WorldWideScience

Sample records for groundwater transport model

  1. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the setup of mass balances...... to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out, in order to estimate concentrations in the soilplant- air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  2. Groundwater and contaminant transport modelling at the Sydney Tar Ponds

    Energy Technology Data Exchange (ETDEWEB)

    King, M. [Groundwater Insight Inc., Halifax, NS (Canada); Check, G. [Jacques Whitford Environment Ltd., Halifax, NS (Canada); Carey, G. [Environmental Inst. for Continuing Education, Waterloo, ON (Canada); Abbey, D. [Waterloo Hydrogeologic, Waterloo, ON (Canada); Baechler, F. [ADI Ltd., Sydney, NS (Canada)

    2003-07-01

    The Muggah Creek Watershed, a tidal estuary located in Sydney, Nova Scotia, is known locally as the Tar Ponds. Over the past century, the Tar Ponds have accumulated contaminants in the contributing watershed from the iron, steel and coke manufacturing. There are sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). A groundwater modelling program was developed to estimate current contaminant fluxes to the estuary and site streams, through groundwater. Attempts were made to incorporate a complex stratigraphic profile, where groundwater flow and contaminant transport is strongly controlled by shallow fractured bedrock, into the conceptual model developed for the site. This conceptual model for groundwater flow and contaminant transport at the Sydney Tar Ponds site was presented. The complex flow patterns between bedrock and overburden, and between the bedrock units and surface water bodies were illustrated with model simulations. It was found that groundwater flow was dominated by discharge to the streams and the estuary. 6 refs., 2 tabs., 11 figs.

  3. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    Science.gov (United States)

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood

  4. Modeling Reactive Transport in Coupled Groundwater-Conduit Systems

    Science.gov (United States)

    Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.

    2002-05-01

    Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from

  5. Groundwater transport modeling with nonlinear sorption and intraparticle diffusion

    Science.gov (United States)

    Singh, Anshuman; Allen-King, Richelle M.; Rabideau, Alan J.

    2014-08-01

    Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of "dual mode" sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including "dual mode" and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.

  6. Measurement and modeling of phosphorous transport in shallow groundwater environments.

    Science.gov (United States)

    Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI=2098μg/L and REI-SD=2048μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of

  7. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  8. Modelling regional transport of pesticide residues in groundwater

    NARCIS (Netherlands)

    Leistra, M.; Beltman, W.H.J.; Boesten, J.J.T.I.; Matser, A.M.; Zee, van der S.E.A.T.M.

    1996-01-01

    The movement of pesticides through soil and groundwater to pumping wells for drinking-water supply was modelled. Most of the retardation and transformation occurs when a pesticide moves through the unsaturated zone. Computed leaching to groundwater increased when soil heterogeneity was taken into

  9. [Solute transport modeling application in groundwater organic contaminant source identification].

    Science.gov (United States)

    Wang, Shu-Fang; Wang, Li-Ya; Wang, Xiao-Hong; Lin, Pei; Liu, Jiu-Rong; Xin, Bao-Dong; He, Guo-Ping

    2012-03-01

    Investigation and numerical simulation, based on RT3D (reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene (PCE) and trichloroethylene (TCE) in the groundwater of a city in the north of China and reverse the input intensity. Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab. The results indicate that the factories and industries are the source of the PCE and TCE in groundwater. Natural attenuation was identified and the natural attenuation rates are 93.15%, 61.70% and 61.00% for PCE, and 70.05%, 73.66% and 63.66% for TCE in 173 days. The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period. The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater. The PCE and TCE concentration are found to be 0 and 5 mg x kg(-1) from surface to 35 cm in vadose zone. All above results suggest that PCE and TCE in groundwater are from the source in the surface. Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater, and the rest was transported to groundwater through vadose zone. Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand, pebble and gravel of the Quaternary.

  10. Applying dispersive changes to Lagrangian particles in groundwater transport models

    Science.gov (United States)

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.

  11. Model-data integration for predictive assessment of groundwater reactive transport systems

    NARCIS (Netherlands)

    Carniato, L.

    2014-01-01

    Predicting the evolution of groundwater contamination is a major concern for society, in particular when investments are made to remediate the contamination. Groundwater reactive transport models are valuable tools to integrate the available measurements in a consistent framework, improving our unde

  12. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    Science.gov (United States)

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the

  13. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  14. On Limiting Behavior of Contaminant Transport Models in Coupled Surface and Groundwater Flows

    Directory of Open Access Journals (Sweden)

    Vincent J. Ervin

    2015-11-01

    Full Text Available There has been a surge of work on models for coupling surface-water with groundwater flows which is at its core the Stokes-Darcy problem. The resulting (Stokes-Darcy fluid velocity is important because the flow transports contaminants. The analysis of models including the transport of contaminants has, however, focused on a quasi-static Stokes-Darcy model. Herein we consider the fully evolutionary system including contaminant transport and analyze its quasi-static limits.

  15. Nitrate Transport Modeling in Deep Aquifers. Comparison between Model Results and Data from the Groundwater Monitoring Network

    NARCIS (Netherlands)

    Uffink GJM; Romkens PFAM; LBG

    2001-01-01

    Nitrate measurements from the Netherlands Groundwater Monitoring Network and model simulations were compared for deep aquifers in the eastern part of the Netherlands. The area studied measured 40 x 30 km2. The model describes advective-dispersive solute transport in groundwater and utilizes a first-

  16. Bayesian methods for model choice and propagation of model uncertainty in groundwater transport modeling

    Science.gov (United States)

    Mendes, B. S.; Draper, D.

    2008-12-01

    The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission

  17. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt

    Directory of Open Access Journals (Sweden)

    S.M. Ghoraba

    2013-06-01

    Full Text Available Groundwater contamination is a major problem related strongly to both; protection of environment and the need of water. In the present study groundwater quality was investigated in the central part of the Nile Delta (El-Gharbiya Governorate. El-Gharbiya Governorate is an agricultural land and its densely populated area inhabited, includes small communities which totally not served by public sewers. Hydrochemical analyses were used to assess the quality of water in samples taken from the canals, drains and groundwater. A laboratory study and mathematical modeling works were presented. Two numerical computer models by the applying of finite difference method were adopted. Both models deal with the flow as a three-dimensional and unsteady. Results obtained include determining the levels of water and the values of solute concentration and distribution of it in the region at different times. The groundwater model MODFLOW was used to deal with the hydrodynamics of the flow through porous media. A solute transport model which can be communicated with MODFLOW through data files MT3DMS, was used to solve the problem of contaminants transport and the change of their concentrations with time. A proposed groundwater remediation scheme by using group of extraction wells was suggested at Birma region where the concentration values of ammonium contaminant are the up most according to hydrochemical analyses results. Proposed scenario for cleaning is to use a set of wells to pump contaminated groundwater extraction for treatment and reused to irrigation.

  18. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    NARCIS (Netherlands)

    Jansen, Gijs M.C.; Del Val Alonso, Laura; Griffioen, Jasper; Groenendijk, P.

    2012-01-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented simulation model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emission

  19. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  20. Modeling transport effects of perfluorinated and hydrocarbon surfactants in groundwater by using micellar liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Rashad N. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States); McGuffin, Victoria L. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States)], E-mail: jgshabus@aol.com

    2007-11-05

    The effects of hydrocarbon and perfluorinated surfactants, above their critical micelle concentration (CMC), on the transport of neutral environmental pollutants are compared. Reversed-phase micellar liquid chromatography is used to model the groundwater system. The octadecylsilica stationary phase serves to simulate soil particles containing organic matter, whereas the aqueous surfactant mobile phases serve to simulate groundwater containing a surfactant at varying concentrations. Sodium dodecyl sulfate and lithium perfluorooctane sulfonate are used as representatives of the hydrocarbon and perfluorinated surfactants, respectively. Benzene, mono- and perhalogenated benzenes, and polycyclic aromatic hydrocarbons are used as models for environmental pollutants. Transport effects were elucidated from the retention factor, k, and the equilibrium constant per micelle, K{sub eq}, of the model pollutants in the individual surfactants. Based on k values, the transport of the model pollutants increased in both surfactant solutions in comparison to pure water. As the concentration of the surfactants increased, the transport of the pollutants increased as well. Notably, the K{sub eq} values of the pollutants in the perfluorinated surfactant were at least an order of magnitude less than those in the hydrocarbon surfactant. Overall, these results suggest that the presence of a perfluorinated surfactant, above its CMC, increases the transport of pollutants in a groundwater system. However, the perfluorinated surfactant exhibits a lesser transport effect than the hydrocarbon surfactant.

  1. TOUGH2. Unsaturated Groundwater and Heat Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

    1991-05-01

    TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.

  2. Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models

    Science.gov (United States)

    Kolditz, Olaf; Ratke, Rainer; Diersch, Hans-Jörg G.; Zielke, Werner

    This work examines variable density flow and corresponding solute transport in groundwater systems. Fluid dynamics of salty solutions with significant density variations are of increasing interest in many problems of subsurface hydrology. The mathematical model comprises a set of non-linear, coupled, partial differential equations to be solved for pressure/hydraulic head and mass fraction/concentration of the solute component. The governing equations and underlying assumptions are developed and discussed. The equation of solute mass conservation is formulated in terms of mass fraction and mass concentration. Different levels of the approximation of density variations in the mass balance equations are used for convection problems (e.g. the Boussinesq approximation and its extension, fully density approximation). The impact of these simplifications is studied by use of numerical modelling. Numerical models for nonlinear problems, such as density-driven convection, must be carefully verified in a particular series of tests. Standard benchmarks for proving variable density flow models are the Henry, Elder, and salt dome (HYDROCOIN level 1 case 5) problems. We studied these benchmarks using two finite element simulators - ROCKFLOW, which was developed at the Institute of Fluid Mechanics and Computer Applications in Civil Engineering and FEFLOW, which was developed at the Institute for Water Resources Planning and Systems Research Ltd. Although both simulators are based on the Galerkin finite element method, they differ in many approximation details such as temporal discretization (Crank-Nicolson vs predictor-corrector schemes), spatial discretization (triangular and quadrilateral elements), finite element basis functions (linear, bilinear, biquadratic), iteration schemes (Newton, Picard) and solvers (direct, iterative). The numerical analysis illustrates discretization effects and defects arising from the different levels of the density of approximation. We contribute

  3. Reduction of the ambiguity of karst aquifer modeling through pattern matching of groundwater flow and transport

    Science.gov (United States)

    Oehlmann, Sandra; Geyer, Tobias; Licha, Tobias; Sauter, Martin

    2014-05-01

    Distributive numerical simulations are an effective, process-based method for predicting groundwater resources and quality. They are based on conceptual hydrogeological models that characterize the properties of the catchment area and aquifer. Karst systems play an important role in water supply worldwide. Conceptual models are however difficult to build because of the highly developed heterogeneity of the systems. The geometry and properties of highly conductive karst conduits are generally unknown and difficult to characterize with field experiments. Due to these uncertainties numerical models of karst areas usually cannot simulate the hydraulic head distribution in the area, spring discharge and tracer breakthrough curves simultaneously on catchment scale. Especially in complex hydrogeological systems, this approach would reduce model ambiguity, which is prerequisite to predict groundwater resources and pollution risks. In this work, a distributive numerical groundwater flow and transport model was built for a highly heterogeneous karst aquifer in south-western Germany. For this aim, a solute transport interface for one-dimensional pipes was implemented in the software Comsol Multiphysics® and coupled to the standard three-dimensional solute transport interface for domains. The model was calibrated and hydraulic parameters could be obtained. The simulation was matched to the steady-state hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyze their influence in a large-scale heterogeneous karst system. Results show that it is not only possible to derive a consistent flow and transport model for a 150 km2 karst area to be employed as a

  4. Modeling Groundwater Flow and Contaminant Transport in Fractured Aquifers

    Science.gov (United States)

    2005-03-01

    2004). 2.4 Model Validation Karl Popper (2002) once said that “scientific theory cannot be validated; only invalidated.” This speaks to...second approach, which is related to the first, is based on the philosophical discussions of Karl Popper and states that models, as true...policy and remediation decisions. Popper (2002) argues that scientific theories can never be proven, merely tested and corroborated. In 34 this

  5. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  6. Mathematical model to predict the transport of dissolved arsenic in groundwater influenced by seepage velocity

    Directory of Open Access Journals (Sweden)

    Solomon Ndubuisi Eluozo

    2012-11-01

    Full Text Available Development of mathematical model to predict the transport of dissolved arsenic in groundwater influenced by seepage velocity has been carried out. This model was developed to monitor the rate of concentration at different period and depths. High and low concentrations were observed at different periods and depth as presented in the figures. These conditions can be attributed to soil stratification deposition in the study location and the influence of man-made activities. Based on these facts, it is recommended that risk assessment should be thoroughly done for soil and water and the predicted model should be applied in design and construction of groundwater system in the study area. 

  7. Combining Wireless Sensor Networks and Groundwater Transport Models: Protocol and Model Development in a Simulative Environment

    Science.gov (United States)

    Barnhart, K.; Urteaga, I.; Han, Q.; Porta, L.; Jayasumana, A.; Illangasekare, T.

    2007-12-01

    Groundwater transport modeling is intended to aid in remediation processes by providing prediction of plume location and by helping to bridge data gaps in the typically undersampled subsurface environment. Increased availability of computer resources has made computer-based transport models almost ubiquitous in calculating health risks, determining cleanup strategies, guiding environmental regulatory policy, and in determining culpable parties in lawsuits. Despite their broad use, very few studies exist which verify model correctness or even usefulness, and those that have shown significant discrepancies between predicted and actual results. Better predictions can only be gained from additional and higher quality data, but this is an expensive proposition using current sampling techniques. A promising technology is the use of wireless sensor networks (WSNs) which are comprised of wireless nodes (motes) coupled to in-situ sensors that are capable of measuring hydrological parameters. As the motes are typically battery powered, power consumption is a major concern in routing algorithms. By supplying predictions about the direction and arrival time of the contaminant, the application-driven routing protocol would then become more efficient. A symbiotic relationship then exists between the WSN, which is supplying the data to calibrate the transport model, and the model, which may be supplying predictive information to the WSN for optimum monitoring performance. Many challenges exist before the above can be realized: WSN protocols must mature, as must sensor technology, and inverse models and tools must be developed for integration into the system. As current model calibration, even automatic calibration, still often requires manual tweaking of calibration parameters, implementing this in a real-time closed-loop process may require significant work. Based on insights from a previous proof-of-concept intermediate-scale tank experiment, we are developing the models, tools

  8. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  9. Groundwater Flow and Salt Transport at a Sand Tailings Dam: Field Observations and Modelling Results.

    Science.gov (United States)

    Price, A. C.; Mendoza, C. A.

    2004-05-01

    Large volumes of sand tailings are produced during the extraction of bitumen from the oil sands of Northeastern Alberta. The long-term groundwater response and subsequent movement of water and solutes within the large permeable sand tailings storage areas is uncertain. At the Southwest Sand Storage (SWSS) Facility, located at Syncrude's Mildred Lake operations near Ft. McMurray, there is concern that salts from the tailings water may discharge to newly placed reclamation material that covers the sand tailings. This saline discharge water could destroy the reclamation soil structure and negatively impact vegetation. The steady-state groundwater flow and transient movement of salts at the local (bench and slope) and intermediate (pile) scales in the SWSS are investigated. Water levels, seepage and groundwater quality (including TDS) have been measured for over a year along two transects of piezometers installed in the SWSS. The field data have been used to complete traditional hydrogeological interpretations of the site, and to develop a conceptual model of flow and transport. The local and intermediate flow systems and salt transport in the dam are being evaluated with numerical models. The models will allow possible future hydrogeological behaviour of the structure to be tested. Preliminary results show differences in flow systems and salinity distribution that depend on the deposition of the SWSS. This research will facilitate better long-term environmental management of this and similar sites.

  10. Reactive chemical transport in ground-water hydrology: Challenges to mathematical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Apps, J.A.

    1990-07-01

    For a long time, earth scientists have qualitatively recognized that mineral assemblages in soils and rocks conform to established principles of chemistry. In the early 1960's geochemists began systematizing this knowledge by developing quantitative thermodynamic models based on equilibrium considerations. These models have since been coupled with advective-dispersive-diffusive transport models, already developed by ground-water hydrologists. Spurred by a need for handling difficult environmental issues related to ground-water contamination, these models are being improved, refined and applied to realistic problems of interest. There is little doubt that these models will play an important role in solving important problems of engineering as well as science over the coming years. Even as these models are being used practically, there is scope for their improvement and many challenges lie ahead. In addition to improving the conceptual basis of the governing equations, much remains to be done to incorporate kinetic processes and biological mediation into extant chemical equilibrium models. Much also remains to be learned about the limits to which model predictability can be reasonably taken. The purpose of this paper is to broadly assess the current status of knowledge in modeling reactive chemical transport and to identify the challenges that lie ahead.

  11. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  12. Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Drici, Warda

    2003-08-01

    This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  13. Assessment model validity document. NAMMU: A program for calculating groundwater flow and transport through porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cliffe, K.A.; Morris, S.T.; Porter, J.D. [AEA Technology, Harwell (United Kingdom)

    1998-05-01

    NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised.

  14. Stochastic uncertainties and sensitivities of a regional-scale transport model of nitrate in groundwater

    NARCIS (Netherlands)

    Brink, C.v.d.; Zaadnoordijk, W.J.; Burgers, S.; Griffioen, J.

    2008-01-01

    Groundwater quality management relies more and more on models in recent years. These models are used to predict the risk of groundwater contamination for various land uses. This paper presents an assessment of uncertainties and sensitivities to input parameters for a regional model. The model had

  15. Evaluation of oscillatory integrals for analytical groundwater flow and mass transport models

    Science.gov (United States)

    Ledder, Glenn; Zlotnik, Vitaly A.

    2017-06-01

    Modeling of transient dynamics of an interface between fluids of identical density and viscosity, but different otherwise, is of great interest in aquifer hydraulic, and advective contaminant transport, and has broad application. Closed-form solutions are often available for problems with simple, practically important geometry, but the integrals that appear in such solutions often have integrands with two or more oscillatory factors. Such integrals pose difficulties for numerical evaluation because the positive and negative contributions of the integrand largely cancel and the integrands decay very slowly in the integration domain. Some problems with integrands with a single oscillatory factor were tackled in the past with an integration/summation/extrapolation (ISE) method: breaking the integrand at consecutive zeros to obtain an alternating series and then using the Shanks algorithm to accelerate convergence of the series. However, this technique is ineffective for problems with multiple oscillatory factors. We present a comprehensive strategy for evaluation of such integrals that includes a better ISE method, an interval truncation method, and long-time asymptotics; this strategy is applicable to a large class of integrals with either single or multiple oscillatory factors that arise in modeling of groundwater flow and transport. The effectiveness of this methodology is illustrated by examples of integrals used in well hydraulics, groundwater recharge design, and particle tracking.

  16. Simulation of Tritium Transport and Groundwater Age in a Variably Saturated 3D Model, Lake Rotorua Catchment, New Zealand

    Science.gov (United States)

    Daughney, C.; Toews, M. W.; Morgenstern, U.; Cornaton, F. J.; Jackson, B. M.

    2013-12-01

    Lake Rotorua is a focus of culture and tourism in New Zealand. The lake's water quality has declined since the 1970s, partly due to nutrient inputs that reach the lake via the groundwater system. Improved land use management within the catchment requires prediction of the spatial variations of groundwater transit time from land surface to the lake, and from this the prediction of current and future nutrient inflows to the lake. This study combines the two main methods currently available for determination of water age: numerical groundwater models and hydrological tracers. A steady-state 3D finite element model was constructed to simulate groundwater flow and transport of tritium and age at the catchment scale (555 km2). The model materials were defined using a 3D geologic model and included ignimbrites, rhyolites, alluvial and lake bottom sediments. The steady-state saturated groundwater flow model was calibrated using observed groundwater levels in boreholes (111 locations) and stream flow measurements from groundwater-fed streams and springs (61 locations). Hydraulic conductivities and Cauchy boundary conditions associated with the streams, springs and lake were parameterized. The transport parameters for the model were calibrated using 191 tritium samples from 105 locations (springs, streams and boreholes), with most locations having two sample dates. The transport model used steady-state flow, but simulated the transient transport and decay of tritium from rainfall recharge between 1945 and 2012. An additional 1D unsaturated sub-model was added to account for tritium decay from the ground surface to the water table. The sub-model is linked on top of the 3D model, and uses the water table depths and material properties from the 3D model. The adjustable calibration parameters for the transport model were porosity and van Genuchten parameters related to the unsaturated sub-models. Calibration of the flow model was achieved using a combination of automated least

  17. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    Science.gov (United States)

    Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.

    2012-12-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emissions of greenhouse gasses. It is the leading nutrient fate and transport code in the Netherlands where it is used primarily for the evaluation of fertilization related legislation. In addition, the code is applied frequently in international research projects. MT3DMS is probably the most commonly used groundwater solute transport package worldwide. The on-line model coupling ANIMO-MT3DMS combines the state-of-the-art descriptions of the biogeochemical cycles in ANIMO with the advantages of using a 3D approach for the transport through the saturated domain. These advantages include accounting for regional lateral transport, considering groundwater-surface water interactions more explicitly, and the possibility of using MODFLOW to obtain the flow fields. An additional merit of the on-line coupling concept is that it preserves feedbacks between the saturated and unsaturated zone. We tested ANIMO-MT3DMS by simulating nutrient transport for the period 1970-2007 in a Dutch agricultural polder catchment covering an area of 118 km2. The transient groundwater flow field had a temporal resolution of one day and was calculated with MODFLOW-MetaSWAP. The horizontal resolution of the model grid was 100x100m and consisted of 25 layers of varying thickness. To keep computation times manageable, we prepared MT3DMS for parallel computing, which in itself is a relevant development for a large community of groundwater transport modelers. For the parameterization of the soil, we applied a standard classification approach, representing the area by 60 units with unique combinations of soil type, land use and geohydrological setting. For the geochemical parameterization of the deeper subsurface, however, we

  18. Three-dimensional model for multi-component reactive transport with variable density groundwater flow

    Science.gov (United States)

    Mao, X.; Prommer, H.; Barry, D.A.; Langevin, C.D.; Panteleit, B.; Li, L.

    2006-01-01

    PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Global Sensitivity Analysis of a model of radionuclide transport in groundwater bodies by Polynomial Chaos Expansion

    Science.gov (United States)

    Ciriello, V.; Di Federico, V.; Riva, M.; Cadini, F.; De Sanctis, J.; Zio, E.; Guadagnini, A.

    2012-04-01

    We perform a Global Sensitivity Analysis (GSA) of a transport model used to compute the peak radionuclide concentration at a given control location in a randomly heterogeneous aquifer, following a release from a near surface repository of radioactive waste and subsequent contaminant migration within the host porous medium. We illustrate how uncertainty stemming from incomplete characterization of (a) the correlation scale of the variogram of hydraulic conductivity, (b) the partition coefficient associated with sorption of the migrating radionuclide, and (c) the effective dispersivity at the scale of interest propagates to the first two (ensemble) moments of the peak solute concentration detected at a target location within a two-dimensional randomly heterogeneous hydraulic conductivity field. We treat the uncertain system parameters as independent random variables and perform a variance-based GSA within a numerical Monte Carlo framework. Groundwater flow and transport are solved by randomly sampling the space of the uncertain parameters for an ensemble of generated hydraulic conductivity realizations. The Sobol indices are adopted as sensitivity measures. These are calculated by employing a Polynomial Chaos Expansion (PCE) technique. The PCE-based representation of the response surface of the adopted transport model is then adopted as a surrogate model of the transport process to reduce the computational burden associated with a standard Monte Carlo solution of the original governing equations. This methodology allows identifying the relative influence of the selected uncertain parameters on the target (ensemble) moments of peak concentrations. Our results suggest that the ensemble mean of peak concentration is strongly influenced by the partition coefficient and the longitudinal dispersivity for the scenario analyzed. On the other hand, the hydraulic conductivity correlation scale plays an important role in the variance of the calculated peak concentration values

  20. Pareto optimal calibration of highly nonlinear reactive transport groundwater models using particle swarm optimization

    Science.gov (United States)

    Siade, A. J.; Prommer, H.; Welter, D.

    2014-12-01

    Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site

  1. Modeling substrate-bacteria-grazer interactions coupled to substrate transport in groundwater

    Science.gov (United States)

    Bajracharya, Bijendra M.; Lu, Chuanhe; Cirpka, Olaf A.

    2014-05-01

    Models of microbial dynamics coupled to solute transport in aquifers typically require the introduction of a bacterial capacity term to prevent excessive microbial growth close to substrate-injection boundaries. The factors controlling this carrying capacity, however, are not fully understood. In this study, we propose that grazers or bacteriophages may control the density of bacterial biomass in continuously fed porous media. We conceptualize the flow-through porous medium as a series of retentostats, in which the dissolved substrate is advected with water flow whereas the biomasses of bacteria and grazers are considered essentially immobile. We first model a single retentostat with Monod kinetics of bacterial growth and a second-order grazing law, which shows that the system oscillates but approaches a stable steady state with nonzero concentrations of substrate, bacteria, and grazers. The steady state concentration of the bacteria biomass is independent of the substrate concentration in the inflow. When coupling several retentostats in a series to mimic a groundwater column, the steady state bacteria concentrations thus remain at a constant level over a significant travel distance. The one-dimensional reactive transport model also accounts for substrate dispersion and a random walk of grazers influenced by the bacteria concentration. These dispersive-diffusive terms affect the oscillations until steady state is reached, but hardly the steady state value itself. We conclude that grazing, or infection by bacteriophages, is a possible explanation of the maximum biomass concentration frequently needed in bioreactive transport models. Its value depends on parameters related to the grazers or bacteriophages and is independent of bacterial growth parameters or substrate concentration, provided that there is enough substrate to sustain bacteria and grazers.

  2. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  3. Accounting for Mass Transfer Kinetics when Modeling the Impact of Low Permeability Layers in a Groundwater Source Zone on Dissolved Contaminant Fate and Transport

    Science.gov (United States)

    2014-03-27

    Web: http://www.epa.gov/superfund/sites/rods/fulltext/e1098040. pdf InsideEPA.com. "EPA Seeks To Ease Groundwater Cleanup Policy Following NAS...PERMEABILITY LAYERS IN A GROUNDWATER SOURCE ZONE ON DISSOLVED CONTAMINANT FATE AND TRANSPORT THESIS James M. Bell, Captain, USAF AFIT-ENV-14-M-08...MODELING THE IMPACT OF LOW PERMEABILITY LAYERS IN A GROUNDWATER SOURCE ZONE ON DISSOLVED CONTAMINANT FATE AND TRANSPORT THESIS Presented

  4. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  5. Estimating groundwater exchange with lakes: 2. Calibration of a three-dimensional, solute transport model to a stable isotope plume

    Science.gov (United States)

    Krabbenhoft, David P.; Anderson, Mary P.; Bowser, Carl J.

    1990-01-01

    A three-dimensional groundwater flow and solute transport model was calibrated to a plume of water described by measurements of δ18O and used to calculate groundwater inflow and outflow rates at a lake in northern Wisconsin. The flow model was calibrated to observed hydraulic gradients and estimated recharge rates. Calibration of the solute transport submodel to the configuration of a stable isotope (18O) plume in the contiguous aquifer on the downgradient side of the lake provides additional data to constrain the model. A good match between observed and simulated temporal variations in plume configuration indicates that the model closely simulated the dynamics of the real system. The model provides information on natural variations of rates of groundwater inflow, lake water outflow, and recharge to the water table. Inflow and outflow estimates compare favorably with estimates derived by the isotope mass balance method (Krabbenhoft et al., this issue). Model simulations agree with field observations that show groundwater inflow rates are more sensitive to seasonal variations in recharge than outflow.

  6. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments

    Science.gov (United States)

    Friedly, J.C.; Davis, J.A.; Kent, D.B.

    1995-01-01

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be

  7. A Combined Approach to Model Reduction for Nonlinear Groundwater Flow and Solute Transport Simulations Using POD and DEIM.

    Science.gov (United States)

    Stanko, Z.; Boyce, S. E.; Yeh, W. W. G.

    2015-12-01

    Model reduction techniques using proper orthogonal decomposition (POD) have been very effective in applications to confined groundwater flow models. These techniques consist of performing a projection of the solution of the full model onto a reduced basis. POD combined with the snapshot approach has been successfully applied to highly discretized linear models. In many cases, the reduced model is orders of magnitude smaller than the full model and runs 1,000 times faster. For nonlinear models, such as the unconfined groundwater flow, direct application of POD requires additional calls to the full model to generate additional snapshots. This is time consuming and increases the dimension of the reduced model. The discrete empirical interpolation method (DEIM) is a technique that avoids the additional full model calls and captures the dynamics of the nonlinear term while reducing the dimensions. Here, POD and DEIM are combined to reduce both the nonlinear unconfined groundwater flow and solute transport equations. To prove the concept, simple one-dimensional models are created for MODFLOW and MT3DMS separately. The dual approach is then tested on a density-dependent flow and transport simulation using the LMT package developed for MODFLOW. For each iteration of the nonlinear flow solver and the transport solver, the respective reduced models are solved instead. Numerical experiments show that significant reduction is obtainable before errors become too large. This method is well suited for a coastal aquifer seawater intrusion scenario, where nonlinearities only exist in small subregions of the model domain. A fine discretization can be utilized and POD will effectively eliminate unnecessary parameterization by projecting the full model system matrix onto a subspace with fewer column dimensions. DEIM can then reduce the row dimension of the original system by using only those state variable nodes with the most influence. This combined approach allows for full

  8. A reactive transport model for the quantification of risks induced by groundwater heat pump systems in urban aquifers

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Ayora, Carlos; Garrido, Eduardo; Vázquez-Suñé, Enric; Huggenberger, Peter; Gimenez, Ana Cristina

    2016-11-01

    Shallow geothermal resource exploitation through the use of groundwater heat pump systems not only has hydraulic and thermal effects on the environment but also induces physicochemical changes that can compromise the operability of installations. This study focuses on chemical clogging and dissolution subsidence processes observed during the geothermal re-injection of pumped groundwater into an urban aquifer. To explain these phenomena, two transient reactive transport models of a groundwater heat pump installation in an alluvial aquifer were used to reproduce groundwater-solid matrix interactions occurring in a surrounding aquifer environment during system operation. The models couple groundwater flow, heat and solute transport together with chemical reactions. In these models, the permeability distribution in space changes with precipitation-dissolution reactions over time. The simulations allowed us to estimate the calcite precipitation rates and porosity variations over space and time as a function of existent hydraulic gradients in an aquifer as well as the intensity of CO2 exchanges with the atmosphere. The results obtained from the numerical model show how CO2 exolution processes that occur during groundwater reinjection into an aquifer and calcite precipitation are related to hydraulic efficiency losses in exploitation systems. Finally, the performance of reinjection wells was evaluated over time according to different scenarios until the systems were fully obstructed. Our simulations also show a reduction in hydraulic conductivity that forces re-injected water to flow downwards, thereby enhancing the dissolution of evaporitic bedrock and producing subsidence that can ultimately result in a dramatic collapse of the injection well infrastructure.

  9. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER: VOLUME 3 MULTICOMPONENT REACTIVE TRANSPORT MODELING

    Science.gov (United States)

    Reactive transport modeling has been conducted to describe the performance of the permeable reactive barrier at the Coast Guard Support Center near Elizabeth City, NC. The reactive barrier was installed to treat groundwater contaminated by hexavalent chromium and chlorinated org...

  10. Regional modeling of groundwater flow and arsenic transport in the Bengal Basin: challenges of scale and complexity (Invited)

    Science.gov (United States)

    Michael, H. A.; Voss, C. I.

    2009-12-01

    Widespread arsenic poisoning is occurring in large areas of Bangladesh and West Bengal, India due to high arsenic levels in shallow groundwater, which is the primary source of irrigation and drinking water in the region. The high-arsenic groundwater exists in aquifers of the Bengal Basin, a huge sedimentary system approximately 500km x 500km wide and greater than 15km deep in places. Deeper groundwater (>150m) is nearly universally low in arsenic and a potential source of safe drinking water, but evaluation of its sustainability requires understanding of the entire, interconnected regional aquifer system. Numerical modeling of flow and arsenic transport in the basin introduces problems of scale: challenges in representing the system in enough detail to produce meaningful simulations and answer relevant questions while maintaining enough simplicity to understand controls on processes and operating within computational constraints. A regional groundwater flow and transport model of the Bengal Basin was constructed to assess the large-scale functioning of the deep groundwater flow system, the vulnerability of deep groundwater to pumping-induced migration from above, and the effect of chemical properties of sediments (sorption) on sustainability. The primary challenges include the very large spatial scale of the system, dynamic monsoonal hydrology (small temporal scale fluctuations), complex sedimentary architecture (small spatial scale heterogeneity), and a lack of reliable hydrologic and geologic data. The approach was simple. Detailed inputs were reduced to only those that affect the functioning of the deep flow system. Available data were used to estimate upscaled parameter values. Nested small-scale simulations were performed to determine the effects of the simplifications, which include treatment of the top boundary condition and transience, effects of small-scale heterogeneity, and effects of individual pumping wells. Simulation of arsenic transport at the large

  11. An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guannan [ORNL; Webster, Clayton G [ORNL; Gunzburger, Max D [ORNL

    2012-09-01

    Although Bayesian analysis has become vital to the quantification of prediction uncertainty in groundwater modeling, its application has been hindered due to the computational cost associated with numerous model executions needed for exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, we utilize a compactly supported higher-order hierar- chical basis to construct the surrogate system, resulting in a significant reduction in the number of computational simulations required. In addition, we use hierarchical surplus as an error indi- cator to determine adaptive sparse grids. This allows local refinement in the uncertain domain and/or anisotropic detection with respect to the random model parameters, which further improves computational efficiency. Finally, we incorporate a global optimization technique and propose an iterative algorithm for building the surrogate system for the PPDF with multiple significant modes. Once the surrogate system is determined, the PPDF can be evaluated by sampling the surrogate system directly with very little computational cost. The developed method is evaluated first using a simple analytical density function with multiple modes and then using two synthetic groundwater reactive transport models. The groundwater models represent different levels of complexity; the first example involves coupled linear reactions and the second example simulates nonlinear ura- nium surface complexation. The results show that the aSG-hSC is an effective and efficient tool for Bayesian inference in groundwater modeling in comparison with conventional

  12. "A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models"

    Science.gov (United States)

    Briseño, Jessica; Herrera, Graciela S.

    2010-05-01

    Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one

  13. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  14. A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan

    2003-01-01

    Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and

  15. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written to provide guidance to managers and site operators on how ground-water transport codes should be selected for assessing burial site performance. There is a need for a formal approach to selecting appropriate codes from the multitude of potentially useful ground-water transport codes that are currently available. Code selection is a problem that requires more than merely considering mathematical equation-solving methods. These guidelines are very general and flexible and are also meant for developing systems simulation models to be used to assess the environmental safety of low-level waste burial facilities. Code selection is only a single aspect of the overall objective of developing a systems simulation model for a burial site. The guidance given here is mainly directed toward applications-oriented users, but managers and site operators need to be familiar with this information to direct the development of scientifically credible and defensible transport assessment models. Some specific advice for managers and site operators on how to direct a modeling exercise is based on the following five steps: identify specific questions and study objectives; establish costs and schedules for achieving answers; enlist the aid of professional model applications group; decide on approach with applications group and guide code selection; and facilitate the availability of site-specific data. These five steps for managers/site operators are discussed in detail following an explanation of the nine systems model development steps, which are presented first to clarify what code selection entails.

  16. A groundwater flow and transport model of long-term radionuclide migration in central Frenchman flat, Nevada test site

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, Edward Michael [Los Alamos National Laboratory; Becker, Naomi M [Los Alamos National Laboratory; Ruskauff, Gregory [NAVARRO-INTERA, LLC.; De Novio, Nicole [GOLDER AND ASSOC.; Wilborn, Bill [US DOE NNSA NSO

    2010-11-10

    A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.

  17. The importance of coupled modelling of variably saturated groundwater flow-heat transport for assessing river-aquifer interactions

    Science.gov (United States)

    Engeler, I.; Hendricks Franssen, H. J.; Müller, R.; Stauffer, F.

    2011-02-01

    SummaryThis paper focuses on the role of heat transport in river-aquifer interactions for the study area Hardhof located in the Limmat valley within the city of Zurich (Switzerland). On site there are drinking water production facilities of Zurich water supply, which pump groundwater and infiltrate bank filtration water from river Limmat. The artificial recharge by basins and by wells creates a hydraulic barrier against the potentially contaminated groundwater flow from the city. A three-dimensional finite element model of the coupled variably saturated groundwater flow and heat transport was developed. The hydraulic conductivity of the aquifer and the leakage coefficient of the riverbed were calibrated for isothermal conditions by inverse modelling, using the pilot point method. River-aquifer interaction was modelled using a leakage concept. Coupling was considered by temperature-dependent values for hydraulic conductivity and for leakage coefficients. The quality of the coupled model was tested with the help of head and temperature measurements. Good correspondence between simulated and measured temperatures was found for the three pumping wells and seven piezometers. However, deviations were observed for one pumping well and two piezometers, which are situated in an area, where zones with important hydrogeological heterogeneity are expected. A comparison of simulation results with isothermal leakage coefficients with those of temperature-dependent leakage coefficients shows that the temperature dependence is able to reduce the head residuals close to the river by up to 30%. The largest improvements are found in the zone, where the river stage is considerably higher than the groundwater level, which is in correspondence with the expectations. Additional analyses also showed that the linear leakage concept cannot reproduce the seepage flux in a downstream section during flood events. It was found that infiltration is enhanced during flood events, which is

  18. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  19. Evaluating conceptual modeling frameworks for farm scale groundwater pathogen transport associated with animal farming and municipal wastewater recharge

    Science.gov (United States)

    Cook, S. J.; Li, X.; Watanabe, N.; Atwill, R.; Puente, C. E.; Harter, T.

    2010-12-01

    Land applications to crops of diluted animal manure associated with concentrated animal feeding operations (CAFOs) and field discharges from municipal wastewater treatment plants are potential pathways for the contamination of shallow domestic and agricultural wells by pathogenic microorganisms. Sampling of soil and groundwater for the indicator and pathogenic microorganisms; Enterococcus spp., Escherichia coli, Campylobacter spp. and Salmonella was undertaken at two CAFOs in the San Joaquin Valley, California between 2006 and 2009. Observed concentrations are highly variable in both magnitude and frequency of detection and indicated no clear relationship to field applications or seasonal effects. To investigate if the observed variability in microorganism concentrations in groundwater could be attributed to aquifer heterogeneity, we developed multiple conceptual frameworks employing nonpoint source loading functions and groundwater transport models to simulate a shallow agricultural monitoring well catchment. We developed both, homogenous and heterogeneous aquifer representations, the latter using stochastic transition probability Markov chain representation. Also, we developd homogeneous and spatio-temporally heterogeneous loading models. Model sensitivity to conceptual frameworks, transport parameters, and spatio-temporal variations in diffuse pathogen loading at the water table was determined by comparing simulated frequency of pathogen detection with measured monitoring well breakthrough curves. Model results indicate that field scale aquifer heterogeneity cannot fully account for the variation in concentrations observed in shallow monitoring wells and that microorganism loading at the water table must also be highly heterogeneous. A two dimensional Neyman-Scott cluster process was found to provide the best representation of heterogeneity in recharge concentration and is conceptually consistent with the presence of low attenuation transport pathways in the

  20. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... of the evolution in natural baseline properties in groundwater....

  1. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

    Directory of Open Access Journals (Sweden)

    M. A. Gusyev

    2013-03-01

    Full Text Available Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000–2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages

  2. Global sampling to assess the value of diverse observations in conditioning a real-world groundwater flow and transport model

    Science.gov (United States)

    Delsman, Joost R.; Winters, Pieter; Vandenbohede, Alexander; Oude Essink, Gualbert H. P.; Lebbe, Luc

    2016-03-01

    The use of additional types of observational data has often been suggested to alleviate the ill-posedness inherent to parameter estimation of groundwater models and constrain model uncertainty. Disinformation in observational data caused by errors in either the observations or the chosen model structure may, however, confound the value of adding observational data in model conditioning. This paper uses the global generalized likelihood uncertainty estimation methodology to investigate the value of different observational data types (heads, fluxes, salinity, and temperature) in conditioning a groundwater flow and transport model of an extensively monitored field site in the Netherlands. We compared model conditioning using the real observations to a synthetic model experiment, to demonstrate the possible influence of disinformation in observational data in model conditioning. Results showed that the value of different conditioning targets was less evident when conditioning to real measurements than in a measurement error-only synthetic model experiment. While in the synthetic experiment, all conditioning targets clearly improved model outcomes, minor improvements or even worsening of model outcomes was observed for the real measurements. This result was caused by errors in both the model structure and the observations, resulting in disinformation in the observational data. The observed impact of disinformation in the observational data reiterates the necessity of thorough data validation and the need for accounting for both model structural and observational errors in model conditioning. It further suggests caution when translating results of synthetic modeling examples to real-world applications. Still, applying diverse conditioning data types was found to be essential to constrain uncertainty, especially in the transport of solutes in the model.

  3. Review of strategies for handling geological uncertainty in groundwater flow and transport modeling

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Christensen, Steen; Sonnenborg, Torben O.;

    2012-01-01

    The geologically related uncertainty in groundwater modeling originates from two main sources: geological structures and hydraulic parameter values within these structures. Within a geological structural element the parameter values will always exhibit local scale heterogeneity, which can...... be accounted for, but is often neglected, in assessments of prediction uncertainties. Strategies for assessing prediction uncertainty due to geologically related uncertainty may be divided into three main categories, accounting for uncertainty due to: (a) the geological structure; (b) effective model...... parameters; and (c) model parameters including local scale heterogeneity. The most common methodologies for uncertainty assessments within each of these categories, such as multiple modeling, Monte Carlo analysis, regression analysis and moment equation approach, are briefly described with emphasis...

  4. Reactive transport modeling of biogeochemical dynamics in subterranean estuaries: Implications for submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.

    2007-01-01

    The quality of groundwater, in particular in coastal areas, is increasingly deteriorating due to the input of nutrients (NO3-, NH4+ and PO4) from septic systems and agricultural leaching. The discharge of groundwater to coastal waters, termed submarine groundwater discharge (SGD), is now recognized

  5. Task force on modelling of groundwater flow and transport of solutes. Task 5 Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden)

    2003-02-01

    The Aespoe Hard Rock Laboratory is located in the Simpevarp area, southeast Sweden, some 35 km north of Oskarshamn. Construction of the underground laboratory commenced in 1990 and was completed in 1995, consisting of a 3.6 km. long tunnel excavated in crystalline rock to a depth of approximately 460 m. Prior to, during and subsequent to completion, research concerning the deep geological disposal of nuclear waste in fractured crystalline rock has been carried out. Central to this research has been the characterisation of the groundwater flow system and the chemistry of the groundwaters at Aespoe prior to excavation (Pre-investigation Phase) and subsequently to monitor changes in these parameters during the evolution of laboratory construction (Construction Phase). The principle aim of the Aespoe Task 5 modelling exercise has been to compare and ultimately integrate hydrogeochemistry and hydrogeology using the input data from the pre-investigation and construction phases. The main objectives were: to assess the consistency of groundwater-flow models and hydrogeochemical mixing-reaction models through integration and comparison of hydraulic and hydrogeochemical data obtained before and during tunnel construction, and to develop a procedure for integration of hydrological and hydrogeochemical information which could be used for disposal site assessments. Task 5 commenced in 1998 and was finalised in 2002. Participating modelling teams in the project represented ANDRA (France; three modelling teams - ANTEA, ITASCA, CEA), BMWi/BGR (Germany), ENRESA (Spain), JNC (Japan), CRIEPI (Japan), Posiva (Finland) and SKB (Sweden; two modelling teams - CFE and Intera (now GeoPoint)). Experience from Task 5 has highlighted several important aspects for site investigations facilitating the possibilities for mathematically integrated modelling and consistency checks that should be taken into account for future repository performance assessments. Equally important is that Task 5 has

  6. Groundwater flow and solute transport modelling from within R: Development of the RMODFLOW and RMT3DMS packages.

    Science.gov (United States)

    Rogiers, Bart

    2015-04-01

    Since a few years, an increasing number of contributed R packages is becoming available, in the field of hydrology. Hydrological time series analysis packages, lumped conceptual rainfall-runoff models, distributed hydrological models, weather generators, and different calibration and uncertainty estimation methods are all available. Also a few packages are available for solving partial differential equations. Subsurface hydrological modelling is however still seldomly performed in R, or with codes interfaced with R, despite the fact that excellent geostatistical packages, model calibration/inversion options and state-of-the-art visualization libraries are available. Moreover, other popular scientific programming languages like matlab and python have packages for pre- and post-processing files of MODFLOW (Harbaugh 2005) and MT3DMS (Zheng 2010) models. To fill this gap, we present here the development versions of the RMODFLOW and RMT3DMS packages, which allow pre- and post-processing MODFLOW and MT3DMS input and output files from within R. File reading and writing functions are currently available for different packages, and plotting functions are foreseen making use of the ggplot2 package (plotting system based on the grammar of graphics; Wickham 2009). The S3 generic-function object oriented programming style is used for this. An example is provided, making modifications to an existing model, and visualization of the model output. References Harbaugh, A. (2005). MODFLOW-2005: The US Geological Survey Modular Ground-water Model--the Ground-water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16 (p. 253). Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York, 2009. Zheng, C. (2010). MT3DMS v5.3, a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Supplemental User's Guide. (p. 56).

  7. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  8. Digital-transport model study of Diisopropylmethylphosphonate (DIMP) ground-water contamination at the Rocky Mountain Arsenal, Colorado

    Science.gov (United States)

    Warner, James W.

    1979-01-01

    Diisopropylmethylphosphonate (DIMP) is an organic compound produced as a by-product of the manufacture and detoxification of GB nerve gas. Ground-water contamination by DIMP from the disposal of wastes into unlined surface ponds at the Rocky Mountain Arsenal occurred from 1952 to 1956. A digital-transport model was used to determine the effects on ground-water movement and on DIMP concentrations in the ground water of a bentonite barrier in the aquifer near the northern boundary of the arsenal. The transport model is based on an iterative-alternating-direction-implicit mathematical solution of the ground-water-flow equation coupled with a method-of-characteristics solution of the solute-transport equation. The model assumes conservative (nonreactive) transient transport of DIMP and steady-state ground-water flow. In the model simulations, a bentonite barrier was assumed that was impermeable and penetrated the entire saturated thickness of the aquifer. Ground water intercepted by the barrier was assumed to be pumped by wells located south (upgradient) of the barrier, to be treated to remove DIMP, and to be recharged by pits or wells to the aquifer north (downgradient) of the barrier. The amount of DIMP transported across the northern boundary of the arsenal was substantially reduced by a ground-water-barrier system of this type. For a 1,500-foot-long bentonite barrier located along the northern boundary of the arsenal near D Street, about 50 percent of the DIMP that would otherwise cross the boundary would be intercepted by the barrier. This barrier configuration and location were proposed by the U.S. Army. Of the ground water with DIMP concentrations greater than 500 micrograms per liter, the safe DIMP-concentration level determined by the U.S. Army, about 72 percent would be intercepted by the barrier system. The amount of DIMP underflow intercepted may be increased to 65 percent by doubling the pumpage, or to 73 percent by doubling the length of the barrier

  9. Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site

    Science.gov (United States)

    Zhu, Chen; Hu, Fang Q.; Burden, David S.

    2001-11-01

    Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH) 3(a), and Fe(OH) 3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO 42- transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.

  10. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for

  11. Validation, Proof-of-Concept, and Postaudit of the Groundwater Flow and Transport Model of the Project Shoal Area

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan

    2004-09-01

    The groundwater flow and radionuclide transport model characterizing the Shoal underground nuclear test has been accepted by the State of Nevada Division of Environmental Protection. According to the Federal Facility Agreement and Consent Order (FFACO) between DOE and the State of Nevada, the next steps in the closure process for the site are then model validation (or postaudit), the proof-of-concept, and the long-term monitoring stage. This report addresses the development of the validation strategy for the Shoal model, needed for preparing the subsurface Corrective Action Decision Document-Corrective Action Plan and the development of the proof-of-concept tools needed during the five-year monitoring/validation period. The approach builds on a previous model, but is adapted and modified to the site-specific conditions and challenges of the Shoal site.

  12. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  13. Reliability Analyses of Groundwater Pollutant Transport

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Panagiotis

    1997-12-31

    This thesis develops a probabilistic finite element model for the analysis of groundwater pollution problems. Two computer codes were developed, (1) one using finite element technique to solve the two-dimensional steady state equations of groundwater flow and pollution transport, and (2) a first order reliability method code that can do a probabilistic analysis of any given analytical or numerical equation. The two codes were connected into one model, PAGAP (Probability Analysis of Groundwater And Pollution). PAGAP can be used to obtain (1) the probability that the concentration at a given point at a given time will exceed a specified value, (2) the probability that the maximum concentration at a given point will exceed a specified value and (3) the probability that the residence time at a given point will exceed a specified period. PAGAP could be used as a tool for assessment purposes and risk analyses, for instance the assessment of the efficiency of a proposed remediation technique or to study the effects of parameter distribution for a given problem (sensitivity study). The model has been applied to study the greatest self sustained, precipitation controlled aquifer in North Europe, which underlies Oslo`s new major airport. 92 refs., 187 figs., 26 tabs.

  14. Modeling contaminant transport in a three-phase groundwater system with the Freundlich-type retardation factor.

    Science.gov (United States)

    Kim, M; Kim, S B

    2007-02-01

    Colloid-facilitated contaminant transport was simulated in this study for the three-phase groundwater system where one or more sorption processes can be described with nonlinear sorption isotherm (Freundlich isotherm). A concise form of contaminant transport equation was derived from the mass balance equation of the contaminant. The developed model was numerically solved by the finite difference method along with the Picard iteration. The simulation results were used to quantitatively analyze the previously reported column data showing nonlinear sorption behavior. The analysis led to the following observations: (i) increases of the distribution coefficient of contaminant between the aqueous and solid phases (K(S)c) and the one between the dissolved natural organic matters and solid phase ( K(S)OM) generate less facilitation (i.e., late arrival of contaminant breakthrough curves (BTCs), and the distribution coefficient of contaminant between the aqueous and the solid phases (K(OM)c) gives the opposite result; (ii) the increase of the Freundlich constant for the sorption isotherm between the aqueous and the solid phases (N(S)c) yields the late arrival of BTC, and the other two Freundlich constants produce the opposite results; (iii) the Freundlich constants generally yield a sharper front as the BTC arrives at later pore volumes, while the distribution coefficients generally yield a more spread of the BTC as it arrives at later volumes. This modeling study shows that transport modeling provides a more efficient analyzing tool than the retardation factor alone concerning the colloid-facilitated contaminant transport with nonlinear sorption processes.

  15. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  16. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Heng [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Ye, Ming [Department of Scientific Computing, Florida State University, Tallahassee Florida USA; Song, Xuehang [Pacific Northwest National Laboratory, Richland Washington USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA

    2017-05-01

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level of the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.

  17. UNCERT: geostatistics, uncertainty analysis and visualization software applied to groundwater flow and contaminant transport modeling

    Science.gov (United States)

    Wingle, William L.; Poeter, Eileen P.; McKenna, Sean A.

    1999-05-01

    UNCERT is a 2D and 3D geostatistics, uncertainty analysis and visualization software package applied to ground water flow and contaminant transport modeling. It is a collection of modules that provides tools for linear regression, univariate statistics, semivariogram analysis, inverse-distance gridding, trend-surface analysis, simple and ordinary kriging and discrete conditional indicator simulation. Graphical user interfaces for MODFLOW and MT3D, ground water flow and contaminant transport models, are provided for streamlined data input and result analysis. Visualization tools are included for displaying data input and output. These include, but are not limited to, 2D and 3D scatter plots, histograms, box and whisker plots, 2D contour maps, surface renderings of 2D gridded data and 3D views of gridded data. By design, UNCERT's graphical user interface and visualization tools facilitate model design and analysis. There are few built in restrictions on data set sizes and each module (with two exceptions) can be run in either graphical or batch mode. UNCERT is in the public domain and is available from the World Wide Web with complete on-line and printable (PDF) documentation. UNCERT is written in ANSI-C with a small amount of FORTRAN77, for UNIX workstations running X-Windows and Motif (or Lesstif). This article discusses the features of each module and demonstrates how they can be used individually and in combination. The tools are applicable to a wide range of fields and are currently used by researchers in the ground water, mining, mathematics, chemistry and geophysics, to name a few disciplines.

  18. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  19. Porosity, Dispersivity, and Contaminant Transport in Groundwater

    Institute of Scientific and Technical Information of China (English)

    MOIWO Juana P.

    2001-01-01

    Porosity (n) and Dispersivity (D) were modeled in relation to Solute Transport Time (t) in a saturated, homogeneous, isotropic, unconfined aquifer using the MOC model. It was noted that n and D have an important influence on solute transport time t in groundwater, with a consistently strong and direct relationship between n, D, and t. In the case of porosity, the relationship was found to be directly related to t when other aquifer properties remained unchanged. This was also mathematically argued using a form of the flow equation put forward by Henry Darcy (1856). Dispersivity on the other hand had somehow the same relationship with solute transport time t as porosity, but with much less effect. That is, higher dispersions lead to longer solute transport time within the aquifer system. This was because as the individual solute particles set off from the average seepage velocity, they traversed through longer distances due to tortuosity, mechanical mixing, diffusion, and microscopic heterogeneity latent in the porous media. Also when n and D were co- treated over t, n was noted to be dominant over D with regard t. This follows that the effect of porosity on solute transport time far out shadowed that of dispersivity. Stated in other words, the dispersivity of a substance in any porous medium is to a large extent a function of the porosity of that medium.

  20. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus

  1. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  2. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    Science.gov (United States)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  3. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...... because of the occurrence of redox gradients, strongly reductive conditions and high biological activity. In order to meet the expectations of the EU Water Framework Directive, an evaluation of the impact of such plumes on surface water is needed. The aim of this work is to develop a groundwater transport...... number of geochemical processes, allows the simulation of soil geochemical transformations when microbial by-products are released to surface water, and the consideration of non-linear feedbacks on bacterial growth and pollutant transformations. Sensitivity analysis is performed through Monte Carlo...

  4. Groundwater chemistry of the Okélobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modelling.

    Science.gov (United States)

    Salas, J; Ayora, C

    2004-03-01

    The stability of uranium-bearing minerals in natural environments is of interest to evaluate the feasibility of radioactive waste repositories. The uraninite bodies, UO2(s), in the Oklo district (Gabon) are the result of a natural fission process, which took place 1970 Ma ago. These deposits can be regarded as natural analogues for spent fuel. One of the uraninite bodies, the Okélobondo deposit, is located at a depth of 300 m. Groundwater samples from boreholes located at shallow depths (100-200 m) show neutral to basic pH, anoxic conditions (Eh = 0.10 to -0.05 V) and are saturated with respect to uraninite. In contrast, deeper samples collected in the vicinity of the ore body are oxidising (Eh = 0.32-0.47 V), slightly basic (pH = 7.0-8.5) and undersaturated with respect to uraninite. These oxidising conditions at depth, if present under repository conditions, may affect the stability of uranium oxide. In order to improve our understanding of the observed site geochemistry, the available information on the lithology and groundwater flow was integrated in a reactive transport model. The chemical composition and the pH-Eh values of the water sampled above and in the western side of the Okélobondo deposit can be explained by the interaction of meteoric recharge with pelites, dolomites and sandstones. The dissolution of Fe(II)-silicates and the oxidation of the Fe(II)-aqueous species maintained the pH-Eh distribution along the Fe(2+)-Fe(OH)3(am) equilibrium, with the result that uraninite does not dissolve. This may explain the lower uranium content in the water samples from pelites and dolomites above the Okélobondo deposit. The high Mn/Fe ratio and the high pH-Eh values of the water sampled at depth, close to the Okélobondo deposit, suggest a control by the Mn(2+)-MnOOH(s) equilibrium. This control is attributed to the dissolution of a large rhodochrosite, MnCO3(s), and manganite, MnOOH(s) deposit in the recharge area on the eastern side.

  5. Groundwater chemistry of the Okélobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modelling

    Science.gov (United States)

    Salas, J.; Ayora, C.

    2004-03-01

    The stability of uranium-bearing minerals in natural environments is of interest to evaluate the feasibility of radioactive waste repositories. The uraninite bodies, UO 2(s), in the Oklo district (Gabon) are the result of a natural fission process, which took place 1970 Ma ago. These deposits can be regarded as natural analogues for spent fuel. One of the uraninite bodies, the Okélobondo deposit, is located at a depth of 300 m. Groundwater samples from boreholes located at shallow depths (100-200 m) show neutral to basic pH, anoxic conditions (Eh=0.10 to -0.05 V) and are saturated with respect to uraninite. In contrast, deeper samples collected in the vicinity of the ore body are oxidising (Eh=0.32-0.47 V), slightly basic (pH=7.0-8.5) and undersaturated with respect to uraninite. These oxidising conditions at depth, if present under repository conditions, may affect the stability of uranium oxide. In order to improve our understanding of the observed site geochemistry, the available information on the lithology and groundwater flow was integrated in a reactive transport model. The chemical composition and the pH-Eh values of the water sampled above and in the western side of the Okélobondo deposit can be explained by the interaction of meteoric recharge with pelites, dolomites and sandstones. The dissolution of Fe(II)-silicates and the oxidation of the Fe(II)-aqueous species maintained the pH-Eh distribution along the Fe 2+-Fe(OH) 3(am) equilibrium, with the result that uraninite does not dissolve. This may explain the lower uranium content in the water samples from pelites and dolomites above the Okélobondo deposit. The high Mn/Fe ratio and the high pH-Eh values of the water sampled at depth, close to the Okélobondo deposit, suggest a control by the Mn 2+-MnOOH(s) equilibrium. This control is attributed to the dissolution of a large rhodochrosite, MnCO 3(s), and manganite, MnOOH(s) deposit in the recharge area on the eastern side.

  6. Quantification of anthropogenic impact on groundwater-dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modelling

    Science.gov (United States)

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2015-02-01

    Groundwater-dependent ecosystems (GDEs) have important functions in all climatic zones as they contribute to biological and landscape diversity and provide important economic and social services. Steadily growing anthropogenic pressure on groundwater resources creates a conflict situation between nature and man which are competing for clean and safe sources of water. Such conflicts are particularly noticeable in GDEs located in densely populated regions. A dedicated study was launched in 2010 with the main aim to better understand the functioning of a groundwater-dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Błoto fen). It relies mostly on groundwater from the shallow Quaternary aquifer and possibly from the deeper Neogene (Bogucice Sands) aquifer. In July 2009 a cluster of new pumping wells abstracting water from the Neogene aquifer was set up 1 km to the northern border of the fen. A conceptual model of the Wielkie Błoto fen area for the natural, pre-exploitation state and for the envisaged future status resulting from intense abstraction of groundwater through the new well field was developed. The main aim of the reported study was to probe the validity of the conceptual model and to quantify the expected anthropogenic impact on the studied GDTE. A wide range of research tools was used. The results obtained through combined geologic, geophysical, geochemical, hydrometric and isotope investigations provide strong evidence for the existence of upward seepage of groundwater from the deeper Neogene aquifer to the shallow Quaternary aquifer supporting the studied GDTE. Simulations of the groundwater flow field in the study area with the aid of a 3-D flow and transport model developed for Bogucice Sands (Neogene) aquifer and calibrated using environmental tracer data and observations of hydraulic head in three different locations on the study area

  7. Quantification of anthropogenic impact on groundwater dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modeling

    Directory of Open Access Journals (Sweden)

    A. J. Zurek

    2014-08-01

    Full Text Available A dedicated study was launched in 2010 with the main aim to better understand the functioning of groundwater dependent terrestrial ecosystem (GDTE located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest and associated wetland (Wielkie Bloto fen. A wide range of tools (environmental tracers, geochemistry, geophysics, 3-D flow and transport modeling was used. The research was conducted along three major directions: (i quantification of the dynamics of groundwater flow in various parts of the aquifer associated with GDTE, (ii quantification of the degree of interaction between the GDTE and the aquifer, and (iii 3-D modeling of groundwater flow in the vicinity of the studied GDTE and quantification of possible impact of enhanced exploitation of the aquifer on the status of GDTE. Environmental tracer data (tritium, stable isotopes of water strongly suggest that upward leakage of the aquifer contributes significantly to the present water balance of the studied wetland and associated forest. Physico-chemical parameters of water (pH, conductivity, Na / Cl ratio confirm this notion. Model runs indicate that prolonged groundwater abstraction through the newly-established network of water supply wells, conducted at maximum permitted capacity (ca. 10 000 m3 d−1, may trigger drastic changes in the ecosystem functioning, eventually leading to its degradation.

  8. Quantification of anthropogenic impact on groundwater dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modeling

    Science.gov (United States)

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2014-08-01

    A dedicated study was launched in 2010 with the main aim to better understand the functioning of groundwater dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Bloto fen). A wide range of tools (environmental tracers, geochemistry, geophysics, 3-D flow and transport modeling) was used. The research was conducted along three major directions: (i) quantification of the dynamics of groundwater flow in various parts of the aquifer associated with GDTE, (ii) quantification of the degree of interaction between the GDTE and the aquifer, and (iii) 3-D modeling of groundwater flow in the vicinity of the studied GDTE and quantification of possible impact of enhanced exploitation of the aquifer on the status of GDTE. Environmental tracer data (tritium, stable isotopes of water) strongly suggest that upward leakage of the aquifer contributes significantly to the present water balance of the studied wetland and associated forest. Physico-chemical parameters of water (pH, conductivity, Na / Cl ratio) confirm this notion. Model runs indicate that prolonged groundwater abstraction through the newly-established network of water supply wells, conducted at maximum permitted capacity (ca. 10 000 m3 d-1), may trigger drastic changes in the ecosystem functioning, eventually leading to its degradation.

  9. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden); Modelos conceptuales y numericos de flujo y transporte de solutos en zonas de fractura: aplicacion a la isla de Aspo (Suecia)

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, J.; Samper, J.

    2003-07-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  10. Modeling the Impact of Cracking in Low Permeability Layers in a Groundwater Contamination Source Zone on Dissolved Contaminant Fate and Transport

    Science.gov (United States)

    Sievers, K. W.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2011-12-01

    Dense Non-Aqueous Phase Liquids (DNAPLs), which are chemicals and chemical mixtures that are heavier than and only slightly soluble in water, are a significant source of groundwater contamination. Even with the removal or destruction of most DNAPL mass, small amounts of remaining DNAPL can dissolve into flowing groundwater and continue as a contamination source for decades. One category of DNAPLs is the chlorinated aliphatic hydrocarbons (CAHs). CAHs, such as trichloroethylene and carbon tetrachloride, are found to contaminate groundwater at numerous DoD and industrial sites. DNAPLs move through soils and groundwater leaving behind residual separate phase contamination as well as pools sitting atop low permeability layers. Recently developed models are based on the assumption that dissolved CAHs diffuse slowly from pooled DNAPL into the low permeability layers. Subsequently, when the DNAPL pools and residual DNAPL are depleted, perhaps as a result of a remediation effort, the dissolved CAHs in these low permeability layers still remain to serve as long-term sources of contamination, due to so-called "back diffusion." These recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more DNAPL and/or dissolved CAH is stored in the low permeability zones than can be explained on the basis of diffusion alone. One explanation for these field observations is that there is enhanced transport of dissolved CAHs and/or DNAPL into the low permeability layers due to cracking. Cracks may allow for advective flow of water contaminated with dissolved CAHs into the layer as well as possible movement of pure phase DNAPL into the layer. In this study, a multiphase numerical flow and transport model is employed in a dual domain (high and low permeability layers) to investigate the impact of cracking on DNAPL and CAH movement. Using literature values, the crack geometry and spacing was varied to model

  11. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    The key role of small-scale processes like molecular diffusion and electrochemical migration has been increasingly recognized in multicomponent reactive transport in saturated porous media. In this study, we propose a two-dimensional multicomponent reactive transport model taking into account...... the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code...

  12. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.

    Science.gov (United States)

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2012-12-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination.

  13. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

    Science.gov (United States)

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2013-01-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  14. Transport and biodegradation of benzene in the saturated groundwater layer

    Directory of Open Access Journals (Sweden)

    Khongnakorn, W.

    2004-11-01

    Full Text Available The objective of this study was to investigate the biotic and abiotic processes that affected benzene transportation in the saturated groundwater layer. The study was performed in the laboratory using synthetic groundwater and soil sample from Maptaput Industrial Estate, Rayong. This study was divided into 3 parts; batch test, column test and computer modeling. The biotic, biodegradation, and the abiotic processes were studied in the batch system. The column experiment was performed to investigate the transport behavior of benzene. The computer program, CXTFIT, with parameters acquired from batch and column experiments was used to simulate the benzene transport behavior. It was found that benzene adsorption followed the linear adsorption isotherm with its coefficient (Kd of 0.544 cm3/g and the retardation factor of 5.43. The biodegradation rate could be estimated using the firstorder biodegradation rate equation with the degradation rate of 0.0009- 0.0092 per day. The dispersion coefficient estimated from column experiments was 0.0102 cm2/s. The results from computer simulation did not fit the experimental data well. It can be concluded that the transport of benzene was a non-equilibrium transport. It was also found that biodegradation of benzene had significant effect on benzene transportation in saturated groundwater. The simulated transport with biodegradation process fitted the data fairly.

  15. Transport and Degradation of Phenol in Groundwater at Four Ashes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Drift deposits and Triassic Sandstone of the Bromsgrove and Wildmoor Formations, 700m thick, form the main aquifers at Four Ashes. The coal tar and products from early plant and tank storage facilities constructed over unprotected ground directly and indirectly caused significant groundwater pollution. The organic pollutants include phenol, cresol, and xylenol. The maximum phenol concentration in the groundwater reached 12000mg/L, with an average of 1300mg/L, which accounts for 40%-60% of the total organic contaminants. Three computer codes, Visual Modflow, MT3D, and BioRedox, which solute transport model to groundwater flow were used to simulate and predict the distribution, transport, and degradation of phenol in the polluted groundwater. Over about 46 years, the phenol moved from the pollutant source to the plume front and it will take 220 years to reach the main pumping wells. The BioRebox model was used to simulate the aerobic, sulfidogenic, nitrate-reducing, ferrogenic, manganogenic, and methanogenic zones. The residual mass in the groundwater will decrease from 1600 t to 400 t by the year 2080, with 80% of total phenol eventually lost with maximum concentration declining from 15000mg/L to 2000mg/L.

  16. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [ORNL; Yeh, Gour-Tsyh [University of Central Florida, Orlando; Parker, Jack C [ORNL; Brooks, Scott C [ORNL; Pace, Molly [ORNL; Kim, Young Jin [ORNL; Jardine, Philip M [ORNL; Watson, David B [ORNL

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  17. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C.; Pace, Molly N.; Kim, Young-Jin; Jardine, Philip M.; Watson, David B.

    2007-06-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M- NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  18. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    Science.gov (United States)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-12-01

    The key role of small-scale processes like molecular diffusion and electrochemical migration has been increasingly recognized in multicomponent reactive transport in saturated porous media. In this study, we propose a two-dimensional multicomponent reactive transport model taking into account the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively, conservative and reactive transport examples are presented to demonstrate the capability of the proposed model to simulate transport of charged species in heterogeneous porous media with spatially variable physical and chemical properties. The results reveal that the Coulombic cross-coupling between dispersive fluxes can significantly influence conservative as well as reactive transport of charged species both at the laboratory and at the field scale.

  19. Modeling the effects of atmospheric emissions on groundwater composition

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.J.

    1994-12-31

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  20. Efficient evaluation of small failure probability in high-dimensional groundwater contaminant transport modeling via a two-stage Monte Carlo method: FAILURE PROBABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Lin, Guang [Department of Mathematics and School of Mechanical Engineering, Purdue University, West Lafayette Indiana USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2017-03-01

    In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters. To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen–Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.

  1. Assessment of well vulnerability for groundwater source protection based on a solute transport model: a case study from Jilin City, northeast China

    Science.gov (United States)

    Huan, Huan; Wang, Jinsheng; Lai, Desheng; Teng, Yanguo; Zhai, Yuanzheng

    2015-05-01

    Well vulnerability assessment is essential for groundwater source protection. A quantitative approach to assess well vulnerability in a well capture zone is presented, based on forward solute transport modeling. This method was applied to three groundwater source areas (Jiuzhan, Hadawan and Songyuanhada) in Jilin City, northeast China. The ratio of the maximum contaminant concentration at the well to the released concentration at the contamination source ( c max/ c 0) was determined as the well vulnerability indicator. The results indicated that well vulnerability was higher close to the pumping well. The well vulnerability in each groundwater source area was low. Compared with the other two source areas, the cone of depression at Jiuzhan resulted in higher spatial variability of c max/ c 0 and lower minimum c max/ c 0 by three orders of magnitude. Furthermore, a sensitivity analysis indicated that the denitrification rate in the aquifer was the most sensitive with respect to well vulnerability. A process to derive a NO3-N concentration at the pumping well is presented, based on determining the maximum nitrate loading limit to satisfy China's drinking-water quality standards. Finally, the advantages, disadvantages and prospects for improving the precision of this well vulnerability assessment approach are discussed.

  2. Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

    2005-04-01

    This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

  3. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    Science.gov (United States)

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in

  4. Management of groundwater in-situ bioremediation system using reactive transport modelling under parametric uncertainty: field scale application

    Science.gov (United States)

    Verardo, E.; Atteia, O.; Rouvreau, L.

    2015-12-01

    In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in

  5. Experiments on the movement of pesticides in sandy soils to groundwater : prospects of testing preferential transport models

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2012-01-01

    Many agricultural areas with humic-sandy and loamy-sandy soils are used also for the extraction of water for drinking-water supply. Model concepts have been developed for the fast preferential transport of plant protection products (pesticides) in such soils, e.g. by fingered and funneled flow. An i

  6. Sorption reactions in groundwater: various aspects to modelling the transport behaviour of zinc; Sorptionsreaktionen im Grundwasser: Unterschiedliche Aspekte bei der Modellierung des Transportverhaltens von Zink

    Energy Technology Data Exchange (ETDEWEB)

    Hadeler, A.

    1999-08-01

    The dispersal of trace substance in groundwater may be limited by dissolution and precipitation and, of particular interest in this paper, by sorption and desorption processes. These surface-active processes, which have a decisive influence on groundwater quality, depend on the concomitant geochemical conditions prevailing in the water, the constituents of the aquifer and on the surface properties of the solids. Taking the geochemical conditions prevailing naturally in brown coal mining areas as a point of departure this study was aimed at examining the influence of acidification processes on the transport behaviour inorganic pollutants for the example of zinc. For this purpose oxic column trials were carried out on sandy aquifer material. The data were supplemented by a detailed characterisation of the solid surfaces and modelled on the basis of a transport-reaction model as well as mechanistically with due regard to surface complexing. [German] Die Ausbreitung von Spurenstoffen im Grundwasser wird ausser durch Loesungs- und Faellungsprozesse vor allem durch Sorptions- bzw. Desorptionsvorgaenge limitiert. Diese fuer die Grundwasserqualitaet entscheidenden oberflaechenaktiven Prozesse sind von den variablen geochemischen Randbedingungen im Wasser, vom Stoffbestand des Aquifers und von den Oberflaecheneigenschaften der Feststoffe abhaengig. In Anlehnung an die natuerlichen im Bereich von Braunkohle-Abbaugebieten herrschenden geochemischen Bedingungen wurde der Einfluss von Versauerungsprozessen auf das Transportverhalten von anorganischen Schadstoffen, am Beispiel von Zink, auf der Basis von oxischen Saeulenversuchen an sandigem Aquifermaterial untersucht. Die Daten wurden durch eine detaillierte Charakterisierung der Feststoff-Oberflaechen ergaenzt und sowohl mit Hilfe eines Transport-Reaktionsmodells als auch mechanistisch unter Einbeziehung der Oberflaechenkomplexierung modelliert. (orig.)

  7. A model for managing sources of groundwater pollution.

    Science.gov (United States)

    Gorelick, S.M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the US Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. -from Author

  8. Screening for suitable areas for Aquifer Thermal Energy Storage within the Brussels Capital Region, Belgium using coupled groundwater flow and heat transport modelling tools

    Science.gov (United States)

    Anibas, Christian; Kukral, Janik; Touhidul Mustafa, Syed Md; Huysmans, Marijke

    2017-04-01

    Urban areas have a great potential for shallow geothermal systems. Their energy demand is high, but currently they have only a limited potential to cover their own energy demand. The transition towards a low-carbon energy regime offers alternative sources of energy an increasing potential. Urban areas however pose special challenges for the successful exploitation of shallow geothermal energy. High building densities limit the available space for drillings and underground investigations. Urban heat island effects and underground structures influence the thermal field, groundwater pollution and competing water uses limit the available subsurface. To tackle these challenges in the Brussels Capital Region, Belgium two projects 'BruGeo' and the recently finished 'Prospective Research of Brussels project 2015-PRFB-228' address the investigation in urban geothermal systems. They aim to identify the key factors of the underground with respect to Aquifer Thermal Energy Storage (ATES) installations like thermal properties, aquifer thicknesses, groundwater flow velocities and their heterogeneity. Combined numerical groundwater and heat transport models are applied for the assessment of both open and closed loop shallow geothermal systems. The Brussels Capital Region comprises of the Belgian Capital, the City of Brussels and 18 other municipalities covering 161 km2 with almost 1.2 million inhabitants. Beside the high population density the Brussels Capital Region has a pronounced topography and a relative complex geology. This is both a challenge and an opportunity for the exploitation of shallow geothermal energy. The most important shallow hydrogeological formation in the Brussels-Capital Region are the Brussels Sands with the Brussels Sands Aquifer. Scenarios where developed using criteria for the hydrogeological feasibility of ATES installations such as saturated aquifer thickness, groundwater flow velocity and the groundwater head below surface. The Brussels Sands

  9. Large scale groundwater flow and hexavalent chromium transport modeling under current and future climatic conditions: the case of Asopos River Basin.

    Science.gov (United States)

    Dokou, Zoi; Karagiorgi, Vasiliki; Karatzas, George P; Nikolaidis, Nikolaos P; Kalogerakis, Nicolas

    2016-03-01

    In recent years, high concentrations of hexavalent chromium, Cr(VI), have been observed in the groundwater system of the Asopos River Basin, raising public concern regarding the quality of drinking and irrigation water. The work described herein focuses on the development of a groundwater flow and Cr(VI) transport model using hydrologic, geologic, and water quality data collected from various sources. An important dataset for this goal comprised an extensive time series of Cr(VI) concentrations at various locations that provided an indication of areas of high concentration and also served as model calibration locations. Two main sources of Cr(VI) contamination were considered in the area: anthropogenic contamination originating from Cr-rich industrial wastes buried or injected into the aquifer and geogenic contamination from the leaching process of ophiolitic rocks. The aquifer's response under climatic change scenario A2 was also investigated for the next two decades. Under this scenario, it is expected that rainfall, and thus infiltration, will decrease by 7.7 % during the winter and 15 % during the summer periods. The results for two sub-scenarios (linear and variable precipitation reduction) that were implemented based on A2 show that the impact on the study aquifer is moderate, resulting in a mean level decrease less than 1 m in both cases. The drier climatic conditions resulted in higher Cr(VI) concentrations, especially around the industrial areas.

  10. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Tasks 6D, 6E, 6F and 6F2

    Energy Technology Data Exchange (ETDEWEB)

    Hodgkinson, David (Quintessa, Henley-on-Thames (GB))

    2007-09-15

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization and performance assessment approaches to modelling solute transport in fractured rock. The objectives of Task 6 are: To assess simplifications used in Performance Assessment (PA) models. To determine how, and to what extent, experimental tracer and flow experiments can constrain the range of parameters used in PA models. To support the design of Site Characterisation (SC) programmes to ensure that the results have optimal value for performance assessment calculations. To improve the understanding of site-specific flow and transport behaviour at different scales using site characterisation models. The present report is concerned with Tasks 6D, 6E, 6F and 6F2. It follows on from two previous reviews of Tasks 6A, 6B and 6B2, and Task 6C. In Task 6D the transport of tracers through a fracture network is modelled using the conditions of the C2 TRUE-Block Scale tracer test, based on the synthetic structural model developed in Task 6C. Task 6E extends the Task 6D transport calculations to a reference set of PA time scales and boundary conditions. Task 6F consists of a series of 'benchmark' studies on single features from the Task 6C hydrostructural model in order to improve the understanding of differences between the participating models. Task 6F2 utilises models set up for Tasks 6E and 6F to perform additional sensitivity studies with the aim of increasing the understanding of how models behave, the reason for differences in modelling results, and the sensitivity of models to various assumptions and parameter values. Eight modelling teams representing five organisations participated in this exercise using Discrete Fracture Network (DFN), continuum and channel network concepts implemented in a range of different

  11. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  12. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  13. Groundwater-derived nutrient and trace element transport to a nearshore Kona coral ecosystem: Experimental mixing model results

    Science.gov (United States)

    Prouty, Nancy G.; Swarzenski, Peter W.; Fackrell, Joseph; Johannesson, Karen H.; Palmore, C. Diane

    2017-01-01

    Study regionThe groundwater influenced coastal waters along the arid Kona coast of the Big Island, Hawai’i.Study focusA salinity-and phase partitioning-based mixing experiment was constructed using contrasting groundwater endmembers along the arid Konacoast of the Big Island, Hawai’i and local open seawater to better understand biogeochemical and physicochemical processes that influence the fate of submarine groundwater discharge (SGD)-derived nutrients and trace elements.New Hydrological Insights for the RegionTreated wastewater effluent was the main source for nutrient enrichment downstream at the Honokōhau Harbor site. Conservative mixing for some constituents, such as nitrate + nitrite, illustrate the effectiveness of physical mixing to maintain oceanic concentrations in the colloid (0.02–0.45 μm) and truly dissolved (

  14. Baseline groundwater model update for p-area groundwater operable unit, NBN

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. [Savannah River Site (SRS), Aiken, SC (United States); Amidon, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-09-01

    This report documents the development of a numerical groundwater flow and transport model of the hydrogeologic system of the P-Area Reactor Groundwater Operable Unit at the Savannah River Site (SRS) (Figure 1-1). The P-Area model provides a tool to aid in understanding the hydrologic and geochemical processes that control the development and migration of the current tritium, tetrachloroethene (PCE), and trichloroethene (TCE) plumes in this region.

  15. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...

  16. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Drici, Warda

    2004-02-01

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  17. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2017-06-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  18. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2016-12-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  19. Testing of a reactive transport processes module for a coupled (groundwater/surface water) physically based model on a vegetative buffer strip (Beaujolais, France).

    Science.gov (United States)

    Gatel, L.; Lauvernet, C.; Carluer, N.; Paniconi, C.

    2016-12-01

    In the context of the European Water Framework Directive (WFD, 2000/60/EC), which aims to achieve a good ecological and chemical status for all natural aquatic environments, tools to help understand and quantify pesticide transfers in agricultural watersheds are necessary. Models which are physically based and spatially distributed can be particularly useful for representing in detail processes and interactions between the soil surface and subsurface and thus to evaluate the management of landscape elements remediation. The present study aims to test and validate a recently added reactive transport to the coupled surface water/groundwater model CATHY, in order to represent pesticide transfers. Contaminant reactions implemented in CATHY for this study are linear adsorption and degradation (first order kinetics). The advection part of the model is solved according to the finite volume method and reactions are computed on volumes using a sequential non-iterative approach. The CATHY model has been tested on laboratory data and with a Morris sensitivity analysis and is applied now in real field conditions, on a vegetative buffer strip monitored by Irstea in a vineyard catchment (Beaujolais, France). The site is instrumented with lysimeters, flow and solute concentration measurement devices. This test represents a complex step into the model validation, initial and boundary conditions are not fully controlled, and field parameters measurement are not fully known.

  20. Transport modeling

    Institute of Scientific and Technical Information of China (English)

    R.E. Waltz

    2007-01-01

    @@ There has been remarkable progress during the past decade in understanding and modeling turbulent transport in tokamaks. With some exceptions the progress is derived from the huge increases in computational power and the ability to simulate tokamak turbulence with ever more fundamental and physically realistic dynamical equations, e.g.

  1. Scaling of flow and transport behavior in heterogeneous groundwater systems

    Science.gov (United States)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  2. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs.

  3. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling

  4. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  5. Testing and validation of numerical models of groundwater flow, solute transport and chemical reactions in fractured granites: A quantitative study of the hydrogeological and hydrochemical impact produced

    Energy Technology Data Exchange (ETDEWEB)

    Molinero Huguet, J.

    2001-07-01

    This work deals with numerical modeling of groundwater flow, solute transport and chemical reactions through fractured media. These models have been developed within the framework of research activities founded by ENRESA , the Spanish Company for Nuclear Waste Management. This project is the result of a collaborative agreement between ENRESA and his equivalent Swedish Company (SKB) through the research project Task Force 5 of the Aspo Underground Laboratory. One of the objectives of this project is to assess quantitatively th hydrogeological and hydrochemical impact produced by the construction of a Deep Geological Repository in fractured granites. This is important because the new conditions altered construction impact will constitute the initial conditions for the repository closure stage. A second goo l of this work deals with testing the ability of current numerical tools to cope simultaneously with the complex hydrogeological and hydrochemical settlings, which are expected to take place in actual nuclear waste underground repositories constructed in crystalline fractured bed racks. This study has been undertaken through the performance of numerical models, which have subsequently been applied to simulate the hydrogeological and hydrochemical behavior of a granite massif, at a kilo metrical scale, during construction of the Aspo Hard Rock Underground Laboratory (Sweden). The Aspo Hard Rock Laboratory is a prototype, full-scale underground facility launched and operated by SKB. The main aim of the laboratory is to provide an opportunity for research, development and demonstration in a realistic rock environment down to the depth planned for the future deep repository. The framework of this underground facility provides a unique opportunity to attempt the objectives of the present dissertation. (Author)

  6. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  7. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  8. Understanding arsenic mobilization using reactive transport modeling of groundwater hydrochemistry in the Datong basin study plot, China.

    Science.gov (United States)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Zhu, Yapeng

    2016-03-01

    This paper discusses the reactive transport and evolution of arsenic along a selected flow path in a study plot within the central part of Datong basin. The simulation used the TOUGHREACT code. The spatial and temporal trends in hydrochemistry and mineral volume fraction along a flow path were observed. Furthermore, initial simulation of major ions and pH fits closely to the measured data. The study shows that equilibrium conditions may be attained at different stress periods for each parameter simulated. It is noted that the variations in ionic chemistry have a greater impact on arsenic distribution while reducing conditions drive the mobilization of arsenic. The study concluded that the reduction of Fe(iii) and As(v) and probably SO4/HS cycling are significant factors affecting localized mobilization of arsenic. Besides cation exchange and water-rock interaction, incongruent dissolution of silicates is also a significant control mechanism of general chemistry of the Datong basin aquifer.

  9. Tracing man's impact on groundwater dependent ecosystem using geochemical an isotope tools combined with 3D flow and transport modeling: case study from southern Poland

    Science.gov (United States)

    Zurek, Anna; Witczak, Stanislaw; Kania, Jaroslaw; Wachniew, Przemyslaw; Rozanski, Kazimierz; Dulinski, Marek; Jench, Olga

    2013-04-01

    Niepolomice Forest. There is a growing concern that continued exploitation of those wells may lead to lowering water table in the Niepolomice Forest area and, as a consequence, may trigger drastic changes in this unique ecosystem. A dedicated study was launched with the main aim to quantify the interaction between Niepolomice Forest, with the focus the Wielkie Bloto fen, and the underlying Bogucice Sands aquifer. The work was pursued along three major lines: (i) vertical profiling of the Wielkie Bloto fen aimed at characterizing chemical and isotope contrast in the shallow groundwater occupying the Quaternary cover in order to identify upward leakage of deeper groundwater in the investigated area, (ii) regular monitoring of flow rate, chemistry and environmental isotopes of the Dluga Woda stream draining the Wielkie Bloto fen, and (iii) 3D modeling of groundwater flow in the vicinity of the Wielkie Bloto fen focusing on quantifying the impact of the Wola Batorska well field on the regional groundwater flow patterns. The results of isotope and chemical analyses confirmed existence of upward seepage of groundwater from the Bogucice Sands aquifer in the area of Wielkie Bloto fen. Preliminary assessment of the water balance of Dluga Woda catchment indicates that the baseflow originating from groundwater seepage is equal approximately 16% of the annual precipitation. Results of 3D flow model applied to the study area indicate that prolonged operation of the well-field Wola Batorska at maximum capacity may lead to substantial lowering of water table in the Niepolomice Forest area and, as a consequence, endanger further existence of this unique GDTE. Acknowledgements. Partial financial support of this work through GENESIS project (http:/www.thegenesisproject.eu) funded by the European Commission 7FP contract 226536, and through statutory funds of the AGH University of Science and Technology (projects No.11.11.140.026 and 11.11.220.01) is kindly acknowledged.

  10. Applied groundwater modeling, 2nd Edition

    Science.gov (United States)

    Anderson, Mary P.; Woessner, William W.; Hunt, Randall J.

    2015-01-01

    This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies.

  11. Evaluation of modelling of the TRUE-1 radially converging tests with sorbing tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4E and 4F

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M.; Svensson, Haakan [Kemakta Konsult AB, Stockholm (Sweden)

    2001-05-01

    The Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4E and 4F is evaluated, which comprised predictive modelling of the tracer tests (STT-1, STT-1b and STT-2) performed within the TRUE-1 project using sorbing and non-sorbing tracers. The tests were made between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). Nine modelling teams representing eight organisations have performed predictive modelling of the tracer tests using different modelling approaches and models. The modelling groups were initially given data from the site characterisation, data from preliminary tracer tests performed with non-sorbing tracers and data on the experimental set-up of the sorbing tracer tests. Based on this information, model predictions were made of drawdown, tracer mass recovery and tracer breakthrough. For the predictions of the STT-1b and STT-2 tests results from previous tracer tests with sorbing tracer were also available. The predictions of the sorbing tracer breakthrough in the initial tracer test (STT-1) generally underestimated the breakthrough time, suggesting the need to include additional processes and evaluate the application of the laboratory data. As a result of model calibration and modification the predictions were considerably improved for the latter tracer tests (STT-1b and STT-2). Task 4E and 4F have proved to be very valuable in increasing the understanding of non-sorbing tracer transport in fractured rock. There is a general consensus on the major processes responsible for

  12. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  13. GENERALIZED UPWIND SCHEME WITH FRACTIONAL STEPS FOR 3-D PROBLEM OF CONVECTION DOMINATING GROUNDWATER TRANSPORT

    Institute of Scientific and Technical Information of China (English)

    姚磊华

    1997-01-01

    A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation. These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.

  14. Groundwater recharge and nutrient transport in a tile drained field: The Las Nutrias Groundwater Project, Las Nutrias, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Roth, T.L.; Bowman, R.S. [New Mexico Tech, Socorro, NM (United States). Dept. of Geoscience

    1995-12-31

    With the rapid growth of the Albuquerque region, groundwater contamination from nonpoint sources has become an increasing concern. Agriculture, one major land usage of the basin area, can abe responsible for the leaching of nutrients and chemicals to shallow groundwater via irrigation return flows. Even so, there is almost no available information regarding agricultural impacts on groundwater quality in New Mexico. The major objective of this project has been to develop a data base pertaining to this issue. The main goals of this project are: to adapt the tile drainage system to allow for the collection of irrigation return flows on an actual, operating farm; to utilize the tile drain sampling system to quantify nutrient and pesticide levels in the irrigation return flow; to determine the local hydrology in an around the field site; and to use the collected field data to test the two-dimensional water flow and chemical transport model (CHAIN 2-D).

  15. Evaluation of modelling of the TRUE-1 radially converging and dipole tests with conservative tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4C and 4D

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-05-01

    The `Aespoe task force on modelling of groundwater flow and transport of solutes` is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4C and 4D is evaluated, which comprised predictive modelling of the radially converging tracer tests and dipole tracer tests performed within the TRUE-1 tests using non-sorbing tracers. The tests were performed between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). These tests are to a great extent preparatory steps for the subsequent tests with sorbing radioactive tracers. In Tasks 4E and 4F of the Aespoe Modelling Task Force predictive modelling of the sorbing tracer tests is performed. Eight modelling teams representing seven organisations have performed predictive modelling using different modelling approaches and models. The modelling groups were initially given data from the site characterisation and data on the experimental set-up of the tracer tests. Based on this information model predictions were performed of drawdown, tracer mass recovery and tracer breakthrough. The performed predictions shows that the concept of Feature A as a singular well-connected feature with limited connectivity to its surroundings is quite adequate for predictions of drawdown in boreholes and conservative tracer breakthrough. Reasonable estimates were obtained using relatively simple models. However, more elaborate models with calibration or conditioning of transmissivities and transport apertures are required for more accurate predictions. The general flow and transport processes are well understood, but the methodology to derive the

  16. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  17. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  18. MODFLOW-2000, the U.S. Geological Survey modular ground-water model : user guide to the LMT6 package, the linkage with MT3DMS for multi-species mass transport modeling

    Science.gov (United States)

    Zheng, Chunmiao; Hill, Mary Catherine; Hsieh, Paul A.

    2001-01-01

    MODFLOW-2000, the newest version of MODFLOW, is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium using a finite-difference method. MT3DMS, the successor to MT3D, is a computer program for modeling multi-species solute transport in three-dimensional ground-water systems using multiple solution techniques, including the finite-difference method, the method of characteristics (MOC), and the total-variation-diminishing (TVD) method. This report documents a new version of the Link-MT3DMS Package, which enables MODFLOW-2000 to produce the information needed by MT3DMS, and also discusses new visualization software for MT3DMS. Unlike the Link-MT3D Packages that coordinated previous versions of MODFLOW and MT3D, the new Link-MT3DMS Package requires an input file that, among other things, provides enhanced support for additional MODFLOW sink/source packages and allows list-directed (free) format for the flow model produced flow-transport link file. The report contains four parts: (a) documentation of the Link-MT3DMS Package Version 6 for MODFLOW-2000; (b) discussion of several issues related to simulation setup and input data preparation for running MT3DMS with MODFLOW-2000; (c) description of two test example problems, with comparison to results obtained using another MODFLOW-based transport program; and (d) overview of post-simulation visualization and animation using the U.S. Geological Survey?s Model Viewer.

  19. Modeling of Groundwater Quantity and Quality Management, Nile Valley, Egypt

    Science.gov (United States)

    Owlia, R.; Fogg, G. E.

    2012-12-01

    Groundwater levels have been rising in the Luxor area of Egypt due to increased agricultural irrigation following the construction of the Aswan High Dam (AHD) in 1970. This has led to soil and groundwater salinity problems caused by increasing evapotranspiration from shallower water table, as well as the degradation of historical monuments whose foundations are weakening by capillary rise of water into the columns and stonework. While similar salinity problems exist elsewhere in the world (e.g., San Joaquin Valley of California), we hypothesize that as long as groundwater discharge to the Nile River continues and serves as a sink for the salt, the regional salt balance will be manageable and will not lead to irreversible salinization of soils. Further, we hypothesize that if a groundwater system such as this one becomes overdrafted, thereby cutting off groundwater discharge to the River, the system salt balance will be less manageable and possibly non-sustainable. With groundwater flow modeling we are investigating approaches for managing the irrigation and groundwater levels so as to eliminate water stresses on Egyptian monuments and antiquities. Consequences of possible actions for managing the water table through groundwater pumping and alternative irrigation practices will be presented. Moreover, through the use of high resolution modeling of system heterogeneity, we will simulate the long term salt balance of the system under various scenarios, including the overdraft case. The salt source will be a function of groundwater discharge to the surface via bare-soil evaporation and crop transpiration. The built-in heterogeneity will account for dispersion, fast transport in connected media and slow mass transfer between aquifer and aquitard materials. Key Words: Groundwater, modeling, water quality, sustainability, salinity, irrigated agriculture, Nile aquifer.

  20. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive

  1. Review: Optimization methods for groundwater modeling and management

    Science.gov (United States)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  2. Hydrogeological modeling for improving groundwater monitoring network and strategies

    Science.gov (United States)

    Thakur, Jay Krishna

    2016-09-01

    The research aimed to investigate a new approach for spatiotemporal groundwater monitoring network optimization using hydrogeological modeling to improve monitoring strategies. Unmonitored concentrations were incorporated at different potential monitoring locations into the groundwater monitoring optimization method. The proposed method was applied in the contaminated megasite, Bitterfeld/Wolfen, Germany. Based on an existing 3-D geological model, 3-D groundwater flow was obtained from flow velocity simulation using initial and boundary conditions. The 3-D groundwater transport model was used to simulate transport of α-HCH with an initial ideal concentration of 100 mg/L injected at various hydrogeological layers in the model. Particle tracking for contaminant and groundwater flow velocity realizations were made. The spatial optimization result suggested that 30 out of 462 wells in the Quaternary aquifer (6.49 %) and 14 out of 357 wells in the Tertiary aquifer (3.92 %) were redundant. With a gradual increase in the width of the particle track path line, from 0 to 100 m, the number of redundant wells remarkably increased, in both aquifers. The results of temporal optimization showed different sampling frequencies for monitoring wells. The groundwater and contaminant flow direction resulting from particle tracks obtained from hydrogeological modeling was verified by the variogram modeling through α-HCH data from 2003 to 2009. Groundwater monitoring strategies can be substantially improved by removing the existing spatio-temporal redundancy as well as incorporating unmonitored network along with sampling at recommended interval of time. However, the use of this model-based method is only recommended in the areas along with site-specific experts' knowledge.

  3. Filtered density function approach for reactive transport in groundwater

    Science.gov (United States)

    Suciu, Nicolae; Schüler, Lennart; Attinger, Sabine; Knabner, Peter

    2016-04-01

    Spatial filtering may be used in coarse-grained simulations (CGS) of reactive transport in groundwater, similar to the large eddy simulations (LES) in turbulence. The filtered density function (FDF), stochastically equivalent to a probability density function (PDF), provides a statistical description of the sub-grid, unresolved, variability of the concentration field. Besides closing the chemical source terms in the transport equation for the mean concentration, like in LES-FDF methods, the CGS-FDF approach aims at quantifying the uncertainty over the whole hierarchy of heterogeneity scales exhibited by natural porous media. Practically, that means estimating concentration PDFs on coarse grids, at affordable computational costs. To cope with the high dimensionality of the problem in case of multi-component reactive transport and to reduce the numerical diffusion, FDF equations are solved by particle methods. But, while trajectories of computational particles are modeled as stochastic processes indexed by time, the concentration's heterogeneity is modeled as a random field, with multi-dimensional, spatio-temporal sets of indices. To overcome this conceptual inconsistency, we consider FDFs/PDFs of random species concentrations weighted by conserved scalars and we show that their evolution equations can be formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. Numerical solutions can then be approximated by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. Instead of sequential particle methods we use a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. We illustrate the general FDF approach and the GRW numerical solution for a reduced complexity problem consisting of the transport of a single scalar in groundwater

  4. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  5. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs.

  6. Submarine groundwater discharge and solute transport under a transgressive barrier island

    Science.gov (United States)

    Evans, Tyler B.; Wilson, Alicia M.

    2017-04-01

    Many recent investigations of groundwater dynamics in beaches employed groundwater models that assumed isotropic, numerically-convenient hydrogeological conditions. Real beaches exhibit local variability with respect to stratigraphy, sediment grain size and associated topographic profile, so that groundwater flow may diverge significantly from idealized models. We used a combination of hydrogeologic field methods and a variable-density, saturated-unsaturated, transient groundwater flow model to investigate SGD and solute transport under Cabretta Beach, a small transgressive barrier island seaward of Sapelo Island, Georgia. We found that the inclusion of real beach heterogeneity drove important deviations from predictions based on theoretical beaches. Cabretta Beach sustained a stronger upper saline plume than predicted due to the presence of a buried silty mud layer beneath the surface. Infiltration of seawater was greater for neap tides than for spring tides due to variations in beach slope. The strength of the upper saline plume was greatest during spring tides, contrary to recent model predictions. The position and width of the upper saline plume was highly dynamic through the lunar cycle. Our results suggest that field measurements of salinity gradients may be useful for estimating rates of tidally and density driven recirculation through the beach. Finally, our results indicate that several important biogeochemical cycles recently studied at Cabretta Beach were heavily influenced by groundwater flow and associated solute transport.

  7. Groundwater quality across scales: impact on nutrient transport to large water bodies

    Science.gov (United States)

    Dürr, Hans; Moosdorf, Nils; Mallast, Ulf

    2017-04-01

    High concentrations of dissolved nutrients such as nitrogen (N) and phosphorus (P) in groundwater are an increasing concern in many areas of the world. Especially regions with high agriculture impact see widespread declining groundwater quality, with considerable uncertainty mainly regarding the impact of phosphorus (P). Implications reach from direct impacts on different water users to discharge of nutrient-rich groundwater to rivers, lakes and coastal areas, where it can contribute to eutrophication, hypoxia or harmful algal blooms. While local-scale studies are abundant and management options exist, quantitative approaches at regional to continental scales are scarce and frequently have to deal with data inconsistencies or are temporally sparse. Here, we present the research framework to combine large databases of local groundwater quality to data sets of climatical, hydrological, geological or landuse parameters. Pooling of such information, together with robust methods such as water balances and groundwater models, can provide constraints such as upper boundaries and likely ranges of nutrient composition in various settings, or for the nutrient transport to large water bodies. Remote Sensing can provide spatial information on the location of groundwater seepage. Results will eventually help to identify focus areas and lead to improved understanding of the role of groundwater in the context of global biogeochemical cycles.

  8. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals

    NARCIS (Netherlands)

    Grift, B. van der; Griffioen, J.

    2008-01-01

    Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic an

  9. Hydroeconomic modeling of sustainable groundwater management

    Science.gov (United States)

    MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard

    2017-03-01

    In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.

  10. Modelling Urban diffuse pollution in groundwater

    Science.gov (United States)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  11. From groundwater baselines to numerical groundwater flow modelling for the Milan metropolitan area

    Science.gov (United States)

    Crosta, Giovanni B.; Frattini, Paolo; Peretti, Lidia; Villa, Federica; Gorla, Maurizio

    2015-04-01

    allow for the groundwater flow and transport modeling at the large scale and could be successively linked to some more site-specific transport multi-reactive models focused on the modeling of some specific contaminants.

  12. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  13. Nitrate Biogeochemistry and Reactive Transport in California Groundwater: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Esser, B K; Beller, H; Carle, S; Cey, B; Hudson, G B; Leif, R; LeTain, T; Moody-Bartel, C; Moore, K; McNab, W; Moran, J; Tompson, A

    2006-02-24

    Nitrate is the number one drinking water contaminant in the United States. It is pervasive in surface and groundwater systems,and its principal anthropogenic sources have increased dramatically in the last 50 years. In California alone, one third of the public drinking-water wells has been lost since 1988 and nitrate contamination is the most common reason for abandonment. Effective nitrate management in groundwater is complicated by uncertainties related to multiple point and non-point sources, hydrogeologic complexity, geochemical reactivity, and quantification of denitrification processes. In this paper, we review an integrated experimental and simulation-based framework being developed to study the fate of nitrate in a 25 km-long groundwater subbasin south of San Jose, California, a historically agricultural area now undergoing rapid urbanization with increasing demands for groundwater. The modeling approach is driven by a need to integrate new and archival data that support the hypothesis that nitrate fate and transport at the basin scale is intricately related to hydrostratigraphic complexity, variability of flow paths and groundwater residence times, microbial activity, and multiple geochemical reaction mechanisms. This study synthesizes these disparate and multi-scale data into a three-dimensional and highly resolved reactive transport modeling framework.

  14. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  15. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  16. First-order kinetics-controlled multiple species reactive transport of dissolved organic compounds in groundwater: Development and application of a numerical model

    Energy Technology Data Exchange (ETDEWEB)

    McNab, W.W. Jr.

    1990-05-01

    Reactive chemical transport models developed over the past decade have generally relied on the assumption that local thermodynamic equilibrium is achieved at all times between aqueous species in a given system. Consequently, homogeneous aqueous systems characterized by a number of kinetically slow reactions, particularly problems involving organic species, cannot be satisfactorily modeled. In this study, we present a prototype computer model, KINETRAN, which is designed to handle kinetically-controlled homogeneous reactions in the aqueous phase, along with the transport of the various species involved, through geologic media. 31 refs., 53 figs., 10 tabs.

  17. Evaluation of modeling for groundwater flow and tetrachloroethylene transport in the Milford-Souhegan glacial-drift aquifer at the Savage Municipal Well Superfund site, Milford, New Hampshire, 2011

    Science.gov (United States)

    Harte, Philip T.

    2012-01-01

    The U.S. Geological Survey and the New Hampshire Department of Environmental Services entered into a cooperative agreement to assist in the evaluation of remedy simulations of the MSGD aquifer that are being performed by various parties to track the remedial progress of the PCE plume. This report summarizes findings from this evaluation. Topics covered include description of groundwater flow and transport models used in the study of the Savage Superfund site (section 2), evaluation of models and their results (section 3), testing of several new simulations (section 4), an assessment of the representation of models to simulate field conditions (section 5), and an assessment of models as a tool in remedial operational decision making (section 6).

  18. Development of a complex groundwater model to assess the relation among groundwater resource exploitation, seawater intrusion and land subsidence

    Science.gov (United States)

    Hsi Ting, Fang; Yih Chi, Tan; Chen, Jhong Bing

    2016-04-01

    The land subsidence, which is usually irreversible, in Taiwan Pintung Plain occurred due to groundwater overexploitation. Many of the land subsidence areas in Taiwan are located in coastal area. It could not only result in homeland loss, but also vulnerability to flooding because the function of drainage system and sea wall are weakened for the lowered ground surface. Groundwater salinization and seawater intrusion could happen more easily as well. This research focuses on grasping the trend of environmental change due to the damage and impact from inappropriate development of aquaculture in the last decades. The main task is developing the artificial neural networks (ANNs) and complex numerical model for conjunctive use of surface and groundwater which is composed of a few modules such as land use, land subsidence, contamination transportation and etc. An approach based on self-organizing map (SOM) is proposed to delineate groundwater recharge zones. Several topics will be studied such as coupling of surface water and groundwater modeling, assessing the benefit of improving groundwater resources by recharge, identifying the improper usage of groundwater resources, and investigating the effect of over-pumping on land subsidence in different depth. In addition, a complete plan for managing both the flooding and water resources will be instituted by scheming non-engineering adaptation strategies for homeland planning, ex. controlling pumping behavior in area vulnerable to land subsidence and increasing groundwater recharge.

  19. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... and uncertainty estimation. Essential issues relating to calibration are discussed. The classical regression methods are described; however, the main focus is on the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The next two chapters describe case studies in which the GLUE methodology...

  20. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Science.gov (United States)

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  1. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    Science.gov (United States)

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature

  2. Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions.

    NARCIS (Netherlands)

    Weerd, van de H.; Leijnse, A.; Riemsdijk, van W.H.

    1998-01-01

    Transport of reactive colloids in groundwater may enhance the transport of contaminants in groundwater. Often, the interpretation of results of transport experiments is not a simple task as both reactions of colloids with the solid matrix and reactions of contaminants with the solid matrix and

  3. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.; Miller, Charles W.; Baker, S.

    2015-01-14

    The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is a continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.

  4. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  5. A research on grey numerical imitation and modeling of groundwater seepage system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on grey set, grey numbers and their operation properties, the grey numerical model of groundwater seepage system was set up for the first time, the whole grey solving method of the model was given and it was proved that the common solving method of the model was only a special case of the grey solving methods. At the same time, the grey solving method was compared widely with common solving method, classical numerical method. The study shows that the grey solving method is better in depicting the procedure of transporting grey data of groundwater system. On the basis of the theoretical study, two basic kinds of cases about groundwater seepage were selected: the prediction of pit yield and the evaluation of groundwater resources on a groundwater basin. In the cases, systematical analyses were made for generalization and greylization of the hydrogeologic conditions, setting up of the grey model, identification and correction of the model as well as its prediction and evaluation. It was pointed out that when the grey numerical model is used to predict pit yield, the upper limit of the “grey band” of groundwater level cannot be higher than planed safe groundwater level, when evaluating the groundwater resource, the lower limit of the “grey band” of groundwater level cannot be lower than controlled level of groundwater.

  6. Integration of In Situ Radon Modeling with High Resolution Aerial Remote Sensing for Mapping and Quantifying Local to Regional Flow and Transport of Submarine Groundwater Discharge from Coastal Aquifers

    Science.gov (United States)

    Glenn, C. R.; Kennedy, J. J.; Dulaiova, H.; Kelly, J. L.; Lucey, P. G.; Lee, E.; Fackrell, J.

    2015-12-01

    Submarine groundwater discharge (SGD) is a principal conduit for huge volumes of fresh groundwater loss and is a key transport mechanism for nutrient and contaminant pollution to coastal zones worldwide. However, the volumes and spatially and temporally variable nature of SGD is poorly known and requires rapid and high-resolution data acquisition at the scales in which it is commonly observed. Airborne thermal infrared (TIR) remote sensing, using high-altitude manned aircraft and low-altitude remote-controlled unmanned aerial vehicles (UAVs or "Drones") are uniquely qualified for this task, and applicable wherever 0.1°C temperature contrasts exist between discharging and receiving waters. We report on the use of these technologies in combination with in situ radon model studies of SGD volume and nutrient flux from three of the largest Hawaiian Islands. High altitude manned aircraft results produce regional (~300m wide x 100s km coastline) 0.5 to 3.2 m-resolution sea-surface temperature maps accurate to 0.7°C that show point-source and diffuse flow in exquisite detail. Using UAVs offers cost-effective advantages of higher spatial and temporal resolution and instantaneous deployments that can be coordinated simultaneously with any ground-based effort. We demonstrate how TIR-mapped groundwater discharge plume areas may be linearly and highly correlated to in situ groundwater fluxes. We also illustrate how in situ nutrient data may be incorporated into infrared imagery to produce nutrient distribution maps of regional worth. These results illustrate the potential for volumetric quantification and up-scaling of small- to regional-scale SGD. These methodologies provide a tremendous advantage for identifying and differentiating spring-fed, point-sourced, and/or diffuse groundwater discharge into oceans, estuaries, and streams. The integrative techniques are also important precursors for developing best-use and cost-effective strategies for otherwise time-consuming in

  7. User interface for ground-water modeling: Arcview extension

    Science.gov (United States)

    Tsou, M.-S.; Whittemore, D.O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  8. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Prickett, T.A.

    1980-04-01

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  9. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion

    Science.gov (United States)

    de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2017-04-01

    Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.

  10. Modeling the impact of the nitrate contamination on groundwater at the groundwater body scale : The Geer basin case study (Invited)

    Science.gov (United States)

    Brouyere, S.; Orban, P.; Hérivaux, C.

    2009-12-01

    In the next decades, groundwater managers will have to face regional degradation of the quantity and quality of groundwater under pressure of land-use and socio-economic changes. In this context, the objectives of the European Water Framework Directive require that groundwater be managed at the scale of the groundwater body, taking into account not only all components of the water cycle but also the socio-economic impact of these changes. One of the main challenges remains to develop robust and efficient numerical modeling applications at such a scale and to couple them with economic models, as a support for decision support in groundwater management. An integrated approach between hydrogeologists and economists has been developed by coupling the hydrogeological model SUFT3D and a cost-benefit economic analysis to study the impact of agricultural practices on groundwater quality and to design cost-effective mitigation measures to decrease nitrate pressure on groundwater so as to ensure the highest benefit to the society. A new modeling technique, the ‘Hybrid Finite Element Mixing Cell’ approach has been developed for large scale modeling purposes. The principle of this method is to fully couple different mathematical and numerical approaches to solve groundwater flow and solute transport problems. The mathematical and numerical approaches proposed allows an adaptation to the level of local hydrogeological knowledge and the amount of available data. In combination with long time series of nitrate concentrations and tritium data, the regional scale modelling approach has been used to develop a 3D spatially distributed groundwater flow and solute transport model for the Geer basin (Belgium) of about 480 km2. The model is able to reproduce the spatial patterns of nitrate concentrations together nitrate trends with time. The model has then been used to predict the future evolution of nitrate trends for two types of scenarios: (i) a “business as usual scenario

  11. Assessment of Nitrate Contamination of Groundwater in Korea Using a Mathematical Simulation Model

    Science.gov (United States)

    Lee, E.; Kim, M.; Lee, K.

    2005-12-01

    According to the nationwide groundwater monitoring system, nitrate is one of the major contaminants found in groundwater in Korea. Septic systems, animal waste and fertilizer are potential sources of nitrate contamination. There have been a growing number of studies on identification of the source of nitrate contamination of groundwater at agricultural sites, or analysis of the groundwater contamination at intensive livestock facilities. However, there have been a few studies on linkage between the surface loading of nitrate sources and the level of groundwater contamination. The objective of this study is to assess the groundwater contamination with nitrate resulted from current agricultural practices, and the potential impacts of changes in the practices on the groundwater contamination by using a mathematical model. An integrated modeling framework incorporating the nitrogen leaching model, LEACHN, and mass transport model, RT3D linked to MODFLOW was used to account for the fate and transport of nitrate through soil and groundwater. Data were collected from different areas so that they could represent the condition of agricultural sites in Korea. The groundwater nitrate contamination was assessed for different crops and soil types under varying fertilization rates and manure application.

  12. Simulation Of Groundwater Flow And Reactive Transport In A Tidally Influenced Estuarine Aquifer

    Science.gov (United States)

    Mao, X.; Barry, D. A.; Enot, P.; Li, L.

    2003-12-01

    Existing groundwater monitoring data from an estuarine sandy aquifer situated below an old industrial landfill (Scotland) showed that (1) leaching from sulphurous waste located in the landfill has generated an acidic plume; (2) associated with the low pH, metal contaminants within the acidic plume are slowly migrating towards the estuary; and (3) the groundwater fluctuations are influenced by the tidal oscillations of the estuary. In order to test the possible influence of rainfall/precipitation, tidal fluctuation and salt water intrusion on the groundwater flow and reactive chemical transport, a model for multi-component reactive transport with density dependent flow was developed and applied to the site. The groundwater flow and chemical transport in this coastal aquifer were simulated. Both the field observations and numerical simulations showed that the tidal influence on the groundwater table fluctuations was great even far inland. This influence could not be explained by standard analytical solutions. It is expected that the local morphology and hydro-geological conditions cause this behaviour. The simulation performed with a conservative tracer showed that it took much less time to reach the estuary than the acidic plume originating from the landfill, with the rate of movement influenced by recharge and tidal oscillations. Due to buffering reactions occurring in the geochemical system during the migration of the contaminants (ion exchange, mineral precipitation/dissolution and oxidation/reduction), the movement of the acidic plume and associated metals is strongly retarded. Sharp differences are apparent in chemical concentrations, pH and pe, between the plume location and unaffected areas.

  13. RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Chilakapati, A

    1995-07-01

    This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

  14. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model

  15. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    Science.gov (United States)

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  16. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2005-09-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

  17. This year`s model: Geochemical modeling and groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Tuchfeld, H.A.; Simmons, S.P.; Jesionek, K.S. [GeoSyntec Consultants, Walnut Creek, CA (United States)]|[GeoSyntec Consultants, Atlanta, GA (United States); Romito, A.A. [Browning-Ferris Industries, Inc., Houston, TX (United States)

    1998-07-01

    It has been determined that landfill gas migration is a source of volatile organic compounds (VOCs) in groundwater. This can occur through: direct partitioning of migrating gas constituents into the groundwater; alteration of the physiochemical properties of the groundwater; and by indirect means (such as migration of landfill gas condensate and vadose zone water contaminated by landfill gas). This article examines the use of geochemical modeling as a useful tool for differentiating the effects of municipal solid waste (MSW) landfill gas versus leachate on groundwater quality at MSW landfill sites.

  18. Long-term transport behavior of psychoactive compounds in sewage-affected groundwater

    Science.gov (United States)

    Nham, Hang Thuy Thi; Greskowiak, Janek; Hamann, Enrico; Meffe, Raffaella; Hass, Ulrike; Massmann, Gudrun

    2016-11-01

    The present study provides a model-based characterization of the long-term transport behavior of five psychoactive compounds (meprobamate, pyrithyldione, primidone, phenobarbital and phenylethylmalonamide) introduced into groundwater via sewage irrigation in Berlin, Germany. Compounds are still present in the groundwater despite the sewage farm closure in the year 1980. Due to the limited information on (i) compound concentrations in the source water and (ii) substance properties, a total of 180 cross-sectional model realizations for each compound were carried out, covering a large range of possible parameter combinations. Results were compared with the present-day contamination patterns in the aquifer and the most likely scenarios were identified based on a number of model performance criteria. The simulation results show that (i) compounds are highly persistent under the present field conditions, and (ii) sorption is insignificant. Thus, back-diffusion from low permeability zones appears as the main reason for the compound retardation.

  19. Calibration of Models Using Groundwater Age (Invited)

    Science.gov (United States)

    Sanford, W. E.

    2009-12-01

    Water-resource managers are frequently concerned with the long-term ability of a groundwater system to deliver volumes of water for both humans and ecosystems under natural and anthropogenic stresses. Analysis of how a groundwater system responds to such stresses usually involves the construction and calibration of a numerical groundwater-flow model. The calibration procedure usually involves the use of both groundwater-level and flux observations. Water-level data are often more abundant, and thus the availability of flux data can be critical, with well discharge and base flow to streams being most often available. Lack of good flux data however is a common occurrence, especially in more arid climates where the sustainability of the water supply may be even more in question. Environmental tracers are frequently being used to estimate the “age” of a water sample, which represents the time the water has been in the subsurface since its arrival at the water table. Groundwater ages provide flux-related information and can be used successfully to help calibrate groundwater models if porosity is well constrained, especially when there is a paucity of other flux data. As several different methods of simulating groundwater age and tracer movement are possible, a review is presented here of the advantages, disadvantages, and potential pitfalls of the various numerical and tracer methods used in model calibration. The usefulness of groundwater ages for model calibration depends on the ability both to interpret a tracer so as to obtain an apparent observed age, and to use a numerical model to obtain an equivalent simulated age observation. Different levels of simplicity and assumptions accompany different methods for calculating the equivalent simulated age observation. The advantages of computational efficiency in certain methods can be offset by error associated with the underlying assumptions. Advective travel-time calculation using path-line tracking in finite

  20. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Rodwell, William; Swift, Ben [Serco Assurance, Harwell (United Kingdom); Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-12-15

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period around 9,000 AD. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events. Additional calculations were performed to assess the impact of the effects of gas and heat generation in the repository on groundwater flow.

  1. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-09-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  2. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 2. Comprehensive analysis of field data using reactive transport modeling

    Science.gov (United States)

    Gandhi, Rahul K.; Hopkins, Gary D.; Goltz, Mark N.; Gorelick, Steven M.; McCarty, Perry L.

    2002-04-01

    We present an analysis of an extensively monitored full-scale field demonstration of in situ treatment of trichloroethylene (TCE) contamination by aerobic cometabolic biodegradation. The demonstration was conducted at Edwards Air Force Base in southern California. There are two TCE-contaminated aquifers at the site, separated from one another by a clay aquitard. The treatment system consisted of two recirculating wells located 10 m apart. Each well was screened in both of the contaminated aquifers. Toluene, oxygen, and hydrogen peroxide were added to the water in both wells. At one well, water was pumped from the upper aquifer to the lower aquifer. In the other well, pumping was from the lower to the upper aquifer. This resulted in a ``conveyor belt'' flow system with recirculation between the two aquifers. The treatment system was successfully operated for a 410 day period. We explore how well a finite element reactive transport model can describe the key processes in an engineered field system. Our model simulates TCE, toluene, oxygen, hydrogen peroxide, and microbial growth/death. Simulated processes include advective-dispersive transport, biodegradation, the inhibitory effect of hydrogen peroxide on biomass growth, and oxygen degassing. Several parameter values were fixed to laboratory values or values from previous modeling studies. The remaining six parameter values were obtained by calibrating the model to 7213 TCE concentration data and 6997 dissolved oxygen concentration data collected during the demonstration using a simulation-regression procedure. In this complex flow field involving reactive transport, TCE and dissolved oxygen concentration histories are matched very well by the calibrated model. Both simulated and observed toluene concentrations display similar high-frequency oscillations due to pulsed toluene injection approximately one half hour during each 8 hour period. Simulation results indicate that over the course of the demonstration, 6.9 kg

  3. A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite

    Science.gov (United States)

    Engesgaard, Peter; Kipp, Kenneth L.

    1992-01-01

    A one-dimensional prototype geochemical transport model was developed in order to handle simultaneous precipitation-dissolution and oxidation-reduction reactions governed by chemical equilibria. Total aqueous component concentrations are the primary dependent variables, and a sequential iterative approach is used for the calculation. The model was verified by analytical and numerical comparisons and is able to simulate sharp mineral fronts. At a site in Denmark, denitrification has been observed by oxidation of pyrite. Simulation of nitrate movement at this site showed a redox front movement rate of 0.58 m yr−1, which agreed with calculations of others. It appears that the sequential iterative approach is the most practical for extension to multidimensional simulation and for handling large numbers of components and reactions. However, slow convergence may limit the size of redox systems that can be handled.

  4. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2016-12-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  5. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2017-06-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  6. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    Science.gov (United States)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  7. Uncertainty in deterministic groundwater transport models due to the assumption of macrodispersive mixing: evidence from the Cape Cod (Massachusetts, U.S.A.) and Borden (Ontario, Canada) tracer tests

    Science.gov (United States)

    Fitts, Charles R.

    1996-06-01

    Deterministic transport models based on the advection-dispersion equation are widely used to simulate groundwater contaminant transport. Only the largest heterogeneities and velocity field variations are explicitly modeled by the advection part of such models because subsurface explorations allow limited understanding of the distribution of heterogeneity and velocities. Smaller heterogeneities and associated velocity field variations are not incorporated in the modeled velocity field, but their overall mixing effect is represented implicitly as macrodispersion. As a result, such models do not replicate the complex small-scale variation of actual concentration distributions, but instead simulate a smoother concentration distribution. This discrepancy causes significant uncertainty in modeled concentrations. In this paper, such uncertainty is quantified for the detailed concentration distribution data sets of the Cape Cod and Borden natural-gradient tracer tests. Models of these tests could be made with relatively little uncertainty about the source distribution, large-scale flow field, and apparent macrodispersitivities. As earlier moment analyses reveal, the ensemble-average bromide migration in both tests was approximately consistent with classical advection-dispersion theory. Therefore, the reported uncertainties are primarily due to the use of macrodispersivity to represent mixing caused by small-scale velocity field variations. Analytic three-dimensional transport models were used to simulate the migration of bromide, a non-reactive tracer. The distribution of log(ca/cm), where ca is actual concentration and cm is modeled concentration at the same point, had a standard deviation of ∼0.70 for both tests. The distribution of vertically-averaged concentration predictions, log(Σca/Σcm), where the summation is over each multi-level sampler, had a standard deviation of ∼0.45 for both tests. Comparing the peak actual concentration to the peak modeled

  8. Constraining groundwater modeling with magnetic resonance soundings.

    Science.gov (United States)

    Boucher, Marie; Favreau, Guillaume; Nazoumou, Yahaya; Cappelaere, Bernard; Massuel, Sylvain; Legchenko, Anatoly

    2012-01-01

    Magnetic resonance sounding (MRS) is a noninvasive geophysical method that allows estimating the free water content and transmissivity of aquifers. In this article, the ability of MRS to improve the reliability of a numerical groundwater model is assessed. Thirty-five sites were investigated by MRS over a ∼5000 km(2) domain of the sedimentary Continental Terminal aquifer in SW Niger. Time domain electromagnetic soundings were jointly carried out to estimate the aquifer thickness. A groundwater model was previously built for this section of the aquifer and forced by the outputs from a distributed surface hydrology model, to simulate the observed long-term (1992 to 2003) rise in the water table. Uncertainty analysis had shown that independent estimates of the free water content and transmissivity values of the aquifer would facilitate cross-evaluation of the surface-water and groundwater models. MRS results indicate ranges for permeability (K = 1 × 10(-5) to 3 × 10(-4) m/s) and for free water content (w = 5% to 23% m(3) /m(3) ) narrowed by two orders of magnitude (K) and by ∼50% (w), respectively, compared to the ranges of permeability and specific yield values previously considered. These shorter parameter ranges result in a reduction in the model's equifinality (whereby multiple combinations of model's parameters are able to represent the same observed piezometric levels), allowing a better constrained estimate to be derived for net aquifer recharge (∼22 mm/year).

  9. Aquarius - A Modelling Package for Groundwater Flow and Coupled Heat Transport in the Range 0.1 to 100 MPa and 0.1 to 1000 C

    Science.gov (United States)

    Cook, S. J.

    2009-05-01

    Aquarius is a Windows application that models fluid flow and heat transport under conditions in which fluid buoyancy can significantly impact patterns and magnitudes of fluid flow. The package is designed as a visualization tool through which users can examine flow systems in environments, both low temperature aquifers and regions with elevated PT regimes such as deep sedimentary basins, hydrothermal systems, and contact thermal aureoles. The package includes 4 components: (1) A finite-element mesh generator/assembler capable of representing complex geologic structures. Left-hand, right-hand and alternating linear triangles can be mixed within the mesh. Planer horizontal, planer vertical and cylindrical vertical coordinate sections are supported. (2) A menu-selectable system for setting properties and boundary/initial conditions. The design retains mathematical terminology for all input parameters such as scalars (e.g., porosity), tensors (e.g., permeability), and boundary/initial conditions (e.g., fixed potential). This makes the package an effective instructional aide by linking model requirements with the underlying mathematical concepts of partial differential equations and the solution logic of boundary/initial value problems. (3) Solution algorithms for steady-state and time-transient fluid flow/heat transport problems. For all models, the nonlinear global matrix equations are solved sequentially using over-relaxation techniques. Matrix storage design allows for large (e.g., 20000) element models to run efficiently on a typical PC. (4) A plotting system that supports contouring nodal data (e.g., head), vector plots for flux data (e.g., specific discharge), and colour gradient plots for elemental data (e.g., porosity), water properties (e.g., density), and performance measures (e.g., Peclet numbers). Display graphics can be printed or saved in standard graphic formats (e.g., jpeg). This package was developed from procedural codes in C written originally to

  10. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C.; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L.; Miller, Richard S.

    2014-09-01

    A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies.

  11. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems

    Energy Technology Data Exchange (ETDEWEB)

    TP Clement

    1999-06-24

    RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in

  12. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    Science.gov (United States)

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  13. UZ Colloid Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  14. Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI GuoMin; YANG Liao; DANG XueYa; ZHAO ChunHu; HOU GuangCai; ZHANG MaoSheng

    2007-01-01

    The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei,Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  15. Groundwater Level Prediction using M5 Model Trees

    Science.gov (United States)

    Nalarajan, Nitha Ayinippully; Mohandas, C.

    2015-01-01

    Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.

  16. Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2015-01-01

    variability in the concentration at the well, which helps understanding the results of groundwater monitoring programs. The results are used to provide guidance on the design of pumping and regulatory changes for the long-term supply of safe groundwater. The fate of selected pesticides is examined......, for example, if the application of bentazone in a region with a layered aquifer stops today, the concentration at the well can continue to increase for 20 years if a low pumping rate is applied. This study concludes that because of the rapid response of the pesticide concentration at the drinking water well......This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly...

  17. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  18. Genesis and transport of hexavalent chromium in the system ophiolitic rocks - groundwater

    Science.gov (United States)

    Shchegolikhina, Anastasia; Guadagnini, Laura; Guadagnini, Alberto

    2015-04-01

    Our study aims at contributing to the quantification and characterization of chromium transport processes from host rocks and soil matrices to groundwater. We focus on dissolved hexavalent chromium detected in groundwaters of geological regions with ophiolitic rocks (ophiolites and serpentinites) inclusions due to its critical ecological impact. (Oze et al., 2004). Despite the large number of analyses on the occurrence of high concentrations of hazardous hexavalent chromium ions in natural waters, only few studies were performed with the objective of identifying and investigating the geochemical reactions which could occur in the natural system rock - groundwater - dissolved chromium (Fantoni et al., 2002, Stephen and James, 2004, Lelli et al., 2013). In this context, there is a need for integration of results obtained from diverse studies in various regions and settings to improve our knowledge repository. Our theoretical analyses are grounded and driven by practical scenarios detected in subsurface reservoirs exploited for civil and industrial use located in the Emilia-Romagna region (Italy). Available experimental datasets are complemented with data from other international regional-scale settings (Altay mountains region, Russia). Modeling of chromium transformation and migration particularly includes characterization of the multispecies geochemical system. A key aspect of our study is the analysis of the complex competitive sorption processes governing heavy metal evolution in groundwater. The results of the research allow assessing the critical qualitative features of the mechanisms of hexavalent chromium ion mobilization from host rocks and soils and the ensuing transformation and migration to groundwater under the influence of diverse environmental factors. The study is then complemented by the quantification of the main sources of uncertainty associated with prediction of heavy metal contamination levels in the groundwater system explored. Fantoni, D

  19. Climate Change Impacts on Transportation; Groundwater Elevation, Road Performance, and Robust Adaptation

    Science.gov (United States)

    Kirshen, P. H.; Knott, J. F.; Ray, P.; Elshaer, M.; Daniel, J.; Jacobs, J. M.

    2016-12-01

    Transportation climate change vulnerability and adaptation studies have primarily focused on surface-water flooding from sea-level rise (SLR); little attention has been given to the effects of climate change and SLR on groundwater and subsequent impacts on the unbound foundation layers of coastal-road infrastructure. The magnitude of service-life reduction depends on the height of the groundwater in the unbound pavement materials, the pavement structure itself, and the loading. Using a steady-state groundwater model, and a multi-layer elastic pavement evaluation model, the strain changes in the layers can be determined as a function of parameter values and the strain changes translated into failure as measured by number of loading cycles to failure. For a section of a major coastal road in New Hampshire, future changes in sea-level, precipitation, temperature, land use, and groundwater pumping are characterized by deep uncertainty. Parameters that describe the groundwater system such as hydraulic conductivity can be probabilistically described while road characteristics are assumed to be deterministic. To understand the vulnerability of this road section, a bottom-up planning approach was employed over time where the combinations of parameter values that cause failure were determined and their plausibility of their occurring was analyzed. To design a robust adaptation strategy that will function reasonably well in the present and the future given the large number of uncertain parameter values, performance of adaptation options were investigated. Adaptation strategies that were considered include raising the road, load restrictions, increasing pavement layer thicknesses, replacing moisture-sensitive materials with materials that are not moisture sensitive, improving drainage systems, and treatment of the underlying materials.

  20. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers.

    Science.gov (United States)

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies.

  1. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Swift, Ben [Serco Assurance, Harwell (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-12-15

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period at around 20,000 AD for the Laxemar area. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events.

  2. Coastal groundwater table estimation by an elevation fluctuation neural model

    Institute of Scientific and Technical Information of China (English)

    HE Bin; WANG Yi

    2007-01-01

    Restrictions of groundwater management are often derived from the insufficient or missing groundwater database. A suitable and complete groundwater database will allow sound engineering plans for sustainable water usage, including the drilling of wells, rates of water withdrawal, and eventually artificial recharge of the aquifer. The spatial-temporal variations of groundwater monitoring data are fluently influenced by the presence of manual factors, monitor equipment malfunctioning, natural phenomena, etc. Thus, it is necessary for researchers to check and infill the groundwater database before running the numerical groundwater model. In this paper, an artificial neural network (ANN)-based model is formulated using the hydrological and meteorological data to infill the inadequate data in the groundwater database. Prediction results present that ANN method could be a desirable choice for estimating the missing groundwater data.

  3. Modeling groundwater flow on massively parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.

    1994-12-31

    The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.

  4. Metropol, a computer code for the simulation of transport of contaminants with groundwater

    NARCIS (Netherlands)

    Sauter FJ; Hassanizadeh SM; Leijnse A; Glasbergen P; Slot AFM

    1990-01-01

    In this report a description is given of the computer code METROPOL. This code simulates the three dimensional flow of groundwater with varying density and the simultaneous transport of contaminants in low concentration and is based on the finite element method. The basic equations for groundwater

  5. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling

    Science.gov (United States)

    Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne

    2010-05-01

    Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are

  6. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  7. ShowFlow: A practical interface for groundwater modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tauxe, J.D.

    1990-12-01

    ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

  8. Advances in the Coupled Soil Water and Groundwater Models

    Institute of Scientific and Technical Information of China (English)

    杨玉峥; 王志敏

    2014-01-01

    Models simulating the reciprocal transformation between the soil water and groundwater are of great practical importance to the development and utilization of water resources and prevention and remedy of water pollution. In this paper, popular coupled models of soil water and groundwater will be analyzed. Besides, advantages and disadvantages of different models will be summarized as a reference for the numerical model of soil water and groundwater.

  9. Recent developments in modeling groundwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Witherspoon, P.A.

    1977-05-20

    This paper reviews the developments in the mathematical modeling of groundwater systems over the past decde. The first part of the paper is devoted to a description of the physics of the different types of problems that are of interest in hydrogeology and a statement of the related initial-boundary-value problems. The various numerical techniques that have been employed to solve the governing equations are discussed in the second part. In the third section a few typical case histories are presented to illustrate the trend of progress that has occurred in the application of mathematical modeling to actual field problems.

  10. A NEW NUMERICAL METHOD FOR GROUNDWATER FIOW AND SOLUTE TRANSPORT USING VELOCITY FIELD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian-fei; LAN Shou-qi; WANG Yan-ming; XU Yong-fu

    2008-01-01

    A new numerical method for groundwater flow analysis was introduced to estimate simultaneously velocity vectors and water pressure head. The method could be employed to handle the vertical flow under variably saturated conditions and for horizontal flow as well. The method allows for better estimation of velocities at the element nodes which can be used as direct input to transport models. The advection-dispersion process was treated by the Eulerian-Lagrangian approach with particle tracking technique using the velocities at FEM nodes. The method was verified with the classical one dimensional model and applied to simulate contaminant transport process through a slurry wall as a barrier to prevent leachate pollution from a sanitary landfill.

  11. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    Science.gov (United States)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  12. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a

  13. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a grou

  14. Addendum for the Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0 (page changes)

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-05-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: • Plate 4: Disregard the repeat of legend text ‘Drill Hole Name’ and ‘Drill Hole Location’ in the lower left corner of the map. • Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. • Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted.

  15. Reliability of travel times to groundwater abstraction wells: Application of the Netherlands Groundwater Model - LGM

    NARCIS (Netherlands)

    Kovar K; Leijnse A; Uffink G; Pastoors MJH; Mulschlegel JHC; Zaadnoordijk WJ; LDL; IMD; TNO/NITG; Haskoning

    2005-01-01

    A modelling approach was developed, incorporated in the finite-element method based program LGMLUC, making it possible to determine the reliability of travel times of groundwater flowing to groundwater abstraction sites. The reliability is seen here as a band (zone) around the expected travel-time i

  16. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  17. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  18. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    Science.gov (United States)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D

  19. Groundwater contamination from an inactive uranium mill tailings pile: 1. Application of a chemical mixing model

    Science.gov (United States)

    White, A. F.; Delany, J. M.; Narasimhan, T. N.; Smith, A.

    1984-11-01

    Low-pH process waters contained in a number of inactive and abandoned uranium mill tailings in the United States represent potential sources of radionuclide and trace metal contamination of groundwater. Detailed investigations at a typical site at Riverton, Wyoming, indicate that chemical transport occurs from initial dewatering of the tailings, downward infiltration due to precipitation, and groundwater intrusion into the base of the tailings pile. Except for elevated uranium and molybdenum concentrations, current radionuclide and trace metal transport is limited by the near-neutral pH conditions of the groundwater. Significant reactions include the dissolution of calcite, production of CO2, and precipitation of gypsum and the hydroxides of iron and aluminum. A geochemical mixing model employing the PHREEQE computer code is used to estimate current rates of the groundwater contamination by tailings water. A maximum mixing of 1.7% of pore water is a factor of 2 less than steady state estimates based on hydraulic parameters.

  20. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  1. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  2. The atmospheric transport of iodine-129 from Fukushima to British Columbia, Canada and its deposition and transport into groundwater

    Science.gov (United States)

    Herod, Matt N.; Suchy, Martin; Cornett, R. Jack; Kieser, W. E.; Clark, Ian D.; Graham, Gwyn

    2015-12-01

    The Fukushima-Daiichi nuclear accident (FDNA) released iodine-129 (15.7 million year half-life) and other fission product radionuclides into the environment in the spring and summer of 2011. 129I is recognized as a useful tracer for the short-lived radiohazard 131I, which has a mobile geochemical behavior with potential to contaminate water resources. To trace 129I released by the FDNA reaching Canada, pre-accident and post-accident rain samples collected in Vancouver, on Saturna Island and from the National Atmospheric Deposition Program in Washington State were measured. Groundwater from the Abbotsford-Sumas Aquifer was sampled to determine the fate of 129I that infiltrates below the root zone. Modeling of vadose zone transport was performed to constrain the travel time and retardation of 129I. The mean pre-accident 129I concentration in rain was 31 × 106 atoms/L (n = 4). Immediately following the FDNA, 129I values increased to 211 × 106 atoms/L and quickly returned to near-background levels. However, pulses of elevated 129I continued for several months. The increases in 129I concentrations from both Vancouver and Saturna Island were synchronized, and occurred directly after the initial release from the FDNA. The 129I in shallow (3H/3He age March 2013 with an average of 3.2 × 106 atoms/L (n = 32) that was coincident with modeled travel times for Fukushima 129I. The groundwater response and the modeling results suggest that 129I was partially attenuated in soil, which is consistent with its geochemical behavior; however, we conclude that the measured variability may be due to Fukushima 129I entering groundwater.

  3. State space modeling of groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.

    2004-01-01

    Groundwater plays an important role in both urban and rural areas. It is therefore essential to monitor groundwater fluctuations. However, data that becomes available need to be analyzed further in order to extract specific information on the groundwater system. Until recently, simple linear time se

  4. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  5. Custom map projections for regional groundwater models

    Science.gov (United States)

    Kuniansky, Eve L.

    2017-01-01

    For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.

  6. Factors Controlling the Groundwater Transport of U, Th, Ra, and Rn

    Indian Academy of Sciences (India)

    A Tricca; D Porcelli; G J Wasserburg

    2000-03-01

    A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the 238U and 232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, -recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the 238U and 232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance $\\bar{x}_i$, characteristic of each nuclide. Where $\\bar{x}_i$ is much longer than the aquifer length, (for 238U, 234U, and 232Th), the activities grow linearly with distance. Where $\\bar{x}_i$ is short compared to the aquifer length, (for 234Th, 230Th, 228Th, 228Ra, and 224Ra), the activities rapidly reach a constant or quasi-constant activity value. For 226Ra and 222Rn, the limiting activity is reached after 1 km. High 234U values (proportional to the ratio 234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios 230Th/232Th, 228Ra/226Ra and 224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for 228Ra

  7. A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation

    Science.gov (United States)

    Turnadge, Chris; Smerdon, Brian D.

    2014-11-01

    Mathematical models of varying complexity have been developed since the 1960s to interpret environmental tracer concentrations in groundwater flow systems. This review examines published studies of model-based environmental tracer interpretation, the progress of different modelling approaches, and also considers the value of modelling tracer concentrations directly rather than estimations of groundwater age. Based on citation metrics generated using the Web of Science and Google Scholar reference databases, the most highly utilised interpretation approaches are lumped parameter models (421 citations), followed closely by direct age models (220 citations). A third approach is the use of mixing cell models (99 citations). Although lumped parameter models are conceptually simple and require limited data, they are unsuitable for characterising the internal dynamics of a hydrogeological system and/or under conditions where large scale anthropogenic stresses occur within a groundwater basin. Groundwater age modelling, and in particular, the simulation of environmental tracer transport that explicitly accounts for the accumulation and decay of tracer mass, has proven to be highly beneficial in constraining numerical models. Recent improvements in computing power have made numerical simulation of tracer transport feasible. We argue that, unlike directly simulated ages, the results of tracer mass transport simulation can be compared directly to observations, without needing to correct for apparent age bias or other confounding factors.

  8. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  9. Identification and Characterization of Potential Discharge Areas for Radionuclide Transport by Groundwater from a Nuclear Waste Repository in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Sten [HydroResearch AB, Taeby (Sweden)], E-mail: sten.berglund@hydroresearch.se; Bosson, Emma; Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm (Sweden); Sassner, Mona [DHI Sverige AB, Stockholm (Sweden)

    2013-05-15

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  10. Characterizing the Occurrence and Transport of Brackish Groundwater in Southwest Bangladesh

    Science.gov (United States)

    worland, S.; Hornberger, G. M.

    2013-12-01

    Bangladesh is host to the largest and the most active delta system in the world. The morphology of the southern part of the country is characterized by low lying deltaic plains partitioned by the distributary networks of the Ganges, Brahmaputra and Meghna river systems. Much of the tidal mangrove forest ecosystem of the lower delta has been converted into poldered islands that sustain shrimp farming and rice production. The polder inhabitants depend on shallow groundwater as a primary source for drinking water and sanitation. Understanding the origin and hydrologic controls on the distribution of the brackish water and freshwater on the polder is a necessary step to ensuring a sustainable and potable freshwater source for drinking and irrigation. Preliminary sampling from shallow tube wells on Polder 32 in southwest Bangladesh suggests sporadic lateral apportioning of fresh water in the primarily brackish aquifer. This research characterizes the occurrence, transport and fate of the brackish groundwater through a combination of 3H and 14C dating, geochemical signatures, subsurface mapping using inversions from electromagnetic induction, and a 1D finite difference model and a 2D finite element model. The geochemical analysis and radiometric dating suggest that the salt water originates from paleo-brackish estuarine water deposited ~5000 years ago along with the sediments that compose the shallow aquifer. Inversions of electromagnetic survey data show potential freshwater recharge areas where the clay cap pinches out. The finite difference model demonstrates that recharge from the distributary channels is unlikely due to the low transmissivity of the clay channel beds. The finite element model gives reasonable estimates of the flushing rates of the connate brackish water beneath the polder. Inversion of electromagnetic data from a two hundred meter transect taken on Polder 32 Head gradient and groundwater flow vectors for fixed head boundary conditions across Polder

  11. A New Geochemical Reaction Model for Groundwater Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Through a survey of the literature on geology, hydrogeology and hydrogeochemistry, this paper presents a hydrogeochemical model for the groundwater system in a dross-dumping area of the Shandong Aluminium Plant. It is considered that the groundwater-bearing medium is a mineral aggregate and that the interactions between groundwater and the groundwater-bearing medium can be described as a series of geochemical reactions. On that basis, the principle of minimum energy and the equations of mass balance, electron balance and electric neutrality are applied to construct a linear programming mathematical model for the calculation of mass transfer between water and rock with the simplex method.

  12. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    , automatically extract data and attributes, and simulate unsteady groundwater flow and contaminant transport in response to water and land management decisions; * Visualize and map model simulations and predictions with data from the statewide groundwater database in a seamless interactive environment. IGW-M has the potential to significantly improve the productivity of Michigan groundwater management investigations. It changes the role of engineers and scientists in modeling and analyzing the statewide groundwater database from heavily physical to cognitive problem-solving and decision-making tasks. The seamless real-time integration, real-time visual interaction, and real-time processing capability allows a user to focus on critical management issues, conflicts, and constraints, to quickly and iteratively examine conceptual approximations, management and planning scenarios, and site characterization assumptions, to identify dominant processes, to evaluate data worth and sensitivity, and to guide further data-collection activities. We illustrate the power and effectiveness of the M-IGW modeling and visualization system with a real case study and a real-time, live demonstration.

  13. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    Science.gov (United States)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  14. General Separations Area (GSA) Groundwater Flow Model Update: Hydrostratigraphic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-21

    This document describes the assembly, selection, and interpretation of hydrostratigraphic data for input to an updated groundwater flow model for the General Separations Area (GSA; Figure 1) at the Department of Energy’s (DOE) Savannah River Site (SRS). This report is one of several discrete but interrelated tasks that support development of an updated groundwater model (Bagwell and Flach, 2016).

  15. Hydrogeochemical modeling of groundwater chemical environmental evolution in Hebei Plain

    Institute of Scientific and Technical Information of China (English)

    郭永海; 沈照理; 钟佐燊

    1997-01-01

    Using the hydrogeochemical modeling method, the groundwater chemical environmental problems of the Hebei Plain which involve increasing of hardness and total dissolved solids in piedmont area and mixing of saline water with fresh water in middle-eastern area are studied. The water-rock interactions and mass transfer along a ground-water flow path and in mixing processes are calculated. Thus the evolution mechanisms of the groundwater chemical environment are brought to light.

  16. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. Initial results show that IRENE can accurately predict surface water-groundwater flow and salinity interactions in coastal areas. Important research issues that can be investigated using IRENE include: (a) sea level rise and tidal effects on aquifer salinisation and the configuration of the saltwater wedge, (b) the effects of surface water-groundwater interaction on salinity increase of coastal wetlands and (c) the estimation of the location and magnitude of groundwater discharge to coasts. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References

  17. Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    2000-02-11

    A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data up through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.

  18. Mercury speciation and transport via submarine groundwater discharge at a southern California coastal lagoon system

    Science.gov (United States)

    Ganguli, P.M.; Conaway, C.H.; Swarzenski, P.W.; Izbicki, J.A.; Flegal, A.R.

    2012-01-01

    We measured total mercury (Hg T) and monomethylmercury (MMHg) concentrations in coastal groundwater and seawater over a range of tidal conditions near Malibu Lagoon, California, and used 222Rn-derived estimates of submarine groundwater discharge (SGD) to assess the flux of mercury species to nearshore seawater. We infer a groundwater-seawater mixing scenario based on salinity and temperature trends and suggest that increased groundwater discharge to the ocean during low tide transported mercury offshore. Unfiltered Hg T (U-Hg T) concentrations in groundwater (2.2-5.9 pM) and seawater (3.3-5.2 pM) decreased during a falling tide, with groundwater U-Hg T concentrations typically lower than seawater concentrations. Despite the low Hg T in groundwater, bioaccumulative MMHg was produced in onshore sediment as evidenced by elevated MMHg concentrations in groundwater (0.2-1 pM) relative to seawater (???0.1 pM) throughout most of the tidal cycle. During low tide, groundwater appeared to transport MMHg to the coast, resulting in a 5-fold increase in seawater MMHg (from 0.1 to 0.5 pM). Similarly, filtered Hg T (F-Hg T) concentrations in seawater increased approximately 7-fold during low tide (from 0.5 to 3.6 pM). These elevated seawater F-Hg T concentrations exceeded those in filtered and unfiltered groundwater during low tide, but were similar to seawater U-Hg T concentrations, suggesting that enhanced SGD altered mercury partitioning and/or solubilization dynamics in coastal waters. Finally, we estimate that the SGD Hg T and MMHg fluxes to seawater were 0.41 and 0.15 nmol m -2 d -1, respectively - comparable in magnitude to atmospheric and benthic fluxes in similar environments. ?? 2012 American Chemical Society.

  19. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  20. Modeling falling groundwater tables in major cities of the world

    Science.gov (United States)

    Sutanudjaja, Edwin; Erkens, Gilles

    2016-04-01

    Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.

  1. Modeling approaches to management of nitrate contamination of groundwater in a heavily cultivated area

    Science.gov (United States)

    Koh, E.; Park, Y.; Lee, K.

    2011-12-01

    A three-dimensional variably-saturated groundwater flow and reactive transport modeling framework was implemented to simulate nitrate contamination in a heavily cultivated area in Jeju volcanic Island. In the study area, two localized aquifer systems (perched and regional groundwater) exist due to distributions of impermeable clay layers beneath the perched groundwater. The approximate application rate of chemical fertilizers was surveyed to be 627.9 kg-N/ha per year, which is much higher than the average annual chemical fertilizer usage in Jeju Island, 172 kg-N/ha per year. Severe nitrate contamination has been observed in the perched groundwater system and such perched groundwater has influenced regional groundwater quality, through poorly cemented wall of the distributed throughout the region wells. For a part of managing plan of nitrate contamination in the island, a numerical modeling framework was developed for various scenarios associated with the factors affecting nitrate contamination in the study area (i.e., usage amount of chemical fertilizers, cultivated methods, grouting condition of wells). This work provides useful information to suggest effective ways to manage nitrate contamination of groundwater in the agricultural field. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0001120) and by BK21 project of Korean Government.

  2. Evaluation of Monensin Transport to Shallow Groundwater after Irrigation with Dairy Lagoon Water.

    Science.gov (United States)

    Hafner, Sarah C; Harter, Thomas; Parikh, Sanjai J

    2016-03-01

    Animal waste products from concentrated animal feeding operations are a significant source of antibiotics to the environment. Monensin, an ionophore antibiotic commonly used to increase feed efficiency in livestock, is known to have varied toxicological effects on nontarget species. The current study builds on prior studies evaluating the impact of dairy management on groundwater quality by examining the transport of monensin in an agricultural field with coarse-textured soils during irrigation with lagoon wastewater. The dairy is located in California's San Joaquin Valley, where groundwater can be encountered Groundwater samples were collected from a network of monitoring wells installed throughout the dairy and adjacent to irrigated fields before and after an irrigation event, which allowed for measurement of monensin potentially reaching the shallow groundwater as a direct result of irrigation with lagoon water. Monensin was extracted from water samples via hydrophilic-lipophilic balance solid-phase extraction and quantified with liquid chromatography-mass spectrometry. Irrigation water was found to contain up to 1.6 μg L monensin, but monensin was only detected in monitoring wells surrounding the waste storage lagoon. Water chemistry changes in the wells bordering the irrigated field suggest that up to 7% of irrigation water reached groundwater within days of irrigation. The study suggests that contamination of groundwater with monensin can occur primarily by compromised waste storage systems and that rapid transport of monensin to groundwater is not likely to occur from a single irrigation event.

  3. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard;

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  4. Community Sediment Transport Model

    Science.gov (United States)

    2007-01-01

    are used to determine that model results are consistent across compilers, platforms, and computer architectures , and to ensure that changes in code do...Mississippi State University: Bhate During the early months of this project, the focus was on understanding ROMS-CSTM model, architecture , and...Marchesiello, J.C. McWilliams, & K.D. Stolzenbach, 2007: Sediment transport modeling on Southern Californian shelves: A ROMS case study. Continental

  5. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  6. Characteristic monitoring of groundwater-salt transportation and input-output in inland arid irrigation area.

    Science.gov (United States)

    Xu, Cundong; Zhang, Hongyang; Han, Liwei; Zhai, Luxin

    2014-11-01

    The rules of microscopic water-salt transportation can be revealed and the impact on the macroscopic water and soil resources can be further predicted by selecting a typical study area and carrying out continuous monitoring. In this paper, Jingtaichuan Electrical Lifting Irrigation District in Gansu Province (hereinafter called as JingDian irrigation district (JID)) located at the inland desert region of northwest China was selected as study area. Based on the groundwater-salt transportation data of representative groundwater monitoring wells in different hydrogeological units, the groundwater-salt evolution and transportation tendency in both closed and unclosed hydrogeological units were analyzed and the quantity relative ratio relationship of regional water-salt input-excretion was calculated. The results showed that the salt brought in by artificial irrigation accounts for the highest proportion of about 63.99% and the salt carried off by the discharge of irrigation water accounts for 66.42%, namely, the water-salt evolution and transportation were mainly controlled by artificial irrigation. As the general features of regional water-salt transportation, groundwater salinity and soil salt content variation were mainly decided by the transportation of soil soluble salt which showed an obvious symbiosis gathering regularity, but the differentiation with insoluble salt components was significant in the transportation process. Besides, groundwater salinity of the unclosed hydrogeological unit presented a periodically fluctuating trend, while the groundwater salinity and soil salt content in water and salt accumulation zone of the closed hydrogeological unit showed an increasing tendency, which formed the main occurrence area of soil secondary salinization.

  7. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    Science.gov (United States)

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  8. Groundwater characterisation and modelling: problems, facts and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [INTERA KB, Sollentuna (Sweden)

    1999-12-01

    For the last 10 years, the Aespoe Hard Rock Laboratory (HRL) in Sweden has been the main test site for the development of suitable methods for the final disposal of spent nuclear fuel. Major achievements have been made in the development of new groundwater sampling and modelling techniques. The natural condition of the groundwater is easily disturbed by drilling and sampling. The effects from borehole activities which may bias the real character of the groundwater have been identified. The development of new sampling techniques has improved the representativeness of the groundwater samples. In addition, methods to judge the representativeness better have been developed. For modelling of the Aespoe site, standard groundwater modelling codes based on thermodynamic laws have been applied. The many limitations of existing geochemical models used at the Aespoe site and the need to decode the complex groundwater information in terms of origin, mixing and reactions at site scale necessitated the development of a new modelling tool. This new modelling concept was named M3. In M3 modelling the assumption is that the groundwater chemistry is a result of mixing as well as water/rock reactions. The M3 model compares the groundwater compositions from a site. The similarities and differences of the groundwater compositions are used to quantify the contribution from mixing and reactions on the measured data. In order to construct a reliable model the major components, stable isotopes and tritium are used. Initially, the method quantifies the contribution from the flow system. Subsequently, contributions from reactions are calculated. The model differs from many other standard models which primarily use reactions rather than mixing to determine the groundwater evolution. The M3 code has been used for the following type of modelling: calculate the mixing portions at Aespoe, quantify the contribution from inorganic and organic reactions such as biogenic decomposition and sulphate

  9. Modeling transient groundwater age in the Middle Wairarapa Valley, New Zealand

    Science.gov (United States)

    Evison, R.; Daughney, C.; Jackson, B. M.; Toews, M. W.; Cornaton, F. J.; Gyopari, M.; McAllister, D.

    2013-12-01

    Age information provides insights into groundwater flow and transport processes and thus enables better groundwater management. It is accepted that groundwater is composed of a mixture of water with different ages. For example, a groundwater sample with an old mean age may still contain a fraction of young water; recent contamination is therefore a potential risk that may not be conveyed by consideration of the mean age alone. This project focuses on catchment-scale evaluation of the full distribution of groundwater age as a function of space and time in the 270 km2 Middle Wairarapa Valley, New Zealand. The Wairarapa Valley exhibits complex interactions between its rivers and shallow aquifers. Agriculture is an integral part of the region with widespread irrigation and nutrient application. This requires effective regional management due to the risk of contamination and depletion of groundwater reservoirs. The starting point was a transient finite-element groundwater flow model originally developed by Greater Wellington Regional Council (GWRC). The GWRC flow model was converted to simulate transport of the age tracer tritium using Ground Water (GW) software. There are several techniques to calibrate groundwater models and assess appropriate parameter values, all of which have the problem of non-uniqueness. In this study the Gauss-Marquardt-Levenberg method was utilized to calibrate the model (through PEST), but in order to increase robustness, a classic Monte Carlo method with uniform random sampling was also used to sample the domain's global range of flow and transport parameters. This provided an increased measure of confidence in model output, as the global range of parameter values could be explored, which is not achieved via the localized Gauss-Marquardt-Levenberg parameter estimation scheme. The calibration objective with both methods used least squares minimization between the simulated and observed hydraulic head levels and tritium concentrations. GW

  10. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT)

    Science.gov (United States)

    Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing

    2003-01-01

    SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.

  11. Integrated modelling for assessing the risk of TCE groundwater contamination to human and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Funder, Simon Goltermann; Finkel, Michael;

    2009-01-01

    management tools designed to work with sparse data sets from preliminary site assessments are needed which can explicitly link contaminant point sources with groundwater, surface water and ecological impacts. Here, a novel integrated modelling approach was employed for evaluating the impact of a TCE...... groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamics-based decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical volatilisation model for the stream...... of “effective” parameters in groundwater transport modelling. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk to either human or ecological receptors. The current work will be extended to additional...

  12. The effect of EDTA on the groundwater transport of thorium through sand.

    Science.gov (United States)

    May, Colin C; Young, Lindsay; Worsfold, Paul J; Heath, Sarah; Bryan, Nick D; Keith-Roach, Miranda J

    2012-10-01

    The effect of the anthropogenic complexing agent EDTA on thorium transport in groundwater has been studied using sand-packed columns and flow rates in the range of 20-100 m y⁻¹. The concentrations injected into the columns were in the range of 0.4-4 mM for Th and 4-40 mM for EDTA, and with EDTA:Th ratios in the range 1:1 to 10:1. The results show that EDTA can significantly increase Th transport, but two very different behaviours are observed at Th concentrations of 0.4 and 4 mM. At the lower concentration, Th breakthrough is retarded with respect to a conservative tracer, with a peak width that is consistent with a single K(d) value, followed by a longer tail, and the behaviour is very sensitive to the flow rate. However at 4 mM Th, the breakthrough peak appears near to that of the tracer, and the width of the peak is consistent with a distribution of K(d) values and/or a larger dispersivity than the tracer. Speciation and transport modelling have been used to interpret the data, and a model was developed that could explain the 0.4 mM behaviour. This suggests that ternary surface complexes are important in these systems, with at least two different species involved, although the complexity of Th speciation in these systems leads to significant uncertainty in the values of the equilibrium and kinetic parameters. For the 4 mM systems, the rapid transport observed could not be explained by a simple chemical model; instead it is likely that EDTA plays an important role in stabilising and transporting thorium colloids and clusters.

  13. Development of a numerical model to simulate groundwater flow in the shallow aquifer system of Assateague Island, Maryland and Virginia

    Science.gov (United States)

    Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.

    2013-01-01

    A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.

  14. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Taylour G., E-mail: tgburton@uh.edu [Civil and Environmental Engineering, University of Houston, W455 Engineering Bldg. 2, Houston, TX 77204-4003 (United States); Rifai, Hanadi S., E-mail: rifai@uh.edu [Civil and Environmental Engineering, University of Houston, N138 Engineering Bldg. 1, Houston, TX 77204-4003 (United States); Hildenbrand, Zacariah L., E-mail: zac@informenv.com [Inform Environmental, LLC, Dallas, TX 75206 (United States); Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Carlton, Doug D., E-mail: doug.carlton@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Fontenot, Brian E., E-mail: brian.fonteno@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. - Graphical abstract: A relative increase in beryllium concentrations in groundwater for the Barnett Shale region from 2001 to 2011 was visually correlated with the locations of gas wells in the region that have been hydraulically fractured over the same time period

  15. Parameter Estimation and Experimental Design in Groundwater Modeling

    Institute of Scientific and Technical Information of China (English)

    SUN Ne-zheng

    2004-01-01

    This paper reviews the latest developments on parameter estimation and experimental design in the field of groundwater modeling. Special considerations are given when the structure of the identified parameter is complex and unknown. A new methodology for constructing useful groundwater models is described, which is based on the quantitative relationships among the complexity of model structure, the identifiability of parameter, the sufficiency of data, and the reliability of model application.

  16. Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells.

    Science.gov (United States)

    Aisopou, Angeliki; Binning, Philip J; Albrechtsen, Hans-Jørgen; Bjerg, Poul L

    2015-01-01

    This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly affect the pesticide breakthrough time and maximum concentration at the well. The effect of the pumping rate on the pesticide concentration depends on the hydrogeology of the aquifer; in a layered aquifer, a high pumping rate resulted in a considerably different breakthrough than a low pumping rate, while in an aquifer with a stream the effect of the pumping rate was insignificant. Pesticide application history and properties have also a great impact on the effect of the pumping rate on the concentration at the well. The findings of the study show that variable pumping rates can generate temporal variability in the concentration at the well, which helps understanding the results of groundwater monitoring programs. The results are used to provide guidance on the design of pumping and regulatory changes for the long-term supply of safe groundwater. The fate of selected pesticides is examined, for example, if the application of bentazone in a region with a layered aquifer stops today, the concentration at the well can continue to increase for 20 years if a low pumping rate is applied. This study concludes that because of the rapid response of the pesticide concentration at the drinking water well due to changes in pumping, wellhead management is important for managing pesticide concentrations.

  17. Climate change impact on freshwater resources in a deltaic environment: A groundwater modeling study

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, John D.; Panagopoulos, Andreas; Nastos, Panagiotis T.; Kotsopoulos, Spyros; Ghionis, George; Poulos, Serafim

    2016-04-01

    Climate change is expected to affect the hydrological cycle, altering seawater level and groundwater recharge to coastal aquifers with various other associated impacts on natural ecosystems and human activities. As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. This study investigates the impacts of climate change on the groundwater of the deltaic plain of River Pinios (Central Greece). Geophysical data processing indicates that the phreatic aquifer extends mainly in the central and northern parts of the region. A one-layer transient groundwater flow and contaminant mass transport model of the aquifer system is calibrated and validated. Impacts of climate change were evaluated by incorporating the estimated recharge input and sea level change of different future scenarios within the simulation models. The most noticeable and consistent result of the climate change impact simulations is a prominent sea water intrusion in the coastal aquifer mainly as a result of sea level change which underlines the need for a more effective planning of environmental measures.

  18. Groundwater Risk Assessment Model (GRAM: Groundwater Risk Assessment Model for Wellfield Protection

    Directory of Open Access Journals (Sweden)

    Nara Somaratne

    2013-09-01

    Full Text Available A groundwater risk assessment was carried out for 30 potable water supply systems under a framework of protecting drinking water quality across South Australia. A semi-quantitative Groundwater Risk Assessment Model (GRAM was developed based on a “multi-barrier” approach using likelihood of release, contaminant pathway and consequence equation. Groundwater vulnerability and well integrity have been incorporated to the pathway component of the risk equation. The land use of the study basins varies from protected water reserves to heavily stocked grazing lands. Based on the risk assessment, 15 systems were considered as low risk, four as medium and 11 systems as at high risk. The GRAM risk levels were comparable with indicator bacteria—total coliform—detection. Most high risk systems were the result of poor well construction and casing corrosion rather than the land use. We carried out risk management actions, including changes to well designs and well operational practices, design to increase time of residence and setting the production zone below identified low permeable zones to provide additional barriers to contaminants. The highlight of the risk management element is the well integrity testing using down hole geophysical methods and camera views of the casing condition.

  19. Monitoring and modelling terbuthylazine and desethyl-terbuthylazine in groundwater.

    Science.gov (United States)

    Fait, G.; Balderacchi, M.; Ferrari, F.; Capri, E.; Trevisan, M.

    2009-04-01

    the future. Therefore, after the monitoring study the leaching of terbuthylazine and desethyl-terbuthylazine in groundwater was simulated with the aim to: 1) to verify a possible dilution effect due to lateral recharge; 2) to verify that the sampling time during the monitoring study was appropriate; 3) to verify the leaching of the metabolites in time. The model MACRO (version 5.1) was used. MACRO is a physically based one-dimensional model, which considers preferential flow (i.e. 'micropores' and 'macropores') to describe the transport of water and solutes in soils. Using the data coming from the monitoring (i.e.: soil, climatic, geology and hydrological data) a scenario was set in each of the eleven Italian sites monitored from 2005 to 2007. A maize monoculture was simulated for 20 years in each site, with a pre-emergence treatment every year. Daily measurements of groundwater table depth were available for each site, and then these data were used in order to reach a good calibration of the soil hydrology. Two sets of soil data were used: soil data acquired from the analysis of the soil core sampled in each site and soil data of the corresponding reference profile obtained from the regional soil maps. Furthermore, in order to estimate soil hydraulic parameters, two sets of pedotransfer functions were used: one developed for the northern Europe soils and one developed for the Po Valley soils. The results showed that the groundwater table depth simulated fitted quite well with the measured data, and then it was demonstrated that the groundwater recharge was constant in time. Only in one site measured and simulated groundwater table depth did not match to each other. This case suggested that hydrological equilibrium was not given only by precipitation/irrigation and evapotranspiration, then lateral or bottom recharge and a consequent dilution effect were assumed. Furthermore, in order to estimate the lateral recharge "Darcy's Law" was applied and it was demonstrated

  20. Regional groundwater flow modeling of the Geba basin, northern Ethiopia

    Science.gov (United States)

    Gebreyohannes, Tesfamichael; De Smedt, Florimond; Walraevens, Kristine; Gebresilassie, Solomon; Hussien, Abdelwassie; Hagos, Miruts; Amare, Kassa; Deckers, Jozef; Gebrehiwot, Kindeya

    2017-01-01

    The Geba basin is one of the most food-insecure areas of the Tigray regional state in northern Ethiopia due to recurrent drought resulting from erratic distribution of rainfall. Since the beginning of the 1990s, rain-fed agriculture has been supported through small-scale irrigation schemes mainly by surface-water harvesting, but success has been limited. Hence, use of groundwater for irrigation purposes has gained considerable attention. The main purpose of this study is to assess groundwater resources in the Geba basin by means of a MODFLOW modeling approach. The model is calibrated using observed groundwater levels, yielding a clear insight into the groundwater flow systems and reserves. Results show that none of the hydrogeological formations can be considered as aquifers that can be exploited for large-scale groundwater exploitation. However, aquitards can be identified that can support small-scale groundwater abstraction for irrigation needs in regions that are either designated as groundwater discharge areas or where groundwater levels are shallow and can be tapped by hand-dug wells or shallow boreholes.

  1. Regional groundwater flow modeling of the Geba basin, northern Ethiopia

    Science.gov (United States)

    Gebreyohannes, Tesfamichael; De Smedt, Florimond; Walraevens, Kristine; Gebresilassie, Solomon; Hussien, Abdelwassie; Hagos, Miruts; Amare, Kassa; Deckers, Jozef; Gebrehiwot, Kindeya

    2017-05-01

    The Geba basin is one of the most food-insecure areas of the Tigray regional state in northern Ethiopia due to recurrent drought resulting from erratic distribution of rainfall. Since the beginning of the 1990s, rain-fed agriculture has been supported through small-scale irrigation schemes mainly by surface-water harvesting, but success has been limited. Hence, use of groundwater for irrigation purposes has gained considerable attention. The main purpose of this study is to assess groundwater resources in the Geba basin by means of a MODFLOW modeling approach. The model is calibrated using observed groundwater levels, yielding a clear insight into the groundwater flow systems and reserves. Results show that none of the hydrogeological formations can be considered as aquifers that can be exploited for large-scale groundwater exploitation. However, aquitards can be identified that can support small-scale groundwater abstraction for irrigation needs in regions that are either designated as groundwater discharge areas or where groundwater levels are shallow and can be tapped by hand-dug wells or shallow boreholes.

  2. Data fusion modeling for groundwater systems

    Science.gov (United States)

    Porter, David W.; Gibbs, Bruce P.; Jones, Walter F.; Huyakorn, Peter S.; Hamm, L. Larry; Flach, Gregory P.

    2000-03-01

    Engineering projects involving hydrogeology are faced with uncertainties because the earth is heterogeneous, and typical data sets are fragmented and disparate. In theory, predictions provided by computer simulations using calibrated models constrained by geological boundaries provide answers to support management decisions, and geostatistical methods quantify safety margins. In practice, current methods are limited by the data types and models that can be included, computational demands, or simplifying assumptions. Data Fusion Modeling (DFM) removes many of the limitations and is capable of providing data integration and model calibration with quantified uncertainty for a variety of hydrological, geological, and geophysical data types and models. The benefits of DFM for waste management, water supply, and geotechnical applications are savings in time and cost through the ability to produce visual models that fill in missing data and predictive numerical models to aid management optimization. DFM has the ability to update field-scale models in real time using PC or workstation systems and is ideally suited for parallel processing implementation. DFM is a spatial state estimation and system identification methodology that uses three sources of information: measured data, physical laws, and statistical models for uncertainty in spatial heterogeneities. What is new in DFM is the solution of the causality problem in the data assimilation Kalman filter methods to achieve computational practicality. The Kalman filter is generalized by introducing information filter methods due to Bierman coupled with a Markov random field representation for spatial variation. A Bayesian penalty function is implemented with Gauss-Newton methods. This leads to a computational problem similar to numerical simulation of the partial differential equations (PDEs) of groundwater. In fact, extensions of PDE solver ideas to break down computations over space form the computational heart of DFM

  3. Groundwater governance: A tale of three participatory models in Andhra Pradesh, India

    National Research Council Canada - National Science Library

    V Ratna Reddy; M Srinivasa Reddy; Sanjit Kumar Rout

    2014-01-01

    .... The main focus of the study is to understand the functioning and efficiency of groundwater management institutions by comparing and contrasting three participatory groundwater models in Andhra Pradesh...

  4. Analytical models for the groundwater tidal prism and associated benthic water flux

    Science.gov (United States)

    King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.

    2010-01-01

    The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.

  5. Analysis and integrated modelling of groundwater infiltration to sewer networks

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Balling, Jonas Dueholm; Larsen, Uffe Bay Bøgh

    2016-01-01

    Infiltration of groundwater to sewer systems is a problem for the capacity of the system as well as for treatment processes at waste water treatment plants. This paper quantifies the infiltration of groundwater to a sewer system in Frederikshavn Municipality, Denmark, by measurements of sewer flow...... and novel model set-up, which simulates the interaction between groundwater and sewer flow. The study area has a separate waste water sewer system, but the discharged volumes from the system are approximately twice the volumes from a tight system without infiltration. The model set-up makes use of two...

  6. Using airborne geophysical surveys to improve groundwater resource management models

    Science.gov (United States)

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.

    2010-01-01

    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  7. Groupage Cargo Transportation Model

    Directory of Open Access Journals (Sweden)

    Aleksejevs Ruslans

    2016-03-01

    Full Text Available In this work we consider a specific problem of optimal planning of maritime transportation of multiproduct cargo by ships of one (corporate strategy or several (partially corporate strategy companies: the core of the problem consists of the existence of the network of intermediate seaports (i.e. transitional seaports, where for every ship arrived the cargo handling is done, and which are situated between the starting and the finishing seaports. In this work, there are mathematical models built from scratch in the form of multicriteria optimization problem; then the goal attainment method of Gembicki is used for reducing the built models to a one-criterion problem of linear programming.

  8. Improved water resource management using three dimensional groundwater modelling for a highly complex environmental

    Science.gov (United States)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2017-04-01

    Proper allocation and management of groundwater is an important and critical challenge under rising water demands of various environmental sectors but good groundwater quality is often limited because of urbanization and contamination of aquifers. Given the predictive capability of groundwater models, they are often the only viable means of providing input to water management decisions. However, modelling flow and transport processes can be difficult due to their unknown subsurface heterogeneity and typically unknown distribution of contaminants. As a result water resource management tasks are based on uncertain assumption on contaminants patterns and this uncertainty is typically not incorporated into the assessment of risks associated with different proposed management scenarios. A three-dimensional groundwater model was used to improve water resource management for a study area, where drinking water production is close to different former landfills and industrial areas. To avoid drinking water contamination, artificial groundwater recharge with surface water into the gravel aquifer is used to create a hydraulic barrier between contaminated sites and drinking water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction and magnitude between existing observation points using a newly developed three point estimation method for a large amount of scenarios was carried out. Due to the numerous observation points 32 triangles (three-points) were created which cover the entire area around the Hardwald. We demonstrated that systematically applying our developed methodology helps to identify important locations which are sensitive to changing boundary conditions and where additional protection is required without highly computational demanding transport modelling. The presented integrated approach using the flow direction

  9. Subsurface transport modeling of the Savannah River and Yucca Mountain Sites

    Energy Technology Data Exchange (ETDEWEB)

    Dunlap, B.E.; Pepper, D.W. [Univ. of Nevada, Las Vegas, NV (United States); Stephenson, D.E. [Westinghouse Res. Tech. Center, Aiken, SC (United States)

    1994-12-31

    An adaptive two-dimensional finite element method is used to model groundwater flow and contaminant transport in variably saturated porous media. The model is applied to known groundwater contamination at the Savannah River Site, which consists of multiple ground strata. A simulation of the proposed Yucca Mountain Repository Site is also executed to assess potential burial of radioactive waste.

  10. Quantification of conservative and reactive transport using a single groundwater tracer test in a fractured media

    Science.gov (United States)

    Chatton, Eliot; Labasque, Thierry; Guillou, Aurélie; Béthencourt, Lorine; de La Bernardie, Jérôme; Boisson, Alexandre; Koch, Florian; Aquilina, Luc

    2017-04-01

    Identification of biogeochemical reactions in aquifers and determining kinetics is important for the prediction of contaminant transport in aquifers and groundwater management. Therefore, experiments accounting for both conservative and reactive transport are essential to understand the biogeochemical reactivity at field scale. This study presents the results of a groundwater tracer test using the combined injection of dissolved conservative and reactive tracers (He, Xe, Ar, Br-, O2 and NO3-) in order to evaluate the transport properties of a fractured media in Brittany, France. Dissolved gas concentrations were continuously monitored in situ with a CF-MIMS (Chatton et al, 2016) allowing a high frequency (1 gas every 2 seconds) multi-tracer analysis (N2, O2, CO2, CH4, N2O, H2, He, Ne, Ar, Kr, Xe) over a large resolution (6 orders of magnitude). Along with dissolved gases, groundwater biogeochemistry was monitored through the sampling of major anions and cations, trace elements and microbiological diversity. The results show breakthrough curves allowing the combined quantification of conservative and reactive transport properties. This ongoing work is an original approach investigating the link between heterogeneity of porous media and biogeochemical reactions at field scale. Eliot Chatton, Thierry Labasque, Jérôme de La Bernardie, Nicolas Guihéneuf, Olivier Bour and Luc Aquilina; Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow; Environmental Science & Technology, in press, 2016.

  11. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  12. Development of monitoring and modelling tools as basis for sustainable thermal management concepts of urban groundwater bodies

    Science.gov (United States)

    Mueller, Matthias H.; Epting, Jannis; Köhler, Mandy; Händel, Falk; Huggenberger, Peter

    2015-04-01

    Increasing groundwater temperatures observed in many urban areas strongly interfere with the demand of thermal groundwater use. The groundwater temperatures in these urban areas are affected by numerous interacting factors: open and closed-loop geothermal systems for heating and cooling, sealed surfaces, constructions in the subsurface (infrastructure and buildings), artificial groundwater recharge, and interaction with rivers. On the one hand, these increasing groundwater temperatures will negatively affect the potential for its use in the future e.g. for cooling purposes. On the other hand, elevated subsurface temperatures can be considered as an energy source for shallow geothermal heating systems. Integrated thermal management concepts are therefore needed to coordinate the thermal use of groundwater in urban areas. These concepts should be based on knowledge of the driving processes which influence the thermal regime of the aquifer. We are currently investigating the processes influencing the groundwater temperature throughout the urban area of Basel City, Switzerland. This involves a three-dimensional numerical groundwater heat-transport model including geothermal use and interactions with the unsaturated zone such as subsurface constructions reaching into the aquifer. The cantonal groundwater monitoring system is an important part of the data base in our model, which will help to develop sustainable management strategies. However, single temperature measurements in conventional groundwater wells can be biased by vertical thermal convection. Therefore, multilevel observation wells are used in the urban areas of the city to monitor subsurface temperatures reaching from the unsaturated zone to the base of the aquifer. These multilevel wells are distributed in a pilot area in order to monitor the subsurface temperatures in the vicinity of deep buildings and to quantify the influence of the geothermal use of groundwater. Based on time series of the conventional

  13. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  14. Solute Transport Modeling Application in Groundwater Organic Contaminant Source Identification%溶质迁移模型在地下水有机污染源识别中的应用

    Institute of Scientific and Technical Information of China (English)

    王树芳; 王丽亚; 王晓红; 林沛; 刘久荣; 辛宝东; 贺国平

    2012-01-01

    Investigation and numerical simulation,based on RT3D(reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene(PCE) and trichloroethylene(TCE) in the groundwater of a city in the north of China and reverse the input intensity.Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab.The results indicate that the factories and industries are the source of the PCE and TCE in groundwater.Natural attenuation was identified and the natural attenuation rates are 93.15%、 61.70% and 61.00% for PCE,and 70.05%、 73.66% and 63.66% for TCE in 173 days.The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period.The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater.The PCE and TCE concentration are found to be 0 and 5 mg·kg-1from surface to 35 cm in vadose zone.All above results suggest that PCE and TCE in groundwater are from the source in the surface.Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater,and the rest was transported to groundwater through vadose zone.Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand,pebble and gravel of the Quaternary.%采用现场调查与数值模拟的方法,借助RT3D(reactive transport in 3-dimensions),对我国北方某城市局部地区地下水中的四氯乙烯(PCE)和三氯乙烯(TCE)污染来源进行了识别,对污染输入强度进行了反演,并利用Matlab中的Stepwise函数,对影响污染物输入强度的因素进行了多元回归分析.研究结果显示,研究区地下水中的PCE和TCE主要来源于区内使用有机溶剂的工厂和企业.地下水

  15. Towards a filtered density function approach for reactive transport in groundwater

    Science.gov (United States)

    Suciu, N.; Schüler, L.; Attinger, S.; Knabner, P.

    2016-04-01

    Evolution equations for probability density functions (PDFs) and filtered density functions (FDFs) of random species concentrations weighted by conserved scalars are formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. This approach provides consistent numerical PDF/FDF solutions, given by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. The solutions are obtained by a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. The general FDF approach and the GRW numerical solution are illustrated for a reduced complexity problem consisting of the transport of a single scalar in groundwater. Randomness is induced by the stochastic parameterization of the hydraulic conductivity, characterized by short range correlations and small variance. The objective is to infer the statistics of the random concentration sampled at the plume center of mass, integrated over the transverse dimension of a two-dimensional spatial domain. The PDF/FDF problem can therefore be formulated in a two-dimensional domain as well, a spatial dimension and one in the concentration space. The upscaled drift and diffusion coefficients describing the PDF transport in the physical space are estimated on single-trajectories of diffusion in velocity fields with short-range correlations, owing to their self-averaging property. The mixing coefficients describing the PDF transport in concentration spaces are parameterized by the trend and the noise inferred from the statistical analysis of an ensemble of simulated concentration time series, as well as by classical mixing models. A Gaussian spatial filter applied to a Kraichnan velocity field generator is used to construct coarse-grained simulations (CGS) for FDF problems. The purposes of the CGS simulations are

  16. The nature and role of physical models in enhancing sixth grade students' mental models of groundwater and groundwater processes

    Science.gov (United States)

    Duffy, Debra Lynne Foster

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate students' ideas and changes in ideas rather than measure their achievement. The measures included a groundwater survey, classroom observations, and one-on-one follow-up student interviews for triangulation of data sources. The research was carried out at a K-12 independent school in eastern Virginia using two classes of sixth grade earth science students (n=30). The findings suggest that physical models help students identify the components porosity and permeability with respect to water flow in groundwater systems. Higher levels of system thinking were best demonstrated in model components that allowed students to experience groundwater pollution activities and pumping groundwater wells. However, the results also indicated that due to model constraints, students can develop misconceptions during the use of physical models, specifically more complex physical models as in the Groundwater Exploration Activity Model. A pure discovery learning format while using physical models without guidance or formative assessment probes can lead to misconceptions about groundwater processes as well as confusion between model attributes and real world groundwater systems. The implications of this study relate directly to the inclusion of groundwater in the new national science standards released in 2011; A Framework for K-12 Science Standard; Practices, Crosscutting Concepts, and Core Ideas (NRC, 2011). The new national standards, as in other educational reform efforts, will have the ability to affect curricular and instructional strategies in science education. From the results of this study, it was concluded that best practices for using

  17. Distributed models coupling soakaways, urban drainage and groundwater

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin

    , and how these can be modeled in an integrated environment with distributed urban drainage and groundwater flow models. The thesis: 1. Identifies appropriate models of soakaways for use in an integrated and distributed urban water and groundwater modeling system 2. Develops a modeling concept that is able...... of the literature and on modeling studies, a new modeling concept is proposed which fulfills the need for integrated models coupling distributed urban drainage with groundwater. The suggested solution consists of a base equation for soakaway infiltration and additional components for clogging, upscaling......Alternative methods for stormwater management in urban areas, also called Water Sensitive Urban Design (WSUD) methods, have become increasingly important for the mitigation of urban stormwater management problems such as high runoff volumes, combined sewage overflows, poor water quality...

  18. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  19. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  20. Transport hub flow modelling

    OpenAIRE

    Despagne, Wilfried; Frenod, Emmanuel

    2014-01-01

    Purpose: The purpose of this paper is to investigate the road freight haulage activity. Using the physical and data flow information from a freight forwarder, we intend to model the flow of inbound and outbound goods in a freight transport hub. Approach: This paper presents the operation of a road haulage group. To deliver goods within two days to any location in France, a haulage contractor needs to be part of a network. This network handles the processing of both physical goods and data. We...

  1. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    Science.gov (United States)

    Paulson, A.J.; Balistrieri, L.

    1999-01-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal

  2. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.

    2008-01-01

    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by

  3. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.

    2008-01-01

    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by V

  4. LINEAR MODELS FOR MANAGING SOURCES OF GROUNDWATER POLLUTION.

    Science.gov (United States)

    Gorelick, Steven M.; Gustafson, Sven-Ake; ,

    1984-01-01

    Mathematical models for the problem of maintaining a specified groundwater quality while permitting solute waste disposal at various facilities distributed over space are discussed. The pollutants are assumed to be chemically inert and their concentrations in the groundwater are governed by linear equations for advection and diffusion. The aim is to determine a disposal policy which maximises the total amount of pollutants released during a fixed time T while meeting the condition that the concentration everywhere is below prescribed levels.

  5. Developing a high resolution groundwater model for Indonesia

    Science.gov (United States)

    Sutanudjaja, E.; de Graaf, I. E.; Alberti, K.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    Groundwater is important in many parts of Indonesia. It serves as a primary source of drinking water and industrial activities. During times of drought, it sustains water flows in streams, rivers, lakes and wetlands, and thus support ecosystem habitat and biodiversity, as well as preventing hazardous forest fire. Besides its importance, groundwater is known as a vulnerable resource as unsustainable groundwater exploitation and management occurs in many areas of the country. Therefore, in order to ensure sustainable management of groundwater resources, monitoring and predicting groundwater changes in Indonesia are imperative. However, large-extent groundwater models to assess these changes on a regional scale are almost non-existent and are hampered by the strong topographical and lithological transitions that characterize Indonesia. In this study, we built an 1 km resolution of steady-state groundwater model for the entire Indonesian archipelago (total inland area: about 2 million km2). Here we adopted the approach of Sutanudjaja et al. (2011) in order to make a MODFLOW (McDonald and Harbaugh, 1988) groundwater model by using only global datasets. Aquifer schematization and properties of the groundwater model were developed from available global lithological map (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorf, 2012). We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. Results are promising. The MODFLOW model can converge with realistic aquifer properties (i.e. transmissivities) and produce reasonable groundwater head spatial distribution that reflects the positions of major groundwater bodies and surface water bodies in the country. For this session, we aim to demonstrate and discuss the results and the prospects of this modeling study. References: D

  6. Development of Groundwater Modeling Capacity in Mongolia: Keys to Success

    Science.gov (United States)

    Anderson, M. T.; Valder, J. F.; Carter, J. M.

    2015-12-01

    Ulaanbaatar, the capital city of Mongolia, is totally dependent on groundwater for its municipal and industrial water supply. Water is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence, however, suggests that current water use and especially the projected water demand from a rapidly growing urban population, is not sustainable from existing water sources. In response, the Mongolia Ministry of Environment and the Mongolian Fresh Water Institute requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers to the U.S. Geological Survey (USGS). Scientists from the USGS-SD Water Science Center provided a workshop to Mongolian water experts on basic principles of groundwater modeling using MODFLOW. The purpose of the workshop was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling. A preliminary steady-state groundwater flow model was developed to simulate groundwater conditions in the Tuul River Basin and for use in water use decision-making. The model consisted of 2 layers, 226 rows, and 260 columns with uniform 500 meter grid spacing. The upper model layer represented the alluvial aquifer and the lower layer represented the underlying bedrock, which includes areas characterized by permafrost. Estimated groundwater withdrawal was 180 m3/day, and estimated recharge was 114 mm/yr. The model will be modified and updated by Mongolian scientists as more data are available. Ultimately the model will be used to assist managers in developing a sustainable water supply, for current use and changing climate scenarios. A key to success was developing in-country technical capacity and partnerships with the Mongolian University of Science and Technology, Mongolian Freshwater Institute, a non-profit organization, UNESCO, and the government of Mongolia.

  7. Bridging groundwater models and decision support with a Bayesian network

    Science.gov (United States)

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  8. Transport properties site descriptive model. Guidelines for evaluation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Sten [WSP Environmental, Stockholm (Sweden); Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-04-01

    modelling of transport properties, and hence the guidelines in this report, involve two main categories of parameters: Parameters that characterise the retention properties of geologic materials. These parameters quantify the diffusion and sorption properties of intact and altered rock, fracture coatings and fracture-filling materials, and are described within the framework of the 3D geometric models devised by Geology. Parameters that characterise solute transport along flow paths (flow-related transport parameters). These parameters include the 'F-parameter' and 'water travel time', tw, and parameters that account for spatial variability in diffusion and sorption. The flow-related parameters are obtained by means of particle tracking simulations in groundwater flow models.

  9. The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst

    Science.gov (United States)

    Gondwe, Bibi R. N.; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

    2011-03-01

    . Groundwater travel time zones were calculated based on different calibrated effective porosities. The spatial modelling results highlight the impact of regional-scale structures on the flow field and transport times.

  10. A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water

    OpenAIRE

    Gusyev, M. A.; D. Abrams; Toews, M. W.; U. Morgenstern; M. K. Stewart

    2014-01-01

    The purpose of this study is to simulate tritium concentrations and groundwater transit times in river water with particle-tracking (MODPATH) and compare them to solute transport (MT3DMS) simulations. Tritium measurements in river water are valuable for the calibration of particle-tracking and solute transport models as well as for understanding of watershed storage dynamics. In a previous study, we simulated tritium concentrations in river water of the western Lake Taupo...

  11. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  12. Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

    2008-09-01

    Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

  13. Spatial modeling for groundwater arsenic levels in North Carolina.

    Science.gov (United States)

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  14. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.

    Science.gov (United States)

    Rolle, Massimo; Chiogna, Gabriele; Hochstetler, David L; Kitanidis, Peter K

    2013-10-01

    Mixing processes significantly affect and limit contaminant transport and transformation rates in the subsurface. The correct quantification of mixing in groundwater systems must account for diffusion, local-scale dispersion and the flow variability in heterogeneous flow fields (e.g., flow-focusing in high-conductivity and de-focusing in low-conductivity zones). Recent results of multitracer laboratory experiments revealed the significant effect of compound-specific diffusive properties on the physical displacement of dissolved species across a representative range of groundwater flow velocities. The goal of this study is to investigate the role of diffusion and compound-specific mixing for solute transport across a range of scales including: (i) pore-scale (~10⁻² m), (ii) laboratory bench-scale (~10⁰ m) and (iii) field-scale (~10² m). We investigate both conservative and mixing-controlled reactive transport using pore-scale modeling, flow-through laboratory experiments and simulations, and field-scale numerical modeling of complex heterogeneous hydraulic conductivity fields with statistical properties similar to the ones reported for the extensively investigated Borden aquifer (Ontario, Canada) and Columbus aquifer (Mississippi, USA, also known as MADE site). We consider different steady-state and transient transport scenarios. For the conservative cases we use as a metric of mixing the exponential of the Shannon entropy to quantify solute dilution either in a given volume (dilution index) or in a given solute flux (flux-related dilution index). The decrease in the mass and the mass-flux of the contaminant plumes is evaluated to quantify reactive mixing. The results show that diffusive processes, occurring at the small-scale of a pore channel, strongly affect conservative and reactive solute transport at larger macroscopic scales. The outcomes of our study illustrate the need to consider and properly account for compound-specific diffusion and mixing

  15. Groundwater Modeling in Coastal Arid Regions Under the Influence of Marine Saltwater Intrusion

    Science.gov (United States)

    Walther, Marc; Kolditz, Olaf; Grundmann, Jens; Liedl, Rudolf

    2010-05-01

    The optimization of an aquifer's "safe yield", especially within agriculturally used regions, is one of the fundamental tasks for nowaday's groundwater management. Due to the limited water ressources in arid regions, conflict of interests arise that need to be evaluated using scenario analysis and multicriterial optimization approaches. In the context of the government-financed research project "International Water Research Alliance Saxony" (IWAS), the groundwater quality for near-coastal, agriculturally used areas is investigated under the influence of marine saltwater intrusion. Within the near-coastal areas of the study region, i.e. the Batinah plains of Northern Oman, an increasing agricultural development could be observed during the recent decades. Simultaneously, a constant lowering of the groundwater table was registered, which is primarily due to the uncontrolled and unsupervised mining of the aquifers for the local agricultural irrigation. Intensively decreased groundwater levels, however, cause an inversion of the hydraulic gradient which is naturally aligned towards the coast. This, in turn,leads to an intrusion of marine saltwater flowing inland, endangering the productivity of farms near the coast. Utilizing the modeling software package OpenGeoSys, which has been developed and constantly enhanced by the Department of Environmental Informatics at the Helmholtz Centre for Environmental Research Leipzig (UFZ; Kolditz et al., 2008), a three-dimensional, density-dependent model including groundwater flow and mass transport is currently being built up. The model, comprehending three selected coastal wadis of interest, shall be used to investigate different management scenarios. The main focus of the groundwater modelling are the optimization of well positions and pumping schemes as well as the coupling with a surface runoff model, which is also used for the determination of the groundwater recharge due to wadi runoff downstream of retention dams. Based on

  16. Groundwater flow modelling of an abandoned partially open repository

    Energy Technology Data Exchange (ETDEWEB)

    Bockgaard, Niclas (Golder Associates AB (Sweden))

    2010-12-15

    As a part of the license application, according to the nuclear activities act, for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study presented here serves as an input for analyses of so-called future human actions that may affect the repository. The objective of the work was to investigate the hydraulic influence of an abandoned partially open repository. The intention was to illustrate a pessimistic scenario of the effect of open tunnels in comparison to the reference closure of the repository. The effects of open tunnels were studied for two situations with different boundary conditions: A 'temperate' case with present-day boundary conditions and a generic future 'glacial' case with an ice sheet covering the repository. The results were summarized in the form of analyses of flow in and out from open tunnels, the effect on hydraulic head and flow in the surrounding rock volume, and transport performance measures of flow paths from the repository to surface

  17. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  18. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    Science.gov (United States)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  19. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, A.J.; Balistrieri, L.

    1999-11-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.

  20. Study on the Estimation of Groundwater Withdrawals Based on Groundwater Flow Modeling and Its Application in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    Jingli Shao; Yali Cui; Qichen Hao; Zhong Han; Tangpei Cheng

    2014-01-01

    The amount of water withdrawn by wells is one of the quantitative variables that can be applied to estimate groundwater resources and further evaluate the human influence on ground-water systems. The accuracy for the calculation of the amount of water withdrawal significantly in-fluences the regional groundwater resource evaluation and management. However, the decentralized groundwater pumping, inefficient management, measurement errors and uncertainties have resulted in considerable errors in the groundwater withdrawal estimation. In this study, to improve the esti-mation of the groundwater withdrawal, an innovative approach was proposed using an inversion method based on a regional groundwater flow numerical model, and this method was then applied in the North China Plain. The principle of the method was matching the simulated water levels with the observation ones by adjusting the amount of groundwater withdrawal. In addition, uncertainty analysis of hydraulic conductivity and specific yield for the estimation of the groundwater with-drawal was conducted. By using the proposed inversion method, the estimated annual average groundwater withdrawal was approximately 24.92×109 m3 in the North China Plain from 2002 to 2008. The inversion method also significantly improved the simulation results for both hydrograph and the flow field. Results of the uncertainty analysis showed that the hydraulic conductivity was more sensitive to the inversion results than the specific yield.

  1. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Kapil K., E-mail: kkn2104@columbia.edu [Columbia Water Center (India Office), Columbia University, New Delhi 110 016 (India); Gosain, A.K. [Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016 (India)

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km{sup 2} with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO{sub 3}) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO{sub 3} transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R{sup 2} correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO{sub 3} removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO{sub 3} concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the

  2. Effects of alongshore morphology on groundwater flow and solute transport in a nearshore aquifer

    Science.gov (United States)

    Zhang, Ying; Li, Ling; Erler, Dirk V.; Santos, Isaac; Lockington, David

    2016-02-01

    Variations of beach morphology in both the cross-shore and alongshore directions, associated with tidal creeks, are common at natural coasts, as observed at a field site on the east coast of Rarotonga, Cook Islands. Field investigations and three-dimensional (3-D) numerical simulations were conducted to study the nearshore groundwater flow and solute transport in such a system. The results show that the beach morphology, combined with tides, induced a significant alongshore flow and modified local pore water circulation and salt transport in the intertidal zone substantially. The bathymetry and hydraulic head of the creek enabled further and more rapid landward intrusion of seawater along the creek than in the aquifer, which created alongshore hydraulic gradient and solute concentration gradient to drive pore water flow and salt transport in the alongshore direction within the aquifer. The effects of the creek led to the formation of a saltwater plume in groundwater at an intermediate depth between fresher water zones on a cross-shore transect. The 3-D pore water flow in the nearshore zone was also complicated by the landward hydraulic head condition, resulting in freshwater drainage across the inland section of the creek while seawater infiltrating the seaward section. These results provided new insights into the complexity, intensity, and time scales of mixing among fresh groundwater, recirculating seawater and creek water in three dimensions. The 3-D characteristics of nearshore pore water flow and solute transport have important implications for studies of submarine groundwater discharge and associated chemical input to the coastal sea, and for evaluation of the beach habitat conditions.

  3. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D. A. [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1992-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  4. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    Science.gov (United States)

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    public-supply wells in Clark County may be receiving a component of water that recharged in areas that are more conducive to contaminant entry. The aquifer sensitivity maps illustrate a critical deficiency in the DRASTIC methodology: the failure to account for the dynamics of the ground-water flow system. DRASTIC indices calculated for a particular location thus do not necessarily reflect the conditions of the ground-water resources at the recharge areas to that particular location. Each hydrogeologic unit was also mapped to highlight those areas that will eventually receive flow from recharge areas with on-site waste-disposal systems. Most public-supply wells in southern Clark County may eventually receive a component of water that was recharged from on-site waste-disposal systems.Traveltimes from particle tracking were used to estimate the minimum and maximum age of ground water within each model-grid cell. Chlorofluorocarbon (CFC)-age dating of ground water from 51 wells was used to calibrate effective porosity values used for the particle- tracking program by comparison of ground-water ages determined through the use of the CFC-age dating with those calculated by the particle- tracking program. There was a 76 percent agreement in predicting the presence of modern water in the 51 wells as determined using CFCs and calculated by the particle-tracking program. Maps showing the age of ground water were prepared for all the hydrogeologic units. Areas with the youngest ground-water ages are expected to be at greatest risk for contamination from anthropogenic sources. Comparison of these maps with maps of public- supply wells in Clark County indicates that most of these wells may withdraw ground water that is, in part, less than 100 years old, and in many instances less than 10 years old. Results of the analysis showed that a single particle-tracking analysis simulating advective transport can be used to evaluate ground-water vulnerability for any part of a ground-wate

  5. Ensemble models on palaeoclimate to predict India's groundwater challenge

    Directory of Open Access Journals (Sweden)

    Partha Sarathi Datta

    2013-09-01

    Full Text Available In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.

  6. Underground Test Area Subproject Phase I Data Analysis Task. Volume VI - Groundwater Flow Model Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-11-01

    Volume VI of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the groundwater flow model data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  7. Kriging-approximation simulated annealing algorithm for groundwater modeling

    Science.gov (United States)

    Shen, C. H.

    2015-12-01

    Optimization algorithms are often applied to search best parameters for complex groundwater models. Running the complex groundwater models to evaluate objective function might be time-consuming. This research proposes a Kriging-approximation simulated annealing algorithm. Kriging is a spatial statistics method used to interpolate unknown variables based on surrounding given data. In the algorithm, Kriging method is used to estimate complicate objective function and is incorporated with simulated annealing. The contribution of the Kriging-approximation simulated annealing algorithm is to reduce calculation time and increase efficiency.

  8. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    Science.gov (United States)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  9. Groundwater Flow and Solute Transport in a Tidally influenced gravel beach in Prince William Sound, Alaska

    Science.gov (United States)

    Bobo, A. M.; Boufadel, M. C.; Abdollahi Nasab, A.

    2009-12-01

    We investigated beach hydraulics in a gravel beach on Eleanor Island, Prince William Sound, Alaska that was previously polluted with the Exxon Valdez oil spill in 1989. The beach contains trace amounts of oil such that they don’t affect beach hydraulics. Measurements of water pressure and salinity were analyzed and simulated using the model SUTRA (Saturated-Unsaturated Groundwater Flow and Solute Transport). The results indicated that the beach consists of two layers with contrasting hydraulic properties: an upper layer with a hydraulic conductivity of 10-2 m/s, and a lower layer with a hydraulic conductivity of 10-5 m/s. The presence of the layer of low hydraulic conductivity constrained the fall of the water table resulting in a water table fluctuation that is almost independent of distance from the shoreline. This is unlike previous studies, which occurred in sandy beaches, and where the fluctuation decreased going landward. The water table remained above the layers’ interface, which suggests that the oil did not penetrate the lower layer. This could explain the presence of only tracer amount of oil in the beach. A sudden seaward increase of the slope of the two layers’ interface resulted in water leaving the lower layer near the mid-intertidal zone, and draining to the sea through the upper layer. This created the effect of a hydraulic rupture separating the hydraulics in the seaward portion of the beach from the rest of beach, especially at low tide.

  10. Modeling the time-varying interaction between surface water and groundwater bodies

    Science.gov (United States)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  11. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  12. Geochemical controls on shale groundwaters: Results of reaction path modeling

    Energy Technology Data Exchange (ETDEWEB)

    Von Damm, K.L.; VandenBrook, A.J.

    1989-03-01

    The EQ3NR/EQ6 geochemical modeling code was used to simulate the reaction of several shale mineralogies with different groundwater compositions in order to elucidate changes that may occur in both the groundwater compositions, and rock mineralogies and compositions under conditions which may be encountered in a high-level radioactive waste repository. Shales with primarily illitic or smectitic compositions were the focus of this study. The reactions were run at the ambient temperatures of the groundwaters and to temperatures as high as 250/degree/C, the approximate temperature maximum expected in a repository. All modeling assumed that equilibrium was achieved and treated the rock and water assemblage as a closed system. Graphite was used as a proxy mineral for organic matter in the shales. The results show that the presence of even a very small amount of reducing mineral has a large influence on the redox state of the groundwaters, and that either pyrite or graphite provides essentially the same results, with slight differences in dissolved C, Fe and S concentrations. The thermodynamic data base is inadequate at the present time to fully evaluate the speciation of dissolved carbon, due to the paucity of thermodynamic data for organic compounds. In the illitic cases the groundwaters resulting from interaction at elevated temperatures are acid, while the smectitic cases remain alkaline, although the final equilibrium mineral assemblages are quite similar. 10 refs., 8 figs., 15 tabs.

  13. Variable thickness transient ground-water flow model. Volume 3. Program listings

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.

  14. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  15. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  16. Transport of Nitrogen and Phosphorus from Onsite Wastewater Treatment Systems to Shallow Groundwater

    Science.gov (United States)

    Toor, G.

    2014-12-01

    The knowledge about the nutrients transport from the vadose zone of onsite wastewater treatment systems (commonly called septic systems) is crucial to protect groundwater quality as 25% of US population uses septic systems to discharge household wastewater. For example, our preliminary data showed that about 47% of applied water was recovered at 60-cm below drainfield of septic systems. This implies that contaminants present in wastewater, if not attenuated in the vadose zone, can be transported to shallow groundwater. This presentation will focus on the biophysical and hydrologic controls on the transport of nitrogen (N) and phosphorus (P) from the vadose of two conventional (drip dispersal, gravel trench) and an advanced (with aerobic and anaerobic medias) system. These systems were constructed using two rows of drip pipe (37 emitters/mound) placed 0.3 m apart in the center of 6 m x 0.6 m drainfield. Each system received 120 L of wastewater per day. During 20-month period (May 2012 to December 2013), soil-water samples were collected from the vadose zone using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected from piezometers installed at 3-3.30 m depth below the drainfield. A complimentary 1-year study using smaller drainfields (0.5 m long, 0.9 m wide, 0.9 m high) was conducted to obtain better insights in the vadose zone. A variety of instruments (multi-probe sensors, suction cup lysimeters, piezometers, tensiometers) were installed in the vadose zones. Results showed that nitrification controlled N evolution in drainfield and subsequent transport of N plumes (>10 mg/L) into groundwater. Most of the wastewater applied soluble inorganic P (>10 mg/L) was quickly attenuated in the drainfield due to fixation (sorption, precipitation) in the vadose zone (advanced system was extremely effective as it removed >95% N from wastewater, but was less effective at removing P. This presentation will conclude with

  17. A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality.

    Science.gov (United States)

    Foose, Gary J

    2010-01-01

    New adaptations of analytical equations for predicting the impact of solute transport through composite landfill liners on groundwater quality for steady-state conditions are presented. Analytical equations are developed for evaluating average concentration and mass flow rate in an underlying aquifer resulting from diffusion of volatile organic compounds (VOCs) through intact composite liners and transport of inorganic constituents through defects in composite liners. The equations are applied to evaluate the effectiveness and equivalency of composite liners having either a 0.6 m-thick compacted soil liner or a 6.5 mm-thick geosynthetic clay liner (GCL) overlying an intermediate attenuation layer and an aquifer having horizontal flow. Example analyses for designing composite liners meeting particular performance criteria are also provided. The analytical equations are relatively simple to apply and can be used for preliminary design and analysis, to evaluate experimental results, and to possibly verify more complex numerical models for evaluating the impact of landfills on groundwater quality if consistency of the assumptions of the analytical equations and the more complex numerical models can be specified.

  18. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  19. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  20. Goods Transport Modelling, Vol 1

    DEFF Research Database (Denmark)

    Petersen, Morten Steen (red.); Kristiansen, Jørgen

    The report is a study of data requirements and methodologies for goods transport. The study is intended to provide the basis for general discussion about the application of goods transport models in Denmark. The report provides an overview of different types of models and data availability....

  1. Complex groundwater flow systems as traveling agent models

    CERN Document Server

    López-Corona, Oliver; Escolero, Oscar; González, Tomás; Morales-Casique, Eric

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits a complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  2. Simulation–optimization model for groundwater contamination remediation using meshfree point collocation method and particle swarm optimization

    Indian Academy of Sciences (India)

    Mategaonkar Meenal; T I Eldho

    2012-06-01

    Remediation of the groundwater contamination problem is a tedious, time consuming and expensive process. Pump and treat (PAT) is one of the commonly used techniques for groundwater remediation in which the contaminated groundwater is pumped, treated and put back to the aquifer system or other sources. Developing simulation-optimization (S/O) model proved to be very useful in the design process of an effective PAT system. Simulation models help in predicting the spatial and temporal variation of the contamination plume while optimization models help in minimizing the cost of pumping. Generally, grid or mesh based models such as Finite Difference Method (FDM) or Finite Element Methods (FEM) is used for the groundwater flow and transport simulation. But it is found that grid/mesh generation is a time consuming process. Therefore, recently Meshfree (MFree) based numerical models are developed to avoid this difficulty of meshing and remeshing. MFree Point Collocation Method (PCM) is a simple meshfree method used for the simulation of coupled groundwater flow and contaminant transport. For groundwater optimization problems, even though number of methods such as linear programming, nonlinear programming, etc. are available, evolutionary algorithm based techniques such as genetic algorithm (GA) and particle swarm optimization (PSO) are found to be very effective. In this paper, a simulation model using MFree PCM for confined groundwater flow and transport and a PSO based single objective optimization model are developed and coupled to get an effective S/O model for groundwater remediation using PAT. The S/O model based on PCM and PSO is applied for a polluted hypothetical confined aquifer and its performance is compared with Finite Element Method–Binary Coded Genetic Algorithm (FEM–GA) model. It is found that both the models are in good agreement with each other showing the applicability of the present approach. The PCM–PSO based S/O model is simple and more

  3. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

    Science.gov (United States)

    Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel

    2016-12-01

    Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  4. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

    Science.gov (United States)

    Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel

    2017-05-01

    Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  5. Optimum Location of Pumping and Injection Wells of Groundwater Heat Exchange System Using Numerical Modeling of Water and Heat Transport%应用水热运移数值模拟优化地下水源热泵系统抽灌井布局

    Institute of Scientific and Technical Information of China (English)

    靳孟贵; 汤庆佳; 栗现文

    2012-01-01

    合理布局抽水井和回灌井是地下水源热泵系统长期有效运行的关键因素.以郑州市郑东新区为例,利用HST3D软件建立水热运移数值模型,优化设计地下水源热泵系统抽灌水井布局,预测地下水源热泵系统长期运行后对含水层的水热影响.结果表明:介质比热容及渗透率分别对含水层温度及水位影响显著,是较敏感的参数.方案3(3个回灌井垂直天然流向分布且位于抽水井下游)为最佳布井方式.抽灌量900,1200,1500及2000m3/d所对应的合理布井间距分别为50,65,70及75m.相应布井方案的水源热泵系统运行20 a,对含水层温度场的影响仅限于200 m×200m的范围,抽水井温度变化小于1℃.%Rational location of pumping and injection wells is a key for long-term efficient operation of a groundwater heat exchange system. Numerical modeling of groundwater and heat transport in Zhengdong New District of Zhengzhou was established to optimally locate the pumping and injection wells of groundw-ater heat exchange system, and to forecast the influence of long term operation of groundwater heat exchange system on flow and heat in aquifers. It is concluded that specific heat capacity and permeability are sensitive parameter and their changes will significantly impact on heat and head in aquifers respectively. Scheme 3 (three injection well vertical to natural flow direction and downwards the pumping well) is an optimized location of the wells. Rational distances between pumping and injection wells for the pumping/ injection rates of 900, 1 200, 1 500 and 2 000 m3/d are 50, 65, 70 and 75 m respectively. The influence of the groundwater heat exchange system that wells are located as scheme 3 is limited to the range of 200 m× 200 m after 20 year operation and the change of temperature in the pumping well is fewer than 1℃.

  6. Modeling biogeochemical processes in subterranean estuaries : Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.; Slomp, C.P.; Tuncay, K.; Meile, C.

    2008-01-01

    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3 −, NH4 +, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox

  7. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  8. Container Logistic Transport Planning Model

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2013-05-01

    Full Text Available The study proposed a stochastic method of container logistic transport in order to solve the unreasonable transportation’s problem and overcome the traditional models’ two shortcomings. Container transport has rapidly developed into a modern means of transportation because of their significant advantages. With the development, it also exacerbated the flaws of transport in the original. One of the most important problems was that the invalid transport had not still reduced due to the congenital imbalances of transportation. Container transport exacerbated the invalid transport for the empty containers. To solve the problem, people made many efforts, but they did not make much progress. There had two theoretical flaws by analyzing the previous management methods in container transport. The first one was the default empty containers inevitability. The second one was that they did not overall consider how to solve the problem of empty containers allocation. In order to solve the unreasonable transportation’s problem and overcome the traditional models’ two shortcomings, the study re-built the container transport planning model-gravity model. It gave the general algorithm and has analyzed the final result of model.

  9. Virus in Groundwater: Characterization of transport mechanisms and impacts on an agricultural area in Uruguay

    Science.gov (United States)

    Gamazo, P. A.; Colina, R.; Victoria, M.; Alvareda, E.; Burutaran, L.; Ramos, J.; Lopez, F.; Soler, J.

    2014-12-01

    In many areas of Uruguay groundwater is the only source of water for human consumption and for industrial-agricultural economic activities. Traditionally considered as a safe source, due to the "natural filter" that occurs in porous media, groundwater is commonly used without any treatment. The Uruguayan law requires bacteriological analysis for most water uses, but virological analyses are not mentioned in the legislation. In the Salto district, where groundwater is used for human consumption and for agricultural activities, bacterial contamination has been detected in several wells but no viruses analysis have been performed. The Republic University (UDELAR), with the support of the National Agency for Research and Innovation (ANII), is studying the incidence of virus in groundwater on an intensive agriculture area of the Salto district. In this area water is pumped from the "Salto Aquifer", a free sedimentary aquifer. Below this sedimentary deposit is the "Arapey" basaltic formation, which is also exploited for water productions on its fractured zones. A screening campaign has been performed searching for bacterial and viral contamination. Total and fecal coliforms have been found on several wells and Rotavirus and Adenovirus have been detected. A subgroup of the screening wells has been selected for an annual survey. On this subgroup, besides bacteria and viruses analysis, a standard physical and chemical characterization was performed. Results show a significant seasonal variation on microbiological contamination. In addition to field studies, rotavirus circulation experiments on columns are being performed. The objective of this experiments is to determinate the parameters that control virus transport in porous media. The results of the study are expected to provide an insight into the impacts of groundwater on Salto's viral gastroenterocolitis outbreaks.

  10. 2D-Cell Experiment on Methyl Tert-Butyl Ether Transport in Saturated Zone of Groundwater

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As an additive of gasoline, methyl tert-butyl ether (MTBE) has a higher solubility in water, which is about 20 times as high as that of benzene. This characteristic results in MTBE dissolving out of the gasoline into the soil and groundwater. Due to relative unique physicochemical behavior of MTBE it would be an ideal candidate for use in environmental forensic investigations. In order to study the transport and distribution of MTBE in saturated zone of ground water, a two-dimensional experimental cell was setup to simulate the real environment of the groundwater flow.The effects of soil and groundwater flow velocity on the MTBE transport were investigated. The results show that the mobile distance of MTBE in vertical direction was smaller than that in horizontal direction paralleling with the groundwater flow. Because the main dynamics of groundwater flow direction was convection and dispersion, the movement of MTBE is also diffusion in the vertical direction. In addition, the transport of MTBE was more quick in high permeability porous media, and the increase of groundwater flow velocity can accelerate the MTBE plume development, but the irregularity and randomness of the plume are enhanced synchronously. These research results can give some helps for the investigation of MTBE movement in the groundwater, also can make some references for other petroleum contamination behavior.

  11. The 2016 groundwater flow model for Dane County, Wisconsin

    Science.gov (United States)

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along

  12. Groundwater Resources Assessment For Joypurhat District Using Mathematical Modelling Technique

    Directory of Open Access Journals (Sweden)

    Md. Iquebal Hossain

    2015-06-01

    Full Text Available In this study potential recharge as well as groundwater availability for 5 Upazillas (Akkelpur, Kalai, Joypurhat Sadar, Khetlal and Panchbibi of Joypurhat districts has been estimated using MIKE SHE modelling tools. The main aquifers of the study area are dominated by medium sands, medium and coarse sands with little gravels. The top of aquifers ranges from 15 m to 24 m and the screenable thickness of aquifers range from 33 m to 46 m within the depth range from 57 m to 87 m. Heavy abstraction of groundwater for agricultural, industrial and domestic uses results in excessive lowering of water table making the shallow and hand tubewells inoperable in the dry season. The upazilawise potential recharge for the study area was estimated through mathematical model using MIKE SHE modelling tools in an integrated approach. The required data were collected from the different relevant organisations. The potential recharge of the present study varies from 452 mm to 793 mm. Maximum depth to groundwater table in most of the places occurs at the end of April. At this time, groundwater table in most of the part of Kalai, Khetlal, Akkelpur and Panchbibi goes below suction limit causing HTWs and STWs partially/fully in operable.

  13. Regional scale groundwater modelling study for Ganga River basin

    Science.gov (United States)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  14. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-12-31

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  15. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty (infiltration, fracture-matrix connectivity, fracture frequency, and matrix air entry pressure or van Genuchten {alpha}); and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM)). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  16. The role of groundwater chemistry in the transport of bacteria to water-supply wells

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.

    1999-01-01

    Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.

  17. Simulation of ground-water flow and transport of chlorinated hydrocarbons at Graces Quarters, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, Frederick J.; Fleck, William B.

    2001-01-01

    Military activity at Graces Quarters, a former open-air chemical-agent facility at Aberdeen Proving Ground, Maryland, has resulted in ground-water contamination by chlorinated hydrocarbons. As part of a ground-water remediation feasibility study, a three-dimensional model was constructed to simulate transport of four chlorinated hydrocarbons (1,1,2,2-tetrachloroethane, trichloroethene, carbon tetrachloride, and chloroform) that are components of a contaminant plume in the surficial and middle aquifers underlying the east-central part of Graces Quarters. The model was calibrated to steady-state hydraulic head at 58 observation wells and to the concentration of 1,1,2,2-tetrachloroethane in 58 observation wells and 101direct-push probe samples from the mid-1990s. Simulations using the same basic model with minor adjustments were then run for each of the other plume constituents. The error statistics between the simulated and measured concentrations of each of the constituents compared favorably to the error statisticst,1,2,2-tetrachloroethane calibration. Model simulations were used in conjunction with contaminant concentration data to examine the sources and degradation of the plume constituents. It was determined from this that mixed contaminant sources with no ambient degradation was the best approach for simulating multi-species solute transport at the site. Forward simulations were run to show potential solute transport 30 years and 100 years into the future with and without source removal. Although forward simulations are subject to uncertainty, they can be useful for illustrating various aspects of the conceptual model and its implementation. The forward simulation with no source removal indicates that contaminants would spread throughout various parts of the surficial and middle aquifers, with the100-year simulation showing potential discharge areas in either the marshes at the end of the Graces Quarters peninsula or just offshore in the estuaries. The

  18. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  19. The Nature and Role of Physical Models in Enhancing Sixth Grade Students' Mental Models of Groundwater and Groundwater Processes

    Science.gov (United States)

    Duffy, Debra Lynne Foster

    2012-01-01

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate…

  20. The Nature and Role of Physical Models in Enhancing Sixth Grade Students' Mental Models of Groundwater and Groundwater Processes

    Science.gov (United States)

    Duffy, Debra Lynne Foster

    2012-01-01

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate…

  1. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  2. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  3. 18 Years Later: Revisiting a Groundwater Model of the Cambric Site at NTS

    Science.gov (United States)

    Considine, E. J.; Wheatcraft, S. W.; Meerschaert, M. M.

    2004-12-01

    Since its advent in 1974, the Radionuclide Migration Project at the Nevada Test Site has spawned several interesting groundwater modeling ventures. Of interest to this research is the Cambric detonation site, where a tracer test was conducted from 1975 to 1991. Burbey and Wheatcraft (1986) built a groundwater/transport model of the Cambric site and at the time of calibration had achieved a good match to the measured data. Since then the predicted concentrations have diverged from the measured concentrations, which exhibit classic heavy-tailed behavior. It has been hypothesized that the Fractional Advection Dispersion Equation (FADE) will better predict these late-time high concentrations; this research will apply the FADE to the Cambric problem and aims to reach a more complete understanding of the physical significance of the coefficients contained in the FADE. We first built a preliminary groundwater model, employing the traditional Advection Dispersion Equation, in the hopes of duplicating Burbey's predicted concentrations. Burbey used the Deep Well Disposal Model, whereas this investigation used MODFLOW and MT3D. While the new model has produced a breakthrough curve fitting the peak concentration, it too fails to produce the heavy tail seen in the measured data. Also of concern is the nonuniqueness of the new model's solution; the best-fit breakthrough curve can be produced by changing either one of at least two parameters. We believe that both of these shortcomings (under predicted late-time concentrations and non-uniqueness) may be resolved by using the FADE. Not only does fractional theory permit heavy tails, but also it effectively replaces aquifer heterogeneity with fractional derivatives, thereby reducing the probability of a nonunique solution. Future work includes modeling the Cambric problem with Tadjeran and Meerschaert's numerical, fractional, radial-flow transport code (2003) and evaluating the code's applicability to varied flow and transport

  4. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  5. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  6. Groundwater Modeling of the Texas High Plains using Modflow

    Science.gov (United States)

    Hernandez, J. E.; Gowda, P. H.; Misra, D.; Marek, T.; Howell, T. A.

    2008-12-01

    The objective of this study was to develop and calibrate a groundwater model for a 4-county area in the Texas High Plains of the Ogallala Aquifer Region. This study is a major component of a comprehensive regional analysis of groundwater depletion in the Ogallala Aquifer Region with the purpose of understanding short- and long-term effects of existing and alternative land use scenarios on groundwater changes. A comprehensive geographic information system (GIS) database was developed for this purpose that included a recent land cover map. This 2008 land cover map was developed using Landsat satellite imagery with ground-truth points for Dallam, Sherman, Hartley, and Moore Counties in Texas. Other GIS layers included aquifer elevation contours, surficial geology, hydraulic conductivity contours, saturated thickness areas, well locations and piezometric heads, aquifer discharge and recharge areas, topography, hydrographic data, ecological regions, and soil type data. The hydrologic simulations were done using MODFLOW. Anticipated outcomes from this modeling effort include the effect of change in land use/land cover on sustainability of the aquifer life in the study region. Our results will be used to develop strategies to conserve groundwater in the Ogallala Aquifer beneath Central High Plains and improve regional water planning.

  7. Discrete Fracture Networks Groundwater Modelling at Bedding Control Fractured Sedimentary Rock mass

    Science.gov (United States)

    Pin, Yeh; Yuan-Chieh, Wu

    2017-04-01

    Groundwater flow modelling in fractured rock mass is an important challenging work in predicting the transport of contamination. So far as we know about the numerical analysis method was consider for crystalline rock, which means discontinuous are treated as stochastic distribution in homogeneous rock mass. Based on the understanding of geology in Taiwan in past few decades, we know that the hydraulic conductivities of Quaternary and Tertiary system rock mass are strongly controlled by development of sedimentary structures (bedding plane). The main purpose of this study is to understand how Discrete Fracture Networks (DFN) affects numerical results in terms of hydraulic behavior using different DFN generation methods. Base on surface geology investigation and core drilling work (3 boreholes with a total length of 120m), small scale fracture properties with in Cho-lan formation (muddy sandstone) are defined, including gently dip of bedding and 2 sub-vertical joint sets. Two FracMan/MAFIC numerical modellings are conducted, using ECPM approach (Equivalent Continuum Porous Media); case A considered all fracture were Power law distribution with Poisson fracture center; case B considered all bedding plans penetrate into modelling region, and remove the bedding count to recalculate joint fracture parameters. Modelling results show that Case B gives stronger groundwater pathways than Case A and have impact on flow field. This preliminary modelling result implicates the groundwater flow modelling work in some fractured sedimentary rock mass, might be considerate to rock sedimentary structure development itself, discontinuous maybe not follow the same stochastic DFN parameter.

  8. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  9. Groundwater Data Package for the 2004 Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, Paul D.

    2004-08-11

    This report presents data and information that supports the groundwater module. The conceptual model of groundwater flow and transport at the Hanford Site is described and specific information applied in the numerical implementation module is provided.

  10. Transport behavior of groundwater protozoa and protozoan-sized microspheres in sandy aquifer sediments

    Science.gov (United States)

    Harvey, R.W.; Kinner, N.E.; Bunn, A.; MacDonald, D.; Metge, D.

    1995-01-01

    Transport behaviors of unidentified flagellated protozoa (flagellates) and flagellate-sized carboxylated microspheres in sandy, organically contaminated aquifer sediments were investigated in a small-scale (1 to 4-m travel distance) natural-gradient tracer test on Cape Cod and in flow-through columns packed with sieved (0.5-to 1.0-mm grain size) aquifer sediments. The minute (average in situ cell size, 2 to 3 ??m) flagellates, which are relatively abundant in the Cape Cod aquifer, were isolated from core samples, grown in a grass extract medium, labeled with hydroethidine (a vital eukaryotic stain), and coinjected into aquifer sediments along with bromide, a conservative tracer. The 2-??m flagellates appeared to be near the optimal size for transport, judging from flowthrough column experiments involving a polydispersed (0.7 to 6.2 ??m in diameter) suspension of carboxylated microspheres. However, immobilization within the aquifer sediments accounted for a log unit reduction over the first meter of travel compared with a log unit reduction over the first 10 m of travel for indigenous, free-living groundwater bacteria in earlier tests. High rates of flagellate immobilization in the presence of aquifer sediments also was observed in the laboratory. However, immobilization rates for the laboratory-grown flagellates (initially 4 to 5 ??m) injected into the aquifer were not constant and decreased noticeably with increasing time and distance of travel. The decrease in propensity for grain surfaces was accompanied by a decrease in cell size, as the flagellates presumably readapted to aquifer conditions. Retardation and apparent dispersion were generally at least twofold greater than those observed earlier for indigenous groundwater bacteria but were much closer to those observed for highly surface active carboxylated latex microspheres. Field and laboratory results suggest that 2- ??m carboxylated microspheres may be useful as analogs in investigating several abiotic

  11. Description and application of the combined surface and groundwater flow model MOGROW

    NARCIS (Netherlands)

    Querner, E.P.

    1997-01-01

    In the Netherlands shallow groundwater tables prevail in many parts, such that groundwater and surface water are closely interlinked. Thus the use of a combined groundwater and surface water model is necessary to predict the effect of certain measures on a regional scale. Therefore the model MOGROW

  12. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  13. Incorporating groundwater flow into the WEPP model

    Science.gov (United States)

    William Elliot; Erin Brooks; Tim Link; Sue Miller

    2010-01-01

    The water erosion prediction project (WEPP) model is a physically-based hydrology and erosion model. In recent years, the hydrology prediction within the model has been improved for forest watershed modeling by incorporating shallow lateral flow into watershed runoff prediction. This has greatly improved WEPP's hydrologic performance on small watersheds with...

  14. FINITE VOLUME METHOD OF MODELLING TRANSIENT GROUNDWATER FLOW

    Directory of Open Access Journals (Sweden)

    N. Muyinda

    2014-01-01

    Full Text Available In the field of computational fluid dynamics, the finite volume method is dominant over other numerical techniques like the finite difference and finite element methods because the underlying physical quantities are conserved at the discrete level. In the present study, the finite volume method is used to solve an isotropic transient groundwater flow model to obtain hydraulic heads and flow through an aquifer. The objective is to discuss the theory of finite volume method and its applications in groundwater flow modelling. To achieve this, an orthogonal grid with quadrilateral control volumes has been used to simulate the model using mixed boundary conditions from Bwaise III, a Kampala Surburb. Results show that flow occurs from regions of high hydraulic head to regions of low hydraulic head until a steady head value is achieved.

  15. Groundwater flow modelling of the excavation and operational phases - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Laxemar. The inflow calculations were accompanied by a sensitivity study, which among other matters handled the impact of different deposition hole rejection criteria. The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  16. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation

    Directory of Open Access Journals (Sweden)

    Hengzhen Li

    2013-12-01

    Full Text Available Micro-nano bubbles (MNBs are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

  17. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  18. Modeling mass transport in aquifers: The distributed-source problem. Research report, July 1988-June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, S.E.

    1990-08-01

    A new methodology to model the time and space evolution of groundwater variables in a system of acquifers when certain components of the model, such as the geohydrologic information, the boundary conditions, the magnitude and variability of the sources or physical parameters are uncertain and defined in stochastic terms. This facilitates a more realistic statistical representation of groundwater flow and groundwater pollution forecasting for either the saturated or the unsaturated zone. The method is based on applications of modern mathematics to the solution of the resulting stochastic transport equations. The procedure exhibits considerable advantages over the existing stochastic modeling techniques.

  19. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    Science.gov (United States)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  20. Complexity vs. simplicity: groundwater model ranking using information criteria.

    Science.gov (United States)

    Engelhardt, I; De Aguinaga, J G; Mikat, H; Schüth, C; Liedl, R

    2014-01-01

    A groundwater model characterized by a lack of field data about hydraulic model parameters and boundary conditions combined with many observation data sets for calibration purpose was investigated concerning model uncertainty. Seven different conceptual models with a stepwise increase from 0 to 30 adjustable parameters were calibrated using PEST. Residuals, sensitivities, the Akaike information criterion (AIC and AICc), Bayesian information criterion (BIC), and Kashyap's information criterion (KIC) were calculated for a set of seven inverse calibrated models with increasing complexity. Finally, the likelihood of each model was computed. Comparing only residuals of the different conceptual models leads to an overparameterization and certainty loss in the conceptual model approach. The model employing only uncalibrated hydraulic parameters, estimated from sedimentological information, obtained the worst AIC, BIC, and KIC values. Using only sedimentological data to derive hydraulic parameters introduces a systematic error into the simulation results and cannot be recommended for generating a valuable model. For numerical investigations with high numbers of calibration data the BIC and KIC select as optimal a simpler model than the AIC. The model with 15 adjusted parameters was evaluated by AIC as the best option and obtained a likelihood of 98%. The AIC disregards the potential model structure error and the selection of the KIC is, therefore, more appropriate. Sensitivities to piezometric heads were highest for the model with only five adjustable parameters and sensitivity coefficients were directly influenced by the changes in extracted groundwater volumes.

  1. Large-Scale Water Resources Management within the Framework of GLOWA-Danube - Part A: The Groundwater Model

    Science.gov (United States)

    Barthel, R.; Rojanschi, V.; Wolf, J.; Braun, J.

    2003-04-01

    The interdisciplinary research co-operation Glowa-Danube aims at the development of innovative techniques, scenarios and strategies to investigate the impacts of Global Change on the hydrological cycle within the catchment area of the Upper Danube Basin (Gauge Passau). Both the influence of natural changes in the ecosystem, such as climate change, and changes in human behavior, such as changes in land use or water consumption, are considered. A globally applicable decision support tool "DANUBIA" that comprises 15 individual disciplinary models will be developed. The models are connected with each other via customized interfaces that facilitate network-based parallel calculations. The strictly object-oriented DANUBIA architecture was developed using the graphical notation tool UML (Unified Modeling Language) and has been implemented in Java code. The Institute of Hydraulic Engineering of the Universitaet Stuttgart contributes two models to DANUBIA: A groundwater flow and transport model and a water supply model. The latter is dealt with in a second contribution to this conference. This paper focuses on the groundwater model. The catchment basin of the Upper Danube covers an area of approximately 77.000 km2. The elevation difference from the highest peaks of the Alps to the lowest flatlands in the Danube valley is more than 3.000 m. In addition to the Alps, several lower mountain ranges such as the Black Forest, the Swabian and Franconian Alb and the Bavarian Forest are located respectively in the Northeast, North and Northwest of the basin. The climatic conditions, geomorphology, geology and land use show a wide range of different characteristics. The size and heterogeneity of the area make it extremely difficult to represent the natural conditions in a numerical model. Both data availability and accessibility add to the difficulties that one encounters in the approach to simulate groundwater flow and contaminant transport in this area. The groundwater flow model of

  2. GWSCREEN: A semi-analytical model for assessment of the groundwater pathway from surface or buried contamination: Version 2.0 theory and user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Rood, A.S.

    1993-06-01

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non radioactive substances from surface or buried sources. The code was designed for implementation in the Track I and Track II assessment of CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) sites identified as low probability hazard at the Idaho National Engineering Laboratory (DOE, 1992). The code calculates the limiting soil concentration such that, after leaching and transport to the aquifer, regulatory contaminant levels in groundwater are not exceeded. The code uses a mass conservation approach to model three processes: contaminant release from a source volume, contaminant transport in the unsaturated zone, and contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. Transport in the unsaturated zone is described by a plug flow model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation in groundwater. In Version 2.0, GWSCREEN has incorporated an additional source model to calculate the impacts to groundwater resulting from the release to percolation ponds. In addition, transport of radioactive progeny has also been incorporated. GWSCREEN has shown comparable results when compared against other codes using similar algorithms and techniques. This code was designed for assessment and screening of the groundwater pathway when field data is limited. It was not intended to be a predictive tool.

  3. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection. The Glen Canyon aquifer within the study area is conceptualized in two parts-an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter. Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  4. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Emren, A.T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1999-02-01

    In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb`s phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry

  5. Molybdate transport in a chemically complex aquifer: Field measurements compared with solute-transport model predictions

    Science.gov (United States)

    Stollenwerk, K.G.

    1998-01-01

    A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.

  6. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  7. Distributed parallel computing in stochastic modeling of groundwater systems.

    Science.gov (United States)

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  8. Evaluation of Parameter Uncertainty Reduction in Groundwater Flow Modeling Using Multiple Environmental Tracers

    Science.gov (United States)

    Arnold, B. W.; Gardner, P.

    2013-12-01

    Calibration of groundwater flow models for the purpose of evaluating flow and aquifer heterogeneity typically uses observations of hydraulic head in wells and appropriate boundary conditions. Environmental tracers have a wide variety of decay rates and input signals in recharge, resulting in a potentially broad source of additional information to constrain flow rates and heterogeneity. A numerical study was conducted to evaluate the reduction in uncertainty during model calibration using observations of various environmental tracers and combinations of tracers. A synthetic data set was constructed by simulating steady groundwater flow and transient tracer transport in a high-resolution, 2-D aquifer with heterogeneous permeability and porosity using the PFLOTRAN software code. Data on pressure and tracer concentration were extracted at well locations and then used as observations for automated calibration of a flow and transport model using the pilot point method and the PEST code. Optimization runs were performed to estimate parameter values of permeability at 30 pilot points in the model domain for cases using 42 observations of: 1) pressure, 2) pressure and CFC11 concentrations, 3) pressure and Ar-39 concentrations, and 4) pressure, CFC11, Ar-39, tritium, and He-3 concentrations. Results show significantly lower uncertainty, as indicated by the 95% linear confidence intervals, in permeability values at the pilot points for cases including observations of environmental tracer concentrations. The average linear uncertainty range for permeability at the pilot points using pressure observations alone is 4.6 orders of magnitude, using pressure and CFC11 concentrations is 1.6 orders of magnitude, using pressure and Ar-39 concentrations is 0.9 order of magnitude, and using pressure, CFC11, Ar-39, tritium, and He-3 concentrations is 1.0 order of magnitude. Data on Ar-39 concentrations result in the greatest parameter uncertainty reduction because its half-life of 269

  9. Modeling of groundwater flow for Mujib aquifer, Jordan

    Indian Academy of Sciences (India)

    Fayez Abdulla; Tamer Al-Assa’d

    2006-06-01

    Jordan is an arid country with very limited water resources.Groundwater is the main source for its water supply.Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman,Madaba and Karak cities.High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore,proper groundwater management of Mujib aquifer is necessary;and groundwater flow modeling is essential for proper management.For this purpose,Mod flow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses.The model was calibrated for steady state condition by matching observed and simulated initial head counter lines.Drawdown data for the period 1985-1995 were used to calibrate the transient model by matching simulated drawdown with the observed one.Then,the transient model was validated by using drawdown data for the period 1996-2002.The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40 m/d. Calibrated speci fic yield ranges from 0.0001 to 0.15.The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106 m3, the total annual in flow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual out flow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates.Also the model is sensitive to specific yield.

  10. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  11. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow...

  12. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  13. Python tools for rapid development, calibration, and analysis of generalized groundwater-flow models

    Science.gov (United States)

    Starn, J. J.; Belitz, K.

    2014-12-01

    National-scale water-quality data sets for the United States have been available for several decades; however, groundwater models to interpret these data are available for only a small percentage of the country. Generalized models may be adequate to explain and project groundwater-quality trends at the national scale by using regional scale models (defined as watersheds at or between the HUC-6 and HUC-8 levels). Coast-to-coast data such as the National Hydrologic Dataset Plus (NHD+) make it possible to extract the basic building blocks for a model anywhere in the country. IPython notebooks have been developed to automate the creation of generalized groundwater-flow models from the NHD+. The notebook format allows rapid testing of methods for model creation, calibration, and analysis. Capabilities within the Python ecosystem greatly speed up the development and testing of algorithms. GeoPandas is used for very efficient geospatial processing. Raster processing includes the Geospatial Data Abstraction Library and image processing tools. Model creation is made possible through Flopy, a versatile input and output writer for several MODFLOW-based flow and transport model codes. Interpolation, integration, and map plotting included in the standard Python tool stack also are used, making the notebook a comprehensive platform within on to build and evaluate general models. Models with alternative boundary conditions, number of layers, and cell spacing can be tested against one another and evaluated by using water-quality data. Novel calibration criteria were developed by comparing modeled heads to land-surface and surface-water elevations. Information, such as predicted age distributions, can be extracted from general models and tested for its ability to explain water-quality trends. Groundwater ages then can be correlated with horizontal and vertical hydrologic position, a relation that can be used for statistical assessment of likely groundwater-quality conditions

  14. Improving large-scale groundwater models by considering fossil gradients

    Science.gov (United States)

    Schulz, Stephan; Walther, Marc; Michelsen, Nils; Rausch, Randolf; Dirks, Heiko; Al-Saud, Mohammed; Merz, Ralf; Kolditz, Olaf; Schüth, Christoph

    2017-05-01

    Due to limited availability of surface water, many arid to semi-arid countries rely on their groundwater resources. Despite the quasi-absence of present day replenishment, some of these groundwater bodies contain large amounts of water, which was recharged during pluvial periods of the Late Pleistocene to Early Holocene. These mostly fossil, non-renewable resources require different management schemes compared to those which are usually applied in renewable systems. Fossil groundwater is a finite resource and its withdrawal implies mining of aquifer storage reserves. Although they receive almost no recharge, some of them show notable hydraulic gradients and a flow towards their discharge areas, even without pumping. As a result, these systems have more discharge than recharge and hence are not in steady state, which makes their modelling, in particular the calibration, very challenging. In this study, we introduce a new calibration approach, composed of four steps: (i) estimating the fossil discharge component, (ii) determining the origin of fossil discharge, (iii) fitting the hydraulic conductivity with a pseudo steady-state model, and (iv) fitting the storage capacity with a transient model by reconstructing head drawdown induced by pumping activities. Finally, we test the relevance of our approach and evaluated the effect of considering or ignoring fossil gradients on aquifer parameterization for the Upper Mega Aquifer (UMA) on the Arabian Peninsula.

  15. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  16. Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y; Glascoe, L

    2005-06-09

    The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.

  17. Next Generation Transport Phenomenology Model

    Science.gov (United States)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  18. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David (Serco Technical Consulting Services (United Kingdom)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  19. An Elliptical Model for Deformation Due to Groundwater Fluctuations

    Science.gov (United States)

    Tiampo, Kristy F.; Ouegnin, Francois-Alexis; Valluri, Sreeram; Samsonov, Sergey; Fernández, José; Kapp, Garrett

    2012-08-01

    Historically, surface subsidence as a result of subsurface groundwater fluctuations have produced important and, at times, catastrophic effects, whether natural or anthropogenic. Over the past 30 years, numerical and analytical techniques for the modeling of this surface deformation, based upon elastic and poroelastic theory, have been remarkably successful in predicting the magnitude of that deformation (L e M ouélic and A dragna in Geophys Res Lett 29:1853, 2002). In this work we have extended the formula for a circular-shaped aquifer (Geertsma in J Petroleum Tech 25:734-744, 1973) to a more realistic elliptical shape. We have improved the accuracy of the approximation by making use of the cross terms of the expansion for the elliptic coordinates in terms of the eccentricity, e, and the mean anomaly angle, M, widely used in astronomy. Results of a number of simulations, in terms of e and M developed from the transcendental Kepler equation, are encouraging, giving realistic values for the elliptical approximation of the vertical deformation due to groundwater change. Finally, we have applied the algorithm to modeling of groundwater in southern California.

  20. Application of vector autoregressive model for rainfall and groundwater level analysis

    Science.gov (United States)

    Keng, Chai Yoke; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee

    2017-08-01

    Groundwater is a crucial water supply for industrial, agricultural and residential use, hence it is important to understand groundwater system. Groundwater is a dynamic natural resource and can be recharged. The amount of recharge depends on the rate and duration of rainfall, as rainfall comprises an important component of the water cycle and is the prime source of groundwater recharge. This study applies Vector Autoregressive (VAR) model in the analysis of rainfall and groundwater level. The study area that is focused in the study is along the East-West Highway, Gerik-Jeli, Malaysia. The VAR model with optimum lag length 8, VAR(8) is selected to model the rainfall and groundwater level in the study area. Result of Granger causality test shows significant influence of rainfall to groundwater level. Impulse Response Function reveals that changes in rainfall significantly affect changes in groundwater level after some time lags. Moreover, Variance Decomposition reported that rainfall contributed to the forecast of the groundwater level. The VAR(8) model is validated by comparing the actual value with the in-sample forecasted value and the result is satisfied with all forecasted groundwater level values lies inside the confidence interval which indicate that the model is reliable. Furthermore, the closeness of both actual and forecasted groundwater level time series plots implies the high degree of accurateness of the estimated model.

  1. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    Science.gov (United States)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality was not predictably related to imperviousness or catchment size. Rather, rainfall depth and duration, time since antecedent rainfall, and stream channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited

  2. Groundwater management under uncertainty using a stochastic multi-cell model

    Science.gov (United States)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  3. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  4. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  5. Analytical Modeling of Groundwater Seepages to St. Lucie Estuary

    Science.gov (United States)

    Lee, J.; Yeh, G.; Hu, G.

    2008-12-01

    In this paper, six analytical models describing hydraulic interaction of stream-aquifer systems were applied to St Lucie Estuary (SLE) River Estuaries. These are analytical solutions for: (1) flow from a finite aquifer to a canal, (2) flow from an infinite aquifer to a canal, (3) the linearized Laplace system in a seepage surface, (4) wave propagation in the aquifer, (5) potential flow through stratified unconfined aquifers, and (6) flow through stratified confined aquifers. Input data for analytical solutions were obtained from monitoring wells and river stages at seepage-meter sites. Four transects in the study area are available: Club Med, Harbour Ridge, Lutz/MacMillan, and Pendarvis Cove located in the St. Lucie River. The analytical models were first calibrated with seepage meter measurements and then used to estimate of groundwater discharges into St. Lucie River. From this process, analytical relationships between the seepage rate and river stages and/or groundwater tables were established to predict the seasonal and monthly variation in groundwater seepage into SLE. It was found the seepage rate estimations by analytical models agreed well with measured data for some cases but only fair for some other cases. This is not unexpected because analytical solutions have some inherently simplified assumptions, which may be more valid for some cases than the others. From analytical calculations, it is possible to predict approximate seepage rates in the study domain when the assumptions underlying these analytical models are valid. The finite and infinite aquifer models and the linearized Laplace method are good for sites Pendarvis Cove and Lutz/MacMillian, but fair for the other two sites. The wave propagation model gave very good agreement in phase but only fairly agreement in magnitude for all four sites. The stratified unconfined and confined aquifer models gave similarly good agreements with measurements at three sites but poorly at the Club Med site. None of

  6. Bridging the gap between empirical and mechanistic models for nitrate in groundwater

    Science.gov (United States)

    Nolan, B. T.; Malone, R. W.; Gronberg, J.; Thorp, K.; Ma, L.

    2011-12-01

    Water-quality models are useful tools for predicting the vulnerability of groundwater to nitrate contamination, and include both empirical and mechanistic approaches. Empirical models commonly are used at regional and national scales. Such models are data-driven and have comparatively few parameters, but their capability to simulate processes is limited. In contrast, mechanistic models are physically based, simulate controlling processes, and can have many parameters. The GroundWAter Vulnerability Assessment model (GWAVA), an example of the first approach, is a national-scale nonlinear regression model (R2=0.80) that predicts areally averaged nitrate concentration in groundwater based on mid-1990s land use. The Root Zone Water Quality Model (RZWQM2) is an example of the second approach and simulates N cycling processes, crop growth, and the fate and transport of agricultural chemicals at the field-scale for daily time steps. Thorough accounting by RZWQM2 of key processes can yield more accurate predictions, but application at large spatial scales is difficult because of the numerous parameters. To bridge the gap between these contrasting scales and approaches, we developed metamodels (MMs) to predict nitrate concentrations and N fluxes in the Corn Belt. Metamodels are simplified representations of mechanistic models which map outputs from the latter onto the inputs. Our MMs consisted of artificial neural networks (ANNs), which are inherently flexible and do not require linearity or normally distributed data. The MMs were based on RZWQM2 models previously calibrated to data from field sites in Nebraska, Iowa, and Maryland. The three sites are in corn-soybean rotation and reflect diverse soil types and climatic conditions as well as different management practices. We calibrated the MMs to RZWQM2 predictions of N in tile drainage and leachate below the root zone of crops. Therefore the MMs represent an integrated approach to vulnerability assessment-nitrate leaching

  7. Mathematical modeling of kidney transport.

    Science.gov (United States)

    Layton, Anita T

    2013-01-01

    In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease.

  8. Reliable groundwater levels: failures and lessons learned from modeling and monitoring studies

    Science.gov (United States)

    Van Lanen, Henny A. J.

    2017-04-01

    Adequate management of groundwater resources requires an a priori assessment of impacts of intended groundwater abstractions. Usually, groundwater flow modeling is used to simulate the influence of the planned abstraction on groundwater levels. Model performance is tested by using observed groundwater levels. Where a multi-aquifer system occurs, groundwater levels in the different aquifers have to be monitored through observation wells with filters at different depths, i.e. above the impermeable clay layer (phreatic water level) and beneath (artesian aquifer level). A reliable artesian level can only be measured if the space between the outer wall of the borehole (vertical narrow shaft) and the observation well is refilled with impermeable material at the correct depth (post-drilling phase) to prevent a vertical hydraulic connection between the artesian and phreatic aquifer. We were involved in improper refilling, which led to impossibility to monitor reliable artesian aquifer levels. At the location of the artesian observation well, a freely overflowing spring was seen, which implied water leakage from the artesian aquifer affected the artesian groundwater level. Careful checking of the monitoring sites in a study area is a prerequisite to use observations for model performance assessment. After model testing the groundwater model is forced with proposed groundwater abstractions (sites, extraction rates). The abstracted groundwater volume is compensated by a reduction of groundwater flow to the drainage network and the model simulates associated groundwater tables. The drawdown of groundwater level is calculated by comparing the simulated groundwater level with and without groundwater abstraction. In lowland areas, such as vast areas of the Netherlands, the groundwater model has to consider a variable drainage network, which means that small streams only carry water during the wet winter season, and run dry during the summer. The main streams drain groundwater

  9. The 3D simulation and optimized management model of groundwater systems based on ecoenvironmental water demand

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater's economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da'an in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.

  10. COMPREHENSIVE INTRODUCTION TO THE TECHNOLOGY OF GROUNDWATER MODELING AND OPTIMAL MANAGEMENT

    Institute of Scientific and Technical Information of China (English)

    武强; 田宝霖; 胡社荣; 金玉洁; 孙卫东; 田开铭

    1995-01-01

    Three numeric simulston and optimal managernent models on groundwater resources are introduced m this paper. These models stand for the present developing levels on the technology of groundwater modeling.and optimal management in China, and show the practical application situations of the technology. Each of the technology of unique characteristics and purposes. According to the tests of the practical engineering, these models have played a very important role in solving the difficult problems of groundwater resources.

  11. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  12. Discrete-Feature Modelling of Groundwater Flow and Solute Transport for SR-Can Review. External review contribution in support of SKI's and SSI's review of SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (US))

    2008-03-15

    . The variants completed thus far do not include alternative conceptual models for the DFN submodel, or variants with respect to its key properties, such as the assumed correlation of size to transmissivity. The flow distribution to deposition holes is not strongly sensitive to the hydrologic properties of the large-scale deformation zones or the time-dependent boundary conditions in a temperate setting. The main controls appear to be the DFN submodel, the excavation damaged zone (EDZ) around tunnels, and spalled zones in the deposition-hole walls (if present). Advective-dispersive particle-tracking results are presented for a suite of Forsmark model variants. A continuous EDZ intersecting all deposition holes and extending along all repository tunnels is included in all of these variants presented here. This is a significant feature for flow and transport, due to the apparent sparseness of the fracture population in the repository volume at Forsmark. For the Forsmark model variants considered here, the safety-critical lower portion of the distribution of transport resistance Fr is not strongly sensitive to most of the variants that have been modelled. Spalling around deposition holes produces a slight reduction in the lowest values of Fr below about 2x103 yr/m, but apparently yields an increase in Fr for the remainder of the distribution. This result is likely sensitive to the assumptions regarding hydraulic properties of the spalled zones, which have been arbitrarily specified for lack of relevant data. Further investigation of the sensitivity of the Fr distribution to assumptions regarding these parameters is warranted. The lower end of the Fr distribution also shows some sensitivity to stochastic realizations of the DFN submodel. This indicates that further exploration of uncertainties in the DFN submodel, including major conceptual uncertainties (clustering or hierarchical structure) is needed

  13. Assessment model validity document - HYDRASTAR. A stochastic continuum program for groundwater flow

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Eriksson, Lars [Equa Simulation AB, Sundbyberg (Sweden)

    2001-12-01

    The prevailing document addresses validation of the stochastic continuum model HYDRASTAR designed for Monte Carlo simulations of groundwater flow in fractured rocks. Here, validation is defined as a process to demonstrate that a model concept is fit for its purpose. Preferably, the validation is carried out by comparison of model predictions with independent field observations and experimental measurements. In addition, other sources can also be used to confirm that the model concept gives acceptable results. One method is to compare results with the ones achieved using other model concepts for the same set of input data. Another method is to compare model results with analytical solutions. The model concept HYDRASTAR has been used in several studies including performance assessments of hypothetical repositories for spent nuclear fuel. In the performance assessments, the main tasks for HYDRASTAR have been to calculate groundwater travel time distributions, repository flux distributions, path lines and their exit locations. The results have then been used by other model concepts to calculate the near field release and far field transport. The aim and framework for the validation process includes describing the applicability of the model concept for its purpose in order to build confidence in the concept. Preferably, this is made by comparisons of simulation results with the corresponding field experiments or field measurements. Here, two comparisons with experimental results are reported. In both cases the agreement was reasonably fair. In the broader and more general context of the validation process, HYDRASTAR results have been compared with other models and analytical solutions. Commonly, the approximation calculations agree well with the medians of model ensemble results. Additional indications that HYDRASTAR is suitable for its purpose were obtained from the comparisons with results from other model concepts. Several verification studies have been made for

  14. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  15. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and domes

  16. Data and Model Uncertainties associated with Biogeochemical Groundwater Remediation and their impact on Decision Analysis

    Science.gov (United States)

    Pandey, S.; Vesselinov, V. V.; O'Malley, D.; Karra, S.; Hansen, S. K.

    2016-12-01

    Models and data are used to characterize the extent of contamination and remediation, both of which are dependent upon the complex interplay of processes ranging from geochemical reactions, microbial metabolism, and pore-scale mixing to heterogeneous flow and external forcings. Characterization is wrought with important uncertainties related to the model itself (e.g. conceptualization, model implementation, parameter values) and the data used for model calibration (e.g. sparsity, measurement errors). This research consists of two primary components: (1) Developing numerical models that incorporate the complex hydrogeology and biogeochemistry that drive groundwater contamination and remediation; (2) Utilizing novel techniques for data/model-based analyses (such as parameter calibration and uncertainty quantification) to aid in decision support for optimal uncertainty reduction related to characterization and remediation of contaminated sites. The reactive transport models are developed using PFLOTRAN and are capable of simulating a wide range of biogeochemical and hydrologic conditions that affect the migration and remediation of groundwater contaminants under diverse field conditions. Data/model-based analyses are achieved using MADS, which utilizes Bayesian methods and Information Gap theory to address the data/model uncertainties discussed above. We also use these tools to evaluate different models, which vary in complexity, in order to weigh and rank models based on model accuracy (in representation of existing observations), model parsimony (everything else being equal, models with smaller number of model parameters are preferred), and model robustness (related to model predictions of unknown future states). These analyses are carried out on synthetic problems, but are directly related to real-world problems; for example, the modeled processes and data inputs are consistent with the conditions at the Los Alamos National Laboratory contamination sites (RDX and

  17. User's guide to Model Viewer, a program for three-dimensional visualization of ground-water model results

    Science.gov (United States)

    Hsieh, Paul A.; Winston, Richard B.

    2002-01-01

    Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.

  18. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    CERN Document Server

    Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq

    2010-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...

  19. Crash test for groundwater recharge models: The effects of model complexity and calibration period on groundwater recharge predictions

    Science.gov (United States)

    Moeck, Christian; Von Freyberg, Jana; Schrimer, Maria

    2016-04-01

    An important question in recharge impact studies is how model choice, structure and calibration period affect recharge predictions. It is still unclear if a certain model type or structure is less affected by running the model on time periods with different hydrological conditions compared to the calibration period. This aspect, however, is crucial to ensure reliable predictions of groundwater recharge. In this study, we quantify and compare the effect of groundwater recharge model choice, model parametrization and calibration period in a systematic way. This analysis was possible thanks to a unique data set from a large-scale lysimeter in a pre-alpine catchment where daily long-term recharge rates are available. More specifically, the following issues are addressed: We systematically evaluate how the choice of hydrological models influences predictions of recharge. We assess how different parameterizations of models due to parameter non-identifiability affect predictions of recharge by applying a Monte Carlo approach. We systematically assess how the choice of calibration periods influences predictions of recharge within a differential split sample test focusing on the model performance under extreme climatic and hydrological conditions. Results indicate that all applied models (simple lumped to complex physically based models) were able to simulate the observed recharge rates for five different calibration periods. However, there was a marked impact of the calibration period when the complete 20 years validation period was simulated. Both, seasonal and annual differences between simulated and observed daily recharge rates occurred when the hydrological conditions were different to the calibration period. These differences were, however, less distinct for the physically based models, whereas the simpler models over- or underestimate the observed recharge depending on the considered season. It is, however, possible to reduce the differences for the simple models by

  20. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    Science.gov (United States)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

  1. Supplement to a hydrologic framework for the Oak Ridge Reservation, Oak Ridge, Tennessee. Summary of groundwater modeling

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Civil Engineering; Toran, L.E. [Oak Ridge National Lab., TN (United States)

    1992-11-01

    The information in this report should prove useful for flow and contaminant-transport modeling of groundwater and for evaluating the alternatives for remedial action. New data on porosity and permeability have been analyzed and interpreted to produce a better understanding of the relationships between unfractured rock, low permeability intervals, and relatively permeable intervals. Specifically, the dimensions, orientations, depths, and spacings of pervious fractures have been measured or calculated; the depths and directions of subsurface flow paths (Solomon et al. 1992, pp. 3--21 to 3--23) have been corroborated with new data; fractures near the water table have been shown to have different characteristics than those at deeper levels; and the relationships between groundwater flows in fractures and flows in the continuum have been described. This is the information needed for the numerical modeling of groundwater flows. Other information in this report should result in a better understanding of spatial and temporal differences in water chemistry, including changes in contaminant concentrations. Temporal changes in groundwater chemistry have been shown to occur mostly near the water table. These changes consist of a periodic dilution of chemical constituents by recharge and a slow increase in constituent concentrations between recharge events. At discharge locations, spatial differences in groundwater chemistry are integrated by mixing. The monitoring of water chemistry in streams near contaminant sources may produce a better indication of contaminant releases and trends than do the records obtained from a few upgradient and downgradient wells.

  2. Application of Time-Series Model to Predict Groundwater Dynamic in Sanjiang Plain,Northeast China

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhaoqing; LIU Guihua; YAN Baixing

    2011-01-01

    To study the groundwater dynamic in the typical region of Sanjiang Plain,long-term groundwater level observation data in the Honghe State Farm were collected and analyzed in this paper.The seasonal and long-term groundwater dynamic was explored.From 1996 to 2008,groundwater level kept declining due to intensive exploitation of groundwater resources for rice irrigation.A decline of nearly 5 m was found for almost all the monitoring wells.A time-series method was established to model the groundwater dynamic.Modeled results by time-series model showed that the groundwater level in this region would keep declining according to the current exploitation intensity.A total dropdown of 1.07 m would occur from 2009 to 2012.Time-series model can be used to model and forecast the groundwater dynamic with high accuracy.Measures including control on groundwater exploitation amount and application of water saving irrigation technique should be taken to prevent the continuing declining of groundwater in the Sanjiang Plain.

  3. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    Science.gov (United States)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across

  4. Simulations of Groundwater Flow and Radionuclide Transport in the Vadose and Saturated Zones beneath Area G, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kay H. Birdsell; Kathleen M. Bower; Andrew V. Wolfsberg; Wendy E. Soll; Terry A. Cherry; Tade W. Orr

    1999-07-01

    Numerical simulations are used to predict the migration of radionuclides from the disposal units at Material Disposal Area G through the vadose zone and into the main aquifer in support of a radiological performance assessment and composite analysis for the site. The calculations are performed with the finite element code, FEHM. The transport of nuclides through the vadose zone is computed using a three-dimensional model that describes the complex mesa top geology of the site. The model incorporates the positions and inventories of thirty-four disposal pits and four shaft fields located at Area G as well as those of proposed future pits and shafts. Only three nuclides, C-14, Tc-99, and I-129, proved to be of concern for the groundwater pathway over a 10,000-year period. The spatial and temporal flux of these three nuclides from the vadose zone is applied as a source term for the three-dimensional saturated zone model of the main aquifer that underlies the site. The movement of these nuclides in the aquifer to a downstream location is calculated, and aquifer concentrations are converted to doses. Doses related to aquifer concentrations are six or more orders of magnitude lower than allowable Department of Energy performance objectives for low-level radioactive waste sites. Numerical studies were used to better understand vadose-zone flow through the dry mesa-top environment at Area G. These studies helped define the final model used to model flow and transport through the vadose zone. The study of transient percolation indicates that a steady flow vadose-zone model is adequate for computing contaminant flux to the aquifer. The fracture flow studies and the investigation of the effect of basalt and pumice properties helped us define appropriate hydrologic properties for the modeling. Finally, the evaporation study helped to justify low infiltration rates.

  5. Implementation of a rock-matrix diffusion model in the discrete fracture network code NAPSAC[Groundwater flow; Radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, A

    1998-05-01

    Groundwater flow in many low permeability rocks is believed to occur within discrete fractures. Radionuclides in solution can diffuse away from the fractures into immobile water in the rock matrix. This process (rock-matrix diffusion) is important in determining the performance of a repository situated in fractured rock because it retards the transport of radionuclides that might otherwise return more rapidly towards the biosphere. NAPSAC is a computer program used to model groundwater flow and radionuclide transport in fractured rock. This report describes the implementation of a rock-matrix diffusion model in NAPSAC. (author)

  6. Questa baseline and pre-mining ground-water quality investigation. 12. Geochemical and reactive-transport modeling based on tracer injection-synoptic sampling studies for the Red River, New Mexico, 2001-2002

    Science.gov (United States)

    Ball, James W.; Runkel, Robert L.; Nordstrom, D. Kirk

    2005-01-01

    Reactive-transport processes in the Red River, downstream from the town of Red River in north-central New Mexico, were simulated using the OTEQ reactive-transport model. The simulations were calibrated using physical and chemical data from synoptic studies conducted during low-flow conditions in August 2001 and during March/April 2002. Discharge over the 20-km reach from the town of Red River to the USGS streamflow-gaging station near the town of Questa ranged from 395 to 1,180 L/s during the 2001 tracer and from 234 to 421 L/s during the 2002 tracer. The pH of the Red River ranged from 7.4 to 8.5 during the 2001 tracer and from 7.1 to 8.7 during the 2002 tracer, and seep and tributary samples had pH values of 2.8 to 9.0 during the 2001 tracer and 3.8 to 7.2 during the 2002 tracer. Mass-loading calculations allowed identification of several specific locations where elevated concentrations of potential contaminants entered the Red River . These locations, characterized by features on the north side of the Red River that are known to be sources of low-pH water containing elevated metal and sulfate concentrations, are: the initial 2.4 km of the study reach, including Bitter Creek, the stream section from 6.2 to 7.8 km, encompassing La Bobita well and the Hansen debris fan, Sulphur Gulch, at about 10.5 km, the area near Portal Springs, from 12.2 to 12.6 km, and the largest contributors of mass loading, the 13.7 to 13.9 km stream section near Cabin Springs and the 14.7 to 17.5 km stream section from Shaft Spring to Thunder Bridge, Goathill Gulch, and Capulin Canyon. Speciation and saturation index calculations indicated that although solubility limits the concentration of aluminum above pH 5.0, at pH values above 7 and aluminum concentrations below 0.3 mg/L inorganic speciation and mineral solubility controls no longer dominate and aluminum-organic complexing may occur. The August 2001 reactive-transport simulations included dissolved iron(II) oxidation, constrained

  7. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  8. Transient,spatially-varied recharge for groundwater modeling

    Science.gov (United States)

    Assefa, Kibreab; Woodbury, Allan

    2013-04-01

    This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin

  9. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    Science.gov (United States)

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  10. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-07-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  11. evaluation of models for assessing groundwater vulnerability to ...

    African Journals Online (AJOL)

    DR. AMINU

    Key words: Groundwater, Vulnerability, Pollution, Nigeria. INTRODUCTION ... natural groundwater vulnerability: net recharge, soil properties, unsaturated zone ... such as dispersion, oxidation, natural attenuation, sorption etc. A low depth to ...

  12. Modelling groundwater over-extraction in the southern Jordan Valley with scarce data

    Science.gov (United States)

    Alfaro, Paulina; Liesch, Tanja; Goldscheider, Nico

    2017-08-01

    To deal with the challenge of groundwater over-extraction in arid and semi-arid environments, it is necessary to establish management strategies based on the knowledge of hydrogeological conditions, which can be difficult in places where hydrogeological data are dispersed, scarce or present potential misinformation. Groundwater levels in the southern Jordan Valley (Jordan) have decreased drastically in the last three decades, caused by over-extraction of groundwater for irrigation purposes. This study presents a local, two-dimensional and transient numerical groundwater model, using MODFLOW, to characterise the groundwater system and the water balance in the southern Jordan Valley. Furthermore, scenarios are simulated regarding hydrological conditions and management options, like extension of arable land and closure of illegal wells, influencing the projection of groundwater extraction. A limited dataset, literature values, field surveys, and the `crop water-requirement method' are combined to determine boundary conditions, aquifer parameters, and sources and sinks. The model results show good agreement between predicted and observed values; groundwater-level contours agree with the conceptual model and expected flow direction, and, in terms of water balance, flow volumes are in accordance with literature values. Average annual water consumption for irrigation is estimated to be 29 million m3 and simulation results show that a reduction of groundwater pumping by 40% could recover groundwater heads, reducing the water taken from storage. This study presents an example of how to develop a local numerical groundwater model to support management strategies under the condition of data scarcity.

  13. A Theoretic Model of Transport Logistics Demand

    Directory of Open Access Journals (Sweden)

    Natalija Jolić

    2006-01-01

    Full Text Available Concerning transport logistics as relation between transportand integrated approaches to logistics, some transport and logisticsspecialists consider the tenn tautological. However,transport is one of the components of logistics, along with inventories,resources, warehousing, infonnation and goods handling.Transport logistics considers wider commercial and operationalframeworks within which the flow of goods is plannedand managed. The demand for transport logistics services canbe valorised as highly qualitative, differentiated and derived.While researching transport phenomenon the implementationof models is inevitable and demand models highly desirable. Asa contribution to transport modelling this paper improves decisionmaking and planning in the transport logistics field.

  14. Deterministic modeling of the impact of underground structures on urban groundwater temperature.

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Eisenlohr, Laurent

    2016-12-01

    Underground structures have a major influence on groundwater temperature and have a major contribution on the anthropogenic heat fluxes into urban aquifers. Groundwater temperature is crucial for resource management as it can provide operational sustainability indicators for groundwater quality and geothermal energy. Here, a three dimensional heat transport modeling approach was conducted to quantify the thermally affected zone (TAZ, i.e. increase in temperature of more than +0.5°C) caused by two common underground structures: (1) an impervious structure and (2) a draining structure. These design techniques consist in (1) ballasting the underground structure in order to resist hydrostatic pressure, or (2) draining the groundwater under the structure in order to remove the hydrostatic pressure. The volume of the TAZ caused by these underground structures was shown to range from 14 to 20 times the volume of the underground structure. Additionally, the cumulative impact of underground structures was assessed under average thermal conditions at the scale of the greater Lyon area (France). The heat island effect caused by underground structures was highlighted in the business center of the city. Increase in temperature of more than +4.5°C were locally put in evidence. The annual heat flow from underground structures to the urban aquifer was computed deterministically and represents 4.5GW·h. Considering these impacts, the TAZ of deep underground structures should be taken into account in the geothermal potential mapping. Finally, the amount of heat energy provided should be used as an indicator of heating potential in these areas.

  15. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  16. A Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sources

    Science.gov (United States)

    Zhao, Ying; Lu, Wenxi; Xiao, Chuanning

    2016-02-01

    As the incidence frequency of groundwater pollution increases, many methods that identify source characteristics of pollutants are being developed. In this study, a simulation-optimization approach was applied to determine the duration and magnitude of pollutant sources. Such problems are time consuming because thousands of simulation models are required to run the optimization model. To address this challenge, the Kriging surrogate model was proposed to increase computational efficiency. Accuracy, time consumption, and the robustness of the Kriging model were tested on both homogenous and non-uniform media, as well as steady-state and transient flow and transport conditions. The results of three hypothetical cases demonstrate that the Kriging model has the ability to solve groundwater contaminant source problems that could occur during field site source identification problems with a high degree of accuracy and short computation times and is thus very robust.

  17. SEAWAT: A Computer Program for Simulation of Variable-Density Groundwater Flow and Multi-Species Solute and Heat Transport

    Science.gov (United States)

    Langevin, Christian D.

    2009-01-01

    SEAWAT is a MODFLOW-based computer program designed to simulate variable-density groundwater flow coupled with multi-species solute and heat transport. The program has been used for a wide variety of groundwater studies including saltwater intrusion in coastal aquifers, aquifer storage and recovery in brackish limestone aquifers, and brine migration within continental aquifers. SEAWAT is relatively easy to apply because it uses the familiar MODFLOW structure. Thus, most commonly used pre- and post-processors can be used to create datasets and visualize results. SEAWAT is a public domain computer program distributed free of charge by the U.S. Geological Survey.

  18. Preliminary site description: Groundwater flow simulations. Simpevarp area (version 1.1) modelled with CONNECTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Worth, David [Serco Assurance Ltd, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden); Holmen, Johan [Golder Associates, Stockholm (Sweden)

    2004-08-01

    The main objective of this study is to assess the role of known and unknown hydrogeological conditions for the present-day distribution of saline groundwater at the Simpevarp and Laxemar sites. An improved understanding of the paleo-hydrogeology is necessary in order to gain credibility for the Site Descriptive Model in general and the Site Hydrogeological Description in particular. This is to serve as a basis for describing the present hydrogeological conditions as well as predictions of future hydrogeological conditions. This objective implies a testing of: geometrical alternatives in the structural geology and bedrock fracturing, variants in the initial and boundary conditions, and parameter uncertainties (i.e. uncertainties in the hydraulic property assignment). This testing is necessary in order to evaluate the impact on the groundwater flow field of the specified components and to promote proposals of further investigations of the hydrogeological conditions at the site. The general methodology for modelling transient salt transport and groundwater flow using CONNECTFLOW that was developed for Forsmark has been applied successfully also for Simpevarp. Because of time constraints only a key set of variants were performed that focussed on the influences of DFN model parameters, the kinematic porosity, and the initial condition. Salinity data in deep boreholes available at the time of the project was too limited to allow a good calibration exercise. However, the model predictions are compared with the available data from KLX01 and KLX02 below. Once more salinity data is available it may be possible to draw more definite conclusions based on the differences between variants. At the moment though the differences should just be used understand the sensitivity of the models to various input parameters.

  19. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  20. Using the Community Land Model to Assess Uncertainty in Basin Scale GRACE-Based Groundwater Estimates

    Science.gov (United States)

    Swenson, S. C.; Lawrence, D. M.

    2015-12-01

    One method for interpreting the variability in total water storage observed by GRACE is to partition the integrated GRACE measurement into its component storage reservoirs based on information provided by hydrological models. Such models, often designed to be used in couple Earth System models, simulate the stocks and fluxes of moisture through the land surface and subsurface. One application of this method attempts to isolate groundwater changes by removing modeled surface water, snow, and soil moisture changes from GRACE total water storage estimates. Human impacts on groundwater variability can be estimated by further removing model estimates of climate-driven groundwater changes. Errors in modeled water storage components directly affect the residual groundwater estimates. Here we examine the influence of model structure and process representation on soil moisture and groundwater uncertainty using the Community Land Model, with a particular focus on basins in the western U.S.

  1. Modelling of the groundwater flow in Baltic Artesian Basin

    Science.gov (United States)

    Virbulis, J.; Sennikovs, J.; Bethers, U.

    2012-04-01

    Baltic Artesian Basin (BAB) is a multi-layered complex hydrogeological system underlying about 480'000 km2 in the territory of Latvia, Lithuania, Estonia, Poland, Russia, Belarus and the Baltic Sea. The model of the geological structure contains 42 layers including aquifers and aquitards from Cambrian up to the Quaternary deposits. The finite element method was employed for the calculation of the steady state three-dimensional groundwater flow with free surface. The horizontal and vertical hydraulic conductivities of geological materials were assumed constant in each of the layers. The Precambrian basement forms the impermeable bottom of the model. The zero water exchange is assumed through the side boundaries of BAB. Simple hydrological model is applied on the surface. The level of the lakes, rivers and the sea is fixed as constant hydraulic head in corresponding mesh points. The infiltration is set as a flux boundary condition elsewhere. Instead of extensive coupling with hydrology model, a constant mean value of 70 mm/year was assumed as an infiltration flux for the whole BAB area and this value was adjusted during the automatic calibration process. Averaged long-term water extraction was applied at the water supply wells with large debits. In total 49 wells in Lithuania (total abstraction 45000 m3/day), 161 in Latvia (184000 m3/day) and 172 in Estonia (24000 m3/day) are considered. The model was calibrated on the statistically weighted (using both spatial and temporal weighting function) borehole water level measurements applying automatic parameter optimization method L-BFGS-B for hydraulic conductivities of each layer. The steady-stade calculations were performed for the situations corresponding to undisturbed situation (1950-ies), intensive groundwater use (1980-ies) and present state situation (after 2000). The distribution of piezometric heads and principal flows inside BAB was analyzed based on the model results. The results demonstrate that generally the

  2. SR-Site groundwater flow modelling methodology, setup and results

    Energy Technology Data Exchange (ETDEWEB)

    Selroos, Jan-Olof (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken three groundwater flow modelling studies. These are performed within the SR-Site project and represent time periods with different climate conditions. The simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. Three time periods are addressed; the Excavation and operational phases, the Initial period of temperate climate after closure, and the Remaining part of the reference glacial cycle. The present report is a synthesis of the background reports describing the modelling methodology, setup, and results. It is the primary reference for the conclusions drawn in a SR-Site specific context concerning groundwater flow during the three climate periods. These conclusions are not necessarily provided explicitly in the background reports, but are based on the results provided in these reports. The main results and comparisons presented in the present report are summarised in the SR-Site Main report.

  3. Modeling of groundwater productivity in northeastern Wasit Governorate, Iraq using frequency ratio and Shannon's entropy models

    Science.gov (United States)

    Al-Abadi, Alaa M.

    2017-05-01

    In recent years, delineation of groundwater productivity zones plays an increasingly important role in sustainable management of groundwater resource throughout the world. In this study, groundwater productivity index of northeastern Wasit Governorate was delineated using probabilistic frequency ratio (FR) and Shannon's entropy models in framework of GIS. Eight factors believed to influence the groundwater occurrence in the study area were selected and used as the input data. These factors were elevation (m), slope angle (degree), geology, soil, aquifer transmissivity (m2/d), storativity (dimensionless), distance to river (m), and distance to faults (m). In the first step, borehole location inventory map consisting of 68 boreholes with relatively high yield (>8 l/sec) was prepared. 47 boreholes (70 %) were used as training data and the remaining 21 (30 %) were used for validation. The predictive capability of each model was determined using relative operating characteristic technique. The results of the analysis indicate that the FR model with a success rate of 87.4 % and prediction rate 86.9 % performed slightly better than Shannon's entropy model with success rate of 84.4 % and prediction rate of 82.4 %. The resultant groundwater productivity index was classified into five classes using natural break classification scheme: very low, low, moderate, high, and very high. The high-very high classes for FR and Shannon's entropy models occurred within 30 % (217 km2) and 31 % (220 km2), respectively indicating low productivity conditions of the aquifer system. From final results, both of the models were capable to prospect GWPI with very good results, but FR was better in terms of success and prediction rates. Results of this study could be helpful for better management of groundwater resources in the study area and give planners and decision makers an opportunity to prepare appropriate groundwater investment plans.

  4. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario...

  5. Modelling spatial variability and uncertainty of cadmium leaching to groundwater in an urban region

    Science.gov (United States)

    Beyer, Christof; Altfelder, Sven; Duijnisveld, Wilhelmus H. M.; Streck, Thilo

    2009-05-01

    SummaryOver the last century, soils in the region of Nordenham in northern Germany received high loads of heavy-metals by air-borne immissions from a close-by metal smelter. Based on measured soil properties and cadmium contamination data the leaching of Cd to groundwater was predicted for Nordenham using a numerical transport model based on the convection-dispersion equation. The main objective in this study was to account for the spatial variability and uncertainty of Cd sorption controlling soil properties ( pH, organic carbon content) and to analyze their propagation into the variance of area-related model outputs, i.e. Cd breakthrough concentrations at the groundwater surface. For this purpose a nested Monte-Carlo method was combined with deterministic numerical 1D simulations of Cd leaching. The transport model was parameterized without any parameter fitting involved. The validity of the model was verified by retrospective simulations from the initial operation of the smelter until the year of soil sampling. Forecast simulations were run for a period of 200 years. Predicted local scale Cd breakthrough concentrations at the groundwater surface were evaluated by spatial aggregation for single blocks at the field scale, yielding area-related concentrations with associated uncertainties from imprecise knowledge on local soil properties. Significant exceedance of the limit of the German drinking water ordinance of 5 μg L -1 is observed on approximately 90% of the study area with the average point in time of limit value exceedance being the year 2066 and a 90% prediction interval of 2049-2092. At the end of the simulation period, Cd concentrations at the groundwater surface still increase on large parts of the study area. The spatially averaged Cd concentration is 19.89 μg L -1 with a 90% prediction interval of 15.28-24.69 μg L -1. Locally, however, concentrations larger than 60 μg L -1 may be reached. Prediction uncertainty is only moderate and does not

  6. A Comprehensive Software System for Interactive, Real-time, Visual 3D Deterministic and Stochastic Groundwater Modeling

    Science.gov (United States)

    Li, S.

    2002-05-01

    Taking advantage of the recent developments in groundwater modeling research and computer, image and graphics processing, and objected oriented programming technologies, Dr. Li and his research group have recently developed a comprehensive software system for unified deterministic and stochastic groundwater modeling. Characterized by a new real-time modeling paradigm and improved computational algorithms, the software simulates 3D unsteady flow and reactive transport in general groundwater formations subject to both systematic and "randomly" varying stresses and geological and chemical heterogeneity. The software system has following distinct features and capabilities: Interactive simulation and real time visualization and animation of flow in response to deterministic as well as stochastic stresses. Interactive, visual, and real time particle tracking, random walk, and reactive plume modeling in both systematically and randomly fluctuating flow. Interactive statistical inference, scattered data interpolation, regression, and ordinary and universal Kriging, conditional and unconditional simulation. Real-time, visual and parallel conditional flow and transport simulations. Interactive water and contaminant mass balance analysis and visual and real-time flux update. Interactive, visual, and real time monitoring of head and flux hydrographs and concentration breakthroughs. Real-time modeling and visualization of aquifer transition from confined to unconfined to partially de-saturated or completely dry and rewetting Simultaneous and embedded subscale models, automatic and real-time regional to local data extraction; Multiple subscale flow and transport