Cape Cod (Massachusetts, U.S.A.) and Borden (Ontario, Canada) tracer tests

    Science.gov (United States)

    Fitts, Charles R.

    1996-06-01

    Deterministic transport models based on the advection-dispersion equation are widely used to simulate groundwater contaminant transport. Only the largest heterogeneities and velocity field variations are explicitly modeled by the advection part of such models because subsurface explorations allow limited understanding of the distribution of heterogeneity and velocities. Smaller heterogeneities and associated velocity field variations are not incorporated in the modeled velocity field, but their overall mixing effect is represented implicitly as macrodispersion. As a result, such models do not replicate the complex small-scale variation of actual concentration distributions, but instead simulate a smoother concentration distribution. This discrepancy causes significant uncertainty in modeled concentrations. In this paper, such uncertainty is quantified for the detailed concentration distribution data sets of the Cape Cod and Borden natural-gradient tracer tests. Models of these tests could be made with relatively little uncertainty about the source distribution, large-scale flow field, and apparent macrodispersitivities. As earlier moment analyses reveal, the ensemble-average bromide migration in both tests was approximately consistent with classical advection-dispersion theory. Therefore, the reported uncertainties are primarily due to the use of macrodispersivity to represent mixing caused by small-scale velocity field variations. Analytic three-dimensional transport models were used to simulate the migration of bromide, a non-reactive tracer. The distribution of log(ca/cm), where ca is actual concentration and cm is modeled concentration at the same point, had a standard deviation of ∼0.70 for both tests. The distribution of vertically-averaged concentration predictions, log(Σca/Σcm), where the summation is over each multi-level sampler, had a standard deviation of ∼0.45 for both tests. Comparing the peak actual concentration to the peak modeled

  20. Characterization and simulation of fate and transport of selected volatile organic compounds in the vicinities of the Hadnot Point Industrial Area and landfill: Chapter A Supplement 6 in Analyses and historical reconstruction of groundwater flow, contaminant fate and transport, and distribution of drinking water within the service areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

    Science.gov (United States)

    Jones, L. Elliott; Suárez-Soto, René J.; Anderson, Barbara A.; Maslia, Morris L.

    2013-01-01

    This supplement of Chapter A (Supplement 6) describes the reconstruction (i.e. simulation) of historical concentrations of tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene3 in production wells supplying water to the Hadnot Base (USMCB) Camp Lejeune, North Carolina (Figure S6.1). A fate and transport model (i.e., MT3DMS [Zheng and Wang 1999]) was used to simulate contaminant migration from source locations through the groundwater system and to estimate mean contaminant concentrations in water withdrawn from water-supply wells in the vicinity of the Hadnot Point Industrial Area (HPIA) and the Hadnot Point landfill (HPLF) area.4 The reconstructed contaminant concentrations were subsequently input into a flow-weighted, materials mass balance (mixing) model (Masters 1998) to estimate monthly mean concentrations of the contaminant in finished water 5 at the HPWTP (Maslia et al. 2013). The calibrated fate and transport models described herein were based on and used groundwater velocities derived from groundwater-flow models that are described in Suárez-Soto et al. (2013). Information data pertinent to historical operations of water-supply wells are described in Sautner et al. (2013) and Telci et al. (2013).

  1. Aquarius - A Modelling Package for Groundwater Flow and Coupled Heat Transport in the Range 0.1 to 100 MPa and 0.1 to 1000 C

    Science.gov (United States)

    Cook, S. J.

    2009-05-01

    Aquarius is a Windows application that models fluid flow and heat transport under conditions in which fluid buoyancy can significantly impact patterns and magnitudes of fluid flow. The package is designed as a visualization tool through which users can examine flow systems in environments, both low temperature aquifers and regions with elevated PT regimes such as deep sedimentary basins, hydrothermal systems, and contact thermal aureoles. The package includes 4 components: (1) A finite-element mesh generator/assembler capable of representing complex geologic structures. Left-hand, right-hand and alternating linear triangles can be mixed within the mesh. Planer horizontal, planer vertical and cylindrical vertical coordinate sections are supported. (2) A menu-selectable system for setting properties and boundary/initial conditions. The design retains mathematical terminology for all input parameters such as scalars (e.g., porosity), tensors (e.g., permeability), and boundary/initial conditions (e.g., fixed potential). This makes the package an effective instructional aide by linking model requirements with the underlying mathematical concepts of partial differential equations and the solution logic of boundary/initial value problems. (3) Solution algorithms for steady-state and time-transient fluid flow/heat transport problems. For all models, the nonlinear global matrix equations are solved sequentially using over-relaxation techniques. Matrix storage design allows for large (e.g., 20000) element models to run efficiently on a typical PC. (4) A plotting system that supports contouring nodal data (e.g., head), vector plots for flux data (e.g., specific discharge), and colour gradient plots for elemental data (e.g., porosity), water properties (e.g., density), and performance measures (e.g., Peclet numbers). Display graphics can be printed or saved in standard graphic formats (e.g., jpeg). This package was developed from procedural codes in C written originally to

  2. A model for managing sources of groundwater pollution.

    Science.gov (United States)

    Gorelick, S.M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the US Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. -from Author

  3. Using a rainfall simulator to explore the influence of stone size and vertical position on overland flow, splash detachment and slopewash

    Science.gov (United States)

    Pocock, Jennifer; Walsh, Rory

    2016-04-01

    The Influences of rock fragments on overland flow and soil erosion are complex and much debated. The exact role played by differences in splash, pooling and channelling patterns associated with fragment covers of differing character in accounting for contrasting results found by studies is largely unexplored. This poster reports the findings of a study using a laboratory-based rainfall simulator to investigate the influences of rock fragment presence, size and vertical position on overland flow, slopewash and splash detachment. A set of 49 experimental runs of 15 minutes duration was conducted with a gravity-driven rainfall simulator delivering rainfall at a constant intensity of 125.4 mm hr-1. The experiment tested 3 rock fragment size classes: (small (10-20mm), medium (30-49mm) and large (50-70mm) and 2 vertical positions (free-standing and embedded so as to be flush with the soil surface). The rock fragments used were smooth in form. Experiments were conducted on a square plot, 900 cm2 in area and oriented diamond-fashion downslope at an angle of 2°. The soil comprised a dry topsoil (6 % silt, 94 % sand), which was replaced after each run, overlying a sandy subsoil. Seven replicate simulation runs were carried out on each of the 6 combinations of size and position, plus on a bare soil 'control' plot. All runs with rock fragments had a 50 % stone cover evenly and symmetrically arranged within the plot, with fragments equispaced from each other along 'staggered' horizontal lines. Overland flow at the downstream outlet of the plot was recorded at 5-minute intervals and then later filtered to yield slopewash data. Splash detachment was sampled by four splash funnels (127 mm diameter) lined with filter paper and sited just outside the plot at the midpoints of each side. Overland flow was over double bare soil values on plots containing rock fragments. Slopewash was lower on bare soil in the majority of cases. Recorded overland flow and slopewash amounts varied

  4. Natural Biological Attenuation of Benzene in Groundwater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Benzene has been found in subsurface unsaturated soil and groundwater beneath a petro-chemical plant. Although the groundwater contained several mg/L of benzene in the area immediately beneath the source, benzene was not detected in monitoring wells approximately 800m down stream. All kinds of physical processes such as adsorption and advection/dispersion are considered to account for the observed attenuation. The results indicated that the attenuation was primarily due to natural biological processes occurring within the aquifer. The evidence for the natural bioremediation of benzene from the groundwater included: (1) analysis of groundwater chemistry, (2) laboratory studies demonstrating benzene biodegradation in aquifer samples, and (3) computer simulations examining benzene transport. Laboratory experiments indicated that for conditions similar to those in the plume, the aerobic degradation of benzene by the naturally occurring microorganisms in the polluted groundwater samples was quite rapid with a half-life time of from 5 to 15 days. In situ analyses indicated the level of dissolved oxygen in the groundwater was over 2mg/L. Thus, oxygen should not limit the biodegradation. In fact, the benzene was also shown to degrade under anaerobic conditions. The results from the modeling simulations indicate that biodegradation is the dominant process influencing attenuation of the benzene.

  5. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  6. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2016-12-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  7. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  8. A comparison of synoptic-scale development characteristics for over-water and over-land cases of explosive cyclone development

    Science.gov (United States)

    Lupo, Anthony R.; Smith, Phillip J.

    1992-01-01

    The Zwack and Okossi (1986) equation is here demonstrated to be an effective tool for the diagnosis of synoptic-scale cyclone development, and is noted to indicate that cyclonic vorticity advection is the most consistent contributor to the explosive development of a given cyclone. Warm air advection and latent heat release also contributed to explosive development in varying degrees. The adiabatic temperature changes forced by vertical motion opposed the development of both over-water and over-land cyclone development.

  9. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability.

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guohe; Huang, Yuefei; Zhang, Hua; Li, Zhong; Chen, Qiuwen

    2015-08-15

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications.

  10. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    Directory of Open Access Journals (Sweden)

    L. Merino-Martín

    2011-11-01

    Full Text Available Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment sinks and source patches are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted a field research to study the hydrological role of patches and slopes along an overland flow gradient in three reclaimed slopes coming from mining reclamation in a Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated to seven vegetation patches (characterized by plant community types and cover. Two types of sink patches were identified: shrub Genista scorpius patches could be considered as a "deep sink", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata. Finally, we identified the volume of overland flow routing along the slope as a controlling major factor of hydrological diversity: when overland flow increases at the slope scale hydrological diversity diminishes.

  11. Short-time phosphorus losses by overland flow in burnt pine and eucalypt plantations in north-central Portugal: A study at micro-plot scale.

    Science.gov (United States)

    Ferreira, R V; Serpa, D; Cerqueira, M A; Keizer, J J

    2016-05-01

    Over the past decades, wildfires have affected vast areas of Mediterranean ecosystems leading to a variety of negative on- and off-site environmental impacts. Research on fire-affected areas has given more attention to sediment losses by fire-enhanced overland flow than to nutrient exports, especially in the Mediterranean region. To address this knowledge gap for post-fire losses of phosphorus (P) by overland flow, a recently burnt forest area in north-central Portugal was selected and instrumented immediately after a wildfire. Three slopes were selected for their contrasting forest types (eucalypt vs. pine) and parent materials (granite vs. schist). The selected study sites were a eucalypt site on granite (BEG), a eucalypt site on schist (BES) and a maritime pine site on schist (BPS). Micro-plots were monitored over a period of six months, i.e. till the construction of terraces for reforestation obliged to the removal of the plots. During this 6-month period, overland flow samples were collected at 1- to 2-weekly intervals, depending on rainfall. Total P and PO4-P losses differed markedly between the two types of forests on schist, being lower at the pine site than at the eucalypt site, probably due to the presence of a protective layer of pine needle cast. Parent material did not play an important role in PO4-P losses by overland flow but it did in TP losses, with significantly lower values at the eucalypt site on granite than that on schist. These differences in TP losses can be attributed to the coarser texture of granite soils, typically promoting infiltration and decreasing runoff. The present findings provided further insights into the spatial and temporal patterns of post-fire soil nutrient losses in fire-prone forest types during the initial stages of the window-of-disturbance, which can be useful for defining post-fire emergency measures to reduce the risk of soil fertility losses.

  12. Towards closure relations in the Representative Elementary Watershed (REW) framework containing observable parameters: Relations for Hortonian overland flow

    Science.gov (United States)

    Vannametee, E.; Karssenberg, D.; Bierkens, M. F. P.

    2012-07-01

    This study presents the derivation procedure of an integrated closure relation for infiltration and Hortonian overland flow in the Representative Elementary Watershed (REW) framework that contains directly-observable parameters. A physically-based high resolution model is used to simulate the infiltration flux and discharge for 6 × 105 set of synthetic REWs and rainstorms scenarios. This synthetic data set serves as a surrogate of real-world data to deduce the closure relation. The closure relation performance is evaluated against the results from the high resolution model. The results show that the closure relation is capable of predicting accurate hydrological responses for an independent set of synthetic REWs and rainstroms in terms of the Nash-Sutcliffe index, errors in total discharge volume, and peak discharge, especially in cases where a relatively large amount of runoff is produced with fast responses. For the estimation of parameters in the closure relation, a local method using inverse distance weighted interpolation in the parameter space is superior to the global method based on the multiple regression, resulting in a better reproduction of runoff characteristics.

  13. An object-oriented overland flow solver for watershed flood inundation predictions: case study of Ulus basin, Turkey

    Directory of Open Access Journals (Sweden)

    Turan Burak

    2014-09-01

    Full Text Available This paper presents an object-oriented two-dimensional (2-D overland flow model and its application in simulating flood flows over Ulus basin, located in the north of Turkey adjacent to the Black Sea. A new coding implementation according to the class environment created in object oriented C++ programming language is carried out in structuring and building the solver. The model is based on the Godunov type finite volume scheme on unstructured triangular meshes. A mass balance preserving wet/dry boundary solution algorithm is integrated in the numerical scheme to satisfy the positive-depth condition and minimize the numerical instability when treating the propagation of wave front in regions of dry bed. The balance between bed slope and flux terms is also preserved for still water conditions on irregular topography. The 2-D solver is verified by simulating selected dam break cases, where good agreement with measured data is achieved. For the simulation of flood flows in the Ulus basin, in general, the simulated outflow hydrograph is found to compare well with the recorded data. A selected inundation map that is extracted from the model results is also presented to show the water surface level in the Floodplain.

  14. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  15. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  16. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries.

    Science.gov (United States)

    Leandro, Jorge; Martins, Ricardo

    2016-01-01

    Pluvial flooding in urban areas is characterized by a gradually varying inundation process caused by surcharge of the sewer manholes. Therefore urban flood models need to simulate the interaction between the sewer network and the overland flow in order to accurately predict the flood inundation extents. In this work we present a methodology for linking 2D overland flow models with the storm sewer model SWMM 5. SWMM 5 is a well-known free open-source code originally developed in 1971. The latest major release saw its structure re-written in C ++ allowing it to be compiled as a command line executable or through a series of calls made to function inside a dynamic link library (DLL). The methodology developed herein is written inside the same DLL in C + +, and is able to simulate the bi-directional interaction between both models during simulation. Validation is done in a real case study with an existing urban flood coupled model. The novelty herein is that the new methodology can be added to SWMM without the need for editing SWMM's original code. Furthermore, it is directly applicable to other coupled overland flow models aiming to use SWMM 5 as the sewer network model.

  17. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  18. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    A borehole testing apparatus has been designed to isolate discrete intervals of a bedrock borehole and conduct hydraulic tests or collect water samples for geochemical analyses. This borehole testing apparatus, referred to as the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3), includes two borehole packers, which when inflated can form a pressure-tight seal against smooth borehole walls; a pump apparatus to withdraw water from between the two packers; a fluid-injection apparatus to inject water between the two packers; pressure transducers to monitor fluid pressure between the two packers, as well as above and below the packers; flowmeters to monitor rates of fluid withdrawal or fluid injection; and data-acquisition equipment to record and store digital records from the pressure transducers and flowmeters. The generic design of this apparatus was originally discussed in United States Patent Number 6,761,062 (Shapiro, 2004). The prototype of the apparatus discussed in this report is designed for boreholes that are approximately 6 inches in diameter and can be used to depths of approximately 300 feet below land surface. The apparatus is designed to fit in five hard plastic boxes that can be shipped by overnight freight car-riers. The equipment can be assembled rapidly once it is removed from the shipping boxes, and the length of the test interval (the distance between the two packers) can be adjusted to account for different borehole conditions without reconfiguring the downhole components. The downhole components of the Multifunction BAT3 can be lowered in a borehole using steel pipe or a cable; a truck mounted winch or a winch and tripod can be used for this purpose. The equipment used to raise and lower the downhole components of the Multifunction BAT3 must be supplied on site, along with electrical power, a compressor or cylinders of compressed gas to inflate the packers and operate downhole valves, and the proper length of tubing to connect the

  19. Wave-Induced Groundwater Flows in a Freshwater Beach Aquifer

    Science.gov (United States)

    Malott, S. S.; Robinson, C. E.; O'Carroll, D. M.

    2014-12-01

    Wave-induced recirculation across the sediment-water interface can impact the transport of pollutants through a beach aquifer and their ultimate flux into coastal waters. The fate of nutrients (e.g. from septic and agricultural sources) and fecal indicator bacteria (e.g. E. coil) near the sediment-water interface are of particular concern as these pollutants often lead to degradation of recreational water quality and nearshore ecosystems. This paper presents detailed field measurements of groundwater flows in a freshwater beach aquifer on Lake Huron over periods of intensified wave conditions. Quantifying wave-driven processes in a freshwater beach aquifer enables wave effects to be studied in isolation from density and tidal effects that complicate groundwater flows in marine beaches. Water exchange across the sediment-water interface and groundwater flow patterns were measured using groundwater wells, arrays of vertically nested pressure transducers and manometers. Results show that wave action induces rapid infiltration/exfiltration across the sediment-water interface and a larger recirculation cell through the beach aquifer. Field data is used to validate a numerical groundwater model of wave-induced groundwater flows. While prior studies have simulated the effects of waves on beach groundwater flows, this study is the first attempt to validate these sophisticated modeling approaches. Finally, field data illustrating the impact of wave-induced groundwater flows on nutrient and bacteria fate and transport in beach aquifers will also be presented.

  20. The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds

    Science.gov (United States)

    Adams, Jordan M.; Gasparini, Nicole M.; Hobley, Daniel E. J.; Tucker, Gregory E.; Hutton, Eric W. H.; Nudurupati, Sai S.; Istanbulluoglu, Erkan

    2017-04-01

    Representation of flowing water in landscape evolution models (LEMs) is often simplified compared to hydrodynamic models, as LEMs make assumptions reducing physical complexity in favor of computational efficiency. The Landlab modeling framework can be used to bridge the divide between complex runoff models and more traditional LEMs, creating a new type of framework not commonly used in the geomorphology or hydrology communities. Landlab is a Python-language library that includes tools and process components that can be used to create models of Earth-surface dynamics over a range of temporal and spatial scales. The Landlab OverlandFlow component is based on a simplified inertial approximation of the shallow water equations, following the solution of de Almeida et al.(2012). This explicit two-dimensional hydrodynamic algorithm simulates a flood wave across a model domain, where water discharge and flow depth are calculated at all locations within a structured (raster) grid. Here, we illustrate how the OverlandFlow component contained within Landlab can be applied as a simplified event-based runoff model and how to couple the runoff model with an incision model operating on decadal timescales. Examples of flow routing on both real and synthetic landscapes are shown. Hydrographs from a single storm at multiple locations in the Spring Creek watershed, Colorado, USA, are illustrated, along with a map of shear stress applied on the land surface by flowing water. The OverlandFlow component can also be coupled with the Landlab DetachmentLtdErosion component to illustrate how the non-steady flow routing regime impacts incision across a watershed. The hydrograph and incision results are compared to simulations driven by steady-state runoff. Results from the coupled runoff and incision model indicate that runoff dynamics can impact landscape relief and channel concavity, suggesting that, on landscape evolution timescales, the OverlandFlow model may lead to differences in

  1. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  2. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    Science.gov (United States)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  3. Overland flow connectivity in olive orchard plots with cover crops and conventional tillage, and under different rainfall scenarios

    Science.gov (United States)

    López-Vicente, Manuel; García-Ruiz, Roberto; Guzmán, Gema; Vicente-Vicente, José Luis; Gómez, José Alfonso

    2016-04-01

    The study of overland flow connectivity (QC) allows understanding the redistribution dynamics of runoff and soil components as an emergent property of the spatio-temporal interactions of hydrological and geomorphic processes. However, very few studies have dealt with runoff connectivity in olive orchards. In this study we simulated QC in four olive orchard plots, located on the Santa Marta farm (37° 20' 33.6" N, 6° 13' 44" W), in Seville province (Andalusia) in SW Spain. The olive plantation was established in 1985 with trees planted at 8 m x 6 m. Each bounded plot is 8 m wide (between 2 tree lines) and 60 m long (total area of 480 m2), laid out with the longest dimension parallel to the maximum slope and to the tree lines. The slope is uniform, with an average steepness of 11%. Two plots (P2 and P4) were devoted to conventional ti