WorldWideScience

Sample records for groundwater seepage meter

  1. Development and Evaluation of an Ultrasonic Groundwater Seepage Meter

    Science.gov (United States)

    Paulsen, R. J.; Smith, C. F.; O'Rourke, D.; Wong, T.; Bokuniewicz, H.

    2001-05-01

    Submarine groundwater discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a groundwater seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flow meter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve groundwater discharges on the order of 0.1 μ m/s, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York elucidate the temporal and spatial heterogeneity of submarine groundwater discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology. This meter has also been deployed as part of an international groundwater seepage intercomparison experiment with Scientific Committee on Oceanic Research (SCOR) / Land-Ocean Interaction in the Coastal Zone (LOICZ) Working Group 112. Results are in good agreement with other methodologies developed to quantify submarine groundwater discharge.

  2. Calibration and use of continuous heat-type automated seepage meters for submarine groundwater discharge measurements

    Science.gov (United States)

    Mwashote, B.M.; Burnett, W.C.; Chanton, J.; Santos, I.R.; Dimova, N.; Swarzenski, P.W.

    2010-01-01

    Submarine groundwater discharge (SGD) assessments were conducted both in the laboratory and at a field site in the northeastern Gulf of Mexico, using a continuous heat-type automated seepage meter (seepmeter). The functioning of the seepmeter is based on measurements of a temperature gradient in the water between downstream and upstream positions in its flow pipe. The device has the potential of providing long-term, high-resolution measurements of SGD. Using a simple inexpensive laboratory set-up, we have shown that connecting an extension cable to the seepmeter has a negligible effect on its measuring capability. Similarly, the observed influence of very low temperature (???3 ??C) on seepmeter measurements can be accounted for by conducting calibrations at such temperatures prior to field deployments. Compared to manual volumetric measurements, calibration experiments showed that at higher water flow rates (>28 cm day-1 or cm3 cm-2 day-1) an analog flowmeter overestimated flow rates by ???7%. This was apparently due to flow resistance, turbulence and formation of air bubbles in the seepmeter water flow tubes. Salinity had no significant effect on the performance of the seepmeter. Calibration results from fresh water and sea water showed close agreement at a 95% confidence level significance between the data sets from the two media (R2 = 0.98). Comparatively, the seepmeter SGD measurements provided data that are comparable to manually-operated seepage meters, the radon geochemical tracer approach, and an electromagnetic (EM) seepage meter. ?? 2009 Elsevier Ltd.

  3. Quantification of tidally-influenced seasonal groundwater discharge to the Bay of Bengal by seepage meter study

    Science.gov (United States)

    Debnath, Palash; Mukherjee, Abhijit

    2016-06-01

    Submarine groundwater discharges (SGD) play a major role in solute transport and nutrient flux to the ocean. We have conducted a spatio-temporal high-resolution lunar-tidal cycle-scale seepage meter experiment during pre-monsoon and post-monsoon seasons, to quantify the spatio-temporal patterns and variability of SGD, its terrestrial (T-SGD) and marine components (M-SGD). The measured daily average SGD rates range from no discharge to 3.6 m3 m-2 d-1 during pre-monsoon season and 0.08-5.9 m3 m-2 d-1 during post-monsoon seasons, depending on the tidal pattern. The uncertainty for SGD measurement is calculated as ±0.8% to ±11% for pre-monsoon and ±1.8% to ±17% for post-monsoon respectively. A linear, inverse relationship was observed between the calculated T-SGD and M-SGD components, which varied along the distance from the coast and position in the tidal-cycle, spatial and temporal (daily) variations of seepage rates within the lunar tidal cycle period distinctly demonstrate the influence of tides on groundwater seepage rate. As an instance, for the identification of the bulk discharge location, the centroid of the integrated SGD rate has been calculated and found to be near 20 m offshore area. The average discharge rate per unit area further extrapolated to total SGD fluxes to the Bay of Bengal from eastern Indian coast by extrapolation of the annual and seasonal fluxes observed in the study area, which are first direct/experimental estimate of SGD to the Bay of Bengal. Approximations suggest that in present-day condition, total average annual SGD to the Bay of Bengal is about 8.98 ± 0.6 × 108 m3/y. This is suggested that the SGD input to the ocean through the Bay of Bengal is approximately 0.9% of the global input from the inter-tidal zone and that has an implication on the mass balance of discharging solutes/nutrients to the global oceans. High T-SGD input is observed for all season, which is largest toward landward direction from the delineated saltwater

  4. Flow rate logging seepage meter

    Science.gov (United States)

    Reay, William G. (Inventor); Walthall, Harry G. (Inventor)

    1996-01-01

    An apparatus for remotely measuring and logging the flow rate of groundwater seepage into surface water bodies. As groundwater seeps into a cavity created by a bottomless housing, it displaces water through an inlet and into a waterproof sealed upper compartment, at which point, the water is collected by a collection bag, which is contained in a bag chamber. A magnet on the collection bag approaches a proximity switch as the collection bag fills, and eventually enables the proximity switch to activate a control circuit. The control circuit then rotates a three-way valve from the collection path to a discharge path, enables a data logger to record the time, and enables a pump, which discharges the water from the collection bag, through the three-way valve and pump, and into the sea. As the collection bag empties, the magnet leaves the proximity of the proximity switch, and the control circuit turns off the pump, resets the valve to provide a collection path, and restarts the collection cycle.

  5. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen....... Therefore secondly a much simpler mass balance approach is used with lumped descriptions of the most important hydrological processes controlling water level and groundwater inflow to the system. The water level dynamics are here described and bracketed nicely and a dynamic description of the seepage rate...... the dynamic description of groundwater seepage can be very useful in future studies of the links between seepage, soil water chemistry and vegetation in groundwater dependent terrestrial ecosystems....

  6. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen...... to investigate the uncertainties of parameters and model results. Two different model structures are presented. One is using the physically based model code HYDRUS nek et al. 2009) which solves the 1D unsaturated flow problem. In this case five parameters from the Van Genuchten retention model are examined...... has been predicted. Both models suffer from the fundamental problem that no reliable observations for the predicted variable (seepage rate) exist. Thus the trust in the model therefore depends on the ability to reproduce water level observations. Assuming that the results can be fully validated...

  7. Analytical Modeling of Groundwater Seepages to St. Lucie Estuary

    Science.gov (United States)

    Lee, J.; Yeh, G.; Hu, G.

    2008-12-01

    In this paper, six analytical models describing hydraulic interaction of stream-aquifer systems were applied to St Lucie Estuary (SLE) River Estuaries. These are analytical solutions for: (1) flow from a finite aquifer to a canal, (2) flow from an infinite aquifer to a canal, (3) the linearized Laplace system in a seepage surface, (4) wave propagation in the aquifer, (5) potential flow through stratified unconfined aquifers, and (6) flow through stratified confined aquifers. Input data for analytical solutions were obtained from monitoring wells and river stages at seepage-meter sites. Four transects in the study area are available: Club Med, Harbour Ridge, Lutz/MacMillan, and Pendarvis Cove located in the St. Lucie River. The analytical models were first calibrated with seepage meter measurements and then used to estimate of groundwater discharges into St. Lucie River. From this process, analytical relationships between the seepage rate and river stages and/or groundwater tables were established to predict the seasonal and monthly variation in groundwater seepage into SLE. It was found the seepage rate estimations by analytical models agreed well with measured data for some cases but only fair for some other cases. This is not unexpected because analytical solutions have some inherently simplified assumptions, which may be more valid for some cases than the others. From analytical calculations, it is possible to predict approximate seepage rates in the study domain when the assumptions underlying these analytical models are valid. The finite and infinite aquifer models and the linearized Laplace method are good for sites Pendarvis Cove and Lutz/MacMillian, but fair for the other two sites. The wave propagation model gave very good agreement in phase but only fairly agreement in magnitude for all four sites. The stratified unconfined and confined aquifer models gave similarly good agreements with measurements at three sites but poorly at the Club Med site. None of

  8. Statistical analysis of interaction between lake seepage rates and groundwater and lake levels

    Science.gov (United States)

    Ala-aho, P.; Rossi, P. M.; Klöve, B.

    2012-04-01

    In Finland, the main sources of groundwater are the esker deposits from the last ice age. Small lakes imbedded in the aquifer with no outlets or inlets are typically found in eskers. Some lakes at Rokua esker, in Northern Finland, have been suffering from changes in water stage and quality. A possible permanent decline of water level has raised considerable concern as the area is also used for recreation and tourism. Rare biotypes supported by the oligotrophic lakes can also be endangered by the level decline. Drainage of peatlands located in the discharge zone of the aquifer is a possible threat for the lakes and the whole aquifer. Drainage can potentially lower the aquifer water table which can have an effect on the groundwater-lake interaction. The aim of this study was to understand in more detail the interaction of the aquifer and the lake systems so potential causes for the lake level variations could be better understood and managed. In-depth understanding of hydrogeological system provides foundation to study the nutrient input to lakes affecting lake ecosystems. A small lake imbedded the Rokua esker aquifer was studied in detail. Direct measurements of seepage rate between the lake and the aquifer were carried out using seepage meters. Seepage was measured from six locations for eight times during May 2010 - November 2010. Precipitation was recorded with a tipping bucket rain gauge adjacent to the lake. Lake stage and groundwater levels from three piezometers were registered on an hourly interval using pressure probes. Statistical methods were applied to examine relationship between seepage measurements and levels of lake and groundwater and amount of precipitation. Distinct areas of inseepage and outseepage of the lake were distinguished with seepage meter measurements. Seepage rates showed only little variation within individual measurement locations. Nevertheless analysis revealed statistically significant correlation of seepage rate variation in four

  9. Groundwater flow and heterogeneous discharge into a seepage lake

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.

    2016-01-01

    Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical...... with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater...... springs and high discharge zones (HDZs) are observed at the lake bottom and at seepage faces adjacent to the lake. In the 2-D cross section, surface runoff from the seepage faces delivers 64% of the total groundwater inputs to the lake, and a 2 m wide offshore HDZ delivers 13%. Presence of HDZs may...

  10. Potential Antifreeze Compounds in Present-Day Martian Seepage Groundwater

    OpenAIRE

    Jiin-Shuh Jean; Chieh-Hou Yang; Ming-Jer Lee; Ming-Kuo Lee; Ming-Hung Chien

    2008-01-01

    Is the recently found seepage groundwater on Mars pure H2O, or mixed with salts and other antifreeze compounds? Given the surface conditions of Mars, it is unlikely that pure water could either exist in its liquid state or have shaped Mars¡¦ fluid erosional landforms (gullies, channels, and valley networks). More likely is that Mars¡¦ seepage groundwater contains antifreeze and salt compounds that resist freezing and suppress evaporation. This model better accounts for Mars¡¦ enigmatic surfac...

  11. Potential Antifreeze Compounds in Present-Day Martian Seepage Groundwater

    Directory of Open Access Journals (Sweden)

    Jiin-Shuh Jean

    2008-01-01

    Full Text Available Is the recently found seepage groundwater on Mars pure H2O, or mixed with salts and other antifreeze compounds? Given the surface conditions of Mars, it is unlikely that pure water could either exist in its liquid state or have shaped Mars¡¦ fluid erosional landforms (gullies, channels, and valley networks. More likely is that Mars¡¦ seepage groundwater contains antifreeze and salt compounds that resist freezing and suppress evaporation. This model better accounts for Mars¡¦ enigmatic surface erosion. This paper suggests 17 antifreeze compounds potentially present in Martian seepage groundwater. Given their liquid state and physical properties, triethylene glycol, diethylene glycol, ethylene glycol, and 1,3-propylene glycol are advanced as the most likely candidate compounds. This paper also explores how a mixing of glycol or glycerol with salts in the Martian seepage groundwater may have lowered water¡¦s freezing point and raised its boiling point, with consequences that created fluid gully and channel erosion. Ethylene glycol and related hydrocarbon compounds have been identified in Martian and other interstellar meteorites. We suggest that these compounds and their proportions to water be included for detection in future explorations.

  12. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    Science.gov (United States)

    Briggs, Martin; Lane, John; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2017-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger

  13. Radioactive Seepage through Groundwater Flow from the Uranium Mines, Namibia

    Directory of Open Access Journals (Sweden)

    Tamiru Abiye

    2017-02-01

    Full Text Available The study focused on the seepage of uranium from unlined tailing dams into the alluvial aquifer in the Gawib River floodplain in Namibia where the region solely relies on groundwater for its economic activities as a result of arid climatic condition. The study reviewed previous works besides water sample collection and analyses for major ions, metals and environmental isotopes in addition to field tests on physico-chemical parameters (pH, Electrical Conductivity, Redox and T. Estimation of seepage velocity (true velocity of groundwater flow has been conducted in order to understand the extent of radioactive plume transport. The hydrochemistry, stable isotopes and tritium results show that there is uranium contamination from the unlined uranium tailings in the Gawib shallow aquifer system which suggests high permeability of the alluvial aquifer facilitating groundwater flow in the arid region. The radioactive contaminants could spread into the deeper aquifer system through the major structures such as joints and faults. The contamination plume could also spread downstream into the Swakop River unless serious interventions are employed. There is also a very high risk of the plume to reach the Atlantic Ocean through seasonal flash floods that occurs in the area.

  14. Hydrogeochemistry of Maine seepage lakes and related groundwaters

    Science.gov (United States)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1992-10-01

    Southeastern Maine contains numerous small seepage lakes (no perennial surface inflows or outflows), set in felsic, glacial deposits (eskers, pitted outwash, glacio-marine deltaic terraces) dating from the Wisconsin glacial retreat ca. 12 500 years B.P. The modern landscape is either forested or maintained as low blueberry heath by semi-annual mowing and burning. Although local precipitation is currently moderately acidic (volume-weighted pH ≈ 4.5), spring waters issuing from the glacial deposits are only weakly acidic (6.1 Na > Mg > K, the same as for upland granitic terrane in the same region. Springwater composition is temporally stable but geographically variable. The most dilute springwaters drain blueberry barrens. Here, chemical weathering is limited by available acidity as evidenced by the relatively high final pHs (> 6.3) and low concentrations of strong oxy-anions (nitrate, sulfate) and dissolved inorganic carbon (DIC 100 cm year -1) for groundwater discharge lakes. Approximately 88% of Si inputs to regional seepage lakes is retained in the sediments. Non-marine sulfate is lowest in groundwater discharge lakes containing the highest concentrations of BC and F, and featuring the shortest hydraulic residence times, suggesting that S retention in lake sediments is currently less efficient than in the adjoining terrestrial soils and vegetation.

  15. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration

    DEFF Research Database (Denmark)

    Kidmose, Jacob; Nilsson, Bertel; Engesgaard, Peter

    2013-01-01

    A study on Lake Væng in Denmark demonstrates a high potential for loading of phosphorous via groundwater to seepage lakes. Groundwater discharges are displayed as an important source of phosphorous to a lake due to: (1) high concentrations in the aquifer just below the lake, and (2) the main flow...... paths through the aquifer–lakebed interface either being overland flow through a seepage face, or focused in zones with very high discharge rates. In-lake springs have measured discharge of up to 7.45 m3 per m2 of lakebed per day. These findings were based on seepage meter measurements at 18 locations......, stable isotope (δ18O) analyses, temperature profiles and mapping of ice cover distribution. Groundwater–lake interaction was modelled with a 2D conceptual flow model (MODFLOW) with hydrogeology interpreted from catchment multi electrode profiling, on-lake ground-penetrating radar, well logging...

  16. A modified calculation model for groundwater flowing to horizontal seepage wells

    Indian Academy of Sciences (India)

    Wei Wang; Peng Chen; Qingqing Zheng; Xinyu Zheng; Kunming Lu

    2013-04-01

    The simulation models for groundwater flowing to horizontal seepage wells proposed by Wang and Zhang (2007) are based on the theory of coupled seepage-pipe flow model which treats the well pipe as a highly permeable medium. However, the limitations of the existing model were found during applications. Specifically, a high-resolution grid is required to depict the complex structure of horizontal seepage wells; the permeability of the screen or wall material of radiating bores is usually neglected; and the irregularly distributed radiating bores cannot be accurately simulated. A modified calculation model of groundwater flowing to a horizontal seepage well is introduced in this paper. The exchange flow between well pipe and aquifer couples the turbulent flow inside the horizontal seepage well with laminar flow in the aquifer. The modified calculation model can reliably calculate the pumpage of a real horizontal seepage well. The characteristics of radiating bores, including the diameter, the permeability of screen material and irregular distribution of radiating bores, can be accurately depicted using the modified model that simulates the scenario in which several horizontal seepage wells work together.

  17. Groundwater seepage landscapes from distant and local sources in experiments and on Mars

    Science.gov (United States)

    Marra, W. A.; McLelland, S. J.; Parsons, D. R.; Murphy, B. J.; Hauber, E.; Kleinhans, M. G.

    2015-08-01

    Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis.

  18. Groundwater quality assessment/corrective action feasibility plan: New TNX Seepage Basin

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.L.

    1989-12-05

    The New TNX Seepage Basin is located across River Road east of the TNX Area at the Savannah River Site. Currently the basin is out of service and is awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the New TNX Seepage Basin was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater downgradient of the New TNX Seepage Basin had been impacted. Results from the data analysis indicate that the groundwater has been impacted by inorganic constituents with no associated health risks. The impacts resulting from elevated levels of inorganic constituents, such as Mn, Na, and Total PO{sub 4} in the water table, do not pose a threat to human health and the environment.

  19. INFLUENCE OF SEEPAGE FACE OBLIQUITY ON DISCHARGE OF GROUNDWATER AND ITS POLLUTANT INTO LAKE FROM A TYPICAL UNCONFINED AQUIFER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lab experiment and mathematical simulation Modular three dimensional finite difference groundwater (MODFLOW) were performed in a soil tank to simulate the hydrogeochemical interaction between lake and typical unconfined aquifer. Results show that the velocity decreases exponentially with the transect distance on seepage face. The maximal velocity occurs at the top point of seepage face. The obliquity of seepage face has a great influence on the maximum and distribution of seepage velocity. With the increase of the obliquity of seepage face, the maximal velocity decreases quickly and the velocity distribution becomes much more even. Most of groundwater flow and pollutant flux discharges through a narrow portion near the top of seepage face. The flow and mass concentrated in the narrow portion increase with the decrease of the obliquity of seepage face. These will benefit to design a reasonable and economical scenario to manage lakeshore and to control the pollution of lake water near lakeshore.

  20. Hydrogeology, groundwater seepage, nitrate distribution, and flux at the Raleigh hydrologic research station, Wake County, North Carolina, 2005-2007

    Science.gov (United States)

    McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.

    2013-01-01

    median concentration of 79 milligrams per liter as nitrogen. On the opposite side of the dike, concentrations of nitrate in pore water samples ranged from 3 to 91 milligrams per liter as nitrogen with a median concentration of 52 milligrams per liter. At one of the multiport piezometers the vertical gradient of hydraulic head between the Neuse River and the groundwater was too small to measure. At the multiport piezometer located in the suspected seepage area, an upward gradient of about 0.1 was present and explains the occurrence of higher concentrations of nitrate near the sediment/water interface. Horizontal seepage flux from the surficial aquifer to the edge of the Neuse River was estimated for 2006. Along a 130-foot flow path, the estimated seepage flux ranged from –0.52 to 0.2 foot per day with a median of 0.09 foot per day. The estimated advective horizontal mass flux of nitrate along a 300-foot reach of the Neuse River ranged from –10.9 to 5 pounds per day with a median of 2.2 pounds per day. The total horizontal mass flux of nitrate from the surficial aquifer to the Neuse River along the 130-foot flow path was estimated to be about 750 pounds for all of 2006. Seepage meters were deployed on the bed of the Neuse River in the areas of the multiport piezometers on either side of the diabase dike to estimate rates of vertical groundwater discharge and flux of nitrate. The average estimated daily seepage flux differed by two orders of magnitude between seepage areas. The potential vertical flux of nitrate from groundwater to the Neuse River was estimated at an average of 2.5 grams per day near one of the multiport piezometers and an average of 784 grams per day at the other. These approximations suggest that under some hydrologic conditions there is the potential for substantial quantities of nitrate to discharge from the groundwater to the Neuse River.

  1. A research on grey numerical imitation and modeling of groundwater seepage system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on grey set, grey numbers and their operation properties, the grey numerical model of groundwater seepage system was set up for the first time, the whole grey solving method of the model was given and it was proved that the common solving method of the model was only a special case of the grey solving methods. At the same time, the grey solving method was compared widely with common solving method, classical numerical method. The study shows that the grey solving method is better in depicting the procedure of transporting grey data of groundwater system. On the basis of the theoretical study, two basic kinds of cases about groundwater seepage were selected: the prediction of pit yield and the evaluation of groundwater resources on a groundwater basin. In the cases, systematical analyses were made for generalization and greylization of the hydrogeologic conditions, setting up of the grey model, identification and correction of the model as well as its prediction and evaluation. It was pointed out that when the grey numerical model is used to predict pit yield, the upper limit of the “grey band” of groundwater level cannot be higher than planed safe groundwater level, when evaluating the groundwater resource, the lower limit of the “grey band” of groundwater level cannot be lower than controlled level of groundwater.

  2. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data

    Science.gov (United States)

    Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

    2014-02-01

    Seepage flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

  3. Groundwater seepage landscapes from distant and local sources in experiments and on Mars

    NARCIS (Netherlands)

    Marra, W. A.; McLelland, S. J.; Parsons, D. R.; Murphy, B. J.; Hauber, E.; Kleinhans, M. G.

    2015-01-01

    Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of

  4. H-Area Seepage Basins. Third quarter 1990 groundwater quality assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  5. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, Robert A [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, Walter P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliance & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.

  6. Groundwater-surface water interaction along the Upper Biebrza River, Poland: a spatial-temporal approach with temperature, head and seepage measurements

    Science.gov (United States)

    Anibas, C.; Batelaan, O.; Verbeiren, B.; Buis, K.; Chormanski, J.; de Doncker, L.

    2010-12-01

    The knowledge of mechanisms of interaction of surface and groundwater in the hyporheic zone in rivers is essential for conserving, managing and restoring river adjacent wetlands and its habitats. Reliable estimation of groundwater-surface water exchange challenges hydrological sciences. A promising approach, overcoming limitations of individual methods, is the combination of different methodologies including flux estimates based on thermal measurements, piezometer nests, slug tests and seepage meters. In this contribution such a multi-methodology approach is tested for the Upper Biebrza River, Poland. Time series of thermal profiles are obtained for a period of 9 months. The thermal and physical soil properties show strong spatial and vertical heterogeneities typical for the peat soils of the area. Transient simulations with the numerical 1D heat transport model STRIVE were used to quantify the vertical advective fluxes in the riverbed allowing a first level investigation of groundwater-surface water exchange. The net exchange along the examined section during the 9 month is estimated as a 10.4 mm/d upward flux, which is evaluated as a relatively low intensity of groundwater seepage. Time series of both temperature and hydraulic head gradients were used to calculate hydraulic conductivities and to quantify transient groundwater-surface water exchanges for three locations. They indicated an exchange flux relatively relative stable in time only interrupted by peak values during flood events. Seepage meter measurements provided independent verification results. Interpolating calculated fluxes along the river with GIS techniques resulted in spatially distributed interaction maps. Sections of higher fluxes are statistically correlated to the proximity of the river to the morainic plateaus, which border the river alluvium. In sections where the river is central in the alluvium and relatively far away from the upland low or infiltrating conditions are obtained. This

  7. Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilization

    Science.gov (United States)

    Iverson, Richard M.; Major, Jon J.

    1986-10-01

    Insight for understanding the effect of groundwater flow on the potential for hillslope failure and liquefaction is provided by a novel limit-equilibrium analysis of infinite slopes with steady, uniform Darcian seepage of arbitrary magnitude and direction. Normalization of the limit-equilibrium solution shows that three dimensionless parameters govern completely the Coulomb failure potential of saturated, cohesionless, infinite homogeneous hillslopes: (1) the ratio of seepage force magnitude to gravitational body force magnitude; (2) the angle θ - Φ, where θ is the surface slope angle and Φ is the angle of internal friction of the soil; and (3) the angle λ + Φ, where λ is the angle of the seepage vector measured with respect to an outward-directed surface-normal vector. An additional dimensionless parameter affects the solution if soil cohesion is included in the analysis. Representation of the normalized solution as a single family of curves shows that minimum slope stability universally occurs when the seepage direction is given by λ = 90° - Φ. It also shows that for some upward seepage conditions, slope stability is limited by static liquefaction rather than by Coulomb failure. Close association between these liquefaction conditions and certain Coulomb failure conditions indicates that slope failure in such instances could be responsible for nearly spontaneous mobilization of destructive flowing soil masses on hillslopes.

  8. H-Area Seepage Basins: Groundwater quality assessment report, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    During the second quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium. Concentrations of at least one of the following constituents: tritium, nitrate, total radium, gross alpha, nonvolatile beta, mercury, lead, cadmium, trichloroethylene chromium, and arsenic in excess of the primary drinking water standard (PDWS) were observed in at least one well monitoring the H-Area Seepage Basins. Elevated levels of tritium above the PDWS were exhibited in seventy-seven of the 105 (73%) groundwater monitoring wells. Elevated levels of nitrate in excess of the PDWS were exhibited in forty-four of the 105 (42%) monitoring wells.

  9. H-Area Seepage Basins: Groundwater quality assessment report, Savannah River Site. Second quarter, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    During the second quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium. Concentrations of at least one of the following constituents: tritium, nitrate, total radium, gross alpha, nonvolatile beta, mercury, lead, cadmium, trichloroethylene chromium, and arsenic in excess of the primary drinking water standard (PDWS) were observed in at least one well monitoring the H-Area Seepage Basins. Elevated levels of tritium above the PDWS were exhibited in seventy-seven of the 105 (73%) groundwater monitoring wells. Elevated levels of nitrate in excess of the PDWS were exhibited in forty-four of the 105 (42%) monitoring wells.

  10. The Role of Groundwater for Lake-Water Quality and Quantification of N Seepage.

    Science.gov (United States)

    Kidmose, Jacob; Engesgaard, Peter; Ommen, Daniela A Oliveira; Nilsson, Bertel; Flindt, Mogens R; Andersen, Frede Ø

    2015-01-01

    The heterogeneous nature of both groundwater discharge to a lake (inflow) and nitrate concentrations in groundwater can lead to significant errors in calculations of nutrient loading. Therefore, an integrated approach, combining groundwater flow and transport modelling with observed nitrate and ammonium groundwater concentrations, was used to estimate nitrate loading from a catchment via groundwater to an oligotrophic flow-through lake (Lake Hampen, Denmark). The transport model was calibrated against three vertical nitrate profiles from multi-level wells and 17 shallow wells bordering a crop field near the lake. Nitrate concentrations in groundwater discharging to the lake from the crop field were on average 70 times higher than in groundwater from forested areas. The crop field was responsible for 96% of the total nitrate loading (16.2 t NO3 /year) to the lake even though the field only covered 4.5% of the catchment area. Consequently, a small change in land use in the catchment will have a large effect on the lake nutrient balance and possible lake restoration. The study is the first known attempt to estimate the decrease of nitrate loading via groundwater to a seepage lake when an identified catchment source (a crop field) is removed.

  11. Groundwater seepage controls salinity in a hydrologically terminal basin of semi-arid northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline F.

    2016-11-01

    Very small groundwater outflows have the potential to significantly impact the hydrochemistry and salt accumulation processes of notionally terminal basins in arid environments. However, this limited groundwater outflow can be very difficult to quantify using classical water budget calculations due to large uncertainties in estimates of evaporation and evapotranspiration rates from the surface of dry lake beds. In this study, we used a dimensionless time evaporation model to estimate the range of groundwater outflow required to maintain salinity levels observed at the Fortescue Marsh (FM), one of the largest wetlands of semi-arid northwest Australia (∼1100 km2). The groundwater outflow from aquifers underlying the FM to the Lower Fortescue catchment is constrained by an extremely low hydraulic gradient of flood water is fresh to brackish, and salt efflorescences are very sparse and evident only when the FM is dry. We show that if the FM was 100% "leakage free" i.e., a true terminal basin, groundwater would have achieved halite saturation (>300 g/L) after ∼45 ka. We calculated that only a very small seepage of ∼2G L/yr (∼0.03% of the FM water volume) is sufficient to maintain current salinity conditions. The minimum time required to develop the current hydrochemical groundwater composition under the FM ranges from ∼60 to ∼165 ka. We conclude that a dimensionless time evaporation model versus inflow over outflow ratio model is likely more suitable than classical water budget calculations for determining outflow from large saline lakes and to estimate groundwater seepage from hydrologically terminal basins.

  12. H-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and Fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isocactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1994. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the H-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988.

  13. Mathematical model to predict the transport of dissolved arsenic in groundwater influenced by seepage velocity

    Directory of Open Access Journals (Sweden)

    Solomon Ndubuisi Eluozo

    2012-11-01

    Full Text Available Development of mathematical model to predict the transport of dissolved arsenic in groundwater influenced by seepage velocity has been carried out. This model was developed to monitor the rate of concentration at different period and depths. High and low concentrations were observed at different periods and depth as presented in the figures. These conditions can be attributed to soil stratification deposition in the study location and the influence of man-made activities. Based on these facts, it is recommended that risk assessment should be thoroughly done for soil and water and the predicted model should be applied in design and construction of groundwater system in the study area. 

  14. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B{sub 2} and Aquifer Zone 2B{sub 1} wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988.

  15. Ra-224 and Ra-226: A New Method for Measuring Groundwater Seepage in Lake Michigan

    Science.gov (United States)

    Stevens, K. R.; Buyan, A. C.; Waples, J. T.

    2008-12-01

    Radium isotopes have been used to estimate groundwater discharge (GWD) in coastal marine waters for decades, but this technique has never before been used in the Laurentian Great Lakes. In this study, we used a RAD7 radon-in-air monitor to measure naturally-occurring radium isotopes Ra-224 (half-life= 3.64 d) and Ra-226 (half-life = 1600 a) in groundwater and three shallow water sites along Lake Michigan's Wisconsin coastline. Radium-224 activities in groundwater ranged from 1153 dpm m-3 in a deep aquifer (New Berlin well no.7) to 31 dpm m-3 in a shallow aquifer (Pryor well). Nearshore Lake Michigan measurements of Ra-224 were lowest at Red Arrow Beach (0.2 dpm m-3), higher in the Milwaukee harbor (GLWI slip, 1.1 dpm m-3) and highest at Harrington Beach (4.1 dpm m-3) and correspond well with groundwater seepage estimates made by Cherkauer et al. (1990) using alternate methods (i.e., where higher radium activity is indicative of higher GWD). These Ra-224 measurements are the first ever made in Lake Michigan (and presumably any of the Great Lakes) and we conclude that, by sampling offshore radium activity gradients, this RAD7 technique is a viable method for directly measuring GWD in Lake Michigan and other freshwater systems.

  16. F-area seepage basins groundwater monitoring report. Volume 1. First and second quarters 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Groundwater at the F-Area Seepage Basins (FASB) is monitored in compliance with Module 111, Section C, of South Carolina Hazardous Waste Permit SCl-890-008-989, effective November 2, 1992. The monitoring well network is composed of 86 FSB wells and well HSB 85A. These wells are screened in the three hydrostratigraphic Units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1900. Data from 9 FSL wells are included in this report only to provide additional information for this area; the FSL wells are not part of Permit SCl-890-008-989. Monitoring results are compared to the SCDHEC Groundwater Protection Standard (GWPS), which is specified in the approved F-Area Seepage Basins Part B permit (November 1992). Historically and currently, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the first half of 1995, notably aluminum, iodine-129, pH, strontium-90, and zinc. The elevated constituents are found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the first half of 1995.

  17. Groundwater quality assessment/corrective action feasibility plan. Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  18. A research on grey numerical imitation and modeling of groundwater seepage system

    Institute of Scientific and Technical Information of China (English)

    WU; Qiang

    2001-01-01

    [1]Jiao Jiujiu, Grey hydrogeologic system analysis and time series model, Survey Science and Technology (in Chinese), 1987,(10): 39-43.[2]Li Shuwen, Wang Baolai, Xiao Guoqiang, A compound model of grey and periodic scrape and its application in groundwater prediction, Journal of Hebei Institute of Architectural Science & Technology (in Chinese), 1992, (3): 246-251.[3]Wang Qingyin, Li Shuwen, Grey distributed parameter model and groundwater analog, Journal of Hebei Institute of Architectural Science & Technology (in Chinese), 1992, (3): 66-70.[4]Guo Chunqing, Xia Riyuan, Liu Zhenglin, Gray Systematic Theory and Methodological Study of Krast Groundwater Resources Evaluation (in Chinese), Beijing: Geological Publishing House, 1993, 3-60.[5]Wang Qingyin, Liu Kaidi, The Mathematical Method of Grey Systematic Theory and Its Application (in Chinese), Chengdu: Publishing House of Southwestern China University of Communication, 1990, 23-27.[6]Wang Qingyin, Wu Heqing, The concept of grey number and its property, in Proceedings of NAFIPS98, USA, 1998,45-49.[7]Givoli, D., Doukhovni, I., Finite element programming approach for contact problems with geometrical nonlinearity, Computers and Structures, 1996, (8): 31-41.[8]Li Shuwen, Wang Zhiqiang, Wu Qiang, The superiority of storage-centered finite element method in solving seepage problem, Coal Geology and Exploration (in Chinese), 1999, (5): 46-49.

  19. Groundwater seepage landscapes with local or distal sources in experiments and on Mars

    Science.gov (United States)

    Kleinhans, Maarten; Marra, Wouter A.; Hauber, Ernst; McLelland, Stuart; Murphy, Brendan; Parsons, Daniel

    2015-04-01

    Groundwater has probably played an important role in shaping the surface of Mars. However, the hydrological origin of many typical Martian groundwater features is hampered by the lack of coupling between subsurface processes and surface morphology. Here we focus on the formation of theater-headed valleys. The basic morphology of such valleys can form by erosion through groundwater seepage (sapping), but similar valley morphology can also be the result of overland flow with waterfall-enhanced erosion. This morphological ambiguity complicates the interpretation of such valleys on Mars, but their climatic implications are quite different. Instead of the ambiguous single-valley morphology, metrics of the entire landscape may provide a diagnostic insight into the formative hydrological conditions. We aim to increase our understanding of the formation of entire landscapes by sapping processes and their hydrological implications by providing a framework for morphological metrics of different types of sapping systems. We study sapping from different groundwater sources using large-scale sandbox experiments in the Total Environmental Simulator at the University of Hull and combine our results with previous experiments. Importantly, flow patterns and the resulting landscapes are significantly different for the different sources of groundwater. The main differences are between sapping that results from either local or distal sources. Key results of our study are that groundwater piracy acts on distally-fed valleys, which results in a sparsely dissected landscape of many small and a few large valleys, while locally-fed valleys result in a densely dissected landscape. In addition, distally-fed valleys grow towards the direction of the groundwater source while locally-fed channels grow in a broad range of directions and have strong tendency to bifurcate, particularly on flat horizontal surfaces. To exemplify these differences, we apply the results to aid the interpretation of

  20. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB`s Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B{sub 2} and in the upper portion of Aquifer Zone 2B{sub 1}. However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B{sub 1} and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.

  1. Uranium geochemistry in soil and groundwater at the F and H seepage basins

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.; Johnson, W.H.

    1994-09-01

    For 33 years, low activity liquid wastes from the chemical separation areas at the U.S. Department of Energy`s Savannah River Site were disposed of in unlined seepage basins. Soil and associated pore water samples of widely varying groundwater chemistries and contaminant concentrations were collected from the region downgradient of these basins using cone penetrometer technology. Analysis of samples using inductively coupled plasma - mass spectrometry has allowed the investigation of uranium partitioning between the aqueous phase and soil surfaces at this site. The distribution of uranium was examined with respect to the solution and soil chemistry (e.g., pH, redox potential, cation and contaminant concentration) and aqueous-phase chemical speciation modeling. The uranium soil source term at the F- and H-Area Seepage Basins (FHSB) is much smaller than has been used in previous modeling efforts. This should result in a much shorter remediation time and a greater effectiveness of a pump-and-treat design than previously predicted. Distribution coefficients at the (FHSB) were found to vary between 1.2 to 34,000 1 kg{sup {minus}1} for uranium. Differences in sorption of these elements can be explained primarily by changes in aqueous pH and the associated change in soil surface charge. Sorption models were fit directly to sorption isotherms from field samples. All models underestimated the fraction of uranium bound at low aqueous uranium concentrations. Linear models overestimated bound uranium at locations where the aqueous concentration was greater than 500 ppb. Mechanistic models provided a much better estimate of the bound uranium concentrations, especially at high aqueous concentrations. Since a large fraction of the uranium at the site is associated with the low-pH portion of the plume, consideration should be given to pumping water from the lowest pH portions of the plume in the F-Area.

  2. Recharge Net Metering to Incentivize Sustainable Groundwater Management

    Science.gov (United States)

    Fisher, A. T.; Coburn, C.; Kiparsky, M.; Lockwood, B. S.; Bannister, M.; Camara, K.; Lozano, S.

    2016-12-01

    Stormwater runoff has often been viewed as a nuisance rather than a resource, but with passage of the Sustainable Groundwater Management Act (2014), many basins in California are taking a fresh look at options to enhance groundwater supplies with excess winter flows. In some basins, stormwater can be used for managed aquifer recharge (MAR), routing surface water to enhance groundwater resources. As with many public infrastructure programs, financing for stormwater-MAR projects can be a challenge, and there is a need for incentives that will engage stakeholders and offset operation and maintenance costs. The Pajaro Valley Water Management Agency (PVWMA), in central costal California, recently launched California's first Recharge Net Metering (ReNeM) program. MAR projects that are part of the ReNeM program are intended to generate ≥100 ac-ft/yr of infiltration benefit during a normal water year. A team of university and Resource Conservation District partners will collaborate to identify and assess potential project sites, screening for hydrologic conditions, expected runoff, ease and cost of project construction, and ability to measure benefits to water supply and quality. The team will also collect data and samples to measure the performance of each operating project. Groundwater wells within the PVWMA's service area are metered, and agency customers pay an augmentation fee for each unit of groundwater pumped. ReNeM projects will earn rebates of augmentation fees based on the amount of water infiltrated, with rebates calculated using a formula that accounts for uncertainties in the fate of infiltrated water, and inefficiencies in recovery. The pilot ReNeM program seeks to contribute 1000 ac-ft/yr of infiltration benefit by the end of the initial five-year operating period. ReNeM offers incentives that are distinct from those derived from traditional groundwater banking, and thus offers the potential for an innovative addition to the portfolio of options for

  3. Synoptic estimates of diffuse groundwater seepage to a spring-fed karst river at high spatial resolution using an automated radon measurement technique

    Science.gov (United States)

    Khadka, Mitra B.; Martin, Jonathan B.; Kurz, Marie J.

    2017-01-01

    Groundwater (GW) seepage can provide a major source of water, solutes, and contaminants to rivers, but identifying magnitudes, directions and locations of seepage is complicated by its diffuse and heterogeneous distributions. However, such information is necessary to develop programs and policies for protecting ecosystems and managing water resources. Here, we assess GW seepage to the Ichetucknee River, a spring-fed, low gradient, gaining stream in north-central Florida, through automated longitudinal surveys of radon (222Rn) activities at three different flow conditions. A 222Rn mass balance model, which integrates groundwater and spring water end member 222Rn activities and longitudinal 222Rn distributions in river water, shows that diffuse groundwater seepage represents about 16% of the total river baseflow, consistent with previous results obtained from ion (Ca2+, Cl-, SRP and Fe) mass balances and dye tracer methods. During high river stage, the contribution from seepage increases to 18-23% of the river flow. The spatial distribution of GW seepage is more variable in the upper 2.2-km reach of the river than the lower 2.8-km reach, regardless of river flow conditions. The upper reach has a narrower flood plain than the lower reach, which limits evapotranspiration and increases hydraulic gradients toward the river following storm events. Seepage in the lower reach is also limited by hydrologic damming by the receiving river, which inundates the floodplain during high flow conditions, and reduces the hydraulic head gradient. These results demonstrate the variable nature of seepage to a gaining river in both time and space and indicate that multiple synoptic analyses of GW seepage are required to assess seepage rates, determine time-averaged solute fluxes, and develop optimal management policies for riverine ecosystems.

  4. Exploring the long-term balance between net precipitation and net groundwater exchange in Florida seepage lakes

    Science.gov (United States)

    Lee, Terrie M.; Sacks, Laura A.; Swancar, Amy

    2014-01-01

    The long-term balance between net precipitation and net groundwater exchange that maintains thousands of seepage lakes in Florida’s karst terrain is explored at a representative lake basin and then regionally for the State’s peninsular lake district. The 15-year water budget of Lake Starr includes El Niño Southern Oscillation (ENSO)-related extremes in rainfall, and provides the longest record of Bowen ratio energy-budget (BREB) lake evaporation and lake-groundwater exchanges in the southeastern United States. Negative net precipitation averaging -25 cm/yr at Lake Starr overturns the previously-held conclusion that lakes in this region receive surplus net precipitation. Net groundwater exchange with the lake was positive on average but too small to balance the net precipitation deficit. Groundwater pumping effects and surface-water withdrawals from the lake widened the imbalance. Satellite-based regional estimates of potential evapotranspiration at five large lakes in peninsular Florida compared well with basin-scale evaporation measurements from seven open-water sites that used BREB methods. The regional average lake evaporation estimated for Lake Starr during 1996-2011 was within 5 percent of its measured average, and regional net precipitation agreed within 10 percent. Regional net precipitation to lakes was negative throughout central peninsular Florida and the net precipitation deficit increased by about 20 cm from north to south. Results indicate that seepage lakes farther south on the peninsula receive greater net groundwater inflow than northern lakes and imply that northern lakes are in comparatively leakier hydrogeologic settings. Findings reveal the peninsular lake district to be more vulnerable than was previously realized to drier climate, surface-water withdrawals from lakes, and groundwater pumping effects.

  5. Robust, non-invasive methods for metering groundwater well extraction in remote environments

    Science.gov (United States)

    Bulovic, Nevenka; Keir, Greg; McIntyre, Neil

    2017-04-01

    Quantifying the rate of extraction from groundwater wells can be essential for regional scale groundwater management and impact assessment. This is especially the case in regions heavily dependent on groundwater such as the semi-arid Surat and Bowen Basins in Queensland, Australia. Of the 30 000+ groundwater wells in this area, the majority of which are used for stock watering and domestic purposes, almost none have flow metering devices installed. As part of a research project to estimate regional groundwater extraction, we have undertaken a small scale flow metering program on a selected set of wells. Conventional in-line flow meters were unsuitable for our project, as both non-invasiveness and adaptability / suitability to a variety of discharge pipe characteristics was critical. We describe the use of two metering technologies not widely used in groundwater applications, non-invasive, clamp-on ultrasonic transit time flow meters and tipping bucket flow meters, as semi-permanent installations on discharge pipes of various artesian and sub-artesian groundwater wells. We present examples of detailed extraction rate time-series, which are of particular value in developing predictive models of water well extraction in data limited areas where water use dynamics and drivers are poorly understood. We conclude by discussing future project trajectories, which include expansion of the monitoring network through development of novel metering techniques and telemetry across large areas of poor connectivity.

  6. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    Science.gov (United States)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  7. Occurrence, distribution and prey items of juvenile marbled sole Pseudopleuronectes yokohamae around a submarine groundwater seepage on a tidal flat in southwestern Japan

    Science.gov (United States)

    Hata, Masaki; Sugimoto, Ryo; Hori, Masakazu; Tomiyama, Takeshi; Shoji, Jun

    2016-05-01

    Occurrence, distribution and prey items of juvenile marbled sole Pseudopleuronectes yokohamae were investigated around a submarine groundwater seepage on a tidal flat in southwestern Japan. Spatial distribution of radon-222 (222Rn) concentration in water showed more submarine groundwater seepage in the offshore area. The lower salinities at offshore sampling stations corresponded with the highest 222Rn concentrations. Juvenile marbled sole were collected from March through June with seasonal peak in April in 2013 and 2014. Mean abundance of juvenile marbled sole was highest at the second most offshore station where high submarine groundwater seepage was indicated. Major prey items in the stomachs of the marbled sole at the post-settlement stage (10-40 mm) were small crustaceans such as cumaceans and gammarids, which were partially replaced with polychaetes in larger juveniles (40-50 mm). Abundance of these major prey items was also higher at offshore stations. A negative correlation between gammarid abundance and salinity indicated a higher concentration of gammarids around the area of high submarine groundwater seepage, a pattern not observed for the other major prey organisms. Stable isotope analysis showed greater dependence of post-settlement stage marbled sole on the small crustaceans with low δ13C indicating that nutrients of terrestrial origin contribute to production of the juvenile marbled sole on the tidal flat.

  8. Seepage-Based Factor of Safety Analysis Using 3D Groundwater Simulation Results

    Science.gov (United States)

    2014-08-01

    Hydraulics Engineering Technical Note (CHETN) is to document techniques for computing Factors of Safety (FoS) for seepage-related soil instability...topography, geology, sources or sinks , and boundary conditions along the length of the soil structure. If these conditions exist, a 3D model may be needed... hydraulic gradient, and iv is the exit gradient at the point of interest. The critical, stable, and unstable conditions are thus defined as FoS = 1, FoS

  9. Solution and its application of transient stream/groundwater model subjected to time-dependent vertical seepage

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the first linearized Boussinesq equation, the analytical solution of the transient groundwater model, which is used for describing phreatic flow in a semiinfinite aquifer bounded by a linear stream and subjected to time-dependent vertical seepage, is derived out by Laplace transform and the convolution integral.According to the mathematical characteristics of the solution, different methods for estimating aquifer parameters are constructed to satisfy different hydrological conditions.Then, the equation for estimating water exchange between stream and aquifer is proposed, and a recursion equation or estimating the intensity of phreatic evaporation is also proposed.A phreatic aquifer stream system located in Huaibei Plain, Anhui Province, China, is taken as an example to demonstrate the estimation process of the methods stated herein.

  10. Peritidal stromatolites at the convergence of groundwater seepage and marine incursion: Patterns of salinity, temperature and nutrient variability

    Science.gov (United States)

    Rishworth, Gavin M.; Perissinotto, Renzo; Bornman, Thomas G.; Lemley, Daniel A.

    2017-03-01

    Living peritidal stromatolites forming at the interface of coastal groundwater seepage and regular marine input are known from only a few locations globally, including South Africa, Western Australia and Northern Ireland. In contrast to modern stromatolites from exclusively fresh or marine waters, which persist due to high calcium carbonate saturation states or hypersaline and erosive conditions (which exclude organisms that might disrupt or out-compete the stromatolite-forming benthic microalgae), the factors supporting stromatolite formation at peritidal locations have not been well-documented. Therefore, the aim of this study was to investigate the fine-scale physico-chemical parameters in terms of pool temperature, salinity and nutrient dynamics at three representative sites along the coastline near Port Elizabeth, South Africa. These parameters were assessed with reference to potential physical, meteorological and ocean drivers using a linear or linear mixed-effects modelling approach. Results demonstrate that nutrient inputs into the pools supporting the majority of stromatolite accretion (barrage pools) are driven by groundwater seepage site-specific properties related to anthropogenic occupation (dissolved inorganic nitrogen; DIN) as well as marine water incursion (dissolved inorganic phosphorus; DIP). Pool temperature is a function of seasonal ambient variability while salinity reflects regular state shifts from fresh to marine conditions, which are related to tidal amplitude and swell height. The regular marine incursions likely promote benthic primary biomass in the phosphorus-limited stromatolite pools, as well as preclude organisms which might otherwise outcompete or disrupt the stromatolite microalgae due to intolerances to extreme ( 1.5 to ≥ 30) salinity variability.

  11. Hydrogeology and hydrochemistry of groundwater-dominated lakes

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta

    , while deeper groundwater by-passes the lake by flowing underneath the gyttja sediments and discharges at the eastern sandy shore, where groundwater springs and high discharge zones (HDZ) are observed. Hydrogeochemical tracers were successfully used for estimating the general discharge distribution...... at a 25-m-wide sandy lakebed, while surface runoff from the western and southern seepage faces delivers approximately 65%. The simulated seepage rates are an acceptable approximation of the average fluxes measured with seepage meters on the eastern shore. Seepage measurements and the observation...... bottom and heterogeneities in the hydraulic properties of the lakebed have a significant influence on the groundwater flow patterns and discharge dynamics. Part of the groundwater flowing from the west and south is forced to discharge at wetlands/seepage faces at the western and southern lake shores...

  12. Using an Unmanned Arial Vehicle (UAV) and a thermal infrared camera to estimate temperature differences on a lake surface, revealing incoming groundwater seepage.

    Science.gov (United States)

    Hoffmann, Helene; Müller, Sascha; Friborg, Thomas

    2014-05-01

    UAVs are at the budding stage of becoming efficient tools in geosciences due to their fast coverage of large areas, creating opportunities to collect comprehensive amounts of spatially distributed data. In this survey a fixed-wing UAV is equipped with a thermal infrared camera (Optris PI 450) conducting spatially distributed measurements of radiometric surface temperature, from a small groundwater-fed lake. We hypothesis that larger temperature differences in the lake surface will reveal locations of incoming groundwater seepage. During wintertime, warmer groundwater will have great incentive to rise to the lake surface without significant mixing with colder lake water and hence enable detection of incoming groundwater seepage with surface measurements. The investigated area is a 300x150 m section of Lake Vaeng in southern Jutland, Denmark. Detecting areas of groundwater seepage into lakes and quantifying these fluxes are of great importance not only for water budgets but also in relation to lake environments. Incoming groundwater might be a large nutrient source in lakes. GPS coordinates from the UAV are correlated with each thermal image based on UTC time stamps. Geo-reference is further improved with ground control points in the form of 0.2x0.2 m aluminum foil rectangles. Aluminum stands out clearly in thermal images and using seven of these ground control points, evenly distributed in the investigated area, led to an accuracy of 0.3 m. Using the Structure from Motion photogrammetric technique, a point cloud model is produced and camera positions along with intrinsic and extrinsic properties are established. Distinct temperature differences of 1.5 C have been detected along the south-eastern shore of Lake Vaeng. The location of these hotspots is in agreement with temperature differences measured with Distributed Temperature Sensing (DTS) system - indicating zones of groundwater seepage into the lake. In addition to faster execution of large spatially distributed

  13. Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars.

    Science.gov (United States)

    Lamb, Michael P; Dietrich, William E; Aciego, Sarah M; Depaolo, Donald J; Manga, Michael

    2008-05-23

    Amphitheater-headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater sapping because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, 4He and 14C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion.

  14. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel;

    2011-01-01

    The spatial distribution of seepage at a flow-through lake in western Denmark was investigated at multiple scales with integrated use of a seepage meter, lake–groundwater gradients, stable isotope fractionation (d18O), chlorofl uorocarbon (CFC) apparent ages, land-based and off -shore geophysical...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  15. Measuring Groundwater and Contaminant Flux: Passive Flux Meter Field Applications and Issues with Alcohol Degradability

    Directory of Open Access Journals (Sweden)

    Diane Bondehagen

    2010-05-01

    Full Text Available The passive flux meter (PFM developed at the University of Florida is an innovative device that is inserted into a well in order to measure groundwater and contaminant flux. The in-situ device consists of an activated carbon matrix impregnated with known amounts of alcohols that are desorbed at rates proportional to the groundwater flux through the device. After exposure the sorbent is extracted to quantify the contaminant mass intercepted and the resident alcohol mass remaining. Since the alcohols employed in bioactive sites are degradable, studies were conducted to investigate biodegradation issues and microbial acclimation times in field application. Also, silver-impregnated activated carbon was compared to unamended activated carbon in batch and column studies to determine silver ion effects on degradation. The studies confirm degradation and microbial acclimation occurrence, and demonstrate that silver impregnated activated carbon does inhibit degradation. Issues remain with biofilm/biofouling observed in the field as well as column studies.

  16. Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters.

    Science.gov (United States)

    Verreydt, G; Bronders, J; Van Keer, I; Diels, L; Vanderauwera, P

    2015-01-01

    Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.

  17. Analytical results, database management and quality assurance for analysis of soil and groundwater samples collected by cone penetrometer from the F and H Area seepage basins

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, D.R.; Johnson, W.H.; Serkiz, S.M.

    1994-10-01

    The Quantification of Soil Source Terms and Determination of the Geochemistry Controlling Distribution Coefficients (K{sub d} values) of Contaminants at the F- and H-Area Seepage Basins (FHSB) study was designed to generate site-specific contaminant transport factors for contaminated groundwater downgradient of the Basins. The experimental approach employed in this study was to collect soil and its associated porewater from contaminated areas downgradient of the FHSB. Samples were collected over a wide range of geochemical conditions (e.g., pH, conductivity, and contaminant concentration) and were used to describe the partitioning of contaminants between the aqueous phase and soil surfaces at the site. The partitioning behavior may be used to develop site-specific transport factors. This report summarizes the analytical procedures and results for both soil and porewater samples collected as part of this study and the database management of these data.

  18. Comparative Analysis of Seepage Losses From Nighttime Water Level Changes and Water Balance Methods

    Science.gov (United States)

    Shukla, A.; Shukla, S.; Wu, C.

    2013-12-01

    Several techniques including Darcy's theory of one and two dimensional groundwater flow, seepage meters, and water balance have been used in the past to estimate seepage from impoundments such as reservoirs, ponds, and constructed wetlands. These methods result in varying level of errors in seepage estimates depending on method and biogeophysical setting to which they are applied. In this study, we explore a simple yet effective method of estimating groundwater fluxes for two stormwater impoundments (SIs) and a partially drained wetland located in agricultural areas using diurnal changes in surface water levels inside these systems. Days with no inflow, outflow, and rainfall were selected to minimize the effect of the error associated water balance components on seepage estimation. Difference in water levels between 20:00 hrs and 5:00 hrs was calculated for the selected days. Only nighttime change was considered keeping in mind the fact that evapotranspiration is negligible during night and hence, the change in water levels can be attributed to seepage alone. Seepage from the analysis of night-time change in the water levels was compared to the estimates from the water balance method with seepage being the residual component of the balance. Results show that seepage constitutes a large part of total outflow from the impoundments (29% and 17% for SI1 during 2008-2009 and 2009-2010 respectively, 30% for SI2 during 2009-2010 and seepage was greater than the total surface water outflow from SI2 during 2010-2011). Accuracy of this method varied from 5% to 41% for first and 4% to 29% for the second SI. Considering that errors as high as 100% have been reported with the use of Darcy's approach, the errors from our method are lower. The lower errors combined with ease of application without using the hydraulic conductivity values makes our approach feasible for other similar systems. Improved seepage estimate from the proposed method will result in quantification of

  19. Estimated seepage rates from selected ditches, ponds, and lakes at the Camas National Wildlife Refuge, eastern Idaho.

    Science.gov (United States)

    Rattray, Gordon W

    2017-12-01

    The Camas National Wildlife Refuge (Refuge) in eastern Idaho, established in 1937, contains wetlands, ponds, and wet meadows that are essential resting and feeding habitat for migratory birds and nesting habitat for waterfowl. Initially, natural sources of water supported these habitats. However, during the past few decades, changes in climate and surrounding land use have altered and reduced natural groundwater and surface-water inflows, resulting in a 5-meter decline in the water table and an earlier, and more frequent, occurrence of no flow in Camas Creek at the Refuge. Due to these changes in water availability, water management that includes extensive groundwater pumping is now necessary to maintain the wetlands, ponds, and wet meadows. These water management activities have proven to be inefficient and expensive, and the Refuge is seeking alternative water-management options that are more efficient and less expensive. More efficient water management at the Refuge may be possible through knowledge of the seepage rates from ditches, ponds, and lakes at the Refuge. With this knowledge, water-management efficiency may be improved by natural means through selective use of water bodies with the smallest seepage rates or through engineering efforts to minimize seepage losses from water bodies with the largest seepage rates. The U.S. Geological Survey performed field studies in 2015 and 2016 to estimate seepage rates for selected ditches, ponds, and lakes at the Refuge. Estimated seepage rates from ponds and lakes ranged over an order of magnitude, from 3.4 ± 0.2 to 103.0 ± 0.5 mm/d, with larger seepage rates calculated for Big Pond and Redhead Pond, intermediate seepage rates calculated for Two-way Pond, and smaller seepages rates calculated for the south arm of Sandhole Lake. Estimated seepage losses from two reaches of Main Diversion Ditch were 21 ± 2 and 17 ± 2 percent/km. These losses represent seepage rates of about 890 and 860 mm/d, which are one

  20. Estimated seepage rates from selected ditches, ponds, and lakes at the Camas National Wildlife Refuge, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.

    2017-01-01

    The Camas National Wildlife Refuge (Refuge) in eastern Idaho, established in 1937, contains wetlands, ponds, and wet meadows that are essential resting and feeding habitat for migratory birds and nesting habitat for waterfowl. Initially, natural sources of water supported these habitats. However, during the past few decades, changes in climate and surrounding land use have altered and reduced natural groundwater and surface-water inflows, resulting in a 5-meter decline in the water table and an earlier, and more frequent, occurrence of no flow in Camas Creek at the Refuge. Due to these changes in water availability, water management that includes extensive groundwater pumping is now necessary to maintain the wetlands, ponds, and wet meadows.These water management activities have proven to be inefficient and expensive, and the Refuge is seeking alternative water-management options that are more efficient and less expensive. More efficient water management at the Refuge may be possible through knowledge of the seepage rates from ditches, ponds, and lakes at the Refuge. With this knowledge, water-management efficiency may be improved by natural means through selective use of water bodies with the smallest seepage rates or through engineering efforts to minimize seepage losses from water bodies with the largest seepage rates.The U.S. Geological Survey performed field studies in 2015 and 2016 to estimate seepage rates for selected ditches, ponds, and lakes at the Refuge. Estimated seepage rates from ponds and lakes ranged over an order of magnitude, from 3.4 ± 0.2 to 103.0 ± 0.5 mm/d, with larger seepage rates calculated for Big Pond and Redhead Pond, intermediate seepage rates calculated for Two-way Pond, and smaller seepages rates calculated for the south arm of Sandhole Lake. Estimated seepage losses from two reaches of Main Diversion Ditch were 21 ± 2 and 17 ± 2 percent/km. These losses represent seepage rates of about 890 and 860 mm/d, which are one

  1. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  2. Rainwater lens dynamics and mixing between infiltrating rainwater and upward saline groundwater seepage beneath a tile-drained agricultural field

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Oude Essink, Gualbert; Vermue, Esther; Post, Vincent E.A.

    2013-01-01

    Thin rainwater lenses (RW-lenses) near the land surface are often the only source of freshwater in agricultural areas with regionally-extensive brackish to saline groundwater. The seasonal and inter-annual dynamics of these lenses are poorly known. Here this knowledge gap is addressed by investigati

  3. Numerical simulation of seepage flow field in groundwater source heat pump system and its influence on temperature field

    Institute of Scientific and Technical Information of China (English)

    Jihua HU; Yanjun ZHANG; Danyan DU; Gang WU; Ziwang YU; Chen WANG; Fuquan NI

    2008-01-01

    Energy utilization in the aquifers is a new technology closely related to development of heat pump technique. It is significant for the flow distribution to be predicted in the aquifer surrounding the Groundwater Source Heat Pump System (GSHPS). The authors presented a new concept of "flow transfixion" by analyzing general features of aquifers, and then discussed interaction of the flow transfixion with the heat transfixion, which has practical significance to projects. A numerical model of groundwater flow was established based on the basic tenets of water-heat transferring in the aquifer. On this basis the flow field and the temperature field of GSHPS for a site in Shenyang City were numerically simulated. The basis of the flow transfixion was obtained; it was discussed for the influence of the flow transfixion on the heat transfixion. To a certain extent, the study offers some reference for the projects' design of GSHP in the studied area.

  4. H-Area Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  5. Effect of ground-water recharge on configuration of the water table beneath sand dunes and on seepage in lakes in the sandhills of Nebraska, U.S.A.

    Science.gov (United States)

    Winter, T.C.

    1986-01-01

    Analysis of water-level fluctuations in about 30 observation wells and 5 lakes in the Crescent Lake National Wildlife Refuge in the sandhills of Nebraska indicates water-table configuration beneath sand dunes in this area varies considerably, depending on the configuration of the topography of the dunes. If the topography of an interlake dunal area is hummocky, ground-water recharge is focused at topographic lows causing formation of water-table mounds. These mounds prevent ground-water movement from topographically high lakes to adjacent lower lakes. If a dune ridge is sharp, the opportunity for focused recharge does not exist, resulting in water-table troughs between lakes. Lakes aligned in descending altitudes, parallel to the principal direction of regional ground-water movement, generally have seepage from higher lakes toward lower lakes. ?? 1986.

  6. Seepage Calibration Model and Seepage Testing Data

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-17

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM is developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA (see upcoming REV 02 of CRWMS M&O 2000 [153314]), which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model (see BSC 2003 [161530]). The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross Drift to obtain the permeability structure for the seepage model; (3) to use inverse modeling to calibrate the SCM and to estimate seepage-relevant, model-related parameters on the drift scale; (4) to estimate the epistemic uncertainty of the derived parameters, based on the goodness-of-fit to the observed data and the sensitivity of calculated seepage with respect to the parameters of interest; (5) to characterize the aleatory uncertainty of

  7. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  8. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence an

  9. Seepage Calibration Model and Seepage Testing Data

    Energy Technology Data Exchange (ETDEWEB)

    S. Finsterle

    2004-09-02

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross

  10. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  11. Abstraction of Drift Seepage

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package

  12. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222

    Science.gov (United States)

    Dimova, N.T.; Burnett, W.C.

    2011-01-01

    In order to evaluate groundwater discharge into small lakes we constructed a model that is based on the budget of 222Rn (radon t1/2 5 3.8 d) as a tracer. The main assumptions in our model are that the lake's waters are wellmixed horizontally and vertically; the only significant 222Rn source is via groundwater discharge; and the only losses are due to decay and atmospheric evasion. In order to evaluate the groundwater-derived 222Rn flux, we monitored the 222Rn concentration in lake water over periods long enough (usually 1-3 d) to observe changes likely caused by variations in atmospheric exchange (primarily a function of wind speed and temperature). We then attempt to reproduce the observed record by accounting for decay and atmospheric losses and by estimating the total 222Rn input flux using an iterative approach. Our methodology was tested in two lakes in central Florida: one of which is thought to have significant groundwater inputs (Lake Haines) and another that is known not to have any groundwater inflows but requires daily groundwater augmentation from a deep aquifer (Round Lake). Model results were consistent with independent seepage meter data at both Lake Haines (positive seepage of ??? 1.6 ?? 104 m3 d-1 in Mar 2008) and at Round Lake (no net groundwater seepage). ?? 2011, by the American Society of Limnology and Oceanography, Inc.

  13. Seepage Anisotropy of Heterogeneous Body

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ore dumps are heterogeneous bodies with anisotropic seepage characteristics because of the ore segregation.In an indoor experiment, a dump was constructed with three strata, where the horizontal and vertical seepage experiments were carried out.Horizontals flow are regarded as phreatic plan flows without penetration.Its seepage law satifies the Dupuit equation.With parallel lay seepage model, the equivalent seepage coefficient in the horizontal flow was obtained and was equivalent to the weighted mean of the seepage coefficient of each stratum.An unsaturated flow appeared in the vertical experiment, with a hydraulic gradient of 1.The vertical flow was equivalent to the seepage model that moved in vertical bedding; its equivalent seepage coefficient depended on the stratum with the minimum seepage coefficient.That the experiment showed clear anisotropy in a heterogeneous body was obvious with an anisotropic coefficient between 63 and 155, which is 25 to 100 times larger than that of a homogeneous body.

  14. ANALYSIS OF SEEPAGE FLOW IN A CONFINED AQUIFER WITH A STANDING COLUMN WELL

    Institute of Scientific and Technical Information of China (English)

    LI Min; DIAO Nai-ren; FANG Zhao-hong

    2007-01-01

    The standing column well for ground source heat pump systems is a promising technology with high efficiency and environmental benefit, where groundwater is drawn from the bottom of a well and then re-injected to its top after transferring heat with heat pumps. Heat transfer analysis of great significance and aquifer involves complex problems. Determining the groundwater seepage flow is a precondition to solve the energy equation describing the heat transfer of the system. Only when piezometric head is obtained, the seepage velocity can be determined according to Darcy's law. In this article the groundwater seepage flow in an axial symmetrical geometry was studied under the assumption that gross groundwater flow is neglected. An analytical solution of the groundwater seepage flow for a confined aquifer was acquired by using the integral transform method, which may provide a foundation for heat transfer analysis of the standing column well system.

  15. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  16. Shallow rainwater lenses in deltaic areas with saline seepage

    Directory of Open Access Journals (Sweden)

    P. G. B. de Louw

    2011-12-01

    Full Text Available In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of the Netherlands. By combining the applied techniques we could extrapolate measurements at point scale (groundwater sampling, temperature and electrical soil conductivity (TEC-probe measurements, electrical cone penetration tests (ECPT to field scale (continuous vertical electrical soundings (CVES, electromagnetic survey with EM31, and even to regional scale using helicopter-borne electromagnetic measurements (HEM. The measurements show a gradual mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone Dmix, where the salinity is half that of seepage water, and the bottom of the mixing zone Bmix, with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l−1. Dmix is found at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l., while Bmix lies about 2.5 m b.g.l. The model results show that the constantly alternating upward and downward flow at low velocities in the confining layer is the main mechanism of mixing between rainwater and saline seepage and determines the position and extent of the mixing zone (Dmix and Bmix. Recharge, seepage flux, and drainage depth are the controlling factors.

  17. Geophysical investigation of seepage beneath an earthen dam.

    Science.gov (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A

    2015-01-01

    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone.

  18. 基于地电场响应的矿井顶板突水模拟实验%EXPERIMENTAL RESEARCH ON MINE ROOF WATER-INRUSH BASED ON RESPONSE OF GEOELECTRIC FIELD TO GROUNDWATER SEEPAGE

    Institute of Scientific and Technical Information of China (English)

    杨彩; 刘盛东; 胡泽安

    2012-01-01

    Through the establishment of the model for groundwater seepage-electric test, mine roof water-inrush was simulated and coarse-grained sand, medium-grained sand and fine-grained sand were partly used as aquifer media. The properties of transient response of parameters of the geoelectric field are real time monitored by network parallel electrical equipment. Through analyzing the variation curves of spontaneous potential, exciting voltage and exciting current with time and the pictures of apparent resistivity with time, the authors have found that the experiments on three different kinds of aquifer media show apparent response and basically have the same regularity. In the process of water-inrush, the spontaneous potential of coarse sand and medium sand are significantly lower than that of the two stages before and after water-inrush. The spontaneous potential of fine sand keeps growing and shows significant changes in the water-inrush point. And the exciting voltage and exciting current keep the same changes. Compared with the stages before and after water-inrush, the exciting voltage shows great reduction and the exciting current shows dramatic rise. The apparent resistivity section diagram can clearly show the change process at seepage, water-inrush and post-water-inrush stages, which can be applied to judge the water capacity of aquifer. The study is of practical significance for the study of mine flood forecast and prevention.%建立渗流电测模型,利用粗砂、中砂、细砂三种含水层介质模拟矿井顶板突水,采用网络并行电法仪实时监测地电场参数的瞬态响应特征.通过分析自然电位、一次场电位、激励电流随时间变化图及视电阻率断面图,发现三种不同含水层介质实验的地电场参数都有明显响应,响应规律基本一致.在突水阶段,粗砂和中砂的自然电位明显低于突水前、后的两个阶段,细砂自然电位持续上升,在突水点有显著变化;一次场电位

  19. Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island.

    Science.gov (United States)

    Povinec, P P; Burnett, W C; Beck, A; Bokuniewicz, H; Charette, M; Gonneea, M E; Groening, M; Ishitobi, T; Kontar, E; Liong Wee Kwong, L; Marie, D E P; Moore, W S; Oberdorfer, J A; Peterson, R; Ramessur, R; Rapaglia, J; Stieglitz, T; Top, Z

    2012-02-01

    Submarine groundwater discharge (SGD) into a shallow lagoon on the west coast of Mauritius Island (Flic-en-Flac) was investigated using radioactive ((3)H, (222)Rn, (223)Ra, (224)Ra, (226)Ra, (228)Ra) and stable ((2)H, (18)O) isotopes and nutrients. SGD intercomparison exercises were carried out to validate the various approaches used to measure SGD including radium and radon measurements, seepage rate measurements using manual and automated meters, sediment bulk conductivity and salinity surveys. SGD measurements using benthic chambers placed on the floor of the Flic-en-Flac Lagoon showed discharge rates up to 500 cm/day. Large variability in SGD was observed over distances of a few meters, which were attributed to different geomorphological features. Deployments of automated seepage meters captured the spatial and temporal variability of SGD with a mean seepage rate of 10 cm/day. The stable isotopic composition of submarine waters was characterized by significant variability and heavy isotope enrichment and was used to predict the contribution of fresh terrestrially derived groundwater to SGD (range from a few % to almost 100%). The integrated SGD flux, estimated from seepage meters placed parallel to the shoreline, was 35 m(3)/m day, which was in reasonable agreement with results obtained from a hydrologic water balance calculation (26 m(3)/m day). SGD calculated from the radon inventory method using in situ radon measurements were between 5 and 56 m(3)/m per day. Low concentrations of radium isotopes observed in the lagoon water reflected the low abundance of U and Th in the basalt that makes up the island. High SGD rates contribute to high nutrients loading to the lagoon, potentially leading to eutrophication. Each of the applied methods yielded unique information about the character and magnitude of SGD. The results of the intercomparison studies have resulted a better understanding of groundwater-seawater interactions in coastal regions. Such information is

  20. Bifurcation and catastrophe of seepage flow system in broken rock

    Institute of Scientific and Technical Information of China (English)

    MIAO Xie-xing; LI Shun-cai; CHEN Zhan-qing

    2009-01-01

    The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo-tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.

  1. Transient hydrogeological controls on the chemistry of a seepage lake

    Science.gov (United States)

    Krabbenhoft, David P.; Webster, Katherine E.

    1995-01-01

    A solute mass balance method was used to estimate groundwater inflow and outflow rates for Nevins Lake, Michigan, a seepage lake in the upper peninsula that historically has shown extremely variable water chemistry compared with most other seepage lakes. A 4-year study (1989–1992) of the hydrology and geochemistry of Nevins Lake and its contiguous groundwater system revealed that changes in the mass of dissolved solutes are the result of annual hydraulic gradient reversals. A pronounced acidification of Nevins Lake from 1986 to 1988 was likely caused by drought-induced diminished groundwater inflow rates. In this study, dissolved calcium (the major cation in water of Nevins Lake, groundwater, and precipitation) was used for estimating mass flow rates. During the 1989–1992 period, Nevins Lake showed a reproducible annual cycle in calcium mass. Immediately following spring snowmelt and the resulting hydraulic gradient reversal, the mass of dissolved calcium in the lake increases rapidly, and then it decreases steadily throughout the summer and early fall, at which time the lake becomes hydraulically mounded and receives no groundwater inflow. Groundwater flow rates estimated by the solute mass balance method are sensitive to assumed solute concentrations in discharging groundwater. Pore water samples from the lake bed are shown to be more representative of water discharging to the lake than are samples from piezometers near the lake shore, but spatial and temporal variability in pore water chemistry must be considered. Stable isotope analyses (18O and 2H) of lake water, groundwater, and pore water samples show that water discharging to Nevins Lake in the spring is entirely recycled lake water, and no groundwater derived from terrestrial recharge reaches the lake. The conceptual model formulated during this study linking lake chemistry and the contiguous groundwater system and general groundwater flow patterns surrounding highly transient lake systems are likely

  2. Shallow rainwater lenses in deltaic areas with saline seepage

    Directory of Open Access Journals (Sweden)

    P. G. B. de Louw

    2011-08-01

    Full Text Available In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of The Netherlands. By combining the applied techniques we could extrapolate in situ measurements at point scale (groundwater sampling, TEC (temperature and electrical soil conductivity-probe measurements, electrical cone penetration tests (ECPT to a field scale (continuous vertical electrical soundings (CVES, electromagnetic survey with EM31, and even to a regional scale using helicopter-borne electromagnetic measurements (HEM. The measurements show a gradual S-shaped mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone Dmix, where the salinity is half that of seepage water, and the bottom of the mixing zone Bmix, with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l−1. Dmix manifests at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l., while Bmix lies about 2.5 m b.g.l. Head-driven forced convection is the main mechanism of rainwater lens formation in the saline seepage areas rather than free convection due to density differences. Our model results show that the sequence of alternating vertical flow directions in the confining layer caused by head gradients determines the position of the mixing zone (Dmix and Bmix and that these flow directions are controlled by seepage flux, recharge and drainage depth.

  3. Electrical resistivity investigation of fluvial geomorphology to evaluate potential seepage conduits to agricultural lands along the San Joaquin River, Merced County, California, 2012–13

    Science.gov (United States)

    Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.

    2017-02-08

    Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells

  4. Surface water - groundwater interactions at different spatial and temporal scales

    DEFF Research Database (Denmark)

    Sebök, Éva

    in lowland catchments, mainly exploring and assessing Distributed Temperature Sensing (DTS) which by detecting variability in temperatures at the Sediment-Water Interface (SWI) can indirectly map variability in groundwater discharge at several spatial and temporal scales. On the small-scale (...As there is a growing demand for the protection and optimal management of both the surface water and groundwater resources, the understanding of their exchange processes is of great importance. This PhD study aimed at describing the natural spatial and temporal variability of these interactions...... detected large spatial variability in SWI temperatures with scattered high-discharge sites in a stream and also in a lake where discharge fluxes were estimated by vertical temperature profiles and seepage meter measurements. On the kilometre scale DTS indicated less spatial variability in streambed...

  5. Eddy correlation measurements of submarine groundwater discharge

    Science.gov (United States)

    Crusius, J.; Berg, P.; Koopmans, D.J.; Erban, L.

    2008-01-01

    This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment-water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5-15??cm above the sediment surface, at a frequency of 16 to 64??Hz, and for a period of 15 to 60??min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d- 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation. ?? 2007 Elsevier B.V. All rights reserved.

  6. Submarine Groundwater Discharge into Tolo Harbor, Hong Kong, China

    Science.gov (United States)

    Jiao, J. J.

    2008-12-01

    Tolo Harbor is an elongate and semi-enclosed bay in igneous rock areas in northeastern Hong Kong. It has an area of about 50 km2 and the groundwater catchment behind the harbor has an area of 160 km2, which is well-defined by ridges that reach a maximum elevation of 957 m above sea level. Over the last two decades, about half of the algal blooms reported in Hong Kong waters occurred in the harbor. Rivers and sewage are recognized as two key sources of nutrients. It is speculated that this harbor may have relatively high submarine groundwater discharge (SGD) due to its special topographical and hydrogeological setting and that the SGD may be another source of nutrients to the harbor. A research project is conduced to quantify the SGD into Tolo Harbor and to estimate the nutrient flux into the harbor through this pathway. The geochemical tracers of radon (222Rn) and radium (223Ra, 224Ra, 226Ra, and 228Ra) in groundwater and seawater are measured over the harbor and a seepage meter is deployed for direct and continuous SGD measurement for 72 hours. The study shows that the geochemical tracers fluctuate temporally in anti-phase with tidal height and that there is general trend for the geochemical tracers to decrease with distance offshore. Three sites with relatively high SGD are identified. The residence time estimated from 224Ra is around 30 days, which correlates well with previous studies. The flux of SGD to the harbor is estimated by three different approaches including radium and radon budget analyses and seepage meter. Finally, nutrient flux to the harbor through SGD is estimated, which shows that the nutrient loading through this pathway is significant. It is suggested that current practice for the management of algal blooms in Hong Kong, in which nutrient loading through SGD is ignored, should be reviewed and the control measures of groundwater contamination are obviously required.

  7. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  8. Upward groundwater flow in boils as the dominant mechanism of salinization in deep polders, the Netherlands

    NARCIS (Netherlands)

    Louw, de P.G.B.; Oude Essink, G.H.P.; Stuyfzand, P.J.; Zee, van der S.E.A.T.M.

    2010-01-01

    As upward seepage of saline groundwater from the upper aquifer is leading to surface water salinization of deep polders in the Netherlands, we monitored the processes involved in the Noordplas Polder, a typical deep polder. Our results show three types of seepage: (1) diffuse seepage through the Hol

  9. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-10-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  10. Characterization of focused seepage through an earthfill dam using geoelectrical methods.

    Science.gov (United States)

    Ikard, S J; Revil, A; Schmutz, M; Karaoulis, M; Jardani, A; Mooney, M

    2014-01-01

    Resistivity and self-potential tomography can be used to investigate anomalous seepage inside heterogeneous earthen dams. The self-potential (SP) signals provide a unique signature to groundwater flow because the source current density responsible for the SP signals is proportional to the Darcy velocity. The distribution of the SP signals is also influenced by the distribution of the resistivity; therefore, resistivity and SP need to be used in concert to elucidate groundwater flow pathways. In this study, a survey is conducted at a small earthen dam in Colorado where anomalous seepage is observed on the downstream face at the dam toe. The data reveal SP and direct current resistivity anomalies that are used to delineate three anomalous seepage zones within the dam and to estimate the source of the localized seepage discharge. The SP data are inverted in two dimensions using the resistivity distribution to determine the distribution of the Darcy velocity responsible for the observed seepage. The inverted Darcy velocity agrees with an estimation of the Darcy velocity from the hydraulic conductivity obtained from a slug test and the observed head gradient.

  11. STABILITY ANALYSIS OF RIVERBANK SUBJECT TO SEEPAGE

    Institute of Scientific and Technical Information of China (English)

    Yan LU; Yongjun LU; Xingnong ZHANG

    2007-01-01

    The stability of riverbanks subject to seepage is studied experimentally and theoretically in this paper. By including seepage in a 3-dimensional theoretical analysis, the study first shows how the critical slope or angle of repose of a cohesionless material is related to the ratio of the hydraulic gradient of seepage to its critical value under the fluidization condition. The critical stable slope is shown to be related to not only the hydraulic gradient but also the seepage direction. Measured laboratory data reasonably fit well with the theoretical relationship for the case of injection and suction. The data reveal that the slope is reduced with injection and increased with suction, respectively. Additionally, the study identifies the seepage direction which results in a minimum critical stable slope for a certain hydraulic gradient of seepage.

  12. A seepage erosion sediment transport function and geometric headcut relationships for predicting seepage erosion undercutting

    Science.gov (United States)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remain a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including n...

  13. A method for estimating spatially variable seepage and hydrualic conductivity in channels with very mild slopes

    Science.gov (United States)

    Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab

    2014-01-01

    Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.

  14. The use of video imagery to analyse groundwater and shoreline dynamics on a dissipative beach

    NARCIS (Netherlands)

    Huisman, C.E.; Bryan, K.R.; Coco, G.; Ruessink, B.G.

    2011-01-01

    Groundwater seepage is known to influence beach erosion and accretion processes. However, field measurements of the variation of the groundwater seepage line (GWSL) and the vertical elevation difference between the GWSL and the shoreline are limited. We developed a methodology to extract the tempora

  15. Environmental information document: Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  16. NUMERICAL MODELING FOR POSITIVE AND INVERSE PROBLEMS OF 3-D SEEPAGE IN DOUBLE FRACTURED MEDIA

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-fang; GUO Geng-xin

    2005-01-01

    Three-dimensional seepage in double fractured media was modeled in this paper.The determination of hydraulic conductivity tensor of rock mass is a vital problem for the sea water intrusion or sea water encroachment and seepage of fissured medium.According to the geological and hydrogeological conditions for the 2nd-stage construction of the Three Gorges Project (TGP), the physical and mathematical models for the groundwater movement through the 3D double fractured media of rock mass during construction were established in this paper.Based on discontinuity-control inverse theory, some related parameters of double fractured media were inversed with flux being the known quantity and calibration of water table the objective function.Synchronously, the seepage field of the construction region was systematically analyzed and simulated, the results of which exhibit that the double fractured media model of fracture water can comprehensively and correctly describe the geological and hydrogeological conditions in the construction region.

  17. Analysis on mechanism and key factors of surrounding rock instability in deeply inclined roadway affected by argillation and water seepage

    Institute of Scientific and Technical Information of China (English)

    Ma Rui; Li Guichen; Zhang Nong; Liu Cong; Wei Yinghao; Zhang Ming

    2015-01-01

    Based on the characteristics of surrounding rocks for deeply inclined roadway affected by argillation and water seepage, a structure model of layer crack plate was established to analyze the shear sliding insta-bility mechanism. Through solid mechanics analysis of anchored surrounding rock with defect from water seepage, combined with numerical analysis for instability mechanism under water seepage in deeply inclined roadway, key factors were proposed. Results show that with increasing height of layer crack plate, lateral buckling critical load value for high wall of the roadway decreases;there is a multi-stage distribution for tensile stress along the anchor bolt with defect under pulling state condition;groundwater seepage seriously affects the strength of surrounding rock of the roadway, to some extent the plastic zone of the high side rises up to 8 m. Finally some support strategies were proposed for the inclined roadway and successfully applied to Haoyuan coal mine in Tiela mining area, western China.

  18. Contaminated site risk and uncertainty assessment for impacts on surface and groundwater

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak

    in clay till geology and the impact on streams; 3) the characterization of the dominating anthropogenic stressors in headwater streams at catchment scale and 4) the development of a method for assessing the uncertainty in conceptual site models. Advances in risk assessment methods for contaminated sites...... carbon and ammonium) in the groundwater and the stream. Based on the results of the mass balance method, significant spatial heterogeneity was expected in the contaminant mass discharge pattern to Risby Stream. To obtain a better understanding of this impact, a detailed investigation was conducted....... The investigation involved an array of methods including studies of the site hydrogeology, groundwater and surface water discharge and landfill leachate composition and distribution. The methods included driven wells, seepage meters, grab samples, measurement of the temperature gradient in the stream bed...

  19. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: results of the IAEA-UNESCO SGD project.

    Science.gov (United States)

    Povinec, P P; Bokuniewicz, H; Burnett, W C; Cable, J; Charette, M; Comanducci, J-F; Kontar, E A; Moore, W S; Oberdorfer, J A; de Oliveira, J; Peterson, R; Stieglitz, T; Taniguchi, M

    2008-10-01

    Results of groundwater and seawater analyses for radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, and 228Ra) and stable (D and 18O) isotopes are presented together with in situ spatial mapping and time series 222Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0 cm d(-1) to 360 cm d(-1); the unit represents cm3/cm2/day), as well as during a few hours (from 0 cm d(-1) to 110 cm d(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous 222Rn measurements is 17+/-10 cm d(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3) m3 d(-1) per km of the coast. The isotopic composition (deltaD and delta18O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of 222Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater

  20. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  1. Detecting small groundwater discharge springs using handheld thermal infrared imagery.

    Science.gov (United States)

    Röper, Tania; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Ground-based handheld thermal infrared imagery was used for the detection of small-scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1-2 cm were observed along the beach at a distance of 2-3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3-5 °C higher) and a lower electric conductivity (30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small-scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground-based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters. © 2013, National Ground Water Association.

  2. GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Millings, M.; Denham, M.; Looney, B.

    2012-05-08

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors

  3. Seepage water flow velocity in hydromorphic acid brown earth in northeast Germany - {sup 15}N studies in groundwater lysimeters; Sickerwassergeschwindigkeit in Hydromorphen Sauerbraunerden Nordostdeutschlands - {sup 15}N-Untersuchungen in Grundwasserlysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, A.; Hoelzel, D.; Schalitz, G. [ZALF Muencheberg, Paulinenaue (Germany). Forschungstation; Merbach, W. [ZALF Muencheberg, Paulinenaue (Germany). Inst. fuer Rhizosphaerenforschung und Pflanzenernaehrung

    1999-02-01

    Sandy soils occur widely in Brandenburg. These soils are usually characterised by a high permeability. In low-lying areas such the Havellaendische Luch their proximity to groundwater can pose problems, especially when nutrients such as nitrate are not fully absorbed by the plants and are leached into the ground. Lysimeter studies with stable isotope tracers are especially well suited for estimating the leaching loss attributable to mineral fertilisation. For one thing, lateral flow can largely be excluded in the closed system of a lysimeter. For another, one can reasonably suppose that the marked nitrogen does not behave essentially differently from normal nitrogen. [Deutsch] In Brandenburg kommen verbreitet sandige Boeden vor. Diese Boeden zeichnen sich meist durch hohe Durchlaessigkeiten aus. Dadurch kann in Niederungsgebieten, wie dem Havellaendischen Luch, die Grundwassernaehe zum Problem werden, insbesondere wenn Naehrstoffe wie Nitrat nicht vollstaendig von den Pflanzen aufgenommen werden und der Auswaschung anheimfallen. Zur Abschaetzung der Auswaschungsverluste, die tatsaechlich aus der Mineralduengung stammen, eignen sich besonders Lysimeteruntersuchungen mit stabilisotopen Tracern. Einerseits lassen sich hier, im geschlossenen System, laterale Stroemungen weitgehend ausschliessen, andererseits kann man davon ausgehen, dass sich der makierte Stickstoff im System Boden-Pflanze nicht grundsaetzlich anders verhaelt als herkoemmlicher Stickstoff. (orig.)

  4. Toxicity of Water Samples Collected in the Vicinity of F and H Seepage Basin 1990-1995

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bowers, B.

    1996-09-01

    Water and contaminants from the F- and H-Area Seepage Basins outcrop as shallow groundwater seeps down gradient from the basins. In 1990, 1991, 1993, 1994, and 1995, toxicity tests were performed on water collected from a number of these seeps, as well as from several locations in Fourmile Branch and several uncontaminated reference locations.

  5. Toxicity of Water Samples Collected in the Vicinity of F and H Seepage Basin 1990-1995

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bowers, B.

    1996-09-01

    Water and contaminants from the F- and H-Area Seepage Basins outcrop as shallow groundwater seeps down gradient from the basins. In 1990, 1991, 1993, 1994, and 1995, toxicity tests were performed on water collected from a number of these seeps, as well as from several locations in Fourmile Branch and several uncontaminated reference locations.

  6. Laboratory Evaluation of Base Materials for Neutralization of the Contaminated Aquifer at the F-Area Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.

    2001-09-11

    Laboratory studies were performed to support field-testing of base injection into the F-Area Seepage Basins groundwater. The general purpose of these experiments is to provide information to guide the test of base injection and to identify potential adverse effects.

  7. Tailings Pile Seepage Model The Atlas Corporation Moab Mill Moab, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). This report has been prepared as a companion report to the Limited Groundwater Investigation of the Atlas Corporation Moab Mill, Moab, Utah. The purpose of this report is to present the results of the tailings pile seepage modeling effort tasked by the U.S. Nuclear Regulatory Commission (NRC).

  8. D-area oil seepage basin bioventing optimization test plan

    Energy Technology Data Exchange (ETDEWEB)

    Berry, C.J.; Radway, J.C.; Alman, D.; Hazen, T.C.

    1998-12-31

    The D Area Oil Seepage Basin (DOSB) was used from 1952 to 1975 for disposal of petroleum-based products (waste oils), general office and cafeteria waste, and apparently some solvents [trichloroethylene (TCE)/tetrachloroethylene (PCE)]. Numerous analytical results have indicated the presence of TCE and its degradation product vinyl chloride in groundwater in and around the unit, and of petroleum hydrocarbons in soils within the unit. The DOSB is slated for additional assessment and perhaps for environmental remediation. In situ bioremediation represents a technology of demonstrated effectiveness in the reclamation of sites contaminated with petroleum hydrocarbons and chlorinated solvents, and has been retained as an alternative for the cleanup of the DOSB. The Savannah River Site is therefore proposing to conduct a field treatability study designed to demonstrate and optimize the effectiveness of in situ microbiological biodegradative processes at the DOSB. The introduction of air and gaseous nutrients via two horizontal injection wells (bioventing) is expected to enhance biodegradation rates of petroleum components and stimulate microbial degradation of chlorinated solvents. The data gathered in this test will allow a determination of the biodegradation rates of contaminants of concern in the soil and groundwater, allow an evaluation of the feasibility of in situ bioremediation of soil and groundwater at the DOSB, and provide data necessary for the functional design criteria for the final remediation system.

  9. D-area oil seepage basin bioventing optimization test plan

    Energy Technology Data Exchange (ETDEWEB)

    Berry, C.J.; Radway, J.C.; Alman, D.; Hazen, T.C.

    1998-12-31

    The D Area Oil Seepage Basin (DOSB) was used from 1952 to 1975 for disposal of petroleum-based products (waste oils), general office and cafeteria waste, and apparently some solvents [trichloroethylene (TCE)/tetrachloroethylene (PCE)]. Numerous analytical results have indicated the presence of TCE and its degradation product vinyl chloride in groundwater in and around the unit, and of petroleum hydrocarbons in soils within the unit. The DOSB is slated for additional assessment and perhaps for environmental remediation. In situ bioremediation represents a technology of demonstrated effectiveness in the reclamation of sites contaminated with petroleum hydrocarbons and chlorinated solvents, and has been retained as an alternative for the cleanup of the DOSB. The Savannah River Site is therefore proposing to conduct a field treatability study designed to demonstrate and optimize the effectiveness of in situ microbiological biodegradative processes at the DOSB. The introduction of air and gaseous nutrients via two horizontal injection wells (bioventing) is expected to enhance biodegradation rates of petroleum components and stimulate microbial degradation of chlorinated solvents. The data gathered in this test will allow a determination of the biodegradation rates of contaminants of concern in the soil and groundwater, allow an evaluation of the feasibility of in situ bioremediation of soil and groundwater at the DOSB, and provide data necessary for the functional design criteria for the final remediation system.

  10. Seepage erosion mechanisms of bank collapse: three-dimensional seepage particle mobilization and undercutting

    Science.gov (United States)

    Seepage flow initiates undercutting, similar to development and headward migration of internal gullies, by liquefaction of soil particles, followed by mass wasting of the bank. Although seepage erosion has three-dimensional characteristics, two-dimensional lysimeters have been used in previous resea...

  11. RESEARCH ON SEEPAGE MONITORING MODEL OF EARTH-ROCK DAM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With the characteristics of seepage flow in earth-rock dams, a seepage monitoring model was established based on the finite element method for 3-D seepage flow together with observed data and was used to analyze and monitor the seepage of dams. In order to find out and monitor the seepage status of the whole dam, the separation of seepage amount for dam body, dam foundation and side banks was made theoretically by using the model. Practical example shows that the accuracy of computed results is satisfactory and the separation results are more objective.

  12. 3D Finite Element Analysis of TBM Water Diversion Tunnel Segment Coupled with Seepage Field

    Institute of Scientific and Technical Information of China (English)

    钟登华; 胡能明; 程正飞; 吕鹏; 佟大威

    2016-01-01

    In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not consid-ered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly oc-curs in the segment joints, was often ignored in the relevant studies of TBM tunnelling. Additionally, the geological models in these studies were simplified to different extents, and mostly were simplified as homogenous bodies. Considering the deficiencies above, a 3D refined model of the surrounding rock of a tunnel is firstly established using NURBS-TIN-BReP hybrid data structure in this paper. Then the seepage field of the surrounding rock con-sidering the leakage in the segment joints is simulated. Finally, the stability of TBM water diversion tunnel is stud-ied coupled with the seepage simulation, to analyze the stress-strain conditions, the axial force and the bending moment of tunnel segment considering the leakage in the segment joints. The results illustrate that the maximum radial displacement, the minimum principal stress, the maximum principal stress and the axial force of segment lining considering the seepage effect are all larger than those disregarding the seepage effect.

  13. Significant Groundwater Discharge of Nutrients to Western Long Island Sound Inferred From Radioisotope, Nutrient and Organic Geochemical Tracers

    Science.gov (United States)

    Crusius, J.; Kroeger, K. D.; Zhang, P.; Zhao, S.; Bratton, J. F.; Bokuniewicz, H.; Coffey, R.; Green, A.; Baldwin, S.; Erban, L.; Casso, M.

    2008-12-01

    Western Long Island Sound suffers from seasonal oxygen depletion due to both nutrient loading in this heavily populated region as well as restricted circulation of the Sound. The role played by groundwater in delivering nutrients to the Sound is not well understood, which served as motivation for the sampling we initiated in May, 2008. Work was carried out in both Manhasset Bay, a portion of which is sewered, and Northport Harbor, which is largely unsewered. There is clear evidence of discharge of groundwater to each embayment, as reflected in surface-water Rn-222 time series, seepage meter and high-resolution piezometer transects installed perpendicular to shore). Seepage rates were as high as 32 cm/day and modulated by the tide. Initial data reveal variable groundwater total DIN concentrations, spanning similar concentration ranges (as high as 500 uM), in the sewered and unsewered locations. Concentrations of organic geochemical tracers of sewage (including caffeine and imidacloprid) are high in samples with high nutrient concentrations and also span comparable ranges in sewered and unsewered locations. A preliminary interpretation of these results would suggest that most of the nutrient flux from groundwater is from wastewater in both the sewered and unsewered settings (rather than from fertilizer application, atmospheric deposition, etc.), implying that the sewering is not very effective. If this result is verified with additional sampling this fall, it would suggest that wastewater-influenced groundwater discharge is indeed a prominent source of nutrients to western Long Island Sound which in turn contributes to eutrophication and oxygen depletion.

  14. Simulation of a free-surface and seepage face using boundary-fitted coordinate system method

    Science.gov (United States)

    Lee, Kang-Kun; Leap, Darrell I.

    1997-09-01

    The boundary-fitted coordinate (BFC) system method is applied to simulate steady groundwater seepage with a free-surface and seepage face using the finite-difference method. The BFC system method eliminates the difficulty of fitting finite-difference grids to a changeable free-surface which is not known a priori but will be obtained as part of a solution. Also, grid generation with this approach is simpler than with the finite-element method. At each iterative sweep, the changeable free-surface becomes a part of the boundary-fitted grid lines, making boundary condition implementation easy and accurate. An example problem demonstrating the simulation procedure and numerical results compares very well with the analytical solution.

  15. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method

    Science.gov (United States)

    Krabbenhoft, David P.; Bowser, Carl J.; Anderson, Mary P.; Valley, John W.

    1990-01-01

    Groundwater inflow and outflow contributions to the hydrologic budget of lakes can be determined using a stable isotope (18O/16O) mass balance method. The stable isotope method provides a way of integrating the spatial and temporal complexities of the flow field around a lake, thereby offering an appealing alternative to the traditional time and labor intensive methods using seepage meters and an extensive piezometer network. In this paper the method is applied to a lake in northern Wisconsin, demonstrating that it can be successfully applied to lakes in the upper midwest where thousands of similar lakes exist. Inflow and outflow rates calculated for the Wisconsin lake using the isotope mass balance method are 29 and 54 cm/yr, respectively, which compare well to estimates, derived independently using a three-dimensional groundwater flow and solute transport model, of 20 and 50 cm/yr. Such a favorable comparison lends confidence to the use of the stable isotope method to estimate groundwater exchange with lakes. In addition, utilization of stable isotopes in studies of groundwater-lake systems lends insight into mixing processes occurring in the unsaturated zone and in the aquifer surrounding the lake and verifies assumed flow paths based on head measurements in piezometers.

  16. Drift-Scale THC Seepage Model

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral

  17. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-13

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  18. Drift-Scale Coupled Processes (DST and TH Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    J. Birkholzer; S. Mukhopadhyay

    2004-09-29

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  19. Use of a geomembrane steel sheet pile verticle barrier to curtail organic seepage

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmetti, J.L.; Butler, P.B. [DuPont Environmental Remediation Services, Wilmington, DE (United States)

    1997-12-31

    At a Superfund site in Delaware, contaminated groundwater, seeping out of a riverbank, produced a visible sheen on the river. As part of an emergency response action, a geomembrane steel sheet pile vertical barrier system was installed to contain the sheen and contaminated soil and sediments. The response action presented an engineering challenge due to the close proximity manufacturing facilities, steep riverbank slopes, tidal fluctuations, high velocity river flow, and underground and overhead interferences. A unique vertical containment barrier was developed to stabilize the riverbank slope, curtail sheens on the river, and prevent groundwater mounding behind the vertical barrier. In addition, the cost-effective vertical barrier enables natural chemical and biological processes to contain the organic seepage without requiring a groundwater extraction system.

  20. Hexavalent Chromium: Analysis of the Mechanism of Groundwater Contamination in a Former Industrial Site in the Province of Vicenza (Northern Italy

    Directory of Open Access Journals (Sweden)

    Valentina Accoto

    2017-01-01

    Full Text Available The study consisted in the analysis of the mobilization mechanisms of hexavalent chromium (Cr(VI into groundwater from a decommissioned contaminated factory. The site is located in the Province of Vicenza and formerly was a chrome-plating plant. The subsoil consists predominantly of gravelly deposits with a thickness of at least one hundred meters. An unconfined aquifer is present with water table at about 23 m depth bgl. During the seven years of monitoring (2008-2014, the fluctuation of groundwater level was more than 6 m; hydraulic conductivity is about 1.0E-03 m/s and groundwater seepage velocity about 12 m/day. At the area of the source of contamination, the unsaturated soil is contaminated by hexavalent chromium throughout the thickness: concentrations range from 200 to 500 mg/kg. At the bottom of zone of groundwater level fluctuation, the hexavalent chromium concentration decreases to below the detection limit. The available data (e.g. hexavalent chromium concentrations in groundwater, groundwater level, local rainfall give the opportunity to assess the effects, on the magnitude of groundwater contamination, of the effective infiltration versus the fluctuation of groundwater level. The main analysis was performed on a statistical basis, in order to find out which of the two factors was most likely related to the periodic peaks of hexavalent chromium concentration in groundwater. Statistical analysis results were verified by a mass balance. Data show that at the site both the effective infiltration through the unsaturated zone and the leaching of soil contaminated by groundwater, when it exceeds a certain piezometric level, lead to peak concentrations of hexavalent chromium, even if with characteristics and effects different.

  1. Submarine groundwater discharge in the Sarasota Bay system: Its assessment and implications for the nearshore coastal environment

    Science.gov (United States)

    Mwashote, B. M.; Murray, M.; Burnett, W. C.; Chanton, J.; Kruse, S.; Forde, A.

    2013-02-01

    A study was conducted from July 2002 through June 2006 in order to assess the significance of submarine groundwater discharge (SGD) to Sarasota Bay (SB), Florida. The assessment approaches used in this study included manual seepage meters, geochemical tracers (radon, 222Rn and methane, CH4), and subseafloor resistivity measurements. The estimated SGD advection rates in the SB system were found to range from 0.7 to 24.0 cm/day, except for some isolated hot spot occurrences where higher rates were observed. In general, SGD estimates were relatively higher (5.9-24.0 cm/day) in the middle and south regions of the bay compared to the north region (0.7-5.9 cm/day). Average dissolved inorganic nutrient concentrations within the SB water column ranged: 0.1-11 μM (NO2+NO3), 0.1-9.1 μM (NH4) and 0.2-1.4 μM (PO4). The average N/P ratio was higher in the north compared to the middle and south regions of the bay. On average, we conservatively estimate that about 27% of the total N in the SB system was derived via SGD. The prevalence of shallow embayed areas in the SB system and the presence of numerous septic tanks in the surrounding settlements enhanced the potential effects of nutrient rich seepages. Statistical comparison of the quantitative approaches revealed a good agreement between SGD estimates from manual seepage meters and those derived from the 222Rn model (p=0.67; α=0.05; n=18). CH4 was found to be useful for qualitative SGD assessments. CH4 and 222Rn were correlated (r2=0.31; α=0.05; n=54). Large scale resistivity surveys showed spatial variability that correlates more clearly with lithology than with SGD patterns.

  2. Infiltration and Seepage Through Fractured Welded Tuff

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  3. Reviving the Ganges Water Machine: Accelerating surface water and groundwater interactions in the Ramganga sub-basin

    Science.gov (United States)

    Surinaidu, L.; Muthuwatta, L.; Amarasinghe, U. A.; Jain, S. K.; Ghosh, N. C.; Kumar, Sudhir; Singh, Surjeet

    2016-09-01

    Reviving the Ganges Water Machine (GWM), coined 40 years ago, is the most opportune solution for mitigating the impacts of recurrent droughts and floods in the Ganges River Basin in South Asia. GWM create subsurface storage (SSS) by pumping more groundwater from the aquifers before the monsoon for irrigation and other uses and recharge it during the monsoon. The present study uses fully processed and physically based numerical models, MODFLOW and SWAT, in a semi-coupled modelling framework to examine the technical feasibility of recharging the SSS. The aquifer was simulated as a two-layer system using hydrogeological and groundwater data, model was calibrated from 1999 to 2005 and validated from 2006 to 2010. It assesses the impacts of gradual increase of SSS in 10 years from the base year 2010 under two scenarios (increased rainfall or controlled pumping and recharge) to meet a potential unmet demand of 1.68 billion cubic meters (Bm3) in the Ramganga sub-basin with an area of 18,668 km2. The results show that 3-4 m of subsurface storage can be created by groundwater pumping of 0.25 Bm3/year by 2020. Under the controlled pumping and recharge scenario, groundwater recharge and river seepage could increase by 14% (4.21-4.80 Bm3) and 31% (1.10-1.44 Bm3), respectively. However, baseflow will decrease by 30% (0.18-0.12 Bm3) over the same time period. The results also show that recharge increased 44% (4.21-6.05 Bm3) under an increased rainfall scenario. Simultaneously, river seepage and baseflows would increase 36% (1.10-1.14 Bm3) and 11% (0.18-0.20 Bm3), respectively. A well-designed managed aquifer recharge program is required to eliminate the negative impact of river flows in the low flow season.

  4. Seepage characteristics of collapse column fillings

    Institute of Scientific and Technical Information of China (English)

    Zhang Boyang; Bai Haibo; Zhang Kai

    2016-01-01

    With concealment and hysteresis, water-inrush from Karst collapse column has become an important security hazard of lower group coal mining in North China. Based on the MTS815.02 seepage test system, we analyzed the impact of consolidation pressure, initial moisture content and confining pressure on the permeability of fillings in order to study the seepage characteristics of collapse column fillings. The results show that:(1) The permeability of collapse column fillings is of the order of 10?16–10?15 magni-tude and decreases with an increase in consolidation pressure and decrease in initial moisture content. (2) The essence of filling seepage law change is the change in porosity, and a power function relationship exists between the permeability ratio and porosity ratio. (3) With increasing confining pressure, the per-meability of fillings decreases. However, under low confining pressure (1.2–4 MPa), the change of confin-ing pressure has no obvious influence on the permeability.

  5. FREESURF: A three-dimensional finite-element model for simulating groundwater flow into and around an excavation

    Energy Technology Data Exchange (ETDEWEB)

    Weitzman, Morley

    1992-07-15

    A three-dimensional finite-element code was developed and used to simulate the flow of groundwater towards an excavation in a saturated porous medium, allowing for seepage faces. An iterative procedure was used to predict the movement of the water table and the seepage flux. The numerical solution agreed well with experimental results from a sandbox experiment. (auth)

  6. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Directory of Open Access Journals (Sweden)

    Youjun Ji

    2014-01-01

    Full Text Available Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today.

  7. Non-intrusive characterization methods for wastewater-affected groundwater plumes discharging to an alpine lake.

    Science.gov (United States)

    Roy, James W; Robillard, Jasen M; Watson, Susan B; Hayashi, Masaki

    2009-02-01

    Streams and lakes in rocky environments are especially susceptible to nutrient loading from wastewater-affected groundwater plumes. However, the use of invasive techniques such as drilling wells, installing piezometers or seepage meters, to detect and characterize these plumes can be prohibitive. In this work, we report on the use of four non-intrusive methods for this purpose at a site in the Rocky Mountains. The methods included non-invasive geophysical surveys of subsurface electrical conductivity (EC), in-situ EC measurement of discharging groundwater at the lake-sediment interface, shoreline water sampling and nutrient analysis, and shoreline periphyton sampling and analysis of biomass and taxa relative abundance. The geophysical surveys were able to detect and delineate two high-EC plumes, with capacitively coupled ERI (OhmMapper) providing detailed two-dimensional images. In situ measurements at the suspected discharge locations confirmed the presence of high-EC water in the two plumes and corroborated their spatial extent. The nutrient and periphyton results showed that only one of the two high-EC plumes posed a current eutrophication threat, with elevated nitrogen and phosphorus levels, high localized periphyton biomass and major shifts in taxonomic composition to taxa that are commonly associated with anthropogenic nutrient loading. This study highlights the need to use non-intrusive methods in combination, with geophysical and water EC-based methods used for initial detection of wastewater-affected groundwater plumes, and nutrient or periphyton sampling used to characterize their ecological effects.

  8. Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam

    Directory of Open Access Journals (Sweden)

    Ming-chao Li

    2015-10-01

    Full Text Available This study used the finite element method (FEM to analyze the stress field and seepage field of a roller-compacted concrete (RCC dam, with an upstream impervious layer constructed with different types of concrete materials, including three-graded RCC, two-graded RCC, conventional vibrated concrete (CVC, and grout-enriched vibrated RCC (GEVR, corresponding to the design schemes S1 through S4. It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and flood-check level. Stress field analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel, the maximum compressive stress occurs near the dam toe, and the stress distributions in the four schemes can satisfy the stress control criteria. Seepage field analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region, and that the calculated results of daily seepage flow under the steady seepage condition in these two schemes are about 30% to 50% lower than those in the other two schemes, demonstrating that CVC and GEVR show better anti-seepage performance. The results provide essential parameters such as the uplift pressure head and seepage flow for physical model tests and anti-seepage structure selection in RCC dams.

  9. Evaluation of baseline ground-water conditions in the Mosteiros, Ribeira Paul, and Ribeira Faja Basins, Republic of Cape Verde, West Africa, 2005-06

    Science.gov (United States)

    Heilweil, Victor M.; Earle, John D.; Cederberg, Jay R.; Messer, Mickey M.; Jorgensen, Brent E.; Verstraeten, Ingrid M.; Moura, Miguel A.; Querido, Arrigo; Spencer,; Osorio, Tatiana

    2006-01-01

    This report documents current (2005-06) baseline ground-water conditions in three basins within the West African Republic of Cape Verde (Mosteiros on Fogo, Ribeira Paul on Santo Ant?o, and Ribeira Faj? on S?o Nicolau) based on existing data and additional data collected during this study. Ground-water conditions (indicators) include ground-water levels, ground-water recharge altitude, ground-water discharge amounts, ground-water age (residence time), and ground-water quality. These indicators are needed to evaluate (1) long-term changes in ground-water resources or water quality caused by planned ground-water development associated with agricultural projects in these basins, and (2) the feasibility of artificial recharge as a mitigation strategy to offset the potentially declining water levels associated with increased ground-water development. Ground-water levels in all three basins vary from less than a few meters to more than 170 meters below land surface. Continuous recorder and electric tape measurements at three monitoring wells (one per basin) showed variations between August 2005 and June 2006 of as much as 1.8 meters. Few historical water-level data were available for the Mosteiros or Ribeira Paul Basins. Historical records from Ribeira Faj? indicate very large ground-water declines during the 1980s and early 1990s, associated with dewatering of the Galleria Faj? tunnel. More-recent data indicate that ground-water levels in Ribeira Faj? have reached a new equilibrium, remaining fairly constant since the late 1990s. Because of the scarcity of observation wells within each basin, water-level data were combined with other techniques to evaluate ground-water conditions. These techniques include the quantification of ground-water discharge (well withdrawals, spring discharge, seepage to springs, and gallery drainage), field water-quality measurements, and the use of environmental tracers to evaluate sources of aquifer recharge, flow paths, and ground-water

  10. Spatially telescoping measurements for improved characterization of groundwater-surface water interactions

    Science.gov (United States)

    Kikuchi, Colin; Ferre, Ty P.A.; Welker, Jeffery M.

    2012-01-01

    The suite of measurement methods available to characterize fluxes between groundwater and surface water is rapidly growing. However, there are few studies that examine approaches to design of field investigations that include multiple methods. We propose that performing field measurements in a spatially telescoping sequence improves measurement flexibility and accounts for nested heterogeneities while still allowing for parsimonious experimental design. We applied this spatially telescoping approach in a study of ground water-surface water (GW-SW) interaction during baseflow conditions along Lucile Creek, located near Wasilla, Alaska. Catchment-scale data, including channel geomorphic indices and hydrogeologic transects, were used to screen areas of potentially significant GW-SW exchange. Specifically, these data indicated increasing groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during baseflow conditions, including differential discharge measurements and the use of chemical tracers analyzed in a three-component mixing model. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Finally, point measurements of vertical water fluxes -- obtained using seepage meters as well as temperature-based methods -- were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatial variability of upward fluxes, estimated using streambed temperature mapping at the sub-reach scale, was observed to vary in relation to both streambed composition and the magnitude of groundwater contribution from differential discharge measurements. The spatially telescoping approach improved the efficiency of this field investigation. Beginning our assessment

  11. Texture-depending performance of an in situ method assessing deep seepage

    Science.gov (United States)

    Hohenbrink, Tobias L.; Lischeid, Gunnar

    2014-04-01

    Deep seepage estimation is important for water balance investigations of groundwater and the vadose zone. A simplified Buckingham-Darcy method to assess time series of deep seepage fluxes was proposed by Schindler and Müller (1998). In the method dynamics of water fluxes are calculated by a soil hydraulic conductivity function. Measured soil moistures and matric heads are used as input data. Resulting time series of flux dynamics are scaled to realistic absolute levels by calibrating the method with the areal water balance. An assumption of the method is that water fluxes at different positions exhibit identical dynamics although their absolute values can differ. The aim of this study was to investigate uncertainties of that method depending on the particle size distribution and textural heterogeneity in non-layered soils. We performed a numerical experiment using the two-dimensional Richards Equation. A basic model of transient water fluxes beneath the root and capillary zone was setup and used to simulate time series of soil moisture, matric head, and seepage fluxes for 4221 different cases of particle size distribution and intensities of textural heterogeneity. Soil hydraulic parameters were predicted by the pedotransfer function Rosetta. Textural heterogeneity was modeled with Miller and Miller scaling factors arranged in spatial random fields. Seepage fluxes were calculated with the Buckingham-Darcy method from simulated soil moisture and matric head time series and compared with simulated reference fluxes. The median of Root Mean Square Error was about 0.026 cm d-1 and the median of maximum cross correlation was 0.96 when the method was calibrated adequately. The method's performance was mainly influenced by (i) the soil textural class and (ii) the time period used for flux calibration. It performed best in sandy loam while hotspots of errors occurred in sand and silty texture. Calibrating the method with time periods that exhibit high variance of seepage

  12. Your Glucose Meter

    Science.gov (United States)

    ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... Tips for Testing Your Blood Sugar and Caring for Your Meter Glucose meters test and record how much sugar (called glucose) is in your ...

  13. Coupled Seepage and Heat Transfer Intake Model

    Institute of Scientific and Technical Information of China (English)

    WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan

    2009-01-01

    In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.

  14. Seepage patterns of Diuron in a ditch bed during a sequence of flood events.

    Science.gov (United States)

    Dages, C; Samouëlian, A; Negro, S; Storck, V; Huttel, O; Voltz, M

    2015-12-15

    Although ditches limit surface water contamination, groundwater recharge through ditches in Mediterranean catchments may result in groundwater contamination. We analysed the dynamics of pesticide percolation in ditches by conducting an original lab experiment that mimicked the successive percolation processes that occur during a flood season. Nine successive percolation events were operated on an undisturbed soil column collected from a ditch bed. The infiltrating water was doped with (14)C-Diuron at concentrations that were chosen to decrease between the events so as to correspond to values observed during actual flood events. The water and solute fluxes were monitored during each event, and the final extractable and non-extractable Diuron residues in the column were determined. Two main observations were made. First, a high leaching potential was observed through the ditch bed over a succession of infiltrating flood events, with 58.9% of the infiltrated Diuron and its metabolites leaching. Second, compared with the contamination of surface water circulating in the ditches, the contamination of seepage water exhibited smaller peak values and persisted much longer because of the desorption of Diuron residues stored in the ditch bed. Thus, ditches serve as buffering zones between surface and groundwater. However, compared with field plots, ditches appear to be a preferential location for the percolation of pesticides into groundwater at the catchment scale.

  15. Assessing the Impact of Animal Waste Lagoon Seepage on the Geochemistry of an Underlying Shallow Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    McNab, W W; Singleton, M J; Moran, J E; Esser, B K

    2006-03-07

    Dairy facilities and similar confined animal operation settings pose a significant nitrate contamination threat via oxidation of animal wastes and subsequent transport to shallow groundwater. While nitrate contamination resulting from application of animal manure as fertilizer to fields is well recognized, the impact of manure lagoon leakage on groundwater quality is less well characterized. In this study, a dairy facility located in the southern San Joaquin Valley of California has been instrumented with monitoring wells as part of a two-year multidisciplinary study to evaluate nitrate loading and denitrification associated with facility operations. Among multiple types of data collected from the site, groundwater and surface water samples have been analyzed for major cations, anions, pH, oxidation-reduction potential, dissolved organic carbon, and selected dissolved gases (CO{sub 2}, CH{sub 4}, N{sub 2}, Ar, Ne). Modeling of putative geochemical processes occurring within the dairy site manure lagoons shows substantial off-gassing of CO{sub 2} and CH{sub 4} in response to mineralization of organic matter. The gas ebullition appears to strip dissolved gases, including Ar and Ne, from the lagoon water leaving concentrations that are undersaturated with respect to the atmosphere. The resulting fractionated dissolved gas signature serves as an effective tracer for the lagoon water in the underlying shallow groundwater and can be used to constrain inverse geochemical models that assess mixing fractions of lagoon water and local groundwater water. Together with ion exchange and mineral equilibria reactions, identification of lagoon seepage helps explain key attributes of the local groundwater chemistry, including input and cycling of nitrogen, across the site.

  16. Geochemical and geophysical examination of submarine groundwater discharge and associated nutrient loading estimates into Lynch Cove, Hood Canal, WA

    Science.gov (United States)

    Swarzenski, P.W.; Simonds, F.W.; Paulson, A.J.; Kruse, S.; Reich, C.

    2007-01-01

    Geochemical tracer data (i.e., 222Rn and four naturally occurring Ra isotopes), electromagnetic (EM) seepage meter results, and high-resolution, stationary electrical resistivity images were used to examine the bi-directional (i.e., submarine groundwater discharge and recharge) exchange of a coastal aquifer with seawater. Our study site for these experiments was Lynch Cove, the terminus of Hood Canal, WA, where fjord-like conditions dramatically limit water column circulation that can lead to recurring summer-time hypoxic events. In such a system a precise nutrient budget may be particularly sensitive to groundwater-derived nutrient loading. Shore-perpendicular time-series subsurface resistivity profiles show clear, decimeter-scale tidal modulation of the coastal aquifer in response to large, regional hydraulic gradients, hydrologically transmissive glacial terrain, and large (4-5 m) tidal amplitudes. A 5-day 222Rn time-series shows a strong inverse covariance between 222Rn activities (0.5−29 dpm L-1) and water level fluctuations, and provides compelling evidence for tidally modulated exchange of groundwater across the sediment/water interface. Mean Rn-derived submarine groundwater discharge (SGD) rates of 85 ± 84 cm d-1 agree closely in the timing and magnitude with EM seepage meter results that showed discharge during low tide and recharge during high tide events. To evaluate the importance of fresh versus saline SGD, Rn-derived SGD rates (as a proxy of total SGD) were compared to excess 226Ra-derived SGD rates (as a proxy for the saline contribution of SGD). The calculated SGD rates, which include a significant (>80%) component of recycled seawater, are used to estimate associated nutrient (NH4+, Si, PO43-, NO3 + NO2, TDN) loads to Lynch Cove. The dissolved inorganic nitrogen (DIN = NH4 + NO2 + NO3) SGD loading estimate of 5.9 × 104 mol d-1 is 1−2 orders of magnitude larger than similar estimates derived from atmospheric deposition and surface water runoff

  17. Geochemical and geophysical examination of submarine groundwater discharge and associated nutrient loading estimates into Lynch Cove, Hood Canal, WA.

    Science.gov (United States)

    Swarzenski, Peter W; Simonds, F William; Paulson, Anthony J; Kruse, Sarah; Reich, Chris

    2007-10-15

    Geochemical tracer data (i.e., 222Rn and four naturally occurring Ra isotopes), electromagnetic (EM) seepage meter results, and high-resolution, stationary electrical resistivity images were used to examine the bi-directional (i.e., submarine groundwater discharge and recharge) exchange of a coastal aquifer with seawater. Our study site for these experiments was Lynch Cove, the terminus of Hood Canal, WA, where fjord-like conditions dramatically limit water column circulation that can lead to recurring summer-time hypoxic events. In such a system a precise nutrient budget may be particularly sensitive to groundwater-derived nutrient loading. Shore-perpendicular time-series subsurface resistivity profiles show clear, decimeter-scale tidal modulation of the coastal aquifer in response to large, regional hydraulic gradients, hydrologically transmissive glacial terrain, and large (4-5 m) tidal amplitudes. A 5-day 222Rn time-series shows a strong inverse covariance between 222Rn activities (0.5-29 dpm L(-1)) and water level fluctuations, and provides compelling evidence for tidally modulated exchange of groundwater across the sediment/water interface. Mean Rn-derived submarine groundwater discharge (SGD) rates of 85 +/- 84 cm d(-1) agree closely in the timing and magnitude with EM seepage meter results that showed discharge during low tide and recharge during high tide events. To evaluate the importance of fresh versus saline SGD, Rn-derived SGD rates (as a proxy of total SGD) were compared to excess 226Ra-derived SGD rates (as a proxy for the saline contribution of SGD). The calculated SGD rates, which include a significant (>80%) component of recycled seawater, are used to estimate associated nutrient (NH4+, Si, PO4(3-), NO3 + NO2, TDN) loads to Lynch Cove. The dissolved inorganic nitrogen (DIN = NH4 + NO2 + NO3) SGD loading estimate of 5.9 x 10(4) mol d(-1) is 1-2 orders of magnitude larger than similar estimates derived from atmospheric deposition and surface water

  18. Hydrogeology and hydrochemistry of groundwater-dominated lakes

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta

    and tracking groundwater flow paths and, thus, to determine the source of the water. These observations were confirmed and explained by flow models. The results of the 2D and 3D flow modelling showed that groundwater contribution is 75% of the total water input into the lake, out of which 35% discharges...... is mobilized in the sediments of the old lake/stream bottom due to reductive dissolution of iron hydroxides by organic matter. The process is triggered by the discharge of anoxic groundwater from the deeper parts of the aquifer to the near shore environment. High groundwater seepage rates do not leave enough...

  19. modelingthe effect the effect of contact and seepage forces of ...

    African Journals Online (AJOL)

    eobe

    NIGERIA. 2 DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA. ... This research work has investigated the contribution of contact force and seepage force to the .... iii Operational and maintenance failures. With the ...

  20. Three-dimensional stochastic seepage field for embankment engineering

    Directory of Open Access Journals (Sweden)

    Ya-jun WANG

    2009-03-01

    Full Text Available Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smirnov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems

  1. NONUNIFORM OPEN CHANNEL FLOW WITH UPWARD SEEPAGE THROUGH LOOSE BEDS

    Institute of Scientific and Technical Information of China (English)

    Subhasish DEY

    2003-01-01

    The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steadynonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of twodimensional flow in open channels.

  2. Three-dimensional stochastic seepage field for embankment engineering

    Institute of Scientific and Technical Information of China (English)

    Ya-jun WANG; Wo-hua ZHANG; Chang-yu WU; Da-chun REN

    2009-01-01

    Owing to the complexity of get-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smimov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems.

  3. Laboratory Experiments on Steady State Seepage-Induced Landslides Using Slope Models and Sensors

    Directory of Open Access Journals (Sweden)

    Sandra G. Catane

    2011-06-01

    Full Text Available A thorough understanding of the failure initiation process is crucial in the development of physicallybased early warning system for landslides and slope failures. Laboratory-scale slope models were constructed and subjected to instability through simulated groundwater infiltration. This is done by progressively increasing the water level in the upslope tank and allowing water to infiltrate laterally towards the toe of the slope. Physical changes in the slope models were recorded by tilt sensors and video cameras. When the model slope was destabilized, the chronology of events occurred in the following sequence: (1 bulging at the toe, (2 seepage at the toe, (3 initial failure of soil mass, (4 piping, (5 retrogressive failure, (6 formation of tension cracks and (7 major failure of soil mass. Tension cracks, piping and eventual failure are manifestations of differential settlements due to variations in void ratio. Finite element analysis indicates that instability and subsequent failures in the model slope were induced primarily by high hydraulic gradients in the toe area. Seepage, initial deformation and subsequent failures were manifested in the toe area prior to failure, providing a maximum of 36 min lead time. Similar lead times are expected in slopes of the same material as shown in many case studies of dam failure. The potential of having a longer lead time is high for natural slopes made of materials with higher shear strength thus evacuation is possible. The tilt sensors were able to detect the initial changes before visual changes manifested, indicating the importance of instrumental monitoring.

  4. Groundwater Contribution to Coastal Nutrient Loading Along the Gulf Shores of Alabama

    Science.gov (United States)

    Ellis, J.; Dimova, N. T.; Zheng, C.; Huang, L.; Tick, G. R.

    2013-05-01

    Recently it has been recognized that submarine groundwater discharge (SGD) may be one of the principal mechanisms for delivering nutrients to surface water bodies, resulting in eutrophication of many near-shore coastal areas throughout the world. A groundwater flow and contaminant transport model was integrated with field measurements of naturally occurring radiogenic tracers and nutrient sampling to determine localized groundwater flow paths and nutrient flux to the near-shore coastal system. Specifically, a three-dimensional (3-D) numerical model coupling density-dependent groundwater flow codes (MODFLOW/SEAWAT) with a solute transport code (MT3DMS) was used to simulate the transport of nitrate and sulfate through the groundwater system to the coast. Borehole data from 35 wells, including formation data and electric logs were used to construct the subsurface lithology. Recently determined local and regional recharge rates, nutrient sinks and sources, and groundwater pumping rates were incorporated into the model. A final hydraulic head calibration variance of 0.076 meters was obtained over a sixteen year period utilizing nonlinear numerical Parameter Estimation (PEST) software. A total of 100 nutrient samples were taken in duplicate from 32 wells within the study area and analyzed for chloride, nitrate, and sulfate to assess contaminant source zones, estimate aquifer nutrient fluxes, and characterize the freshwater/saltwater interface. Five independent 222Radon time-series surveys were conducted across Lake Shelby and along adjacent near-shore boundaries. Groundwater seepage was calculated through a mass-balance model, where 222Radon inventories were converted to fluxes accounting for losses from atmospheric evasion, tidal fluxes, and mixing from marine water. This study expands upon previous research integrating the results of a 3-D groundwater flow and transport model with direct tracer measurements to more accurately determine SGD pathways, contributions of

  5. Optical cycle power meter

    DEFF Research Database (Denmark)

    2014-01-01

    A bicycle power meter for measuring power generated when riding a bicycle, the power meter comprising a position-sensitive radiation detector (409) attachable to a component of a crank set (404) of bicycle, and a radiation source (408) attachable to the component of the crank set and configured...

  6. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  7. Seepage investigations of the Clackamas River, Oregon

    Science.gov (United States)

    Lee, Karl K.

    2011-01-01

    Analysis of streamflow measurements and continuous records of streamflow provided insight into interaction of the groundwater system with the Clackamas River in northwestern Oregon. This report assesses gains and losses of the Clackamas River based on streamflow measurements made during previous hydrologic studies, decades of continuous streamflow data, and a detailed suite of streamflow measurements made in September 2006. Gains and losses were considered significant if, after accounting for tributary inflows and withdrawals, the difference in streamflow from a measurement site to the next site downstream exceeded the streamflow measurement uncertainty. Streamflow measurements made in 1987, 1992, and 1998 indicated minor gains and losses. Comparison of continuous records of late summer streamflow of the Clackamas River at Estacada to sites at Clackamas and Oregon City indicated gains in some years, and no losses. Analysis of streamflow measurements of the Clackamas River from Estacada to Oregon City during low-flow conditions in September 2006 enabled an estimation of gains and losses on a reach-by-reach scale; these gains and losses were attributable to the geomorphic setting. During late summer, most groundwater discharge occurs upstream of Estacada, and groundwater contributions to streamflow downstream of Estacada are minor.

  8. Gas seepage in the Northern Adriatic Sea

    Science.gov (United States)

    Matilde Ferrante, Giulia; Donda, Federica; Volpi, Valentina; Tinivella, Umberta

    2017-04-01

    In the Northern Adriatic Sea, the occurrence of gas seepage has been widely documented. However, the origin of seeping gas was not clearly constrained. Geophysical data with different scale of resolution, i.e. multichannel seismic profiles, CHIRP and morpho-bathymetry data collected in 2009 and 2014 by OGS reveal that several the gas-enriched fluid vents are deeply rooted. In fact, the entire Plio-Quaternary succession is characterized by widespread seismic anomalies represented by wipe-out zones and interpreted as gas chimneys. They commonly root at the base of the Pliocene sequence but also within the Paleogene succession, where they appear to be associated to deep-seated, Mesozoic-to-Paleogene faults. These chimneys originate and terminate at different stratigraphic levels; they also commonly reach the seafloor, where rock outcrops interpreted as authigenic carbonate deposits have been recognized. In places, gas is then capable to escape in the water column as shown by numerous gas flares. On going studies are addressed to: 1. re-examining the structural setting of the study area, in order to verify a possible structural control on chimney distribution and gas migration; 2. performing geochemical analysis on gas which have been sampled in some key emission points; 3. a quantitative analysis of some selected boreholes well logs (made available through the public VidePi database (www.videpi.com)) aimed to estimate the amount of gas present in sediments. This work presents the preliminary results regarding the latter aspect of our research. In a first instance, for each selected borehole the geophysical logs have been digitized. This procedure consists in a manual picking of curves, in a set system of reference. Static corrections for vertical offset are made at this stage. Logs are then divided by type and converted in common scales, amplifications and units. Every log is resampled in order to cut high frequencies not useful in the comparison with seismic data

  9. Analysing Groundwater Using the 13C Isotope

    Science.gov (United States)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  10. Seepage patterns of Diuron in a ditch bed during a sequence of flood events

    Energy Technology Data Exchange (ETDEWEB)

    Dages, C., E-mail: cecile.dages@supagro.inra.fr; Samouëlian, A.; Negro, S.; Storck, V.; Huttel, O.; Voltz, M.

    2015-12-15

    Although ditches limit surface water contamination, groundwater recharge through ditches in Mediterranean catchments may result in groundwater contamination. We analysed the dynamics of pesticide percolation in ditches by conducting an original lab experiment that mimicked the successive percolation processes that occur during a flood season. Nine successive percolation events were operated on an undisturbed soil column collected from a ditch bed. The infiltrating water was doped with {sup 14}C-Diuron at concentrations that were chosen to decrease between the events so as to correspond to values observed during actual flood events. The water and solute fluxes were monitored during each event, and the final extractable and non-extractable Diuron residues in the column were determined. Two main observations were made. First, a high leaching potential was observed through the ditch bed over a succession of infiltrating flood events, with 58.9% of the infiltrated Diuron and its metabolites leaching. Second, compared with the contamination of surface water circulating in the ditches, the contamination of seepage water exhibited smaller peak values and persisted much longer because of the desorption of Diuron residues stored in the ditch bed. Thus, ditches serve as buffering zones between surface and groundwater. However, compared with field plots, ditches appear to be a preferential location for the percolation of pesticides into groundwater at the catchment scale. - Highlights: • Diuron percolation in a ditch bed during flood events was mimicked in a column setup. • Diuron percolation can represent up to 50% of the infiltrated Diuron. • The ditch bed exhibits a high buffering capacity due to its high sorption properties. • Contamination period of percolation water lasts longer than that of infiltrating water. • Diuron residues stored in ditch bed move deeper than in field topsoils.

  11. Ride-Quality Meter

    Science.gov (United States)

    Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.; Stephens, D. G.

    1983-01-01

    Single- and combined-Axis discomfort are corrected by effects of noise and vibration to yield measure of total discomfort experienced by rider. Three modules transform mathematically-weighted rms accelerations, which represent physical vibration characteristics, into subjective discomfort units. Portable "ride-quality" meter measures passenger discomfort and acceptability of vehicle interior noise and vibration. Meter especially suited for determining vehicle comfort and design tradeoffs and for comparing ride quality of vehicles.

  12. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-02-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  13. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  14. Arrival Metering Precision Study

    Science.gov (United States)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  15. A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland

    Directory of Open Access Journals (Sweden)

    C. Anibas

    2012-07-01

    Full Text Available As recognized in the European Water Framework Directive, groundwater-dependent wetlands and their diverse ecosystems have important functions which need to be protected. The vegetation in such habitats is often dependent on quality, quantity and patterns of river discharge and groundwater-surface water interaction on a local or reach scale. Since groundwater-surface water exchange studies on natural rivers and wetlands with organic soils are scarce, more functional analysis is needed. To this end we combined different field methods including piezometer nests, temperature as tracer and seepage meter measurements. Some of these measurements were used as inputs and/or as validation for the numerical 1-D heat transport model STRIVE. In transient mode the model was used to calculate spatially distributed vertical exchange fluxes from temperature profiles measured at the upper Biebrza River in Poland over a period of nine months. Time series of estimated fluxes and hydraulic head gradients in the hyporheic zone were used to estimate the temporal variability of groundwater-surface water exchange.

    This paper presents a hierarchical approach for quantifying and interpreting groundwater-surface water interaction in space and time. The results for the upper Biebrza show predominantly upward water fluxes, sections of recharge, however, exist along the reach. The fluxes depend more on hydraulic gradients than on riverbed conductivity. This indicates that the fluvio-plain scale is required for interpreting the exchange fluxes, which are estimated on a local scale. The paper shows that a conceptual framework is necessary for understanding the groundwater-surface water interaction processes, where the exchange fluxes are influenced by local factors like the composition of the riverbed and the position of the measurement on a local scale, and by regional factors like the hydrogeology and topography on a fluvio-plain scale. The hierarchical methodology

  16. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. A. Colman

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods in Salt Pond, adjacent to Nauset Marsh on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. A box model was used to estimate discharge separately to Salt Pond and to the channel by simulating the timing and magnitude of variations in the radon and salinity data in the channel. Discharge to the pond is estimated to be 2200±1100 m3d-1, while discharge to the channel is estimated to be 300±150 m3d-1, for a total discharge of 2500±1250 m3d-1 to the Salt Pond system. This translates to an average groundwater flow velocity of 3±1.5 cm d-1 Seepage meter flow estimates are broadly consistent with this figure, provided discharge is confined to shallow sediments (water depth 3d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to determine the rate of groundwater discharge seaward of Salt Pond. Data also suggest a TDN flux from groundwater to Salt Pond of ~2.6 mmol m-2d-1, a figure comparable to fluxes observed in other eutrophic settings.

  17. 基于GeoStudio有限元模拟库水位骤降滑坡渗流场研究%Study of Simulation of the Reservoir water Level Plunged in Landslide Seepage Filed based on GeoStudio Limited Element

    Institute of Scientific and Technical Information of China (English)

    刘培青

    2012-01-01

    文章对库区滑坡在库水位骤降作用下渗流场变化进行研究,应用GeoStudio有限元模拟库水位骤降而产生的地下水渗流场变化,分析滑坡渗流场的变化情况,分析库水位骤降对地下水渗流影响情况。%The paper illustrates the research about seepage filed changes of the coast in the reservoir when the water level suddenly plunges. It uses Geostudio limited elements to simulate the water level plunging and ground- water seepage filed changes, analyzes the situation of landslide seepage field changes, and the water level plunging effects on groundwater seepage.

  18. A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland

    Directory of Open Access Journals (Sweden)

    C. Anibas

    2011-10-01

    Full Text Available Groundwater-surface water exchange studies on natural rivers and wetlands dominated by organic soils are scarce. We present a hierarchical approach to quantitatively investigate and interpret groundwater-surface water interaction in space and time by applying a combination of different field methods including piezometer nests, temperature and seepage measurements. The numerical 1-D heat transport model of STRIVE is used in transient mode to calculate vertical fluxes from thermal profiles measured along the upper Biebrza River, Poland over a period of nine months. The calculated fluxes show no clear spatial pattern of exchange fluxes unless an interpolation of the point estimates on a reach scale is performed. Significance of differences in net exchange rates versus morphological features are investigated with statistical tests. Time series of temperature and hydraulic head of the hyporheic zone are used to estimate the temporal variability of the groundwater-surface water exchange. Seepage meter measurements and slug tests were used for cross validation of modelled fluxes. Results show a strong heterogeneity of the thermal and physical soil properties along the reach, leading to a classification of these parameters for modelling purposes. The groundwater-surface water exchange shows predominantly upward water fluxes, however alternating sections of recharge exist. The exchange fluxes are significantly different dependent on the position of the river in the valley floor and the river morphology where fluxes are more dependent on hydraulic gradients than on river bed conductivity. Sections of higher fluxes are linked to the vicinity of the morainic plateau surrounding the rivers alluvium and to meanders, indicating that a perspective on the fluvio-plain scale is required for interpreting the estimated exchange fluxes. Since the vertical component of the exchange fluxes cannot explain the magnitude of the change in river discharge, a lateral flow

  19. Heterogeneous seepage at the Nopal I natural analogue site, Chihuahua, Mexico

    Science.gov (United States)

    Dobson, Patrick F.; Ghezzehei, Teamrat A.; Cook, Paul J.; Rodríguez-Pineda, J. Alfredo; Villalba, Lourdes; de La Garza, Rodrigo

    2012-02-01

    A study of seepage occurring in an adit at the Nopal I uranium mine in Chihuahua, Mexico, was conducted as part of an integrated natural analogue study to evaluate the effects of infiltration and seepage on the mobilization and transport of radionuclides. An instrumented seepage collection system and local automated weather station permit direct correlation between local precipitation events and seepage. Field observations recorded between April 2005 and December 2006 indicate that seepage is highly heterogeneous with respect to time, location, and quantity. Seepage, precipitation, and fracture data were used to test two hypotheses: (1) that fast flow seepage is triggered by large precipitation events, and (2) that an increased abundance of fractures and/or fracture intersections leads to higher seepage volumes. A few zones in the back adit recorded elevated seepage volumes immediately following large (>20 mm/day) precipitation events, with transit times of less than 4 h through the 8-m thick rock mass. In most locations, there is a 1-6 month time lag between the onset of the rainy season and seepage, with longer times observed for the front adit. There is a less clear-cut relation between fracture abundance and seepage volume; processes such as evaporation and surface flow along the ceiling may also influence seepage.

  20. Shape and dynamics of seepage erosion in a horizontal granular bed

    CERN Document Server

    Berhanu, Michael; Devauchelle, Olivier; Kudrolli, Arshad; Rothman, Daniel H; 10.1103/PhysRevE.86.041304

    2012-01-01

    We investigate erosion patterns observed in a horizontal granular bed resulting from seepage of water motivated by observation of beach rills and channel growth in larger scale landforms. Our experimental apparatus consists of a wide rectangular box filled with glass beads with a narrow opening in one of the side walls from which eroded grains can exit. Quantitative data on the shape of the pattern and erosion dynamics are obtained with a laser-aided topography technique. We show that the spatial distribution of the source of groundwater can significantly impact the shape of observed patterns. An elongated channel is observed to grow upstream when groundwater is injected at a boundary adjacent to a reservoir held at constant height. An amphitheater (semi-circular) shape is observed when uniform rainfall infiltrates the granular bed to maintain a water table. Bifurcations are observed as the channels grow in response to the ground water. We further find that the channels grow by discrete avalanches as the heig...

  1. Coupling Seepage and Radionuclide Transport in and Around Emplacement Drifts at Yucca Mountain

    Science.gov (United States)

    Zhang, G.; Spycher, N.; Sonnenthal, E.; Steefel, C.

    2007-12-01

    The proposed nuclear waste repository of the United States is located at Yucca Mountain, Nevada. Waste packages will be placed in deep (~350 m) underground drifts in volcanic tuff. Seepage may potentially occur at the repository drifts when the drifts get rewetted after a dryout period. The potential seepage water will be quickly evaporated or boiled to near dryness as long as it falls on the top of the hot waste package leading to formation of brine, precipitation of salts and volatilization of gases. These processes may potentially impact the long-term safety of waste packages in the drift. The objectives of this study are to: (1) develop a quantitative model of coupled thermal, hydrological, and chemical (THC) processes potentially leading to brine formation, salt precipitation and gas volatilization on top of waste packages and/or a drip shield and (2) dynamically integrate such a model into the larger-scale models of processes within and around waste emplacement drifts, as well as into the smaller-scale waste-package corrosion models. Process models were implemented into an existing reactive transport numerical simulator, TOUGHREACT, to allow modeling of (1) evaporative concentration to very high ionic strength (up to 40 molal), (2) boiling point elevation due to dissolved salts, (3) boiling/evaporation to dryness, and (4) salt deliquescence. An integrated near-field and in-drift THC simulation was run using a vertical 2-D grid extending from near the ground surface to the groundwater table, and covering a width equal to half the design drift spacing of 81 m. The integrated model was then used to simulate a discrete dripping event within the drift. The model considered the release of radionuclides into seepage water as this water contacts the waste package and flows through the invert. The precipitation of uranophane and Np-uranophane was also considered. These minerals form in the invert from the neutralization of mildly acidic seepage water by clay minerals

  2. Geologic seepage of methane and light alkanes in Los Angeles

    Science.gov (United States)

    Doezema, L. A.; Chang, K.; Baril, R.; Nwachuku, I.; Contreras, P.; Marquez, A.; Howard, D.

    2013-12-01

    Natural geologic seepage of methane from underground oil and natural gas reservoirs has been suggested to be an underreported part of the global methane budget. Other light alkanes are also given off in combination with the methane seepage, making it possible that geologic seepage is also a potentially significant global source of these light alkanes. This study reports C1-C5 findings from geologic seepage made in the Los Angeles region. Microseepage, invisible escape of gases, was measured primarily at Kenneth Hahn Regional Park, while macroseepage, the visible release of gases, was measured at the La Brea Tar Pits. Samples were collected using stainless steel canisters and flux chambers and were analyzed using gas chromatography with flame ionization detectors (GC-FID). Average microseepage flux rates of 0.95 μg m-2 h-1 for ethane and 0.51 μg m-2 h-1 were found for propane, while average macroseepage rates for methane, ethane, and propane were 664, 19.8, and 18.1 mg m-2 h-1 respectively. Relationships between microseepage flux rate and location of underground oil and natural deposit and earthquake fault lines are presented. Additionally, the relative importance of findings in context with global budgets and local air quality is discussed.

  3. The analysis of physicochemical characteristics of pig farm seepage ...

    African Journals Online (AJOL)

    Dikonketso Matjuda

    based on the analyses of the physicochemical parameters of the adjacent environments. ... Author(s) agree that this article remain permanently open access under the terms of the Creative ... store their seepage in lagoons for a long time and this ...... Correlation of soil physico-chemical factors with vam fungi distribution.

  4. Three-dimensional imaging, change detection, and stability assessment during the centerline trench levee seepage experiment using terrestrial light detection and ranging technology, Twitchell Island, California, 2012

    Science.gov (United States)

    Bawden, Gerald W.; Howle, James; Bond, Sandra; Shriro, Michelle; Buck, Peter

    2014-01-01

    A full scale field seepage test was conducted on a north-south trending levee segment of a now bypassed old meander belt on Twitchell Island, California, to understand the effects of live and decaying root systems on levee seepage and slope stability. The field test in May 2012 was centered on a north-south trench with two segments: a shorter control segment and a longer seepage test segment. The complete length of the trench area measured 40.4 meters (m) near the levee centerline with mature trees located on the waterside and landside of the levee flanks. The levee was instrumented with piezometers and tensiometers to measure positive and negative porewater pressures across the levee after the trench was flooded with water and held at a constant hydraulic head during the seepage test—the results from this component of the experiment are not discussed in this report. We collected more than one billion three-dimensional light detection and ranging (lidar) data points before, during, and after the centerline seepage test to assess centimeter-scale stability of the two trees and the levee crown. During the seepage test, the waterside tree toppled (rotated 20.7 degrees) into the water. The landside tree rotated away from the levee by 5 centimeters (cm) at a height of 2 m on the tree. The paved surface of the levee crown had three regions that showed subsidence on the waterside of the trench—discussed as the northern, central, and southern features. The northern feature is an elongate region that subsided 2.1 cm over an area with an average width of 1.35 m that extends 15.8 m parallel to the trench from the northern end of the trench to just north of the trench midpoint, and is associated with a crack 1 cm in height that formed during the seepage test on the trench wall. The central subsidence feature is a semicircular region on the waterside of the trench that subsided by as much as 6.2 cm over an area 3.4 m wide and 11.2 m long. The southern feature is an elongate

  5. Three-dimensional Finite Element Optimization Analysis of Different Seepage Control Schemes of Lizhou RCC Arch Dam%立洲RCC拱坝渗控方案的三维有限元优化分析

    Institute of Scientific and Technical Information of China (English)

    行亚楠; 胡升伟; 王滔; 吴震宇; 陈建康

    2013-01-01

    The seepage control measures were investigated for the dam area of Lizhou hydroelectric project in Muli River of Si‐chuan Province .A three‐dimensional finite element seepage model was developed using ANSYS12 .1 to analyze the seepage char‐acteristics and variations of seepage pressure under different seepage control schemes .The seepage gradient and seepage amount of key positions and the seepage pressure and groundwater level of typical profiles of seepage field for different seepage control schemes were compared .The results showed that (1) the impervious curtain and drainage hole in the design scheme of seepage control measures of Lizhou arch dam can decrease the seepage saturation line effectively ,lower the uplift pressure on dam foun‐dation and dam abutment ,and improve the stress conditions of dam foundation and dam abutment ;(2) the deepening curtain , drainage hole ,and thickening curtain have insignificant effects on decreasing the seepage pressure ;and (3) increasing the depth of impervious curtain near the f 5 fault can prevent the formation of leakage passage in the f 5 fault .In addition ,removing the drainage hole in the first layer and decreasing the extending length of the impervious curtain of dam abutment can save the cost of seepage control measures without breaking seepage safety .%  以四川木里河立洲水电枢纽工程为研究对象,对坝区的渗控措施展开研究.利用ANSYS12.1建立三维有限元渗流模型,计算分析得到了各渗控方案的渗流特征和渗透压力变化规律.对各方案中关键部位的渗透比降、渗漏量和典型剖面渗流场的渗压、地下水位等特征量进行比较分析后,得知:(1)立洲拱坝渗控措施设计方案的防渗帷幕和排水孔幕能有效降低坝后渗流浸润线,对于减小坝基、坝肩扬压力、改善坝基和坝肩受力条件起到了良好的作用;(2)加深帷幕和排水孔幕、增厚帷幕对降低坝

  6. Impact of aquifer desaturation on steady-state river seepage

    Science.gov (United States)

    Morel-Seytoux, Hubert J.; Miracapillo, Cinzia; Mehl, Steffen

    2016-02-01

    Flow exchange between surface and ground water is of great importance be it for beneficial allocation and use of the water resources or for the proper exercise of water rights. That exchange can take place under a saturated or unsaturated flow regime. Which regimes occur depend on conditions in the vicinity of the interactive area. Withdrawals partially sustained by seepage may not bring about desaturation but greater amounts eventually will. The problem considered in this paper deals only with the steady-state case. It is meant as a first step toward a simple, yet accurate and physically based treatment of the transient situation. The primary purpose of the article is to provide simple criteria for determination of the initiation of desaturation in an aquifer originally in saturated hydraulic connection with a river or a recharge area. The extent of the unsaturated zone in the aquifer will increase with increasing withdrawals while at the same time the seepage rate from the river increases. However the seepage increase will stop once infiltration takes place strictly by gravity in the aquifer and is no longer opposed by the capillary rise from the water table below the riverbed. Following desaturation simple criteria are derived and simple analytical formulae provided to estimate the river seepage based on the position of the water table mound below the clogging layer and at some distance away from the river bank. They fully account for the unsaturated flow phenomena, including the existence of a drainage entry pressure. Two secondary objectives were to verify that (1) the assumption of uniform vertical flow through a clogging layer and that (2) the approximation of the water table mound below the seepage area as a flat surface were both reasonably legitimate. This approach will be especially advantageous for the implementation of the methodology in large-scale applications of integrated hydrologic models used for management.

  7. Integrated Hydrogeochemical and Geophysical Interpretation of Groundwater Salinization in an Uplifted Pleistocene Carbonate Aquifer of Barbados

    Science.gov (United States)

    Mayers, B.; Farrell, D.; Coffey, R.; Thompson, G.

    2007-05-01

    Understanding the processes that influence spatial and temporal distributions of aquifer salinity are essential to the development of a groundwater salinity management plan. In this paper, we integrate geophysical, hydrogeochemical and submarine seepage measurements to develop a conceptual hydrogeological model of groundwater salinization of a Pleistocene carbonate aquifer that has experienced Quaternary glacio-eustatic sea- level changes and tectonic uplift. The Pleistocene carbonate rock mantles moderately folded and faulted Tertiary marine sedimentary rocks of early Eocene to middle Miocene age. The main issues to be addressed are (1) an understanding of the hydrogeological regime of the karst aquifer, (2) the origin and extent of aquifer salinization, and (3) groundwater provenance. Non-invasive Time Domain and Resistivity soundings were used to map the subsurface electrical resistivity structure to infer the distribution of aquifer salinity and geologic structure. An analysis of the major and minor ions was used to evaluate groundwater chemistry patterns and the main mineralization processes. Submarine seepage measurements were taken from random locations in the near- shore region including a region of spring discharge. The results suggest (1) a heterogeneous distribution of fresh and saline groundwater that deviates from the idealized freshwater/saltwater transition zone on the decimeter scale, (2) a transition from Ca- HCO3 to Na-Cl type waters towards the coast indicating mixing with saline groundwater, (3) an Mg/Ca ratio that suggest aquitard-influenced saline groundwater (4) seepage of recirculated saline groundwater at locations where seepage springs are absent, and (5) an aquifer that has not been adequately flushed. In order to support these concepts, further work will utilize stable and environmental isotopes to age-date both fresh and saline groundwater and to evaluate the effects of water-rock and aquifer- aquitard interactions on the spatial and

  8. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels

    Institute of Scientific and Technical Information of China (English)

    赖远明; 吴紫汪; 朱元林; 何春雄; 朱林楠

    1999-01-01

    The governing differential equations of the coupled problem of temperature and seepage fields with phase change are first derived from the theory of heat transfer and the theory of seepage. The finite element formulae of this problem are obtained from Galerkin’ s method. And considering the seepage influence, an illustrative example of thetemperature field in a cold-region tunnel is provided.The example shows that the influence of seepage on the frozen depth of the tunnel is very great, and thus the effect of the seepage factor should be taken into account in the engineering design.

  9. The Curing Meter

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2006-01-01

    Curing technology concerns adjustment and control of temperature and moisture conditions in hardening structures and elements of concrete. The curing technology comprises e.g. measurement, adjustment and control of the moisture conditions during the early hardening phase of the concrete to achiev...... from concrete surfaces in the early hardening phase. The Concrete Curing Meter is designed for simple and reliable monitoring of water loss from a wet surface of fresh concrete. This new measuring technique has been tested with several prototypes of the Curing Meter....

  10. Evaluation model coupling exploitable groundwater resources and land subsidence control in regional loose sediments

    Science.gov (United States)

    Luo, Z. J.; Zhao, S. J.; Jin, WZ; Ma, Q. S.; Wu, X. H.

    2016-08-01

    The loose sediments in the Yangtze River Delta, the North China Plain, the plain of Northern Jiangsu and other districts in China are of great thickness, complex in structure and abundant in groundwater. Groundwater overexploitation easily results in geological disasters of land subsidence. Aiming at the issues, assessment models coupling exploitable groundwater resources and land subsidence control in regional loose sediments were brought up in this paper. The two models were: (1) a three dimensional groundwater seepage model with land subsidence based on the one dimensional Terzaghi consolidation theory; (2) a three dimensional full coupling model on groundwater seepage and land subsidence based on the Biot consolidation theory to simulate and calculate. It can be used to simulate and calculate the problems in real situations. Thus, the groundwater seepage and land subsidence were coupled together in the model to evaluate the amount of exploitable groundwater under the specific requirements of land subsidence control. The full coupling model, which considers the non-linear characteristics of soil mass and the dynamic changes of soil permeability with stress state based on the Biot consolidation theory, is more coincident with the variation characteristics of the hydraulic and mechanical properties of soil mass during the pumping process, making the evaluation results more scientific and reasonable.

  11. Transformer and Meter Tester

    Science.gov (United States)

    Stoms, R. M.

    1984-01-01

    Numerically-controlled 5-axis machine tool uses transformer and meter to determine and indicate whether tool is in home position, but lacks built-in test mode to check them. Tester makes possible test, and repair of components at machine rather then replace them when operation seems suspect.

  12. Optical Attenuation Coefficient Meter

    Science.gov (United States)

    2016-06-22

    back scattered light 202. The back scattered light 202 travels to the attenuation meter 10 after scattering by thermodynamic density fluctuations and...invention to the precise form disclosed; and obviously many modifications and variations are possible in light of the above teaching . Such

  13. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. Crusius

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004, although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to

  14. Seepage phenomena on Mars at subzero temperature

    Science.gov (United States)

    Kereszturi, Akos; Möhlmann, Diedrich; Berczi, Szaniszlo; Ganti, Tibor; Horvath, Andras; Kuti, Adrienn; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    At the southern hemisphere of Mars seasonal slope structures emanating from Dark Dune Spots are visible on MGS MOC, and MRO HiRISE images. Based on their analysis two groups of streaks could be identified: diffuse and fan shaped ones forming in an earlier phase of local spring, probably by CO2 gas jets, and confined streaks forming only on steep slopes during a later seasonal phase. The dark color of the streaks may arise from the dark color of the dune grains where surface frost disappeared above them, or caused by the phase change of the water ice to liquid-like water, or even it may be influenced by the solutes of salts in the undercooled interfacial water The second group's morphology (meandering style, ponds at their end), morphometry, and related theoretical modelling suggest they may form by undercooled water that remains in liquid phase in a thin layer around solid grains. We analyzed sequence of images, temperature and topographic data of Russel (54S 12E), Richardson (72S 180E) and an unnamed crater (68S 2E) during southern spring. The dark streaks here show slow motion, with an average speed of meter/day, when the maximal daytime temperature is between 190 and 220 K. Based on thermophysical considerations a thin layer of interfacial water is inevitable on mineral surfaces under the present conditions of Mars. With 10 precipitable micrometer of atmospheric water vapor, liquid phase can be present down about 190 K. Under such conditions dark streaks may form by the movement of grains lubricatred by interfacial water. This possibility have various consequences on chemical, mechanical or even possible astrobiological processes on Mars. Acknowledgment: This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation.

  15. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-05

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The

  16. Effect of upward seepage on bedload transport rate

    Directory of Open Access Journals (Sweden)

    Xiao-xie LIU

    2014-04-01

    Full Text Available The paper presents an investigation of injection effects on the bedload transport rate. According to dimensional analysis, two dimensionless groups, an Einstein’s parameter group and a modified densimetric Froude number group, were chosen to examine how injection affects the bedload transport rate. Experimental studies were conducted in an open-channel flume with an upward seepage zone. The sediment particles used for the test were 0.9 mm in diameter. The experimental results show that an increase in the injection velocity causes a reduction in the shear velocity excess, which is defined as the difference between the shear and critical shear velocities, leading to a reduction in the bedload transport rate. The equation for predicting the bedload transport rate in the presence of upward seepage was derived empirically. The proposed prediction method is suitable for engineering practice, since it only requires the undisturbed flow condition, properties of sediment particles, and the injection velocity.

  17. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang

    2015-09-01

    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.

  18. Seepage and seepage gradients in an homogeneous, isotropic aquifer with drains as a function of soil properties and flow region geometry

    Science.gov (United States)

    Seepage and seepage gradients are important parameters in soil erosion processes and water quality problems on agricultural land. Traditionally, surface overland flow is viewed as one of the major soil erosive agents on those areas. In recent years, the role of the subsurface flow regime is increasi...

  19. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  20. Ride quality meter

    Science.gov (United States)

    Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.; Stephens, D. G. (Inventor)

    1983-01-01

    A ride quality meter is disclosed that automatically transforms vibration and noise measurements into a single number index of passenger discomfort. The noise measurements are converted into a noise discomfort value. The vibrations are converted into single axis discomfort values which are then converted into a combined axis discomfort value. The combined axis discomfort value is corrected for time duration and then summed with the noise discomfort value to obtain a total discomfort value.

  1. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-07-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>-1.5 m d-1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ˜0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8-9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  2. Monitoring technique for seepage line of tailings dam

    Institute of Scientific and Technical Information of China (English)

    李夕兵; 蒋卫东

    2003-01-01

    An automatic monitoring technique of the seepage line, including the monitoring design, the automatic monitoring system and the backfill technique of the measuring probe of pore-water pressure, was used in a tailings dam, and a shallow refractive seismic method was investigated for obtaining the seepage line of those areas outside the monitoring zone. The results show that the automatic monitoring has the error within ± 3 % relative to piezometric tube method and improves monitoring efficiency greatly, and the shallow refractive seismic method has the error within ± 10% but expands the area of monitoring. Both of them can be used for a daily measurement in monitoring the seepage line. The result of the automatic monitoring also shows that not only the design of the survey line and the backfill technique of the measuring probe of pore-water pressure are reasonable and economic but also the reliability and safety of the automatic monitoring system are better. Testing result by the shallow refractive seismic method in tailings reveals that the energy excited by hammering iron sheet-pole is strong enough and safe, and that the character of anti-jamming by the detectors with long tailcone is better.

  3. Analytically computed rates of seepage flow into drains and cavities

    Science.gov (United States)

    Fujii, N.; Kacimov, A. R.

    1998-04-01

    The known formulae of Freeze and Cherry, Polubarinova-Kochina, Vedernikov for flow rate during 2-D seepage into horizontal drains and axisymmetric flow into cavities are examined and generalized. The case of an empty drain under ponded soil surface is studied and existence of drain depth providing minimal seepage rate is presented. The depth is found exhibiting maximal difference in rate between a filled and an empty drain. 3-D flow to an empty semi-spherical cavity on an impervious bottom is analysed and the difference in rate as compared with a completely filled cavity is established. Rate values for slot drains in a two-layer aquifer are inverted using the Schulgasser theorem from the Polubarinova-Kochina expressions for corresponding flow rates under a dam. Flow to a point sink modelling a semi-circular drain in a layered aquifer is treated by the Fourier transform method. For unsaturated flow the catchment area of a single drain is established in terms of the quasi-linear model assuming the isobaric boundary condition along the drain contour. Optimal shape design problems for irrigation cavities are addressed in the class of arbitrary contours with seepage rate as a criterion and cavity cross-sectional area as an isoperimetric restriction.

  4. Seepage assessment of Hattian Bala landslide dam using hydrological data

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, F.S. [Georgia Inst.of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Akram, T.; Haider, S. [National Univ. of Sciences and Technology, Islamabad (Pakistan). National Inst.of Transportation

    2009-07-01

    In 2005, a M7.6 earthquake in Pakistan triggered a landslide that blocked two tributaries of the Jhelum River at their confluence, near Muzzafarabad, Azad Kashmir, creating two lakes. Flooding upstream of this natural dam can cause substantial downstream damage in case of failure. This paper presented the results of a study aimed at evaluating the inflow of water into the dam body through seepage from the larger lake by utilizing hydrological data. The objectives of the study were to assess the possibility of seepage from Karli Lake by comparing daily upstream inflows from both channels with the downstream discharges; estimate the loss of water into the dam body from Karli Lake by comparing the actual daily increase in volume in the Karli Lake with the daily upstream inflow volume of Karli channel; and estimate the seepage volume by combining the upstream inflow volume and comparing it with the downstream discharge volume. Although the desired results could not be obtained due to inadequate data, a practical method was developed for use in similar cases. 10 refs., 1 tab., 13 figs.

  5. Metal concentrations in soil and seepage water due to infiltration of roof runoff by long term numerical modelling.

    Science.gov (United States)

    Zimmermann, J; Dierkes, C; Göbel, P; Klinger, C; Stubbe, H; Coldewey, W G

    2005-01-01

    The qualitative effects of stormwater infiltration on soil and seepage water are investigated with long term numerical modelling. The retention behaviour of different soils and materials used in infiltration devices is determined with batch and column tests. Results of the laboratory tests are adsorption isotherms which represent input data for numerical transport modelling. The long term simulations are performed with combinations of different solutions (types of roof runoff) and infiltration devices (swale and trench) under different hydrogeological conditions. The presented results contain the infiltration of low polluted roof runoff, runoff from a roof with zinc sheets and from a roof with copper sheets concerning the heavy metals zinc, copper and lead. The increase of concentrations in the infiltration body is high. For the infiltrated water, the results show a migration to groundwater only for the low adsorbing soil.

  6. Seepage properties of a single rock fracture subjected to triaxial stresses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Coupled properties of seepage and stress fields of rock fractures greatly influence the safety of geotechnical engineering work.Based on the closing defomation principle of a single rock fracture,equations describing relationships of aperture and triaxial stresses are developed,and coupled models of seepage and triaxial stresses are proposed.Seepage tests are conducted under triaxial stress conditions by adopting hard granite specimens with an artificial fracture.The results show that the normal stress,lateral stress and seepage pressure significantly affect the flow behavior of rock fractures,and that hydraulic conductivity decreases with increasing normal.stress,but increases with rising lateral stress or seepage pressure.In addition,an exponential function provides a good representation of the seepage characteristics of a single rock fracture subjected to triaxial stresses.

  7. Smart metering design and applications

    CERN Document Server

    Weranga, K S K; Chandima, D P

    2013-01-01

    Taking into account the present day trends and the requirements, this Brief focuses on smart metering of electricity for next generation energy efficiency and conservation. The contents include discussions on the smart metering concepts and existing technologies and systems as well as design and implementation of smart metering schemes together with detailed examples.

  8. Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling

    Science.gov (United States)

    Briggs, Martin; Lautz, Laura K.; Buckley, Sean F.; Lane, Jr., John W.

    2014-01-01

    Groundwater upwelling to streams creates unique habitat by influencing stream water quality and temperature; upwelling zones also serve as vectors for contamination when groundwater is degraded. Temperature time series data acquired along vertical profiles in the streambed have been applied to simple analytical models to determine rates of vertical fluid flux. These models are based on the downward propagation characteristics (amplitude attenuation and phase-lag) of the surface diurnal signal. Despite the popularity of these models, there are few published characterizations of moderate-to-strong upwelling. We attribute this limitation to the thermodynamics of upwelling, under which the downward conductive signal transport from the streambed interface occurs opposite the upward advective fluid flux. Governing equations describing the advection–diffusion of heat within the streambed predict that under upwelling conditions, signal amplitude attenuation will increase, but, counterintuitively, phase-lag will decrease. Therefore the extinction (measurable) depth of the diurnal signal is very shallow, but phase lag is also short, yielding low signal to noise ratio and poor model sensitivity. Conversely, amplitude attenuation over similar sensor spacing is strong, yielding greater potential model sensitivity. Here we present streambed thermal time series over a range of moderate to strong upwelling sites in the Quashnet River, Cape Cod, Massachusetts. The predicted inverse relationship between phase-lag and rate of upwelling was observed in the field data over a range of conditions, but the observed phase-lags were consistently shorter than predicted. Analytical solutions for fluid flux based on signal amplitude attenuation return results consistent with numerical models and physical seepage meters, but the phase-lag analytical model results are generally unreasonable. Through numerical modeling we explore reasons why phase-lag may have been over-predicted by the

  9. No-Voltage Meter

    Science.gov (United States)

    1976-02-01

    VW- IKft, 1/4 H4 -Wv- IK!1, I/4W INTERNAL VOLTAGE NOTE ALL TRANSISTORS ARE 2N43A OR EQUIVALENT GERMANIUM ALLOY PNP AA ALKALINE BATTERY...D-,, regardless of polarity. This signal is then full-wave rectified by the diode-connected Germanium transistor bridge, T,, T-,, T3, and T4... Transistor T5 acts as a second current limiter. Resistor R2 was selected to give 90 f# of full-scale meter deflection with an input signal of 115 volts

  10. Direct reading inductance meter

    Science.gov (United States)

    Kolby, R. B. (Inventor)

    1977-01-01

    A direct reading inductance meter comprised of a crystal oscillator and an LC tuned oscillator is presented. The oscillators function respectively to generate a reference frequency, f(r), and to generate an initial frequency, f(0), which when mixed produce a difference equal to zero. Upon connecting an inductor of small unknown value in the LC circuit to change its resonant frequency to f(x), a difference frequency (f(r)-f(x)) is produced that is very nearly a linear function of the inductance of the inductor. The difference frequency is measured and displayed on a linear scale in units of inductance.

  11. Effect of downward seepage on turbulent flow characteristics and bed morphology around bridge piers

    Science.gov (United States)

    Chavan, Rutuja; Sharma, Anurag; Kumar, Bimlesh

    2017-03-01

    In this work, experimental investigations have been pursued to analyse the influence of downward seepage on the turbulent characteristics of flow and corresponding changes in vortex structure around circular bridge pier in alluvial channel. Experiments were conducted in sand bed channel with circular piers of different sizes for no seepage, 10% seepage and 20% seepage cases. The measurement of turbulent flow statistics such as velocity and Reynolds stresses is found to be negative within the scour hole at upstream of the pier whereas application of downward seepage retards the reversal of the flow causing a decrement in the velocity and Reynolds stresses. Higher Reynolds shear stress prevails at the downstream side because of the production of wake vortices. Contribution of all bursting events to the total Reynolds shear stress production has been observed to increase with downward seepage. The analysis of integral scale suggest that size of eddies increases with seepage, which is responsible for increase in particle mobility. Initially rate of scouring is more which abatements gradually with expanding time as well as with the increased of downward seepage. Presence of downward seepage reduces the depth and length of vortex and shifts towards downstream side of the pier.

  12. Groundwater-Surface Water Interaction: A Case Study of Embankment Dam Safety Assessment in Sweden.

    Science.gov (United States)

    Ferdos, F.; Dargahi, B.

    2015-12-01

    Seepage, when excessive and unimpeded, can cause embankment dam failure. Such failures are often initiated by internal erosion and piping. Modelling these phenomena in embankment dams, accounting for the groundwater-surface water interactions, is crucial when performing dam safety assessments. The aim of this study was to evaluate the applicability of modelling seepage flows in multi-region dams using a finite element based multi-physics model. The model was applied to the Trängslet dam, the largest dam in Sweden. The objectives were to analyze the characteristics of both the flow and the surface-ground water interactions occurring in the dam, including: i) the saturated and unsaturated laminar flow regimes within the dam body, ii) the non-linear through-flow in the dam shoulders' coarse material, iii) the influence of the surface waves in the reservoir on the seepage flow by coupling the physics to a hydrodynamic interface, and iv) the influence of a conceptual "erosion tunnel" on the seepage flow and its interaction with the surface water flow by coupling the physics to a CFD interface. The focus of the study was on the influence of the transient water head boundary condition, surface waves and the internal erosion tunnel on the location of the phreatic line and the seepage flow rate. The simulated seepage flow of the dam in its original condition tallied with the monitoring measurements (40-70 l/s). The main feature found was the relatively high position of the phreatic line, which could compromise the stability of the dam. The combination of the seepage model with the reservoir hydrodynamics indicated a negligible influence of the surface waves on seepage flow. Results from the combination of the seepage model with fluid dynamics indicated that a conceptual "erosion tunnel" placed within the dam, even as high as in the unsaturated zone, significantly affects the phreatic line's position. This also causes the seepage flow to increase by several orders of

  13. The Curing Meter

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2006-01-01

    Curing technology concerns adjustment and control of temperature and moisture conditions in hardening structures and elements of concrete. The curing technology comprises e.g. measurement, adjustment and control of the moisture conditions during the early hardening phase of the concrete to achiev...... from concrete surfaces in the early hardening phase. The Concrete Curing Meter is designed for simple and reliable monitoring of water loss from a wet surface of fresh concrete. This new measuring technique has been tested with several prototypes of the Curing Meter.......Curing technology concerns adjustment and control of temperature and moisture conditions in hardening structures and elements of concrete. The curing technology comprises e.g. measurement, adjustment and control of the moisture conditions during the early hardening phase of the concrete to achieve...... an optimal development of properties in the hardening concrete – so-called "moisture curing". Proper moisture curing is vital to concrete but laborious to accomplish and difficult to control at the construction site with present methods. This paper concerns a new method for site measurement of evaporation...

  14. Groundwater interactions with Lobelia lakes- effects on the aquatic plant, Littorella uniflora

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila

    hydrology to the lake shore ecosystem; in that highly productive areas coincide with seepage sites in the littoral zone. The changes in seepage flux will affect the pore water biogeochemistry by altering the transport of gases and dissolved substrates, these changes will in turn affect the rooted vegetation....... The macrophytes themselves can also affect the biogeochemistry by changing the concentration of the dissolved CO2, O2 and nutrients in the sediment. The main objective of this project is to investigate how plant growth in Lobelia lakes is influenced by the inlet and outlet of groundwater; and which role...

  15. Radioactivity in groundwater along the borders of Oman and UAE

    DEFF Research Database (Denmark)

    Murad, A.; Alshamsi, D.; Hou, Xiaolin;

    2014-01-01

    are alluvium deposits (silt, sand and gravel) and the measured groundwater radioactivity (including 232Th, 238U, 235U, 226Ra, 222Rn, gross-α and gross-β) indicates values below the WHO permissible limits for drinking water. The results also show large difference in radioactivity fingerprints, in particular...... for 226Ra and 222Rn within the investigated aquifers. The data further indicate lower radioactivity in groundwater of the alluviums compared to the carbonate aquifers in the region. This feature makes the alluvium aquifers valuable reservoirs that should be carefully exploited as a source of groundwater....... As this is the first investigation on the radioactivity of groundwater in alluvial aquifers in the region, it suggests that other alluvial deposits, particularly those inland and far from the marine water intrusion or seepage from carbonate rocks would have low radioactivity fingerprints....

  16. On leakage and seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  17. How to use your peak flow meter

    Science.gov (United States)

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... If your airways are narrowed and blocked due to asthma, your peak flow values drop. You can ...

  18. Baltimore WATERS Test Bed -- Quantifying Groundwater in Urban Areas

    Science.gov (United States)

    Welty, C.; Miller, A. J.; Ryan, R. J.; Crook, N.; Kerchkof, T.; Larson, P.; Smith, J.; Baeck, M. L.; Kaushal, S.; Belt, K.; McGuire, M.; Scanlon, T.; Warner, J.; Shedlock, R.; Band, L.; Groffman, P.

    2007-12-01

    The purpose of this project is to quantify the urban water cycle, with an emphasis on urban groundwater, using investigations at multiple spatial scales. The overall study focuses on the 171 sq km Gwynns Falls watershed, which spans an urban to rural gradient of land cover and is part of the Baltimore Ecosystem Study LTER. Within the Gwynns Falls, finer-scale studies focus on the 14.3 sq km Dead Run and its subwatersheds. A coarse-grid MODFLOW model has been set up to quantify groundwater flow magnitude and direction at the larger watershed scale. Existing wells in this urban area are sparse, but are being located through mining of USGS NWIS and local well data bases. Wet and dry season water level synoptics, stream seepage transects, and existing permeability data are being used in model calibration. In collaboration with CUAHSI HMF Geophysics, a regional-scale microgravity survey was conducted over the watershed in July 2007 and will be repeated in spring 2008. This will enable calculation of the change in groundwater levels for use in model calibration. At the smaller spatial scale (Dead Run catchment), three types of data have been collected to refine our understanding of the groundwater system. (1) Multiple bromide tracer tests were conducted along a 4 km reach of Dead Run under low-flow conditions to examine groundwater- surface water exchange as a function of land cover type and stream position in the watershed. The tests will be repeated under higher base flow conditions in early spring 2008. Tracer test data will be interpreted using the USGS OTIS model and results will be incorporated into the MODFLOW model. (2) Riparian zone geophysical surveys were carried out with support from CUAHSI HMF Geophysics to delineate depth to bedrock and the water table topography as a function of distance from the stream channel. Resistivity, ground penetrating radar, and seismic refraction surveys were run in ten transects across and around the stream channels. (3) A finer

  19. Exchange between a river and groundwater, assessed with hydrochemical data

    Directory of Open Access Journals (Sweden)

    E. Hoehn

    2011-03-01

    Full Text Available We describe the chemical composition of groundwater from an alluvial granular aquifer in a valley fill flood plain (River Thur Valley. The river flows along this valley and is mostly downwelling on its way, indirectly through an unsaturated zone in the upstream part, and directly through the water-saturated bed in the downstream part. River Thur has been channelized with barriers for more than a century. In 1992, the authorities started to restore a section of River Thur with riverbed enlargements. The land use in the flood plain and the seasonal and climatic conditions (e.g., hot dry summer 2003 result in alterations of the natural geochemical composition of the river water. This groundwater is partly to mainly recharged by bank filtration. Several wells exist near the river that draw groundwater for drinking. In some of these wells, the groundwater has a very short residence time in the subsurface of days to weeks. Bed enlargements and other operations for an enhancement of the exchange of water between the river and groundwater increase the contamination risk of the nearby wells. During bank filtration, the groundwater changes gradually its composition, with increasing distance from the river and with depth in the aquifer. From today's changes of the water quality during riverbank filtration, we tried to extrapolate to the groundwater quality that may arise from future river restorations. Today the groundwater body consists of a mixture of groundwater from the seepage of precipitation and from riverbank filtration. The main difference between river water and groundwater results from the microbial activity in riverbed and bank materials. This activity leads to a consumption of O2 and to a higher partial pressure of CO2 in the groundwater. Criteria for the distinction of different groundwater compositions are the distance of a well from the river and the subsurface residence time of the groundwater to reach this well.

  20. Coastal groundwater dynamics off Santa Barbara, California: combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity

    Science.gov (United States)

    Swarzenski, Peter W.; Izbicki, John A.

    2009-01-01

    This paper presents repeat field measurements of 222Rn and 223,224,226,228Ra, electromagnetic seepage meter-derived advective fluxes, and multi-electrode, stationary and continuous marine resistivity surveys collected between November 2005 and April 2007 to study coastal groundwater dynamics within a marine beach in Santa Barbara, California. The study provides insight into magnitude and dynamics of submarine groundwater discharge (SGD) and associated nutrient loadings into near-shore coastal waters, where the predominant SGD drivers can be both spatially and temporally separated. Rn-222 and 223,224,226,228Ra were utilized to quantify the total and saline contribution, respectively, of SGD. The two short-lived 224,223Ra isotopes provided an estimate of apparent near-shore water mass age, as well as an estimate of the Ra-derived eddy diffusion coefficient, Kh (224Ra = 2.86 ?? 0.7 m2 s-1; 223Ra = 1.32 ?? 0.5 m2 s-1). Because 222Rn (t1/2 = 3.8 day) and 224Ra (t1/2 = 3.66 day) have comparable half-lives and production terms, they were used in concert to examine respective water column removal rates. Electromagnetic seepage meters recorded the physical, bi-directional exchange across the sediment/water interface, which ranged from -6.7 to 14.5 cm day-1, depending on the sampling period and position relative to the low tide line. Multi-day time-series 222Rn measurements in the near-shore water column yielded total (saline + fresh) SGD rates that ranged from 3.1 ?? 2.6 to 9.2 ?? 0.8 cm day-1, depending on the sampling season. Offshore 226Ra (t1/2 = 1600 year) and 222Rn gradients were used with the calculated Kh values to determine seabed flux estimates (dpm m-2 day-1), which were then converted into SGD rates (7.1 and 7.9 cm day-1, respectively). Lastly, SGD rates were used to calculate associated nutrient loads for the near-shore coastal waters off Santa Barbara. Depending on both the season and the SGD method utilized, the following SGD-derived nutrient inputs were

  1. Streamlining Smart Meter Data Analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    with the complexity of data processing and data analytics. The system offers an information integration pipeline to ingest smart meter data; scalable data processing and analytic platform for pre-processing and mining big smart meter data sets; and a web-based portal for visualizing data analytics results. The system......Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social......-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, data-mining and the emerging cloud computing technologies make the collection, management, and analysis...

  2. Micro-gen metering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elland, J.; Dickson, J.; Cranfield, P.

    2003-07-01

    This report summarises the results of a project to investigate the regulation of domestic electricity metering work and identify the most economic options for micro-generator installers to undertake work on electricity meters. A micro-generation unit is defined as an energy conversion system converting non-electrical energy into electrical energy and can include technologies such as photovoltaic systems, small-scale wind turbines, micro-hydroelectric systems, and combined heat and power systems. Details of six tasks are given and cover examination of the existing framework and legal documentation for metering work, the existing technical requirements for meter operators, meter operator personnel accreditation, appraisal of options for meter changes and for micro-generation installation, document change procedures, industry consultation, and a review of the costs implications of the options.

  3. Surface and subsurface expressions of gas seepage to the seabed – examples from the Southern North Sea

    NARCIS (Netherlands)

    Schroot, B.M.; Klaver, G.T.; Schüttenhelm, R.T.E.

    2005-01-01

    Expressions of gas seepage observable within North Sea seismic and acoustic data include seabed pockmarks, seepage plumes in the water column, acoustic blanking, shallow enhanced reflectors, and shallow seismic chimneys. Three areas were selected for a marine survey in

  4. Seepage into an Underground Opening Constructed in Unsaturated Fractured Rock Under Evaporative Conditions

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Trautz; Joseph S. Y. Wang

    2001-06-07

    Liquid-release tests, performed in boreholes above an underground opening constructed in unsaturated fractured rock, are used in this study to evaluate seepage into a waste emplacement drift. Evidence for the existence of a capillary barrier at the ceiling of the drift is presented, based on field observations (including spreading of the wetting front across the ceiling and water movement up fractures exposed in the ceiling before seepage begins). The capillary barrier mechanism has the potential to divert water around the opening, resulting in no seepage when the percolation flux is at or below the seepage threshold flux. Liquid-release tests are used to demonstrate that a seepage threshold exists and to measure the magnitude of the seepage threshold flux for three test zones that seeped. The seepage data are interpreted using analytical techniques to estimate the test-specific strength of the rock capillary forces ({alpha}{sup -1}) that prevent water from seeping into the drift. Evaporation increases the seepage threshold flux making it more difficult for water to seep into the drift and producing artificially inflated {alpha}{sup -1} values. With adjustments for evaporation, the minimum test-specific threshold is 1,600 mm/yr with a corresponding {alpha}{sup -1} of 0.027 m.

  5. H-VERSION ADAPTIVE FINITE ELEMENT METHOD FOR THREE-DIMENSIONAL SEEPAGE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Feng Xue-min; Chen Sheng-hong

    2003-01-01

    The h-version adaptive finite element method for 3-D seepage problem is presented in this paper.The adaptive system includes 4 modules: 3-D mesh generation, finite element analysis for 3-D seepage, mesh error estimation and post-process.The effectiveness of this system is verified by the given example.

  6. Seismic Stability of Subsea Tunnels Subjected to Seepage

    Directory of Open Access Journals (Sweden)

    Xuansheng Cheng

    2014-01-01

    Full Text Available Strength reduction method and ADINA software are adopted to study the stability of submarine tunnel structures subjected to seepage and earthquake under different seawater depths and overlying rock strata thicknesses. First, the excess pore water pressure in the rock mass is eliminated through consolidation calculation. Second, dynamic time-history analysis is performed by inputting the seismic wave to obtain the maximum horizontal displacement at the model top. Finally, static analysis is conducted by inputting the gravity and the lateral border node horizontal displacement when the horizontal displacement is the largest on the top border. The safety factor of a subsea tunnel structure subjected to seepage and earthquake is obtained by continuously reducing the shear strength parameters until the calculation is not convergent. The results show that the plastic zone initially appears at a small scope on the arch feet close to the lining structure and at both sides of the vault. Moreover, the safety factor decreases with increasing seawater depth and overlying rock strata thickness. With increasing seawater depth and overlying rock strata thickness, maximum main stress, effective stress, and maximum displacement increase, whereas displacement amplitude slightly decreases.

  7. Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams

    Science.gov (United States)

    Niswonger, R.G.; Prudic, D.E.; Fogg, G.E.; Stonestrom, D.A.; Buckland, E.M.

    2008-01-01

    A method is presented for estimating seepage loss and streambed hydraulic conductivity along intermittent and ephemeral streams using streamflow front velocities in initially dry channels. The method uses the kinematic wave equation for routing streamflow in channels coupled to Philip's equation for infiltration. The coupled model considers variations in seepage loss both across and along the channel. Water redistribution in the unsaturated zone is also represented in the model. Sensitivity of the streamflow front velocity to parameters used for calculating seepage loss and for routing streamflow shows that the streambed hydraulic conductivity has the greatest sensitivity for moderate to large seepage loss rates. Channel roughness, geometry, and slope are most important for low seepage loss rates; however, streambed hydraulic conductivity is still important for values greater than 0.008 m/d. Two example applications are presented to demonstrate the utility of the method. Copyright 2008 by the American Geophysical Union.

  8. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity

    Science.gov (United States)

    Su, Huaizhi; Tian, Shiguang; Cui, Shusheng; Yang, Meng; Wen, Zhiping; Xie, Wei

    2016-09-01

    In order to systematically investigate the general principle and method of monitoring seepage velocity in the hydraulic engineering, the theoretical analysis and physical experiment were implemented based on distributed fiber-optic temperature sensing (DTS) technology. During the coupling influence analyses between seepage field and temperature field in the embankment dam or dike engineering, a simplified model was constructed to describe the coupling relationship of two fields. Different arrangement schemes of optical fiber and measuring approaches of temperature were applied on the model. The inversion analysis idea was further used. The theoretical method of monitoring seepage velocity in the hydraulic engineering was finally proposed. A new concept, namely the effective thermal conductivity, was proposed referring to the thermal conductivity coefficient in the transient hot-wire method. The influence of heat conduction and seepage could be well reflected by this new concept, which was proved to be a potential approach to develop an empirical method monitoring seepage velocity in the hydraulic engineering.

  9. Improved similarity criterion for seepage erosion using mesoscopic coupled PFC-CFD model

    Institute of Scientific and Technical Information of China (English)

    倪小东; 王媛; 陈珂; 赵帅龙

    2015-01-01

    Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and piping erosion tests. The reason why seepage deformation in model tests may deviate from similarity was first discussed in this work. Then, the similarity criterion for seepage deformation in porous media was improved based on the extended Darcy-Brinkman-Forchheimer equation. Finally, the coupled particle flow code–computational fluid dynamics (PFC−CFD) model at the mesoscopic level was proposed to verify the derived similarity criterion. The proposed model maximizes its potential to simulate seepage erosion via the discrete element method and satisfy the similarity criterion by adjusting particle size. The numerical simulations achieved identical results with the prototype, thus indicating that the PFC−CFD model that satisfies the improved similarity criterion can accurately reproduce the processes of seepage erosion at the mesoscopic level.

  10. How upward seepage of alkaline groundwater sustains plant species diversity of mesotrophic meadows

    NARCIS (Netherlands)

    Cirkel, D.G.

    2014-01-01

    Door kwelwater gevoede natte hooilanden, zoals blauwgraslanden, worden wel beschouwd als de Nederlandse kroonjuwelen van biodiversiteit. Ze zijn de afgelopen eeuw sterk achteruitgegaan, zowel in oppervlakte als in botanische kwaliteit. Tegenwoordig vindt men deze laagproductieve hooilanden alleen no

  11. A more intelligent meter

    Energy Technology Data Exchange (ETDEWEB)

    Siuru, B.

    1996-09-01

    A utility systems analyst viewing a multicolor graph on a computer screen sees something awry in a customer`s home. The furnace is running in the midst of summer. The customer is notified and finds the problem, an air conditioner vent blowing on a thermostat. Next the analyst finds a refrigerator using excessive amounts of electricity. This time it was a leaky gasket and clogged heat exchanger fins. Later a flooded basement is avoided by discovering a faulty sump pump. The analyst was using the Non-Intrusive Appliance Load Monitoring System (NIALMS). As the name implies, NIALMS allows utilities to learn more about where and when customers use electrical power and how much without entering their homes to install monitoring devices on each appliance. It was developed under the sponsorship of the Electric Power Research Institute with assistance from Empire State Electric Energy Research Corp., New York State Energy Research and Development Authority, Consolidated Edison Co. and Rochester Gas & Electric Co. The meter is described.

  12. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NARCIS (Netherlands)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-01-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated t

  13. Effect of no-flow in the Lower Yellow River on groundwater formation and usage in areas along the banks

    Institute of Scientific and Technical Information of China (English)

    Jianfeng CAO; Xueyan YE; Kaijun WANG; Jiyi JIANG

    2008-01-01

    Frequent flow cutoff has a serious effect on the eco-environment of the region along the Lower Yellow River. The authors study the impact on lateral seepage quantity and groundwater cycling caused by cutoff of the Yellow River and compare it with that of the year 1999 through the numerical simulation model of ground-water flow system of the affected zone. The lateral seepage quantity decreased 53.8% on flow cutoff stage from Huayuankou to the river entrance and breaking time of 300 d. The lateral seepage quantity will decrease 46.3% if flow cutoff is from Jiahetan to the river entrance and breaking time is 300 d, and it will decrease 75.2% if flow cutoff occurs throughout the year. The lateral seepage quantity will decrease 19.8% if flow cutoff is from Luokou to the river entrance and breaking time is 300 d, and it will decrease 25.1% if flow cutoff occurs throughout the year. The lateral seepage quantity will decrease 4.7% if flow cutoff is from Lijin to the river entrance and flow cutoff occurs throughout the year. Flow cutoff of the Yellow River has a minor effect on the shape of ground-water flow domain of the affected zone. Thus, the bound-ary condition of the shallow groundwater system will not change. Although flow cutoffhas a major influence on the riverside source fields in the Lower Yellow River, it will not have a significant effect on groundwater resources macroscopically in the affected zone of the Yellow River due to its large storage capacity.

  14. Implication of Groundwater Resources Utilization in Mountainous Region for Slopeland Disaster Prevention

    Science.gov (United States)

    Huang, Chi-Chao; Hsu, Shih-Meng; Lo, Hung-Chieh

    2016-04-01

    In recent years, groundwater resources from mountainous regions have been considered as an alternative water resource in Taiwan. According to previous research outcomes (Hsu, 2011), such a groundwater resource is capable of providing stable and high quality water resources. Additionally, another advantage of using the water resources is attributed to the contribution of slopeland disaster prevention. While pumping groundwater as water resources in hilly areas (e.g., at landslide-prone sites), pore-water pressures can be dropped, which can result in stabilizing landslide-prone slopes. However, the benefit to slope stability by using groundwater resources needs to be quantified. The purpose of this study is to investigate groundwater potential of a deep-seated landslide site first, and then to evaluate variations of slope stability by changing well pumping rate conditions. In this paper, the Baolong landslide site located at the Jiasian district of Kaohsiung city in Southern Taiwan has been selected as a case study. Hydrogeological investigation for the landslide site was conducted to clarify the complexity of field characteristics and to establish a precise conceptual model for simulation. The investigation content includes surficial geology investigation, borehole drilling (6 drilling boreholes and 350 meters drilling length in total), 45 m pumping well construction, borehole hydrogeological tests (borehole televiewer, caliper, borehole electrical logging, sonic logging, flowmeter measurement, pumping test, and double packer test), and laboratory tests from rock core samples (physical properties test of soil and rocks, triaxial permeability test of soil, porosity determination test using helium, and gas permeability test). Based on the aforementioned investigation results, a hydrogeological conceptual model for the Baolong landslide site was constructed, and a 2D slope stability model coupled with transient seepage flow model was used for numerical simulation to

  15. Wireless MSEB Meter Reading Vehicle

    Directory of Open Access Journals (Sweden)

    Pooja U.Shinde

    2014-04-01

    Full Text Available The electricity is very essential in day to day life. Most of industries are running with electricity. In commercial areas also electricity plays very vital role and hence electricity is backbone of any developing nation. To measure the consumed electricity and generate Electricity bill, the energy meters are provided to each and every consumer. This project is use to take meter reading wirelessly by using transceiver which provides accuracy and speed in MSEB meter reading. In this work, Micro controller plays the main role. This circuit contains the LCD, RF transmitter, RF receiver, Energy meter, switch, RS 232 etc. This project uses one Microcontroller, LCD, RF transceiver module, energy meter and relay for connecting load. Meter reading is the technology of automatically collecting data from energy meter and transferring that data to a central database for billing and/or analyzing. This saves employee trips and means that billing can be based on actual consumption rather than on an estimate based on previous consumption, giving customers better control of their use of electric energy. The Transmitter is connected to the meter and it counts the pulses from it and displays it over the LCD. It transmits the data over radio frequency. This network technology overcome all the difficulties of earlier billing system and become more advantageous and accurate.

  16. Acoustic Ground-Impedance Meter

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  17. Review of research on characteristics of seepage-induced consolidation of soil under negative-pressure reinforcement conditions%负压条件下土体渗流固结特性研究综述

    Institute of Scientific and Technical Information of China (English)

    李平; 金奕潼; 赖建英; 刘伟

    2016-01-01

    This paper presents a review of literature related to project failures, variations of groundwater level, seepage characteristics of soil bodies, and mechanisms of seepage-induced consolidation during the reinforcement process under vacuum negative pressures. Although the seepage-induced vacuum consolidation method has been widely applied, theoretical study of the method lags far behind its practical application and still involves some disputes. Some key issues for future research regarding the method are presented, including new technology for measurement of groundwater levels under negative pressures, mechanisms of seepage-induced consolidation of soil, the effective transmission range of the vacuum degree, and the variation regularity of the zero-pressure surface.%针对真空负压加固过程中引起的工程破坏、地下水位变化规律、土体渗流特性、渗流固结机理等问题进行了分析,发现这种方法虽已得到广泛的应用,但其理论研究远落后于工程实践,并存在很多争议。指出今后需要研究的关键工作,如负压状态下地下水位测试新技术、土体渗流固结作用机理、真空度有效传递范围、“0”压面变化规律等。

  18. Use of major ions to evaluate the hydrogeochemistry of groundwater influenced by reclamation and seawater intrusion, West Nile Delta, Egypt.

    Science.gov (United States)

    Salem, Zenhom El-Said; Osman, Osman M

    2017-02-01

    The aim of this research is to evaluate the groundwater geochemistry in western Nile Delta area as an example of an aquifer influenced by reclamation and seawater intrusion. To conduct this study, 63 groundwater samples and one surface water sample from El Nubaria Canal were collected. To estimate the origin of dissolved ions and the geochemical processes influencing this groundwater, integration between land use change, pedological, hydrogeological, hydrogeochemical, and statistical approaches was considered. Results suggest that the groundwater flow regime changed from northeast and southwest directions around El Nubaria canal before 1966 to northern and northeastern directions due to newly constructed channel network. Soil salinity and mineral contents, seepage from irrigation canal, and seawater intrusion are the main factors controlling the groundwater chemistry. Statistically, the groundwater samples were classified into eight groups, one to four for the deep groundwater and five to eight for the shallow groundwater. The deep groundwater is characterized by two groups of chemicals (SO4-HCO3-Mg-Ca-K and Cl-Na), while the shallow groundwater groups of chemicals are Na-Cl-SO4 and K-HCO3-Ca-Mg. Both shallow groundwater and deep groundwater are mostly saturated with respect to carbonate minerals and undersaturated with respect to chloride minerals. Sulfate minerals are above the saturation limit in the shallow groundwater, but in the deep samples, these minerals are under the saturation limit. Ion exchange, carbonate production, mineral precipitation, and seawater intrusion are the geochemical processes governing the groundwater chemistry in the study area.

  19. Time-Dependent Sediment Transport Subjected to Downward Seepage

    Institute of Scientific and Technical Information of China (English)

    刘小谢; 赵以明; 白玉川

    2014-01-01

    Experiments were conducted using cohesionless sand particles with median diameter of 0.48 mm to inves-tigate the time variation of sediment transport rate under the influence of local downward seepage. The experimental results show that the bedload transport rate in terms of volumetric sediment transport rate per unit width increased rapidly with time in the presence of suction, eventually reaching a peak beyond which it started to decrease. The trend of reduction was significantly reduced beyond 8 400 s after the test started. The analytical expression was derived in terms of dimensionless sediment transport rate and dimensionless time. The hypothesized relationships were compared with the experimental data, indicating a good agreement with each other.

  20. Savannah River Laboratory Seepage Basins: Waste site assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Looney, B.B.; Nichols, R.L.

    1989-09-05

    This Waste Site Assessment for the SRL Seepage Basins is the second in a series of documents being prepared to support development of an appropriate closure plan for these basins. The closure of these basins will be designed to provide protection to human health and the environment and to meet the provisions of the Consent Decree. A Technical Data Summary for these basins has already been submitted as part of the Consent Decree. This Site Assessment Report includes a waste site characterization, and a discussion of closure options for the basins. A closure option is recommended in this report, but details of the recommended closure are not provided in this report since they will be provided in a subsequent closure plan. The closure plan is the third document required under the Consent Decree. 18 refs., 16 figs., 10 tabs.

  1. Final technology report for D-Area oil seepage basin bioventing optimization test, environmental restoration support

    Energy Technology Data Exchange (ETDEWEB)

    Radway, J.C.; Lombard, K.H.; Hazen, T.C.

    1997-01-24

    One method proposed for the cleanup of the D-Area Oil Seepage Basin was in situ bioremediation (bioventing), involving the introduction of air and gaseous nutrients to stimulate contaminant degradation by naturally occurring microorganisms. To test the feasibility of this approach, a bioventing system was installed at the site for use in optimization testing by the Environmental Biotechnology Section of the Savannah River Technology Center. During the interim action, two horizontal wells for a bioventing remediation system were installed eight feet below average basin grade. Nine piezometers were also installed. In September of 1996, a generator, regenerative blower, gas cylinder station, and associated piping and nutrient injection equipment were installed at the site and testing was begun. After baseline characterization of microbial activity and contaminant degradation at the site was completed, four injection campaigns were carried out. These consisted of (1) air alone, (2) air plus triethylphosphate (TEP), (3) air plus nitrous oxide, and (4) air plus methane. This report describes results of these tests, together with conclusions and recommendations for further remediation of the site. Natural biodegradation rates are high. Oxygen, carbon dioxide, and methane levels in soil gas indicate substantial levels of baseline microbial activity. Oxygen is used by indigenous microbes for biodegradation of organics via respiration and hence is depleted in the soil gas and water from areas with high contamination. Carbon dioxide is elevated in contaminated areas. High concentrations of methane, which is produced by microbes via fermentation once the oxygen has been depleted, are found at the most contaminated areas of this site. Groundwater measurements also indicated that substantial levels of natural contaminant biodegradation occurred prior to air injection.

  2. Heterogeneous seepage at the Nopal I natural analogue site, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick F.; Cook, Paul J.; Ghezzehei, Teamrat A.; Rodriguez, J. Alfredo; Villalba, Lourdes; de la Garza, Rodrigo

    2008-10-25

    An integrated field, laboratory, and modeling study of the Pena Blanca (Chihuahua, Mexico) natural analogue site is being conducted to evaluate processes that control the mobilization and transport of radionuclides from a uranium ore deposit. One component of this study is an evaluation of the potential for radionuclide transport through the unsaturated zone (UZ) via a seepage study in an adit at the Nopal I uranium mine, excavated 10 m below a mined level surface. Seasonal rainfall on the exposed level surface infiltrates into the fractured rhyolitic ash-flow tuff and seeps into the adit. An instrumented seepage collection system and local automated weather station permit direct correlation between local precipitation events and seepage within the Nopal I +00 adit. Monitoring of seepage within the adit between April 2005 and December 2006 indicates that seepage is highly heterogeneous with respect to time, location, and quantity. Within the back adit area, a few zones where large volumes of water have been collected are linked to fast flow path fractures (0-4 h transit times) presumably associated with focused flow. In most locations, however, there is a 1-6 month time lag between major precipitation events and seepage within the adit, with longer residence times observed for the front adit area. Seepage data obtained from this study will be used to provide input to flow and transport models being developed for the Nopal I hydrogeologic system.

  3. Seepage laws of two kinds of disastrous gas in complete stress-strain process of coal

    Institute of Scientific and Technical Information of China (English)

    Cao Shugang; Guo Ping; Zhang Zunguo; Li Yi; Wang Yong

    2011-01-01

    The similarities and differences in seepage flow evolution laws of CH4 and CO2 during complete stressstrain process of samples were comparatively analyzed.The results show that the seepage flow evolution laws of CH4 and CO2 are extremely similar during the stress-strain process,showing that the characteristic first decreased and then increased.A mathematical model was also established according to the relationship of seepage velocity and axial strain.However,due to the strong adsorption ability of CO2,the coal samples generated a more serious “Klinkenberg effect” under the condition of CO2.Owing to this,the CO2 seepage flow resulted into occurrence of “stagnation” phenomenon during the late linear elastic stage Ⅱ.In the strain consolidation stage Ⅲ,the increment rate of CH4 seepage velocity was significantly greater than that of CO2.In the stress descent stage Ⅳ,when the axial load reached the peak pressure of coal,the increment rates of CH4 seepage velocity presented a turning point.But the changing rate of CO2 seepage velocity still remained slow and a turning point was presented at one time after the peak of the strain pressure,which showed an obvious feature of hysteresis.

  4. A new Arctic seepage site? Preliminary evidence from benthic community

    Science.gov (United States)

    Caridi, Francesca; Sabbatini, Anna; Morigi, Caterina; Giulia Lucchi, Renata

    2017-04-01

    The Kveithola Trough is an abrupt and narrow sedimentary system located in the NW Barents Sea. The hydrographic, bio-geochemical conditions and the possible existence of gas seepage activity of the area have been investigated during the Eurofleets 2- BURSTER cruise, conducted on board the German icebreaker RV Polarstern. The aim of our work is to characterize the benthic biota and more specifically the macrofaunal community structure coupled to the study of benthic foraminiferal meiofauna. Preliminary qualitative results revealed that in the inner Kveithola Trough, the macrofaunal community is composed by abundant black worm tubes (Chaetopteridae worms and Siboglinidae-like taxa) with presence of Thyasiridae bivalve species. The occurrence of these macrofaunal taxa is usually associated to oxygen-reduced environments, hydrothermal vents and cold seeps. The living benthic foraminiferal assemblage in the same stations is characterized by the presence of typically oxygen-depleted environmental taxa including the calcareous species Nonionellina labradorica and Globobulimina spp.. Conversely, in the outer Kveithola trough, both benthic macrofauna and foraminiferal meiofauna assemblages are characterized by less opportunistic taxa with a higher biodiversity suggesting very distinct oceanographic sea bottom conditions. The organic matter richness plays a large role in the Kveithola Trough environmental setting and may bring anoxic conditions that could affect the biota of the area. In fact, the benthic community structure of this area inhabits suboxic, anoxic and organic-enriched sediments and disturbed environments, forming assemblages with low diversity and high abundances of a few tolerant and/or specialized species. This preliminary finding could be consistent with other studies examining benthic community structure around Svalbard and in particular cold seep and vents habitats where faunal characteristics are patchy, suggesting small-scale heterogeneity in the

  5. Probability distribution functions of turbulence in seepage-affected alluvial channel

    Science.gov (United States)

    Sharma, Anurag; Kumar, Bimlesh

    2017-02-01

    The present experimental study is carried out on the probability distribution functions (PDFs) of turbulent flow characteristics within near-bed-surface and away-from-bed surfaces for both no seepage and seepage flow. Laboratory experiments were conducted in the plane sand bed for no seepage (NS), 10% seepage (10%S) and 15% seepage (15%) cases. The experimental calculation of the PDFs of turbulent parameters such as Reynolds shear stress, velocity fluctuations, and bursting events is compared with theoretical expression obtained by Gram-Charlier (GC)-based exponential distribution. Experimental observations follow the computed PDF distributions for both no seepage and seepage cases. Jensen-Shannon divergence (JSD) method is used to measure the similarity between theoretical and experimental PDFs. The value of JSD for PDFs of velocity fluctuation lies between 0.0005 to 0.003 while the JSD value for PDFs of Reynolds shear stress varies between 0.001 to 0.006. Even with the application of seepage, the PDF distribution of bursting events, sweeps and ejections are well characterized by the exponential distribution of the GC series, except that a slight deflection of inward and outward interactions is observed which may be due to weaker events. The value of JSD for outward and inward interactions ranges from 0.0013 to 0.032, while the JSD value for sweep and ejection events varies between 0.0001 to 0.0025. The theoretical expression for the PDF of turbulent intensity is developed in the present study, which agrees well with the experimental observations and JSD lies between 0.007 and 0.015. The work presented is potentially applicable to the probability distribution of mobile-bed sediments in seepage-affected alluvial channels typically characterized by the various turbulent parameters. The purpose of PDF estimation from experimental data is that it provides a complete numerical description in the areas of turbulent flow either at a single or finite number of points.

  6. Scour Downstream of Grade Control Structures under the Influence of Upward Seepage

    Science.gov (United States)

    Shafai-Bejestan, Mahmood; Nabavi, Seyed Mojtaba Razavi; Dey, Subhasish

    2016-06-01

    The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D'Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.

  7. Smart Metering System for Microgrids

    DEFF Research Database (Denmark)

    Palacios-Garcia, Emilio; Guan, Yajuan; Savaghebi, Mehdi

    2015-01-01

    Smart meters are the cornerstone in the new conception of the electrical network or Smart Grid (SG), providing detailed information about users' energy consumption and allowing the suppliers to remotely collect data for billing. Nevertheless, their features are not only useful for the energy...... will expose an example of Smart Meters integration in a Microgrid scenario, which is the Intelligent Microgrid Lab of Aalborg University (AAU). To do this, first the installation available in the Microgrid Lab will be introduced. Then, three different test scenarios and their respective results...... will be presented, regarding the capabilities of this system and the advantages of integration the Smart Meters information in the Microgrid control....

  8. The Portable Metal Detecting Meter

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using backscatter principle of ray, one kind of the portable metal detecting meters, which comprises five parts, i.e., a ray-emitter, a ray acceptor, discriminating and forming pulse circuits, storing and processing data units, a light and sound alarm device, and a power supply, had been invented. It can judge existence of danger articles as weapons and daggers hided inside luggages, pracels, or clothing of passengers or persons without opening packing. The detecting distance between the meter and danger objects, at present, is about one meter, but can be extended adopting improvement for key parts. For comparison, up to now, in the whole world, known information

  9. Determining seepage water velocity by means of lysimeters; Bestimmung der Sickerwassergeschwindigkeit in Lysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D.; Seiler, K.P.

    1999-02-01

    The processes in the water-unsaturated zone have in the past received too little attention from hydrogeologists and their study by pedologists has been patchy. It is only recently that studies have been published, with for some part very diverse scientific approaches, which consider the water-unsaturated zone and the soil as a whole. There are small-scale and large-scale hydraulic approaches, hydraulic and first tracer-hydrological approaches. This poses the problem of how to transfer results obtained locally to larger spaces. Moreover, the homogeneity of substrates has been found to be such that hydraulic and tracer-hydrological approaches are unproblematic at the large scale, while at the small scale their results can only be interpreted with certain reservations. For example, this has led to findings of steady groundwater recharge at a large scale which contrast with findings at a smaller scale of a separation into highly variable matrix and bypass flows or into groundwater recharge and intermediate outflows. Studies at different levels of scale consequently bear different implications for material transport within and material export from specific landscape sections to underground or aboveground neighbouring compartments. The purpose of the present workshop on seepage water movement is to contribute to the establishment of facts on this issue, identify deficits, and stimulate future cooperation. [Deutsch] Die Prozesse in der wasserungesaettigten Zone wurden in der Vergangenheit zu wenig durch die Hydrogeologie und nur ausschnittsweise von der Pedologie betrachtet. Erst in neuerer Zeit mehren sich Arbeit, die die wasserungesaettigte Zone einschliesslich des Bodens integral betrachten, wobei die wissenschaftlichen Ansaetze z.T. sehr verschieden sind. Es gibt - klein- und grossskalige hydraulische Ansaetze, - hydraulische und erste tracerhydrologische Ansaetze und daraus erwaechst das Problem der Ueberleitung lokaler Ergebnisse auf groessere Raeume. Darueber

  10. Ecohydrological Investigations of a Groundwater-Lake System

    DEFF Research Database (Denmark)

    Frandsen, Mette Cristine Schou

    I). •Does dense bottom vegetation affect the small scale hydrology of the lake bed sediment? (Paper 2). •How can natural tracers (δ 18O) be used to quantify the temporal variation in groundwater seepage dynamics? (Paper 3). •Is it possible to combine ecological data of surface water chemistry...... and data on groundwater chemistry to stoichiometrically describe changes in the lake in a historical time frame? (Paper 4). he main conclusions from the study are: •When evaluating the ecology of a groundwater-lake system, both hydrological and biological parameters are needed to accurately describe...... by this. The reasons for the lowered hydraulic conductivity seems to be an combination of the organic content in the sediment (i.e. the roots of the plants) and a vegetation induced entrapment of fine particles in the sediment. Over the course of three years I followed the small scale variation...

  11. The One-Meter Dash

    Science.gov (United States)

    Brooks, Mattie J.

    1977-01-01

    A game for two teams employs dice, meter sticks, and Cuisenaire rods. The game gives practice in number facts, regrouping, and use of rods; it can also serve as an introduction to the metric system. (SD)

  12. Healthcare Energy Metering Guidance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  13. The Savonius Water Current Meter

    Science.gov (United States)

    1960-11-03

    the author visited the David Taylor Model Basin for the purpose of calibrating five (5) Savonius water current ,meter rotors in the range of .1 to 1...Iastitution of Oceanography. Figure 1 is a block diagram of the water current meter and its associated equipment. The details of the Savonius rotor are...an amplifier. The Savonius rotor functions as a salt water switch which varies the r-. coupling of the transformer thus it awplitude modulates the 100

  14. Effect of sea-level rise and climate change on groundwater salinity and agro-hydrology in a low coastal region of the Netherlands

    NARCIS (Netherlands)

    Stuyt, L.C.P.M.; Kabat, P.; Postma, J.; Pomper, A.B.

    1995-01-01

    Scenario studies were carried out to predict the effects of doubled carbon dioxide levels, a 1 °C temperature increase and a 1.2 m sea level rise on seepage, groundwater and crop production. Climatic change was simulated, showing increased precipitation. Simulation of effects of sea level rise on

  15. Incorporating seepage losses into a 1D unsteady model of floods in ...

    African Journals Online (AJOL)

    2015-07-04

    Joseph et al., 2004): (i) runoff volume and velocity; (ii) channel geometry; (iii) ... of seepage on different turbulent characteristics for an open channel flow. ..... Comparison of flow profiles calculated by present model with MIKE 11.

  16. NUMERICAL ANALYSIS OF SATURATED-UNSATURATED SEEPAGE FLOW IN FRACTURED ROCK MASS DUE TO SURFACE INFILTRATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Seepage flow in fractured rock mass due to surface infiltration is a saturated-unsaturated seepage process. Aimed at rock mass with large fracture density, which can be equivalent to continuum, a mathematical model for saturated-unsaturated seepage flow in fractured rock mass due to surface infiltration was established in this paper. The Galerkin finite element method was used in numerical simulation and a finite element program used to calculate saturated-unsaturated seepage flow due to surface infiltration was worked out. A model experiment was employed examine the reasonableness of the program. The results show that the proposed model and program are reasonable. The application of the analysis method in this paper in an engineering project shows that the method is reliable and feasible.

  17. Is Terzaghi’s effective stress a stress variable under seepage conditions?

    Institute of Scientific and Technical Information of China (English)

    雷国辉; 赵仲辉; 吴宏伟

    2015-01-01

    From the continuum mechanics perspective, an attempt was made to clarify the role of Terzaghi’s effective stress in the theoretical analysis of saturated soil subjected to seepage. The necessity of performing a coupled hydromechanical analysis to solve the seepage−deformation interaction problem was illustrated by examining the equations of static equilibrium among the effective stress, seepage force, pore-water pressure and total stress. The conceptual definition of stress variable that satisfies the principles of continuum mechanics is applied in the coupled hydromechanical analysis. It is shown that Terzaghi’s effective stress is in fact not a stress variable under seepage conditions, and the seepage force acting on the soil skeleton cannot be viewed as a body force. This offers a clue to the underlying cause of a paradox between the real Pascal’s hydrostatic state and the hydrostatic state predicted by a class of continuum hydromechanical theories.

  18. Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements

    Science.gov (United States)

    Stieglitz, Thomas; Rapaglia, John; Bokuniewicz, Henry

    2008-08-01

    The utility of bulk ground conductivity (BGC) measurements in the estimation of submarine groundwater discharge (SGD) was investigated at four sites covering a range of hydrogeological settings, namely Cockburn Sound (Australia); Shelter Island (USA); Ubatuba Bay (Brazil) and Flic-en-Flac Bay (Mauritius). At each of the sites, BGC was surveyed in the intertidal zone, and seepage meters were used for direct measurements of SGD flow rates. In the presence of detectable salinity gradients in the sediment, a negative correlation between SGD and BGC was recorded. The correlation is site-specific and is dependent on both the type of sediment and the mixing processes. For example, at Shelter Island the maximum mean flow rates were 65 cm d-1 at a BGC of ˜0 mS cm-1 while at Mauritius maximum mean flow rates were 364 cm d-1 at a BGC of ˜0 mS cm-1. BGC measurements are used to estimate SGD over a large scale, and to separate its fresh and saline components. Extrapolating BGC measurements throughout the study sites yields a total discharge of 2.91, 1.59, 7.16, and 25.4 103 m3 d-1 km-1 of shoreline with a freshwater fraction of 41, 24, 29, and 63% at Cockburn Sound, Shelter Island, Ubatuba Bay, and Flic-en-Flac Bay respectively. The results demonstrate that ground conductivity is a useful tracer to survey and separate freshwater and recirculated seawater component of SGD. The presented investigation is a subset within a series of experiments designed to compare different methods to investigate SGD co-organized and carried out by SCOR, LOICZ, IOC and IAEA.

  19. A new method for mapping variability in vertical seepage flux in streambeds

    Science.gov (United States)

    Chen, Xunhong; Song, Jinxi; Cheng, Cheng; Wang, Deming; Lackey, Susan O.

    2009-05-01

    A two-step approach was used to measure the flux across the water-sediment interface in river channels. A hollow tube was pressed into the streambed and an in situ sediment column of the streambed was created inside the tube. The hydraulic gradient between the two ends of the sediment column was measured. The vertical hydraulic conductivity of the sediment column was determined using a falling-head permeameter test in the river. Given the availability of the hydraulic gradient and vertical hydraulic conductivity of the streambed, Darcy’s law was used to calculate the specific discharge. This approach was applied to the Elkhorn River and one tributary in northeastern Nebraska, USA. The results suggest that the magnitude of the vertical flux varied greatly within a short distance. Furthermore, the flux can change direction from downward to upward between two locations only several meters apart. This spatial pattern of variation probably represents the inflow and outflow within the hyporheic zone, not the regional ambient flow systems. In this study, a thermal infrared camera was also used to detect the discharge locations of groundwater in the streambed. After the hydraulic gradient and the vertical hydraulic conductivity were estimated from the groundwater spring, the discharge rate was calculated.

  20. Calcareous forest seepages acting as biodiversity hotspots and refugia for woodland snail faunas

    Science.gov (United States)

    Horsák, Michal; Tajovská, Eva; Horsáková, Veronika

    2017-07-01

    Land-snail species richness has repeatedly been found to increase with the increasing site calcium content and humidity. These two factors, reported as the main drivers of land-snail assemblage diversity, are also among the main habitat characteristics of calcareous seepages. Here we explore local species richness and compositional variation of forest spring-fed patches (i.e. seepages), to test the hypothesis that these habitats might act as biodiversity hotspots and refugia of regional snail faunas. In contrast to treeless spring fens, only little is known about land snail faunas inhabiting forest seepages. Studying 25 isolated calcareous forest seepages, evenly distributed across the White Carpathians Protected Landscape Area (SE Czech Republic), we found that these sites, albeit spatially very limited, can harbour up to 66% of the shelled land-snail species known to occur in this well-explored protected area (in total 83 species). By comparing land snail assemblages of the studied seepages with those occurring in the woodland surroundings of each site as well as those previously sampled in 28 preserved forest sites within the study area, we found the seepages to be among the most species rich sites. Although the numbers of species did not statistically differ among these three systems, we found highly significant differences in species composition. Seepage faunas were composed of many species significantly associated with spring sites, in contrast to the assemblages of both surrounding and preserved forest sites. Our results highly support the hypothesis that calcareous forest seepages might serve as refugia and biodiversity hotspots of regional land snail faunas. Protection of these unique habitats challenges both conservation plans and forest management guidelines as they might act as sources for the recolonization and restoration of forest snail assemblages particularly in areas impoverished by harvesting and clearcutting.

  1. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  2. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Sonnenthale

    2001-04-16

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation

  3. Methane gas seepage - Disregard of significant water column filter processes?

    Science.gov (United States)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  4. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data

  5. Near-surface electromagnetic, rock magnetic, and geochemical fingerprinting of submarine freshwater seepage at Eckernförde Bay (SW Baltic Sea)

    Science.gov (United States)

    Müller, Hendrik; von Dobeneck, Tilo; Nehmiz, Wiebke; Hamer, Kay

    2011-04-01

    Submarine groundwater discharge in coastal settings can massively modify the hydraulic and geochemical conditions of the seafloor. Resulting local anomalies in the morphology and physical properties of surface sediments are usually explored with seismo-acoustic imaging techniques. Controlled source electromagnetic imaging offers an innovative dual approach to seep characterization by its ability to detect pore-water electrical conductivity, hence salinity, as well as sediment magnetic susceptibility, hence preservation or diagenetic alteration of iron oxides. The newly developed electromagnetic (EM) profiler Neridis II successfully realized this concept for a first time with a high-resolution survey of freshwater seeps in Eckernförde Bay (SW Baltic Sea). We demonstrate that EM profiling, complemented and validated by acoustic as well as sample-based rock magnetic and geochemical methods, can create a crisp and revealing fingerprint image of freshwater seepage and related reductive alteration of near-surface sediments. Our findings imply that (1) freshwater penetrates the pore space of Holocene mud sediments by both diffuse and focused advection, (2) pockmarks are marked by focused freshwater seepage, underlying sand highs, reduced mud thickness, higher porosity, fining of grain size, and anoxic conditions, (3) depletion of Fe oxides, especially magnetite, is more pervasive within pockmarks due to higher concentrations of organic and sulfidic reaction partners, and (4) freshwater advection reduces sediment magnetic susceptibility by a combination of pore-water injection (dilution) and magnetite reduction (depletion). The conductivity vs. susceptibility biplot resolves subtle lateral litho- and hydrofacies variations.

  6. Determination of Seepage and Analysis of Earth Dams (Case Study: Karkheh Dam

    Directory of Open Access Journals (Sweden)

    A. Kamanbedast

    2011-01-01

    Full Text Available Because of the increasing trend of building dam throughout Iran; it is necessary to optimize dam buildings and operations. Dam or Hydropower industry has two types of buildings; normally: (1 Concrete dams (2 Embankment (earth dams. Generally, scientists and engineers use different methods to enhance safety and decrease any errors in calculation due to maintenance of water storage especially hydro structure of the dam. It is necessary to investigate the dam seepage control; commonly used by several methods. Seepage is one of the important issues for design, build and maintenance of dams awareness. Seepage problem and its rules helps scientist to select a suitable method of monitoring and solving such problem. These methods of analysis were carried out at civil and construction project. In this study, one of latest method of investigation of seepage behavior were analytically evaluated and compared with the actual rules. Based on determine results; several suggestions and optimization method were suggested. Therefore, an optimum method was scientifically selected. Besides that, flow condition of porous environment with application of numeric program was analyzed. Finally, all the results were lunched out from seep/w soft which is the most significant program about this matter; use of finite elements method is specified for saturated and unsaturated environment. Thus; leakage and seepage were defined as function of (time and position. Subsequently, the best seepage solutions for the dam constructing were scientifically identified.

  7. THE SEEPAGE CHARACTERISTICS OF HETEROGENEOUS BODY WITH DIFFERENT SPREADING SOLUTION MODES AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the dump was a typically heterogeneous body, the seepage was different with varied spreading solution modes. The phenomenon of lamination that occurred in the site was simulated using three layers in an indoor experiment, and the seepage effect comparison experiment of the inside spreading solution model and the top spreading solution model have been carried out. In the inside spreading solution mode, the phreatic planar flew without infiltration and the parallel layer motion model was used to calculate the seepage coefficient and equivalent seepage coefficient of each state respectively. In the top spreading solution model, the phreatic planar flew with an even infiltration on the surface, and the vertical layer motion model was adopted to calculate the above coefficient.The results showed that the seepage coefficient of the inside model was larger than the top model in the heterogeneous body, The ratio of them was between 1.42 and 3.07. On the basis of these results,the following new technologies were discussed: installing a few small diameter mechanical pore sand piles with every lamination in the using dump; drilling some holes one-off in the unused dump.These two methods could changed the top spreading solution into the inside model, thus the seepage in the dump was improved.

  8. Modeling research on the response of geoelectric fields in a porous media seepage process

    Science.gov (United States)

    Zhou, Haitao; Gong, Xulong; Sun, Qiang; Yao, Yahui; Zhang, Rui

    2017-03-01

    Water seepage in rock and soil is a main inducing factor of accidents in many engineering fields such as tunnel engineering, mineral resource exploitation, and rock slopes. Water migration in rock and soil can lead to abnormal geoelectric fields due to the effects of diffusion, adsorption, filtration, and oxidation. This makes it possible to research the seepage law in porous media by measuring the response of geoelectric fields in this process. In this work, we carry out a physical simulation experiment to study the geoelectric field response occurring in the water-migration process. By analyzing the response of first electric potential, spontaneous potentials, and exciting current, we find that both the spontaneous potential and exciting current can reflect the change of seepage flow during the water-infiltration process. The exciting current and first electric potential is applicable to the seepage research on heterogeneous rock and soil, for they can accurately determine the position and velocity of the seepage. Real-time apparent resistivity not only indicates the infiltration area but also reflects the relative water content, i.e., the seepage reached saturation along with the reduction of the apparent resistivity.

  9. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, N.; Godt, J.

    2008-01-01

    [1] We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework. Copyright 2008 by the American Geophysical Union.

  10. Hydrocarbon Seepage during the Boreal Base Cretaceous Hot Shale Event

    Science.gov (United States)

    Hammer, Ø.; Hryniewicz, K.; Nakrem, H. A.; Little, C.

    2014-12-01

    We have identified a number of carbonate bodies interpreted as seep-related from near the Jurassic-Cretaceous boundary in Svalbard, arctic Norway. The paleoseeps discovered so far occur over 50 km along strike, representing a seepage field of considerable extent. Ammonites indicate a base Cretaceous (Late Volgian to Late Ryazanian) age. The carbonate bodies are highly fossiliferous, with a very diverse fauna consisting mainly of normal-marine species but also seep-restricted taxa. Carbonate d13C isotopes reach -46‰, which, considering mixture with seawater-derived carbon, is interpreted as indicating a biogenic methane source. It is of interest to note the correlation of this paleoseepage with an episode of extremely high burial of organic matter near the Jurassic-Cretaceous boundary, noted both in Svalbard (top Slottsmøya Member of the Agardhfjellet Formation), in the Barents Sea (Hekkingen Formation) and in the North Sea (Mandal Formation), possibly providing a shallow source for biogenic gas. Together with near contemporaneous events in the Boreal Realm such as ongoing rifting, the base Cretaceous unconformity, the Mjølnir meteorite impact and a possible minor extinction event, these finds contribute to the impression of the Jurassic-Cretaceous boundary as a highly dynamic and interesting time in the North Atlantic area.

  11. Arduino based radiation survey meter

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee [Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Muzakkir, Amir [Sinaran Utama Teknologi Sdn Bhd, 43650, Bandar Baru Bangi, Selangor (Malaysia)

    2016-01-22

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  12. Arduino based radiation survey meter

    Science.gov (United States)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  13. Metering in the gas supply sector; Metering in der Gasversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wernekinck, U. [RWE Westfalen-Weser-Ems, Recklinghausen (Germany)

    2007-10-15

    The new conditions of competition in the gas supply sector have strongly increased the requirements on gas grid operators. Mainly an exact gas metering and -accouting will become more and more important. The systems and procedures are presented in detail in this contribution. (GL)

  14. Development of monitoring techniques for potential seepage of CO2 from sub-seafloor storage sites: Field studies at Sleipner, North Sea

    Science.gov (United States)

    James, R. H.; Connelly, D. P.; Bull, J. M.; Lichtschlag, A.; Cevatoglu, M.; Le Bas, T.; Wright, I. C.

    2012-12-01

    Although CO2 has been stored at the Sleipner site in the North Sea for over 15 years, and a number of other sub-seafloor storage sites are now either in operation or planned, almost nothing is known about the effect of potential seepage on marine ecosystems. To address this, we will undertake a comprehensive field campaign to Sleipner (RRS James Cook Cruise 77) in September 2012 that aims to: (i) Constrain the potential pathways of seepage from the storage site. (ii) Test methods for the detection of seepage, including formation fluids, natural gas and CO2, as it passes through the sedimentary overburden and into the water column. (iii) Develop a monitoring strategy suitable for all offshore carbon capture and storage projects. To this end, we will conduct an extensive AUV survey in the vicinity of the sub-seafloor CO2 plume, using our novel, long-range AUTOSUB system. AUTOSUB will be equipped with a variety of instrumentation, including sidescan sonar and an EM2000 multibeam systems, as well as a CHIRP profiler capable of inspecting the architecture of the sedimentary overburden at unprecedented spatial resolution. Other instrumentation will include a series of sensors (including a pH sensor), to detect and monitor the dispersion of potential seepage, and a new colour camera. Areas of interest, revealed by the AUV surveys, will be inspected and sampled using a hybrid remotely operated vehicle, equipped with high resolution video cameras, a grab sampling device, and instrumentation for the collection of precisely-located water samples. Further water samples will be collected using the ship-based CTD system. Fluid and gas seeps will be sampled using a vibrocoring system, and analyses of the porefluid chemistry will be used to quantify fluxes across the sediment-seawater interface, and the source, transformation, and fate of dissolved constituents. Longer-term monitoring will be addressed by deployment of a seafloor lander, that is equipped with a flow meter, a

  15. Preliminary investigation of the effects of sea-level rise on groundwater levels in New Haven, Connecticut

    Science.gov (United States)

    Bjerklie, David M.; Mullaney, John R.; Stone, Janet R.; Skinner, Brian J.; Ramlow, Matthew A.

    2012-01-01

    Global sea level rose about 0.56 feet (ft) (170 millimeters (mm)) during the 20th century. Since the 1960s, sea level has risen at Bridgeport, Connecticut, about 0.38 ft (115 mm), at a rate of 0.008 ft (2.56 mm + or - 0.58 mm) per year. With regional subsidence, and with predicted global climate change, sea level is expected to continue to rise along the northeast coast of the United States through the 21st century. Increasing sea levels will cause groundwater levels in coastal areas to rise in order to adjust to the new conditions. Some regional climate models predict wetter climate in the northeastern United States under some scenarios. Scenarios for the resulting higher groundwater levels have the potential to inundate underground infrastructure in lowlying coastal cities. New Haven is a coastal city in Connecticut surrounded and bisected by tidally affected waters. Monitoring of water levels in wells in New Haven from August 2009 to July 2010 indicates the complex effects of urban influence on groundwater levels. The response of groundwater levels to recharge and season varied considerably from well to well. Groundwater temperatures varied seasonally, but were warmer than what was typical for Connecticut, and they seem to reflect the influence of the urban setting, including the effects of conduits for underground utilities. Specific conductance was elevated in many of the wells, indicating the influence of urban activities or seawater in Long Island Sound. A preliminary steady-state model of groundwater flow for part of New Haven was constructed using MODFLOW to simulate current groundwater levels (2009-2010) and future groundwater levels based on scenarios with a rise of 3 ft (0.91 meters (m)) in sea level, which is predicted for the end of the 21st century. An additional simulation was run assuming a 3-ft rise in sea level combined with a 12-percent increase in groundwater recharge. The model was constructed from existing hydrogeologic information for the

  16. 石化企业地下污水管道防渗设计%Petrochemical Enterprises Underground Waste Water Pipe Seepage Control Design

    Institute of Scientific and Technical Information of China (English)

    石玉峰

    2015-01-01

    According to the state of groundwater resources pollution prevention and control requirements in recent years, the new petrochemical projects and built devices may produce leakage , and leakage and pollution of underground sewage pipes need to be required to take anti -seepage measures.In order to protect groundwater resources and the experience of engineering , some of the common choice of underground sewage pipeline was briefly introduced , and some of the underground sewage pipeline was chosen , such as the impermeable membrane , the impermeable pipe trench and the impermeable casing.The suitable condition , the merit and the shortcoming of the seepage control and the measure that can be found in time after the pipeline leakage were described.%根据近几年来国家对地下水资源污染防控要求,新建石油化工项目、已建成装置可能产生渗漏、泄漏污染的地下污水管道均需采取防渗措施。为了保护地下水资源,结合工程经验,简单介绍了工程设计中常选择的几种地下污水管道防渗方式,防渗膜、防渗管沟及防渗套管。并叙述了这几种防渗方式的适用条件、优缺点,以及管道发生渗漏后能及时被发现的措施。

  17. Active seepage and water infiltration in Lake Baikal sediments: new thermal data from TTR-Baikal 2014 (Class@Baikal)

    Science.gov (United States)

    Poort, Jeffrey; Khlystov, Oleg M.; Akhmanov, Grigorii G.; Khabuev, Andrei V.; Belousov, Oleg V.

    2015-04-01

    New thermal data from the sediments of Lake Baikal were collected in July 2014 during the first Training-Through-Research cruise on Lake Baikal (Class@Baikal) organized by MGU and LIN. TTR-Baikal is a comprehensive multidisciplinary program to train students on the field on pertinent scientific topics. The cruise program focused on seafloor sampling, acoustic investigations and heat flow measurements of gas seeps, flares, mud volcanoes, slumps and debris flows, canyons and channels in the coastal proximity. The thermal data were acquired using autonomous temperature sensors on a 3 meter long gravity corer that allowed analysis at the same spot of sediments, pore fluids, hydrates and microbiology. A total of eight thermal measurements were performed in five structures located on the lake floor of the Central Baikal Basin at 333-1530 meter water depths: 3 mud volcanoes (Novosibirsk, Unshuy and Krest), 1 seep site (Seep 13), and one fault outcrop in the Selenga transfer zone. All studied structures show signals of active seepage, water infiltration and/or hydrate dynamics. The strongest thermal gradient has been measured in Seep 13, suggesting a strong upflow of warm fluids similar to the Gorevoy Utes seep. At the three mud volcanoes, hydrate presence have been evidenced and both enhanced and reduced thermal gradients have been observed. This is similar to the hydrate-bearing K-2 mud volcano in Baikal (Poort et al., 2012). A strongly reduced thermal gradient was observed in the Krest mud volcano where the presence of oxidized channels at 30-40 cm under the sediment surface indicate an infiltration of cold lake water. The water infiltration process at hydrate bearing seep sites will be discussed and compared with other seep areas in the world.

  18. Direct-reading inductance meter

    Science.gov (United States)

    Kolbly, R. B.

    1977-01-01

    Meter indicates from 30 nH to 3 micro H. Reference inductor of 15 micro H is made by winding 50 turns of Number 26 Formvar wire on Micrometal type 50-2 (or equivalent) core. Circuit eliminates requirement for complex instrument compensation prior to taking coil inductance measurement and thus is as easy to operate as common ohmmeter.

  19. Automated monitoring of milk meters

    NARCIS (Netherlands)

    Mol, de R.M.; Andre, G.

    2009-01-01

    Automated monitoring might be an alternative for periodic checking of electronic milk meters. A computer model based on Dynamic Linear Modelling (DLM) has been developed for this purpose. Two situations are distinguished: more milking stands in the milking parlour and only one milking stand in the m

  20. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Bridger [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  1. The geochemistry characteristic and dating of cold seepage carbonates of the Pearl River Mouth Basin, eastern of South China Sea

    Science.gov (United States)

    Fang, Yunxin; Fu, Shaoying

    2015-04-01

    Cold seepage carbonates are usually formed by the interaction of methane oxidizing archaea, sulfate reducing bacteria and cold seepage which contain abundant venting hydrocarbon gases. The presence of cold seepage carbonates on the seabed is one of the evidences that the area exist venting hydrocarbon gases, which are usually result by the dissociation of gas hydrate. The cold seepage property and fluid flow rate can influence the oxidation-deoxidation environment of the bottom water and sediment. Many previous studies focused on the mineral composition, microstructure, elemental composition, isotope composition of the cold seepage carbonates and isotopic dating for the cold seepage carbonates. The isotopic dating for the cold seepage carbonates can provide the information of the gas hydrate formation and dissociation in some area of the South China Sea. High precision TIMS-U dating and 14C dating are used as routine method for the dating of the Quaternary carbonates and fossils. The cold seepage carbonates in the study include the samples collected by ROV on the seabed and the drilling for gas hydrate in the Pearl River Mouth Basin, eastern of the South China Sea. The authigenic carbonate occurred in different depth in the A, B and C drilling site. They may be represent different events of gas hydrate formation and dissociation in the Quaternary. The dating study for all the cold seepage carbonates can provide the relative accurate eras of the gas hydrate dissociation events in certain area of the South China Sea.

  2. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    Energy Technology Data Exchange (ETDEWEB)

    Alan Giesbrecht

    2014-05-01

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  3. Smart metering. Conformance tests for electricity meters; Smart Metering. Konformitaetstests an Stromzaehlern

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Matthias; Pongratz, Siegfried [VDE Pruef- und Zertifizierungsinstitut, Offenbach (Germany)

    2012-07-01

    Introduction of communication technologies into today's energy network enables the interworking between the domains of smart metering, smart grid, smart home and e-mobility as well as the creation and provisioning of new innovative services such as efficient load adjustment. Due to this convergence the new energy networks are becoming increasingly complex. Ensuring the interworking between all network elements (e.g. electricity meters, gateways) in these smart energy networks is of utmost importance. To this end conformance and interoperability tests have to be defined to ensure that services work as expected. (orig.)

  4. Seepage carbonate mounds in Cenozoic sedimentary sequences from the Las Minas Basin, SE Spain

    Science.gov (United States)

    Pozo, M.; Calvo, J. P.; Scopelliti, G.; González-Acebrón, L.

    2016-04-01

    A number of carbonate mounds composed of indurate, strongly folded and/or brecciated calcite and dolomite beds occur interstratified in Cenozoic sedimentary sequences from the Las Minas Basin. Part of the fabric of the rock forming the carbonate mounds is composed of laminated to banded dolostone similar to the host rock but showing contrasted lithification. Moreover, the carbonate deposits of the mounds display aggrading neomorphism of dolomite, partial replacement of dolomite by calcite, calcite cementation, and extensive silicification, locally resulting in box-work fabric. Eight main lithofacies were distinguished in the carbonate mound deposits. In some lithofacies, chert is present as both microcrystalline to fibro-radial quartz and opal, the latter occurring mainly as cement whereas the former replace the carbonate and infill voids. Yet one of the carbonate mounds shows distinctive petrography and geochemical features thus suggesting a distinctive growth pattern. The carbon isotope compositions of calcite from the mound samples range from - 11.56 to - 5.15 δ‰ whilst dolomite is depleted in 13C, with values of - 12.38 to 3.02 δ‰. Oxygen isotopic compositions vary from - 9.42 to - 4.64 δ‰ for calcite and between - 6.68 and 8.19 δ‰ for dolomite. Carbonate in the mounds shows significant enrichment in Co, Cr, Ni and Pb content, especially in the strongly deformed (F-2-2 lithofacies) and brecciated carbonate (F-4). The carbonate deposits show depletion in REE and Y in contrast to that determined in lutite. The formation of the carbonate mounds was related to local artesian seepage thermal water flows of moderate to relative high temperatures. Pressure differences between the low permeability host rock and the circulating fluids accounted for dilational fracturing and brecciation of the host sediment packages, which combined with precipitation of new carbonate and silica mineral phases. Locally, some carbonate mounds developed where groundwater

  5. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  6. Response of rock-fissure seepage to snowmelt in Mount Taihang slope-catchment, North China.

    Science.gov (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun

    2013-01-01

    The complex physiographic and hydrogeological systems of mountain terrains facilitate intense rock-fissure seepages and multi-functional ecological interactions. As mountain eco-hydrological terrains are the common water sources of river basins across the globe, it is critical to build sufficient understanding into the hydrological processes in this unique ecosystem. This study analyzes infiltration and soil/rock-fissure seepage processes from a 65 mm snowfall/melt in November 2009 in the typical granitic gneiss slope catchment in the Taihang Mountains. The snowfall, snowmelt and melt-water processes are monitored using soil-water time-domain reflectometry (TDR) probes and tipping bucket flowmeters. The results suggest that snowmelt infiltration significantly influences soil/rock water seepage in the 0-100 cm soil depth of the slope-catchment. It is not only air temperature that influences snowmelt, but also snowmelt infiltration and rock-fissure seepage. Diurnal variations in rock-fissure seepage are in close correlation with air temperature (R(2) > 0.7). Temperature also varies with soil/rock water viscosity, which element in turn influences soil/rock water flow. Invariably, water dynamics in the study area is not only a critical water supply element for domestic, industrial and agricultural uses, but also for food security and social stability.

  7. Gas seepage equation of deep mined coal seams and its application

    Institute of Scientific and Technical Information of China (English)

    HU Guo-zhong; WANG Hong-tu; TAN Hai-xiang; FAN Xiao-gang; YUAN Zhi-gang

    2008-01-01

    In order to obtain a gas seepage law of deep mined coal seams, according to the properties of eoalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coalbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accurately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams.

  8. Influence of underground water seepage flow on surrounding rock deformation of multi-arch tunnel

    Institute of Scientific and Technical Information of China (English)

    LI Xi-bing; ZHANG Wei; LI Di-yuan; WANG Qi-sheng

    2008-01-01

    Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underground water seepage flow was taken into account or not. The distribution of displacement field around the multi-arch tunnel, which is influenced by the seepage field, was gained. The result indicates that the settlement values of the vault derived from coupling analysis are bigger when considering the seepage flow effect than that not considering. Through the contrast of arch subsidence quantities calculated by two kinds of computation situations, and the comparison between the calculated and measured value of tunnel vault settlement, it is found that the calculated value(5.7-6.0 mm) derived from considering the seepage effect is more close to the measured value(5.8-6.8 mm).Therefore, it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design.

  9. Description and Application of A Model of Seepage under A Weir Including Mechanical Clogging

    Directory of Open Access Journals (Sweden)

    Sroka Zbigniew

    2014-07-01

    Full Text Available The paper discusses seepage flow under a damming structure (a weir in view of mechanical clogging in a thin layer at the upstream site. It was assumed that in this layer flow may be treated as one-dimensional (perpendicular to the layer, while elsewhere flow was modelled as two-dimensional. The solution in both zones was obtained in the discrete form using the finite element method and the Euler method. The effect of the clogging layer on seepage flow was modelled using the third kind boundary condition. Seepage parameters in the clogging layer were estimated based on laboratory tests conducted by Skolasińska [2006]. Typical problem was taken to provide simulation and indicate how clogging affects the seepage rate and other parameters of the flow. Results showed that clogging at the upstream site has a significant effect on the distribution of seepage velocity and hydraulic gradients. The flow underneath the structure decreases with time, but these changes are relatively slow.

  10. Effects of Atmospheric Dynamics on CO2 Seepage at Mammoth Mountain, California USA

    Directory of Open Access Journals (Sweden)

    Egemen Ogretim

    2013-12-01

    Full Text Available In the past few decades, atmospheric effects on the variation of seepage from soil have been studied in disciplines such as volcanology, environmental protection, safety and health hazard avoidance. Recently, monitoring of potential leakage from the geologic sequestration of carbon has been added to this list. Throughout these diverse fields, barometric pumping and presence of steady winds are the two most commonly investigated atmospheric factors. These two factors have the effect of pumping gas into and out of the unsaturated zone, and sweeping the gas in the porous medium. This study focuses on two new factors related to atmosphere in order to explain the CO2 seepage anomalies observed at the Horseshoe Lake tree kill near Mammoth Mountain, CA, where the temporal variation of seepage due to a storm event could not be explained by the two commonly studied effects. First, the interaction of the lower atmospheric dynamics and the ground topography is considered for its effect on the seepage variation over an area that is linked through high-porosity, high-permeability soils and/or fracture networks. Second, the regional pressure fronts that impose significant pressure oscillation over an area are studied. The comparison of the computer simulation results with the experimental measurements suggests that the seepage anomaly observed at the Horseshoe Lake Tree Kill could be due to the unsteady effects caused by regional pressure fronts.

  11. Seepage law and permeability calculation of coal gas based on Klinkenberg effect

    Institute of Scientific and Technical Information of China (English)

    WANG Deng-ke; WEI Jian-ping; FU Qi-chao; LIU Yong; XIAYu-ling

    2015-01-01

    Focused on the Klinkenberg effect on gas seepage, the independently developed triaxial experimental system of gas seepage was applied to conduct research on the seepage characteristics of coal seam gas. By means of experimental data analysis and theoretical derivation, a calculation method of coal seam gas permeability was proposed, which synthesized the respective influences of gas dynamic viscosity, compressibility factor and Klinkenberg effect. The study results show that the Klinkenberg effect has a significant influence on the coal seam gas seepage, the permeability estimated with the method considering the Klinkenberg effect is correct, and this permeability can fully reflect the true seepage state of the gas. For the gas around the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability may be ignored. For the gas deviating far away from the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability must be considered. The research results have certain guiding significance in forming a correct understanding of the Klinkenberg effect and selecting a more accurate calculation method for the permeability of coal containing gas.

  12. Water and acrylamide monomer transfer rates from a settling basin to groundwaters.

    Science.gov (United States)

    Binet, Stéphane; Bru, Kathy; Klinka, Thomas; Touzé, Solène; Motelica-Heino, Mickael

    2015-05-01

    The aim of this paper was to estimate the potential leakage of acrylamide monomer, used for flocculation in a settling basin, towards the groundwaters. Surface-groundwater interactions were conceptualized with a groundwater transport model, using a transfer rate to describe the clogged properties of the interface. The change in the transfer rate as a function of the spreading of the clogged layer in the settling basin was characterized with respect to time. It is shown that the water and the Acrylamide transfer rate are not controlled by the spreading of the clogged layer until this layer fully covers the interface. When the clogged layer spreads out, the transfer rate remains in the same order of magnitude until the area covered reaches 80 %. The main flux takes place through bank seepage. In these early stage conditions of a working settling basin, the acrylamide flux towards groundwaters remains constant, at close to 10 g/year (±5).

  13. Unraveling brackish groundwater - surface water interaction in an agricultural field using direct measurements at the field scale

    Science.gov (United States)

    Delsman, Joost; Waterloo, Maarten; Groen, Michel; Groen, Koos

    2014-05-01

    Understanding the interaction between groundwater and surface water is important for a myriad of reasons, including flow forecasting, nutrient transport, and water allocation for agriculture and other water users. This understanding is especially important in deep polder areas in the Netherlands, where brackish groundwater seepage (upward flowing regional groundwater) results in a significant salt load to surface water, and may damage crops if salts reach the rootzone in dry summers. Research on groundwater - surface water interaction historically focused on relatively pristine headwater catchments, only recently shifting somewhat to agricultural catchments. The latter pose specific research challenges, as agricultural activities and active water management can have a significant influence on hydrology. A brackish seepage flux, with a different density as precipitation, may significantly influence flow paths to surface water. Research on this specific topic is, however, lacking. We therefore investigated the interaction between groundwater and surface water in an agricultural catchment with a significant brackish seepage flux. In addition, we investigated the effects of intake of fresh water during periods of precipitation deficits, a common management strategy in lowland regions. We instrumented an agricultural ditch to enable direct, 15 min interval measurements of water fluxes and salinity to both agricultural drains and the ditch separately. These measurements are supported by piezometer nests, soil moisture sensors, temperature sensors, geophysics and a meteorological tower. Measurements focused on the summer period and were taken during two measurement periods: May 2012 - November 2012, and April 2013 - October 2013. Our measurements allowed for a direct, high-frequency separation of hydrological flow routes on this agricultural field between flow to agricultural drains and the ditch. The salinity of seepage water allowed for a relatively easy separation of

  14. Quantity and quality of groundwater discharge in a hypersaline lake environment

    Science.gov (United States)

    Anderson, R.B.; Naftz, D.L.; Day-Lewis, F. D.; Henderson, R.D.; Rosenberry, D.O.; Stolp, B.J.; Jewell, P.

    2014-01-01

    Geophysical and geochemical surveys were conducted to understand groundwater discharge to Great Salt Lake (GSL) and assess the potential significance of groundwater discharge as a source of selenium (Se). Continuous resistivity profiling (CRP) focusing below the sediment/water interface and fiber-optic distributed temperature sensing (FO-DTS) surveys were conducted along the south shore of GSL. FO-DTS surveys identified persistent cold-water temperature anomalies at 10 separate locations. Seepage measurements were conducted at 17 sites (mean seepage rate = 0.8 cm/day). High resistivity anomalies identified by the CRP survey were likely a mirabilite (Na2SO4·10H2O) salt layer acting as a semi-confining layer for the shallow groundwater below the south shore of the lake. Positive seepage rates measured along the near-shore areas of GSL indicate that a ∼1-m thick oolitic sand overlying the mirabilite layer is likely acting as a shallow, unconfined aquifer. Using the average seepage rate of 0.8 cm/day over an area of 1.6 km2, an annual Se mass loading to GSL of 23.5 kg was estimated. Determination of R/Ra values (calculated 3He/4He ratio over the present-day atmospheric 3He/4He ratio) 34S and δ18O isotopic values in samples of dissolved sulfate from the shallow groundwater below the mirabilite are almost identical to the isotopic signature of the mirabilite core material. The saturation index calculated for groundwater samples using PHREEQC indicates the water is at equilibrium with mirabilite. Water samples collected from GSL immediately off shore contained Se concentrations that were 3–4 times higher than other sampling sites >25 km offshore from the study site and may be originating from less saline groundwater seeps mixing with the more saline water from GSL. Additional evidence for mixing with near shore seeps is found in the δD and δ18O isotopic values and Br:Cl ratios. Geochemical modeling for a water sample collected in the vicinity of the study area

  15. Squid based beam current meter

    Energy Technology Data Exchange (ETDEWEB)

    Kuchnir, M.

    1983-11-25

    A SQUID based beam current meter has the capability of measuring the current of a beam with as little as 30 x 155 antiprotons (with a signal to noise ratio of 2). If low noise dc current is used to cancel most of the beam or an up-down counter is used to count auto-resets this sensitivity will be available at any time in the acumulation process. This current meter will therefore be a unique diagnostic tool for optimizing the performance of several Tev I components. Besides requiring liquid helium it seems that its only drawback is not to follow with the above sensitivity a sudden beam change larger than 16 ..mu..A, something that could be done using a second one in a less sensitive configuration.

  16. Deep Tunnel in Transversely Anisotropic Rock with Groundwater Flow

    Science.gov (United States)

    Bobet, Antonio

    2016-12-01

    Closed-form solutions for the stresses and deformations induced in the ground and tunnel liner are provided for a deep tunnel in a transversely anisotropic elastic rock, with anisotropic permeability, when subjected to groundwater seepage. Complex variable theory and conformal mapping are used to obtain the solutions; additional complex functions, necessary to prevent multiple solutions of the displacements, are included. The analytical solutions are verified by comparing their results from those of a finite element method. Simplified formulations are presented for tunnels with a perfectly flexible and completely incompressible liner. A spreadsheet is included that can be used to obtain stresses and displacements of the liner due to groundwater flow and far-field geostatic stresses.

  17. [Pollution of the groundwater in the city of Niamey, Niger].

    Science.gov (United States)

    Chippaux, J P; Houssier, S; Gross, P; Bouvier, C; Brissaud, F

    2002-06-01

    We conducted a study on chemical and bacteriological groundwater pollution in Niamey, a Sahelian city of some 700,000 inhabitants. A total of 22 wells and 24 bore-holes were selected on a geological and socio-economic basis. The superficial aquifers, located on each bank of the River Niger and connected to the wells, presented high levels of oxidizable nitrogen and bacteriological pollution (coliform and faecal Streptococcus) which make the water unfit for human consumption. The deep aquifer, which supplies pumps, was also polluted but to a lesser degree. Faecal pollution increased after the rainy season. The lack of sanitation in Niamey and the seepage of polluted matters from the superficial layers could explain this pollution. Eventually, the use of the groundwater could increase and constitute a major health risk for the majority of the inhabitants of Niamey.

  18. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  19. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  20. Numerical Modelling of Tailings Dam Thermal-Seepage Regime Considering Phase Transitions

    Directory of Open Access Journals (Sweden)

    Aniskin Nikolay Alekseevich

    2017-01-01

    Full Text Available Statement of the Problem. The article describes the problem of combined thermal-seepage regime for earth dams and those operated in the permafrost conditions. This problem can be solved using the finite elements method based on the local variational formulation. Results. A thermal-seepage regime numerical model has been developed for the “dam-foundation” system in terms of the tailings dam. The effect of heat-and-mass transfer and liquid phase transition in soil interstices on the dam state is estimated. The study with subsequent consideration of these factors has been undertaken. Conclusions. The results of studying the temperature-filtration conditions of the structure based on the factors of heat-and-mass transfer and liquid phase transition have shown that the calculation results comply with the field data. Ignoring these factors or one of them distorts the real situation of the dam thermal-seepage conditions.

  1. Characterization of seepage in the exploratory studies facility, Yucca Mountain, Nevada

    Science.gov (United States)

    Oliver, T.A.; Whelan, J.F.

    2006-01-01

    Following a 5-month period of above-average precipitation during the winter of 2004-2005, water was observed seeping into the South Ramp section of the Exploratory Studies Facility of the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. Samples of the seepage were collected and analyzed for major ions, trace metals, and delta deuterium and delta oxygen-18 values in an effort to characterize the water and assess the interaction of seepage with anthropogenic materials used in the construction of the proposed repository. As demonstrated by the changes in the chemistry of water dripping from a rock bolt, interaction of seepage with construction materials can alter solution chemistry and oxidation state.

  2. COMPOSITE ELEMENT METHOD FOR SEEPAGE ANALYSIS OF GEOTECHNICAL STRUCTURES WITH DRAINAGE HOLE ARRAY

    Institute of Scientific and Technical Information of China (English)

    CHEN Sheng-hong; XU Qing; HU Jing

    2004-01-01

    Air element concept and Composite Element Method (CEM) were introduced in this paper firstly, and then an explicit drainage holes element model was developed. The main advantage of the new model is that it allows drainage holes to be located within soil elements. Therefore the mesh generation of complicated geotechnical structures with a large number of seepage drainage holes becomes relatively convenient and feasible. This will further facilitate the optimal design of seepage control system, and in this case the calculation mesh can be kept unchanged when the number, position and orientation of drainage holes are adjusted. The model was been implemented in software. A sluice foundation seepage control problem was studied, by which the validity and the robustness of the new model were verified.

  3. A Coupling Simulation Between Soil Scour and Seepage Flow by Using a Stabilized ISPH Method

    Directory of Open Access Journals (Sweden)

    Nogami Tomotaka

    2016-01-01

    Full Text Available In 2011, the example that breakwaters collapsed because of the basic ground’s destabilization was reported by Tohoku-Kanto earthquake tsunami. Fluid-Structure-Soil coupling simulation is desired for a systematic comprehension of the breakwater collapse mechanism, and it may help to develop next disaster prevention method. In this study, A particle simulation tool based on the SPH has been modified and improved to analyze seepage flow and soil scouring. In seepage flow analysis, as a first step, this simulation treat the surface flow and seepage flow interactions by using governing equation. In the scouring analysis, soil scour is judged by an empirical criteria based on quicksand quantity formula.

  4. Charecterization of Seepage in the Exploratory Studies Facility, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Oliver; J.F. Whelan

    2006-03-20

    Following a 5-month period of above-average precipitation during the winter of 2004-2005, water was observed seeping into the South Ramp section of the Exploratory Studies Facility of the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. Samples of the seepage were collected and analyzed for major ions, trace metals, and delta deuterium and delta oxygen-18 values in an effort to characterize the water and assess the interaction of seepage with anthropogenic materials used in the construction of the proposed repository. As demonstrated by the changes in the chemistry of water dripping from a rock bolt, interaction of seepage with construction materials can alter solution chemistry and oxidation state.

  5. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  6. Dry calibration of ultrasonic gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, G.; Lansing, J.

    1997-07-01

    At present in most European countries it is customary that turbine meters, or the newer ultrasonic gas flow meters, when used in fiscal metering or custody transfer metering applications, are calibrated in a test facility by comparison to standards or reference devices. For reason of practical and operational drawbacks, costs involved and availability of only a limited number of calibration facilities, another way of meter verification is advantageous. For orifice metering the practice of dry calibration is well established; that is, meter verification is based upon examination of the geometry and installation of the orifice plate and a function check of the read out devices. Although for turbine meters a flow (wet) calibration may be a necessity, it will be shown that ultrasonic gas flow meters can be dry calibrated in the same way as orifice meters. As a basis for the acceptance of a dry calibration procedure for ultrasonic gas flow meters, a sensitivity analysis of the relevant variables with respect to the meter's accuracy is presented. Further test results are presented that demonstrate the feasibility of the concept of dry calibration applied to ultrasonic gas flow meters. (author)

  7. Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain

    NARCIS (Netherlands)

    Oort, van P.A.J.; Wang, G.; Vos, J.; Meinke, H.; Li, B.G.; Huang, J.K.; Werf, van der W.

    2016-01-01

    Groundwater levels in the North China Plain (NCP), the bread basket of China, have dropped more than one meter per year over the last 40 years, putting at risk the long term productivity of this region. Groundwater decline is most severe in the Alluvial Fans where our study site is located.

  8. Chinese Meter in Translating English Poetry

    Institute of Scientific and Technical Information of China (English)

    温荣芬

    2009-01-01

    <正>Translation is not easy and poetry translation is troublesome,while meter poetry translation is the most difficult. This paper will focus on the meter in translating English poetry into Chinese. From the review of translation history to

  9. 1-Meter Digital Elevation Model specification

    Science.gov (United States)

    Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.

    2015-10-21

    In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.

  10. Characterization of transient groundwater flow through a high arch dam foundation during reservoir impounding

    Directory of Open Access Journals (Sweden)

    Yifeng Chen

    2016-08-01

    Full Text Available Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks, which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality (PVI method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.

  11. Embedded solution for a microwave moisture meter

    Science.gov (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter is based on the free-space transmission measurement technique and uses low-intensity microwaves to measure the attenuation and p...

  12. Characterization of Interactions between Surface Water and Near-Stream Groundwater along Fish Creek, Teton County, Wyoming, by Using Heat as a Tracer

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.; Essaid, Hedeff I.

    2009-01-01

    Fish Creek, a tributary of the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Local residents began observing an increase in the growth of algae and aquatic plants in the stream during the last decade. Due to the known importance of groundwater to surface water in the area, the U.S. Geological Survey (USGS), in cooperation with the Teton Conservation District, conducted a study to characterize the interactions between surface water and near-stream groundwater along Fish Creek. The study has two main objectives: (1) develop an improved spatial and temporal understanding of water flow (fluxes) between surface water and groundwater, and (2) use a two-dimensional groundwater-flow and heat-transport model to interpret observed temperature and hydraulic-head distributions and to describe groundwater flow near Fish Creek. The study is intended to augment hydrologic information derived from previously published results of a seepage investigation on Fish Creek. Seepage measurements provide spatially averaged gains and losses over an entire reach for one point in time, whereas continuous temperature and water-level measurements provide continuous estimates of gain and loss at a specific location. Stage, water-level, and temperature data were collected from surface water and from piezometers completed in an alluvial aquifer at three cross sections on Fish Creek at Teton Village, Resor's Bridge, and Wilson from October 2004 to October 2006. The flow and energy (heat) transport model VS2DH was used to simulate flow through the streambed of Fish Creek at the Teton Village cross section from April 15 to October 14, 2006, (183 recharge periods) and at the Resor's Bridge and Wilson cross sections from June 6, 2005, to October 14, 2006 (496 recharge periods). A trial-and-error technique was used to determine the best match between simulated and measured data. These results were then used to calibrate the

  13. 南京长江四桥南锚碇基坑渗流控制方案研究%Study on Seepage Control Scheme for Foundation Pit of South Anchorage of 4th Nanjing Yangtze River Bridge

    Institute of Scientific and Technical Information of China (English)

    肖利; 王连新; 潘霄; 张家发

    2009-01-01

    The foundation pit for the south anchorage of 4th Nanjing Yangtze River Bridge is protected with concrete diaphragm wall. The wall will be embedded in the medium-weathered layer with 3 meters. Because the dredging layer at the wall bottom and the strongly weathered rock are more permeable than the wall, under-ground water may flow through the dredging layer to the foundation pit. On the basis of numerical simulation with 3D seepage field model, the permeability sensitivity is analyzed and the seepage control efficiency is compared among different designs. The results indicate that the thickness and permeability of medium-weathered layer influence the discharge and seepage stability of the pit significantly, that under cases without curtain grouting in the bed-rock, the seepage gradient in the dredging layer is high and seepage deformation might occur, and that under cases with curtain grouting , the discharge would be much lower and the stability of foundation pit would be ensured.%南京长江第四大桥南锚碇基础采用井筒式地连墙结构形式,地连墙嵌入中风化层约3m,下部可能形成沉渣层,且强风化层裂隙较多,局部透水性较好,地下水可能通过沉渣层及裂隙绕渗进入基坑.建立三维模型模拟基坑渗流场,通过参数敏感性分析和方案对比表明:中风化层厚度及渗透性对基坑的渗流量及渗透稳定性有明显影响;基岩无灌浆帷幕条件下,地连墙底面沉渣层渗透比降过大,可能引发渗透变形问题;对基岩进行帷幕灌浆后,可有效减小基坑渗流量,使基坑渗透稳定性得到保障.

  14. Experimental study on water seepage constitutive law of fracture in rock under 3D stress

    Institute of Scientific and Technical Information of China (English)

    赵阳升; 杨栋; 郑少河; 胡耀青

    1999-01-01

    The test method and test result of water seepage constitutive law of fracture in rock under 3D stress are introduced. A permeability coefficient formula including the coefficient of fracture connection, normal stiffness, 3D stress, initial width of fracture and Poisson ratio is presented based on the analysis of the test theory and its result.

  15. Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam

    Science.gov (United States)

    Researcher’s seek a more renewable and natural alternative for water soluble anionic polyacrylamide (PAM), a highly-effective, petroleum-derived polymer used in agriculture to control erosion and reduce water seepage from unlined irrigation structures. This study evaluated two anionic polymers: a ba...

  16. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    KAUST Repository

    Cao, Huiluo

    2015-07-21

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  17. Numerical Simulation of Seepage Field of Tailing Water Channel Under Different Conditions in Operation Period

    Science.gov (United States)

    Wang, Feihan; Yan, Guoxin; Chen, Deling

    According to mathematical model of rock and soil, it calculated seepage field of tailing water channel under different conditions. The results showed that under condition of no.1, the seepage discharge from outside to inside of channel is 0.394 m3/h and the discharge under plastic concrete cut-off is 0.358m3/h, and that under condition of no.2, the seepage discharge from outside to inside of channel is 0.249 m3/h and the discharge under plastic concrete cut-off is 0.236m3/h. Under condition of no.1, the outflow of saturation line is at elevation of 411.0m which is under sand and gravel filling layer and near boundary of drift gravel sand layer. Under condition of no.2, the outflow of saturation line is at elevation of 403.0m which is under drift gravel sand layer and near rock foundation. The results showed that numerical simulation can be used to do with seepage problems of tailing water channel.

  18. Study on law of raw coal seepage during loading process at different gas pressures

    Institute of Scientific and Technical Information of China (English)

    Meng Junqing; Nie Baisheng; Zhao Bi; Ma Yechao

    2015-01-01

    In order to reveal the law of raw coal seepage at different gas pressures, the gravity constant load seepage experimental system was developed and used. The law of raw coal seepage at different gas pressures with He, N2 and CO2 was investigated. The results show that, in a given state of stress during the experiment, with the increase of gas pressure, the permeability of raw coal sample prone to outburst exhibits a significantly decrease, and then exhibits an increasing trend when reaching the extreme point. The law of Klingberg coefficient related to the stress state and the gas adsorption properties was also obtained. Under the same experimental conditions, the Klingberg coefficient of He is greater than that of N2; and the Klingberg coefficient of CO2 has minimum value; so the stronger the gas adsorption is, the smaller the Klingberg coefficient of gas goes. Klinkenberg coefficient decreases with the increase of effective stress. Under the same conditions, the permeability of He is greater than that of N2; the permeability of CO2 has minimum value;so the stronger the gas adsorption is, the lower the permeability of the coal sample goes. The results have important significance in revealing the mechanism of gas seepage, predicting coal mine gas disaster, and gas drainage and safety production.

  19. Microbial community changes along the active seepage site of one cold seep in the Red Sea

    Directory of Open Access Journals (Sweden)

    Huiluo eCao

    2015-07-01

    Full Text Available The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of ammonia oxidizing archaea in different habitats (water versus sediment potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  20. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    Science.gov (United States)

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  1. Multitasking metering enhances generation, transmission operations

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E.

    2008-11-15

    The Dairyland Power Cooperative (DPC) which operates from La Crosse, Wisconsin has the capacity to generate and transmit 1000 MW of power to 25 member cooperatives and 20 municipalities who serve over 500,000 customers. When DPC was experiencing diminished service within its analog cellular-based data communications system, it was presented with an opportunity to install a new automated telecommunications system that would provide secure collection of meter readings from all of its substations. DPC decided to evaluate an advanced multifunctional digital meter from Schweitzer Engineering Laboratories (SEL). The SEL-734 Revenue Metering System offers complete instantaneous metering functions, including voltages, currents, power, energy and power factor. Other capabilities include predictive demand, time-of-use metering, automatic voltage monitoring, harmonics metering and synchrophasor measurement. From a metering perspective, DPC wanted to perform daily load profiles and interval-by-interval metering of their delivery points for billing purposes. They also wanted to provide real-time monitoring of electricity being delivered for both generation and transmission purposes and to make that information available to a distribution SCADA system for their members. The SEL-734 Revenue Meter was well suited to those needs. The SEL-734 provides very high-accuracy energy metering, load profile data collection, instantaneous power measurements, power quality monitoring, and communicates simultaneously over a modem, serial ports, and wide area networks (WAN). The meter is backed with a ten-year warranty as well as field support engineers. 5 figs.

  2. Groundwater Impacts on Urban Surface Water Quality in the Lowland Polder Catchments of the Amsterdam City Area

    Science.gov (United States)

    Rozemeijer, J.; Yu, L.; Van Breukelen, B. M.; Broers, H. P.

    2015-12-01

    Surface water quality in the Amsterdam area is suffering from high nutrient levels. The sources and transport mechanisms of these nutrients are unclear due to the complex hydrology of the highly manipulated urban and sub-urban polder catchments. This study aimed at identifying the impact of groundwater on surface water quality in the polder catchments of the greater Amsterdam city area. Therefore, we exploited the dense groundwater and surface water monitoring networks to explain spatial patterns in surface water chemistry and their relations with landscape characteristics and groundwater impact. We selected and statistically analyzed 23 variables for 144 polders, covering a total area of 700 km2. Our dataset includes concentrations of total-N, total-P, ammonium, nitrate, bicarbonate, sulfate, calcium, and chloride in surface water and groundwater, seepage rate, elevation, paved area percentage, surface water area percentage, and soil type (calcite, humus and clay percentages). Our results show that nutrient levels in groundwater were generally much higher than in surface water and often exceeded the surface water Environmental Quality Standards (EQSs). This indicates that groundwater is a large potential source of nutrients in surface water. High correlations (R2 up to 0.88) between solutes in both water compartments and close similarities in their spatial patterns confirmed the large impact of groundwater on surface water quality. Groundwater appeared to be a major source of chloride, bicarbonate and calcium in surface water and for N and P, leading to exceeding of EQSs in surface waters. In dry periods, the artificial redistribution of excess seepage water from deep polders to supply water to infiltrating polders further distributes the N and P loads delivered by groundwater over the area.

  3. Random Boundary Simulation of Pumping Groundwater on Two-layer Soft Soil Structure with Porous Media

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on random theory,fluid dynamics,porous media and soil mechanics,the porosity and random characteristic of the two-layer soft soil in Wuhan region were studied in this paper.The random seepage coefficient on the two-layer soft soil was analyzed,and the seepage model and its random distribution function were given.The groundwater flow differential equations related to the two layer soft soil structure were also established.The evaluation procedure of effect boundary on the pumping water in deep foundation pit was put forward.Moreover,with an engineering example,the probability distribution on random boundary prediction for pumping water of foundation pit was computed.

  4. Longwall AFC chain tension meter

    Energy Technology Data Exchange (ETDEWEB)

    Peter Lugg; Zhiqiang Guan; Bart Pienaar [CRC Mining (Australia)

    2008-02-15

    Evaluation of the downtime statistics of two longwall mines studied as part of the Landmark Automation Project showed that AFC (Armoured Face Conveyor) and BSL (Beam Stage Loader) chain related failures accounted for 27% of all downtime. A chain tension meter was designed, certified Ex ia for use in ERZ0 sections of Australian coal mines and successfully field trialled on a longwall face during production. The dynamic behaviour and unequal sharing of load between the chains were recorded and found to be significant. The changing format of tension distribution around the conveyor as it is loaded was recorded and the implications of the change in the location of the point of minimum tension from tailgate to maingate as the conveyor is unloaded emphasised. The trial was run monitoring AFC chain tensions over a few shifts. The project successfully demonstrated that the measurement of AFC chain tensions on a working face can be achieved reliably.

  5. Potential uses of pumped urban groundwater: a case study in Sant Adrià del Besòs (Spain)

    Science.gov (United States)

    Jurado, Anna; Vázquez-Suñé, Enric; Pujades, Estanislao

    2017-09-01

    Urban groundwater has often been over-exploited for industrial uses. Now, this usage tends to be reduced or the resource abandoned due to pollution and/or changes in land use. The use and the subsequent disuse of groundwater has resulted in rising water tables that damage underground structures (e.g., building basements and underground car parks and tunnels), leading to the need for additional pumping in urban areas. In the case of the underground parking lot of Sant Adrià del Besòs (Barcelona, NE Spain), large amounts of urban groundwater are pumped to avoid seepage problems. Can this pumped groundwater be used for other purposes (e.g., drinking water and urban irrigation) instead of wasting this valuable resource? To answer this question, it was necessary to quantify the groundwater recharge and to assess the evolution of groundwater quality. The limiting factor at this study site is the groundwater quality because ammonium and some metals (iron and manganese) are present at high concentrations. Hence, further treatment would be needed to meet drinking water requirements. The pumped groundwater could also be used for supplementing river flow for ecological benefit and/or for mitigating seawater intrusion problems. Currently, only a small amount of this urban groundwater is used for cleaning public areas and watering public gardens. This situation highlighted the urgent need to manage this resource in a responsible and more efficient manner, especially in moments of high water demand such as drought periods.

  6. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  7. Study on the law of methane seepage in the wall of drainage roadway in mining seam-group

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; LUO Yong; LIU Ze-gong; SHI Bi-ming

    2005-01-01

    Based on the equation of the gas flow continuity and state, Darcy law and Langmuir equation, the law of methane seepage in the wall of drainage roadway was studied. The governing equation of methane one-way seepage in the seam was founded.By solving the equation, the calculation of methane seepage velocity in the coal wall was worked out. The result has really applied worth and will give beneficial references to related research, it provides preventing coal and gas outbursts with theoretical gist.

  8. Evaluating groundwater flow using passive electrical measurements

    Science.gov (United States)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  9. Groundwater quality across scales: impact on nutrient transport to large water bodies

    Science.gov (United States)

    Dürr, Hans; Moosdorf, Nils; Mallast, Ulf

    2017-04-01

    High concentrations of dissolved nutrients such as nitrogen (N) and phosphorus (P) in groundwater are an increasing concern in many areas of the world. Especially regions with high agriculture impact see widespread declining groundwater quality, with considerable uncertainty mainly regarding the impact of phosphorus (P). Implications reach from direct impacts on different water users to discharge of nutrient-rich groundwater to rivers, lakes and coastal areas, where it can contribute to eutrophication, hypoxia or harmful algal blooms. While local-scale studies are abundant and management options exist, quantitative approaches at regional to continental scales are scarce and frequently have to deal with data inconsistencies or are temporally sparse. Here, we present the research framework to combine large databases of local groundwater quality to data sets of climatical, hydrological, geological or landuse parameters. Pooling of such information, together with robust methods such as water balances and groundwater models, can provide constraints such as upper boundaries and likely ranges of nutrient composition in various settings, or for the nutrient transport to large water bodies. Remote Sensing can provide spatial information on the location of groundwater seepage. Results will eventually help to identify focus areas and lead to improved understanding of the role of groundwater in the context of global biogeochemical cycles.

  10. Numerical Evaluation of Seepage Monitoring in Embankment Dams Utilizing Temperature Method

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Kalantari

    2016-06-01

    Full Text Available Dams are an important part of this nation’s infrastructure. When populations at risk are located close to a dam, it is important to accurately predict the breach outflow hydrograph and its timing relative to events in the failure process that could trigger the start of evacuation efforts. Surge waves resulting from dam breaks have been responsible for numerous losses of life. Sudden reservoir drawdown caused by partial breach of a dam can create a surge within the reservoir. Positive and negative surges are generally observed in open channels. Positive surges that occur due to tidal origins are referred to as tidal bores. They also occur upstream of a control structure that is opened rapidly or the failure time is very low. For a stationary observer the negative surge appears to be a gentle lowering of the free surface. Methods of seepage monitoring and assessment can play a critical role in the field of embankment dams’ safety. Increased seepage could simultaneously be occurred with internal erosion. Internal erosion is known as one of the main reasons of dam failure, causes increased seepage due to loss of fine grain sizes. As a result, seepage monitoring system is substantial part of embankment dams monitoring system. Gradually, internal erosion progresses in the dam and is difficult to be detected by conventional methods. Many of seepage measurement systems are not sensitive enough to detect small variations in seepage flow. Measurement of temperature is one of the most affordable methods in embankment dams seepage monitoring. Monitoring and examination of dams could be carried out benefiting built-in accessories, borehole method, non-destructive test methods and etc. In this research, different methods of seepage monitoring in embankment dams are investigated concentrating on temperature method. Among others, temperature is one of the most important physical parameters that depend directly on internal erosion. Thermometry therefore

  11. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Gangopadhyay, Subhrendu; Masbruch, Melissa D.; Pruitt, Tom; Rumsey, Christine; Susong, David D.

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 million cubic meters. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  12. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    Science.gov (United States)

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  13. Balanced Flow Meters without Moving Parts

    Science.gov (United States)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  14. Hardware Design of a Smart Meter

    Directory of Open Access Journals (Sweden)

    Ganiyu A. Ajenikoko

    2014-09-01

    Full Text Available Smart meters are electronic measurement devices used by utilities to communicate information for billing customers and operating their electric systems. This paper presents the hardware design of a smart meter. Sensing and circuit protection circuits are included in the design of the smart meter in which resistors are naturally a fundamental part of the electronic design. Smart meters provides a route for energy savings, real-time pricing, automated data collection and eliminating human errors due to manual readings which would ultimately reduce labour costs, diagnosis and instantaneous fault detection. This allows for predictive maintenance resulting in a more efficient and reliable distribution network.

  15. Off-level corrections for gravity meters

    Science.gov (United States)

    Niebauer, T. M.; Blitz, Thomas; Constantino, Andy

    2016-04-01

    Gravity meters must be aligned with the local gravity at any location on the surface of the earth in order to measure the full amplitude of the gravity vector. The gravitational force on the sensitive component of the gravity meter decreases by the cosine of the angle between the measurement axis and the local gravity vector. Most gravity meters incorporate two horizontal orthogonal levels to orient the gravity meter for a maximum gravity reading. In order to calculate a gravity correction it is often necessary to estimate the overall angular deviation between the gravity meter and the local gravity vector using two measured horizontal tilt meters. Typically this is done assuming that the two horizontal angles are independent and that the product of the cosines of the horizontal tilts is equivalent to the cosine of the overall deviation. These approximations, however, break down at large angles. This paper derives analytic formulae to transform angles measured by two orthogonal tilt meters into the vertical deviation of the third orthogonal axis. The equations can be used to calibrate the tilt sensors attached to the gravity meter or provide a correction for a gravity meter used in an off-of-level condition.

  16. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  17. Characterization of seafloor pockmark seepage of hydrocarbons employing fractal: A case study from the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Dandapath, S.; Chakraborty, B.; Maslov, N.; Karisiddaiah, S.M.; Ghosh, D.; Fernandes, W.A.; Menezes, A.

    of pockmark related seepages. The study area lies 102 km west off Marmagao along the central west coast of India which contains pre-dominantly (70%) gas-charged sediments. Comparison between the estimated self-similar fractals reveals...

  18. Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico

    OpenAIRE

    Sahling, Heiko; Borowski, Christian; Escobar-Briones, Elva; Gaytán-Caballero, Adriana; Hsu, Chieh-Wei; Loher, Markus; MacDonald, Ian; Marcon, Yann; Pape, Thomas; Römer, Miriam; Rubin-Blum, Maxim; Schubotz, Florence; Smrzka, Daniel; Wegener, Gunter; Bohrmann, Gerhard

    2016-01-01

    Hydrocarbon seepage is a widespread process at the continental margins of the Gulf of Mexico. We used a multidisciplinary approach, including multibeam mapping and visual seafloor observations with different underwater vehicles to study the extent and character of complex hydrocarbon seepage in the Bay of Campeche, southern Gulf of Mexico. Our observations showed that seafloor asphalt deposits previously only known from the Chapopote Knoll also occur at numerous other knolls...

  19. Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico

    OpenAIRE

    Sahling, Heiko; Borowski, Christian; Escobar-Briones, Elva; Gaytán-Caballero, Adriana; Hsu, Chieh-Wei; Loher, Markus; MacDonald, Ian; Marcon, Yann; Pape, Thomas; Römer, Miriam; Rubin-Blum, Maxim; Schubotz, Florence; Smrzka, Daniel; Wegener, Gunter; Bohrmann, Gerhard

    2016-01-01

    Hydrocarbon seepage is a widespread process at the continental margins of the Gulf of Mexico. We used a multidisciplinary approach, including multibeam mapping and visual seafloor observations with different underwater vehicles to study the extent and character of complex hydrocarbon seepage in the Bay of Campeche, southern Gulf of Mexico. Our observations showed that seafloor asphalt deposits previously only known from the Chapopote Knoll also occur at numerous other knolls and ridges in wat...

  20. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  1. Geochemistry of crude oils, seepage oils and source rocks from Belize and Guatemala

    DEFF Research Database (Denmark)

    Petersen, H.I.; Holland, B.; Nytoft, H.P.;

    2012-01-01

    Mountains fault block in central Belize which separates the Corozal Basin in northern Belize from the Belize Basin to the south. Numerous petroleum seeps have been reported in both of these basins. Small-scale oil production takes place in the Corozal Basin and the North and South Petén Basins....... For this study, samples of crude oil, seepage oil and potential source rocks were collected from both countries and were investigated by organic geochemical analyses and microscopy. The oil samples consisted of non-biodegraded crude oils and slightly to severely biodegraded seepage oils, both of which were...... generated from source rocks with similar thermal maturities. The crude oils were generated from marine carbonate source rocks and could be divided into three groups: Group 1 oils come from the North Petén Basin (Guatemala) and the western part of the Corozal Basin (Belize), and have a typical carbonate...

  2. Sources, extent and history of methane seepage on the continental shelf off northern Norway

    Science.gov (United States)

    Sauer, Simone; Lepland, Aivo; Chand, Shyam; Schubert, Carsten J.; Eichinger, Florian; Knies, Jochen

    2014-05-01

    Active natural hydrocarbon gas seepage was recently discovered in the Hola area on the continental shelf off Vesterålen, northern Norway. We conducted acoustic and geochemical investigations to assess the modern and past extent, source and pathways of the gas seepage . Water column echosounder surveys showed bubble plumes up to several tens of metres above the seafloor. Analyses of dissolved methane in the water column indicated slightly elevated concentrations (50 nM) close to the seafloor. To identify fluxes and origin of methane in the sediments we analysed sediment pore water chemistry, the isotopic composition of methane and of dissolved inorganic carbon (d13CCH4, d2HCH4, d13CDIC) in three closely spaced (

  3. Investigation of seepage around the bucket skirt during installation in sand

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo

    First aim of this study is to evaluate a pore pressure factor, . The factor describes the ratio between the excess pore pressure generated on the bucket tip and the applied suction under the bucket lid. The pore pressure factor can be then used for prediction of excess pore pressure at the tip...... or along bucket skirt with known soil condition, bucket geometry and applied suction. The second aim of the study is to evaluate expressions for normalized seepage length, s/h, for different soil combinations and penetration depths. The seepage length is then 7 used to make a prediction of critical...... pressure that will create piping channels at exit, which is near to seabed and to the caisson wall, along bucket wall and at the tip. That is how the limits for suction installation can be assumed. Finally, the critical suction is used for predicting the reduction of penetration resistance and the method...

  4. APPLICATION OF TIME-VARYING VISCOUS GROUT IN GRAVEL- FOUNDATION ANTI-SEEPAGE TREATMENT*

    Institute of Scientific and Technical Information of China (English)

    CHENG Peng-da; LI Lu; TANG Ju; WANG Dao-zeng

    2011-01-01

    The time-varying viscosity of common grout and the controllable grout are measured with a rotation viscometer in experiments. The time-varying viscosity of grout is analyzed according to the characteristics in the process of anti-seepage treatment for gravel foundation. The principle of effective stress for porous medium is applied to analyzes the fluid-structure coupling in grouting. In the consideration of coupling physical variables, dynamic models of porosity, permeability and viscosity are constructed.The difiusion radius can thus be defined by the foundational porosity. The distribution of holes in field experiments is designed according to the diffusion radius of grout. Then, the permeability test is designed to verify the grout effect. The calculated diffusion radius coincides with experimental results, and the permeability meets the requirements of the project, which is valuable for the anti-seepage treatment in gravel foundation.

  5. Investigation of seepage around the bucket skirt during installation in sand

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo

    First aim of this study is to evaluate a pore pressure factor, . The factor describes the ratio between the excess pore pressure generated on the bucket tip and the applied suction under the bucket lid. The pore pressure factor can be then used for prediction of excess pore pressure at the tip...... or along bucket skirt with known soil condition, bucket geometry and applied suction. The second aim of the study is to evaluate expressions for normalized seepage length, s/h, for different soil combinations and penetration depths. The seepage length is then 7 used to make a prediction of critical...... pressure that will create piping channels at exit, which is near to seabed and to the caisson wall, along bucket wall and at the tip. That is how the limits for suction installation can be assumed. Finally, the critical suction is used for predicting the reduction of penetration resistance and the method...

  6. COUPLING EFFECT OF SEEPAGE FLOW AND RIVER FLOW ON THE BANK FAILURE

    Institute of Scientific and Technical Information of China (English)

    NING Bo; WU Shi-qiang; TAN Ye-fei; XIE Xing-hua; YAN Jun; YAN Zhong-min; GENG Yan-qiong

    2011-01-01

    On the basis of the generalized physical model of the riverbank,the experiments were conducted to study the mechanisms of riverbank failure under the coupling effect of seepage flow and river flow.The experimental setup was specially designed,as well as test point location,parameters and procedures,and the main influencing factors were analyzed affecting riverbank failure based on the failure types,the variations of pore water pressure and soil displacement.The results indicated that the coupling effect has different influences on the bank failure in three aspects:the failure type,the process and the extent.In addition,the river flow played a more important role than the seepage flow in the coupling effect on the bank failure.

  7. Research on infiltration clogging effect and its application prospect in anti-seepage project

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhiquan; WANG Gangcheng; ZHANG Guojun

    2009-01-01

    Clogging effect, as a new concept in geological engineering, is a phenomenon of permeability decreasing under seeping in reservoir dam foundation of the alluvial and diluvial deposits with deep and thick layer, coarse particle and high permeability in mountains-gully rivers of Tibetan Plateau. A clogging infiltration instrument has been designed successfully and a series of simulation tests have been done. Based on large amounts of data, it is confirmed that the existence of the clogging effect and the law of infiltration clogging is found out. Three indexes are proposed such as "optimal size of particle", "optimal size range of particle" and "characteristic pore", which are closely related with effect of infiltration clogging. The concept and results can offer a new idea to solve problems on anti-seepage of dam foundation in mountains-gully rivers environment and to study artificial clogging, meanwhile supplement of the concept of seepage deformation.

  8. Determination of Seepage and Analysis of Earth Dams (Case Study: Karkheh Dam)

    OpenAIRE

    A. Kamanbedast; M. Shahosseini

    2011-01-01

    Because of the increasing trend of building dam throughout Iran; it is necessary to optimize dam buildings and operations. Dam or Hydropower industry has two types of buildings; normally: (1) Concrete dams (2) Embankment (earth) dams. Generally, scientists and engineers use different methods to enhance safety and decrease any errors in calculation due to maintenance of water storage especially hydro structure of the dam. It is necessary to investigate the dam seepage control; commonly use...

  9. Experimental Investigation of Seepage Properties of Fractured Rocks Under Different Confining Pressures

    Science.gov (United States)

    Ma, D.; Miao, X. X.; Chen, Z. Q.; Mao, X. B.

    2013-09-01

    The effectiveness of transmitting underground water in rock fractures is strongly influenced by the widths of the fractures and their interconnections. However, the geometries needed for water flow in fractured rock are also heavily controlled by the confining pressure conditions. This paper is intended to study the seepage properties of fractured rocks under different confining pressures. In order to do this, we designed and manufactured a water flow apparatus that can be connected to the electro-hydraulic servo-controlled test system MTS815.02, which provides loading and exhibits external pressures in the test. Using this apparatus, we tested fractured mudstone, limestone and sandstone specimens and obtained the relationship between seepage properties and variations in confining pressure. The calculation of the seepage properties based on the collection of water flow and confining pressure differences is specifically influenced by non-Darcy flow. The results show that: (1) The seepage properties of fractured rocks are related to confining pressure, i.e. with the increase of confining pressure, the permeability decreases and the absolute value of non-Darcy flow coefficient increases. (2) The sandstone coefficients and range from to m2 and to m-1, respectively, and exhibit a greater change compared to coefficients of mudstone and limestone. (3) From the regression analysis of experimental data, it is concluded that the polynomial function is a better fit than the power and logarithmic functions. The results obtained can provide an important reference for understanding the stability of rock surrounding roadways toward prevention of underground water gushing-out, and for developing underground resources (e.g. coal).

  10. The application of back analysis of three-dimensional seepage flow in thick overburden%三维渗流反演分析在深厚覆盖层中的应用

    Institute of Scientific and Technical Information of China (English)

    徐杰瑞; 王志宏; 牛万宏

    2001-01-01

    采用三维渗流理论对砂卵石层进行反演计算,根据覆盖层地质条件,建立三维渗流数学模型,然后给出一个渗透系数值,计算未建库前的地下水位,并与勘察所知的实际水位相比较,若两者不一致,则调整渗透系数,直至计算水位基本符合实测水位.以确定河床砂卵石层的渗透系数,为防渗处理提供可靠的设计依据.%The paper discusses the determination of permeability coefficient of sand and gravel, based on the back analysis of three-dimensional seepage flow theory, thus providing sound design basis for antiseepage treatment. According to the geological conditions of the overburden, a three-dimensional seepage flow mathematic model is suggested, then a permeability coefficient is given, the groundwater level before the construction of the reservoir is caculated and compared with the measured water level. If the two levels are not consistent, the permeability coefficient is regulated till the calculated level conforms basically to the actual water level, and the permeability coefficient then is actual permeability coefficient of the overburden.

  11. Simplified Processing Method for Meter Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Downs, Janelle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henderson, Jordan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Sadie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vernon, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    Simple/Quick metered data processing method that can be used for Army Metered Data Management System (MDMS) and Logistics Innovation Agency data, but may also be useful for other large data sets. Intended for large data sets when analyst has little information about the buildings.

  12. 78 FR 20628 - Wireless Metering Challenge

    Science.gov (United States)

    2013-04-05

    ... of Energy Efficiency and Renewable Energy Wireless Metering Challenge AGENCY: Office of Energy... (EERE) requests comments on the draft version of the Wireless Power Meter Challenge Specification. This... Challenge Specification must be received by 5 p.m. Eastern Standard Time April 26, 2013. DOE will be...

  13. Environmental summary of the F- and H-area seepage basins groundwater remediation project, Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.

    1997-12-31

    This report summarizes the results of nearly 70 investigations of the baseline environment, describes the remedial action, and identifies constituents of interest that pose potential risk to human health and the environment. It also proposes an approach for evaluating the effectiveness of the remedial action.

  14. A Computational Model to Simulate Groundwater Seepage Risk in Support of Geotechnical Investigations of Levee and Dam Projects

    Science.gov (United States)

    2013-03-01

    process-imitating rules. The model aggrades an alluvial floodplain, creating floodplain architecture by differentiating between sediment deposited by...meandering rivers. The results suggest that the channel aggradation rate influenced heavily the relative channel avulsion frequency during floodplain...composition and organization of the river basin and its floodplain (Schumm 1968). In an actively building ( aggrading ) floodplain, the river channel is

  15. Seepage Analysis of Upper Gotvand Dam Concerning Gypsum Karstification (2D and 3D Approaches)

    DEFF Research Database (Denmark)

    Sadrekarimi, Jamshid; Kiyani, Majid; Fakhri, Behnam;

    2011-01-01

    Upper Gotvand Dam is constructed on the Karun River at the south west of Iran. In this paper, 2D and 3D models of the dam together with the foundation and abutments were established, and several seepage analyses were carried out. Then, the gypsum veins that are scattered throughout the foundation...... ground were included in the models, and the seepage pattern, considering the dissolution law of gypsum, was analyzed. It was disclosed that the discharge fluxes obtained from 2D and 3D analyses are not similar, and the discharge flux in 3D model is about four times that of the 2D model. Also, the 3D...... model locates the phreatic surface somewhat higher than the 2D model. This means that the 2D model estimates lower pore water pressure pattern in comparison with the 3D model. These may be attributed to the fact that with 2D model the lateral components of vectors of seepage velocity are ignored...

  16. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  17. Heavy metals in fish from streams near F-Area and H-Area seepage basins

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.; Paller, M.

    1990-11-01

    This report summarizes results of recent analyses of heavy metals in fish from Savannah River Site (SRS) streams near the F-Area and H-Area seepage basins. Fish were collected from headwater areas of Four Mile Creek and Pen Branch, from just below the H-Area seepage basin, and from three sites downstream in Four Mile Creek. These fish were analyzed for RCRA trace metals using standard EPA methods. Silver, arsenic, beryllium, cadmium, copper, nickel, lead, antimony, and thallium were all either undetectable or had only a few detectable values. Mercury values were all well below the regulatory limit of 1 {mu}g/g. For the total group of fish analyzed, there were no differences among sampling site for aluminum, chromium, or zinc. Selenium concentrations differed among sites, with fish collected near the H-Area and two control sites having the highest concentrations. When selenium concentrations were compared across sunfishes only, the seepage basin site was shown to be slightly elevated. Among species, yellowfin shiners had higher aluminum and zinc concentrations than sunfishes and bottom fish. 24 refs.

  18. Causes of the Abnormal Seepage Field in a Dam with Asphaltic Concrete Core

    Institute of Scientific and Technical Information of China (English)

    Jiafa Zhang; Jinlong Wang; Haodong Cui

    2016-01-01

    ABSTRACT:Asphaltic concrete core (ACC) dams are widely built in China. Many ACC dams perform well, but others have experienced significant leakage including the case in western China studied herein. A numerical model of saturated-unsaturated water flow was adapted to simulate the seepage through the dam. By comparing the normal and abnormal seepage fields under different conditions, the main causes for the actual abnormal seepage field were identified and attributed to a defect in the ACC and an unintended, low permeability layer (LPL) in the transition zone (TZ) and the downstream dam shell. These conclusions are consistent with the situation and performance of the dam. Inadequate ACC con-struction processes might have caused defects in the ACC. An abrupt change of the ACC thickness probably induced stress concentrations and caused the ACC to fail. Material sources for the TZ and dam shell were complex and varied from specifications, and soil gradation for the TZ was inadequately controlled. In particular, tests show that the permeability varies over large ranges in these two parts of the dam. An unexpected LPL probably exists in both areas, and extends continuously.

  19. A Model of Anisotropic Property of Seepage and Stress for Jointed Rock Mass

    Directory of Open Access Journals (Sweden)

    Pei-tao Wang

    2013-01-01

    Full Text Available Joints often have important effects on seepage and elastic properties of jointed rock mass and therefore on the rock slope stability. In the present paper, a model for discrete jointed network is established using contact-free measurement technique and geometrical statistic method. A coupled mathematical model for characterizing anisotropic permeability tensor and stress tensor was presented and finally introduced to a finite element model. A case study of roadway stability at the Heishan Metal Mine in Hebei Province, China, was performed to investigate the influence of joints orientation on the anisotropic properties of seepage and elasticity of the surrounding rock mass around roadways in underground mining. In this work, the influence of the principal direction of the mechanical properties of the rock mass on associated stress field, seepage field, and damage zone of the surrounding rock mass was numerically studied. The numerical simulations indicate that flow velocity, water pressure, and stress field are greatly dependent on the principal direction of joint planes. It is found that the principal direction of joints is the most important factor controlling the failure mode of the surrounding rock mass around roadways.

  20. Determining the REV for Fracture Rock Mass Based on Seepage Theory

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2017-01-01

    Full Text Available Seepage problems of the fractured rock mass have always been a heated topic within hydrogeology and engineering geology. The equivalent porous medium model method is the main method in the study of the seepage of the fractured rock mass and its engineering application. The key to the method is to determine a representative elementary volume (REV. The FractureToKarst software, that is, discrete element software, is a main analysis tool in this paper and developed by a number of authors. According to the standard of rock classification established by ISRM, this paper aims to discuss the existence and the size of REV of fractured rock masses with medium tractility and provide a general method to determine the existence of REV. It can be gleaned from the study that the existence condition of fractured rock mass with medium tractility features average fracture spacing smaller than 0.6 m. If average fracture spacing is larger than 0.6 m, there is no existence of REV. The rationality of the model is verified by a case study. The present research provides a method for the simulation of seepage field in fissured rocks.

  1. Seepage and slope stability modelling of rainfall-induced slope failures in topographic hollows

    Directory of Open Access Journals (Sweden)

    Kiran Prasad Acharya

    2016-03-01

    Full Text Available This study focuses on topographic hollows, their flow direction and flow accumulation characteristics, and highlights discharge of hillslope seepage so as to understand porewater pressure development phenomena in relation with slope failure in topographic hollows. For this purpose, a small catchment in Niihama city of Shikoku Island in western Japan, with a record of seven slope failures triggered by typhoon-caused heavy rainfall on 19–20 October 2004, was selected. After extensive fieldwork and computation of hydro-mechanical parameters in unsaturated and saturated conditions through a series of laboratory experiments, seepage and slope stability modellings of these slope failures were done in GeoStudio environment using the precipitation data of 19–20 October 2004. The results of seepage modelling showed that the porewater pressure was rapid transient in silty sand, and the maximum porewater pressure measured in an area close to the base of topographic hollows was found to be higher with bigger topographic hollows. Furthermore, a threshold relationship between the topographic hollow area and maximum porewater pressure in this study indicates that a topographic hollow of 1000 sq. m area can develop maximum porewater pressure of 1.253 kPa. However, the porewater pressures required to initiate slope instability in the upper part of the topographic hollows is relatively smaller than those in the lower part of the topographic hollows.

  2. The effects of meter orientation downstream of a short radius elbow on electromagnetic flow meters

    Science.gov (United States)

    Justensen, Jared C.

    Electromagnetic flowmeters (known as magnetic flow meters) are a widely used type of flowmeter. The accuracy of magnetic flow meters are a function of several factors, not the least of which is the flow condition inside the pipe. It has been shown that disturbances in the velocity profile affects the accuracy of a magnetic flow meter (Luntta, 1998). Accordingly, manufacturers of magnetic flow meters give installation guidelines. These guidelines help prevent the user from installing the meter in a pipe configuration that is likely to cause the meter to produce inaccurate results. Although most manufacturers provide recommendations about the amount of straight pipe that is necessary upstream of the meter, little is said about the orientation of the meter in relation to upstream disturbances. This study examines the performance of magnetic flow meters when positioned at two different orientations: EIP (electrodes in plane with an upstream 90-degree short radius elbow) and EOP (electrodes out of plane). Four different meters were included in the study in which a baseline straight pipe test was first performed using over fifty diameters of straight pipe upstream of each meter. The straight pipe test was used to determine the baseline accuracy of each of the meters over a velocity range that is typical for the size and function of the meters. Meters were then installed at five different locations downstream from a 90-degree short-radius elbow. At each location the meters were tested in two orientations at five different flow rates. The intent of the research is to show that the orientation of a magnetic flow meter affects the meter's ability to produce accurate flow readings when it is installed downstream of a flow disturbance. The results from this research showed a significant shift in measurement accuracy when the meter was in EIP and EOP orientations. All of the meters in the study produced accuracy readings at one point of another that were outside the specified

  3. Geomorphic aspects of groundwater flow

    Science.gov (United States)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation r

  4. Airborne Thermal Remote Sensing for Estimation of Groundwater Discharge to a River.

    Science.gov (United States)

    Liu, Chuankun; Liu, Jie; Hu, Yue; Wang, Heshun; Zheng, Chunmiao

    2016-05-01

    Traditional methods for studying surface water and groundwater interactions have usually been limited to point measurements, such as geochemical sampling and seepage measurement. A new methodology is presented for quantifying groundwater discharge to a river, by using river surface temperature data obtained from airborne thermal infrared remote sensing technology. The Hot Spot Analysis toolkit in ArcGIS was used to calculate the percentage of groundwater discharge to a river relative to the total flow of the river. This methodology was evaluated in the midstream of the Heihe River in the arid and semiarid northwest China. The results show that the percentage of groundwater discharge relative to the total streamflow was as high as 28%, which is in good agreement with the results from previous geochemical studies. The data analysis methodology used in this study is based on the assumption that the river water is fully mixed except in the areas of extremely low flow velocity, which could lead to underestimation of the amount of groundwater discharge. Despite this limitation, this remote sensing-based approach provides an efficient means of quantifying the surface water and groundwater interactions on a regional scale.

  5. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Tai -Sheng [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix permeability, gas phase pressure, capillary/permeability hysteresis, and molecular diffusion can be neglected. Results of flow simulation showed that liquid seepage in partially saturated fractures is characterized by localized preferential flow, along with bypassing, funneling, and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, and their shape, size, and spatial correlation. However, the correlation structure of permeability field is less important

  6. Role of Satellite Sensors in Groundwater Exploration

    Directory of Open Access Journals (Sweden)

    Saumitra Mukherjee

    2008-03-01

    Full Text Available Spatial as well as spectral resolution has a very important role to play in water resource management. It was a challenge to explore the groundwater and rainwater harvesting sites in the Aravalli Quartzite-Granite-Pegmatite Precambrian terrain of Delhi, India. Use of only panchromatic sensor data of IRS-1D satellite with 5.8-meter spatial resolution has the potential to infer lineaments and faults in this hard rock area. It is essential to identify the location of interconnected lineaments below buried pediment plains in the hard rock area for targeting sub-surface water resources. Linear Image Self Scanning sensor data of the same satellite with 23.5-meter resolution when merged with the panchromatic data has produced very good results in delineation of interconnected lineaments over buried pediment plains as vegetation anomaly. These specific locations of vegetation anomaly were detected as dark red patches in various hard rock areas of Delhi. Field investigation was carried out on these patches by resistivity and magnetic survey in parts of Jawaharlal Nehru University (JNU, Indira Gandhi national Open University, Research and Referral Hospital and Humayuns Tomb areas. Drilling was carried out in four locations of JNU that proved to be the most potential site with ground water discharge ranging from 20,000 to 30,000 liters per hour with 2 to 4 meters draw down. Further the impact of urbanization on groundwater recharging in the terrain was studied by generating Normalized difference Vegetation Index (NDVI map which was possible to generate by using the LISS-III sensor of IRS-1D satellite. Selection of suitable sensors has definitely a cutting edge on natural resource exploration and management including groundwater.

  7. COMPREHENSIVE ANALYSIS ON SEEPAGE AND STRUCTURAL STABILITY OF EARTH-ROCK DAM: A CASE STUDY OF XIQUANYAN DAM IN CHINA

    Directory of Open Access Journals (Sweden)

    Qingqing GUO

    2016-07-01

    Full Text Available Earth-rock dam is commonly used in the high-dam engineering around the world. It has been widely accepted that the analysis on structural and seepage stability plays a very important role, and it is necessary to take into account while designing the earth-rock dam. In performing the analysis of structural and seepage stability, many remarkable methods are available at current stage. However, there are still some important issues remaining unsolved, including: (1 Finite element methods (FEMs is a means of solutions to analysis seepage process, but it is often a difficult task to determine the so-called seepage coefficient, because the common-used water injection test is limited in the practical work due to the high cost and complex procedure. (2 It has long been discussed that the key parameters for structural stability analysis show a significant spatial and temporal variations. It may be partly explained by the inhomogeneous dam-filling during construction work and the developing seepage process. The consequence is that one constant value of the parameter cannot represent the above variations. In this context, we solve the above issues and introduce the solution with a practical earth-rock dam project. For determining the seepage coefficient, the data from the piezo metric tube is used to calculate the potential value, based on which the seepage coefficient can be back-analysed. Then the seepage field, as well as the seepage stability are numerically analysed using the FEM-based SEEP/W program. As to the structural safety, we take into account the spatial and temporal variations of the key parameters, and incorporate the Monte-Carlo simulation method into the commonly used M-P method to calculate the frequency distribution of the obtained structural safety factor. In this way, the structural and seepage safety can be well analysed. This study is also beneficial to provide a mature method and a theoretical insight into the earth-rock dam design

  8. Research Progress and Development on Seepage Mechanics%渗流力学进展与前沿

    Institute of Scientific and Technical Information of China (English)

    李明川; 姚军; 葛家理

    2012-01-01

    Based on the well-known Darcy seepage theory of France H. Darcy engineer in 1856, the Paper reviewed the cavalcade: from Darcy to non-Darcy seepage, from Newtonian fluid to non-Newtonian fluid seepage and from continuum to discontinuous of seepage mechanics. Summarization induces the applied developing course in petroleum industry: reservoir of migration, gathering and formation in exploration activity; reservoir of recognition, exploitation and recreation in oil/gas field development; oil/gas house of geologic framework, water pollution, alkaline soil and 3rd production in oil/gas preservation and transportation. Prospects research the leading edge and challenge of multi-field coupling seepage, macro- microscopic seepage and multi-scale seepage on seepage mechanics binding traditional seepage theory and burgeoning science and technology called on the advanced methods of physics and mathematics. With the science and technology hasty development, more modernism and technology will prompt the theory of seepage mechanics more evaluative.%基于1856年法国工程师H.Darcy的著名Darcy渗流理论,回顾了渗流力学由达西渗流朝向非达西渗流、牛顿流体渗流朝向非牛顿渗流、连续介质渗流朝向非连续介质渗流方向的发展进程.总结归纳了渗流力学在石油工业中的应用发展历程:渗流力学在油气运移、聚集和形成油藏的油气勘探中的应用;渗流力学在认识、开发及改造油气藏的油气田开发的应用;渗流力学在油气库的地质结构、水污染、盐碱化以及三次采油的油气储运中的应用.展望了借助于先进的物理、数学方法,将传统的渗流力学理论与新兴科学技术融合发展起来的多场耦合渗流、宏微渗流和多尺度渗流理论的研究前沿与挑战.随着科学技术的飞速发展,更多现代方法和技术将会推动着渗流力学理论进一步发展.

  9. Hydrologic conditions in urban Miami-Dade County, Florida, and the effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow

    Science.gov (United States)

    Hughes, Joseph D.; White, Jeremy T.

    2014-01-01

    The extensive and highly managed surface-water system in southeastern Florida constructed during the 20th Century has allowed for the westward expansion of urban and agricultural activities in Miami-Dade County. In urban areas of the county, the surface-water system is used to (1) control urban flooding, (2) supply recharge to production well fields, and (3) control seawater intrusion. Previous studies in Miami-Dade County have determined that on a local scale, leakage from canals adjacent to well fields can supply a large percentage (46 to 78 percent) of the total groundwater pumpage from production well fields. Canals in the urban areas also receive seepage from the Biscayne aquifer that is derived from a combination of local rainfall and groundwater flow from Water Conservation Area 3 and Everglades National Park, which are west of urban areas of Miami-Dade County.

  10. Ecohydrological Investigations of a Groundwater-Lake System

    DEFF Research Database (Denmark)

    Frandsen, Mette Cristine Schou

    are very dynamic systems on a spatial scale. Variability in meteorology can lead to variability in the hydrology, and in some cases ignite transient effects that are temporally distinct and difficult to capture. •To some extend the lakes acts as sentinel for all the in and out-puts to the system as well...... I). •Does dense bottom vegetation affect the small scale hydrology of the lake bed sediment? (Paper 2). •How can natural tracers (δ 18O) be used to quantify the temporal variation in groundwater seepage dynamics? (Paper 3). •Is it possible to combine ecological data of surface water chemistry...... by this. The reasons for the lowered hydraulic conductivity seems to be an combination of the organic content in the sediment (i.e. the roots of the plants) and a vegetation induced entrapment of fine particles in the sediment. Over the course of three years I followed the small scale variation...

  11. Groundwater quality assessment/corrective action feasibility plan

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  12. Role of the bottom sediments immediately beneath the lake water-groundwater interface in the transport and removal of cyanobacteria, cyanophage, and dissolved organic carbon during natural lake-bank filtration at a kettle pond subject to harmful algal blooms

    Science.gov (United States)

    Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.

    2015-12-01

    Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the

  13. Net metering study of switching effects on electromechanical meters[Report prepared for the Measurement Canada Electricity Net Metering Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Overberghe, L. [Measurement Canada, London, ON (Canada)

    2006-03-03

    The feasibility of introducing net metering in the electricity sector was evaluated with particular reference to a project administered by Measurement Canada and Electro-Federation Canada (MicroPower Connect) in collaboration with Natural Resources Canada. The objective of the Measurement Canada Electricity Net Metering Project is to identify and eliminate the barriers introduced by the Electricity and Gas Inspection Act regarding the introduction of net metering. The purpose was to design a device that would allow rotation reversal in a residential electromechanical single phase meter. The device should approximate any fluctuations found in a typical net metering system. A series of tests were conducted to understand the influences, on errors, of forward-to-reverse and reverse-to-forward transitions, specifically to find evidence of error migration and mechanical stress. The project was designed to find and measure the effects of forward reverse switching on an electromechanical meter resulting from a change in energy flow. Twenty metres were calibrated in the forward direction in series from light load to high load. Power factor was not adjustable. Test points were then applied in both the forward and reverse directions. The exercise yielded individual errors which were aggregated to show average found errors after 3,000 transitions. Small shifts in errors were apparent and there was no evidence to support a disk flutter theory. refs., tabs., figs.

  14. Soft-sensing, non-intrusive multiphase flow meter

    NARCIS (Netherlands)

    Wrobel, K.; Schiferli, W.

    2009-01-01

    For single phase flow meters more and better non-intrusive or even clamp-on meters become available. This allows for a wider use of meters and for easier flow control. As the demand for multiphase meters is increasing, the current aim is to develop a non-intrusive multiphase flow meter. The non-intr

  15. Attached and unattached bacterial communities in a 120-meter corehole in an acidic, crystalline rock aquifer.

    Science.gov (United States)

    Lehman, R M; Roberto, F F; Earley, D; Bruhn, D F; Brink, S E; O'Connell, S P; Delwiche, M E; Colwell, F S

    2001-05-01

    The bacteria colonizing geologic core sections (attached) were contrasted with those found suspended in the groundwater (unattached) by examining the microbiology of 16 depth-paired core and groundwater samples using a suite of culture-independent and culture-dependent analyses. One hundred twenty-two meters was continuously cored from a buried chalcopyrite ore hosted in a biotite-quartz-monzonite porphyry at the Mineral Park Mine near Kingman, Ariz. Every fourth 1.5-m core was acquired using microbiologically defensible methods, and these core sections were aseptically processed for characterization of the attached bacteria. Groundwater samples containing unattached bacteria were collected from the uncased corehole at depth intervals corresponding to the individual cores using an inflatable straddle packer sampler. The groundwater was acidic (pH 2.8 to 5.0), with low levels of dissolved oxygen and high concentrations of sulfate and metals, including ferrous iron. Total numbers of attached cells were less than 10(5) cells g of core material(-1) while unattached cells numbered about 10(5) cells ml of groundwater(-1). Attached and unattached acidophilic heterotrophs were observed throughout the depth profile. In contrast, acidophilic chemolithotrophs were not found attached to the rock but were commonly observed in the groundwater. Attached communities were composed of low numbers (numbers (ca. 10(3) CFU ml(-1)) of neutrophilic heterotrophs of limited diversity. Sulfate-reducing bacteria were restricted to the deepest samples of both core and groundwater. 16S ribosomal DNA sequence analysis of attached, acidophilic isolates indicated that organisms closely related to heterotrophic, acidophilic mesophiles such as Acidiphilium organovorum and, surprisingly, to the moderately thermophilic Alicyclobacillus acidocaldarius were present. The results indicate that viable (but possibly inactive) microorganisms were present in the buried ore and that there was substantial

  16. 黑河中上游段河道渗漏量计算方法的试验研究%Experimental Study of Calculating Method of River Seepage in Middle and Upper Reaches of the Heihe River

    Institute of Scientific and Technical Information of China (English)

    胡兴林; 肖洪浪; 蓝永超; 王静; 丁宏伟

    2012-01-01

    With river cross-section method,river seepage in the middle and upper reaches of the Heihe River was experimentally studied.It is found that the composition of channel rock,river geometry morphological and human activities changing output and input water pattern greatly effect river seepage.River seepage remarkably changes before and after water transfer in whole basin.For instance,in the sector from Yingluoxia to Bridge 312,the seepage amount was 1.2543 × 108m3 before water transfer and is 4.3747 × 108m3 after water transfer.The smaller the river discharge,the larger the water loss rate will be.One can see that the loss rate of unit river length of each reaches follows a reciprocal manner.This conclusion is drawn from experimental analysis by contrasting the observations in the upstream and downstream cross-sections of middle and upper reaches of the Heihe River,consistent with actual situation,which can be used as basis for analyzing surface water and groundwater resources transformation in the middle and upper reaches of the Heihe River,simulating groundwater flow system,and modeling repeated utilization of water resources.The conclusion also can be used to calculate seepage amount for different simulation models.%通过河道断面法对黑河中上游河段河道渗漏量进行了比测试验,结果表明:河床岩性组成、河流平面几何形态变化以及人类活动对输水方式的改变等对河道渗漏量影响显著.黑河实施全流域调水前后河道渗漏量发生显著的跳跃性变化,莺落峡至312桥区间河道渗漏量调水前为1.2543×108 m3,调水后为4.3747×108 m3,调水后较调水前河道渗漏量增加3.1203×108 m3;河道流量越小其相应损失率愈大,河道流量越大,其相应损失率愈小,由此得出各河段不同流量单位河长的损失率服从倒数函数分布.研究结果是在黑河中上游实体河道上进行上下断面流量比测试验的基础上得出的,符合该河段的实际情况,

  17. Porosity, Dispersivity, and Contaminant Transport in Groundwater

    Institute of Scientific and Technical Information of China (English)

    MOIWO Juana P.

    2001-01-01

    Porosity (n) and Dispersivity (D) were modeled in relation to Solute Transport Time (t) in a saturated, homogeneous, isotropic, unconfined aquifer using the MOC model. It was noted that n and D have an important influence on solute transport time t in groundwater, with a consistently strong and direct relationship between n, D, and t. In the case of porosity, the relationship was found to be directly related to t when other aquifer properties remained unchanged. This was also mathematically argued using a form of the flow equation put forward by Henry Darcy (1856). Dispersivity on the other hand had somehow the same relationship with solute transport time t as porosity, but with much less effect. That is, higher dispersions lead to longer solute transport time within the aquifer system. This was because as the individual solute particles set off from the average seepage velocity, they traversed through longer distances due to tortuosity, mechanical mixing, diffusion, and microscopic heterogeneity latent in the porous media. Also when n and D were co- treated over t, n was noted to be dominant over D with regard t. This follows that the effect of porosity on solute transport time far out shadowed that of dispersivity. Stated in other words, the dispersivity of a substance in any porous medium is to a large extent a function of the porosity of that medium.

  18. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  19. VT USGS NED DEM (10 meter) - statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset is derived from the multi-resolution National Elevation Dataset (NED), at resolutions of both 1/3 arc-second (approx. 10 meters) and...

  20. EMMNet: sensor networking for electricity meter monitoring.

    Science.gov (United States)

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  1. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  2. Informatics Solutions for Smart Metering Systems Integration

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica OPREA

    2015-01-01

    Full Text Available In this paper different aspects regarding smart metering systems integration have been depicted. Smart metering systems, renewable energy sources integration and advanced tariff systems implementation require informatics solution that could automatically collect and process data, forecast the behavior of electricity consumers, analyze trends regarding electricity prices, optimize the consumption of consumers, provide friendly interfaces, etc. They are advanced technologies that represent solutions for insufficient conventional primary energy sources, gas emissions, dependency on energy sources located outside European Union and issues related to energy efficiency. This paper mainly describes several informatics solutions correlated with operational requirements for smart metering system and our proposal for simplified architecture of smart metering systems, with three distinct levels (base level, middle level and top level and load profile calculation methods.

  3. Solid state recording current meter conversion

    Science.gov (United States)

    Cheng, Ralph T.; Wang, Lichen

    1985-01-01

    The authors describe the conversion of an Endeco-174 current meter to a solid-state recording current meter. A removable solid-state module was designed to fit in the space originally occupied by an 8-track tape cartridge. The module contains a CPU and 128 kilobytes of nonvolatile CMOS memory. The solid-state module communicates with any terminal or computer using an RS-232C interface at 4800 baud rate. A primary consideration for conversion was to keep modifications of the current meter to a minimum. The communication protocol was designed to emulate the Endeco tape translation unit, thus the need for a translation unit was eliminated and the original data reduction programs can be used without any modification. After conversion, the data recording section of the current meter contains no moving parts; the storage capacity of the module is equivalent to that of the original tape cartridge.

  4. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  5. EPA Region 1 - Valley Depth in Meters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Raster of the Depth in meters of EPA-delimited Valleys in Region 1. Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model...

  6. USGS Digital Orthophoto Quad (DOQ) - 3 meter

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data files are a collection of the USGS standard DOQs that have been resampled to a 3-meter cell resolution and mosaiced into quad format vs quarter quad...

  7. New consumer services provided by smart metering

    Directory of Open Access Journals (Sweden)

    Daminov Ildar

    2015-01-01

    Full Text Available This paper focuses on the issues of smart metering market and considers different services provided by smart metering from consumer point of view. Firstly, smart metering deployment challenges emerging and conventional tariffs, which modify a consumer behavior and thus, the entire electric energy market can be optimized since the customer is motivated to consume less energy. Secondly, the authors illustrate changes in electricity quality, which have an impact on consumer relations with utility. Additionally, two main indices of grid resilience – SAIDI and SAIFI – are exemplified to reveal the improvement potential of smart metering implementation in certain regions of Russia that also influence the consumer. Finally, in-home display and privacy problem directly reflect the consumer’s behavior, thus the private life rights should not be violated as they are guaranteed by law.

  8. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  9. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  10. Intelligent Metering for Urban Water: A Review

    Directory of Open Access Journals (Sweden)

    Rodney Stewart

    2013-07-01

    Full Text Available This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been driven by the desire for increased data regarding time of use and end-use (such as use by shower, toilet, garden, etc. as well as by the ability of the technology to reduce labour costs for meter reading. Technology development in the water sector generally lags that seen in the electricity sector. In the coming decade, the deployment of intelligent water metering will transition from being predominantly “pilot or demonstration scale” with the occasional city-wide roll-out, to broader mainstream implementation. This means that issues which have hitherto received little focus must now be addressed, namely: the role of real-time data in customer engagement and demand management; data ownership, sharing and privacy; technical data management and infrastructure security, utility workforce skills; and costs and benefits of implementation.

  11. Assessment of groundwater pathways and contaminant transport in Florida and Georgia using multiple chemical and microbiological indicators

    Science.gov (United States)

    Mahon, Gary L.

    2011-01-01

    The hydrogeology of Florida, especially in the northern part of the state, and southwestern Georgia is characterized by a predominance of limestone aquifers overlain by varying amounts of sands, silts, and clays. This karstic system of aquifers and their associated springs is particularly vulnerable to contamination from various anthropogenic activities at the land surface. Numerous sinkholes, disappearing streams, and conduit systems or dissolution pathways, often associated with large spring systems, allow rapid movement of contaminants from the land surface to the groundwater system with little or no attenuation or degradation. The fate of contaminants in the groundwater system is not fully understood, but traveltimes from sources are greatly reduced when conduits are intercepted by pumping wells and springs. Contaminant introduction to groundwater systems in Florida and Georgia is not limited to seepage from land surface, but can be associated with passive (drainage wells) and forced subsurface injection (aquifer storage and recovery, waste-water disposal).

  12. The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater

    Science.gov (United States)

    Brauer, C. C.; Teuling, A. J.; Torfs, P. J. J. F.; Uijlenhoet, R.

    2014-10-01

    We present the Wageningen Lowland Runoff Simulator (WALRUS), a novel rainfall-runoff model to fill the gap between complex, spatially distributed models which are often used in lowland catchments and simple, parametric (conceptual) models which have mostly been developed for sloping catchments. WALRUS explicitly accounts for processes that are important in lowland areas, notably (1) groundwater-unsaturated zone coupling, (2) wetness-dependent flow routes, (3) groundwater-surface water feedbacks and (4) seepage and surface water supply. WALRUS consists of a coupled groundwater-vadose zone reservoir, a quickflow reservoir and a surface water reservoir. WALRUS is suitable for operational use because it is computationally efficient and numerically stable (achieved with a flexible time step approach). In the open source model code default relations have been implemented, leaving only four parameters which require calibration. For research purposes, these defaults can easily be changed. Numerical experiments show that the implemented feedbacks have the desired effect on the system variables.

  13. Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India.

    Science.gov (United States)

    Dhakate, Ratnakar; Singh, V S; Hodlur, G K

    2008-12-30

    The pre-Cambrian chromites ore deposits in Sukinda valley, Jajpur District, Orissa, India, are well known for chromite ore deposits. The exploitation of the ore is carried out through open cast mining method since the last few decades. In the process, the overburden and ore dumps are stored on ground surface, where leaching of chromite and other toxic element takes place particularly during monsoon seasons. This leachate may cause threat to groundwater in the vicinity. An integrated approach has been adopted to evaluate possibility of pollution due to mine seepage and leachate migration on groundwater regime. The approach involves geophysical, hydrogeological, hydro-chemical and aquifer modeling studies. The investigation has the significance as many habitats surround the mining area facing groundwater problems.

  14. Smart meters. Smart metering. A solution module for a future-oriented energy system; Intelligente Zaehler. Smart Metering. Ein Loesungsbaustein fuer ein zukunftsfaehiges Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Nadia; Seidl, Hans (comps.)

    2011-12-15

    The German Energy Agency GmbH (Berlin, Federal Republic of Germany) reports on smart metering as a solution module for a future-oriented energy system by means of the following contributions: (1) Key role for smart meters; (2) What is smart metering? (3) Implementation of smart metering in Europe; (4) The market development to date in Germany; (5) Practical experiences with smart metering in Germany; (6) Frequently asked questions; (7) Smart metering in intelligent networks; (8) Legal framework conditions; (9) Data security and data protection in the utilisation of smart meters; (10) Ongoing information; (11) Efficient energy systems.

  15. FINITE ELEMENT NUMERICAL SIMULATION OF LAND SUBSIDENCE AND GROUNDWATER EXPLOITATION BASED ON VISCO-ELASTIC PLASTIC BLOT'S CONSOLIDATION THEORY

    Institute of Scientific and Technical Information of China (English)

    LUO Zu-jiang; ZENG Feng

    2011-01-01

    The land subsidence due to groundwater exploitation has an obvious hysteretic nature with respect to the decrease of the under groundwater level,and the uneven settlement often causes ground fissures.To study these important features,a visco-elastic plastic constitutive relationship with consideration of the coupling of seepage and soil deformation is proposed,and a finite element model with variable coefficients based on the Biot's consolidation theory is built.With the groundwater exploitation and the land subsidence control in Cangzhou City,Hebei Province as an example,the variations of the under groundwater level and the development of the land subsidence due to the groundwater exploitation are simulated and ground fissures are predicted by the horizontaldisplacement calculation.The results show that the lag time between the land subsidence and the under groundwater level descent is about a month,and the simulated results of fissures agree well with the observed data.The model can well reveal the characterization of the interaction between the land subsidence and the groundwater exploitation.

  16. 3-D VARIABLE PARAMETER NUMERICAL MODEL FOR EVALUATION OF THE PLANNED EXPLOITABLE GROUNDWATER RESOURCE IN REGIONAL UNCONSOLIDATED SEDIMENTS

    Institute of Scientific and Technical Information of China (English)

    LUO Zu-jiang; WANG Yan

    2012-01-01

    In order to correctly evaluate the exploitable groundwater resource in regional complex,thick Quaternary unconsolidated sediments,the whole Quaternary unconsolidated sediments are considered as a unified hydrogeological unit and a 3-D unsteady groundwater flow numerical model is adopted.Meanwhile,with the consideration of the dynamic changes of the porosity,the hydraulic conductivity and the specific storage with the groundwater level dropping during the exploitation process,an improved composite element seepage matrix adjustment method is applied to solve the unsteady flow problem of free surface.In order to evaluate the exploitable groundwater resource in Cangzhou,Hebei Province,the hydrogeological conceptual model of Cangzhou is generalized to establish,a 3-D variable parameter numerical model of Cangzhou.Based on the prediction of the present groundwater exploitation,and by adjusting the groundwater exploitation layout,the exploitable groundwater resource is predicted.The model enjoys features like good convergence,good stability and high precision.

  17. Environmental restoration: Integrating hydraulic control of groundwater, innovative contaminant removal technologies and wetlands restoration--A case study at SRS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.M.; Serkiz, S.M.; Adams, J.; Welty, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-01-01

    The groundwater remediation program at the F and H Seepage Basins, Savannah River Sits (SRS) is a case study of the integration of various environmental restoration technologies at a single waste site. Hydraulic control measures are being designed to mitigate the discharge of groundwater plumes to surface water. One of the primary constituents of the plumes is tritium. An extraction and reinjection scenario is being designed to keep the tritium in circulation in the shallow groundwater, until it can naturally decay. This will be accomplished by extracting groundwater downgradient of the waste sites, treatment, and reinjection of the tritiated water into the water table upgradient of the basins. Innovative in-situ technologies, including electrolytic migration, are being field tested at the site to augment the pump-treat-reinject system. The in-situ technologies target removal of contaminants which are relatively immobile, yet represent long term risks to human health and the environment. Wetland restoration is an integral part of the F and H remediation program. Both in-situ treatment of the groundwater discharging the wetlands to adjust the pH, and replacement of water loss due to the groundwater extraction program ar being considered. Toxicity studies indicate that drought and the effects of low pH groundwater discharge have been factors in observed tree mortality in wetlands near the waste sites.

  18. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  19. Oil seepage onshore West Greenland: evidence of multiple source rocks and oil mixing

    Energy Technology Data Exchange (ETDEWEB)

    Bojesen-Koefoed, J.; Christiansen, F.G.; Nytoft, H.P.; Pedersen, A.K.

    1998-08-01

    Widespread oil seepage and staining are observed in lavas and hyaloclastites in the lower part of the volcanic succession on northwestern Disko and western Nuussuaq, central West Greenland. Chemical analyses suggest the existence of several petroleum systems in the underlying Cretaceous and Paleocene fluviodeltaic to marine sediments. Seepage and staining commonly occur within vesicular lava flow tops, and are often associated with mineral veins (mostly carbonates) in major fracture systems. Organic geochemical analyses suggest the existence of at least five distinct oil types: (1) a waxy oil, which on the basis of the presence of abundant angiosperm biological markers, is interpreted as generated from Paleocene mud-stones (the `Marraat type`); (2) a waxy oil, probably generated from coals and shales of the Cretaceous Atane formation (the `Kuugannguaq type`); (3) a low to moderately waxy oil containing 28,30-bisnorhopane, and abundant C{sub 27}-diasteranes and regular steranes (the `Itilli type`), possibly generated from presently unknown Cenomanian-Turonian marine modstones; (4) a low wax oil of marine, possibly lagoonal/saline lacustrine origin, containing ring-A methylated steranes and a previously unknown series of extended 28-norhopanes (the `Eqalulik type`); (5) a waxy oil with biological marker characteristics different from both the Kuugannguaq and Marraat oil types (the `Niaqornaarsuk type`), probably generated from Campanian mud-stones. The presence of widespread seepage and staining originating from several source rocks is encouraging for exploration in basins both on- and offshore western Greenland, where the existence of prolific source rocks has previously been the main exploration risk. (au) EFP-96. 34 refs.

  20. Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis

    Directory of Open Access Journals (Sweden)

    Venkatesh Kumar

    2016-01-01

    Full Text Available The variation of pore water pressure in earthen dams plays an important role in maintaining its stability. The pore water pressure within the dam are altered by the external loading conditions like rapid drawdown of reservoir water, earthquake loading and raise of water table caused by infiltration of rainfall. The seepage through an earthen dam involves saturated and unsaturated flows but to avoid complexity in solving the non-linear partial differential equations, the flow in unsaturated zone is neglected and seepage analysis is carried by constructing the flow net in which the pore water pressures beyond the free surface is taken as zero. In actual conditions negative pore water pressure develops beyond the free surface due to the capillarity which leads development to the matrix suction of the soil. In this paper a comparative study on distribution of pore pressure in a zoned earthen dam under steady state and transient conditions had been carried out considering unsaturated-saturated seepage theory. To solve the non-linear partial differential equations, finite element method has been adopted in the present study. The earthen dam has been modeled in different stages. At each stage a new parameter was added and parametric analysis was carried out. The results indicate that negative pore water pressure developed at the downstream side and the pore pressures at the mid-levels of the core are high. This specifies that, soils with low permeability have higher pore pressure. The pore pressures appeared to be higher in upstream side during rapid drawdown compared to steady state.

  1. The linear stability of vertical mixture seepage into the close porous filter with clogging

    Science.gov (United States)

    Maryshev, Boris S.

    2017-02-01

    In the present paper, filtration of a mixture through a close porous filter is considered. A heavy solute penetrates from the upper side of the filter into the filter body due to seepage flow and diffusion. In the presence of heavy solute a domain with a heavy fluid is formed near the upper boundary of the filter. The stratification, at which the heavy fluid is located above the light, is unstable. When the mass of the heavy solute exceeds the critical value, one can observe the onset of instability. As a result, two regimes of vertical filtration can occur: (1) homogeneous seepage and (2) convective filtration. Filtration of a mixture in porous media is a complex process. It is necessary to take into account the solute immobilization (or sorption) and clogging of porous medium. We consider the case of low solute concentrations, in which the immobilization is described by the linear MIM (mobile/immobile media) model. The clogging is described by the dependence of permeability on porosity in terms of the Carman-Kozeny formula. The presence of immobile (or adsorbed) particles of the solute decreases the porosity of media and porous media becomes less permeable. The purpose of the paper is to find the stability conditions for the homogeneous vertical seepage of the mixture into the close porous filter. The linear stability problem is solved using the quasi-static approach. The critical times of instability are estimated. The stability maps have been plotted in the space of system parameters. The applicability of quasi-static approach is substantiated by direct numerical simulation.

  2. ASSESSMENT OF HYDROCARBON SEEPAGE DETECTION METHODS ON THE FORT PECK RESERVATION, NORTHEAST MONTANA

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence M. Monson

    2003-06-30

    Surface exploration techniques have been employed in separate study areas on the Fort Peck Reservation in northeastern Montana. Anomalies associated with hydrocarbon seepage are documented in all three areas and a variety of surface exploration techniques can be compared. In a small area with established production, Head Gas and Thermal Desorption methods best match production; other methods also map depletion. In a moderate-size area that has prospects defined by 3D seismic data, Head Gas along with Microbial, Iodine, and Eh soil anomalies are all associated with the best hydrocarbon prospect. In a large area that contains many curvilinear patterns observed on Landsat images, that could represent micro-seepage chimneys, results are inconclusive. Reconnaissance mapping using Magnetic Susceptibility has identified a potential prospect; subsequent Soil Gas and Head Gas surveys suggest hydrocarbon potential. In the final year of this project the principle contractor, the Fort Peck Tribes, completed a second survey in the Wicape 3D Seismic Prospect Area (also known as Area 6 in Phase I of the project) and sampled several Landsat image features contained in the Smoke Creek Aeromag Anomaly Area (also known as Area 1 in Phase II of the project). Methods determined to be most useful in Phases I and II, were employed in this final Phase III of the study. The Southwest Wicape seismic anomaly was only partially confirmed. The abundant curvilinears proposed to be possible hydrocarbon micro-seepage chimneys in the Smoke Creek Area were not conclusively verified as such. Insufficient sampling of background data precludes affirmative identification of these mostly topographic Landsat features as gas induced soil and vegetation anomalies. However relatively higher light gas concentrations were found associated with some of the curvilinears. Based on the findings of this work the Assiniboine & Sioux Tribes of the Fort Peck Reservation intend to utilize surface hydrocarbon

  3. An Investigation of Coastal Groundwater Discharge and Associated Nutrient Inputs Using Electrical Resistivity, Temperature, and Geochemical Tracer in Pescadero Lagoon, California

    Science.gov (United States)

    Volpi, C. M.; Swarzenski, P. W.; McPhee-Shaw, E. E.; Aiello, I. W.

    2014-12-01

    Pescadero Lagoon is a complex lagoon system located on the central California coast in San Mateo County. Over the last decade, external stressors such as degraded water quality, restricted circulation, heightened groundwater withdrawals, changes in the fluvial geomorphology that affect surface water runoff, and widespread agriculture in the watershed have impacted the lagoon. The lagoon system is bounded on the marine side by an ephemeral sand berm that is seasonally closed and so hinders open exchange with the ocean. This berm and the Mediterranean-type climate play an important role in the lagoon's circulation and water quality. The most high-profile and deleterious effect of reduced ocean-lagoon exchange and restricted water circulation is the occurrence of bottom-water low oxygen events that can trigger seasonal fish kills. This project employed a suite of geophysical and geochemical techniques to better understand the role of groundwater on lagoon water and constituent balances. The main objective of this research was to quantify groundwater seepage rates into Pescadero Lagoon across broad spatial and temporal scales using electrical resistivity, temperature, and Radon-222 (222Rn) as tracers of groundwater movement. Resulting seepage rate estimates were then used to derive associated nutrient flux estimates, which can be compared to atmospheric and riverine nutrient load estimates to yield more comprehensive nutrient budgets. The groundwater seepage into the lagoon for the time period of March 2013 to February 2014 was relatively low and did not exceed 0.2 m/day. The timing of the sand berm closure, lack of hydrologic connectivity, and lack of freshwater input proved to be crucial limiting factors in the overall health of the ecosystem.

  4. Quantifying groundwater exchange rates in a beach barrier lagoon using a radioisotopic tracer and geophysical methods: Younger Lagoon, Santa Cruz, CA

    Science.gov (United States)

    Richardson, C. M.; Swarzenski, P. W.; Johnson, C.

    2013-12-01

    Coastal lagoons are highly productive systems with a strong dependence on the physico-chemical regime of their surrounding environment. Groundwater interactions with the nearshore environment can drive ecosystem stability and productivity. Lagoons with restricted surface connectivity interact with coastal waters via subsurface flow paths that follow natural hydraulic gradients, producing a dynamic freshwater-saltwater mixing zone with submarine groundwater discharge (SGD) regions that are tidally influenced. Recent studies demonstrate the importance of SGD in maintaining nearshore ecology through a number of processes, including enhanced chemical loadings, focused biogeochemical transformations, and complex water mixing scenarios (Slomp and Van Cappellen, 2004 and Taniguchi et al., 2002). Groundwater discharge to the coastal ocean is often slow, diffuse and site-specific. Traditional methods used to evaluate SGD fluxes operate at varying scales and typically result in over or underestimates of SGD. Novel monitoring and evaluation methods are required in order to better understand how coastal aquifer systems influence multi-scalar water and nutrient budgets. Recently developed methods to determine fluid exchange rates include the use of select U- and Th-series radionuclides, multi-channel resistivity imaging, as well as the integration of temperature data and 1-D analytical modeling. Groundwater fluxes were examined in a coastal lagoon system to characterize the physics of subsurface fluid transport evidenced by visible seepage faces at low tide. Fluid exchange rates were quantified to determine the spatial and temporal variability of groundwater movement using thermal time series, water level data, and a coupled radiotracer-geophysical method. Our investigation of subsurface characteristics and groundwater fluxes using both traditional and newly-developed methods indicated that seasonal water inputs and tidal controls on water table elevation significantly

  5. AN UNSTEADY SEEPAGE FLOW MODEL OF VISCO-ELASTIC POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-jun; FU Chun-quan; LV Yan-ping

    2004-01-01

    With the consideration of the visco-elasticity,the adsorption effect and the variation of rheological parameters, a seepage flow model of visco-elastic polymer solutions was established. The model was numerically treated with the finite difference method. Then curves of Bottom Hole Pressure (BHP) and formation pressure were drawn. The influences of the relaxation time, the injection rate, the permeability reduction co efficient, the consistency coefficient and the power-law exponent of the injected fluid on pressure performance were analyzed. This study shows that it is necessary to consider the visco-elasticity of non-Newtonian fluid in analyzing of pressure performance in the polymer flooding.

  6. Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media

    Science.gov (United States)

    Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi

    2016-09-01

    We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.

  7. Accumulation of mercury by aufwuchs in Wisconsin seepage lakes: Implications for monitoring

    Science.gov (United States)

    Cope, W. Gregory; Rada, Ronald G.

    1992-01-01

    We examined temporal variation in the total Hg content of aufwuchs (attached algae) collected from artificial substrates in 11 seepage lakes in north-central Wisconsin and its relation to the Hg content of resident yellow perch Perca flavescens from the lakes. Dry weight concentrations of Hg in aufwuchs varied temporally, as follows: summer/fall 1985 > summer 1985 > spring/summer 1986. Areal concentrations of Hg during the 1985 sampling periods were greater than concentrations during the spring/summer 1986 period, but did not differ from each other. The analyses of aufwuchs do not indicate potential accumulation of Hg in fish in these lakes.

  8. Groundwater pollution risk mapping for the Eocene aquifer of the Oum Er-Rabia basin, Morocco

    Science.gov (United States)

    Ettazarini, Said

    2006-11-01

    Sustainable development requires the management and preservation of water resources indispensable for all human activities. When groundwater constitutes the main water resource, vulnerability maps therefore are an important tool for identifying zones of high pollution risk and taking preventive measures in potential pollution sites. The vulnerability assessment for the Eocene aquifer in the Moroccan basin of Oum Er-Rabia is based on the DRASTIC method that uses seven parameters summarizing climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by using GIS techniques and applying the “generic” and “agricultural” models according to the DRASTIC charter. Resulting maps revealed that the aquifer is highly vulnerable in the western part of the basin and areas being under high contamination risk are more extensive when the “agricultural” model was applied.

  9. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  10. Quantifying seepage using heat as a tracer in selected irrigation canals, Walker River Basin, Nevada, 2012 and 2013

    Science.gov (United States)

    Naranjo, Ramon C.; Smith, David W.

    2016-11-16

    The Walker River is an important source of water for western Nevada. The river provides water for agriculture and recharge to local aquifers used by several communities. Farmers began diverting water from the Walker River in the 1860s to support growing agricultural development. Over time, the reduced inflows into Walker Lake from upstream reservoirs and diversions have resulted in 170 feet of lake level decline and increased dissolved-solids concentrations to levels that threaten aquatic ecosystems, including survival of Lahonton cutthroat trout, a native species listed in the Endangered Species Act. Investigations of the water-budget components in the Walker River Basin have revealed uncertainty in the recharge to aquifers from irrigation canals. To address this need, the U.S. Geological Survey conducted an extensive field study from March 2012 through October 2013 to quantify seepage losses in selected canals in the Smith Valley, Mason Valley, and Walker Lake Valley irrigation areas.The seepage rates estimated for the 2012 and 2013 irrigation seasons in the Smith Valley transect sites (Saroni and Plymouth canals) ranged between 0.01 to 2.5 feet per day (ft/d) (0.01 to 0.68 cubic feet per second per mile [ft3/s-mi]). From 2012 to 2013, the average number of days the canals had flowing water decreased from 190 to 125 due to drier climate and lack of water available for diversion from the Walker River. The nearly 50-percent reductions in volumetric loss rates between 2012 and 2013 were associated with less than average diversions into canals from the Walker River and reductions in infiltration rates following routine canal maintenance.Models developed for the Saroni canal in 2012 were recalibrated in 2013 to evaluate changes in seepage as a result of siltation. Just prior to the 2012 irrigation season, nearly the entire length of the canal was cleared of vegetation and debris to improve flow conveyance. In 2013, following the first year of maintenance, a 90-percent

  11. A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi

    Science.gov (United States)

    Msonda, K. W. M.; Masamba, W. R. L.; Fabiano, E.

    A study was carried out to determine fluoride concentration in groundwaters of Nathenje area situated in Lilongwe District in the central region of Malawi. Water samples were collected from 176 boreholes and shallow wells during different months in 2001 and 2002. Samples were then analysed for fluoride by using a fluoride electrode and an ion selective meter. The results showed that fluoride concentrations for the rainy season varied from dental fluorosis in areas where the fluoride concentration was high.

  12. How do groundwater-dependent lakes react if the aquifer they rely on is being pumped?

    Science.gov (United States)

    Vainu, Marko; Terasmaa, Jaanus

    2015-04-01

    Groundwater is a valuable source of drinking water, but at the same time it is the primary contributor to the existence of many surface water bodies. If the latter truth is overlooked in water resources management, and ground- and surface water are not considered as a single resource, then the sustainability of groundwater-dependent ecosystems will become under threat. The necessity for implementing an integrated management of ground- and surface water has also been stressed in the EU Water Framework Directive. This study aims to evaluate the effect of increased groundwater abstraction to groundwater and lake levels; and to evaluate the effect of increased groundwater abstraction to the seepage patterns in one example lake. The Kurtna Lake District in northeastern Estonia contains almost 40 small lakes which are situated in and around the Kurtna Kame Field and constitute an EU Special Area of Conservation. The sands that form the kame field contain a Quaternary groundwater aquifer. Water has been pumped from the aquifer for household use with varying rates since the 1970s, but starting from the summer of 2012 the average pumping rate was increased by 51% compared to the year before. During the current study the water levels of five lakes were monitored regularly from May 2012 to June 2013 - before and after the increase in the pumping rate. The water levels dropped 0.3 to 0.7 m during the year in three closed-basin lakes closest to the abstraction wells, but did not change neither in a flow-through lake nor in a closed-basin lake situated 1.6 km from the wells. Groundwater level in the aquifer (monitored by the Estonian Geological Survey) dropped up to 0.8 m near the abstraction wells in the course of the year, but did not change further from the wells. The estimates of average annual groundwater recharge were derived for the twelve months before both June 2012 and June 2013. Although the recharge rate was lower in the first year, the water-level drop was

  13. FRESHEM - Fresh-saline groundwater distribution in Zeeland (NL) derived from airborne EM

    Science.gov (United States)

    Siemon, Bernhard; van Baaren, Esther; Dabekaussen, Willem; Delsman, Joost; Gunnik, Jan; Karaoulis, Marios; de Louw, Perry; Oude Essink, Gualbert; Pauw, Pieter; Steuer, Annika; Meyer, Uwe

    2017-04-01

    In a setting of predominantly saline surface waters, the availability of fresh water for agricultural purposes is not obvious in Zeeland, The Netherlands. Canals and ditches are mainly brackish to saline due to saline seepage, which originates from old marine deposits and salt-water transgressions during historical times. The only available fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh groundwater is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing this fresh groundwater properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labour-intensive, airborne electromagnetics (AEM), which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO started FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in October 2014. Within 3x2 weeks of the first project year, the entire area of about 2000 km2 was surveyed using BGR's helicopter-borne geophysical system totalling to about 10,000 line-km. The HEM datasets of 17 subareas were carefully processed using advanced BGR in-house software and inverted to 2.5 Million resistivity-depth models. Ground truthing demonstrated that the large-scale HEM results fit very well with small-scale ground EM data (ECPT). Based on this spatial resistivity distribution, a 3D voxel model for Chloride concentration was derived for the entire province taking into account geological model data (GeoTOP) for the lithology correction and local in-situ groundwater measurements for the translation of water conductivity to Chloride concentration. The 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  14. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger

  15. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  16. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine A.; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-10-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960-2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11-13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  17. Isotope Method for Confined Groundwater Recharge of the Lower Reaches of the Heihe River, Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Environmental isotopes have been applied to analyze confined groundwater recharge in the lower reaches of the Heihe River, Inner Mongolia. CFC is regarded as a tracer that determines the date of groundwater, the date being less than 45 a. The confined groundwater within the Gurinai area and Ejin Basin other than the surface water of Heihe River might have originated from precipitation from Qilian Mountain or/and the Tibetan Plateau. The deep confined groundwater overflows into an upper aquifer and emerges into the ground, forming springs and lakes within the low-lying area. The recharge volume is estimated to be around 400 million-cubic meters.

  18. Fault zone controlled seafloor methane seepage in the rupture area of the 2010 Maule earthquake, Central Chile

    Science.gov (United States)

    Geersen, Jacob; Scholz, Florian; Linke, Peter; Schmidt, Mark; Lange, Dietrich; Behrmann, Jan H.; Völker, David; Hensen, Christian

    2016-11-01

    Seafloor seepage of hydrocarbon-bearing fluids has been identified in a number of marine fore arcs. However, temporal variations in seep activity and the structural and tectonic parameters that control the seepage often remain poorly constrained. Subduction zone earthquakes, for example, are often discussed to trigger seafloor seepage but causal links that go beyond theoretical considerations have not yet been fully established. This is mainly due to the inaccessibility of offshore epicentral areas, the infrequent occurrence of large earthquakes, and challenges associated with offshore monitoring of seepage over large areas and sufficient time periods. Here we report visual, geochemical, geophysical, and modeling results and observations from the Concepción Methane Seep Area (offshore Central Chile) located in the rupture area of the 2010 Mw. 8.8 Maule earthquake. High methane concentrations in the oceanic water column and a shallow subbottom depth of sulfate penetration indicate active methane seepage. The stable carbon isotope signature of the methane and hydrocarbon composition of the released gas indicate a mixture of shallow-sourced biogenic gas and a deeper sourced thermogenic component. Pristine fissures and fractures observed at the seafloor together with seismically imaged large faults in the marine fore arc may represent effective pathways for methane migration. Upper plate fault activity with hydraulic fracturing and dilation is in line with increased normal Coulomb stress during large plate-boundary earthquakes, as exemplarily modeled for the 2010 earthquake. On a global perspective our results point out the possible role of recurring large subduction zone earthquakes in driving hydrocarbon seepage from marine fore arcs over long timescales.

  19. 赤泥堆场岩溶渗漏治理%Treatment of karst seepage in red mud storage site

    Institute of Scientific and Technical Information of China (English)

    吴松明

    2014-01-01

    Seepage is always a problem in red mud storage site.Seepage is inevitable in red mud storage site of karst area because of karst fissures and conduits,and the seepage-proofing treatment is a complicated and systematic project.Strongly alkaline (pH of solution ≥12)liquids or solids will have worse effect on envi-ronment if the fluid waste is seeped.The comprehensive seepage-proofing treatment methods of karst seep-age conduits in red mud storage site include vertical curtain grouting,in-site aven plugging and red mud blan-keting.The comparison of permeability of strata and water quality at outflow points before and after grou-ting shows that the seepage-proofing treatment is effective.%渗漏问题一直是赤泥堆场的一个难题。在岩溶地区的赤泥堆场,因岩溶裂隙管道的存在,渗漏的产生是必然的,而防渗处理又是一个比较复杂、系统的工程。而对堆存强碱性(溶液的 pH 值≥12)液、固体物的堆场,若发生废液外渗,其对环境的危害及影响都较大。对赤泥堆场岩溶渗漏通道采取垂直帷幕注浆、场内封堵落水洞、赤泥铺盖等综合防渗措施进行治理,通过灌浆前后地层的渗透性对比和泉点水质监测,结果表明防渗治理的效果很好。

  20. Anti-Theft Automatic Metering Interface

    Directory of Open Access Journals (Sweden)

    Abhijeet Das

    2015-08-01

    Full Text Available Abstract Electricity is now more than a necessity and its need is increasing day by day resulting in power theft and power scarcity. The purpose of this project is to provide automatic control and monitoring of the Domestic Energy Meter enabling the Electricity Department to read meter readings without anyone visiting each house and also prevent electricity theft .This can be achieved by the use of a Microcontroller Unit that continuously monitors and records the Energy Meter readings in its permanent memory location. This system also makes use of a GSM module for remote monitoring and control of Energy Meter with the help of an interfacing circuitry. The Microcontroller based system continuously records the readings and the live meter reading can be sent to the Electricity department after a count period or on request. This system also can be used to disconnect the power supply to the house in case of non-payment of electricity bills. The Substation will be the receiving end. The data received is fed to a microcontroller at the Substation which will automatically calculate the bill based on tariff provider and display it.

  1. Multiphase flow metering: 4 years on

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.

    2005-07-01

    Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)

  2. Diagnostic Flow Metering using Ultrasound Tomography

    Science.gov (United States)

    Chun, Sejong; Yoon, Byung-Ro; Lee, Kwang-Bock; Paik, Jong-Seung

    2010-06-01

    Flow meters, which are used for transferring water or crude oil through pipelines, require well-defined flow conditions for accurate flow rate monitoring. Even though all the installation conditions for the flow meters are satisfied, there could be unexpected flow disturbances, such as abrupt increase of upstream pressure, affecting on the performance of flow meters. To investigate any differences between measured and actual flow rates, flow velocity profiles inside the pipeline must be known. Ultrasound tomography is a means of reconstructing flow profiles from line-averaged velocities by Radon transformation. Diagnostic parameters are then extracted from the reconstructed flow profiles to give information whether the flow conditions are appropriate for accurate flow metering. In the present study, flow profiles downstream of a mass flow meter and a butterfly valve are reconstructed. Flow diagnostic parameters are defined using statistical moments such as mean value, standard deviation, skewness and kurtosis. The measured diagnostic parameters in the above-mentioned flow conditions are compared with those of fully-developed laminar and turbulent flow profiles to validate their usefulness.

  3. Improving the operation of the metering section

    Energy Technology Data Exchange (ETDEWEB)

    Zagoruiko, S.I.

    1983-01-01

    The metering section of the coal preparation division at OKhMK (Orsk-Khali-lovo Integrated Iron and Steel Works) has 18 silos each with volume of 780 tons, situated in two rows. Each silo is equipped with a type LDA-100 automatic metering device, consisting of an electromagnetic vibratory feeder and a scale belt conveyor. At a capacity of the charge supply system of 400-450 ton/hr and operation on a 4-component charge practically all the silos are in operation. The absence of reserve capacity and the impossibility of shutdown of any metering device for maintenance created certain difficulties in maintaining an uninterrupted supply of coal charge to the coking division. Stabilizing the operation of the metering section posed the problem of increasing the capacity of the existing metering devices. For this purpose a number of changes were made in their design. A new reducer was installed on the drive of the scale belt conveyor with a more powerful electric motor; the rotation speed of the drive drum rose to 35-40 rpm (the diameter of the drive drum was also increased from 220 to 272 mm). This, in turn, permitted an increase in the belt speed by a factor of 1.5-2.0 times, without a change in its active length.

  4. Computation of flow through Venturi meters

    Energy Technology Data Exchange (ETDEWEB)

    Sattery, J.A.; Reader-Harris, M.J.

    1997-07-01

    The computational fluid dynamics (CFD) work on Venturi meters reported in this paper was part of a large project for Shell Exploration and Production to investigate the application of Venturi meters to gas flow measurement. The majority of the experimental findings were reported in 'Unpredicted behaviour of Venturi flowmeters in gas at high Reynolds numbers' presented in the 1996 North Sea Flow Metering Workshop. CFD has been used to model the flow through Venturi tubes and thereby gain understanding of how the discharge coefficient is affected by the vital parameters of diameter ratio, pipe Reynolds number and roughness. It has also been used to calculate the effect of manufacturing tolerance. The discharge coefficients obtained from the calibration of Venturi meters have been used to validate the CFD predictions. The CFD results have also been compared with experimental results from the 1950s and 1960s with surprisingly good agreement. This work forms the basis of further possible research using CFD on the effect of upstream and Venturi surface roughness on the performance of these meters. The knowledge gained on the effect of surface roughness may also be applicable to ultrasonic flowmeters. (author)

  5. Modelling natural attenuation of heavy-metal groundwater contamination in the Selebi-Phikwe mining area, Botswana

    Science.gov (United States)

    Schwartz, M. O.; Kgomanyane, J.

    2008-04-01

    Seepage from a tailings dam is the major source of groundwater pollution in the Selebi-Phikwe area, where mining of sulphidic nickel-copper-cobalt ore started in 1973 and will continue until 2014. The seepage water has a pH in the range of 1.7-2.8 and is strongly enriched in SO4 2- (5,680 g/L) and heavy metals (6,230 μg/L Ni, 1,860 μg/L Cu and 410 μg/L Co). The fracture aquifer affected by pollution from the dam exhibits a remarkable capacity of heavy-metal sorption. Most of the Ni, Cu and Co is scavenged at less than 500 m distance downgradient from the polluting source, whereas SO4 2- is not immobilized significantly. The heavy-metal sorption process is assumed to be due to surface complexation, which is supported by a relatively high groundwater pH (in the range of 6.2-7.8 at >200 m distance from the tailings dam). The objective of this study is to demonstrate that the sorption process can be incorporated into a realistic three-dimensional reactive-transport groundwater model that is implicitly charge-balanced. The simulations are performed with the PHAST1.2 program, which is based on the HST3D flow and transport code and the hydrochemical PHREEQC2.12 code.

  6. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  7. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  8. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  9. Research on borehole stability of shale based on seepage-stress-damage coupling model

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ran

    2014-01-01

    Full Text Available In oil drilling, one of the most complicated problems is borehole stability of shale. Based on the theory of continuum damage mechanics, a modified Mohr-Coulomb failure criterion according to plastic damage evolution and the seepage-stress coupling is established. Meanwhile, the damage evolution equation which is based on equivalent plastic strain and the permeability evolution equation of shale are proposed in this paper. The physical model of borehole rock for a well in China western oilfield is set up to analyze the distribution of damage, permeability, stress, plastic strain and displacement. In the calculation process, the influence of rock damage to elastic modulus, cohesion and permeability is involved by writing a subroutine for ABAQUS. The results show that the rock damage evolution has a significant effect to the plastic strain and stress in plastic zone. Different drilling fluid density will produce different damage in its value, range and type. This study improves the theory of mechanical mechanism of borehole collapse and fracture, and provides a reference for the further research of seepage-stress-chemical-damage coupling of wall rock.

  10. Unsaturated Seepage Analysis of Cracked Soil including Development Process of Cracks

    Directory of Open Access Journals (Sweden)

    Ling Cao

    2016-01-01

    Full Text Available Cracks in soil provide preferential pathways for water flow and their morphological parameters significantly affect the hydraulic conductivity of the soil. To study the hydraulic properties of cracks, the dynamic development of cracks in the expansive soil during drying and wetting has been measured in the laboratory. The test results enable the development of the relationships between the cracks morphological parameters and the water content. In this study, the fractal model has been used to predict the soil-water characteristic curve (SWCC of the cracked soil, including the developmental process of the cracks. The cracked expansive soil has been considered as a crack-pore medium. A dual media flow model has been developed to simulate the seepage characteristics of the cracked expansive soil. The variations in pore water pressure at different part of the model are quite different due to the impact of the cracks. This study proves that seepage characteristics can be better predicted if the impact of cracks is taken into account.

  11. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea

    Science.gov (United States)

    Guan, H.; Feng, D.

    2015-12-01

    Authigenic carbonate rocks from an active seep (Site F) at 1120 m water depth of the South China Sea (SCS) were studied using mineralogical and lipid biomarker analyses. Carbonate mineral compositions, in specific samples, were predominantly aragonite, high-Mg calcite (HMC), or a mixture of both. Abundant 13C-depleted lipid biomarkers (various isoprenoids) diagnostic for archaea provide evidence that anaerobic oxidation of methane (AOM) mediated by anaerobic methane oxidizing archaea (ANME) and their bacterial partners is the major process leading to formation of the carbonates. Nearly a pure suite of AOM biomarkers was preserved in aragonitic carbonate in which predominant consortia were most likely ANME-2/Desulfosarcina & Desulfococcus (DSS) assemblages and a mixture of ANME-2/DSS and ANME-1/DSS consortia in the mixed mineral sample, the predominant consortia are in good accordance with the point that the relative higher methane seepage intensity favors the precipitation of aragonite over HMC. In contrast, the completely different biomarker patterns in HMC sample were mainly composed terrestrial organic matter and marine Thaumarchaea, which most likely originally within sediments accompanied with high organic matter input and low methane supply. This environment is known to be favored for archaea of ANME-1 and precipitation of HMC. High concentrations of 13C-depleted hopanoids, including diplopterol, hopanoic acids and hopanols were observed in the aragonite sample that may be sourced by the intermittent presence of oxic conditions in an overall anoxic condition, which was possibly induced by changing seepage intensities.

  12. Sedimentation of particles and aggregates in colloids considering both streaming and seepage

    Science.gov (United States)

    Song, Dongxing; Jin, Hui; Jin, Jingyu; Jing, Dengwei

    2016-10-01

    Sedimentation of colloids is a common phenomenon in various industrial processes. Aggregation of nanoparticles is expected to occur during the processes. However, previous studies often ignore the important features of aggregates, e.g. porosity and possible seepage, leading to a mathematical description of the sedimentation processes of low reliability. In this study, we successfully elaborated the partial differential equation of the dynamic concentration distribution of regimented colloids based on the Stokes approximation and diffusion along the negative gradient of concentration. The permeability of aggregates was obtained by the finite volume method and the ratios of the velocities of flowing around (u f) to seepage through (u s) aggregates over various primary particle sizes and aggregation structures were obtained based on the Darcy equations. After validation of the model, the effects of size and density of the particles and aggregates on the concentration profiles were investigated. Our results indicate that both an increase in size and density of particles and aggregates can accelerate the sedimentation process, and lead to more ‘thorough’ sedimentation. We mathematically explain why suspensions with high particle concentration are more unstable. What is more, replacing gravity with other volume forces, e.g. centrifugal force and magnetic forces, our model is expected to be applicable to centrifugation or magnetic sedimentation processes.

  13. Detailed Measurement of Horizontal Groundwater Velocities Without a Borehole

    Science.gov (United States)

    Bakker, M.; Calje, R.; Van der Made, K. J.; Schaars, F.

    2014-12-01

    A new methodology has been developed to measure horizontal groundwater velocities in unconsolidated aquifers. Groundwater velocities are measured with a heat tracer experiment. Temperature is measured along fiber optic cables using a Distributed Temperature Sensing (DTS) system. Fiber optic cables and a separate heating cable are pushed into the ground to depths of tens of meters. The groundwater is heated with the heating cable and the response is measured along several nearby fiber optic cables. The measured temperature responses are used to estimate the distribution of the magnitude and direction of the horizontal groundwater velocity over the entire depth of the cables. The methodology has been applied in a phreatic aquifer in the dune area along the Dutch coast. Significant variations of groundwater velocities with depth were observed even though the dune sand is relatively homogeneous. Major advantages of the new methodology are that the fiber optic cables are in direct contact with the groundwater and that the cables and installation are relatively cheap. No expensive boreholes are needed and consequently measurements are not affected by movement and mixing of water inside a borehole.

  14. Human health and groundwater

    Science.gov (United States)

    The high quality of most groundwaters, consequent upon the self-purification capacity of subsurface strata, has long been a key factor in human health and wellbeing. More than 50% of the world’s population now rely on groundwater for their supply of drinking water – and in most circumstances a prope...

  15. Groundwater and Distribution Workbook.

    Science.gov (United States)

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  16. IMPORTANT: Fluke is recalling Digital Clamp Meters

    CERN Multimedia

    2013-01-01

    Fluke is voluntarily recalling four models of Digital Clamp Meters: Fluke 373, 374, 375 and 376. If you own one of these clamp meters, please stop using it and send it back to Fluke for repair even if you have not experienced problems.   Description of the problem: "The printed circuit assembly may not be properly fastened to the test lead input jack. This may result in inaccurate voltage readings, including a low or no-voltage reading on a circuit energised with a hazardous voltage, presenting a shock, electrocution or thermal burn hazard." To determine if your clamp meter is affected by this recall notice, and for more information, click here.

  17. The Thirty Meter Telescope (TMT) Project

    Science.gov (United States)

    Sanders, G.; TMT Project

    2004-12-01

    The Thirty Meter Telescope (TMT) Project is engaged in a design and development phase. TMT is proposed as a private-public partnership of the California Institute of Technology and the University of California (partners in the earlier CELT design study), AURA (designers of the earlier GSMT concept), and the Canadian ACURA consortium (designers of the VLOT concept). The partners are developing a 30 meter diameter, finely segmented filled aperture telescope with seeing-limited and diffraction-limited capabilities to address the broad range of GSMT science goals. The paper will present the status of the project development and telescope and instrument design.

  18. Automatic Range Changer For SWR Meter

    Science.gov (United States)

    Dengler, Robert J.; Siegel, Peter H.

    1990-01-01

    Commercial unit modified for antenna-pattern measurements. Addition of automatic range-changing circuit converts Hewlett-Packard 415E standing-wave-ratio (SWR) meter into radio-frequency detector suitable for computer-controlled measurements of radiation patterns of antennas. Modification gives SWR meter effective dynamic range of at least 40 dB. Includes two digital lines communicating one of four range settings to controlling computer and one digital line to inhibit transfer of data when range being changed. Ideal instrument for use in applications involving computer-controlled monitoring of power when large changes in signal level expected.

  19. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  20. Quantification of anthropogenic impact on groundwater-dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modelling

    Science.gov (United States)

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2015-02-01

    Groundwater-dependent ecosystems (GDEs) have important functions in all climatic zones as they contribute to biological and landscape diversity and provide important economic and social services. Steadily growing anthropogenic pressure on groundwater resources creates a conflict situation between nature and man which are competing for clean and safe sources of water. Such conflicts are particularly noticeable in GDEs located in densely populated regions. A dedicated study was launched in 2010 with the main aim to better understand the functioning of a groundwater-dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Błoto fen). It relies mostly on groundwater from the shallow Quaternary aquifer and possibly from the deeper Neogene (Bogucice Sands) aquifer. In July 2009 a cluster of new pumping wells abstracting water from the Neogene aquifer was set up 1 km to the northern border of the fen. A conceptual model of the Wielkie Błoto fen area for the natural, pre-exploitation state and for the envisaged future status resulting from intense abstraction of groundwater through the new well field was developed. The main aim of the reported study was to probe the validity of the conceptual model and to quantify the expected anthropogenic impact on the studied GDTE. A wide range of research tools was used. The results obtained through combined geologic, geophysical, geochemical, hydrometric and isotope investigations provide strong evidence for the existence of upward seepage of groundwater from the deeper Neogene aquifer to the shallow Quaternary aquifer supporting the studied GDTE. Simulations of the groundwater flow field in the study area with the aid of a 3-D flow and transport model developed for Bogucice Sands (Neogene) aquifer and calibrated using environmental tracer data and observations of hydraulic head in three different locations on the study area

  1. Groundwater storage change detection using micro-gravimetric technology

    Science.gov (United States)

    El-Diasty, Mohammed

    2016-06-01

    In this paper, new perspectives and developments in applying a ground-based micro-gravimetric method to detect groundwater storage change in Waterloo Moraine are investigated. Four epochs of gravity survey were conducted using absolute gravimeter (FG5), two relative gravity meters (CG5) and two geodetic global positioning systems (GPS) in the Waterloo Moraine in May and August of 2010 and 2011, respectively. Data were processed using the parametric least-squares method and integrated with geological and hydrological studies. The gravity differences between May and August for 2010 and 2011 epochs were inverted to provide the estimated total water storage changes. Changes in soil water content obtained from land surface models of Ecological Assimilation of Land and Climate Observations (EALCO) and the Global Land Data Assimilation System (GLDAS) program were employed to estimate the groundwater storage change. The ratios between the estimated groundwater storage changes and measured water table changes (specific yields) were determined at a local monitoring well located in the survey area. The results showed that the estimates of specific yields between May and August of 2010 and 2011 were consistent at a significant confidence level and are also within the range of the specific yield from geological and hydrological studies. Therefore, the micro-gravimetric (absolute and relative gravity meters) technology has demonstrated the great potential in detecting groundwater storage change and specific yield for local scale aquifers such as Waterloo Moraine.

  2. A comparative study on the metering accuracy for given installation conditions of metering facility

    Energy Technology Data Exchange (ETDEWEB)

    Her, Jae Young; Lee, Seung Jun; Ha, Young Cheol; Ahn, Seung Hee; Lee, Cheol Gu [R and D Center, Korea Gas Co., (Korea)

    1999-12-01

    The object of this study is to improve metering facilities of Korea Gas Corporation(KOGAS) metering station which are being operated in unfavorable straight pipe length condition (metropolitan area). For experiment, a test facilities was modeled based on Dogsan metering station (one of KOGAS metering stations) which has the most unfavorable conditions in metropolitan area. The test facilities was set up in Jungdong metering station (one of KOGAS metering stations) supplying natural gas to a power plant and city gas companies. The tests were performed with flowconditioner which was installed in the former straight pipe of a turbine meter and an Orifice meter, and the tests keep going with changing both diameter ratio({beta} = d/D) and flowrate(Q{sub v}). In other words, the tests were performed according to flowrate change for fixed diameter ratio. After the test was completed, the diameter ratio was increased by 0.1 and the same procedures were conducted again. The test was conducted for diameter ratio from 0.3 to 0.7. For Orifice meter, the error showed 0.4 %(Test maximum flowrate=3,030 Nm{sup 3}/h) and 0.8 %(Test maximum flowrate=9,204 Nm{sup 3}/h) for {beta}=0.3 and 0.7, respectively. For Turbine meter, the error showed -0.5 %(Test maximum flowrate=3,030 Nm{sup 3}/h) and -0.1 %(Test maximum flowrate=9,204 Nm{sup 3}/h) for {beta}=0.3 and 0.7, respectively. 44 refs., 32 figs., 27 tabs.

  3. Site scale groundwater flow in Haestholmen

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-05-01

    Haestholmen, the neighbouring islands and the mainland. In the vicinity of the repository water flows sloping downwards and/or horizontally towards the nearest fracture zones. The zones R1OAB and R14{sub L}25 constitute the most important flow routes from the repository to the surface. The actual amount of water flowing in the tunnels is about 740 m{sup 3}/a. The average driving force in the intact rock near the repository varies with time between 0.034-0.53 %. The salinity content of groundwater in the bedrock is changing with time due to the postglacial land uplift. Eventually, after 10000 years A.P. brackish and saline water in the bedrock will be flushed by fresh water down to the depth of about 1000 meters below the present Haestholmen island. (orig.) 57 refs.

  4. Simulation of groundwater flow and analysis of the effects of water-management options in the North Platte Natural Resources District, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Flynn, Amanda T.; Vrabel, Joseph; Ryter, Derek W.

    2015-08-12

    The North Platte Natural Resources District (NPNRD) has been actively collecting data and studying groundwater resources because of concerns about the future availability of the highly inter-connected surface-water and groundwater resources. This report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, describes a groundwater-flow model of the North Platte River valley from Bridgeport, Nebraska, extending west to 6 miles into Wyoming. The model was built to improve the understanding of the interaction of surface-water and groundwater resources, and as an optimization tool, the model is able to analyze the effects of water-management options on the simulated stream base flow of the North Platte River. The groundwater system and related sources and sinks of water were simulated using a newton formulation of the U.S. Geological Survey modular three-dimensional groundwater model, referred to as MODFLOW–NWT, which provided an improved ability to solve nonlinear unconfined aquifer simulations with wetting and drying of cells. Using previously published aquifer-base-altitude contours in conjunction with newer test-hole and geophysical data, a new base-of-aquifer altitude map was generated because of the strong effect of the aquifer-base topography on groundwater-flow direction and magnitude. The largest inflow to groundwater is recharge originating from water leaking from canals, which is much larger than recharge originating from infiltration of precipitation. The largest component of groundwater discharge from the study area is to the North Platte River and its tributaries, with smaller amounts of discharge to evapotranspiration and groundwater withdrawals for irrigation. Recharge from infiltration of precipitation was estimated with a daily soil-water-balance model. Annual recharge from canal seepage was estimated using available records from the Bureau of Reclamation and then modified with canal-seepage

  5. 黄河源水电站工程大坝渗流安全分析%Analysis on dam seepage safety of Huangheyuan hydropower station

    Institute of Scientific and Technical Information of China (English)

    孙玮玮; 庄德利; 张士辰; 郑昊尧

    2012-01-01

    According to the specific circumstance of Huangheyuan hydropower project, through the analysis of the two different forms of the typical cross section's finite element seepage, the seepage safety of Huangheyuan hydropower project is evaluated comprehensively. The results show that there are some defects in the dam seepage system. The joints between horizontal anti-seepage and L-shaped vertical anti-seepage are not closed. The natural seepage condition of the right bank dam basis is poor and anti-seepage treatment is not completely, which lead to large leakage and failure by seepage behind the dam, so the seepage stability of the dam does not meet the regulatory requirements. The grade of dam seepage is C, so appropriate reinforcement measures should be taken and the flow monitoring facilities should be improved too.%根据黄河源水电站工程的具体情况,通过对两种不同防渗形式的典型断面进行渗流有限元计算分析,全面评价了黄河源水电站工程的渗流安全状况.计算结果表明:整个大坝防渗系统存在缺陷,库内水平防渗与“L”型垂直防渗连接部位未封闭,右岸坝段基础天然防渗条件差、防渗处理不彻底,导致坝后渗漏量大,且已发生渗透破坏,大坝渗透稳定性不满足规范要求.大坝渗流评价为“C”级,建议采取相应加固处理措施,并完善渗流监测设施.

  6. A Probabilistic Model of Meter Perception: Simulating Enculturation

    NARCIS (Netherlands)

    van der Weij, B.; Pearce, M.T.; Honing, H.

    Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter

  7. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  8. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  9. Groundwater exploration using 2D Resistivity Imaging in Pagoh, Johor, Malaysia

    Science.gov (United States)

    Kadri, Muhammad; Nawawi, M. N. M.

    2010-12-01

    Groundwater is a very important component of water resources in nature. Since the demand of groundwater increases with population growth, it is necessary to explore groundwater more intensively. In Malaysia only less than 2% of the present water used is developed from groundwater. In order to determine the existence of usable groundwater for irrigation and drinking purposes in Pagoh, 2D resistivity imaging technique was utilized. The 2-D resistivity imaging technique utilized the Wenner—Schlumberger electrode array configuration because this array is moderately sensitive to both horizontal and vertical structures. Three lines were surveyed for groundwater delineation purpose The length for each survey lines are 400 meters. At Pagoh, the survey site shows the existence of groundwater. It is indicated by the resistivity values about 10-100 ohm-m. The maximum depth of investigation survey is 77 meters. In general the results show that the subsurface is made up of alluvium and clay and the high resistivity values of more than 1000 ohm-m near the surface is due laterite and the end of the depth can be interpreted as mixture of weathered material or bedrock.

  10. Measurement error analysis of taxi meter

    Science.gov (United States)

    He, Hong; Li, Dan; Li, Hang; Zhang, Da-Jian; Hou, Ming-Feng; Zhang, Shi-pu

    2011-12-01

    The error test of the taximeter is divided into two aspects: (1) the test about time error of the taximeter (2) distance test about the usage error of the machine. The paper first gives the working principle of the meter and the principle of error verification device. Based on JJG517 - 2009 "Taximeter Verification Regulation ", the paper focuses on analyzing the machine error and test error of taxi meter. And the detect methods of time error and distance error are discussed as well. In the same conditions, standard uncertainty components (Class A) are evaluated, while in different conditions, standard uncertainty components (Class B) are also evaluated and measured repeatedly. By the comparison and analysis of the results, the meter accords with JJG517-2009, "Taximeter Verification Regulation ", thereby it improves the accuracy and efficiency largely. In actual situation, the meter not only makes up the lack of accuracy, but also makes sure the deal between drivers and passengers fair. Absolutely it enriches the value of the taxi as a way of transportation.

  11. Pico meter metrology for the GAIA mission

    NARCIS (Netherlands)

    Meijer, E.A.; Nijenhuis, J.N.; Vink, R.J.P.; Kamphues, F.G.; Gielesen, W.L.M.; Coatantiec, C.

    2009-01-01

    To measure the relative motions of GAIA's telescopes, the angle between the telescopes is monitored by an all Silicon Carbide Basic Angle Monitoring subsystem (BAM OMA). TNO is developing this metrology system. The stability requirements for this metrology system go into the pico meter and pico radi

  12. Wat maakt een slimme meter echt slim?

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Bakker, Vincent; Bosman, M.G.C.; Molderink, Albert; Croes, Roel

    In de Tweede Kamer laaide in 2008 een discussie op naar aanleiding van geluiden uit de samenleving over het wel of niet verplicht installeren van slimme meters in huizen. Voor- en tegenstanders van een verplichte invoer gebruiken ondertussen alle media om de algemene opinie te beïnvloeden.

  13. Meter Designs Reduce Operation Costs for Industry

    Science.gov (United States)

    2013-01-01

    Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.

  14. Improvised Energy Meter Supporting Wireless Data Transfer

    Directory of Open Access Journals (Sweden)

    E. Aravind

    2014-09-01

    Full Text Available The purpose of the study is to design a prototype model of an energy meter which has the ability of wireless data transfer such as sending emails and SMS. In the current energy monitoring scenario, manual energy meter monitoring is a cumbersome and tedious process for the electricity boards. It involves huge manpower and higher expenditure for a simple task. Manual energy meter monitoring is highly erroneous and amounts to great losses for both the consumers and the electricity boards. In this conventional technique, losing the bills and delay in the arrival of the official to note down the reading are common affairs. Complete digitalization of bill delivery and transaction processes eliminates such uneventful circumstances. The manual reading method is inefficient to meet the raising power demands. The invention described here has the potential to wipe of manual energy meter reading from the scene and replace it with a sophisticated automated system facilitating remote monitoring of energy consumption. In this proposed system, the Raspberry Pi performs all the essential functions of a microcontroller and supports features like sending emails and SMS with the aid of Wi-Fi dongle and GSM modem. This automated system enables continuous monitoring of energy consumption.

  15. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C; Frijns, A J H; Mandamparambil, R; Zevenbergen, M A G; den Toonder, J M J

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  16. Numerical modeling of fluidic flow meters

    Science.gov (United States)

    Choudhury, D.; Patel, B. R.

    1992-05-01

    The transient fluid flow in fluidic flow meters has been modeled using Creare.x's flow modeling computer program FLUENT/BFC that solves the Navier-Stokes equations in general curvilinear coordinates. The numerical predictions of fluid flow in a fluidic flow meter have been compared with the available experimental results for a particular design, termed the PC-4 design. Overall flow structures such as main jet bending, and primary and secondary vortices predicted by FLUENT/BFC are in excellent agreement with flow visualization results. The oscillation frequencies of the PC-4 design have been predicted for a range of flow rates encompassing laminar and turbulent flow and the results are in good agreement with experiments. The details of the flow field predictions reveal that an important factor that determines the onset of oscillations in the fluidic flow meter is the feedback jet momentum relative to the main jet momentum. The insights provided by the analysis of the PC-4 fluidic flow meter design have led to an improved design. The improved design has sustained oscillations at lower flow rates compared with the PC-4 design and has a larger rangeability.

  17. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  18. Microcontroller Based Single Phase Digital Prepaid Energy Meter for Improved Metering and Billing System

    Directory of Open Access Journals (Sweden)

    Md. Mejbaul Haque

    2011-10-01

    Full Text Available This paper presents a single phase digital prepaid energy meter based on two microcontrollers and a single phase energy meter IC. This digital prepaid energy meter does not have any rotating parts. The energy consumption is calculated using the output pulses of the energy meter chip and the internal counter of microcontroller (ATmega32. A microcontroller (ATtiny13 is used as a smart card and the numbers of units recharged by the consumers are written in it. A relay system has been used which either isolates or establishes the connection between the electrical load and energy meter through the supply mains depending upon the units present in the smart card.Energy consumption (kWh, maximum demand (kW, total unit recharged (kWh and rest of the units (kWh are stored in the ATmega32 to ensure the accurate measurement even in the event of an electrical power outage that can be easily read from a 20×4 LCD. As soon as the supply is restored, energy meter restarts with the stored values. A single phase prepaid energy meter prototype has been implemented to provide measurement up to 40A load current and 230V line to neutral voltage.Necessary program for microcontrollers are written in c-language and compiled by Win-AVR libc compiler.

  19. BCM6: New Generation of Boron Meter

    Energy Technology Data Exchange (ETDEWEB)

    Pirat, P. [Rolls-Royce Civil Nuclear SAS (France)

    2010-07-01

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  20. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Shusheng Gao

    2017-03-01

    Full Text Available A prerequisite to effective shale gas development is a complicated fracture network generated by extensive and massive fracturing, which is called SRV (stimulated reservoir volume section. Accurate description of gas flow behaviors in such section is fundamental for productivity evaluation and production performance prediction of shale gas wells. The SRV section is composed of bedrocks with varying sizes and fracture networks, which exhibit different flow behaviors – gas diffusion in bedrocks and gas seepage in fractures. According to the porosity and permeability and the adsorption, diffusion and seepage features of bedrocks and fractures in a shale gas reservoir, the material balance equations were built for bedrocks and fractures respectively and the continuity equations of gas diffusion and seepage in the SRV section were derived. For easy calculation, the post-frac bedrock cube was simplified to be a sphere in line with the principle of volume consistency. Under the assumption of quasi-steady flow behavior at the cross section of the sphere, the gas channeling equation was derived based on the Fick's laws of diffusion and the density function of gas in bedrocks and fractures. The continuity equation was coupled with the channeling equation to effectively characterize the complicated gas flow behavior in the SRV section. The study results show that the gas diffusivity in bedrocks and the volume of bedrocks formed by volume fracturing (or the scale of fracturing jointly determines the productivity and stable production period of a shale gas well. As per the actual calculation for the well field A in the Changning–Weiyuan Block in the Sichuan Basin, the matrix has low gas diffusivity – about 10−5 cm2/s and a large volume with an equivalent sphere radius of 6.2 m, hindering the gas channeling from bedrocks to fractures and thereby reducing the productivity of the shale gas well. It is concluded that larger scale of volume fracturing

  1. Petroleum biodegradation studied in sediment-flow-through systems simulating natural oil seepage in marine sediments

    Science.gov (United States)

    Mishra, Sonakshi; Wefers, Peggy; Steeb, Philip; Schmidt, Mark; Treude, Tina

    2014-05-01

    The natural biodegradation of hydrocarbons depends on several environmental factors like nutrients, salinity, temperature, pressure, redox-conditions and composition of crude oil. Petroleum migrating from depth into marine surface sediments at natural seep sites could be subjected to a sequence of different kind of microbial processes which is controlled by a strong redox gradient within a thin sediment segment. Most studies on microbial degradation of petroleum have focused either only on selected hydrocarbon fractions or on cultured microbes. This study, however, attempts to investigate the natural microbial response of marine sediments to crude oil seepage with detailed analysis of sediment and porewater geochemistry, hydrocarbon degradation products, microbial activity, and microbial genetics. A sediment-oil-flow-through-system was established where crude oil migrated through the bottom of (approximately 30 cm long) intact marine sediment cores simulating a natural seepage scenario. Electron acceptor-rich oxic seawater was provided at the top of the core and anoxic conditions were established at the bottom of the cores. The intact sediment cores had been sampled from the Caspian Sea (near Baku) and the North Alex Mud Volcano in the Mediterranean Sea. The Caspian Sea and the North Alex Mud Volcano are both sites with active transport of hydrocarbons from depth by mud volcano activity. The geochemical changes in the sediment cores during oil seepage were monitored by using microelectrodes and porewater analyses. The geochemical analysis was later followed by hydrocarbon and molecular analyses at the end of the experiment by slicing the cores. First results based on the biogeochemistry of the sediment cores and hydrocarbon analyses are presented here. Porewater profiles of hydrogen sulfide and sulfate during the experimental runs gave first indications of microbial response and sulfate reduction due to the addition of crude oil. The core from North Alex Mud

  2. Evaluation of Groundwater Leakage into a Drainage Tunnel in Jinping-I Arch Dam Foundation in Southwestern China: A Case Study

    Science.gov (United States)

    Chen, Yi-Feng; Hong, Jia-Min; Zheng, Hua-Kang; Li, Yi; Hu, Ran; Zhou, Chuang-Bing

    2016-03-01

    The Jinping-I double-curvature arch dam, located in the middle reach of Yalong River and with a maximum height of 305 m, is the world's highest dam of this type that has been completed. Since the second stage of reservoir impounding, after which the reservoir water level was gradually raised by about 232 m, a significant amount of leakage was observed from the drainage holes drilled in the lowest drainage tunnel at the left bank abutment at an elevation of 1595 m a.s.l. (above sea level), with an observed maximum pressure of about 0.3 MPa. A number of investigations, including water quality analysis, digital borehole imaging, tunnel geological mapping, and in situ groundwater monitoring, were performed to examine the source of leaking, the groundwater flow paths, and the performance of the grouting curtains. By defining two objective functions using the in situ time series measurements of flow rate and hydraulic head, respectively, a multiobjective inverse modeling procedure was proposed to evaluate the permeability of the foundation rocks that was underestimated in the design stage. This procedure takes advantage of the orthogonal design, finite element forward modeling of the transient groundwater flow, artificial neural network, and non-dominated sorting genetic algorithm, hence significantly reducing the computational cost and improving the reliability of the inversed results. The geological structures that lead to the leakage were identified and the seepage flow behaviors in the dam foundation and the left bank abutment were assessed. Based on the field measurements and the inverse modeling results, the effects of the engineering treatments of the leakage event on the dam safety were analyzed. It has been demonstrated that the seepage control system is effective in lowering the groundwater level and limiting the amount of seepage in the dam foundation, and the leakage event does not pose a threat to the safety of the dam.

  3. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    Science.gov (United States)

    Suherman, A.; Rahman, M. Z. A.; Busu, I.

    2014-02-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.

  4. Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden

    Science.gov (United States)

    Mau, S.; Römer, M.; Torres, M. E.; Bussmann, I.; Pape, T.; Damm, E.; Geprägs, P.; Wintersteller, P.; Hsu, C.-W.; Loher, M.; Bohrmann, G.

    2017-02-01

    Numerous articles have recently reported on gas seepage offshore Svalbard, because the gas emission from these Arctic sediments was thought to result from gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. We report on findings of a much broader seepage area, extending from 74° to 79°, where more than a thousand gas discharge sites were imaged as acoustic flares. The gas discharge occurs in water depths at and shallower than the upper edge of the gas hydrate stability zone and generates a dissolved methane plume that is hundreds of kilometer in length. Data collected in the summer of 2015 revealed that 0.02-7.7% of the dissolved methane was aerobically oxidized by microbes and a minor fraction (0.07%) was transferred to the atmosphere during periods of low wind speeds. Most flares were detected in the vicinity of the Hornsund Fracture Zone, leading us to postulate that the gas ascends along this fracture zone. The methane discharges on bathymetric highs characterized by sonic hard grounds, whereas glaciomarine and Holocene sediments in the troughs apparently limit seepage. The large scale seepage reported here is not caused by anthropogenic warming.

  5. Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden

    Science.gov (United States)

    Mau, S.; Römer, M.; Torres, M. E.; Bussmann, I.; Pape, T.; Damm, E.; Geprägs, P.; Wintersteller, P.; Hsu, C.-W.; Loher, M.; Bohrmann, G.

    2017-01-01

    Numerous articles have recently reported on gas seepage offshore Svalbard, because the gas emission from these Arctic sediments was thought to result from gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. We report on findings of a much broader seepage area, extending from 74° to 79°, where more than a thousand gas discharge sites were imaged as acoustic flares. The gas discharge occurs in water depths at and shallower than the upper edge of the gas hydrate stability zone and generates a dissolved methane plume that is hundreds of kilometer in length. Data collected in the summer of 2015 revealed that 0.02–7.7% of the dissolved methane was aerobically oxidized by microbes and a minor fraction (0.07%) was transferred to the atmosphere during periods of low wind speeds. Most flares were detected in the vicinity of the Hornsund Fracture Zone, leading us to postulate that the gas ascends along this fracture zone. The methane discharges on bathymetric highs characterized by sonic hard grounds, whereas glaciomarine and Holocene sediments in the troughs apparently limit seepage. The large scale seepage reported here is not caused by anthropogenic warming. PMID:28230189

  6. Authigenic carbonates related to gas seepage structures in the sea of Okhotsk NE offshore Sakhalin : results from the Chaos project

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, A.; Hachikubo, A.; Minami, H.; Nunokawa, Y.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Logvina, E.; Mazurenko, L.; Matveeva, T. [VNIIOkeangeologia, St. Petersburg (Russian Federation); Obzhirov, A. [V.I. Il' ichev Pacific Oceanological Inst. of FEB RAS, Vladivostok (Russian Federation); Jin, Y.K. [Korea Polar Research Inst., Incheon (Korea, Republic of)

    2008-07-01

    The Derugin Basin in Russia contains large deposits of gas hydrates. This paper presented isotopic and mineralogical analyses of authigenic carbonates from gas hydrate seepage structures in the Derugin Basin. Carbonate samples were taken from 20 sites located in 17 seepage structures in the basin. The mineralogy and isotope geochemistry of the authigenic carbonates were then compared in order to illustrate the processes associated with gas seepage to the seafloor, and to characterize the precipitation of authigenic carbonates at different seeps. Samples were analyzed using X-ray diffraction analyses. Results of the study demonstrated the existence of 4 different morphological types of carbonates comprised mainly of magnesium (Mg) calcite. Carbonates were poorly consolidated and fragile during the initial stage of carbonate concretion formation. In later stages, the carbonates became denser with a dendritic, or elongated shape, or rounded with subangular dense concretions. The final type was a tubicolous carbonate formed by the substitution of Polychaeta worms or burrows. The carbonates were light due to the presence of carbon from microbial methane. A mathematical model of the carbon-enriched samples was used to characterize carbonate precipitation caused by methanogenesis. A comparison between the model and samples obtained during field tests showed that the calculated equilibrium of the carbonates corresponded with the measured values. It was concluded that the basic mechanism of carbonate formation within the seepage structures was anaerobic methane oxidation via sulfate reduction. 22 refs., 2 figs.

  7. High mobilization of arsenic, metals and rare earth elements in seepage waters driven by respiration of old allochthonous organic carbon.

    Science.gov (United States)

    Weiske, Arndt; Schaller, Jörg; Hegewald, Tilo; Machill, Susanne; Werner, Ingo; Dudel, E Gert

    2013-12-01

    Metal and metalloid mobilization processes within seepage water are of major concern in a range of water reservoir systems. The mobilization process of arsenic and heavy metals within a dam and sediments of a drinking water reservoir was investigated. Principle component analysis (PCA) on time series data of seepage water showed a clear positive correlation of arsenic with iron and DOC (dissolved organic carbon), and a negative correlation with nitrate due to respiratory processes. A relationship of reductive metal and metalloid mobilization with respiration of old carbon was shown. The system is influenced by sediment layers as well as a recent DOC input from degraded ombrotrophic peatbogs in the catchment area. The isotopic composition ((12)C, (13)C and (14)C) of DOC is altered along the path from basin to seepage water, but no significant changes in structural parameters (LC-OCD-OND, FT-IR) could be seen. DIC (dissolved inorganic carbon) in seepage water partly originates from respiratory processes, and a higher relationship of it with sediment carbon than with the DOC inventory of infiltrating water was found. This study revealed the interaction of respiratory processes with metal and metalloid mobilization in sediment water flows. In contrast to the presumption that emerging DOC via respiratory processes mainly controls arsenic and metal mobilization it could be shown that the presence of aged carbon compounds is essential. The findings emphasize the importance of aged organic carbon for DOC, DIC, arsenic and metal turnover.

  8. Utilizing geophysical methods for asessment and characterization of canal seepage in El Paso's lower valley irrigation delivery systems

    Science.gov (United States)

    Cegon, Amanda Brooke

    El Paso County Water Improvement District No. 1 (EPCWID No.1) delivers the Rio Grande water for agricultural production and urban uses through numerous networked irrigation canals. Of the nearly 86 billion gallons of water released annually for irrigation uses in Texas, billions are lost due to evaporation and seepage in unlined canals with 56 million gallons of the billions are lost in Franklin Canal annually due to improper lining and sediment variation of the canals. To characterize seepage patterns and identify areas of high seepage, Electrical Resistivity, Ground Truthing via soil sample analysis were used along three, half-mile long sectioned canals during irrigation and non-irrigation seasons. The data lines acquired were processed in EARTHIMAGER 2D to create 2D vertical resistivity inversion profiles to locate potential areas of high seepage/high resistivity. The research results will help El Paso County Water Improvement District No. 1 to develop management strategies to conserve water and improve the delivery efficiency systems which leads to economic growth in the Rio Grande Basin.

  9. Quantitative estimation of groundwater recharge ratio along the riparian of the Yellow River.

    Science.gov (United States)

    Yan, Zhang; Fadong, Li; Jing, Li; Qiang, Liu; Guangshuai, Zhao

    2013-01-01

    Quantitative estimation of groundwater recharge is crucial for limited water resources management. A combination of isotopic and chemical indicators has been used to evaluate the relationship between surface water, groundwater, and rainfall around the riparian of the Yellow River in the North China Plain (NCP). The ion molar ratio of sodium to chloride in surface- and groundwater is 0.6 and 0.9, respectively, indicating cation exchange of Ca(2+) and/or Mg(2+) for Na(+) in groundwater. The δD and δ(18)O values in rainfall varied from -64.4 to -33.4‰ and from -8.39 to -4.49‰. The groundwater samples have δD values in the range of -68.7 to -58.0‰ and δ(18)O from -9.29 to -6.85‰. The δ(18)O and δD in surface water varied from -8.51 to -7.23‰ and from -64.42 to -53.73‰. The average values of both δD and δ(18)O from surface water are 3.92‰ and 0.57‰, respectively, higher compared to groundwater. Isotopic composition indicated that the groundwater in the riparian area of the Yellow River was influenced by heavy rainfall events and seepage of surface water. The mass balance was applied for the first time to estimate the amount of recharge, which is probably 6% and 94% of the rainfall and surface water, respectively.

  10. Groundwater data network interoperability

    Science.gov (United States)

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  11. Groundwater contamination in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tase, Norio [Univ. of Tsukuba, Ibaraki (Japan)

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed. 9 refs., 3 figs., 4 tabs.

  12. Groundwater contamination in Japan

    Science.gov (United States)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  13. Modeling groundwater-surface water interactions in an operational setting by linking object- oriented river basin management model (RiverWare) with 3-D finite-difference groundwater model (MODFLOW).

    Science.gov (United States)

    Valerio, A.; Rajaram, H.; Zagona, E.

    2007-12-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flow periods in riparian environments in the semi-arid southwestern United States. As an example, over-appropriation of human water use in the Middle Rio Grande region adversely impacts the habitat of the endangered Rio Grande silvery minnow. Improved management practices during low flow conditions could prevent channel desiccation and habitat destruction. We present a modeling tool with significant potential for improved decision-making in stream reaches influenced by significant surface-groundwater interactions. While river basin management models typically represent operational complexities such as human elements of water demand and consumption with a high degree of sophistication, they often represent groundwater-surface water interactions semi-empirically or at coarse resolution. In contrast, distributed groundwater models, with an adequately fine grid represent groundwater-surface water interactions accurately, but seldom incorporate complex details of water rights and user demands. To best exploit the strengths of both classes of models, we have developed a link between the object-oriented river management software package RiverWare and the USGS groundwater modeling program MODFLOW. An interactive time stepping approach is used in the linked model. RiverWare and MODFLOW run in parallel exchanging data after each time-step. This linked framework incorporates several features critical to modeling groundwater-surface interactions in riparian zones, including riparian ET, localized variations in seepage rates and rule-based water allocations to users and/or environmental flows, and is expected to be an improved tool for modeling groundwater-surface water interaction in regions where groundwater storage repose to changing river conditions is rapid. The performance of the linked model is illustrated through applications on the Rio Grande in the vicinity of

  14. Seepage system of oil-gas and its exploration in Yinggehai Basin located at northwest of South China Sea

    Directory of Open Access Journals (Sweden)

    Jiaxiong He

    2017-02-01

    Full Text Available Seepage systems of oil-gas in Yinggehai Basin are divided into two types, namely: “micro-seepage”, which is presented by gas chimneys and pockmarks; and “macro-seepage”, which is also called oil-gas outflow; and, in addition, the combination of the two basic types. Among the oil seepage systems, the combined seepage system at Yingdong Slope of Yinggehai Basin is the most eye-catching, and gas chimneys and pockmarks micro-leakage systems in mud diapir zones in the central part of the basin are very common. Both the indications of large-scale oil-gas outflow at Yingdong Slope, which have been booming for a hundred years; and the occurrence of pockmarks at the central mud diapir belt, along with the chaotic seismic reflection of widely-distributed shallow gas chimneys—have shown that hydrocarbon in this area is sufficient and oil-gas is now in dynamic equilibrium of the processes of accumulation, migration, gathering and dispersing. It builds up good conditions for the accumulation, migration, gathering and reserving of oil and gas. However, it must be noted that the results of oil-gas exploration at Yingdong Slope didn't turn out to be satisfactory, despite the presence of oil-gas outflow and gas chimney combined seepage systems. So, strengthen synthesized analysis and study on oil-gas seepage systems and on the conditions for accumulation, migration, gathering and dispersing; the forecasting and evaluation to the advantageous conditions for enriched oil and gas zones; and trap preservation in accordance with the dynamic balance theories; are of significant importance for purposes of exploration.

  15. Seepage Study for Suction Installation of Bucket Foundation in Different Soil Combinations

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo; Clausen, Johan Christian

    2016-01-01

    Research has proven the bucket foundation to be a feasible and an attractive solution for offshore wind turbines. Its potential derives partly from the cost-effectiveness due to the suction-assisted installation. The suction applied under the bucket lid produces a downward driving force...... solutions. A series of numerical simulations performed on the flow analysis around the bucket penetrating into sand are presented in this paper. The characteristics of seepage arising from applied suction are investigated. The cases included in the research cover a wide range of bucket dimensions...... around the bucket skirt. The exceedance of critical suction might lead to installation failure due to formation of piping channels, which break the hydraulic seal between the skirt and soil. The excess pore pressure arising due to applied suction changes the effective stress, hence the penetration...

  16. Seepage Study for Suction Installation of Bucket Foundation in Different Soil Combinations

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo; Clausen, Johan Christian

    2016-01-01

    and different boundaries. The flow of pore water is studied for homogenous sand, sand overlaid by impermeable layer and sand situated above impermeable layer. In all three cases the seepage analysis gives the required information on the critical suction pressure and on the distribution of excess pore pressure...... around the bucket skirt. The exceedance of critical suction might lead to installation failure due to formation of piping channels, which break the hydraulic seal between the skirt and soil. The excess pore pressure arising due to applied suction changes the effective stress, hence the penetration...... resistance of soil. Therefore, both matters are important for the design. The results show that the appearance of the impermeable layer above or below sand affects the excess pore pressure in this layer. Moreover, it has been found that the appearance of impermeable layer increases the allowable suction...

  17. Detect hidden defects of dam seepage by comprehensive geophysical exploration technique%应用综合物探方法探查坝体渗漏隐患

    Institute of Scientific and Technical Information of China (English)

    董延朋; 许尚杰

    2012-01-01

    在堤防质量检测时,地球物理方法能够实现快速、无损的探测,但采用单一物探方法对堤防隐患的判别易产生多解,也很难对堤防质量做出准确分类。本文在分析高密度电法、伪随机流场法和多道瞬态面波法工作原理的基础上,利用综合物探方法探查水库大坝渗漏隐患的详细状况,并确定渗水明流的进水口、渗漏带的平面位置及其发育深度,为堤防质量检测提供了一种新的工作方法。%In the quality detection of dams, the geophysical methods could carry out fast and undamaged detection. It would arise multiple solution easily if adopting single geophysical prospecting method to distinguish the hidden defects of dam, and it is also very difficult to find the accurate classification to the dam quality. The paper analyzes the working principle of high-density resistivity method, flowing field method and transient surface wave method, then it relates how to detect hidden defects of dam seepage, confirm the groundwater intake and find out the locality and buried depth of the hidden defects of dam by comprehensive geophysical exploration technique. So it provides the new working method for detecting the dam quality.

  18. Canada's groundwater resources

    National Research Council Canada - National Science Library

    Rivera, Alfonso

    2014-01-01

    Groundwater is essential for life in arid and semiarid region. It is also important in humid regions, and is one of the fundamental requirements for the maintenance of natural landscapes and aquatic ecosystem...

  19. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  20. Seepage of methane at Jaco Scar, a slide caused by seamount subduction offshore Costa Rica

    Science.gov (United States)

    Mau, Susan; Rehder, Gregor; Sahling, Heiko; Schleicher, Tina; Linke, Peter

    2014-10-01

    Methane (CH4) concentrations and CH4 stable carbon isotopic composition () were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500 nmol L-1. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by values between -50 and -62 ‰ Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6 years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.

  1. Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments

    Directory of Open Access Journals (Sweden)

    Katrin Knittel

    2017-04-01

    Full Text Available Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT system. Untreated (without simulated petroleum seepage and SOFT sediment microbial communities shared 43% bacterial genus-level 16S rRNA-based operational taxonomic units (OTU0.945 but shared only 23% archaeal OTU0.945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkylsuccinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0.96.

  2. Brines in Seepage Channels as Eluants for Subsurface Relict Biomolecules on Mars?

    Science.gov (United States)

    Wynn-Williams, David D.; Cabrol, Nathalie A.; Grin, Edmond A.; Haberle, Robert M.; Stoker, Carol R.

    2001-06-01

    Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images result from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (~3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delive red them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80°C in the interstices of shallow hypersaline soils and at -50°C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50°C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.

  3. Geological records of redox change related to methane seepage in the Ulleung Basin, East Sea

    Science.gov (United States)

    Chun, J.; Ryu, B.; Bahk, J.; Choi, J.; Riedel, M.

    2012-12-01

    The sediment mounds related to columnar seismic blanking zone have been reported in the basin plain, reflecting the presence of near-surface gas hydrate and authigenic carbonates in the Ulleung Basin, East Sea. The mounds commonly consist of hemipelagic sediments and buried authigenic carbonates. Recently, exposed carbonate mound (~5 m wide and 2 -3 m high) was found in the site UBGH2-11 at water depth of ~2092 m. Six push cores (70-cm-long) were collected around the area of the exposed carbonate mound using ROV manipulators. The total nitrogen (TN), total carbon (TC), total organic carbon (TOC), and their carbon dioxide (δ13C) and nitrogen (δ15N) isotope values of core sediments were measured to identify the spatial distribution of organic matter related to methane seepages. The trace and rare earth elements of core sediments were analyzed to determine the redox conditions in seafloor sedimentary environments around the area of cold vents. Higher TOC contents (4-8%) were observed in three cores in the area around the exposed carbonate mound, whereas TOC contents ranged from 2-3% in other three cores, about 50 m away from the exposed carbonate mound. Highly negative δ13C values (-40 to -28 ‰) of organic matters show only one core located at the side of exposed carbonate mound. Higher Mn/Ti ratios suggest that the topmost parts of the core sediments outside the exposed carbonate mound were influenced by the effects of oxygenated bottom water. At other locations, there is no evidence of oxygenated bottom water. It suggests that the surface sediments formed under oxygen-depleted condition. Variation of Mo/Al and Co/Al ratios explains by fluctuation of redox conditions around the exposed carbonate mound in the site UBGH2-11. These results indicate that redox conditions of seafloor environments were locally influenced by methane seepages of cold vents associated with columnar seismic blanking zone in the Ulleung Basin.

  4. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  5. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  6. High-fluoride groundwater.

    Science.gov (United States)

    Rao, N Subba

    2011-05-01

    Fluoride (F(-)) is essential for normal bone growth, but its higher concentration in the drinking water poses great health problems and fluorosis is common in many parts of India. The present paper deals with the aim of establishment of facts of the chemical characteristics responsible for the higher concentration of F(-) in the groundwater, after understanding the chemical behavior of F(-) in relation to pH, total alkalinity (TA), total hardness (TH), carbonate hardness (CH), non-carbonate hardness (NCH), and excess alkalinity (EA) in the groundwater observed from the known areas of endemic fluorosis zones of Andhra Pradesh that have abundant sources of F(-)-bearing minerals of the Precambrians. The chemical data of the groundwater shows that the pH increases with increase F(-); the concentration of TH is more than the concentration of TA at low F(-) groundwater, the resulting water is represented by NCH; the TH has less concentration compared to TA at high F(-) groundwater, causing the water that is characterized by EA; and the water of both low and high concentrations of F(-) has CH. As a result, the F(-) has a positive relation with pH and TA, and a negative relation with TH. The operating mechanism derived from these observations is that the F(-) is released from the source into the groundwater by geochemical reactions and that the groundwater in its flowpath is subjected to evapotranspiration due to the influence of dry climate, which accelerates a precipitation of CaCO(3) and a reduction of TH, and thereby a dissolution of F(-). Furthermore, the EA in the water activates the alkalinity in the areas of alkaline soils, leading to enrichment of F(-). Therefore, the alkaline condition, with high pH and EA, and low TH, is a more conducive environment for the higher concentration of F(-) in the groundwater.

  7. Groundwater levels in the Kabul Basin, Afghanistan, 2004-2013

    Science.gov (United States)

    Taher, Mohammad R.; Chornack, Michael P.; Mack, Thomas J.

    2014-01-01

    The Afghanistan Geological Survey, with technical assistance from the U.S. Geological Survey, established a network of wells to measure and monitor groundwater levels to assess seasonal, areal, and potentially climatic variations in groundwater characteristics in the Kabul Basin, Afghanistan, the most populous region in the country. Groundwater levels were monitored in 71 wells in the Kabul Basin, Afghanistan, starting as early as July 2004 and continuing to the present (2013). The monitoring network is made up exclusively of existing production wells; therefore, both static and dynamic water levels were recorded. Seventy wells are in unconsolidated sediments, and one well is in bedrock. Water levels were measured periodically, generally monthly, using electric tape water-level meters. Water levels in well 64 on the grounds of the Afghanistan Geological Survey building were measured more frequently. This report provides a 10-year compilation of groundwater levels in the Kabul Basin prepared in cooperation with the Afghanistan Geological Survey. Depths to water below land surface range from a minimum of 1.47 meters (m) in the Shomali subbasin to a maximum of 73.34 m in the Central Kabul subbasin. The Logar subbasin had the smallest range in depth to water below land surface (1.5 to 12.4 m), whereas the Central Kabul subbasin had the largest range (2.64 to 73.34 m). Seasonal water-level fluctuations can be estimated from the hydrographs in this report for wells that have depth-to-water measurements collected under static conditions. The seasonal water-level fluctuations range from less than 1 m to a little more than 7 m during the monitoring period. In general, the hydrographs for the Deh Sabz, Logar, Paghman and Upper Kabul, and Shomali subbasins show relatively little change in the water-level trend during the period of record, whereas hydrographs for the Central Kabul subbasin show water level decreases of several meters to about 25 m.

  8. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  9. Simulation of the Groundwater-Flow System in Pierce, Polk, and St. Croix Counties, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    Groundwater is the sole source of residential water supply in Pierce, Polk, and St. Croix Counties, Wisconsin. A regional three-dimensional groundwater-flow model and three associated demonstration inset models were developed to simulate the groundwater-flow systems in the three-county area. The models were developed by the U.S. Geological Survey in cooperation with the three county governments. The objectives of the regional model of Pierce, Polk, and St. Croix Counties were to improve understanding of the groundwaterflow system and to develop a tool suitable for evaluating the effects of potential water-management programs. The regional groundwater-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, groundwater/surface-water interactions, and groundwater withdrawals from high-capacity wells. Results from the regional model indicate that about 82 percent of groundwater in the three counties is from recharge within the counties; 15 percent is from surface-water sources, consisting primarily of recirculated groundwater seepage in areas with abrupt surface-water-level changes, such as near waterfalls, dams, and the downgradient side of reservoirs and lakes; and 4 percent is from inflow across the county boundaries. Groundwater flow out of the counties is to streams (85 percent), outflow across county boundaries (14 percent), and pumping wells (1 percent). These results demonstrate that the primary source of groundwater withdrawn by pumping wells is water that recharges within the counties and would otherwise discharge to local streams and lakes. Under current conditions, the St. Croix and Mississippi Rivers are groundwater discharge locations (gaining reaches) and appear to function as 'fully penetrating' hydraulic boundaries such that groundwater does not cross between Wisconsin and Minnesota beneath them. Being hydraulic boundaries, however, they can change in response to

  10. Numerical and experimental investigations of submarine groundwater discharge to a coastal lagoon

    DEFF Research Database (Denmark)

    Haider, Kinza

    to closely observe the dynamics and factors that affect the temporal and spatial distribution of groundwater discharge and brackish water – freshwater interface, small-scale numerical modeling was carried out using the new hydrogeological data obtained from these field campaigns. The salinity data from....... The salinity distribution indicated no significant interface movement seasonally but the groundwater discharge showed more temporal changes. The conceptual model constructed from the observed data gave a range from 66 - 388 ld-1 per meter of shore of freshwater discharge in a 20 meters wide fringe. In order...... interface between the seasons but the groundwater discharge varied considerably being highest during winter and lowest during summer, which was also observed in field investigations. Surficial mixing zone in the discharge zone also showed seasonal changes. However the spatial distribution of simulated...

  11. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-08-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  12. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-12-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  13. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    Science.gov (United States)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. Copyright © 2015

  14. Cubic meter volume optical coherence tomography

    Science.gov (United States)

    WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.

    2017-01-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628

  15. Mark IVA DSN 26-meter Subnet

    Science.gov (United States)

    Gordon, D. D.

    1984-01-01

    The Office of Space Tracking and Data Systems' Networks Consolidation Program (NCP), managed by the Jet Propulsion Laboratory (JPL), includes the implementation of a 26-meter Tracking and Communications Subnet as a part of the Mark IV A Deep Space Network (DSN). The incorporatin of this subnet into the DSN will contribute to the NCP goal of consolidating the two NASA ground tracking networks into one tracking network. The 26-meter Tracking and Communication Subnet was designed to provide the capability to support, at each Deep Space Communication Complex, the tracking and data communication requirements of the earth-orbital missions that cannot be supported by the Tracking and Data Relay Satellite System when it becomes operational. Implementation activities and planned capabilities of the subnet are discussed.

  16. Numerical simulation of flow through orifice meters

    Science.gov (United States)

    Barry, J. J.; Sheikholeslami, M. Z.; Patel, B. R.

    1992-05-01

    The FLUENT and FLUENT/BFC computer programs have been used to numerically model turbulent flow through orifice meters. These simulations were based on solution of the Navier-Stokes equations incorporating a k-epsilon turbulence model. For ideal installations, trends in the discharge coefficient with Reynolds number, beta ratio, and surface roughness have been reproduced, and the value of the discharge coefficient has been computed to within 2 percent. Nonideal installations have also been simulated, including the effects of expanders, reducers, valves, and bends. Detailed modeling of flow through a bend has yielded results in good agreement with experimental data. The trend in discharge coefficient shifts for orifice meters downstream of bends has been predicted reasonably well.

  17. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  18. Veterinary Antibiotics in Young Dutch Groundwater under Intensive Livestock Farming

    Science.gov (United States)

    Vliet, M. V.; Kivits, T.; Broers, H. P.; Beeltje, H.; Griffioen, J.

    2016-12-01

    Dutch groundwater is heavily affected by nutrient loads from agricultural origin. The use of antibiotics is also widespread in Dutch farming practice, 200.000 kg active substance over 1.839.000 ha of agricultural land. National measures were established to reduce the applications. Spreading of manure over farmlands is assumed to be the main pathway for the leaching of antibiotics to groundwater, but actual numbers are lacking. We studied the occurrence of veterinary antibiotics in groundwater in two areas with intensive livestock farming, sampling existing multi-level wells that were previously age dated using tritium-helium. Wells were selected based on the following criteria: the uppermost screen is situated just below the average groundwater level, which is not deeper than 3 meters, the well is in an agricultural field where rainwater infiltrates avoiding areas adjacent to ditches or streams, the groundwater quality is known for several years and the age of the extracted water is known to be young (veterinary practice.

  19. An Overview of Groundwater Governance and Management in China

    Science.gov (United States)

    Liu, J.; Qi, Y.; Zheng, C.

    2011-12-01

    Understanding the legislative and administrative water management systems is essential to translate hydrological expertise into real actions. This study provides an overview of groundwater governance and management in China, including the existing laws, regulations, institutional arrangements and governing practices. Respectable progress has been made in a relatively short period of time in the legislation of China's groundwater governance. However, the implementation of the laws and regulations has not been as successful as their formulation process. Groundwater overdraft and quality deterioration has not been fundamentally brought under control. Institutional deficiencies, statutory deficiencies, enforcement deficiencies, insufficient public participation and information disclosure are some of the major reasons for poor groundwater management in China. To better address the problems in contemporary groundwater management, the legislation system should firstly be improved. Secondly, institutional reforms are needed to straighten out several critical relationships, including the relationship between the national and local governments, the relationship among different ministries with water-related jurisdiction, and the relationship between river basin based and administrative division based management approaches. Thirdly, a national water-monitoring network should be constructed with improved metering techniques. Data publishing and information sharing should also be promoted.

  20. Definition and Verification of Shape Meter Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two experimental methods were adopted to verify the correctness and practicability of the shape meter method: one is to roll aluminum plate, calculate the shape stiffness of mill and rolled piece, and then measure aluminum plate crown to verify shape stiffness equation; the other is to calculate the measured off-line data of hot continuous roll and verify the shape mathematical model for measuring and controlling by self-adaptation method.

  1. Device Stores and Discharges Metered Fluid

    Science.gov (United States)

    Hooper, S. L.; Setzer, D.

    1983-01-01

    Hand-held container accepts measured amount of liquid from pressurized supply. Supply pressure drives spring-loaded piston that stores enough mechanical energy to discharge measured liquid into another container. Original application of container was to rehydrate sterilized pre-packaged food in zerogravity environment of space vehicles. Possible terrestrial applicatios include dispensing of toxic fluids or metering of fluids for household, commercial or laboratory uses.

  2. From Smart Metering to Smart Grid

    Science.gov (United States)

    Kukuča, Peter; Chrapčiak, Igor

    2016-06-01

    The paper deals with evaluation of measurements in electrical distribution systems aimed at better use of data provided by Smart Metering systems. The influence of individual components of apparent power on the power loss is calculated and results of measurements under real conditions are presented. The significance of difference between the traditional and the complex evaluation of the electricity consumption efficiency by means of different definitions of the power factor is illustrated.

  3. Resonant speed meter for gravitational wave detection

    CERN Document Server

    Nishizawa, Atsushi; Sakagami, Masa-aki

    2008-01-01

    Gravitational-wave detectors have been well developed and operated with high sensitivity. However, they still suffer from mirror displacement noise. In this paper, we propose a resonant speed meter, as a displacement noise-canceled configuration based on a ring-shaped synchronous recycling interferometer. The remarkable feature of this interferometer is that, at certain frequencies, gravitational-wave signals are amplified, while displacement noises are not.

  4. A study of the Lute Metering Structure

    Science.gov (United States)

    Foreman, James W.

    1992-12-01

    Two Metering Structure configurations were investigated. The first case was the traditional style metering structure which is larger than the outside diameter of the primary mirror. The second case investigated was the center support concept in which the outside diameter of the structure is less than the inside diameter of the primary mirror. Beryllium was used as the baseline material for this study. Four other materials were considered as candidates for the metering structure. These materials are: Graphite Epoxy, Aluminum, Titanium, and Invar. The loading conditions used for this study were estimated to be: Quasi Static: 6.0 G (all three directions); and Random Vibration: 30.0 G (applied 1 axis at a time). Taking advantage of symmetry, it was necessary to apply the lateral loading to only one axis. These loads were applied to both concepts and to all material configurations. The loadings as described above were based on the best available information and is felt to be adequate for this study since it was consistently used for all configurations. A load factor 2.00 was applied to both quasi static and random vibration loads. The allowable stresses are conservatively based yield strength of the material, except for the struts which are controlled by elastic stability. The stresses determined from each individual loading direction were conservatively combined by the absolute sum method.

  5. Measurement strategies for downhole multiphase metering

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Erling A.; Johansen, Geir Anton; Tollefsen, Jarle; Aabro, Eirik [Bergen Univ.(Norway)

    1997-07-01

    There will be an increasing demand for multiphase subsea and downhole meters in the future. Both at the sea bottom and downhole the flow regimes in the production pipes or in the manifolds at the templates, may differ from the ideal homogeneous mixture. Further, in line mixers should be avoided to reduce pressure drops and maintenance costs. The next generation multiphase meters will therefore call for flow regime independent and non-intrusive sensor systems. Since all sensor principles used in multiphase flowmeters today are highly dependent on the distribution of the components in the mixture, and thus make the measurement range limited, multi-sensor principles may be the solution to obtain better accuracy for larger ranges of component fractions and applications. Both the capacitance-, conductance-, microwave- and gamma-principles can be used in multi-sensor arrangement to provide cross-sectional information about the component distribution. Hence, the meter can be used at all types of flow regimes and at any position without mixers or separators. (author)

  6. Effluent metering and liquid gas ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, L.M. [EnCana Corp., Calgary, AB (Canada); Howell, K. [Intricate Group, Calgary, AB (Canada)

    2010-07-01

    The Industry Measurement Group (IMG) launched a 2 year initiative in 2007 focused on creating technically based regulations to improve the economics on low pressure, low liquid gas plays in western Canada. The IMG is the liaison between the petroleum industry and regulatory agencies in the development of industry accepted standards for measuring activities. The Canadian Association of Petroleum Producers (CAPP) supported the IMG's initiative, which led to a joint CAPP/IMG review of effluent metering applications and the associated testing requirements for gas wells in British Columbia and Alberta. The primary objectives of the joint CAPP/IMG review were to bring all parties together to form a common framework for effluent metering application and testing expectations, based on a risk and volumetric approach; and to support an economical approach to the continued development of unconventional gas resource plays in Alberta and British Columbia, with a focus on well-site infrastructure and operational cost optimization. This paper focused primarily on the well testing requirements and discussed the benefits of creating technically based, pragmatic regulations. Existing regulations were used to help the CAPP/IMG project team to develop a new practical and pragmatic regulatory framework and policy for effluent metering and well testing. 1 ref., 2 tabs., 15 figs.

  7. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  8. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA

    Science.gov (United States)

    Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1996-01-01

    Substantial flowpath-related variability of 87Sr/86Sr is observed in groundwaters collected from the Trout Lake watershed of northern Wisconsin. In the extensive shallow aquifer composed of sandy glacial outwash, groundwater is recharged either by seepage from lakes or by precipitation that infiltrates the inter-lake uplands. 87Sr/86Sr of groundwater derived mainly as seepage from a precipitation-dominated lake near the head of the watershed decreases with progressive water chemical evolution along its flowpath due primarily to enhanced dissolution of relatively unradiogenic plagioclase. In contrast, 87Sr/86Sr of groundwater derived mainly from precipitation that infiltrates upland areas is substantially greater than that of precipitation collected from the watershed, due to suppression of plagioclase dissolution together with preferential leaching of Sr from radiogenic phases such as K-feldspar and biotite. The results of a column experiment that simulated the effects of changing residence time of water in the aquifer sand indicate that mobile waters obtain relatively unradiogenic Sr, whereas stagnant waters obtain relatively radiogenic Sr. Nearly the entire range of strontium-isotope composition observed in groundwaters from the watershed was measured in the experimental product waters. The constant mobility of water along groundwater recharge flowpaths emanating from the lakes promotes the dissolution of relatively unradiogenic plagioclase, perhaps due to effective dispersal of clay mineral nuclei resulting from dissolution reactions. In contrast, episodic stagnation in the unsaturated zone along the upland recharge flowpaths suppresses plagioclase dissolution, perhaps due to accumulation of clay mineral nuclei on its reactive surfaces. Differences in redox conditions along these contrasting flowpaths probably enhance the observed differences in strontium isotope behavior. This study demonstrates that factors other than the calculated state of mineral saturation

  9. Development of Groundwater Modeling Capacity in Mongolia: Keys to Success

    Science.gov (United States)

    Anderson, M. T.; Valder, J. F.; Carter, J. M.

    2015-12-01

    Ulaanbaatar, the capital city of Mongolia, is totally dependent on groundwater for its municipal and industrial water supply. Water is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence, however, suggests that current water use and especially the projected water demand from a rapidly growing urban population, is not sustainable from existing water sources. In response, the Mongolia Ministry of Environment and the Mongolian Fresh Water Institute requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers to the U.S. Geological Survey (USGS). Scientists from the USGS-SD Water Science Center provided a workshop to Mongolian water experts on basic principles of groundwater modeling using MODFLOW. The purpose of the workshop was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling. A preliminary steady-state groundwater flow model was developed to simulate groundwater conditions in the Tuul River Basin and for use in water use decision-making. The model consisted of 2 layers, 226 rows, and 260 columns with uniform 500 meter grid spacing. The upper model layer represented the alluvial aquifer and the lower layer represented the underlying bedrock, which includes areas characterized by permafrost. Estimated groundwater withdrawal was 180 m3/day, and estimated recharge was 114 mm/yr. The model will be modified and updated by Mongolian scientists as more data are available. Ultimately the model will be used to assist managers in developing a sustainable water supply, for current use and changing climate scenarios. A key to success was developing in-country technical capacity and partnerships with the Mongolian University of Science and Technology, Mongolian Freshwater Institute, a non-profit organization, UNESCO, and the government of Mongolia.

  10. Conceptual model and numerical simulation of the groundwater-flow system of Bainbridge Island, Washington

    Science.gov (United States)

    Frans, Lonna M.; Bachmann, Matthew P.; Sumioka, Steve S.; Olsen, Theresa D.

    2011-01-01

    Groundwater is the sole source of drinking water for the population of Bainbridge Island. Increased use of groundwater supplies on Bainbridge Island as the population has grown over time has created concern about the quantity of water available and whether saltwater intrusion will occur as groundwater usage increases. A groundwater-flow model was developed to aid in the understanding of the groundwater system and the effects of groundwater development alternatives on the water resources of Bainbridge Island. Bainbridge Island is underlain by unconsolidated deposits of glacial and nonglacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Eleven principal hydrogeologic units are recognized in the study area and form the basis of the groundwater-flow model. A transient variable-density groundwater-flow model of Bainbridge Island and the surrounding area was developed to simulate current (2008) groundwater conditions. The model was calibrated to water levels measured during 2007 and 2008 using parameter estimation (PEST) to minimize the weighted differences or residuals between simulated and measured hydraulic head. The calibrated model was used to make some general observations of the groundwater system in 2008. Total flow through the groundwater system was about 31,000 acre-ft/ yr. The recharge to the groundwater system was from precipitation and septic-system returns. Groundwater flow to Bainbridge Island accounted for about 1,000 acre-ft/ yr or slightly more than 5 percent of the recharge amounts. Groundwater discharge was predominately to streams, lakes, springs, and seepage faces (16,000 acre-ft/yr) and directly to marine waters (10,000 acre-ft/yr). Total groundwater withdrawals in 2008 were slightly more than 6 percent (2,000 acre-ft/yr) of the total flow. The calibrated model was used to simulate predevelopment conditions

  11. A hydrological budget (2002-2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow

    Science.gov (United States)

    Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon

    2012-01-01

    Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

  12. H-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah River Site (SRS) is monitored periodically for various hazardous and radioactive constituents as required by Module III, Section D, of the 1995 Resource Conservation and Recovery ACT (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995. Currently, the H-Area HWMF monitoring network consists of 130 wells of the HSB series and 8 wells of the HSL series screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the H-Area HWMF. This report presents the results of the required groundwater monitoring program as identified in provision IIIDH.11.c

  13. Calibration and features of air-kerma length product meters.

    Science.gov (United States)

    Merimaa, K; Tapiovaara, M; Kosunen, A; Toroi, P

    2012-12-01

    Pencil-type air-kerma length product meters are generally used for quality control and radiation exposure measurements in computed tomography. To ensure reliable results, these meters should be calibrated so that measurements are traceable to international standards. Suitable calibration procedures, together with the properties of these meters, were examined and compared with the international standards and recommendations. The calibration procedure and setup used in this study were slightly modified compared with international recommendations. The special collimator system was found to cause less scatter than similar setups in earlier studies. The energy dependence of the meter response was