WorldWideScience

Sample records for groundwater sampling technologies

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOPROBE INC., PNEUMATIC BLADDER PUMP GW 1400 SERIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...

  2. Groundwater sampling in uranium reconnaissance

    International Nuclear Information System (INIS)

    Butz, T.R.

    1977-03-01

    The groundwater sampling program is based on the premise that ground water geochemistry reflects the chemical composition of, and geochemical processes active in the strata from which the sample is obtained. Pilot surveys have shown that wells are the best source of groundwater, although springs are sampled on occasion. The procedures followed in selecting a sampling site, the sampling itself, and the field measurements, as well as the site records made, are described

  3. Groundwater sampling: Chapter 5

    Science.gov (United States)

    Wang, Qingren; Munoz-Carpena, Rafael; Foster, Adam; Migliaccio, Kati W.; Li, Yuncong; Migliaccio, Kati

    2011-01-01

    About the book: As water quality becomes a leading concern for people and ecosystems worldwide, it must be properly assessed in order to protect water resources for current and future generations. Water Quality Concepts, Sampling, and Analyses supplies practical information for planning, conducting, or evaluating water quality monitoring programs. It presents the latest information and methodologies for water quality policy, regulation, monitoring, field measurement, laboratory analysis, and data analysis. The book addresses water quality issues, water quality regulatory development, monitoring and sampling techniques, best management practices, and laboratory methods related to the water quality of surface and ground waters. It also discusses basic concepts of water chemistry and hydrology related to water sampling and analysis; instrumentation; water quality data analysis; and evaluation and reporting results.

  4. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  5. Groundwater sampling with well-points

    International Nuclear Information System (INIS)

    Laubacher, R.C.; Bailey, W.M.

    1992-01-01

    This paper reports that BP Oil Company and Engineering-Science (ES) conducted a groundwater investigation at a BP Oil Distribution facility in the coastal plain of south central Alabama. The predominant lithologies include unconsolidated Quaternary-aged gravels, sands, silts and clay. Wellpoints were used to determine the vertical and horizontal extent of volatile hydrocarbons in the water table aquifer. To determine the vertical extent of contaminant migration, the hollow-stem augers were advanced approximately 10 feet into the aquifer near a suspected source. The drill stem and bit were removed very slowly to prevent sand heaving. The well-point was again driven ahead of the augers and four volumes (18 liters) of groundwater were purged. A sample was collected and the headspace vapor was analyzed as before. Groundwater from a total of seven borings was analyzed using these techniques. Permanent monitoring wells were installed at four boring locations which had volatile concentrations less than 1 part per million. Later groundwater sampling and laboratory analysis confirmed the wells had been installed near or beyond both the horizontal and vertical plume boundaries

  6. Soil and groundwater remediation using dual-phase extraction technology

    International Nuclear Information System (INIS)

    Miller, A.W.; Gan, D.R.

    1995-01-01

    A gasoline underground storage tank (UST) was formerly used to fuel vehicles for a hospital in Madison, Wisconsin. Elevated concentrations of gasoline range organics (GRO) were observed in soils and groundwater at the site during the tank removal and a subsequent site investigation. Based on the extent of soil and groundwater contamination, a dual-phase extraction technology was selected as the most cost effective alternative to remediate the site. The dual-phase extraction system includes one extraction well functioning both as a soil vapor extraction (SVE) and groundwater recovery well. After six months of operation, samples collected from the groundwater monitoring wells indicated that the groundwater has been cleaned up to levels below the Wisconsin preventative action limits. The dual-phase extraction system effectively remediated the site in a short period of time, saving both operation and maintenance costs and overall project cost

  7. Designing an enhanced groundwater sample collection system

    International Nuclear Information System (INIS)

    Schalla, R.

    1994-10-01

    As part of an ongoing technical support mission to achieve excellence and efficiency in environmental restoration activities at the Laboratory for Energy and Health-Related Research (LEHR), Pacific Northwest Laboratory (PNL) provided guidance on the design and construction of monitoring wells and identified the most suitable type of groundwater sampling pump and accessories for monitoring wells. The goal was to utilize a monitoring well design that would allow for hydrologic testing and reduce turbidity to minimize the impact of sampling. The sampling results of the newly designed monitoring wells were clearly superior to those of the previously installed monitoring wells. The new wells exhibited reduced turbidity, in addition to improved access for instrumentation and hydrologic testing. The variable frequency submersible pump was selected as the best choice for obtaining groundwater samples. The literature references are listed at the end of this report. Despite some initial difficulties, the actual performance of the variable frequency, submersible pump and its accessories was effective in reducing sampling time and labor costs, and its ease of use was preferred over the previously used bladder pumps. The surface seals system, called the Dedicator, proved to be useful accessory to prevent surface contamination while providing easy access for water-level measurements and for connecting the pump. Cost savings resulted from the use of the pre-production pumps (beta units) donated by the manufacturer for the demonstration. However, larger savings resulted from shortened field time due to the ease in using the submersible pumps and the surface seal access system. Proper deployment of the monitoring wells also resulted in cost savings and ensured representative samples

  8. A Preliminary Assessment of Groundwater Samples around a Filling ...

    African Journals Online (AJOL)

    This paper is a preliminary assessment of groundwater samples around a filling station in Diobu area of Port Harcourt for four years at intervals of two years with a view to determine the level of groundwater pollution. It examines the physiochemical, major ions and heavy metal aspect of groundwater quality around the study ...

  9. Chemistry of groundwater discharge inferred from longitudinal river sampling

    Science.gov (United States)

    Batlle-Aguilar, J.; Harrington, G. A.; Leblanc, M.; Welch, C.; Cook, P. G.

    2014-02-01

    We present an approach for identifying groundwater discharge chemistry and quantifying spatially distributed groundwater discharge into rivers based on longitudinal synoptic sampling and flow gauging of a river. The method is demonstrated using a 450 km reach of a tropical river in Australia. Results obtained from sampling for environmental tracers, major ions, and selected trace element chemistry were used to calibrate a steady state one-dimensional advective transport model of tracer distribution along the river. The model closely reproduced river discharge and environmental tracer and chemistry composition along the study length. It provided a detailed longitudinal profile of groundwater inflow chemistry and discharge rates, revealing that regional fractured mudstones in the central part of the catchment contributed up to 40% of all groundwater discharge. Detailed analysis of model calibration errors and modeled/measured groundwater ion ratios elucidated that groundwater discharging in the top of the catchment is a mixture of local groundwater and bank storage return flow, making the method potentially useful to differentiate between local and regional sourced groundwater discharge. As the error in tracer concentration induced by a flow event applies equally to any conservative tracer, we show that major ion ratios can still be resolved with minimal error when river samples are collected during transient flow conditions. The ability of the method to infer groundwater inflow chemistry from longitudinal river sampling is particularly attractive in remote areas where access to groundwater is limited or not possible, and for identification of actual fluxes of salts and/or specific contaminant sources.

  10. Testing a groundwater sampling tool: Are the samples representative?

    International Nuclear Information System (INIS)

    Kaback, D.S.; Bergren, C.L.; Carlson, C.A.; Carlson, C.L.

    1989-01-01

    A ground water sampling tool, the HydroPunch trademark, was tested at the Department of Energy's Savannah River Site in South Carolina to determine if representative ground water samples could be obtained without installing monitoring wells. Chemical analyses of ground water samples collected with the HydroPunch trademark from various depths within a borehole were compared with chemical analyses of ground water from nearby monitoring wells. The site selected for the test was in the vicinity of a large coal storage pile and a coal pile runoff basin that was constructed to collect the runoff from the coal storage pile. Existing monitoring wells in the area indicate the presence of a ground water contaminant plume that: (1) contains elevated concentrations of trace metals; (2) has an extremely low pH; and (3) contains elevated concentrations of major cations and anions. Ground water samples collected with the HydroPunch trademark provide in excellent estimate of ground water quality at discrete depths. Groundwater chemical data collected from various depths using the HydroPunch trademark can be averaged to simulate what a screen zone in a monitoring well would sample. The averaged depth-discrete data compared favorably with the data obtained from the nearby monitoring wells

  11. Groundwater Sustainability through a Novel Dewatering Technology

    Science.gov (United States)

    Jin, Y.; Holzbecher, E.; Ebneth, S.

    2012-12-01

    Groundwater plays a key role in the hydrologic cycle and ecosystem balances. Over the past decades, groundwater is intensively extracted in order to keep construction or mining sites dry. For the latter purpose the pumped water is usually discharged into a nearby surface water body or injected into an aquifer distant from the abstraction sites. As a result, aquifers are depleted and the local eco-system is disrupted as a consequence of falling groundwater tables. Given ongoing pressure on aquifer from abstraction sites, it is vital to bring up adequate attention on groundwater conservation. We demonstrate a novel technique, Düsensauginfiltration (DSI, translated as 'nozzel-suction-infiltration'), which avoids water conveyance but still lowers the groundwater table locally. The method combines abstraction of groundwater at the upper part of the aquifer with injection in the same borehole, but at a greater depth. Hence no water is withdrawn from the system. The method is already used practically in Germany, Netherlands, and China, however, it is not yet fully scientifically understood and evaluated. Currently, two tests sites in Germany, for single and multi well respectively, are selected, at which the DSI technology is currently examined. The project is cooperated with a leading dewatering company (Hoelscher Wasserbau GmbH) and funded by Deutsche Bundesstiftung Umwelt (DBU). To provide the basic principle of the method, we present numerical models solving the differential equation, which is derived from Darcy's Law and mass conservation, describing groundwater flow. We set up stationary numerical models in 2D (vertical cross section for single well case) and 3D (multi well case and/or when ambient groundwater flow is considered) using COMSOL Multiphysics. Since our model region only involves the saturated part of the unconfined aquifer, the numerical model solves a free boundary problem using hydraulic pressure as unknown variable. Two physical modes are included

  12. a preliminary assessment of groundwater samples around a filling

    African Journals Online (AJOL)

    Home

    considerably degraded by physical, chemical and bacterial ... chemical and bacterial constituents of groundwater is ... Samples were collected in clean 1 liter plastic bottle from each borehole. ... bottles were kept on ice pack and the unstable.

  13. Technical studies on a composite groundwater sample from F- and H-Area

    International Nuclear Information System (INIS)

    Bibler, J.P.

    1990-01-01

    A composite sample of groundwater from F- and H-Areas was collected by Waste Management Tech and delivered to the Savannah River Laboratory to use in preliminary experiments that would test three remediation technologies under consideration. The three technologies are pH adjustment and filtration, decontamination with a strong acid ion exchange resin, and decontamination with a chelating ion exchange resin

  14. Electrochemical remediation technologies for soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Doering, F. [Electrochemical Processes I.I. c. Valley Forge, PA (United States)]|[P2 Soil Remediation, Inc. Stuttgart (Germany); Doering, N. [P2 Soil Remediation, Inc. Stuttgart (Germany)

    2001-07-01

    In Direct Current Technologies (DCTs) a direct current electricity is passed between at least two subsurface electrodes in order to effect the remediation of the groundwater and/or the soil. DCTs in line with the U.S.-terminology comprise of the ElectroChemical Remediation Technologies (ECRTs), and GeoKinetics. The primary distinction between ECRTs and ElectroKinetics are the power input, and the mode of operation, which are electrochemical reactions vs. mass transport. ECRTs combine phenomena of colloid (surface) electrochemistry with the phenomena of Induced Polarization (IP). This report focuses on ECRTs, comprising of the ElectroChemical GeoOxidation (ECGO) for the mineralization of organic pollutants to finally carbon dioxide and water, and Induced Complexation (IC), related to the electrochemical conversion of metals enhancing the mobilization and precipitation of heavy metals on both electrodes. Both technologies are based on reduction-oxidation (redox) reactions at the scale of the individual soil particles. (orig.)

  15. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  16. Expediting Groundwater Sampling at Hanford and Making It Safer

    International Nuclear Information System (INIS)

    Connell, Carl W. Jr.; Carr, Jennifer S.; Hildebrand, R. Douglas; Schatz, Aaron L.; Conley, S. F.; Brown, W. L.

    2013-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons

  17. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  18. Design of a groundwater sampling network for Minnesota

    International Nuclear Information System (INIS)

    Kanivetsky, R.

    1977-01-01

    This folio was compiled to facilitate the use of groundwater as a sampling medium to aid in exploration for hitherto undiscovered deposits of uranium in the subsurface rocks of Minnesota. The report consists of the following sheets of the hydrogeologic map of Minnesota: (1) map of bedrock hydrogeology, (2) generalized cross sections of the hydrogeologic map of Minnesota, showing both Quaternary deposits and bedrock, (3) map of waterwells that penetrate Precambrian rocks in Minnesota. A list of these wells, showing locations, names of owners, type of Precambrian aquifers penetrated, lithologic material of the aquifers, and well depths is provided in the appendix to this report. Structural settings, locations, and composition of the bedrock aquifers, movement of groundwater, and preliminary suggestions for a sampling program are discussed below under the heading Bedrock Hydrogeology of Minnesota. The map sheet showing Quaternary hydrogeology is not included in this report because the chemistry of groundwater in these deposits is not directly related to bedrock mineralization

  19. Sample size reduction in groundwater surveys via sparse data assimilation

    KAUST Repository

    Hussain, Z.

    2013-04-01

    In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.

  20. Sample size reduction in groundwater surveys via sparse data assimilation

    KAUST Repository

    Hussain, Z.; Muhammad, A.

    2013-01-01

    In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.

  1. A tracking system for groundwater sampling and data transfer schedules

    International Nuclear Information System (INIS)

    Mercier, T.M.

    1990-12-01

    Since groundwater monitoring programs at the Oak Ridge Y-12 Plant have become more complex and varied and as the occasions to respond to internal and external reporting requirements have become more frequent and time constrained, the need to track groundwater sampling activities and data transfer from the analytical laboratories has become imperative. If backlogs can be caught early, resources can be added or reallocated in the field and in the laboratory in a timely manner to ensure reporting deadlines are met. The tracking system discussed in this paper starts with clear definition of the groundwater monitoring program at the facility. This information is input into base datasets at the beginning of the sampling cycle. As the sampling program progresses, information about well sampling dates and data transfer dates is input into the base datasets. From the base program data and the update data, a status report is periodically generated by a computer program which identifies the type and nature of bottle necks encountered during the implementation of the groundwater monitoring program

  2. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  3. Rapid assessment of soil and groundwater tritium by vegetation sampling

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1995-01-01

    A rapid and relatively inexpensive technique for defining the extent of groundwater contamination by tritium has been investigated. The technique uses existing vegetation to sample the groundwater. Water taken up by deep rooted trees is collected by enclosing tree branches in clear plastic bags. Water evaporated from the leaves condenses on the inner surface of the bag. The water is removed from the bag with a syringe. The bags can be sampled many times. Tritium in the water is detected by liquid scintillation counting. The water collected in the bags has no color and counts as well as distilled water reference samples. The technique was used in an area of known tritium contamination and proved to be useful in defining the extent of tritium contamination

  4. Evaluation of the Validity of Groundwater Samples Obtained Using the Purge Water Management System at SRS

    International Nuclear Information System (INIS)

    Beardsley, C.C.

    1999-01-01

    As part of the demonstration testing of the Purge Water Management System (PWMS) technology at the Savannah River Site (SRS), four wells were equipped with PWMS units in 1997 and a series of sampling events were conducted at each during 1997-1998. Three of the wells were located in A/M Area while the fourth was located at the Old Radioactive Waste Burial Ground in the General Separations Area.The PWMS is a ''closed-loop'', non-contact, system used to collect and return purge water to the originating aquifer after a sampling event without having significantly altered the water quality. One of the primary concerns as to its applicability at SRS, and elsewhere, is whether the PWMS might resample groundwater that is returned to the aquifer during the previous sampling event. The purpose of the present investigation was to compare groundwater chemical analysis data collected at the four test wells using the PWMS vs. historical data collected using the standard monitoring program methodology to determine if the PWMS provides representative monitoring samples.The analysis of the groundwater chemical concentrations indicates that the PWMS sampling methodology acquired representative groundwater samples at monitoring wells ABP-1A, ABP-4, ARP-3 and BGO-33C. Representative groundwater samples are achieved if the PWMS does not resample groundwater that has been purged and returned during a previous sampling event. Initial screening calculations, conducted prior to the selection of these four wells, indicated that groundwater velocities were high enough under the ambient hydraulic gradients to preclude resampling from occurring at the time intervals that were used at each well. Corroborating evidence included a tracer test that was conducted at BGO-33C, the high degree of similarity between analyte concentrations derived from the PWMS samples and those obtained from historical protocol sampling, as well as the fact that PWMS data extend all previously existing concentration

  5. Sampling and analysis of groundwater colloids. A literature review

    International Nuclear Information System (INIS)

    Takala, M.; Manninen, P.

    2006-03-01

    The purpose of this literature study was to give basic information of colloids: their formation, colloid material, sampling and characterisation of groundwater colloids. Colloids are commonly refereed to as particles in the size range of 1 nm to 1000 nm. They are defined as a suspension of solid material in a liquid that does not appear to separate even after a long period of time. Colloids can be formed from a variety of inorganic or organic material. Inorganic colloids in natural groundwaters are formed by physical fragmentation of the host rock or by precipitation. The water chemistry strongly controls the stability of colloids. The amount of colloid particles in a solution tends to decrease with the increasing ionic strength of the solution. Increases in pH and organic material tend to increase the stability of colloids. The mobility of colloids in a porous medium is controlled mainly by groundwater movement, sedimentation, diffusion and interception. Factors controlling sampling artefacts are oxygen diffusion: leads to e.g. calcite precipitation, pumping rates and filtering techniques. Efforts to minimise artefact formation should be taken if the scope of the sampling programme is to study the colloid particles. The colloid phase size distribution can be determined by light scattering systems, laser induced break down or by single particle analysis using SEM micrographs. Elemental compositions can be analysed with EDS spectrometry from single colloid particles. Bulk compositions of the colloid phase can be analysed with e.g. ICP-MS analyser. The results of this study can be used as guidelines for groundwater colloid samplings. Recommendations for future work are listed in the conclusions of this report. (orig.)

  6. Atmospheric Gas Tracers in Groundwater: Theory, Sampling. Measurement and Interpretation

    International Nuclear Information System (INIS)

    Bayari, C.S.

    2002-01-01

    Some of the atmospheric gasses posses features that are sought in an environmental tracer of hydrogeologic interest. Among these, chlorofluorocarbons, sulfur hegzafluoride, carbon tetrachloride, methyl chloroform, krypton-85 etc. have found increasing use in groundwater age dating studies during the last ten years. This paper explains the theory of their use as tracer and discusses the major concerns as related to their sampling and analyses. Factors affecting their applicability and the approach to interpret tracer gas data is briefly outlined

  7. A new site for 85Kr measurements on groundwater samples

    International Nuclear Information System (INIS)

    Lange, T.; Hebert, D.

    2000-01-01

    Analysis of stable and radioactive isotopes is essential as a complement to geochemistry and geohydraulic investigations on groundwater regimes and their genesis. This is widely acknowledged also for the determination of the specific activity of 85 Kr in groundwater. The geochemical inertness and well-defined input function of 85 Kr allow estimates of groundwater age and enhance characterization of groundwater flow and components in many aquifer systems. A new site for measurement of the 85 Kr specific activity has been established at the Institute of Applied Physics at the Freiberg University, Saxony. Under normal conditions ca. 80 μl krypton are dissolved in 1 m 3 of water in contact with air. Therefore gas extraction has to be most effectively. A modified CO 2 extractor of 45 cm x 10 cm was chosen. The water is continuously pumped under pressure (3 - 4 bar) passing a Venturi-type nozzle, which simultaneously operates as a water-jet pump. The extracted gas flows through a CO 2 trap (NaOH 10 %), a H 2 O cold trap, through molecular sieves (5, 3 A) and a charcoal column, cooled by liquid nitrogen, where krypton, nitrogene and other components are adsorbed. Remaining gases re-enter the extractor at the Venturi-type nozzle. A small membrane pump supports the circulation. Due to the special design of the water outlet, contamination of the sample is avoided. Optional a compact stove heats the water to improve the extraction efficiency. If pressure supply is high enough, additional extractors can be run simultaneously. In a test run the recovery for radon was around 65 to 70 %. Further preparation steps of the raw krypton sample is performed in the laboratory. To obtain a good first enrichment a tube furnace filled with chrome powder is used to separate nitrogen and oxygen from the sample at 900 deg C. The following enrichment steps are performed by a preparation setup developed at GSF-Institute for Hydrology, Neuherberg. (author)

  8. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  9. Sampling and treatment of rock cores and groundwater under reducing environments of deep underground

    International Nuclear Information System (INIS)

    Ebashi, Katsuhiro; Yamaguchi, Tetsuji; Tanaka, Tadao

    2005-01-01

    A method of sampling and treatment of undisturbed rock cores and groundwater under maintained reducing environments of deep underground was developed and demonstrated in a Neogene's sandy mudstone layer at depth of GL-100 to -200 m. Undisturbed rock cores and groundwater were sampled and transferred into an Ar gas atmospheric glove box with minimized exposure to the atmosphere. The reducing conditions of the sampled groundwater and rock cores were examined in the Ar atmospheric glove box by measuring pH and Eh of the sampled groundwater and sampled groundwater contacting with disk type rock samples, respectively. (author)

  10. Automating Groundwater Sampling At Hanford, The Next Step

    International Nuclear Information System (INIS)

    Connell, C.W.; Conley, S.F.; Hildebrand, R.D.; Cunningham, D.E.

    2010-01-01

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very 'people intensive.' Approximately 1500 wells are sampled each year by field personnel or 'samplers.' These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  11. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2018-03-01

    The purpose is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the DOE/EM Nevada Program’s UGTA Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP) (NNSA/NFO, 2015); Federal Facility Agreement and Consent Order (FFACO) (1996, as amended); and DOE Order 458.1, Radiation Protection of the Public and the Environment (DOE, 2013). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing both the extent of groundwater contamination from underground nuclear testing and impact of testing on water quality in downgradient communities. This Plan identifies locations to be sampled by CAU and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well purging, detection levels, and accuracy requirements/recommendations; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling analytes of interest to UGTA. Information used in the Plan development—including the rationale for selection of wells, sampling frequency, and the analytical suite—is discussed under separate cover (N-I, 2014) and is not reproduced herein. This Plan does not address compliance for those wells involved in a permitted activity. Sampling and analysis requirements associated with these wells are described in their respective permits and are discussed in NNSS environmental reports (see Section 5.2). In addition, sampling for UGTA CAUs that are in the Closure Report (CR) stage are not included in this Plan. Sampling requirements for these CAUs are described in the CR

  12. Carbon-14 dating of groundwater under Christchurch, 1976 samples

    International Nuclear Information System (INIS)

    Stewart, M.K.; Brenninkmeijer, C.A.M.; Brown, L.J.

    1986-06-01

    Four samples of groundwater from deep aquifers under Christchurch have been analysed for carbon-14, tritium, oxygen-18 and chemical contents. Interpretation of the carbon-14 results requires two steps, (1) correction of the measured 14 C values for input of dead ( 14 C-free) carbon underground (indicating that the measured values of 80 PMC* should be increased to about 120 PMC), and (2) determination of water residence times for given flow models of the groundwater system. Interpretation of tritium results involves step 2 only. Three models are considered, of which the third is considered most appropriate to Christchurch. In this model, the 14 C and T results indicate that a small proportion of young water (post-1954) mixes with a larger proportion of older water (probably at least several hundred years). The oxygen-18 content indicates that recharge is mainly from the Waimakariri River and possibly from rainfall and streams near the foothills of the Canterbury Plains. Other aspect of the groundwater flow under Christchurch are discussed

  13. Determination of heavy metals in groundwater samples - ICP-MS analysis and evaluation

    International Nuclear Information System (INIS)

    Leiterer, M.; Muench, U.

    1994-01-01

    An analytical programme which permits the direct, simultaneous determination of Al, As, Cd, Cr, Cu, Mn, Ni, Pb and Zn in groundwater samples was developed for ICP-MS. Spectral mass interferences, attributable to great differences in groundwater matrices, precision and accuracy have been discussed. The evaluation of analytical results was demonstrated for selected sampling points of the groundwater observation network of Thuringia. (orig.)

  14. Sampling and chemical analysis of groundwaters from the exploratory boreholes

    International Nuclear Information System (INIS)

    Wittwer, C.

    1986-10-01

    As a part of the Nagra geological investigation programme in northern Switzerland, numerous water samples were taken in the Boettstein, Weiach, Riniken, Schafisheim, Kaisten and Leuggern boreholes to obtain information on the chemistry and residence times of deep groundwaters. This report contains a compilation of hydrochemical data, comments on the individual water sampling actions and an evaluation of sample quality with respect to admixing of drilling fluids. The samples were taken from separate test intervals in the sediments and the crystalline rock. After removal of various types of drilling fluids such as mud as well as fresh water or deionised water during a cleaning phase, the samples were taken at the surface or at depth using pressure vessels. The tracers added to the drilling fluids (uranine, m-TFMBA) as well as the tritium content were used for a quantiative estimation of the content of drilling fluid in the samples (contamination). With a view fo further geochemical modelling, the samples were assessed with reference to the effect of contamination on the results of the chemical analyses. A total of 68 water samples were taken from 53 different intervals: - 27 samples had problem-free cleaning phases and were taken with negligible contamination. - 23 samples were taken under difficult conditions. Problems with hydraulic communication around packers, uncertain origin, inaccuracy as to extent of contamination, presence of cement, possible traces of salt from drilling fluid etc. meant that the analyses could only be used with extreme caution or after additional data-processing. - The analysis results from 18 samples will be disregarded due to significant drilling fluid content or because more reliable data are available for the same test interval. (author)

  15. Gas-driven pump for ground-water samples

    Science.gov (United States)

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  16. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    International Nuclear Information System (INIS)

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L.; Brown, W.L.; Hildebrand, R. Douglas

    2013-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to eliminating the need to print out

  17. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, Richland, WA 99352 (United States); Brown, W.L. [Lockheed Martin Systems Information, P.O. Box 950, Richland, WA 99352 (United States); Hildebrand, R. Douglas [Department of Energy - Richland Operations Office, 825 Jadwin Ave., Richland, WA 99352 (United States)

    2013-07-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to

  18. Heavy metal analysis in groundwater samples by SR-TXRF

    International Nuclear Information System (INIS)

    Moreira, Silvana; Ficaris, Maria; Vives, Ana Elisa S. de; Zucchi, Orgheda L.A.D.; Nascimento Filho, Virgilio Franco do Centro de Energia Nuclear na Agricultura , Piracicaba, SP . Lab. Instrumentacao Nuclear.; Brazil)

    2005-01-01

    In order to obtain information about levels of heavy metals in groundwater, analysis were carried out on samples from monitoring and supplying wells located in Campinas, Sao Paulo State, Southeastern Brazil. The analytical technique used was Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) and all the measurements were performed at Synchrotron Light Source Laboratory, using a white beam and a Si(Li) detector in total reflection condition. The determined elements were Al, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. The results were compared with the maximum allowed values (MPV) established by the Brazilian Health Department. The detection limits obtained varying from 0.10 up to 8 μg.L -1 were in agreement with the values presented by others analytical techniques. (author)

  19. Characterization of natural colloids sampled from a fractured granite groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Keum, Dong Kwon; Hahn, Pil Soo [Korea Atomic Energy Research Institute, Taejeon (Korea); Vilks, Peter [AECL Whiteshell Laboratories (Canada)

    2000-02-01

    This study was carried out as a part of international joint study of KAERI with AECL. The main purpose of this study is to analyze the physicochemical characteristics and sorption properties of natural colloids sampled from the deep fractured granite groundwater located in the Underground Research Laboratory (URL) of AECL. Physicochemical characteristics such as composition, size distribution, and concentrations of natural colloids was analyzed. This study will be basic data for the analysis of the effect of colloids on the radionuclide migration in a geological medium. This study may provide information for the evaluation of the roles and effects of colloids in the safety and performance assessment of a possible future radioactive waste repository. 20 refs., 8 figs., 8 tabs. (Author)

  20. Heavy metal analysis in groundwater samples by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Ficaris, Maria [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Zucchi, Orgheda L.A.D. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio Franco do [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    In order to obtain information about levels of heavy metals in groundwater, analysis were carried out on samples from monitoring and supplying wells located in Campinas, Sao Paulo State, Southeastern Brazil. The analytical technique used was Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) and all the measurements were performed at Synchrotron Light Source Laboratory, using a white beam and a Si(Li) detector in total reflection condition. The determined elements were Al, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. The results were compared with the maximum allowed values (MPV) established by the Brazilian Health Department. The detection limits obtained varying from 0.10 up to 8 {mu}g.L{sup -1} were in agreement with the values presented by others analytical techniques. (author)

  1. Influence of thermal treatments on radiocarbon dating of groundwater samples

    Science.gov (United States)

    Stanciu, Iuliana Madalina; Sava, Tiberiu Bogdan; Pacesila, Doru Gheorghe; Gaza, Oana; Simion, Corina Anca; Stefan, Bianca Maria; Sava, Gabriela Odilia; Ghita, Dan Gabriel; Mosu, Vasile

    2017-06-01

    Radiocarbon measurements of dissolved inorganic carbon (DIC) in water provides information about the formation of oceanic circulation of the water volumes, the hydrogeological systems, and also valuable information can be gained about the aquifer storage and the degree of containment relative to the surface waters. Radiocarbon dating refers to the determination of small quantities of the naturally occurring carbon 14 in the water, which can be integrated in the groundwater mass through the gaseous CO2, carbonaceous deposits dissolved by water and organic remains. The aim of this study is to investigate the influence of the temperature and pressure over the amount of each isotope of carbon during the sample preparation stage. The first step was to evaporate several underground water samples at 65°C under different conditions until the carbonates were obtained, then the CO2 was extracted with orto-phosphoric acid and transformed to graphite. The second step was to obtain graphite from an untreated water sample. Finally, the samples were measured with the 1MV Cockcroft-Walton Tandetron Accelerator by Accelerator Mass Spectrometry.

  2. Groundwater sampling from shallow boreholes (PP and PR) and groundwater observation tubes (PVP) at Olkiluoto in 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, H. [Teollisuuden Voima Oyj, Eurajoki (Finland)

    2005-11-15

    Groundwater sampling from the shallow boreholes and groundwater observation tubes was performed in summer 2004 (PP2, PP3, PP7, PP8, PRl, PVPl, PVP3A, PVP3B, PVP4A and PVP4B) and in autumn 2004 (PP2, PP3, PP5, PP7, PP8, PP9, PP36, PP37, PP39, PR1, PR2, PVP1, PVP3A, PVP3B, PVP4A, PVP8A, PVP9A, PVP9B, PVP10B, PVP11, PVP12, PVP13, PVP14 and PVP20). The results from previous samplings have been used in the hydrogeochemical baseline characterization at Olkiluoto and some of the latest results have also been part of the ONKALO monitoring program. This study contains data on preliminary pumping of the sampling points and pumping for groundwater sampling and chemical analyses in the laboratory. This study also includes comparison with analytical results obtained between 1995-2004. The total dissolved solids (TDS) of groundwater samples were mainly below 1000 mg/L. According to Davis's TDS classification, these waters were fresh waters. The only exception was the water sample from shallow borehole PP7 (1400mg/L and 1450mg/L), which was brackish. Several different groundwater types were observed, but the most common water type was Ca-HCO{sub 3} (five samples). Analytical results from 1995-2003 were compared. During 2001-2003 in groundwater samples from sampling points PVP1, PVP9A and PP7 all measured main parameters changed considerably, but from summer 2003 to autumn 2004 the greatest alterations occurred in PR2, PVP1, PVP3A and PVP3B waters. These changes can be seen in almost all parameters. For other samples only minor changes in results were observed during the reference period. (orig.)

  3. Description of work for routine groundwater sampling at the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Ford, B.H.

    1996-09-01

    This document provides a description of work and field implementation guidance for routine (post-baseline) groundwater monitoring sampling program at the Environmental Restoration Disposal Facility. The purpose of this program is to (1) meet the intent of the applicable or relevant and appropriate requirements; (2) document baseline groundwater conditions; (3) monitor those conditions for change; and (4) allow for modifications to groundwater sampling if required by the leachate management program

  4. Sampling and characterisation of groundwater colloids at ONKALO, Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Takala, M.; Manninen, P.

    2006-11-01

    The purpose of this sampling campaign was to test different filtering methods and filter membranes, to determine the colloid concentration and to characterise the composition of the colloid phase at ONKALO groundwater station ONK-PVA1 at Olkiluoto. The sampling was done on 18 to 19 April 2006. The filtering methods tested were downhole in-situ filtration and in-line syringe filtration. The membranes tested were Anopore 0.2-μm membrane and Nuclepore 0.05 -μm membrane. The Anopore filter was designed to be 0.02 -μm, but according to the SEM micrograph the nominal pore size of the membranes was 0.2 -μm. The size distributions were determined by single particle analysis of the SEM micrographs taken from the used filter membranes. The size distribution can be expressed as a function of the Pareto power law (Buffle, 1988). Parameters A and b of the Pareto power law distribution were determined by using the least square sum method. The particle and mass concentrations were then calculated using the Pareto power law. The size distribution varied between the filtering methods, so that the syringe filtered samples indicated less aggregation than the downhole filtered samples. The colloid concentrations were higher in the Nuclepore filter membranes. This is probably due to the shorter settling time prior to the sampling or differences in the membrane pore size and material. The concentration of the colloid phase determined from the anopore membranes (0.05-1 -μm) was 0.2-0.4 mg/L. The water samples were analysed at the accredited laboratory of Consulting Engineers Paavo Ristola Ltd. The differences in the element concentrations were not detectable between the filtered and unfiltered samples. Contamination with, e.g., nickel, aluminium and organic carbon was evident. The valves, fittings and filter membranes probably caused the contamination. An EDS spectrum was taken from the downhole filtered Nuclepore membrane. The filter cake showed traces of aluminium, silicon and

  5. Soil and groundwater cleanup: benefits and limits of emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Caliman, Florentina Anca; Robu, Brindusa Mihaela; Smaranda, Camelia; Pavel, Vasile Lucian; Gavrilescu, Maria [Technical University of Iasi, Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania)

    2011-04-15

    Contaminated soil and groundwater have been the subject of study and research, so that the field of remediation has grown and evolved, continually developing and adopting new technologies in attempts to improve the decontamination. The cleanup of environmental pollution involves a variety of techniques, ranging from simple biological processes to advanced engineering technologies. Cleanup activities may also address a wide range of contaminants. This article is a short analysis of the technologies for cleaning up groundwater and soil, highlighting knowledge and information gaps. Challenges and strategies for cleaning up different types of contaminants, mainly heavy metals and persistent organic compounds are described. Included are technologies that treat ground water contaminants in place in the subsurface and soil technologies that treat the soil either in place or on site in a treatment unit. Emerging technologies such as those based on oxidation-reduction, bioremediation, and nanotechnologies are covered. It is evident that for a good efficiency of remediation, techniques or even whole new technologies may be incorporated into an existing technology as a treatment train, improving its performance or overcome limitations. Several economic and decision-making elements are developed in the final part, based on the analysis carried out throughout the article. The work highlights the fact that excellence in research and technology progress could be attained by the development of technologies to deal more effectively and economically with certain toxic contaminants such as heavy metals, volatile organic compounds, and persistent organic pollutants, associated with optimization of technologies under field remediation conditions and requirements, improving capacity and yields, and reducing costs. Moreover, increasing knowledge of the scope and problem of equipment development could improve the benefits. (orig.)

  6. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  7. Sampling of dissolved gases in deep groundwater pumped to the surface

    International Nuclear Information System (INIS)

    Lahdenperae, J.

    2006-08-01

    The aim of this study was to develop method for sampling dissolved gases in groundwater pumped out from borehole. In this report the developed method called Simple gas collector (YKK) and the first results gained are described. Samples were collected from five sampling sections. First test samplings were made from multipackered deep borehole (OL-KR1/523,2-528,2 m). The rest of samples were sampled during prepumping of PAVE-samplings. All samples were analysed with mass spectrometer. Gas composition results were very reproducible but gas concentration results varied in some sampling sections. Achieved results were compared with gas results of groundwater samples taken with PAVE-equipment. YKK-results were mainly comparable to PAVE-results, although differences were observed in both gas composition and concentration results. When gas concentration is small ( 2 O) gas compositions are very comparable and when concentration is high compositions differs between YKK- and PAVE-results. Gas concentration values were very comparable when the groundwater samples contained gases a lot, but the differences were relatively higher, when the gas amount in the groundwater sample was small. According to the survey you can get comparable information of dissolved gases in groundwater with YKK-method. The limit of using this method is that pumped groundwater must be oversaturated with gases in sampling conditions. (orig.)

  8. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    International Nuclear Information System (INIS)

    Johnson, Dick; Tsosie, Bernadette

    2016-01-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  9. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Nevada Environmental Services (NNES), Las Vegas, NV (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  10. New Zealand guidelines for the collection of groundwater samples for chemical and isotopic analyses

    International Nuclear Information System (INIS)

    Rosen, M.R.; Cameron, S.G.; Reeves, R.R.; Taylor, C.B.

    1999-01-01

    Chemical and isotopic analyses of groundwater are important tools for differentiating between the natural composition and human-induced contaminants of groundwater. A comprehensive suite of inorganic water chemical analyses is necessary to characterise waters. The geology of New Zealand is diverse, so it is impractical to characterise a ''typical'' groundwater chemical composition. Each aquifer system should be evaluated individually because the major dissolved species contain useful information about the pathways of water through the soil zone into the aquifer. Analyses of major ions such as chloride, nitrate, potassium and sulphate often give indication of septic systems and agricultural contamination. The minor ions, while most are not considered contaminants, are often indicators of human activity. Iron and manganese are good indicators of Eh potential, which is an important control on the mobility of many heavy metals. The inexpensive inorganic chemical analytical suite should be used as a guide to advisability of more expensive contaminant testing. The purpose of this manual is to provide consistent groundwater sampling guidelines for use throughout New Zealand. Sinton's (1998) guide to groundwater sampling techniques provided a sound basis for the accurate collection of groundwater samples. However Sinton did not address sampling materials and techniques for the collection of samples for ultra trace component analysis or the collection of environmental isotope samples. These important aspects of groundwater sampling have been included in this updated manual. (author). 30 refs., 12 figs., 5 tabs., 1 appendix

  11. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies.

    Science.gov (United States)

    Planer-Friedrich, Britta; Schaller, Jörg; Wismeth, Fabian; Mehlhorn, Judith; Hug, Stephan J

    2018-05-15

    In most natural groundwaters, sulfide concentrations are low, and little attention has been paid to potential occurrence of thioarsenates (As V S n -II O 4- n 3- with n = 1-4). Thioarsenate occurrence in groundwater could be critical with regard to the efficiency of iron (Fe)-based treatment technologies because previous studies reported less sorption of thioarsenates to preformed Fe-minerals compared to arsenite and arsenate. We analyzed 273 groundwater samples taken from different wells in Bangladesh over 1 year and detected monothioarsenate (MTA), likely formed via solid-phase zero-valent sulfur, in almost 50% of all samples. Concentrations ranged up to >30 μg L -1 (21% of total As). MTA removal by locally used technologies in which zero-valent or ferrous Fe is oxidized by aeration and As sorbs or coprecipitates with the forming Fe(III)hydroxides was indeed lower than for arsenate. The presence of phosphate required up to three times as much Fe(II) for comparable MTA removal. However, in contrast to previous sorption studies on preformed Fe minerals, MTA removal, even in the presence of phosphate, was still higher than that of arsenite. The more efficient MTA removal is likely caused by a combination of coprecipitation and adsorption rendering the tested Fe-based treatment technologies suitable for As removal also in the presence of MTA.

  12. Sampling and Analysis Plan Update for Groundwater Monitoring 1100-EM-1 Operable Unit

    International Nuclear Information System (INIS)

    DR Newcomer

    1999-01-01

    This document updates the sampling and analysis plan (Department of Energy/Richland Operations--95-50) to reflect current groundwater monitoring at the 1100-EM-1Operable Unit. Items requiring updating included sampling and analysis protocol, quality assurance and quality control, groundwater level measurement procedure, and data management. The plan covers groundwater monitoring, as specified in the 1993 Record of Decision, during the 5-year review period from 1995 through 1999. Following the 5-year review period, groundwater-monitoring data will be reviewed by Environmental Protection Agency to evaluate the progress of natural attenuation of trichloroethylene. Monitored natural attenuation and institutional controls for groundwater use at the inactive Horn Rapids Landfill was the selected remedy specified in the Record of Decision

  13. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  14. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding

  15. Permeable reactive barrier - innovative technology for ground-water remediation

    International Nuclear Information System (INIS)

    Vidic, D.R.

    2002-01-01

    Significant advances in the application of permeable reactive barriers (PRBs) for ground-water remediation have been witnessed in the last 5 years. From only a few full-scale systems and pilot-scale demonstrations, there are currently at least 38 full-scale PRBs using zero-valent iron (ZVI) as a reactive material. Of those, 26 are continuous reactive walls, 9 are funnel-and- gate systems and 3 are in situ reactive vessels. Most of the PRB systems have used granular iron media and have been applied to address the control of contamination caused by chlorinated volatile organic compounds or heavy metals. Many regulatory agencies have expressed interest in PRB systems and are becoming more comfortable in issuing permits. The main advantage of PRB systems is that the installation costs are comparable with those of other ground-water remediation technologies, while the O and M costs are significantly lower and are mostly due to monitoring requirements, which are required for all remediation approaches. In addition, the land use can resume after the installation of the PRB systems, since there are few visible signs of the installation above grounds except for the monitoring wells. It is difficult to make any definite conclusions about the long-term performance of PRB systems because there is no more than 5 years of the record of performance that can be used for such analysis. The two main challenges still facing this technology are: (1) evaluating the longevity (geochemistry) of a PRB; and (2) ensuring/verifying hydraulic performance. A number of public/private partnerships have been established in recent years that are working together to resolve some of these problems. This organized approach by combining the efforts of several government agencies and private companies will likely result in better understanding and, hopefully, better acceptance of this technology in the future. (author)

  16. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-02

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  17. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    International Nuclear Information System (INIS)

    Madrid, V.; Singleton, M. J.; Visser, A.; Esser, B.

    2016-01-01

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  18. Data validation report for the 100-HR-3 Operable Unit, fifth round groundwater samples

    International Nuclear Information System (INIS)

    Vukelich, S.E.

    1994-01-01

    The data from the chemical analysis of 68 samples from the 100-HR-3 Operable Unit Third Quarter 1993 Groundwater Sampling Investigation and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at the site. Sample analysis included inorganics and general chemical parameters. Fifty three samples were validated for radiochemical parameters

  19. Data validation summary report for the 100-BC-5 Operable Unit Round 8 Groundwater Sampling

    International Nuclear Information System (INIS)

    Kearney, A.T.

    1996-03-01

    The information provided in this validation summary report includes data from the chemical analyses of samples from the 100-BC-5 Operable Unit Round 8 Groundwater Sampling Investigation. All of the data from this sampling event and their related quality assurance samples were reviewed and validated to verify that the reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. Sample analyses included metals, general chemistry and radiochemistry

  20. Groundwater monitoring programme. A guide for groundwater sampling and analysis. 2. ed.; Grundwasserueberwachungsprogramm. Leitfaden fuer Probenahme und Analytik von Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Quality assurance guidelines have been developed and introduced in Baden-Wuerttemberg for groundwater monitoring. The contribution contains the fundamentals and technical guides for sampling and measurement of the Baden-Wuerttemberg groundwater monitoring programme, as well as parameter groups and a preliminary assessment of the methods. [German] Bei der Gewinnung von Umweltdaten sind hohe Anforderungen an die Qualitaet der erhobenen Daten zu stellen. Dies trifft in besonderem Masse gerade auch fuer Grundwasseruntersuchungen zu, da hier haeufig Konzentrationen im Bereich der Nachweisgrenze auftreten. Fuer das Grundwassermessnetz Baden-Wuerttemberg sind qualitaetssichernde Regelungen entwickelt und eingefuehrt worden. In der vorliegenden Zusammenstellung sind die Grundsatzpapiere, bzw. Technischen Anleitungen aus dem Grundwasserueberwachungsprogramm Baden-Wuerttemberg fuer die Grundwasserprobennahme sowie zu Messverfahren, Parametergruppen und zur ersten Beurteilung der Messergebnisse enthalten. (orig.)

  1. Identification of phreatophytic groundwater dependent ecosystems using geospatial technologies

    Science.gov (United States)

    Perez Hoyos, Isabel Cristina

    The protection of groundwater dependent ecosystems (GDEs) is increasingly being recognized as an essential aspect for the sustainable management and allocation of water resources. Ecosystem services are crucial for human well-being and for a variety of flora and fauna. However, the conservation of GDEs is only possible if knowledge about their location and extent is available. Several studies have focused on the identification of GDEs at specific locations using ground-based measurements. However, recent progress in technologies such as remote sensing and their integration with geographic information systems (GIS) has provided alternative ways to map GDEs at much larger spatial extents. This study is concerned with the discovery of patterns in geospatial data sets using data mining techniques for mapping phreatophytic GDEs in the United States at 1 km spatial resolution. A methodology to identify the probability of an ecosystem to be groundwater dependent is developed. Probabilities are obtained by modeling the relationship between the known locations of GDEs and main factors influencing groundwater dependency, namely water table depth (WTD) and aridity index (AI). A methodology is proposed to predict WTD at 1 km spatial resolution using relevant geospatial data sets calibrated with WTD observations. An ensemble learning algorithm called random forest (RF) is used in order to model the distribution of groundwater in three study areas: Nevada, California, and Washington, as well as in the entire United States. RF regression performance is compared with a single regression tree (RT). The comparison is based on contrasting training error, true prediction error, and variable importance estimates of both methods. Additionally, remote sensing variables are omitted from the process of fitting the RF model to the data to evaluate the deterioration in the model performance when these variables are not used as an input. Research results suggest that although the prediction

  2. Y-12 Plant Groundwater Protection Program: Groundwater and surface water sampling and analysis plan for Calendar Year 1998

    International Nuclear Information System (INIS)

    1997-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 1998 at the Department of Energy (DOE) Y-12 Plant. These monitoring activities are managed by the Y-12 Plant Environmental Compliance Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 1998 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. Groundwater and surface water monitoring will be performed during CY 1998 to comply with: (1) requirements specified in Resource Conservation and Recover Act (RCRA) post-closure permits regarding RCRA corrective action monitoring and RCRA detection monitoring; (2) Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous solid waste management facilities; and (3) DOE Order 5400.1 surveillance monitoring and exit pathway monitoring. Data from some of the sampling locations in each regime will be used to meet the requirements of more than one of the monitoring drivers listed above. Modifications to the CY 1998 monitoring program may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected monitoring wells, or wells could be removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  3. January 2011 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2011-01-01

    Annual sampling was conducted January 19, 2011, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1.Water levels were measured in the monitoring wells onsite.

  4. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    International Nuclear Information System (INIS)

    1999-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  5. Innovative reactive barrier technologies for regional contaminated groundwater

    NARCIS (Netherlands)

    Merkel, P.; Weiβ, H.; Teutsch, G.; Rijnaarts, H.H.M.

    2000-01-01

    At many industrial sites inadequate waste disposal, leakages and war damages have led to severe groundwater contamination on a regional scale. Standard hydraulic groundwater remediation methods, such as pump-and-treat, in most cases do not lead to satisfactory results, due to the persistence of

  6. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2011-01-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  7. Passive sampling and analyses of common dissolved fixed gases in groundwater

    International Nuclear Information System (INIS)

    Spalding, Brian Patrick; Watson, David B.

    2008-01-01

    An in situ passive sampler and gas chromatographic protocol for analysis of the major and several minor fixed gases in groundwater was developed. A gas-tight syringe, mated to a short length of silicone tubing, was equilibrated with dissolved gases in groundwater by immersing in monitoring wells and was used to transport and to inject a 0.5 mL gas sample into a gas chromatograph. Using Ar carrier gas, a HaySep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors allowed good sensitivity for He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O. Within 4 days of immersion in groundwater, samplers initially filled with either He or air attained the same and constant gas composition at an Oak Ridge, Tennessee, site heavily impacted by uranium, acidity, and nitrate. Between June 2006 and July 2007, 12 permanent groundwater wells were used to test the passive samplers in groundwater contaminated by a group of four closed radioactive wastewater seepage ponds; over a thousand passive gas samples from these wells averaged 56% CO2, 32.4% N2, 2.5% O2, 2.5% N2O, 0.20% CH4, 0.096% H2, and 0.023% CO with an average recovery of 95 14% of the injected gas volume

  8. Aerobic biodegradation of vinyl chloride in groundwater samples

    International Nuclear Information System (INIS)

    Davis, J.W.; Carpenter, C.L.

    1990-01-01

    Studies were conducted to examine the biodegradation of 14 C-labeled vinyl chloride in samples taken from a shallow aquifer. Under aerobic conditions, vinyl chloride was readily degraded, with greater than 99% of the labeled material being degraded after 108 days and approximately 65% being mineralized to 14 CO 2

  9. A Sustainability Assessment Methodology for Prioritizing the Technologies of Groundwater Contamination Remediation

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Wang, Yue

    2016-01-01

    More and more groundwater has 23 been polluted recently, and technologies for groundwater contamination remediation are of vital importance; however, it is usually difficult for the users to select the most suitable technology among multiple alternatives. In order to address this, this study aims...... at developing a sustainability assessment framework for prioritizing the technologies for groundwater contamination remediation by combining the concept of sustainability and multi-criteria decision making (MCDM) method. A criterion system which consists of six criteria in three aspects has been proposed...... for sustainability assessment of technologies for groundwater contamination remediation, and a novel MCDM method by combining the logarithmic fuzzy preference programming based fuzzy analytic hierarchy process and the improved ELECTRE method has been developed for prioritizing the alternatives. In order...

  10. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  11. Reducing the sampling frequency of groundwater monitoring wells

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, V.M.; Ridley, M.N. [Lawrence Livermore National Lab., CA (United States); Tuckfield, R.C.; Anderson, R.A. [Westinghouse, Savannah River Co., Aiken, SC (United States)

    1996-01-01

    As part of a joint LLNL/SRTC project, a methodology for selecting sampling frequencies is evolving that introduces statistical thinking and cost effectiveness into the sampling schedule selection practices now commonly employed on environmental projects. Our current emphasis is on descriptive rather than inferential statistics. Environmental monitoring data are inherently messy, being plagued by such problems as extremely high variability and left-censoring. As a result, real data often fail to meet the assumptions required for the appropriate application of many statistical methods. Rather than abandon the quantitative approach in these cases, however, the methodology employs simple statistical techniques to bring a measure of objectivity and reproducibility to the process. The techniques are applied within the framework of decision logic, which inrerprets the numerical results from the standpoint of chemistry-related professional judgment and the regulatory context. This paper presents the methodology`s basic concepts together with early implementation results, showing the estimated cost savings. 6 refs., 3 figs.

  12. Radiocarbon dating of archaeological geological and groundwater samples

    International Nuclear Information System (INIS)

    Chinh, N.K.; Dung, H.H.; Quan, H.M.; Thuy, T.K.

    1989-01-01

    In the context of the project VIE/8/003 sponsored by the IAEA, a regular and complete C 1 4 laboratory was installed at the Centre of the Nuclear Techniques in 1986. In this paper the authors present the procedure of sample treatment and saple activity measurement of the radiocarbon method and some preliminary results obtained after more than one year of operation of the laboratory

  13. Development and applications of groundwater remediation technologies in the USA

    Science.gov (United States)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  14. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2012-01-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  15. Groundwater sampling methods using glass wool filtration to trace human enteric viruses in Madison, Wisconsin

    Science.gov (United States)

    Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...

  16. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  17. Data Validation Package May 2016 Groundwater Sampling at the Lakeview, Oregon, Processing Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-01

    This biennial event includes sampling five groundwater locations (four monitoring wells and one domestic well) at the Lakeview, Oregon, Processing Site. For this event, the domestic well (location 0543) could not be sampled because no one was in residence during the sampling event (Note: notification was provided to the resident prior to the event). Per Appendix A of the Groundwater Compliance Action Plan, sampling is conducted to monitor groundwater quality on a voluntary basis. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). One duplicate sample was collected from location 0505. Water levels were measured at each sampled monitoring well. The constituents monitored at the Lakeview site are manganese and sulfate. Monitoring locations that exceeded the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels for these constituents are listed in Table 1. Review of time-concentration graphs included in this report indicate that manganese and sulfate concentrations are consistent with historical measurements.

  18. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been

  19. A new site for 85Kr measurements on groundwater samples

    International Nuclear Information System (INIS)

    Lange, T.; Hebert, D.

    2001-01-01

    As a part of a new 85 Kr laboratory, which is currently being established at the Institute of Applied Physics in Freiberg, Germany, a modified CO 2 extractor for krypton sampling is used. The operation principle is simple and contamination-safe with a reasonable effort. Continuously pumped under pressure, the water passes a Venturi-type nozzle and degasses due to relaxing. The extracted gas mixture then enters a recirculation system flowing through a CO 2 trap (NaOH), molecular sieves and a cooled charcoal trap, where krypton and other components are adsorbed. Remaining gases reenter the system at the Venturi-type nozzle. To keep the circulation alive an additional helium support is needed. In a simple field experiment, extraction efficiencies up to 0.8 for 222 Rn have been measured.

  20. A new site for 85Kr measurements on groundwater samples

    Science.gov (United States)

    Lange, T.; Hebert, D.

    2001-06-01

    As a part of a new 85Kr laboratory, which is currently being established at the Institute of Applied Physics in Freiberg, Germany, a modified CO 2 extractor for krypton sampling is used. The operation principle is simple and contamination-safe with a reasonable effort. Continuously pumped under pressure, the water passes a Venturi-type nozzle and degasses due to relaxing. The extracted gas mixture then enters a recirculation system flowing through a CO 2 trap (NaOH), molecular sieves and a cooled charcoal trap, where krypton and other components are adsorbed. Remaining gases reenter the system at the Venturi-type nozzle. To keep the circulation alive an additional helium support is needed. In a simple field experiment, extraction efficiencies up to 0.8 for 222Rn have been measured.

  1. January 2012 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2012-01-01

    Annual sampling was conducted January 18, 2012, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1 and water levels were measured in the monitoring wells onsite.

  2. January 2012 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Richard C. [S.M. Stoller Corporation, Broomfield, CO (United States)

    2012-12-01

    Annual sampling was conducted January 18, 2012, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1 and water levels were measured in the monitoring wells onsite.

  3. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Rick [S.M. Stoller Corporation, Broomfield, CO (United States)

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  4. Data Validation Package, December 2015, Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tsosie, Bernadette [U. S. Department of Energy, Washington, DC (United States). Office of Legacy Management; Johnson, Richard [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location HMC-951. Alluvium wells are completed in the alluvial sediments in the former channel of the Rio San Jose, which was covered by basalt lava flows known as the El Malpais, and are identified by the suffix (M). Bedrock wells are completed in the San Andres Limestone/Glorieta Sandstone hydrologic unit (San Andres aquifer) and are identified by the suffix (SG). Wells HMC-951 and OBS-3 are also completed in the San Andres aquifer. The LTSP requires monitoring for molybdenum, selenium, uranium, and polychlorinated biphenyls (PCBs); PCB monitoring occurs only during November sampling events. This event included sampling for an expanded list of analytes to characterize the site aquifers and to support a regional groundwater investigation being conducted by the New Mexico Environment Department.

  5. The installation of a multiport ground-water sampling system in the 300 Area

    International Nuclear Information System (INIS)

    Gilmore, T.J.

    1989-06-01

    In 1988, the Pacific Northwest Laboratory installed a multiport groundwater sampling system in well 399-1-20, drilled north of the 300 Area on the Hanford Site in southwestern Washington State. The purpose of installing the multiport system is to evaluate methods of determining the vertical distribution of contaminants and hydraulic heads in ground water. Well 399-1-20 is adjacent to a cluster of four Resource Conservation and Recovery Act (RCRA) ground-water monitoring wells. This proximity makes it possible to compare sampling intervals and head measurements between the multiport system and the RCRA monitoring wells. Drilling and installation of the multiport system took 42 working days. Six sampling ports were installed in the upper unconfined aquifer at depths of approximately 120, 103, 86, 74, 56, and 44 feet. The locations of the sampling ports were determined by the hydrogeology of the area and the screened intervals of adjacent ground-water monitoring wells. The system was installed by backfilling sand around the sampling ports and isolating the ports with bentonite seals. The method proved adequate. For future installation, however, development and evaluation of an alternative method is recommended. In the alternative method suggested, the multiport system would be placed inside a cased and screened well, using packers to isolate the sampling zones. 4 refs., 8 figs., 1 tab

  6. Recent developments on field gas extraction and sample preparation methods for radiokrypton dating of groundwater

    Science.gov (United States)

    Yokochi, Reika

    2016-09-01

    Current and foreseen population growths will lead to an increased demand in freshwater, large quantities of which is stored as groundwater. The ventilation age is crucial to the assessment of groundwater resources, complementing the hydrological model approach based on hydrogeological parameters. Ultra-trace radioactive isotopes of Kr (81 Kr and 85 Kr) possess the ideal physical and chemical properties for groundwater dating. The recent advent of atom trap trace analyses (ATTA) has enabled determination of ultra-trace noble gas radioisotope abundances using 5-10 μ L of pure Kr. Anticipated developments will enable ATTA to analyze radiokrypton isotope abundances at high sample throughput, which necessitates simple and efficient sample preparation techniques that are adaptable to various sample chemistries. Recent developments of field gas extraction devices and simple and rapid Kr separation method at the University of Chicago are presented herein. Two field gas extraction devices optimized for different sampling conditions were recently designed and constructed, aiming at operational simplicity and portability. A newly developed Kr purification system enriches Kr by flowing a sample gas through a moderately cooled (138 K) activated charcoal column, followed by a gentle fractionating desorption. This simple process uses a single adsorbent and separates 99% of the bulk atmospheric gases from Kr without significant loss. The subsequent two stages of gas chromatographic separation and a hot Ti sponge getter further purify the Kr-enriched gas. Abundant CH4 necessitates multiple passages through one of the gas chromatographic separation columns. The presented Kr separation system has a demonstrated capability of extracting Kr with > 90% yield and 99% purity within 75 min from 1.2 to 26.8 L STP of atmospheric air with various concentrations of CH4. The apparatuses have successfully been deployed for sampling in the field and purification of groundwater samples.

  7. Passive sampling as a tool for identifying micro-organic compounds in groundwater.

    Science.gov (United States)

    Mali, N; Cerar, S; Koroša, A; Auersperger, P

    2017-09-01

    The paper presents the use of a simple and cost efficient passive sampling device with integrated active carbon with which to test the possibility of determining the presence of micro-organic compounds (MOs) in groundwater and identifying the potential source of pollution as well as the seasonal variability of contamination. Advantage of the passive sampler is to cover a long sampling period by integrating the pollutant concentration over time, and the consequently analytical costs over the monitoring period can be reduced substantially. Passive samplers were installed in 15 boreholes in the Maribor City area in Slovenia, with two sampling campaigns covered a period about one year. At all sampling sites in the first series a total of 103 compounds were detected, and 144 in the second series. Of all detected compounds the 53 most frequently detected were selected for further analysis. These were classified into eight groups based on the type of their source: Pesticides, Halogenated solvents, Non-halogenated solvents, Domestic and personal, Plasticizers and additives, Other industrial, Sterols and Natural compounds. The most frequently detected MO compounds in groundwater were tetrachloroethene and trichloroethene from the Halogenated solvents group. The most frequently detected among the compound's groups were pesticides. Analysis of frequency also showed significant differences between the two sampling series, with less frequent detections in the summer series. For the analysis to determine the origin of contamination three groups of compounds were determined according to type of use: agriculture, urban and industry. Frequency of detection indicates mixed land use in the recharge areas of sampling sites, which makes it difficult to specify the dominant origin of the compound. Passive sampling has proved to be useful tool with which to identify MOs in groundwater and for assessing groundwater quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    International Nuclear Information System (INIS)

    Richard P. Wells

    2007-01-01

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year

  9. Can groundwater sampling techniques used in monitoring wells influence methane concentrations and isotopes?

    Science.gov (United States)

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-06

    Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.

  10. Groundwater sampling and chemical characterisation of the Laxemar deep borehole KLX02

    International Nuclear Information System (INIS)

    Laaksoharju, M.; Skaarman, C.; Smellie, J.; Nilsson, A.C.

    1995-02-01

    The Laxemar deep borehole, KLX02 (1705 m depth), located close to the Aespoe Hard Rock Laboratory (HRL), has been investigated. Groundwater sampling was conducted on two occasions and using different methods. The first sampling was taken in the open borehole using the so-called Tube sampler; the second sampling carried out using the SKB-packer equipment to isolate pre-determined borehole sections. Groundwater compositions consist of two distinct groupings; one shallow to intermediate Sodium-Bicarbonate type (Na(Ca,K):HC 3 Cl(SO 4 )) to a depth of 1000 m, and the other of deep origin, a calcium-chloride type (Ca-Na(K):Cl-SO 4 (Br)), occurring below 1000 m. The deep brines contain up to 46000 mg of Cl per litre. The influence of borehole activities are seen in the tritium data which record significant tritium down to 1000 m, and even to 1420 m. Mixing modelling shows that water from the 1960's is the main source for this tritium. The high tritium values in the 1090-1096.2 m section are due to contamination of 1% shallow water from 1960 and 2% of modern shallow water. The upper 800 m of bedrock at Laxemar lies within a groundwater recharge area; the sub-vertical to moderate angled fracture zones facilitate groundwater circulation to considerable depths, at least to 800 m, thus accounting for some of the low saline brackish groundwaters in these conducting fracture zones. Below 1000 m the system is hydraulically and geochemically 'closed' such that highly saline brines exist in a near-stagnant environment. 30 refs, 22 figs, 8 tabs

  11. Data validation report for the 100-HR-3 Operable Unit first quarter 1994 groundwater sampling data

    Energy Technology Data Exchange (ETDEWEB)

    Biggerstaff, R.L.

    1994-06-24

    Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups be validated for the 100-HR-3 Operable Unit First Quarter 1994 Groundwater Sampling Investigation. Therefore, the data from the chemical analysis of twenty-four samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The samples were analyzed by Thermo-Analytic Laboratories (TMA) and Roy F. Weston Laboratories (WESTON) using US Environmental Protection Agency (EPA) CLP protocols. Sample analyses included: inorganics; and general chemical parameters. Forty-two samples were validated for radiochemical parameters by TMA and Teledyne.

  12. Data validation report for the 100-HR-3 Operable Unit first quarter 1994 groundwater sampling data

    International Nuclear Information System (INIS)

    Biggerstaff, R.L.

    1994-01-01

    Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups be validated for the 100-HR-3 Operable Unit First Quarter 1994 Groundwater Sampling Investigation. Therefore, the data from the chemical analysis of twenty-four samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The samples were analyzed by Thermo-Analytic Laboratories (TMA) and Roy F. Weston Laboratories (WESTON) using US Environmental Protection Agency (EPA) CLP protocols. Sample analyses included: inorganics; and general chemical parameters. Forty-two samples were validated for radiochemical parameters by TMA and Teledyne

  13. Improvement of colloid sampling techniques in groundwater and actinide characterisation of the groundwater systems at Gorleben (FRG) and El Berrocal (E)

    International Nuclear Information System (INIS)

    Dearlove, J.P.L.; Longworth, G.; Ivanovich, M.

    1990-08-01

    Two sites, the Gorleben site (FRG) and the El Berrocal Experimental station (E) have been studied to evaluate different sampling and analytical techniques for the characterisation of particulates (> 1000 nm size), colloids (1-1000 nm size) and the solution phase (<1 nm) in groundwaters in terms of their physical, chemical and actinide composition. The uptake characteristics of the field ultrafiltration system used to separate the colloid fraction from the solution phase in the groundwater have also been studied. (Author)

  14. Data Validation Package, June 2016 Groundwater Sampling at the Hallam, Nebraska, Decommissioned Reactor Site, August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Surovchak, Scott [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-08-01

    The 2008 Long-Term Surveillance Plan [LTSP] for the Decommissioned Hallam Nuclear Power Facility, Hallam, Nebraska (http://www.lm.doe.gov/Hallam/Documents.aspx) requires groundwater monitoring once every 2 years. Seventeen monitoring wells at the Hallam site were sampled during this event as specified in the plan. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Water levels were measured at all sampled wells and at two additional wells (6A and 6B) prior to the start of sampling. Additionally, water levels of each sampled well were measured at the beginning of sampling. See Attachment 2, Trip Report, for additional details. Sampling and analysis were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Gross alpha and gross beta are the only parameters that were detected at statistically significant concentrations. Time/concentration graphs of the gross alpha and gross beta data are included in Attachment 3, Data Presentation. The gross alpha and gross beta activity concentrations observed are consistent with values previously observed and are attributed to naturally occurring radionuclides (e.g., uranium and uranium decay chain products) in the groundwater.

  15. New Generation Flask Sampling Technology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James R. [AOS, Inc., Colorado Springs, CO (United States)

    2017-11-09

    Scientists are turning their focus to the Arctic, site of one of the strongest climate change signals. A new generation of technologies is required to function within that harsh environment, chart evolution of its trace gases and provide new kinds of information for models of the atmosphere. Our response to the solicitation tracks how global atmospheric monitoring was launched more than a half century ago; namely, acquisition of discrete samples of air by flask and subsequent analysis in the laboratory. AOS is proposing to develop a new generation of flask sampling technology. It will enable the new Arctic programs to begin with objective high density sampling of the atmosphere by UAS. The Phase I program will build the prototype flask technology and show that it can acquire and store mol fractions of CH4 and CO2 and value of δ13C with good fidelity. A CAD model will be produced for the entire platform including a package with 100 flasks and the airframe with auto-pilot, electronic propulsion and ground-to-air communications. A mobile flask analysis station will be prototyped in Phase I and designed to final form in Phase II. It expends very small sample per analysis and will interface directly to the flask package integrated permanently into the UAS fuselage. Commercial Applications and Other Benefits: • The New Generation Flask Sampling Technology able to provide a hundred or more samples of air per UAS mission. • A mobile analysis station expending far less sample than the existing ones and small enough to be stationed at the remote sites of Arctic operations. • A new form of validation for continuous trace gas observations from all platforms including the small UAS. • Further demonstration to potential customers of the AOS capabilities to invent, build, deploy and exploit entire platforms for observations of Earth’s atmosphere and ocean. Key Words: Flask Sampler, Mobile Analysis Station, Trace Gas, CO2, CH4, δC13, UAS, Baseline Airborne Observatory

  16. Performance evaluation soil samples utilizing encapsulation technology

    Science.gov (United States)

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  17. The effectiveness of groundwater pumping as a restoration technology

    International Nuclear Information System (INIS)

    Doty, C.B.; Travis, C.C.

    1991-05-01

    An in-depth analysis of the effectiveness of pumping groundwater for aquifer restoration was conducted based on: (1) performance records for 16 sites where pumping with the objective of aquifer restoration has been implemented for periods of 2 to 12 years, and (2) recent theoretical and modeling studies. The reduction of aquifer concentrations is the primary indicator of effectiveness of groundwater extraction. However, other indicators of effectiveness such as plume containment, mass reduction, and achievement of specific cleanup goals were also components of the evaluation. Based on our review of performance records and recent theoretical studies, the following can be concluded regarding the use of groundwater pumping for aquifer restoration: (1) Pumping is effective for contaminant mass reduction, plume containment and extraction of groundwater for point-of-use treatment. Its use for attaining these objectives should be encouraged. (2) Groundwater pumping is ineffective for restoring aquifers to health-based levels. This reality needs to be explicitly recognized by regulators. (3) The primary contributors to the ineffectiveness of pumping in meeting cleanup goals are the time-dependent decrease in the rate of desorption of contaminants from contaminated soils and the existence of immobile contaminants either in the non-aqueous phase or trapped in zones of low permeability. (4) Remedial time frames of 2 years to 30 years were predicted at the sites reviewed. Regulators currently maintain that 20 to 40 years may be needed to reach health-based cleanup goals. However, recent modeling studies estimate pump and treat time frames of 100 to 1000 years. 22 refs., 5 figs., 4 tabs

  18. Data Validation Package: April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Jasso, Tashina [USDOE Office of Legacy Management, Washington, DC (United States); Widdop, Michael [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-09-29

    Nine groundwater samples were collected at the Falls City, Texas, Disposal Site as specified in the March 2008 Long-Term Surveillance Plan for the US Department of Energy Falls City Uranium Mill Tailings Disposal Site, Falls City, Texas (DOE-LM/1602-2008). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The wells sampled included the cell performance monitoring wells (0709, 0858, 0880, 0906, and 0921) and the groundwater monitoring wells (0862, 0886, 0891, 0924, and 0963). A duplicate sample was collected from location 0891. Water levels were measured at each sampled well. Historically, cell performance monitoring wells 0908 and 0916 have not produced water and were confirmed as dry during this sampling event. These wells are completed above the saturated interval in the formation. Notable observations for time-concentration graphs in this report include: (1) uranium concentrations in well 0891 continue to increase; (2) the uranium concentration in well 0880 is higher than the 2015 value and lower than the 2014 value, and it remains within the range of historical values; and (3) uranium concentrations in the other sampled wells are below 2 mg/L and consistent with previous results.

  19. Sampling and characterisation of groundwater colloids in ONKALO at Olkiluoto, Finland in 2007

    International Nuclear Information System (INIS)

    Takala, M.; Manninen, P.

    2008-08-01

    Colloid samples were collected from ONKALO groundwater station ONK-PVA1 in October 2007 and an additional sample was taken from groundwater station ONK-PVA3 in November 2007. The colloids were collected by filtering the groundwater on site with an Anopore 0.02 μm aluminium oxide filter. In the sampling in October, water samples were also collected to analyse the differences in the water chemistry before and after filtration. The water samples were freeze-dried so that the elements would be concentrated in the water. The colloid concentrations were determined by counting the particles from the SEM micrographs and by calculating the concentration using the micrograph area, the filter area and the filtered volume. The colloid concentration in ONK-PVA1 was very low. The particle concentration within the size range from 0.1 μm to 1 μm was 1.6 x 10 4 pt/L and the mass concentration within the same size range 0.001 μg/L. Owing to the very low concentration, an additional colloid sample was taken from ONK-PVA3. The colloid concentration in ONK-PVA3 within the size range from 0.1 μm to 1 μm was 8.2 x 10 7 pt/L and the mass concentration 0.013 mg/L. When studying the ONKALO groundwater monitoring data it was noticed that in the samples where the colloid concentration was elevated also the sodium fluorescein concentration was probably elevated. This indicated that process water (e.g. drilling water) was present in the water samples. The ONK-PVA1 water probably also contained process water during the colloid sampling performed in 2006. The composition of the colloid phase could not be determined by analysing the differences in the filtered and unfiltered water owing to the low colloid concentration. Furthermore, the aluminium oxide filter caused aluminium contamination. (orig.)

  20. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  1. A comprehensive summary of the ORNL Groundwater Compliance and Surveillance Sampling Results Software System

    International Nuclear Information System (INIS)

    Loffman, R.S.

    1995-01-01

    Groundwater compliance and surveillance activities are conducted at ORNL to fulfill federal and state requirements for environmental monitoring. Information management is an important aspect of this and encompasses many activities which usually have spcific time frames and schedules. In addition to fulfilling these immediate requirements, the results for the monitoring activities are also used to determine the need for environmental remediation. ORNL performs this groundwater results data management and reporting utilizing a group of SAS reg-sign applications and tools which provide the ability to track samples, capture field measurements, verify and validate result data, manage data, and report results in a variety of ways and in a timely manner. This paper provides a comprehensive summary of these applications and tools

  2. Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

    1995-01-01

    Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation

  3. Data Validation Package May 2016 Groundwater Sampling at the Sherwood, Washington, Disposal Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Washington, DC (United States); Traub, David [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-04

    The 2001 Long-Term Surveillance Plan (LTSP) for the US. Department of Energy Sherwood Project (UMI'RCA Title II) Reclamation Cell, Wellpinit, Washington, does not require groundwater compliance monitoring at the Sherwood site. However, the LTSP stipulates limited groundwater monitoring for chloride and sulfate (designated indicator parameters) and total dissolved solids (TDS) as a best management practice. Samples were collected from the background well, MW-2B, and the two downgradient wells, MW-4 and MW-10, in accordance with the LTSP. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Water levels were measured in all wells prior to sampling and in four piezometers completed in the tailings dam. Time-concentration graphs included in this report indicate that the chloride, sulfate, and TDS concentrations are consistent with historical measurements. The concentrations of chloride and sulfate are well below the State of Washington water quality criteria value of 250 milligrams per liter (mg/L) for both parameters.

  4. Detection of Waterborne Protozoa, Viruses, and Bacteria in Groundwater and Other Water Samples in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Haramoto, E.

    2018-03-01

    In this study, the prevalence of various waterborne pathogens in water samples collected in the Kathmandu Valley, Nepal, and the applicability of Escherichia coli as an indicator of pathogen contamination in groundwater were assessed. Fifty-three water samples, including shallow groundwater and river water, were analyzed to examine the presence of protozoan (oo)cysts via fluorescence microscopy and that of viral and bacterial genomes via quantitative PCR. At least one of the seven types of pathogens tested (i.e., Cryptosporidium, Giardia, human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, and Vibrio cholerae) was detected in 68% (15/22) of the shallow dug well water samples; groundwater in the shallow dug wells was more contaminated compared with that in shallow tube wells (8/15, 53%). River water and sewage samples were contaminated with extremely high concentrations of multiple pathogens, whereas a tap water sample supplied by a water tanker tested positive for human adenoviruses and V. cholerae. The detection of host-specific Bacteroidales genetic markers revealed the effects of human and animal feces on groundwater contamination. The tested pathogens were sometimes detected even in E. coli-negative groundwater samples, indicative of the limitations of using E. coli as an indicator for waterborne pathogens in groundwater.

  5. A/M Area Groundwater Corrective Action Southern Sector Remediation Technology Alternatives Evaluation

    International Nuclear Information System (INIS)

    Looney, B.B.; Phifer, M.A.

    1994-01-01

    Several technologies for clean up of solvents such as trichloroethylene, from groundwater were examined to determine the most reasonable strategy for the southern Sector in A/M Area of Savannah River Site. The most promising options identified were: pump and treat technology, airlift recirculation technology, and bioremediation technology. These options range from baseline/traditional methods to more innovative technologies. The traditional methods would be straightforward to implement, while the innovative methods have the potential to improve efficiency and reduce long term costs

  6. Identifying Effective Policy and Technologic Reforms for Sustainable Groundwater Management in Oman

    Science.gov (United States)

    Madani, K.; Zekri, S.; Karimi, A.

    2014-12-01

    Oman has gone through three decades of efforts aimed at addressing groundwater over-pumping and the consequent seawater intrusion. Example of measures adopted by the government since the 1990's include a vast subsidy program of irrigation modernization, a freeze on drilling new wells, delimitation of several no-drill zones, a crop substitution program, re-use of treated wastewater and construction of recharge dams. With no major success through these measures, the government laid the ground for water quotas by creating a new regulation in 1995. Nevertheless, groundwater quotas have not been enforced to date due to the high implementation and monitoring costs of traditional flow meters. This presentation discusses how sustainable groundwater management can be secured in Oman using a suit of policy and technologic reforms at a reasonable economic, political and practical cost. Data collected from farms with smart meters and low-cost wireless smart irrigation systems have been used to propose sustainable groundwater withdrawal strategies for Oman using a detailed hydro-economic model that couples a MODFLOW-SEAWAT model of the coastal aquifers with a dynamic profit maximization model. The hydro-economic optimization model was flexible to be run both as a social planner model to maximize the social welfare in the region, and as an agent-based model to capture the behavior of farmers interested in maximizing their profits independently. This flexibility helped capturing the trade-off between the optimality of the social planner solution developed at the system's level and its practicality (stability) with respect to the concerns and behaviors of the profit-maximizing farmers. The idetified promising policy and technolgical reforms for Oman include strict enforcement of groundwater quotas, smart metering, changing crop mixes, improving irrigation technologies, and revising geographical distribution of the farming activities. The presentation will discuss how different

  7. Comparative evaluation of prokaryotic 16S rDNA clone libraries and SSCP in groundwater samples.

    Science.gov (United States)

    Larentis, Michael; Alfreider, Albin

    2011-06-01

    A comparison of ribosomal RNA sequence analysis methods based on clone libraries and single-strand conformational polymorphism technique (SSCP) was performed with groundwater samples obtained between 523-555 meters below surface. The coverage of analyzed clones by phylotype-richness estimates was between 88-100%, confirming that the clone libraries were adequately examined. Analysis of individual bands retrieved from SSCP gels identified 1-6 different taxonomic units per band, suggesting that a single SSCP band does often represent more than one single prokaryotic species. The prokaryotic diversity obtained by both methods showed an overall difference of 42-80%. In comparison to SSCP, clone libraries underestimated the phylogenetic diversity and only 36-66% of the phylotypes observed with SSCP were also detected with the clone libraries. An exception was a sample where the SSCP analysis of Archaea identified only half of the phylotypes retrieved by the clone library. Overall, this study suggests that the clone library and the SSCP approach do not provide an identical picture of the prokaryotic diversity in groundwater samples. The results clearly show that the SSCP method, although this approach is prone to generate methodological artifacts, was able to detect significantly more phylotypes than microbial community analysis based on clone libraries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    Science.gov (United States)

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  9. Waste and cost reduction using dual wall reverse circulation drilling with multi-level groundwater sampling for contaminant plume delineation

    International Nuclear Information System (INIS)

    Smuin, D.R.

    1995-01-01

    This paper describes the drilling and sampling methods used to delineate a groundwater contaminant plume at the Paducah Gaseous Diffusion Plant (PGDP) during the Groundwater Monitoring IV characterization. The project was unique in that it relied upon dual wall reverse circulation drilling instead of the traditional hollow stem auger method. The Groundwater Monitoring program sought to characterize the boundaries, both vertically and horizontally, of the northeast plume which contains both 99 Tc and trichloroethene. This paper discusses the strengths and weaknesses of the drilling method used by investigators

  10. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Campbell, Sam [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-25

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells that were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.

  11. Data validation report for the 100-FR-3 Operable Unit, third round groundwater samples

    International Nuclear Information System (INIS)

    Ayres, J.M.

    1994-01-01

    Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups be validated for the 100-FR-3 operable Unit Third Round Groundwater sampling investigation. Therefore, the data from the chemical analysis of 51 samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The report is broken down into sections for each chemical analysis and radiochemical analysis type. Each section addresses the data package completeness, holding time adherence, instrument calibration and tuning acceptability, blank results, accuracy, precision, system performance, as well as the compound identification and quantitation. In addition, each section has an overall assessment and summary for the data packages reviewed for the particular chemical/radiochemical analyses. Detailed backup information is provided to the reader by SDG No. and sample number. For each data package, a matrix of chemical analyses per sample number is presented, as well as data qualification summaries

  12. External quality control in ground-water sampling and analysis at the Hanford Site

    International Nuclear Information System (INIS)

    Hall, S.H.; Juracich, S.P.

    1991-11-01

    At the US Department of Energy's Hanford Site, external Quality Control (QC) for ground-water monitoring is extensive and has included routine submittal of intra- and interlaboratory duplicate samples, blind samples, and several kinds of blank samples. Examination of the resulting QC data for nine of the constituents found in ground water at the Hanford Site shows that the quality of analysis has generally been within the expectations of precision and accuracy that have been established by the US Environmental Protection Agency (EPA). The constituents subjected to review were nitrate, chromium, sodium, fluoride, carbon tetrachloride, tritium, ammonium, trichloroethylene, and cyanide. Of these, the fluoride measurements were notable exceptions and were poor by EPA standards. The review has shown that interlaboratory analysis of duplicate samples yields the most useful QC data for evaluating laboratory performance in determining commonly encountered constituents. For rarely encountered constituents, interlaboratory comparisons may be augmented with blind samples (synthetic samples of known composition). Intralaboratory comparisons, blanks, and spikes should be generally restricted to studies of suspected or known sample contamination and to studies of the adequacy of sampling and analytical procedures

  13. A tube seepage meter for in situ measurement of seepage rate and groundwater sampling

    Science.gov (United States)

    Solder, John; Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip

    2016-01-01

    We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device.

  14. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after neu...... neutralisation. The extracts were analysed by capillary gas chromatography. Dual detection by flame Ionisation and electron capture was used to reduce analysis time....

  15. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    Directory of Open Access Journals (Sweden)

    Roger Neto Schneider

    2009-09-01

    Full Text Available The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of resistance to cefaclor was observed, both in surface water (51.9% and groundwater (62.9%, while all samples were sensitive to amikacin. The percentages of multi-resistant samples were 25.96% and 26.73% in surface water and groundwater, respectively, while 19.23% and 13.86% were sensitive to all antibiotics tested. It was determined that the rate of multiple antibiotic resistance (MAR was 0.164 for surface water and 0.184 for groundwater. No significant differences were found in the profile of the antimicrobial resistance in strains of E. coli isolated in surface water and groundwater, but the index MAR calculated in certain points of groundwater may offer a potential risk of transmission of resistant genes.

  16. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  17. Estimating the tritium input to groundwater from wine samples: Groundwater and direct run-off contribution to Central European surface waters

    International Nuclear Information System (INIS)

    Roether, W.

    1967-01-01

    A model is derived which allows a quantitative evaluation of wine tritium data. It is shown that the tritium content of a wine sample is not determined exclusively by water taken up by the roots, but is also influenced to a large extent by direct exchange with atmospheric moisture. The soil-water fraction amounts normally to not more than 40%. Thus, wine is a sample partly of atmospheric moisture at ground level, partly of soil moisture, integrated over a period around three weeks before vintage. The tritium content of two sets of wine samples originating from two selected sites in the Federal Republic of Germany and dating back to 1949 is reported. For the period since records of the tritium content of rain in Europe have become available comparisons of wine tritium with reported tritium activities of rain are in favour of the model outlined. The first distinguishable influence of bomb tritium shows up in the 1953 wine, whilst no detectable response to Castle tritium is found in 1954. By comparison with recorded rain activities at Ottawa, Canada, it is concluded that Castle influenced the tritium fall-out in Central Europe much less than it did at Ottawa. For the period before 1955 the tritium activity of the annual groundwater recharge, including pre-thermonuclear recharge in Central Europe, is estimated from the wine data. An estimation of the total assimilation of pre-thermonuclear tritium into the ocean at 50 degrees N is also given, which points to a value of 1-1.5 atoms/cm 2 s. It is shown that in further uses of pre-thermonuclear wines the possibility that samples have been contaminated by penetration of thermonuclear tritium through the bottle seals must be considered. The estimates of the tritium activities of groundwater recharge are based on the fact that in our climate the main contribution to groundwater is made up by autumn and winter precipitation. Because of this correlation with season the groundwater recharge is much lower in tritium than the

  18. Innovative technologies for removing toxic compounds from groundwater and air

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Allen, G.R.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Secker, D.A.; Smith, J.D.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    Innovative waste treatment technologies are being developed to remove hazardous organic wastes from water and air. These technologies involve the generation of highly reactive free radicals and their reaction with organic compounds. Two efficient methods of producing these reactive free radicals are radiolysis and electrical-discharge plasmas. Radiolytic technology involves the irradiation of contaminated media with high-energy electron beams or x rays generated from the beams (megavolt energies, hundreds of kilorad doses). This process is best understood in aqueous solutions, in which sizable quantities of the free radicals e aq - , OH*, and H*, as well as the more stable oxidant H 2 0 2 , are produced. These highly reactive species react with organic contaminants to produce C0 2 , H 2 0, and salts, which are no longer hazardous. Nonequilibrium electrical-discharge plasmas involve the generation of copious quantities of reactive free radicals from the dissociation of molecular oxygen by energetic electrons in the gas-based discharge. One of the most promising technologies for plasma processing is based upon the ''silent electrical discharge'' that has proven to be industrially dependable for the generation of large quantities of ozone

  19. Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source.

    Science.gov (United States)

    Tabassum, Riaz Ahmad; Shahid, Muhammad; Dumat, Camille; Niazi, Nabeel Khan; Khalid, Sana; Shah, Noor Samad; Imran, Muhammad; Khalid, Samina

    2018-02-10

    Currently, several news channels and research publications have highlighted the dilemma of arsenic (As)-contaminated groundwater in Pakistan. However, there is lack of data regarding groundwater As content of various areas in Pakistan. The present study evaluated As contamination and associated health risks in previously unexplored groundwater of Hasilpur-Pakistan. Total of 61 groundwater samples were collected from different areas (rural and urban), sources (electric pump, hand pump, and tubewell) and depths (35-430 ft or 11-131 m). The water samples were analyzed for As level and other parameters such as pH, electrical conductivity, total dissolved solids, cations, and anions. It was found that 41% (25 out of 61) water samples contained As (≥ 5 μg/L). Out of 25 As-contaminated water samples, 13 water samples exceeded the permissible level of WHO (10 μg/L). High As contents have been found in tubewell samples and at high sampling depths (> 300 ft). The major As-contaminated groundwater in Hasilpur is found in urban areas. Furthermore, health risk and cancer risk due to As contamination were also assessed with respect to average daily dose (ADD), hazard quotient (HQ), and carcinogenic risk (CR). The values of HQ and CR of As in Hasilpur were up to 58 and 0.00231, respectively. Multivariate analysis revealed a positive correlation between groundwater As contents, pH, and depth in Hasilpur. The current study proposed the proper monitoring and management of well water in Hasilpur to minimize the As-associated health hazards.

  20. Data Validation Package May 2015, Groundwater Sampling at the Shoal, Nevada, Site

    International Nuclear Information System (INIS)

    Findlay, Rick; Kautsky, Mark

    2016-01-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Shoal, Nevada, Site (Shoal) in May 2015. Groundwater samples were collected from wells MV-1, MV-2, MV-3, MV-4, MV-5, H-3, HC-1, HC-2d, HC-3, HC-4, HC-5, HC-6, HC-7, HC-8, and HS-1. Sampling was conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites: LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites. Monitoring wells MV-1, MV-2, MV-3, MV-4, MV-5, HC-2d, HC-4, HC-5, HC-7, HC-8, and HS-1 were purged prior to sampling using dedicated submersible pumps. At least one well casing volume was removed, and field parameters (temperature, pH, and specific conductance) were allowed to stabilize before samples were collected. Samples were collected from wells H-3, HC-1, HC-3, and HC-6 using a depth-specific bailer because these wells are not completed with dedicated submersible pumps. Samples were submitted under Requisition Index Number (RIN) 15057042 to ALS Laboratory Group in Fort Collins, Colorado, for the determination of bromide, gross alpha, gross beta, tritium, uranium isotopes, and total uranium (by mass); and under RIN 15057043 to the University of Arizona for the determination of carbon-14 and iodine-129. A duplicate sample from location MV-2 was included with RIN 15057042. The laboratory results from the 2015 sampling event are consistent with those of previous years with the exception of sample results from well HC-4. This well continues to be the only well with tritium concentrations above the laboratory's minimum detectable concentration which is attributed to the wells proximity to the nuclear detonation. The tritium concentration (731 picocuries per liter [pCi/L]) is consistent with past results and is below the U.S. Environmental Protection Agency's (EPA) maximum contaminant level (MCL) of 20,000 p

  1. Data Validation Package May 2015, Groundwater Sampling at the Shoal, Nevada, Site

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States); Kautsky, Mark [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2016-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Shoal, Nevada, Site (Shoal) in May 2015. Groundwater samples were collected from wells MV-1, MV-2, MV-3, MV-4, MV-5, H-3, HC-1, HC-2d, HC-3, HC-4, HC-5, HC-6, HC-7, HC-8, and HS-1. Sampling was conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy­ office-legacy-management-sites). Monitoring wells MV-1, MV-2, MV-3, MV-4, MV-5, HC-2d, HC-4, HC-5, HC-7, HC-8, and HS-1 were purged prior to sampling using dedicated submersible pumps. At least one well casing volume was removed, and field parameters (temperature, pH, and specific conductance) were allowed to stabilize before samples were collected. Samples were collected from wells H-3, HC-1, HC-3, and HC-6 using a depth-specific bailer because these wells are not completed with dedicated submersible pumps. Samples were submitted under Requisition Index Number (RIN) 15057042 to ALS Laboratory Group in Fort Collins, Colorado, for the determination of bromide, gross alpha, gross beta, tritium, uranium isotopes, and total uranium (by mass); and under RIN 15057043 to the University of Arizona for the determination of carbon-14 and iodine-129. A duplicate sample from location MV-2 was included with RIN 15057042. The laboratory results from the 2015 sampling event are consistent with those of previous years with the exception of sample results from well HC-4. This well continues to be the only well with tritium concentrations above the laboratory’s minimum detectable concentration which is attributed to the wells proximity to the nuclear detonation. The tritium concentration (731 picocuries per liter [pCi/L]) is consistent with past results and is below the U.S. Environmental Protection Agency's (EPA) maximum contaminant level (MCL) of 20,000 p

  2. Radiological and hydrochemical study of thermal and fresh groundwater samples of northern Euboea and Sperchios areas, Greece: insights into groundwater natural radioactivity and geology.

    Science.gov (United States)

    Kanellopoulos, C; Mitropoulos, P; Argyraki, A

    2018-04-04

    A radiological and hydrochemical study has been conducted on thermal and fresh groundwater samples of northern Euboea Island and eastern central Greece. Both areas are characterized by complex geology and are renowned since antiquity for their hot springs, that are exploited for therapeutic spa purposes until today. The aim of the study was to combine radiological and hydrochemical data in order to achieve a holistic water quality assessment with insights into the geology of the study areas. All samples were characterized with respect to their major and trace ion and element composition, as well as activity concentrations of 222 Rn, 226 Ra, 228 Ra, 228 Th, and 40 K. The samples demonstrated elevated natural radioactivity and U concentrations, especially in some locations of the Kamena Vourla area, reaching 179 Bq/L 222 Rn, 2.2 Bq/L 226 Ra, 2.9 Bq/L 228 Ra, and 17 μg/L U. The estimated circulation depth of thermal groundwater ranges between 250 m in central Greece and 1240 m in north Euboea study area, whereas the calculated water residence times range between 27 and 555 years. Our data suggest the possible presence of an unknown until know U-rich plutonic rock formation in Kamena Vourla area and immiscibility of the fresh and thermal groundwaters in the studied areas.

  3. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.

    Science.gov (United States)

    Jadhav, Sachin V; Bringas, Eugenio; Yadav, Ganapati D; Rathod, Virendra K; Ortiz, Inmaculada; Marathe, Kumudini V

    2015-10-01

    Chronic contamination of groundwaters by both arsenic (As) and fluoride (F) is frequently observed around the world, which has severely affected millions of people. Fluoride and As are introduced into groundwaters by several sources such as water-rock interactions, anthropogenic activities, and groundwater recharge. Coexistence of these pollutants can have adverse effects due to synergistic and/or antagonistic mechanisms leading to uncertain and complicated health effects, including cancer. Many developing countries are beset with the problem of F and As laden waters, with no affordable technologies to provide clean water supply. The technologies available for the simultaneous removal are akin to chemical treatment, adsorption and membrane processes. However, the presence of competing ions such as phosphate, silicate, nitrate, chloride, carbonate, and sulfate affect the removal efficiency. Highly efficient, low-cost and sustainable technology which could be used by rural populations is of utmost importance for simultaneous removal of both pollutants. This can be realized by using readily available low cost materials coupled with proper disposal units. Synthesis of inexpensive and highly selective nanoadsorbents or nanofunctionalized membranes is required along with encapsulation units to isolate the toxicant loaded materials to avoid their re-entry in aquifers. A vast number of reviews have been published periodically on removal of As or F alone. However, there is a dearth of literature on the simultaneous removal of both. This review critically analyzes this important issue and considers strategies for their removal and safe disposal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sampling and characterisation of groundwater colloids in ONKALO at Olkiluoto, Finland, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Takala, M.; Ojala, S.; Jarvinen, E.; Manninen, P. [Ramboll Finland Oy, Espoo (Finland)

    2012-11-15

    The purpose of this study was to estimate the concentration of colloids and composition of the colloid phase on the basis of the water chemistry results of filtered and unfiltered water samples and to compare the results with the previous ones. The water samples were collected from groundwater stations ONK-PVA1 and ONK-PVA3 in October 2011. The colloid concentrations were determined from scanning electron microscopy (SEM) micrographs taken from the filters. The change in the water chemistry due to filtration was also analysed. The decrease of element concentrations due to filtration would possibly reflect the composition of the colloid phase. Because the concentration of the colloids is very low, two parallel water samples were analysed five times with an Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) analyser so that the chemical differences between the filtered and unfiltered water could be evaluated. The colloid concentration in ONK-PVA1, determined by the single particle analysis of SEM micrographs, was 6 {mu}g/l while the colloid concentration in ONK-PVA3 was 7 {mu}g/l. The colloid phase composition could not be reliably determined due to the low colloid concentration. (orig.)

  5. Sampling and characterisation of groundwater colloids in ONKALO at Olkiluoto, Finland 2009-2010

    International Nuclear Information System (INIS)

    Jaervinen, E.; Manninen, P.; Takala, M.; Vilhunen, S.

    2011-04-01

    The purpose of this study was to estimate the concentration of colloids and composition of the colloid phase on the basis of the water chemistry results of filtered and unfiltered water samples and to compare the results with the previous ones. The water samples were collected from groundwater stations ONK-PVA1 in December 2009 and ONKPVA5 in June 2010. The colloid concentrations were determined from scanning electron microscopy (SEM) micrographs taken from the filters. The change in the water chemistry due to filtration was also analysed. The decrease of element concentrations due to filtration would possibly reflect the composition of the colloid phase. Because the concentration of the colloids is very low, three parallel water samples were analysed three times with an Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) analyser so that the chemical differences between the filtered and unfiltered water could be evaluated. The colloid concentration in ONK-PVA1, determined by the single particle analysis of SEM micrographs, was 0.5 μg/l while the colloid concentration in ONK-PVA5 was 0.15 μg/l. The colloid phase composition could not be reliably determined due to the low colloid concentration. (orig.)

  6. Data Validation Package, December 2015, Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, Evan [Navarro Research and Engineering, Inc., Oak Ridge, NV (United States); Denny, Angelita [USDOE Office of Legacy Management, Washington, DC (United States)

    2016-03-23

    Fifty-two groundwater samples and one surface water sample were collected at the Monument Valley, Arizona, Processing Site to monitor groundwater contaminants for evaluating the effectiveness of the proposed compliance strategy as specified in the 1999 Final Site Observational Work Plan for the UMTRA Project Site at Monument Valley, Arizona. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Samples were collected for metals, anions, nitrate + nitrite as N, and ammonia as N analyses at all locations.

  7. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  8. Solubility and sorption characteristics of uranium(VI) associated with rock samples and brines/groundwaters from WIPP and NTS

    International Nuclear Information System (INIS)

    Dosch, R.G.

    1981-01-01

    Solubility measurements for U(VI) in WIPP-related brines/groundwaters were made using initial U(VI) concentrations in the range of 1 to 50 μg/ml. Distribution coefficients (Kd) for U(VI) were determined for Culebra and Magenta dolomites using four different brine/groundwater compositions and for argillaceous shale and hornfels samples from the Eleana and Calico Hills Formation on NTS using a groundwater simulant typical of that area. The Kd's were evaluated as functions of: (1) U(VI) concentration (1.4 x 10 -4 to 1.4 μg/ml); (2) solution volume-to-rock mass ratios used in the measurements (5 to 100 ml/g), and for WIPP material only; (3) water composition (0 to 100% brine in groundwater); and (4) sample location in the Culebra and Magenta dolomite members of the Rustler Formation. The results indicate that if groundwater intrudes into a repository and leaches a waste form, significant concentrations of dissolved or colloidal U(VI) could be maintained in the liquid phase. Should these solutions enter an aquifer system, there are reasonable sets of conditions which could lead to subsequent migration of U(VI) away from the repository site

  9. Permeable Reactive Barriers: a multidisciplinary approach of a new emerging sustainable groundwater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Diels, L.; Bastiaens, L. [Vito, Mol (BL); O' Hannessin, S. [EnviroMetal Technologies Inc., Ontario (Canada); Cortina, J.L. [Univ. Politecnica de Catalunya, Barcelona (Spain). Dept. d' Enginyeria Quimica; Alvarez, P.J. [Univ. of Iowa, Iowa-City (United States). Center for Biocatalysis and Bioprocessing; Ebert, M. [Christian-Albrechts Univ. Kiel (Germany). Inst. fuer Geowissenschaften; Schad, H. [I.M.E.S. GmbH, Amtzell (Germany)

    2003-07-01

    Permeable reactive barriers or zones are becoming an interesting sustainable and cost-effective technology for in situ treatment of contaminated groundwater. The technology is based on chemical processes as the dehalogenating activity of zerovalent iron, biological processes in bioscreens or reactive zones and on sorption technology (e.g. heavy metal adsorption or adsorption on granular activated carbon). Three technical sessions will be devoted to this nowadays becoming mature technology. This special session intends to pay attention to the discussion about some questions related to PRBs. These include the sustainability (e.g. life time and clogging) especially for zerovalent iron barriers, the need and quality of feasibility tests, drawbacks and restrictions of PRBs. Combined with long term performance monitoring os these systems will be discussed. Further attention will be paid to cost evaluation and the relationship between zerovalent barriers and bacterial growth. Also attention will be paid to new reactive materials (e.g. activated carbon for organics and inorganic materials for heavy metals) and consequences (e.g. environmental impact). Finally the session will combine al these approaches in a discussion about combined barriers or multibarriers for treatment of mixed pollution (e.g. landfill leachates contaminated groundwater). Specialists involved in these subjects will introduce these topics and allow for a large and intensive discussion to improve future applications of this technology. (orig.)

  10. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan, E-mail: lijuan@craes.org.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Yang, Yang [College of Environment, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Huan, Huan; Li, Mingxiao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Xi, Beidou, E-mail: xibd413@yeah.net [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Lanzhou Jiaotong University, Lanzhou 730070 (China); Lv, Ningqing [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Wu, Yi [Guizhou Academy of Environmental Science and Designing, Guizhou 550000 (China); Xie, Yiwen, E-mail: qin3201@126.com [School of Chemical and Environmental Engineering, Dongguan University of Technology, Dongguan, 523808 (China); Li, Xiang; Yang, Jinjin [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China)

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  11. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    International Nuclear Information System (INIS)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-01-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  12. Point of Injury Sampling Technology for Battlefield Molecular Diagnostics

    Science.gov (United States)

    2011-11-14

    Injury" Sampling Technology for Battlefield Molecular Diagnostics November 14, 2011 Sponsored by Defense Advanced Research Projects Agency (DOD...Date of Contract: April 25, 2011 Short Title of Work: "Point of Injury" Sampling Technology for Battlefield Molecular Diagnostics " Contract...PHASE I FINAL REPORT: Point of Injury, Sampling Technology for Battlefield Molecular Diagnostics . W31P4Q-11-C-0222 (UNCLASSIFIED) P.I: Bernardo

  13. Program GWPROB: Calculation of inflow to groundwater measuring points during sampling

    International Nuclear Information System (INIS)

    Kaleris, V.

    1990-01-01

    The program GWPROB was developed by the DFG task group for modelling of large-area heat and pollutant transport in groundwater at the Institute of Hydrological Engineering, Hydraulics and Groundwater Department. The project was funded by the Deutsche Forschungsgemeinschaft. (BBR) [de

  14. Remediation of groundwater contaminated by exa valent chromium. Part 1.: Treatment technologies

    International Nuclear Information System (INIS)

    Sbaffoni, S.; Vaccari, M.

    2009-01-01

    Chromium compounds have been used in several industrial activities and they are often found in soil and groundwater of former industrial sites. Chromium exists in various oxidation states, but the trivalent and hexavalent oxidation ones are of major environmental concern due to their stability in the environment. In particular, Cr(V I) is highly soluble and mobile and is very toxic with mutagenic and carcinogenic effects. The present paper describes the main chemical, physical and toxicological properties of Cr(V I), its fate in the subsoil and both the conventional and innovative technologies for its removal from contaminated groundwater. The paper includes also a brief description of few interesting foreign case studies. [it

  15. Data Validation Package December 2015 Groundwater Sampling at the Ambrosia Lake, New Mexico, Disposal Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tsosie, Bernadette [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Dick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    The Long-Term Surveillance Plan for the Ambrosia Lake, New Mexico, Disposal Site does not require groundwater monitoring because groundwater in the uppermost aquifer is of limited use, and supplemental standards have been applied to the aquifer. However, at the request of the New Mexico Environment Department, the U.S. Department of Energy conducts annual monitoring at three locations: monitoring wells 0409, 0675, and 0678. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Monitoring Well 0409 was not sampled during this event because it was dry. Water levels were measured at each sampled well. One duplicate sample was collected from location 0675. Groundwater samples from the two sampled wells were analyzed for the constituents listed in Table 1. Time-concentration graphs for selected analytes are included in this report. At well 0675, the duplicate results for total dissolved solids and for most metals (magnesium, molybdenum, potassium, selenium, sodium, and uranium) were outside acceptance criteria, which may indicate non-homogeneous conditions at this location. November 2014 results for molybdenum and uranium at well 0675 also were outside acceptance criteria. The well condition will be evaluated prior to the next sampling event.

  16. Environmental restoration: Integrating hydraulic control of groundwater, innovative contaminant removal technologies and wetlands restoration--A case study at SRS

    International Nuclear Information System (INIS)

    Lewis, C.M.; Serkiz, S.M.; Adams, J.; Welty, M.

    1992-01-01

    The groundwater remediation program at the F and H Seepage Basins, Savannah River Sits (SRS) is a case study of the integration of various environmental restoration technologies at a single waste site. Hydraulic control measures are being designed to mitigate the discharge of groundwater plumes to surface water. One of the primary constituents of the plumes is tritium. An extraction and reinjection scenario is being designed to keep the tritium in circulation in the shallow groundwater, until it can naturally decay. This will be accomplished by extracting groundwater downgradient of the waste sites, treatment, and reinjection of the tritiated water into the water table upgradient of the basins. Innovative in-situ technologies, including electrolytic migration, are being field tested at the site to augment the pump-treat-reinject system. The in-situ technologies target removal of contaminants which are relatively immobile, yet represent long term risks to human health and the environment. Wetland restoration is an integral part of the F and H remediation program. Both in-situ treatment of the groundwater discharging the wetlands to adjust the pH, and replacement of water loss due to the groundwater extraction program ar being considered. Toxicity studies indicate that drought and the effects of low pH groundwater discharge have been factors in observed tree mortality in wetlands near the waste sites

  17. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    Science.gov (United States)

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  18. Current technology in sampling for airborne radionuclides

    International Nuclear Information System (INIS)

    Schulte, H.F.

    1976-01-01

    Sampling for airborne radionuclides is an important part of assessing the occupational environment and that of the public or out-plant environment. Both of these are important to the operation of any nuclear facility. Most such facilities do not emit radionuclides continuously to any extent and hence both the occupational and environmental sampling system is designed to detect deviations from normal conditions or untoward events. Work with materials of a low degree of radioactivity or with nonradioactive materials may involve operations which are not enclosed and significant contaminating material may always exist in the air. In this case, the sampling is directed toward measuring this ambient level and assessing its continued impact on the worker and on the environment. Publication No. 12 of the International Commission on Radiological Protection specifies the types of operations where sampling is necessary for worker protection and the American National Standards Institute publication N 13.1-1969 is a guide to the methods used. Increasingly, this field is covered by various regulations which specify when sampling must be done and, in some cases, how it shall be done. These include requirements of the Occupational Safety and Health Administration, the Nuclear Regulatory Commission, and the Environmental Protection Agency. Needless to say, where these have specified methods they must be followed although in most cases exact procedures are not detailed as requirements. Within the plant, needs for sampling are often suggested by surface monitoring results and by bioassay, and outside by analysis of plants, soils, and material from fallout trays. 15 references

  19. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-11-01

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measured at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.

  20. Data Validation Package October 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management (LM), Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Inc., Grand Junction, CO (United States)

    2017-02-01

    Sampling Period: October 10–12, 2016. This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Samples were collected from 54 of 64 planned locations (16 of 17 former mill site wells, 15 of 18 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 3 of 3 bedrock wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations).

  1. California GAMA Special Study. Development of a Capability for the Analysis of Krypton-85 in Groundwater Samples

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bibby, Richard K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. (CalState), Long Beach, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-01

    A capability for the analysis of krypton-85 (85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm3Kr sample size is 11% of the present day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program (35S, 3H/3He, 14C and radiogenic helium). 85Kr can replace 3H/3He in settings where 3H/3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.

  2. Data Validation Package February 2016 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site April 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-04-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  3. Data Validation Package August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells and extraction wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  4. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at Hanford, WA

    International Nuclear Information System (INIS)

    Thompson, K.M.; Petersen, Scott W.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Vermeul, Vince R.; Wellman, Dawn M.; Szecsody, Jim E.; Truex, Michael J.; Amonette, James E.; Long, Philip E.

    2007-01-01

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phytoremediation may be a possible way to treat this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium-phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage.

  5. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Reno, NV (United States); Lyles, Brad [Desert Research Inst. (DRI), Reno, NV (United States); Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ron [Desert Research Inst. (DRI), Reno, NV (United States); Healey, John [Desert Research Inst. (DRI), Reno, NV (United States)

    2015-06-01

    Frenchman Flat basin on the Nevada National Security Site (NNSS) contains Corrective Action Unit (CAU) 98, which is comprised of ten underground nuclear test locations. Environmental management of these test locations is part of the Underground Test Area (UGTA) Activity conducted by the U.S. Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended) with the U.S. Department of Defense (DOD) and the State of Nevada. A Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) has been approved for CAU 98 (DOE, 2011). The CADD/CAP reports on the Corrective Action Investigation that was conducted for the CAU, which included characterization and modeling. It also presents the recommended corrective actions to address the objective of protecting human health and the environment. The recommended corrective action alternative is “Closure in Place with Modeling, Monitoring, and Institutional Controls.” The role of monitoring is to verify that Contaminants of Concern (COCs) have not exceeded the Safe Drinking Water Act (SDWA) limits (Code of Federal Regulations, 2014) at the regulatory boundary, to ensure that institutional controls are adequate, and to monitor for changed conditions that could affect the closure conditions. The long-term closure monitoring program will be planned and implemented as part of the Closure Report stage after activities specified in the CADD/CAP are complete. Groundwater at the NNSS has been monitored for decades through a variety of programs. Current activities were recently consolidated in an NNSS Integrated Sampling Plan (DOE, 2014). Although monitoring directed by the plan is not intended to meet the FFACO long-term monitoring requirements for a CAU (which will be defined in the Closure Report), the objective to ensure public health protection is similar. It is expected that data collected in accordance with the plan will support the transition to long-term monitoring at each

  6. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    Science.gov (United States)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. Copyright © 2015

  7. Data validation summary report for the 100-HR-3 Round 8, Phases 1 and 2 groundwater sampling task

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents a summary of data validation results on groundwater samples collected for the 100-HR-3 Round 8 Groundwater Sampling task. The analyses performed for this project consisted of: metals, general chemistry, and radiochemistry. The laboratories conducting the analyses were Quanterra Environmental Services (QES) and Lockheed Analytical Services. As required by the contract and the WHC statement of work (WHC 1994), data validation was conducted using the Westinghouse data validation procedures for chemical and radiochemical analyses (WHC 1993a and 1993b). Sample results were validated to levels A and D as described in the data validation procedures. At the completion of validation and verification of each data package, a data validation summary was prepared and transmitted with the original documentation to Environmental Restoration Contract (ERC) for inclusion in the project QA record

  8. Data validation summary report for the 100-BC-5 Operable Unit Round 9 Groundwater Sampling. Revision 0

    International Nuclear Information System (INIS)

    Kearney, A.T.

    1996-03-01

    The information provided in this validation summary report includes chemical analyses of samples from 100-BC-5 Operable Unit Round 9 Groundwater sampling data. Data from this sampling event and their related quality assurance (QA) samples were reviewed and validated in accordance with Westinghouse Hanford Company (WHC) guidelines at the requested level. Sample analyses included metals, general chemistry, and radiochemistry. Sixty metals samples were analyzed by Quanterra Environmental Services (QES) and Lockheed Analytical Services (LAS). The metals samples were validated using WHC protocols specified in Data Validation Procedures for Chemical Analyses. All qualifiers assigned to the metals data were based on this guidance. The Table 1.1 lists the metals sample delivery group (SDG) that were validated for this sampling event

  9. Data Validation Package - April and July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [Dept. of Energy (DOE), Washington, DC (United States). Office of Legacy Management; Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-02-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Domestic wells 0476 and 0477 were sampled in July because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0113, 0248, and 0477. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. No issues were identified during the data validation process that requires additional action or follow-up.

  10. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    OpenAIRE

    Roger Neto Schneider; André Nadvorny; Verônica Schmidt

    2009-01-01

    The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of res...

  11. Atmospheric Gas Tracers in Groundwater: Theory, Sampling. Measurement and Interpretation; Yeraltisuyunda Atmosferik Gaz Izleyiciler: Kuram, Oernekleme, Oelcuem ve Yorum

    Energy Technology Data Exchange (ETDEWEB)

    Bayari, C S [Hacettepe University, Ankara(Turkey)

    2002-07-01

    Some of the atmospheric gasses posses features that are sought in an environmental tracer of hydrogeologic interest. Among these, chlorofluorocarbons, sulfur hegzafluoride, carbon tetrachloride, methyl chloroform, krypton-85 etc. have found increasing use in groundwater age dating studies during the last ten years. This paper explains the theory of their use as tracer and discusses the major concerns as related to their sampling and analyses. Factors affecting their applicability and the approach to interpret tracer gas data is briefly outlined.

  12. Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea

    Science.gov (United States)

    Kim, Jaisoo; Koo, So-Yeon; Kim, Ji-Young; Lee, Eun-Hee; Lee, Sang-Don; Ko, Kyung-Seok; Ko, Dong-Chan; Cho, Kyung-Suk

    2009-10-01

    The effects of acid mine drainage (AMD) in a stream and groundwater near an abandoned copper mine were characterized by physicochemical properties, bacterial community structure using denaturing gel gradient electrophoresis (DGGE), and microbial activity/diversity using Ecoplate technique. Based on DGGE fingerprints, the eubacterial community structures grouped into the stream water (GRS1, GRS2 and GRS3) and groundwater samples (GW1 and GW2), apparently based on differences in water temperature and the concentrations of dissolved oxygen, nitrate and sulfate. The most highly AMD-contaminated sample (GRS1) had additional α-Proteobacteria whereas the groundwater samples included additional β-Proteobacteria, suggesting the development of populations resistant to AMD toxicity under aerobic and anaerobic conditions, respectively. Community level physiological activities on the 31 Ecoplate substrates suggested that the activities decreased with increasing concentrations of sulfate and heavy metals derived from AMD. The Shannon index showed that microbial diversity was greatest in GRS2, and lowest in GRS1, and was probably related to the level of AMD.

  13. Reactive barrier technologies for treatment of contaminated groundwater at Rocky Flats

    International Nuclear Information System (INIS)

    Marozas, D.C.; Bujewski, G.E.; Castaneda, N.

    1997-01-01

    The U.S. Department of Energy (DOE) Office of Science and Technology Subsurface Contaminants Focus Area is supporting the investigation of reactive barrier technologies to mitigate the risks associated with mixed organic/radioactive waste at several DOE sites. Groundwater from a small contaminated plume at the Rocky Flats Environmental Technology Site (RFETS) is being used to evaluate passive reactive material treatment. Permeable reactive barriers which intercept contaminants and destroy the VOC component while containing radionuclides are attractive for a number of reasons relating to public and regulatory acceptance. In situ treatment keeps contaminants away from the earth's surface, there is no above-ground treatment equipment that could expose workers and the public and operational costs are expected to be lower than currently used technologies. This paper will present results from preliminary site characterization and in-field small-scale column testing of reactive materials at RFETS. Successful demonstration is expected to lead to full-scale implementation of the technology at several DOE sites, including Rocky Flats

  14. Methods to characterize environmental settings of stream and groundwater sampling sites for National Water-Quality Assessment

    Science.gov (United States)

    Nakagaki, Naomi; Hitt, Kerie J.; Price, Curtis V.; Falcone, James A.

    2012-01-01

    Characterization of natural and anthropogenic features that define the environmental settings of sampling sites for streams and groundwater, including drainage basins and groundwater study areas, is an essential component of water-quality and ecological investigations being conducted as part of the U.S. Geological Survey's National Water-Quality Assessment program. Quantitative characterization of environmental settings, combined with physical, chemical, and biological data collected at sampling sites, contributes to understanding the status of, and influences on, water-quality and ecological conditions. To support studies for the National Water-Quality Assessment program, a geographic information system (GIS) was used to develop a standard set of methods to consistently characterize the sites, drainage basins, and groundwater study areas across the nation. This report describes three methods used for characterization-simple overlay, area-weighted areal interpolation, and land-cover-weighted areal interpolation-and their appropriate applications to geographic analyses that have different objectives and data constraints. In addition, this document records the GIS thematic datasets that are used for the Program's national design and data analyses.

  15. Procedures for the collection and preservation of groundwater and surface water samples and for the installation of monitoring wells

    International Nuclear Information System (INIS)

    Korte, N.; Kearl, P.

    1984-01-01

    Proper sampling procedures are essential for a successful water-quality monitoring program. It must be emphasized, however, that it is impossible to maintain absolutely in-situ conditions when collecting and preserving a water sample, whether from a flowing stream or an aquifer. Consequently, the most that can reasonably be expected is to collect a best possible sample with minimal disturbance. This document describes procedures for installing monitoring wells and for collecting samples of surface water and groundwater. The discussion of monitoring wells includes mention of multilevel sampling and a general overview of vadose-zone monitoring. Guidelines for well installation are presented in detail. The discussion of water-sample collection contains evaluations of sampling pumps, filtration equipment, and sample containers. Sample-preservation techniques, as published by several government and private sources, are reviewed. Finally, step-by-step procedures for collection of water samples are provided; these procedures address such considerations as necessary equipment, field operations, and written documentation. Separate procedures are also included for the collection of samples for determination of sulfide and for reactive aluminum. The report concludes with a brief discussion of adverse sampling, conditions that may significantly affect the quality of the data. Appendix A presents a rationale for the development and use of statistical considerations in water sampling to ensure a more complete water quality monitoring program. 51 references, 9 figures, 4 tables

  16. Estimation of polonium concentration in groundwater samples from the Peddagattu/Nambapur and Seripalli regions using alpha-spectrometry

    International Nuclear Information System (INIS)

    Raghavendra, T.; Srilatha, K.; Mahender, C.; Elender; Vijaya Lakshmi, T.; Himabindu, V.; Vishwa Prasad; Padma Savithri, P.; Datta, D.; Arunachalam, J.

    2013-01-01

    The decay of uranium series in the earth crust remains the final and long lived radionuclides 210 Po and 210 Pb in the environment. Their presence in the atmosphere is due to the decay of 222 Rn diffusing from the ground. This study was carried out with an objective of estimation of polonium concentration in a uranium mineralized zone in Peddagattu and Seripalli areas of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 12 wells, and frequency of these collections was once in a quarter from May 2010 to Dec 2011. The alpha-spectrometry has been applied to analyze these samples. Observation reveals that the activity concentration of Polonium in the water samples of Peddagattu and Seripally regions range from 0.3 mBq/l to 2.80 mBq/l with Geometric mean of 0.89 mBq/l and Geometric Standard deviation of 2.72 and from 0.3 mBq/l to 4.68 mBq/l with a Geometric mean of 0.91 and Geometric standard deviation of 3.22 respectively. As per WHO standards, the maximum permissible limit in drinking water for Polonium is 0.55 Bq/l. Hence all the 12 samples are falling well under the permissible limit. This paper presents the analytical details for estimating polonium as a natural radioactive element in groundwater as well as surface water samples collected from the Nambapur/Peddagattu and Seripalli regions. (author)

  17. Data Validation Package April 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management, Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-08-01

    This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Complete sample sets were collected from 42 of 48 planned locations (9 of 9 former mill site wells, 13 of 13 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Locations R6-M3, SW00-01, Seep 1, Seep 2, and Seep 5 were not sampled due to insufficient water availability. A partial sample was collected at location R4-M3 due to insufficient water. All samples from the permeable reactive barrier wells were filtered as specified in the program directive. Duplicate samples were collected from surface water location Sorenson and from monitoring wells 92-07 and RlO-Ml. Water levels were measured at all sampled wells and an additional set of wells. See Attachment2, Trip Report for additional details. The contaminants of concern (COCs) for the Monticello sites are arsenic, manganese, molybdenum, nitrate+ nitrite as nitrogen (nitrate+ nitrite as N), selenium, uranium, and vanadium. Locations with COCs that exceeded remediation goals are listed in Table 1 and Table 2. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in Attachment 3, Data Presentation. An assessment of anomalous data is included in Attachment 4.

  18. A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    Isabel C. Pérez Hoyos

    2016-03-01

    Full Text Available Groundwater Dependent Ecosystem (GDE protection is increasingly being recognized as essential for the sustainable management and allocation of water resources. GDE services are crucial for human well-being and for a variety of flora and fauna. However, the conservation of GDEs is only possible if knowledge about their location and extent is available. Several studies have focused on the identification of GDEs at specific locations using ground-based measurements. However, recent progress in remote sensing technologies and their integration with Geographic Information Systems (GIS has provided alternative ways to map GDEs at a much larger spatial extent. This paper presents a review of the geospatial methods that have been used to map and delineate GDEs at spatial different extents. Additionally, a summary of the satellite sensors useful for identification of GDEs and the integration of remote sensing data with ground-based measurements in the process of mapping GDEs is presented.

  19. Evaluation of the quality of groundwater sampling: Experience derived from radioactive waste disposal programmes in Sweden and Finland during 1980-1992

    International Nuclear Information System (INIS)

    Smellie, J.A.T.; Laaksoharju, M.; Snellman, M.V.; Ruotsalainen, P.H.

    1999-09-01

    Existing Finnish and Swedish hydrogeochemical field data from the 1980s and the early 1990s have been closely examined in the light of other influencing activities, such as geology and hydrology, which form an integral part of site-specific investigations. The report has considered data relating to the monitoring of groundwater chemical trends and groundwater sampling and analysis. These data have been used to simulate the effects of important parameters on groundwater quality and representativeness, to generate recommendations to improve the standard of hydrogeochemical sampling and analyses, and to discuss these results in the broader context of future site-specific investigations. (orig.)

  20. Sampling and analysis plan for groundwater and surface water monitoring at the Y-12 Plant during calendar year 1995

    International Nuclear Information System (INIS)

    1994-10-01

    This plan provides a description of the groundwater and surface-water quality monitoring activities planned for calendar year (CY) 1995 at the Department of Energy Y-12 Plant. Included in this plan are the monitoring activities managed by the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Other groundwater and surface water monitoring activities (e.g. selected Environmental Restoration Program activities, National Pollution Discharge Elimination System (NPDES) monitoring) not managed through the Y-12 Plant GWPP are not addressed in this report. Several monitoring programs will be implemented in three hydrogeologic regimes: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. For various reasons, modifications to the 1995 monitoring programs may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected wells, or wells could be added to or deleted from the monitoring network. All modifications to the monitoring programs will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  1. Data Validation Package October 2015 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management; Smith, Fred [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-01-21

    Sampling Period: October 12–14, 2015. This semiannual event includes sampling groundwater and surface water at the Monticello Mill Tailings Site. Sampling and analyses were conducted as specified in the 2004 Monticello Mill Tailings Site Operable Unit III Post-Record of Decision Monitoring Plan, Draft Final and Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Samples were collected from 52 of 61 planned locations (15 of 17 former mill site wells, 17 of 18 downgradient wells, 9 of 9 downgradient permeable reactive barrier wells, 2 of 7 seeps and wetlands, and 9 of 10 surface water locations). Locations MW00-07, Seep 1, Seep 2, Seep 3, Seep 5, Seep 6, SW00-01, T01-13, and T01-19 were not sampled because of insufficient water availability. All samples were filtered as specified in the monitoring plan. Duplicate samples were collected from surface water location W3-04 and from monitoring wells 82-08, 92-09, and 92-10. Water levels were measured at all but one sampled well and an additional set of wells. The contaminants of concern (COCs) for the Monticello Mill Tailings Site are arsenic, manganese, molybdenum, nitrate + nitrite as nitrogen (nitrate + nitrite as N), selenium, uranium, and vanadium. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in this report. Locations with COCs that exceeded remediation goals are listed.

  2. Data Validation Package - June 2015 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2015-08-01

    Groundwater samples were collected during the 2015 sampling event from point-of-compliance (POC) wells 0171, 0173, 0176, 0179, 0181, and 0813 to monitor the disposition of contaminants in the middle sandstone unit of the Cedar Mountain Formation. Groundwater samples also were collected from alluvium monitoring wells 0188, 0189, 0192, 0194, and 0707, and basal sandstone monitoring wells 0182, 0184, 0185, and 0588 as a best management practice. Surface locations 0846 and 0847 were sampled to monitor for degradation of water quality in the backwater area of Brown’s Wash and in the Green River immediately downstream of Brown’s Wash. The Green River location 0801 is upstream from the site and is sampled to determine background-threshold values (BTVs). Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Water levels were measured at each sampled well. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. All six POC wells are completed in the middle sandstone unit of the Cedar Mountain Formation and are monitored to measure contaminant concentrations for comparison to proposed alternate concentration limits (ACLs), as provided in Table 1. Contaminant concentrations in the POC wells remain below their respective ACLs.

  3. Analysis of s-triazine herbicides in model systems and samples of groundwater by gas and liquid chromatography

    Directory of Open Access Journals (Sweden)

    Kostadinović Ljiljana

    2010-01-01

    Full Text Available In this paper, residues of s-triazine herbicides (Simazine, Atrazine, Amethrine, Promethrine and Azyprothrine have been determined in samples of model systems and real groundwater samples by gas-chromatography and high performance liquid chromatography. S-triazine herbicides were isolated from water samples by chloroform-methanol mixture (1:1, followed by purification of extract on the Al2O3 column. Gas-chromatographic determination the residues of s-triazines is performed on parallel capilar columns ULTRA I and ULTRA II, using specific NP detector. Liquid-chromatographic determination the s-triazines was performed on the column TSK ODS-120 A 5 mm 'LKB', using the mobile phase methanol-water (60:40. Total concentration of s-triazines in samples of Danube water was 3.54 mg dm-3. .

  4. Attempt of groundwater dating using the drilled rock core. 1. Development of the rock sampling method for measurement of noble gases dissolved in interstitial water in rock

    International Nuclear Information System (INIS)

    Mahara, Yasunori

    2002-01-01

    Groundwater dating in low permeable rock is very difficult and impracticable, because we take a very long time to collect groundwater sample in a borehole and have to invest much fund in production of the in-situ groundwater sampler and in operation of it. If we can directly measure noble gases dissolved in interstitial groundwater in rock core, we have a big merit to estimate groundwater resident time easy. In this study, we designed and produced a high vacuum container to let dissolved noble gases diffuse until reaching in equilibrium, and we made a handling manual of the rock core into the container and a procedure to vacuum out air from the sealed container. We compared data sets of noble gas concentration obtained from rock cores and groundwater sample collected from boreholes in-situ. The measured rocks are pumice-tuff rock, mud rock and hornfels, which have their permeabilities of 10 -6 cm/s, 10 -9 cm/s and 10 -11 cm/s, respectively. Consequently, we evaluated the rock core method is better than the in-situ groundwater sampling method for low permeable rock. (author)

  5. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  6. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-09-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling

  7. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling

  8. Data Validation Package May and June 2015 Groundwater and Surface Water Sampling at the Bluewater, New Mexico, Disposal Site, August 2015

    International Nuclear Information System (INIS)

    Johnson, Dick; Tsosie, Bernadette

    2015-01-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Duplicate samples were collected from locations 14(SG) and 21(M). Sampling originally scheduled for the week of May 11, 2015 was interrupted by heavy rainfall and later completed in June.

  9. Data Validation Package May and June 2015 Groundwater and Surface Water Sampling at the Bluewater, New Mexico, Disposal Site, August 2015

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2015-08-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Duplicate samples were collected from locations 14(SG) and 21(M). Sampling originally scheduled for the week of May 11, 2015 was interrupted by heavy rainfall and later completed in June.

  10. Summary of the results and interpretation of tritium and noble gas measurements on groundwater samples from the Perch Lake Basin Area

    International Nuclear Information System (INIS)

    Kotzer, T.G.

    1999-02-01

    Along the west-central margin of the Lower Perch Lake Basin, a limited number of groundwaters have been sampled from piezometers at depths of between 8 and 17 m and distances of between 100 and 900 m downgradient from their recharge location near Area A. Concentrations of tritium in these groundwaters varied between approximately 100 and 2800 TU. Measurements of dissolved gases in these groundwaters indicate concentrations of 4 He and neon approximating those in recently recharged groundwaters; however, the concentrations of 3 He are as much as 100 times higher, indicating the waters have accumulated tritiogenic 3 He. Using the 3 H/ 3 He dating technique, groundwater residence times on the order of 29 ± 8 years and groundwater velocities on the order of 0.1 m/day have been calculated for the flow system in the middle sand unit between Area A recharge and Perch Lake. These results, although based on a very small number of groundwater analyses, are comparable to earlier estimates of groundwater residence times and velocities obtained using Darcy calculations, borehole dilution experiments and tracer-test results from previous hydrogeologic studies in the area. (author)

  11. Phytoremediation of explosives in groundwater using innovative wetlands-based treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, F.J.; Behrends, L.L.; Coonrod, H.S.; Phillips, W.D. [Tennessee Valley Authority, Muscle Shoals, AL (United States). Environmental Research Center; Bader, D.F. [Army Environmental Center, Aberdeen Proving Ground, MD (United States)

    1997-12-31

    Many army ammunition plants across the country have problems with groundwater contaminated with explosives. A field demonstration was initiated at the Milan Army Ammunition Plant near Milan, Tennessee early in 1996 to demonstrate the feasibility of treating contaminated groundwater with constructed wetlands. Two different systems were designed and installed. A lagoon system consisted of two cells in series with each cell having dimensions of 24 x 9.4 x 0.6 m (L x W x H). A gravel-bed system consisted of three gravel-beds operated in series with a primary anaerobic cell having dimensions of 32 x 11 x 1.4 m (L x W x H), followed by a pair of secondary cells each with dimensions of 5.5 x 11 x 1.4 m (L x W x H). The primary cell is maintained anaerobic by adding powdered milk to the water every two weeks. The secondary cells are maintained aerobic via reciprocation, whereby water is pumped back and forth from one cell to another to cause a recurrent fill and drain action. The lagoons were planted with sago pond weed, water stargrass, elodea, and parrot feather. The gravel-bed wetlands were planted with canary grass, wool grass, sweet flag, and parrot feather. Water began flowing to each of the wetland treatment systems at 19 L min{sup {minus}1} starting in June 1996. The design hydraulic retention time through each treatment system was approximately 10 days. Influent and effluent water samples were collected every 2 weeks. Intensive sampling of water interior to the wetlands occurred every 2 months.

  12. Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP

    International Nuclear Information System (INIS)

    Swanson, Juliet S.; Reed, Donald T.; Ams, David A.; Norden, Diana; Simmons, Karen A.

    2012-01-01

    This report summarizes the progress made in the ongoing task of characterizing the microbial community structures within the WIPP repository and in surrounding groundwaters. Through cultivation and DNA-based identification, the potential activity of these organisms is being inferred, thus leading to a better understanding of their impact on WIPP performance. Members of the three biological domains - Bacteria, Archaea, and Eukarya (in this case, Fungi) - that are associated with WIPP halite have been identified. Thus far, their activity has been limited to aerobic respiration; anaerobic incubations are underway. WIPP halite constitutes the near-field microbial environment. We expect that microbial activity in this setting will proceed from aerobic respiration, through nitrate reduction to focus on sulfate reduction. This is also the current WIPP performance assessment (PA) position. Sulfate reduction can occur at extremely high ionic strengths, and sulfate is available in WIPP brines and in the anhydrite interbeds. The role of methanogenesis in the WIPP remains unclear, due to both energetic constraints imposed by a high-salt environment and substrate selectivity, and it is no longer considered in PA. Archaea identified in WIPP halite thus far fall exclusively within the family Halobacteriaceae. These include Halobacterium noricense, cultivated from both low- and high-salt media, and a Halorubrum-like species. The former has also been detected in other salt mines worldwide; the latter likely constitutes a new species. Little is known of its function, but it was prevalent in experiments investigating the biodegradation of organic complexing agents in WIPP brines. Bacterial signatures associated with WIPP halite include members of the phylum Proteobacteria - Halomonas, Pelomonas, Limnobacter, and Chromohalobacter - but only the latter has been isolated. Also detected and cultivated were Salinicoccus and Nesterenkonia spp. Fungi were also isolated from halite. Although

  13. Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Juliet S. [Los Alamos National Laboratory; Reed, Donald T. [Los Alamos National Laboratory; Ams, David A. [Los Alamos National Laboratory; Norden, Diana [Ohio State University; Simmons, Karen A. [Los Alamos National Laboratory

    2012-07-10

    This report summarizes the progress made in the ongoing task of characterizing the microbial community structures within the WIPP repository and in surrounding groundwaters. Through cultivation and DNA-based identification, the potential activity of these organisms is being inferred, thus leading to a better understanding of their impact on WIPP performance. Members of the three biological domains - Bacteria, Archaea, and Eukarya (in this case, Fungi) - that are associated with WIPP halite have been identified. Thus far, their activity has been limited to aerobic respiration; anaerobic incubations are underway. WIPP halite constitutes the near-field microbial environment. We expect that microbial activity in this setting will proceed from aerobic respiration, through nitrate reduction to focus on sulfate reduction. This is also the current WIPP performance assessment (PA) position. Sulfate reduction can occur at extremely high ionic strengths, and sulfate is available in WIPP brines and in the anhydrite interbeds. The role of methanogenesis in the WIPP remains unclear, due to both energetic constraints imposed by a high-salt environment and substrate selectivity, and it is no longer considered in PA. Archaea identified in WIPP halite thus far fall exclusively within the family Halobacteriaceae. These include Halobacterium noricense, cultivated from both low- and high-salt media, and a Halorubrum-like species. The former has also been detected in other salt mines worldwide; the latter likely constitutes a new species. Little is known of its function, but it was prevalent in experiments investigating the biodegradation of organic complexing agents in WIPP brines. Bacterial signatures associated with WIPP halite include members of the phylum Proteobacteria - Halomonas, Pelomonas, Limnobacter, and Chromohalobacter - but only the latter has been isolated. Also detected and cultivated were Salinicoccus and Nesterenkonia spp. Fungi were also isolated from halite. Although

  14. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-10

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.

  15. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    Science.gov (United States)

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  16. Enhanced AFCI Sampling, Analysis, and Safeguards Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    John Svoboda

    2009-09-01

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. Sampling and analysis of nuclear fuel recycling plant processes is required both to monitor the operations and ensure Safeguards and Security goals are met. In addition, environmental regulations lead to additional samples and analysis to meet licensing requirements. The volume of samples taken by conventional means, can restrain productivity while results samples are analyzed, require process holding tanks that are sized to meet analytical issues rather than process issues (and that create a larger facility footprint), or, in some cases, simply overwhelm analytical laboratory capabilities. These issues only grow when process flowsheets propose new separations systems and new byproduct material for transmutation purposes. Novel means of streamlining both sampling and analysis are being evaluated to increase the efficiency while meeting all requirements for information. This report addresses just a part of the effort to develop and study novel methods by focusing on the sampling and analysis of aqueous samples for metallic elements. It presents an overview of the sampling requirements, including frequency, sensitivity, accuracy, and programmatic drivers, to demonstrate the magnitude of the task. The sampling and analysis system needed for metallic element measurements is then discussed, and novel options being applied to other industrial analytical needs are presented. Inductively coupled mass spectrometry instruments are the most versatile for metallic element analyses and are thus chosen as the focus for the study. Candidate novel means of process sampling, as well as modifications that are necessary to couple such instruments to

  17. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the trichloroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were inst...

  18. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    Science.gov (United States)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  19. Groundwater sampling at Olkiluoto, Eurajoki from the borehole OL-KR6 during a long-term pumping test in 2006

    International Nuclear Information System (INIS)

    Hirvonen, H.; Hatanpaeae, E.; Ahokas, H.

    2007-05-01

    A long-term pumping test at borehole OL-KR6 at Olkiluoto was initiated in 2001. Since then, flow and in situ EC measurements as well as groundwater sampling from specific sampling sections have been performed yearly. The aim of this study was to obtain information on the potential connections via fractures both to the sea and to deep saline groundwater during long-term pumping of the open borehole. In 2006, four groundwater samples were collected from four different sampling depths (98.5-100.5 m, 125-130 m, 135-137 m and 422-425 m). The groundwater samples were taken in stages using PAVE equipment. The water types found in the groundwater samples from OL-KR6 were Na-Ca-Cl (for samples from depths of 98.5-100.5 m and 125-130 m) and Na-Cl (for samples from depths of 135-137 m and 422-425 m). The sample from depth 422-425 m was saline (TDS> 10000 mg/l), while other waters were brackish (1000 mg < TDS <10000 mg/l). This study presents the sampling methods and analysis results of groundwater samples from deep borehole OL-KR6, and draws a comparison between the results of the in situ EC measurements and the EC results measured during groundwater sampling. This report also contains a short comparison of the results obtained from the long-term pumping test conducted between 2001-2006. In situ EC results and EC results measured in laboratory are in quite good agreement. At sampling depth, 422-425 m, EC increased between 2004-2006. At a depth of 423 m, much variation in situ EC-values indicates that routes of groundwater may change during long-term pumping due to the limited storages of different aquifers or the heterogeneity of the content of groundwater in different locations in the bedrock. The minor systematic difference between in situ and sampling EC at a depth of 136 m was probably due to the different flow fields during flow logging and water sampling. The dominant gas in the groundwater samples was nitrogen. Carbon dioxide was the second dominant gas, except for the

  20. Enhanced Sampling and Analysis, Selection of Technology for Testing

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, John; Meikrantz, David

    2010-02-01

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. This report details the progress made in the first half of FY 2010 and includes a further consideration of the research focus and goals for this year. Our sampling options and focus for the next generation sampling method are presented along with the criteria used for choosing our path forward. We have decided to pursue the option of evaluating the feasibility of microcapillary based chips to remotely collect, transfer, track and supply microliters of sample solutions to analytical equipment in support of aqueous processes for used nuclear fuel cycles. Microchip vendors have been screened and a choice made for the development of a suitable microchip design followed by production of samples for evaluation by ANL, LANL, and INL on an independent basis.

  1. Defining an optimum pumping-time requirement for sampling ground-water wells on the Hanford site

    International Nuclear Information System (INIS)

    Scharnhorst, N.L.

    1982-04-01

    The objective was to determine the optimum time period necessary to pump water from a well before a representative sample of the ground water can be obtained. It was assumed that a representative sample has been collected if the concentration of chemical parameters is the same in a number of samples taken consecutively, so that the concentration of parameters does not vary with time of collection. Ground-water samples used in this project were obtained by pumping selected wells on the Hanford Site. At each well, samples were taken at two minute intervals, and on each sample various chemical analyses were performed. Samples were checked for pH, sulfate, iron, specific conductivity, chloride, nitrate and alkalinity. The data showed that pH, alkalinity, sulfate and specific conductivity levels stabilized almost immediately after pumping of the well began. In many wells, the chloride and nitrate levels were unstable throughout the 38-minute sampling period. Iron levels, however, did not behave in either fashion. The concentration of iron in the samples was high when pumping began but dropped rapidly as pumping continued. The best explanation for this is that iron is flushed from the sides of the casing into the well when pumping begins. After several minutes of pumping, most of the dissolved iron is washed from the well casing and the iron concentration reaches a stable plateau representative of the iron concentration in the ground water.Since iron concentration takes longest to stabilize, the optimum pumping time for a well is based on the iron stabilization time for that well

  2. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran.

    Science.gov (United States)

    Esmaeili-Vardanjani, Mostafa; Rasa, Iraj; Amiri, Vahab; Yazdi, Mohammad; Pazand, Kaveh

    2015-02-01

    The chemical analysis of 129 groundwater samples in the Kadkan area, Khorasan-e-Razavi Province, NE of Iran was evaluated to determine the hydrochemical processes, assessment of groundwater quality for irrigation purposes, corrosiveness, and scaling potential of the groundwater. Accordingly, the suitability of groundwater for irrigation was evaluated based on the sodium adsorption ratio, residual sodium carbonate, sodium percent, salinity hazard, and US Salinity Laboratory hazard diagram. Based on the electrical conductivity and sodium adsorption ratio, the dominant classes are C3-S1, C3-S2, C2-S1, and C4-S2. According to the Wilcox plot, about 50 % of the samples fall in the "Excellent to Good" and "Good to Permissible" classes. Besides, the Langelier saturation index, Ryznar stability index (RSI), Larson-Skold index, and Puckorius scaling index were evaluated for assessing the corrosiveness and scaling potential of the groundwater. Corrosiveness and scaling indices stated that the majority of samples are classified into "Aggressive" and "Very Aggressive" category. In addition, chloride and sulfate interfere in 90 % of the samples. Assessment of hydrochemical characteristics indicates Na-Mg-Cl as the predominant hydrochemical type. Spatial distribution of hydrochemical parameters indicates that hydrochemical processes are influenced by geology and hydrogeology of Kadkan aquifer. The Gibbs plots gave an indication that groundwater chemistry in this area may have acquired the chemistry mainly from evaporation and mineral precipitation. Grouping the samples based on Q-mode hierarchical cluster analysis helped to more separation of similar samples. The R-mode HCA grouped analyzed parameters into two groups based on similarity of hydrochemical characteristics. As a result, the samples collected in northern and southern parts of the study area show the best quality (i.e., lowest salinity) for some purposes such as irrigation and drinking.

  3. Grimsel colloid exercise, an international intercomparison exercise on the sampling and characterization of groundwater colloids

    International Nuclear Information System (INIS)

    Degueldre, C.

    1990-01-01

    The Grimsel colloid exercise was an intercomparison exercise which consisted of an in situ sampling phase followed by a colloid characterization step. The goal of this benchmark exercise, which involved 12 laboratories, was to evaluate both sampling and characterization techniques with emphasis on the colloid specific size distribution. The sampling phase took place at the Grimsel test site between 1 and 13 February 1988 and the participating groups produced colloid samples using various methods. This work was carried out within the Community COCO Club, as a component of the Mirage project (second phase)

  4. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Science.gov (United States)

    2010-07-01

    ...: (1) Sample collection; (2) Sample preservation and shipment; (3) Analytical procedures; (4) Chain of... theory test, then the data should be transformed or a distribution-free theory test should be used. If... chart and its associated parameter values shall be protective of human health and the environment. The...

  5. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  6. June 2012 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    International Nuclear Information System (INIS)

    2013-01-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 26-27, 2012, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the 'Corrective Action Decision Document/Corrective Action Plan' completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  7. May 2011 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    International Nuclear Information System (INIS)

    2011-01-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on May 10-11, 2011, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the 'Corrective Action Decision Document/Corrective Action Plan' completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated)

  8. Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India

    International Nuclear Information System (INIS)

    Mittal, Sudhir; Asha Rani; Mehra, Rohit

    2015-01-01

    In the present investigation, analysis of radon concentration in 20 water and soil samples collected from different locations of Bikaner and Jhunjhunu districts of Rajasthan, India has been carried out by using RAD7 an electronic Radon detector. The water samples are taken from hand pumps and tube wells having depths ranging from 50 to 600 feet. All the soil gas measurements have been carried out at 100 cm depth. The measured radon concentration in water samples lies in the range from 0.50 to 22 Bq l -1 with the mean value of 4.42 Bq l -1 . Only in one water sample radon concentration is found to be higher than the safe limit of 11 Bq l -1 recommended US Environmental Protection Agency (USEPA, 1991). The measured value of radon concentration in all ground water samples is within the safe limit from 4 to 40 Bq l -1 recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2008). The total annual effective dose estimated due to radon concentration in water ranges from 1.37 to 60 μSV y -1 with the mean value of 12.08 μSV y -1 . The total annual effective dose from all locations of our studied area is found to be well within the safe limit 0.1 mSv y -1 recommended by World Health Organization (WHO, 2004) and European Council (ED, 1998). Radon measurement in soil samples varies from 941 to 10050 Bq m -3 with the mean value of 4561 Bq m -3 , The radon concentration observed from the soil samples from our study area lies within the range reported by other investigators. Moreover a positive correlation of radon concentration in water with soil samples has been observed. It was observed that the soil and water of Bikaner and Jhunjhunu districts are suitable for drinking and construction purpose without posing any health hazard. (author)

  9. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit

  10. Determination of submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples by solid-phase extraction and liquid chromatography

    Science.gov (United States)

    Burkhardt, M.R.; Soliven, P.P.; Werner, S.L.; Vaught, D.G.

    1999-01-01

    A method for determining submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples has been developed. Caffeine is extracted from a 1 L water sample with a 0.5 g graphitized carbon-based solid-phase cartridge, eluted with methylene chloride-methanol (80 + 20, v/v), and analyzed by liquid chromatography with photodiode-array detection. The single-operator method detection limit for organic-free water samples was 0.02 ??g/L. Mean recoveries and relative standard deviations were 93 ?? 13% for organicfree water samples fortified at 0.04 ??g/L and 84 ?? 4% for laboratory reagent spikes fortified at 0.5 ??g/L. Environmental concentrations of caffeine ranged from 0.003 to 1.44 ??g/L in surface water samples and from 0.01 to 0.08 ??g/L in groundwater samples.

  11. DETERMINATION OF CHLOROPHEONIS, NITROPHENOIS AND METHYLPHENOIS IN GROUND-WATER SAMPLES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Science.gov (United States)

    A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...

  12. DETERMINATION OF CHLOROPHENOLS, NITROPHENOLS, AND METHYLPHENOLS IN GROUND-WATER SAMPLES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Science.gov (United States)

    A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...

  13. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    Science.gov (United States)

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  14. Improved Understanding of Sources of Variability in Groundwater Sampling for Long-Term Monitoring Programs

    Science.gov (United States)

    2013-02-01

    contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product ... Ethylbenzene , and Vinyl Chloride. One pair of sample and duplicate results was reported as non-detect for Ethylbenzene and were not included in the RPD...by TestAmerica for 1,1-Dichloroethane, Benzene, Chlorobenzene, Ethylbenzene , and Vinyl Chloride resulted in all RPD values meeting the RDP criteria

  15. Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India

    Directory of Open Access Journals (Sweden)

    Sudhir Mittal

    2016-04-01

    Full Text Available In the present investigation, analysis of radon concentration in 20 water and soil samples collected from different locations of Bikaner and Jhunjhunu districts of Rajasthan, India has been carried out by using RAD7 an electronic Radon detector. The measured radon concentration in water samples lies in the range from 0.50 to 22 Bq l−1 with the mean value of 4.42 Bq l−1, which lies within the safe limit from 4 to 40 Bq l−1 recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2008. The total annual effective dose estimated due to radon concentration in water ranges from 1.37 to 60.06 μSV y−1 with the mean value of 12.08 μSV y−1, which is lower than the safe limit 0.1 mSv y−1 as set by World Health Organization (WHO, 2004 and European Council (EU, 1998. Radon measurement in soil samples varies from 941 to 10,050 Bq m−3 with the mean value of 4561 Bq m−3, which lies within the range reported by other investigators. It was observed that the soil and water of Bikaner and Jhunjhunu districts are suitable for drinking and construction purpose without posing any health hazard.

  16. Groundwater-quality data in 12 GAMA study units: Results from the 2006–10 initial sampling period and the 2008–13 trend sampling period, California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy M.

    2017-03-09

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey in cooperation with the California State Water Resources Control Board. From 2004 through 2012, the GAMA-PBP collected samples and assessed the quality of groundwater resources that supply public drinking water in 35 study units across the State. Selected sites in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. Twelve of the study units, initially sampled during 2006–11 (initial sampling period) and sampled a second time during 2008–13 (trend sampling period) to assess temporal trends, are the subject of this report.The initial sampling was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies in the 12 study units. In these study units, 550 sampling sites were selected by using a spatially distributed, randomized, grid-based method to provide spatially unbiased representation of the areas assessed (grid sites, also called “status sites”). After the initial sampling period, 76 of the previously sampled status sites (approximately 10 percent in each study unit) were randomly selected for trend sampling (“trend sites”). The 12 study units sampled both during the initial sampling and during the trend sampling period were distributed among 6 hydrogeologic provinces: Coastal (Northern and Southern), Transverse Ranges and Selected Peninsular Ranges, Klamath, Modoc Plateau and Cascades, and Sierra Nevada Hydrogeologic Provinces. For the purposes of this trend report, the six hydrogeologic provinces were grouped into two hydrogeologic regions based on location: Coastal and Mountain.The groundwater samples were analyzed for a number of synthetic organic

  17. Sampled data spectroscopy (SDS): A new technology for radiation instrumentation

    International Nuclear Information System (INIS)

    Odell, D.M.C.

    1992-01-01

    A new instrumentation architecture for radiation spectroscopy is in the early stages of development at Savannah River. Based upon the same digital sampling techniques used in sonar and radar, sampled data spectroscopy (SDS) has produced Na(I)/PMT spectra with resolution comparable to conventional PHA systems. This work has laid the foundation for extending SDS techniques to solid state detector applications as well. Two-dimensional SDS processes raw, unintegrated detector output pulses to produce both energy and shape information that is used to construct a conventional energy spectrum. System advantages include zero electronic deadtime to support very high count rates, elimination of pulse pile-up peaks, high noise immunity, and digital system stability and reliability. Small size and low power requirements make 2-D SDS anideal technology for portable instrumentation and remote monitoring applications. Applications of potential interest at Savannah River include on-the-spot spill analysis, real-time waste stream monitoring, and personnel and area monitoring below background levels. A three-dimensional sampled data architecture is also being developed. Relying on image analysis and enhancement techniques, 3-D SDS identifies spectral peaks without determining the energy of any individual detector pulses. These techniques also open up a new avenue of exploration for reducing or removing Compton effects from the spectra of single detector systems. The intended application for this technique is waste characterization where lower energy isotopes are often obscured by the Compton scattering from dominant isotopes such as Csl37

  18. Recent Research Status on the Microbes in the Radioactive Waste Disposal and Identification of Aerobic Microbes in a Groundwater Sampled from the KAERI Underground Research Tunnel(KURT)

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Cho, Won Jin

    2006-11-01

    In this report, a comprehensive review on the research results and status for the various effects of microbes in the radioactive waste disposal including definition and classification of microbes, and researches related with the waste containers, engineered barriers, natural barriers, natural analogue studies, and radionuclide migration and retardation. Cultivation, isolation, and classification of aerobic microbes found in a groundwater sampled from the KAERI Underground Research Tunnel (KURT) located in the KAERI site have carried out and over 20 microbes were found to be present in the groundwater. Microbial identification by a 16S rDNA genetic analysis of the selected major 10 aerobic microbes was performed and the identified microbes were characterized

  19. Geothermal energy plants. Technologies and risk of soil and groundwater pollution; Jordvarmeanlaeg. Teknologier og risiko for jord- og grundvandsforurening

    Energy Technology Data Exchange (ETDEWEB)

    Villumsen, B. (COWI A/S, Kgs. Lyngby (Denmark))

    2008-07-01

    Ground source heat systems utilise the natural heat in the ground to heat houses and domestic hot water. The technology is energy-saving and can therefore contribute to the targets of reducing Denmark's CO{sub 2} emissions. All else being equal, a ground source heat system containing chemicals poses a potential contamination risk to soil and groundwater. Therefore a permit is required when installing a ground source heat system, and the general regulations for implementing the system etc. combined with the municipality's administrative procedures for the area must ensure sufficient protection of the groundwater. This project only deals with the heat exchanging system, which is the part of the ground source heat system which involves risk of soil and groundwater contamination. The aim of the project is to procure an overall updated knowledge base about the different types of ground source heat systems and the contamination risk associated with them. The project also reviews how disadvantages can be managed or minimized. (au)

  20. Cone penetrometer testing and discrete-depth groundwater sampling techniques: A cost-effective method of site characterization in a multiple-aquifer setting

    International Nuclear Information System (INIS)

    Zemo, D.A.; Pierce, Y.G.; Gallinatti, J.D.

    1992-01-01

    Cone penetrometer testing (CPT), combined with discrete-depth groundwater sampling methods, can reduce significantly the time and expense required to characterize large sites that have multiple aquifers. Results from the screening site characterization can be used to design and install a cost-effective monitoring well network. At a site in northern California, it was necessary to characterize the stratigraphy and the distribution of volatile organic compounds (VOCs) to a depth of 80 feet within a 1/2 mile-by-1/4-mile residential and commercial area in a complex alluvial fan setting. To expedite site characterization, a five-week field screening program was implemented that consisted of a shallow groundwater survey, CPT soundings, and discrete-depth groundwater sampling. Based on continuous lithologic information provided by the CPT soundings, four coarse-grained water-yielding sedimentary packages were identified. Eighty-three discrete-depth groundwater samples were collected using shallow groundwater survey techniques, the BAT Enviroprobe, or the QED HydroPunch 1, depending on subsurface conditions. A 20-well monitoring network was designed and installed to monitor critical points within each sedimentary package. Understanding the vertical VOC distribution and concentrations produced substantial cost savings by minimizing the number of permanent monitoring wells and reducing the number of costly conductor casings to be installed. Significant long-term cost savings will result from reduced sampling costs. Where total VOC concentrations exceeded 20 φg/l in the screening samples, a good correlation was found between the discrete-depth screening data and data from monitoring wells. Using a screening program to characterize the site before installing monitoring wells resulted in an estimated 50-percent reduction in costs for site characterization, 65-percent reduction in time for site characterization, and 50-percent reduction in long-term monitoring costs

  1. Technologies for pre-screening IAEA swipe samples

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas A. [Argonne National Lab. (ANL), Argonne, IL (United States); Steeb, Jennifer L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Denise L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huckabay, Heath A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ticknor, Brian W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-09

    During the course of International Atomic Energy Agency (IAEA) inspections, many samples are taken for the purpose of verifying the declared facility activities and identifying any possible undeclared activities. One of these sampling techniques is the environmental swipe sample. Due to the large number of samples collected, and the amount of time that is required to analyze them, prioritizing these swipes in the field or upon receipt at the Network of Analytical Laboratories (NWAL) will allow sensitive or mission-critical analyses to be performed sooner. As a result of this study, technologies were placed into one of three categories: recommended, promising, or not recommended. Both neutron activation analysis (NAA) and X-ray fluorescence (XRF) are recommended for further study and possible field deployment. These techniques performed the best in initial trials for pre-screening and prioritizing IAEA swipes. We learned that for NAA more characterization of cold elements (such as calcium and magnesium) would need to be emphasized, and for XRF it may be appropriate to move towards a benchtop XRF versus a handheld XRF due to the increased range of elements available on benchtop equipment. Promising techniques that will require additional research and development include confocal Raman microscopy, fluorescence microscopy, and infrared (IR) microscopy. These techniques showed substantive responses to uranium compounds, but expensive instrumentation upgrades (confocal Raman) or university engagement (fluorescence microscopy) may be necessary to investigate the utility of the techniques completely. Point-and-shoot (handheld) Raman and attenuated total reflectance–infrared (ATR-IR) measurements are not recommended, as they have not shown enough promise to continue investigations.

  2. Technologies for pre-screening IAEA swipe samples

    International Nuclear Information System (INIS)

    Smith, Nicholas A.; Steeb, Jennifer L.; Lee, Denise L.; Huckabay, Heath A.; Ticknor, Brian W.

    2015-01-01

    During the course of International Atomic Energy Agency (IAEA) inspections, many samples are taken for the purpose of verifying the declared facility activities and identifying any possible undeclared activities. One of these sampling techniques is the environmental swipe sample. Due to the large number of samples collected, and the amount of time that is required to analyze them, prioritizing these swipes in the field or upon receipt at the Network of Analytical Laboratories (NWAL) will allow sensitive or mission-critical analyses to be performed sooner. As a result of this study, technologies were placed into one of three categories: recommended, promising, or not recommended. Both neutron activation analysis (NAA) and X-ray fluorescence (XRF) are recommended for further study and possible field deployment. These techniques performed the best in initial trials for pre-screening and prioritizing IAEA swipes. We learned that for NAA more characterization of cold elements (such as calcium and magnesium) would need to be emphasized, and for XRF it may be appropriate to move towards a benchtop XRF versus a handheld XRF due to the increased range of elements available on benchtop equipment. Promising techniques that will require additional research and development include confocal Raman microscopy, fluorescence microscopy, and infrared (IR) microscopy. These techniques showed substantive responses to uranium compounds, but expensive instrumentation upgrades (confocal Raman) or university engagement (fluorescence microscopy) may be necessary to investigate the utility of the techniques completely. Point-and-shoot (handheld) Raman and attenuated total reflectance–infrared (ATR-IR) measurements are not recommended, as they have not shown enough promise to continue investigations.

  3. Remediation of BTEX contaminated groundwater: best technology assessment between pump&treat and bioremediation by oxygen injection

    Directory of Open Access Journals (Sweden)

    Daniele Baldi

    2012-06-01

    Full Text Available The presence of benzene, toluene, ethylbenzene and xylene (BTEX dissolved in the groundwater and migrated from a light non-aqueous phase liquid (LNAPL source in an alluvial aquifer required a remedial action to be taken by the responsible party as established by the Italian regulation (Legislative Decree 152/06 and subsequent amendments. For such purpose, field investigations were conducted on site in order to define the site conceptual model and to identify the appropriate remediation technology to be applied. The remediation design was developed by means of a flow and reactive transport mathematical model, applied to saturated media, using the numerical codes MODFLOW and RT3D. Groundwater field observations showed evidence of occurring BTEX biodegradation processes by bacteria naturally present in the aquifer. Since such specific bacterial activity would be significantly enhanced by the injection of free oxygen in the aquifer, the performance of traditional pump and treat systems (P&T was assessed and compared with cost/efficiency of reactive oxygen bio-barrier technology (OD. The results showed a clear advantage in terms of cost/efficiency with the application of the OD. This presents an overall cost of about 30% of the P&T installation and maintenance, and it reaches remedial target in a shorter timeframe. Moreover, the system is also applicable as a bioremediation technology in case of Environmental Emergency Measures (MISE. The site examined is part of an industrial plant located in Central Italy.

  4. Uncertainty Analysis Based on Sparse Grid Collocation and Quasi-Monte Carlo Sampling with Application in Groundwater Modeling

    Science.gov (United States)

    Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.

    2011-12-01

    Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently

  5. Influence of seawater intrusion on microbial communities in groundwater.

    Science.gov (United States)

    Unno, Tatsuya; Kim, Jungman; Kim, Yumi; Nguyen, Son G; Guevarra, Robin B; Kim, Gee Pyo; Lee, Ji-Hoon; Sadowsky, Michael J

    2015-11-01

    Groundwater is the sole source of potable water on Jeju Island in the Republic of (South) Korea. Groundwater is also used for irrigation and industrial purposes, and it is severely impacted by seawater intrusion in coastal areas. Consequently, monitoring the intrusion of seawater into groundwater on Jeju is very important for health and environmental reasons. A number of studies have used hydrological models to predict the deterioration of groundwater quality caused by seawater intrusion. However, there is conflicting evidence of intrusion due to complicated environmental influences on groundwater quality. Here we investigated the use of next generation sequencing (NGS)-based microbial community analysis as a way to monitor groundwater quality and detect seawater intrusion. Pristine groundwater, groundwater from three coastal areas, and seawater were compared. Analysis of the distribution of bacterial species clearly indicated that the high and low salinity groundwater differed significantly with respect to microbial composition. While members of the family Parvularculaceae were only identified in high salinity water samples, a greater percentage of the phylum Actinobacteria was predominantly observed in pristine groundwater. In addition, we identified 48 shared operational taxonomic units (OTUs) with seawater, among which the high salinity groundwater sample shared a greater number of bacterial species with seawater (6.7%). In contrast, other groundwater samples shared less than 0.5%. Our results suggest that NGS-based microbial community analysis of groundwater may be a useful tool for monitoring groundwater quality and detect seawater intrusion. This technology may also provide additional insights in understanding hydrological dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  7. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    International Nuclear Information System (INIS)

    Nilsson, Ann-Chatrin; Borgiel, Micke; Qvarfordt, Susanne

    2010-09-01

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  8. Ion exchange technology in the remediation of uranium contaminated groundwater at Fernald

    International Nuclear Information System (INIS)

    Sutton, Chris; Glassmeyer, Cathy; Bozich, Steve

    2000-01-01

    Using pump and treat methodology, uranium contaminated groundwater is being removed from the Great Miami Aquifer at the Fernald Environmental Management Project (FEMP) per the FEMP Record of Decision (ROD) that defines groundwater cleanup. Standard extraction wells pump about 3900 gallons-per-minute (gpm) from the aquifer through five ion exchange treatment systems. The largest treatment system k the Advanced Wastewater Treatment (AWWT) Expansion System with a capacity of 1800 gpm, which consists of three trains of two vessels. The trains operate in parallel treating 600 gpm each, The two vessels in each train operate in series, one in lead and one in lag. Treated groundwater is either reinfected back into the aquifer to speed up the aquifer cleanup processor discharged to the Great Miami River. The uranium regulatory ROD limit for discharge to the river is 20 parts per billion (ppb), and the FEMP uranium administrative action level for reinfection is 10 ppb. Spent (i.e., a resin that no longer adsorbs uranium) ion exchange resins must either be replaced or regenerated. The regeneration of spent ion exchange resins is considerably more cost effective than their replacement. Therefore, a project was undertaken to learn how best to regenerate the resins in the groundwater vessels. At the outset of this project, considerable uncertainty existed as to whether a spent resin could be regenerated successfully enough so that it performed as well as new resin relative to achieving very low uranium concentrations in the effluent. A second major uncertain y was whether the operational lifetime of a regenerated resin would be similar to that of a new resin with respect to uranium loading capacity and effluent concentration behavior. The project was successful in that a method for regenerating resins has been developed that is operationally efficient, that results in regenerated resins yielding uranium concentrations much lower than regulatory limits, and that results in

  9. SITE - EMERGING TECHNOLOGIES: LASER INDUCED PHOTO- CHEMICAL OXIDATIVE DESTRUCTION OF TOXIC ORGANICS IN LEACHATES AND GROUNDWATERS

    Science.gov (United States)

    The technology described in this report has been developed under the Emerging Technology Program of the Superfund Innovative Technology Evaluation (SITE) Program to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an excimer laser. T...

  10. The activity concentrations of 222Rn and corresponding health risk in groundwater samples from basement and sandstone aquifer; the correlation to physicochemical parameters

    International Nuclear Information System (INIS)

    Abdurabu, Wedad Ali; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Heryansyah, Arien

    2016-01-01

    This study aims to evaluate the activity concentrations of 222 Rn and to assess the corresponding health risk in groundwater samples obtained in Juban District, Ad Dali’ Governorate, Yemen. The measurements were performed by RAD 7 radon detector manufactured by DURRIDGE COMPANY Inc. The activity concentrations of 222 Rn ranged from 1.0±0.2 Bq l −1 to 896.0±0.8 Bq l −1 . 57% of the groundwater samples were above the US Environmental Protection Agency (USEPA) recommended value for Rn in water. Induced coupled plasma mass spectrometry (ICP-MS) was used to determine the concentrations of uranium in groundwater samples. The measured concentration of U ranged from 0.33±0.01 μg l −1 to 24.6±0.6 μg l −1 . The results were comparable to internationally recommended values. The highest concentration of U and 222 Rn were found to be in the basement aquifer, while the lowest concentrations of both radionuclides were in the sandstone aquifer. High concentrations of Rn are found along fault zones. The relationship between the activity concentration of 222 Rn, concentration of U and physicochemical parameters were investigated. The results showed a very strong relationship between activity concentrations of 222 Rn with concentrations of U and the salinity of water. - Highlights: • The highest concentration of U and 222 Rn was found to be in the basement aquifer. • A 57% of the groundwater samples were above the USEPA recommended value. • Mean annual effective dose for ingestion was 24 times the world average. • Mean annual effective dose for inhalation was 23 times the world. • Strong relationship between 222 Rn with concentration of U in the basement aquifer.

  11. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  12. Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India

    International Nuclear Information System (INIS)

    Saini, Komal; Singh, Parminder; Bajwa, Bikramjit Singh

    2016-01-01

    LED flourimeter has been used for microanalysis of uranium concentration in groundwater samples collected from six districts of South West (SW), West (W) and North East (NE) Punjab, India. Average value of uranium content in water samples of SW Punjab is observed to be higher than WHO, USEPA recommended safe limit of 30 µg l −1 as well as AERB proposed limit of 60 µg l −1 . Whereas, for W and NE region of Punjab, average level of uranium concentration was within AERB recommended limit of 60 µg l −1 . Average value observed in SW Punjab is around 3–4 times the value observed in W Punjab, whereas its value is more than 17 times the average value observed in NE region of Punjab. Statistical analysis of carcinogenic as well as non carcinogenic risks due to uranium have been evaluated for each studied district. - Highlights: • Uranium level in groundwater samples have been assessed in different regions of Punjab. • Comparative study of carcinogenic and non carcinogenic effects of uranium has been done. • Wide variation has been found for different geological regions. • It has been found that South west Punjab is worst affected by uranium contamination in its water. • For west and north east regions of Punjab, uranium levels in groundwater laid under recommended safe limits.

  13. Epoxyalkane:Coenzyme M Transferase Gene Diversity and Distribution in Groundwater Samples from Chlorinated-Ethene-Contaminated Sites

    Science.gov (United States)

    Liu, Xikun

    2016-01-01

    ABSTRACT Epoxyalkane:coenzyme M transferase (EaCoMT) plays a critical role in the aerobic biodegradation and assimilation of alkenes, including ethene, propene, and the toxic chloroethene vinyl chloride (VC). To improve our understanding of the diversity and distribution of EaCoMT genes in the environment, novel EaCoMT-specific terminal-restriction fragment length polymorphism (T-RFLP) and nested-PCR methods were developed and applied to groundwater samples from six different contaminated sites. T-RFLP analysis revealed 192 different EaCoMT T-RFs. Using clone libraries, we retrieved 139 EaCoMT gene sequences from these samples. Phylogenetic analysis revealed that a majority of the sequences (78.4%) grouped with EaCoMT genes found in VC- and ethene-assimilating Mycobacterium strains and Nocardioides sp. strain JS614. The four most-abundant T-RFs were also matched with EaCoMT clone sequences related to Mycobacterium and Nocardioides strains. The remaining EaCoMT sequences clustered within two emergent EaCoMT gene subgroups represented by sequences found in propene-assimilating Gordonia rubripertincta strain B-276 and Xanthobacter autotrophicus strain Py2. EaCoMT gene abundance was positively correlated with VC and ethene concentrations at the sites studied. IMPORTANCE The EaCoMT gene plays a critical role in assimilation of short-chain alkenes, such as ethene, VC, and propene. An improved understanding of EaCoMT gene diversity and distribution is significant to the field of bioremediation in several ways. The expansion of the EaCoMT gene database and identification of incorrectly annotated EaCoMT genes currently in the database will facilitate improved design of environmental molecular diagnostic tools and high-throughput sequencing approaches for future bioremediation studies. Our results further suggest that potentially significant aerobic VC degraders in the environment are not well represented in pure culture. Future research should aim to isolate and

  14. Tree Sampling as a Method to Assess Vapor Intrusion Potential at a Site Characterized by VOC-Contaminated Groundwater and Soil.

    Science.gov (United States)

    Wilson, Jordan L; Limmer, Matthew A; Samaranayake, V A; Schumacher, John G; Burken, Joel G

    2017-09-19

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the "sampler' and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R 2 values greater than 0.80) and in soil samples (adjusted R 2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700-1600 m 2 , the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  15. Tree sampling as a method to assess vapor intrusion potential at a site characterized by VOC-contaminated groundwater and soil

    Science.gov (United States)

    Wilson, Jordan L.; Limmer, Matthew A.; Samaranayake, V. A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the “sampler’ and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700–1600 m2, the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  16. Geochemistry and the Understanding of Groundwater Systems

    Science.gov (United States)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas

  17. Microfabricated Devices for Sample Extraction, Concentrations, and Related Sample Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang; Lin, Yuehe

    2006-12-01

    This is an invited book chapter. As with other analytical techniques, sample pretreatments, sample extraction, sample introduction, and related techniques are of extreme importance for micro-electro-mechanical systems (MEMS). Bio-MEMS devices and systems start with a sampling step. The biological sample then usually undergoes some kinds of sample preparation steps before the actual analysis. These steps may involve extracting the target sample from its matrix, removing interferences from the sample, derivatizing the sample to detectable species, or performing a sample preconcentration step. The integration of the components for sample pretreatment into microfluidic devices represents one of the remaining the bottle-neck towards achieving true miniaturized total analysis systems (?TAS). This chapter provides a thorough state-of-art of the developments in this field to date.

  18. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    Science.gov (United States)

    Krempa, Heather M.

    2015-10-29

    The U.S. Geological Survey, in cooperation with the City of Independence, Missouri, Water Department, has historically collected water-quality samples using the purge and pump method (hereafter referred to as pump method) to identify potential contamination in groundwater supply wells within the Independence well field. If grab sample results are comparable to the pump method, grab samplers may reduce time, labor, and overall cost. This study was designed to compare constituent concentrations between samples collected within the Independence well field using the pump method and the grab method.

  19. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    Science.gov (United States)

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  20. Geochemical and Pb isotopic characterization of soil, groundwater, human hair, and corn samples from the Domizio Flegreo and Agro Aversano area (Campania region, Italy)

    Science.gov (United States)

    Rezza, Carmela; Albanese, Stefano; Ayuso, Robert A.; Lima, Annamaria; Sorvari, Jaana; De Vivo, Benedetto

    2018-01-01

    A geochemical survey was carried out to investigate metal contamination in the Domizio Littoral and Agro Aversano area (Southern Italy) by means of soil, groundwater, human hair and corn samples. Pb isotope ratios were also determined to identify the sources of metals. Specifically, the investigation focused on topsoils (n = 1064), groundwater (n = 26), 25 human hair (n = 24) and corn samples (n = 13). Topsoils have been sampled and analysed in a previous study for 53 elements (including potentially harmful ones), and determined by ICP-MS after dissolving with aqua regia. Groundwater was analysed for 72 elements by ICP-MS and by ICP-ES. Samples of human hair were prepared and analysed for 16 elements by ICP-MS. Dried corn collected at several farms were also analysed for 53 elements by ICP-MS. The isotopic ratios of 206Pb/207Pb and 208Pb/207Pb in selected topsoil (n = 24), groundwater (n = 9), human hair (n = 9) and corn (n = 4) samples were analysed from both eluates and residues to investigate possible anthropogenic contamination and geogenic contributions. All data were processed and mapped by ArcGis software to produce interpolated maps and contamination factor maps of potentially harmful elements, in accordance with Italian Environmental Law (Legislative Decree 152/06). Results show that soil sampling sites are characterized by As, Cd, Co, Cr, Cu, Hg, Pb, Se, and Zn contents exceeding the action limits established for residential land use (RAL) and, in some cases, also the action limits for industrial land use (IAL) as established by Legislative Decree 152/06. A map of contamination factors and a map showing the degrees of contamination indicate that the areas in the municipalities of Acerra, Casoria and Giugliano have been affected by considerable anthropogenic-related pollution. To interpret the isotopic data and roughly estimate proportion of Pb from an anthropogenic source we broadly defined possible natural and anthropogenic Pb end

  1. IP Sample Plan #5 | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    A sample Intellectual Property Management Plan in the form of a legal agreement between a University and its collaborators which addresses data sharing, sharing of research tools and resources and intellectual property management.

  2. ’Point of Injury’ Sampling Technology for Battlefield Molecular Diagnostics

    Science.gov (United States)

    2012-03-17

    Injury" Sampling Technology for Battlefield Molecular Diagnostics March 17,2012 Sponsored by Defense Advanced Research Projects Agency (DOD) Defense...Contract: April 25, 2011 Short Title of Work: "Point of Injury" Sampling Technology for Battlefield Molecular Diagnostics " Contract Expiration Date...SBIR PHASE I OPTION REPORT: Point of Injury, Sampling Technology for Battlefield Molecular Diagnostics . W31P4Q-1 l-C-0222 (UNCLASSIFIED) P.I

  3. Data Validation Package November 2015 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites February 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-02-01

    Water samples were collected from 36 locations at New Rifle and Old Rifle, Colorado, Processing Sites. Duplicate samples were collected from New Rifle locations 0659 and 0855, and Old Rifle location 0304. One equipment blank was collected after decontamination of non-dedicated equipment used to collect one surface water sample. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). New Rifle Site Samples were collected at the New Rifle site from 16 monitoring wells and 7 surface locations in compliance with the December 2008 Groundwater Compliance Action Plan [GCAP] for the New Rifle, Colorado, Processing Site (LMS/RFN/S01920), with one exception: New Rifle location 0635 could not be sampled because it was inaccessible; a fence installed by the Colorado Department of Transportation prevents access to this location. DOE is currently negotiating access with the Colorado Department of Transportation. Analytes measured at the New Rifle site included contaminants of concern (COCs) (arsenic, molybdenum, nitrate + nitrite as nitrogen, selenium, uranium, and vanadium) ammonia as nitrogen, major cations, and major anions. Field measurements of total alkalinity, oxidation- reduction potential, pH, specific conductance, turbidity, and temperature were made at each location, and the water level was measured at each sampled well. A proposed alternate concentration limit (ACL) for vanadium of 50 milligrams per liter (mg/L), specific to the compliance (POC) wells (RFN-0217, -0659, -0664, and -0669) is included in the New Rifle GCAP. Vanadium concentrations in the POC wells were below the proposed ACL as shown in the time-concentration graphs in the Data Presentation section (Attachment 2). Time-concentration graphs from all other locations sampled are also included in Attachment 2. Sampling location RFN-0195 was misidentified for the June/August 2014

  4. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

    2007-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  5. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran.

    Science.gov (United States)

    Abbasnia, Abbas; Alimohammadi, Mahmood; Mahvi, Amir Hossein; Nabizadeh, Ramin; Yousefi, Mahmood; Mohammadi, Ali Akbar; Pasalari, Hassan; Mirzabeigi, Majid

    2018-02-01

    The aims of this study were to assess and analysis of drinking water quality of Chabahar villages in Sistan and Baluchistan province by water quality index (WQI) and to investigate the water stability in subjected area. The results illustrated that the average values of LSI, RSI, PSI, LS, and AI was 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99), 2.71 (±1.59), and 12.63 (±0.34), respectively. The calculation of WQI for groundwater samples indicated that 25% of the samples could be considered as excellent water, 50% of the samples were classified as good water category and 25% of the samples showed poor water category.

  6. Cost/benefit analysis comparing ex situ treatment technologies for removing carbon tetrachloride from Hanford groundwater

    International Nuclear Information System (INIS)

    Truex, M.J.; Brown, D.R.; Elliott, D.B.

    1993-05-01

    Pacific Northwest Laboratory conducted a cost/benefit and performance analysis to compare ex situ technologies that can be used to destroy the carbon tetrachloride (CCl 4 ) in the ground water of Hanford's 200 West Area. The objective of this work was to provide a direct quantitative and qualitative comparison of competing technologies. The technologies examined included a biological system, the Thermochemical Environmental Energy System II (TEES II), and a UV/oxidation system. The factors examined included key system operation parameters, impact on inorganic contaminants in the ground water, and secondary waste production. The cost effectiveness of these destruction technologies was also compared to the cost for an air stripping/granular activated carbon (AS/GAC) system. While the AS/GAC system appeared to be more cost effective at many levels than the CCl 4 destruction technologies, the secondary waste produced by this system may lead to significant cost and/or regulatory problems. The factors with the greatest influence on cost for each destruction technology are as follows: nutrient requirements for both of the biological systems, electricity requirements and the type of unit operations for the TEES II process, and electricity requirements for UV/oxidation

  7. Anthrax Sampling and Decontamination: Technology Trade-Offs

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  8. IP Sample Plan #3 | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Sample Research Resources and Intellectual Property Plan for use by an Institution and its Collaborators for intellectual property protection strategies covering pre-existing intellectual property, agreements with commercial sources, privacy, and licensing.  | [google6f4cd5334ac394ab.html

  9. IP Sample Plan #4 | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Sample letter from Research Institutes and their principal investigator and consultants, describing a data and research tool sharing plan and procedures for sharing data, research materials, and patent and licensing of intellectual property. This letter is designed to be included as part of an application.

  10. IP Sample Plan #1 | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Sample letter that shows how Universities including co-investigators, consultants, and collaborators can describe a data and research tool sharing plan and procedures for exercising intellectual property rights. The letter is to be used as part of the University's application. 

  11. A large-scale investigation of the quality of groundwater in six major districts of Central India during the 2010-2011 sampling campaign.

    Science.gov (United States)

    Khare, Peeyush

    2017-09-01

    This paper investigates the groundwater quality in six major districts of Madhya Pradesh in central India, namely, Balaghat, Chhindwara, Dhar, Jhabua, Mandla, and Seoni during the 2010-2011 sampling campaign, and discusses improvements made in the supplied water quality between the years 2011 and 2017. Groundwater is the main source of water for a combined rural population of over 7 million in these districts. Its contamination could have a huge impact on public health. We analyzed the data collected from a large-scale water sampling campaign carried out by the Public Health Engineering Department (PHED), Government of Madhya Pradesh between 2010 and 2011 during which all rural tube wells and dug wells were sampled in these six districts. Eight hundred thirty-one dug wells and 47,606 tube wells were sampled in total and were analyzed for turbidity, hardness, iron, nitrate, fluoride, chloride, and sulfate ion concentrations. Our study found water in 21 out of the 228 dug wells in Chhindwara district unfit for drinking due to fluoride contamination while all dug wells in Balaghat had fluoride within the permissible limit. Twenty-six of the 56 dug wells and 4825 of the 9390 tube wells in Dhar district exceeded the permissible limit for nitrate while 100% dug wells in Balaghat, Seoni, and Chhindwara had low levels of nitrate. Twenty-four of the 228 dug wells and 1669 of 6790 tube wells in Chhindwara had high iron concentration. The median pH value in both dug wells and tube wells varied between 6 and 8 in all six districts. Still, a significant number of tube wells exceeded a pH of 8.5 especially in Mandla and Seoni districts. In conclusion, this study shows that parts of inhabited rural Madhya Pradesh were potentially exposed to contaminated subsurface water during 2010-2011. The analysis has been correlated with rural health survey results wherever available to estimate the visible impact. We next highlight that the quality of drinking water has enormously improved

  12. Evaluation of Groundwater Remediation Technologies Based on Fuzzy Multi-Criteria Decision Analysis Approaches

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-06-01

    Full Text Available Petroleum is an essential resource for the development of society and its production is huge. There is a great risk of leakage of oil during production, refining, and transportation. After entering the environment, the oil pollutants will be a great threat to the environment and may endanger human health. Therefore, it is very important to remediate oil pollution in the subsurface. However, it is necessary to choose the appropriate remediation technology. In this paper, 18 technologies are evaluated through constructing a parameter matrix with each technology and seven performance indicators, and a comprehensive analysis model is presented. In this model, four MCDA methods are used. They are SWA (Simple Weighted Addition Method, WP (Weighted Product Method, CGT (Cooperative Game Theory, and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution. Mean ranking and Borda ranking methods are used to integrate the results of SWA, WP, CGT, and TOPSIS. Then two selection priorities of each method (mean ranking and Borda ranking are obtained. The model is proposed to help decide the best choice of remediation technologies. It can effectively reduce contingency, subjectivity, one-sidedness of the traditional methods and provide scientific reference for effective decision-making.

  13. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Backus, Sterling [KMLabs Inc., Boulder, CO (United States)

    2017-01-31

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibited low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.

  14. Sampling history and 2009--2010 results for pesticides and inorganic constituents monitored by the Lake Wales Ridge Groundwater Network, central Florida

    Science.gov (United States)

    Choquette, Anne F.; Freiwald, R. Scott; Kraft, Carol L.

    2012-01-01

    7 percent, respectively, of the 2009–2010 samples. A comparison of agrichemical land-use effects on groundwater quality, determined on the basis of samples from LWRM Network wells in citrus and in non-citrus land-use areas, indicated significantly higher (plong time period (years to tens of years or longer) required to remove chemical contamination once it enters the groundwater system, groundwater monitoring is important to protect drinking-water sources as well as the numerous lakes in this region, which are closely connected with the surficial aquifer. Long-term monitoring of the LWRM Network is planned to continue providing early warning of potential for groundwater contamination, and to assess spatial and temporal trends in water quality resulting from changes in pesticide-use patterns and in land use.

  15. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT (CD-ROM)

    Science.gov (United States)

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the tricWoroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were insta...

  16. Groundwater level monitoring sampling and analysis plan for the environmental monitoring plan at waste area grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document is the Groundwater Level Monitoring Sampling and Analysis Plan (SAP) for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). Note that this document is referred to as a SAP even though no sampling and analysis will be conducted. The term SAP is used for consistency. The procedures described herein are part of the Environmental Monitoring Plan (EMP) for WAG 6, which also includes monitoring tasks for seeps and springs, groundwater quality, surface water, and meteorological parameters. Separate SAPs are being issued concurrently to describe each of these monitoring programs. This SAP has been written for the use of the field personnel responsible for implementation of the EMP, with the intent that the field personnel will be able to take these documents to the field and quickly find the appropriate steps required to complete a specific task. In many cases, Field Operations Procedures (FOPs) will define the steps required for an activity. The FOPs for the EMP are referenced and briefly described in the relevant sections of the SAPs, and are contained within the FOP Manual. Both these documents (the SAP and the FOP Manual) will be available to personnel in the field.

  17. Groundwater level monitoring sampling and analysis plan for the environmental monitoring plan at waste area grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This document is the Groundwater Level Monitoring Sampling and Analysis Plan (SAP) for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). Note that this document is referred to as a SAP even though no sampling and analysis will be conducted. The term SAP is used for consistency. The procedures described herein are part of the Environmental Monitoring Plan (EMP) for WAG 6, which also includes monitoring tasks for seeps and springs, groundwater quality, surface water, and meteorological parameters. Separate SAPs are being issued concurrently to describe each of these monitoring programs. This SAP has been written for the use of the field personnel responsible for implementation of the EMP, with the intent that the field personnel will be able to take these documents to the field and quickly find the appropriate steps required to complete a specific task. In many cases, Field Operations Procedures (FOPs) will define the steps required for an activity. The FOPs for the EMP are referenced and briefly described in the relevant sections of the SAPs, and are contained within the FOP Manual. Both these documents (the SAP and the FOP Manual) will be available to personnel in the field

  18. Data Validation Package June 2016 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management (LM), Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-10-17

    Sampling Period: June 14–17 and July 7, 2016. Water samples were collected from 36 locations at New Rifle and Old Rifle, Colorado, Disposal/Processing Sites. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Duplicate samples were collected from New Rifle locations 0216 and 0855, and Old Rifle location 0655. One equipment blank was collected after decontamination of non-dedicated equipment used to collect one surface water sample. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). New Rifle Site Samples were collected at the New Rifle site from 16 monitoring wells and 7 surface locations in compliance with the December 2008 Groundwater Compliance Action Plan [GCAP] for the New Rifle, Colorado, Processing Site (LMS/RFN/S01920). Monitoring well 0216 could not be sampled in June because it was surrounded by standing water due to the high river stage from spring runoff, it was later sampled in July. Monitoring well 0635 and surface location 0322 could not be sampled because access through the elk fence along Interstate 70 has not been completed at this time. Old Rifle Site Samples were collected at the Old Rifle site from eight monitoring wells and five surface locations in compliance with the December 2001 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site (GJ0-2000-177-TAR).

  19. The Trembling Earth Before Wenchuan Earthquake: Recognition of Precursory Anomalies through High Frequency Sampling Data of Groundwater

    Science.gov (United States)

    Huang, F.

    2017-12-01

    With a magnitude of MS8.0, the 2008 Wenchuan earthquake is classified as one of the "great earthquakes", which are potentially the most destructive, since it occurred at shallow depth close to a highly populated area without prediction, due to no confirmative precursors which were detected from a large amount of newly carried out digital observation data. Scientists who specilize in prediction routine work had been condemned and self-condemned for a long time then. After the pain of defeat passed, scientists have been some thinking to analyze the old observation data in new perspectives from longer temporal process, multiple-disciplinaries, and in different frequency. This presentation will show the preliminary results from groundwater level and temperature observed in 3 wells which distribute along the boundaries of tectonic blocks nearby and far from Wenchuan earthquake rupture.

  20. Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India.

    Science.gov (United States)

    Saini, Komal; Singh, Parminder; Bajwa, Bikramjit Singh

    2016-12-01

    LED flourimeter has been used for microanalysis of uranium concentration in groundwater samples collected from six districts of South West (SW), West (W) and North East (NE) Punjab, India. Average value of uranium content in water samples of SW Punjab is observed to be higher than WHO, USEPA recommended safe limit of 30µgl -1 as well as AERB proposed limit of 60µgl -1 . Whereas, for W and NE region of Punjab, average level of uranium concentration was within AERB recommended limit of 60µgl -1 . Average value observed in SW Punjab is around 3-4 times the value observed in W Punjab, whereas its value is more than 17 times the average value observed in NE region of Punjab. Statistical analysis of carcinogenic as well as non carcinogenic risks due to uranium have been evaluated for each studied district. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Life cycle assessment of soil and groundwater remediation technologies: literature review

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2010-01-01

    Background, aim, and scope Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation...... and scope definition and the applied impact assessment. The studies differ in their basic approach since some are prospective with focus on decision support while others are retrospective aiming at a more detailed assessment of a completed remediation project. Literature review The literature review showed...... scenarios in terms of their associated environmental burden. Main features An overview of the assessed remediation technologies and contaminant types covered in the literature is presented. The LCA methodologies of the 12 reviewed studies were compared and discussed with special focus on their goal...

  2. A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions

    Science.gov (United States)

    Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.

    2000-07-01

    A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.

  3. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  4. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

  5. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6

  6. Applying Data Mining Techniques to Chemical Analyses of Pre-drill Groundwater Samples within the Marcellus Formation Shale Play in Bradford County, Pennsylvania

    Science.gov (United States)

    Wen, T.; Niu, X.; Gonzales, M. S.; Li, Z.; Brantley, S.

    2017-12-01

    Groundwater samples are collected for chemical analyses by shale gas industry consultants in the vicinity of proposed gas wells in Pennsylvania. These data sets are archived so that the chemistry of water from homeowner wells can be compared to chemistry after gas-well drilling. Improved public awareness of groundwater quality issues will contribute to designing strategies for both water resource management and hydrocarbon exploration. We have received water analyses for 11,000 groundwater samples from PA Department of Environmental Protection (PA DEP) in the Marcellus Shale footprint in Bradford County, PA for the years ranging from 2010 to 2016. The PA DEP has investigated these analyses to determine whether gas well drilling or other activities affected water quality. We are currently investigating these analyses to look for patterns in chemistry throughout the study area (related or unrelated to gas drilling activities) and to look for evidence of analytes that may be present at concentrations higher than the advised standards for drinking water. Our preliminary results reveal that dissolved methane concentrations tend to be higher along fault lines in Bradford County [1]. Lead (Pb), arsenic (As), and barium (Ba) are sometimes present at levels above the EPA maximum contaminant level (MCL). Iron (Fe) and manganese (Mn) more frequently violate the EPA standard. We find that concentrations of some chemical analytes (e.g., Ba and Mn) are dependent on bedrock formations (i.e., Catskill vs. Lock Haven) while concentrations of other analytes (e.g., Pb) are not statistically significantly distinct between different bedrock formations. Our investigations are also focused on looking for correlations that might explain water quality patterns with respect to human activities such as gas drilling. However, percentages of water samples failing EPA MCL with respect to Pb, As, and Ba have decreased from previous USGS and PSU studies in the 1990s and 2000s. Public access to

  7. Space science technology: In-situ science. Sample Acquisition, Analysis, and Preservation Project summary

    Science.gov (United States)

    Aaron, Kim

    1991-01-01

    The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.

  8. Monitoring Well Installation and Groundwater Sampling and Analysis Plan at the USARC Training Reserve, 84th Division, Milwaukee, Wisconsin

    Science.gov (United States)

    1988-11-01

    paint chips at the sampling site. 0 Clean water tanks, pumps, mud pans, hoses, including hoses and tanks used to transfer water from source to drill rig...TO’ LCA , Filll I F’APCr,;I~- € C/ " rKL2PIrlA , ATTFNrIGN TO SMOKING. ALCOHOLF MFDrICATIONP AND FXPOSI.RE TO CARCINOGENS.1 ENERAL MEDICAl. HISTORY...A. General: 1. Place samples in core trough for visual inspection. After logging, place selected samples in sample jars or wood core boxes. 2. Seal

  9. Automated Ground-Water Sampling and Analysis of Hexavalent Chromium using a “Universal” Sampling/Analytical System

    Directory of Open Access Journals (Sweden)

    Richard J. Venedam

    2005-02-01

    Full Text Available The capabilities of a “universal platform” for the deployment of analyticalsensors in the field for long-term monitoring of environmental contaminants were expandedin this investigation. The platform was previously used to monitor trichloroethene inmonitoring wells and at groundwater treatment systems (1,2. The platform was interfacedwith chromium (VI and conductivity analytical systems to monitor shallow wells installedadjacent to the Columbia River at the 100-D Area of the Hanford Site, Washington. Agroundwater plume of hexavalent chromium is discharging into the Columbia River throughthe gravels beds used by spawning salmon. The sampling/analytical platform was deployedfor the purpose of collecting data on subsurface hexavalent chromium concentrations atmore frequent intervals than was possible with the previous sampling and analysis methodsemployed a the Site.

  10. Radon measurements of groundwater in Mexico

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J.I.; Cortes, A.

    1991-01-01

    Radon measurement has important applications in hydrogeological studies. Specifically, radon measurement is used to determine the fluctuations of the piezometric levels in groundwater and, in some cases, the path of the water, which is one of the key parameters for evaluating hydrogeological resources. Water from springs and deep wells in the Basin of Mexico and the valley of San Luis Potosi were sampled, measured and analyzed by previous authors. In this work, a method for measuring 222 Rn in groundwater by using a passive detector is presented and the results are compared with a similar experiment performed at the same time, using a dynamic method. The aim of the work is to develop a method for detecting, evaluating and measuring the 222 Rn in groundwater by using SSNTD technology. (author)

  11. Groundwater-quality data in seven GAMA study units: results from initial sampling, 2004-2005, and resampling, 2007-2008, of wells: California GAMA Program Priority Basin Project

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth; Fram, Miranda S.

    2014-01-01

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The GAMA-PBP began sampling, primarily public supply wells in May 2004. By the end of February 2006, seven (of what would eventually be 35) study units had been sampled over a wide area of the State. Selected wells in these first seven study units were resampled for water quality from August 2007 to November 2008 as part of an assessment of temporal trends in water quality by the GAMA-PBP. The initial sampling was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the seven study units. In the 7 study units, 462 wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study area. Wells selected this way are referred to as grid wells or status wells. Approximately 3 years after the initial sampling, 55 of these previously sampled status wells (approximately 10 percent in each study unit) were randomly selected for resampling. The seven resampled study units, the total number of status wells sampled for each study unit, and the number of these wells resampled for trends are as follows, in chronological order of sampling: San Diego Drainages (53 status wells, 7 trend wells), North San Francisco Bay (84, 10), Northern San Joaquin Basin (51, 5), Southern Sacramento Valley (67, 7), San Fernando–San Gabriel (35, 6), Monterey Bay and Salinas Valley Basins (91, 11), and Southeast San Joaquin Valley (83, 9). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N

  12. In Situ Treatment of Chlorinated Ethene-Contaminated Groundwater Using horizontal Flow Treatment Wells

    National Research Council Canada - National Science Library

    Ferland, Derek

    2000-01-01

    The limitations of conventional containment technologies for groundwater contaminated with chlorinated solvents have motivated development of innovative technologies to achieve national groundwater...

  13. An Assessment of Aquifer/Well Flow Dynamics: Identification of Parameters Key to Passive Sampling and Application of Downhole Sensor Technologies

    Science.gov (United States)

    2014-12-01

    Traditional groundwater sampling methods: Groundwater sampling methods that involve pumping or bailing before the sample is collected ER-1704 Final...illustrates the construction detail. Wells were installed by standard methods, and developed thoroughly by surging, bailing and pumping to achieve...pour method at all three fill rates (Table 7). For these comparisons, a number followed by two letters were used to differentiate among the methods

  14. Groundwater quality data in 15 GAMA study units: results from the 2006–10 Initial sampling and the 2009–13 resampling of wells, California GAMA Priority Basin Project

    Science.gov (United States)

    Kent, Robert

    2015-08-31

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). From May 2004 to March 2012, the GAMA-PBP collected samples from more than 2,300 wells in 35 study units across the State. Selected wells in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. This triennial (every 3 years) trend sampling of GAMA-PBP study units concluded in December 2013. Fifteen of the study units, initially sampled between January 2006 and June 2010 and sampled a second time between April 2009 and April 2013 to assess temporal trends, are the subject of this report.

  15. Data Validation Package September 2016 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Traub, David [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States); Nguyen, Jason [US Department of Energy, Washington, DC (United States)

    2017-01-04

    The Slick Rock, Colorado, Processing Sites are referred to as the Slick Rock West Processing Site (SRK05) and the Slick Rock East Processing Site (SRK06). This annual event involved sampling both sites for a total of 16 monitoring wells and 6 surface water locations as required by the 2006 Draft Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, Processing Sites (GCAP). A domestic well was also sampled at a property adjacent to the Slick Rock East site at the request of the landowner.

  16. Identification of nitrate sources in groundwater using a stable isotope and 3DEEM in a landfill in Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhifei [School of Environment, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Yang, Yu; Lian, Xinying [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Jiang, Yonghai, E-mail: jyhai203@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xi, Beidou [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Lanzhou Jiaotong University, Gansu 730070 (China); Peng, Xing [School of Environment, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); and others

    2016-09-01

    The groundwater was sampled in a typical landfill area of the Northeast China. Coupled stable isotope and three dimensional excitation–emission matrix (3DEEM) were applied to dentify diffused NO{sub 3}{sup −} inputs in the groundwater in this area. The results indicated that combined with the feature of groundwater hydrochemistry and three-dimensional fluorescence technology can effectively identify the nitrate pollution sources. The nitrate was derived from manure and sewage by δ{sup 15}N and δ{sup 18}O–NO{sub 3}{sup −} values of groundwater in the different periods. The excitation–emission matrix fluorescence spectroscopy was further evidence of groundwater DOM mainly which comes from the landfill. The protein-like was very significant at the sampling points near the landfill (SPNL), but only fulvic acid-like appeared at downstream of the landfill groundwater sampling points (DLGSP) in the study area. Partial denitrification processes helped to attenuate nitrate concentration in anaerobic environment. - Highlights: • We used stable isotope and 3DEEM to evaluate of nitrate sources. • Groundwater hydrochemistry was used to assess groundwater recharge. • The degradation process of organic matters was assessed using 3DEEM in groundwater. • This approach is a effective tool for trace to the nitrate sources in groundwater.

  17. Identification of nitrate sources in groundwater using a stable isotope and 3DEEM in a landfill in Northeast China

    International Nuclear Information System (INIS)

    Ma, Zhifei; Yang, Yu; Lian, Xinying; Jiang, Yonghai; Xi, Beidou; Peng, Xing

    2016-01-01

    The groundwater was sampled in a typical landfill area of the Northeast China. Coupled stable isotope and three dimensional excitation–emission matrix (3DEEM) were applied to dentify diffused NO_3"− inputs in the groundwater in this area. The results indicated that combined with the feature of groundwater hydrochemistry and three-dimensional fluorescence technology can effectively identify the nitrate pollution sources. The nitrate was derived from manure and sewage by δ"1"5N and δ"1"8O–NO_3"− values of groundwater in the different periods. The excitation–emission matrix fluorescence spectroscopy was further evidence of groundwater DOM mainly which comes from the landfill. The protein-like was very significant at the sampling points near the landfill (SPNL), but only fulvic acid-like appeared at downstream of the landfill groundwater sampling points (DLGSP) in the study area. Partial denitrification processes helped to attenuate nitrate concentration in anaerobic environment. - Highlights: • We used stable isotope and 3DEEM to evaluate of nitrate sources. • Groundwater hydrochemistry was used to assess groundwater recharge. • The degradation process of organic matters was assessed using 3DEEM in groundwater. • This approach is a effective tool for trace to the nitrate sources in groundwater.

  18. Sample application of sensitivity/uncertainty analysis techniques to a groundwater transport problem. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Seitz, R.R.; Rood, A.S.; Harris, G.A.; Maheras, S.J.; Kotecki, M.

    1991-06-01

    The primary objective of this document is to provide sample applications of selected sensitivity and uncertainty analysis techniques within the context of the radiological performance assessment process. These applications were drawn from the companion document Guidelines for Sensitivity and Uncertainty Analyses of Low-Level Radioactive Waste Performance Assessment Computer Codes (S. Maheras and M. Kotecki, DOE/LLW-100, 1990). Three techniques are illustrated in this document: one-factor-at-a-time (OFAT) analysis, fractional factorial design, and Latin hypercube sampling. The report also illustrates the differences in sensitivity and uncertainty analysis at the early and latter stages of the performance assessment process, and potential pitfalls that can be encountered when applying the techniques. The emphasis is on application of the techniques as opposed to the actual results, since the results are hypothetical and are not based on site-specific conditions

  19. Demonstration of the AGI Universal Samplers (F.K.A. the GORE Modules) for Passive Sampling of Groundwater

    Science.gov (United States)

    2014-03-27

    and lower Hen- ry’s Law constants are biased low (Anderson 2013). In this instance, me- thyl tert-butyl ether (MTBE) is lost entirely and 1,2...coolers full of ice or blue ice to transport samples to the laboratory. One limitation associated with using the GORE Module is that, like all no- purge...was taken from Dunbar et al. (2001). A regional geologic and geomorphic model was developed for the Aberdeen Prov- ing Ground (APG). Regional

  20. Demonstration of the AGI Universal Samplers (F.K.A. the GORE (registered trademark) Modules) for Passive Sampling of Groundwater

    Science.gov (United States)

    2014-03-01

    and lower Hen- ry’s Law constants are biased low (Anderson 2013). In this instance, me- thyl tert-butyl ether (MTBE) is lost entirely and 1,2...coolers full of ice or blue ice to transport samples to the laboratory. One limitation associated with using the GORE Module is that, like all no- purge...was taken from Dunbar et al. (2001). A regional geologic and geomorphic model was developed for the Aberdeen Prov- ing Ground (APG). Regional

  1. Wireless Technology Recognition Based on RSSI Distribution at Sub-Nyquist Sampling Rate for Constrained Devices.

    Science.gov (United States)

    Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli

    2017-09-12

    Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.

  2. Groundwater recharge and agricultural contamination in alluvial fan of Eastern Kofu basin, JAPAN

    Science.gov (United States)

    Nakamura, T.

    2009-12-01

    Agriculture has significant effects on the rate and composition of groundwater recharge. The chemical loading into groundwater have been dominated by the constituents derived directly or indirectly from agricultural practices and additives. The contamination of groundwater with nitrate is a major public health and environmental concern around the world. The inorganic constituents like, K+, Ca2+, Mg2+, SO42-, Cl- and variety of other minor elements of groundwater are often used as agricultural additives; and the natural occurrence of these elements are dominated by the agricultural sources. A recent study has reported that Kofu basin groundwater aquifer is contaminated by nitrate from agricultural areas because of the fertilizer application for the orchard (Kazama and Yoneyama, 2002; Sakamoto et al., 1997, Nakamura et al., 2007). The water-oxygen and hydrogen stable isotope (δ18O and δD) and nitrate-nitrogen stable isotope (δ15N) of groundwater, river water and precipitation samples were investigated to identify the source of groundwater and nitrate nitrogen contamination in groundwater in the Fuefukigawa and Hikawa_Kanegawa alluvial fans in Kofu basin. The plot of δD versus δ18O values of groundwater, river water and precipitation samples suggest that the groundwater is a mixture of precipitation and river water. And nitrate-nitrogen isotope values have suggested the nitrate contamination of groundwater is from agricultural area. The study revealed positive correlation between groundwater δ18O values and NO3-, Cl-, SO42-, Ca2+, Mg2+ concentration, which shows the agricultural contamination is carried by the recharge of groundwater from precipitation in alluvial fan. Whereas, NO3-, Cl-, SO42-, Ca2+, Mg2+ are diluted by the river water recharges. This study showed the quality of groundwater is resulted from the mixing of water from the different source during the groundwater recharge in the study area. References Kazama F, Yoneyama M (2002) Nitrogen generation

  3. New technologies to detect and monitor Phytophthora ramorum in plant, soil, and water samples

    Science.gov (United States)

    Paul Russell; Nathan McOwen; Robert Bohannon

    2013-01-01

    The focus of our research efforts has been to develop methods to quickly identify plants, soil, and water samples infested with Phytophthora spp., and to rapidly confirm the findings using novel isothermal DNA technologies suitable for field use. These efforts have led to the development of a rapid Immunostrip® that reliably detects...

  4. Automatic sampling technology in wide belt conveyor with big volume of coal flow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. [China Coal Research Institute, Beijing (China)

    2008-06-15

    The principle and technique of sampling in a wide belt conveyor with high coal flow was studied. The design method of the technology, the key parameters, the collection efficiency, the mechanical unit, power supply and control system and worksite facility were ascertained. 3 refs., 5 figs.

  5. Cone penetrometer testing (CPT) for groundwater contamination

    International Nuclear Information System (INIS)

    Jordan, J.E.; Van Pelt, R.S.

    1993-01-01

    Over the past decade, researchers at the Savannah River Site (SRS) and elsewhere have greatly advanced the knowledge of waste site characterization technologies. As a result, many of the techniques used in the past to investigate waste sites have been replaced by newer technologies, designed to provide greater protection for human health and the environment, greater access to suspected zones of contamination, and more accurate information of subsurface conditions. Determining the most environmentally sound method of assessing a waste unit is a major component of the SRS environmental restoration program. In an effort to understand the distribution and migration of contaminants in the groundwater system, the cone penetrometer investigation of the A/M-Area Southern Sector was implemented. The program incorporated a phased approach toward characterization by first using the CPT to delineate the plume boundary, followed by installing groundwater monitoring wells. The study provided the additional hydrogeologic information necessary to better understand the nature and extent of the contaminant plume (Fig. 1) and the hydrogeologic system in the Southem Sector. This data is essential for the optimal layout of the planned groundwater monitoring well network and recovery system to remediate the aquifers in the area. A number of other test locations were selected in the area during this study for lithologic calibration of the tool and to collect confirmation water samples from the aquifer. Cone penetrometer testing and hydrocone sampling, were performed at 17 sites (Fig. 2). The hydrocone, a tool modification to the CPT, was used to collect four groundwater samples from confined aquifers. These samples were analyzed by SRS laboratories. Elevated levels of chlorinated compounds were detected from these samples and have aided in further delineating the southern sector contaminant plume

  6. [Mass spectrometry technology and its application in analysis of biological samples].

    Science.gov (United States)

    Zhao, Long-Shan; Li, Qing; Guo, Chao-Wei; Chen, Xiao-Hui; Bi, Kai-Shun

    2012-02-01

    With the excellent merits of wide analytical range, high sensitivity, small sample size, fast analysis speed, good repeatability, simple operation, low mobile phase consumption, as well as its capability of simultaneous isolation and identification, etc, mass spectrometry techniques have become widely used in the area of environmental science, energy chemical industry, biological medicine, and so on. This article reviews the application of mass spectrometry technology in biological sample analysis in the latest three years with the focus on the new applications in pharmacokinetics and bioequivalence, toxicokinetics, pharmacokinetic-pharmacodynamic, population pharmacokinetics, identification and fragmentation pathways of drugs and their metabolites and metabonomics to provide references for further study of biological sample analysis.

  7. A single lysis solution for the analysis of tissue samples by different proteomic technologies

    DEFF Research Database (Denmark)

    Gromov, P.; Celis, J.E.; Gromova, I.

    2008-01-01

    -based proteomics (reverse-phase lysate arrays or direct antibody arrays), allowing the direct comparison of qualitative and quantitative data yielded by these technologies when applied to the same samples. The usefulness of the CLB1 solution for gel-based proteomics was further established by 2D PAGE analysis...... dissease, is driving scientists to increasingly use clinically relevant samples for biomarker and target discovery. Tissues are heterogeneous and as a result optimization of sample preparation is critical for generating accurate, representative, and highly reproducible quantitative data. Although a large...... number of protocols for preparation of tissue lysates has been published, so far no single recipe is able to provide a "one-size fits all" solubilization procedure that can be used to analyse the same lysate using different proteomics technologies. Here we present evidence showing that cell lysis buffer...

  8. RAPID PROCESSING OF ARCHIVAL TISSUE SAMPLES FOR PROTEOMIC ANALYSIS USING PRESSURE-CYCLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Vinuth N. Puttamallesh1,2

    2017-06-01

    Full Text Available Advent of mass spectrometry based proteomics has revolutionized our ability to study proteins from biological specimen in a high-throughput manner. Unlike cell line based studies, biomedical research involving tissue specimen is often challenging due to limited sample availability. In addition, investigation of clinically relevant research questions often requires enormous amount of time for sample collection prospectively. Formalin fixed paraffin embedded (FFPE archived tissue samples are a rich source of tissue specimen for biomedical research. However, there are several challenges associated with analysing FFPE samples. Protein cross-linking and degradation of proteins particularly affects proteomic analysis. We demonstrate that barocycler that uses pressure-cycling technology enables efficient protein extraction and processing of small amounts of FFPE tissue samples for proteomic analysis. We identified 3,525 proteins from six 10µm esophageal squamous cell carcinoma (ESCC tissue sections. Barocycler allows efficient protein extraction and proteolytic digestion of proteins from FFPE tissue sections at par with conventional methods.

  9. Determination of pharmaceutical compounds in surface- and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry

    Science.gov (United States)

    Cahill, J.D.; Furlong, E.T.; Burkhardt, M.R.; Kolpin, D.; Anderson, L.G.

    2004-01-01

    Commonly used prescription and over-the-counter pharmaceuticals are possibly present in surface- and ground-water samples at ambient concentrations less than 1 μg/L. In this report, the performance characteristics of a combined solid-phase extraction isolation and high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI-MS) analytical procedure for routine determination of the presence and concentration of human-health pharmaceuticals are described. This method was developed and used in a recent national reconnaissance of pharmaceuticals in USA surface waters. The selection of pharmaceuticals evaluated for this method was based on usage estimates, resulting in a method that contains compounds from diverse chemical classes, which presents challenges and compromises when applied as a single routine analysis. The method performed well for the majority of the 22 pharmaceuticals evaluated, with recoveries greater than 60% for 12 pharmaceuticals. The recoveries of angiotensin-converting enzyme inhibitors, a histamine (H2) receptor antagonist, and antihypoglycemic compound classes were less than 50%, but were retained in the method to provide information describing the potential presence of these compounds in environmental samples and to indicate evidence of possible matrix enhancing effects. Long-term recoveries, evaluated from reagent-water fortifications processed over 2 years, were similar to initial method performance. Method detection limits averaged 0.022 μg/L, sufficient for expected ambient concentrations. Compound-dependent matrix effects on HPLC/ESI-MS analysis, including enhancement and suppression of ionization, were observed as a 20–30% increase in measured concentrations for three compounds and greater than 50% increase for two compounds. Changing internal standard and more frequent ESI source maintenance minimized matrix effects. Application of the method in the national survey demonstrates that several

  10. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  11. Feasibility of automated speech sample collection with stuttering children using interactive voice response (IVR) technology.

    Science.gov (United States)

    Vogel, Adam P; Block, Susan; Kefalianos, Elaina; Onslow, Mark; Eadie, Patricia; Barth, Ben; Conway, Laura; Mundt, James C; Reilly, Sheena

    2015-04-01

    To investigate the feasibility of adopting automated interactive voice response (IVR) technology for remotely capturing standardized speech samples from stuttering children. Participants were 10 6-year-old stuttering children. Their parents called a toll-free number from their homes and were prompted to elicit speech from their children using a standard protocol involving conversation, picture description and games. The automated IVR system was implemented using an off-the-shelf telephony software program and delivered by a standard desktop computer. The software infrastructure utilizes voice over internet protocol. Speech samples were automatically recorded during the calls. Video recordings were simultaneously acquired in the home at the time of the call to evaluate the fidelity of the telephone collected samples. Key outcome measures included syllables spoken, percentage of syllables stuttered and an overall rating of stuttering severity using a 10-point scale. Data revealed a high level of relative reliability in terms of intra-class correlation between the video and telephone acquired samples on all outcome measures during the conversation task. Findings were less consistent for speech samples during picture description and games. Results suggest that IVR technology can be used successfully to automate remote capture of child speech samples.

  12. Analysis results of PAVE sampling of groundwaters from open boreholes OL-KR2, OL-KR7, OL-KR13 and OL-KR15 at Olkiluoto, Eurajoki, in 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, H. [Teollisuuden Voima Oyj, Eurajoki (Finland); Hatanpaa, E. [lnsinoeoeritoimisto Paavo Ristola Oy, Hollola (Finland)

    2005-12-15

    Four groundwater samples were collected at Olkiluoto from open boreholes OL-KR2, OL-KR7, OL-KR13 and OL-KR15 with pressurised water sampling equipment (PAVE) between summer 2004 and the beginning of 2005. The aim of the ground water sampling was to get information for the basis of the monitoring program during ONKALO construction. Sampling sections were mainly chosen so that the results of the chemical analyses from earlier studies could be used for comparison. This study is a part of Olkiluoto's monitoring programme (OMO). This study presents the sampling methods and the results of the laboratory analyses of groundwater samples from the open boreholes OL-KR2/328.5-330.5 m, OL-KR7/275.5- 289.5 m, OL-KR13/362-365 m and OL-KR15/241-245 m. The analytical results of the groundwater samplings are compared to earlier analytical results. According to Davis and De Wiest's ( 1967) classification, all ground water samples represent the borehole water type Na-Cl. All ground water samples were brackish ( 1000 mg/L < TDS < 1 0000 mg/L) according to Davis's ( 1964) TDS classification. Comparison of analytical results of the samples to earlier results shows that some changes have occurred between samplings. Other parameters, with couple of particular exceptions, have a downward trend, but bicarbonate concentration has increased in all boreholes. Concentrations of main parameters have changed most in OL-KR7 and OL-KR13 waters. Gas analyses results have not changed significantly, but increased carbon dioxide concentration is noticed in gas analysis results also. (orig.)

  13. Site investigation SFR. Fracture mineralogy and geochemistry of borehole sections sampled for groundwater chemistry and Eh. Results from boreholes KFR01, KFR08, KFR10, KFR19, KFR7A and KFR105

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB, Grabo (Sweden))

    2011-01-15

    This report is part of the complementary site investigations for the future expansion of SFR. The report presents the results obtained during a detailed mineralogical and geochemical study of fracture minerals in drill cores from borehole section sampled for groundwater chemistry and where downhole Eh measurements have been performed. The groundwater redox system comprises not only the water, but also the bedrock/fracture mineral system in contact with this water. It is thus important to gain knowledge of the solid phases in contact with the groundwater, i.e. the fracture minerals. The samples studied for mineralogy and geochemistry, here reported, were selected to represent the fracture surfaces in contact with the groundwater in the sampled borehole sections and will give input to the hydrogeochemical model (SFR SDM). The mineralogy was determined using SEM-EDS and XRD and the geochemistry of fracture filling material was analysed by ICP-AES and ICP-QMS. The most common fracture minerals in the samples are mixed layer clay (smectite-illite), illite, chlorite, calcite, quartz, adularia and albite. Other minerals identified in the borehole sections include laumontite, pyrite, barite, chalcopyrite, hematite, Fe-oxyhydroxide, muscovite, REE-carbonate, allanite, biotite, asphaltite, galena, sphalerite, arsenopyrite, uranium phosphate, uranium silicate, Y-Ca silicate, monazite, xenotime, harmotome and fluorite. There are no major differences between the fracture mineralogy of the investigated borehole sections from SFR and the fracture mineralogy of the Forsmark site investigation area. The four fracture mineral generations distinguished within the Forsmark site investigation are also found at SFR. However, some differences have been observed: 1) Barite and uranium minerals are more common in the SFR fractures, 2) clay minerals like mixed layer illite-smectite and illite dominates in contrast to Forsmark where corrensite is by far the most common clay mineral and, 3

  14. Site investigation SFR. Fracture mineralogy and geochemistry of borehole sections sampled for groundwater chemistry and Eh. Results from boreholes KFR01, KFR08, KFR10, KFR19, KFR7A and KFR105

    International Nuclear Information System (INIS)

    Sandstroem, Bjoern; Tullborg, Eva-Lena

    2011-01-01

    This report is part of the complementary site investigations for the future expansion of SFR. The report presents the results obtained during a detailed mineralogical and geochemical study of fracture minerals in drill cores from borehole section sampled for groundwater chemistry and where downhole Eh measurements have been performed. The groundwater redox system comprises not only the water, but also the bedrock/fracture mineral system in contact with this water. It is thus important to gain knowledge of the solid phases in contact with the groundwater, i.e. the fracture minerals. The samples studied for mineralogy and geochemistry, here reported, were selected to represent the fracture surfaces in contact with the groundwater in the sampled borehole sections and will give input to the hydrogeochemical model (SFR SDM). The mineralogy was determined using SEM-EDS and XRD and the geochemistry of fracture filling material was analysed by ICP-AES and ICP-QMS. The most common fracture minerals in the samples are mixed layer clay (smectite-illite), illite, chlorite, calcite, quartz, adularia and albite. Other minerals identified in the borehole sections include laumontite, pyrite, barite, chalcopyrite, hematite, Fe-oxyhydroxide, muscovite, REE-carbonate, allanite, biotite, asphaltite, galena, sphalerite, arsenopyrite, uranium phosphate, uranium silicate, Y-Ca silicate, monazite, xenotime, harmotome and fluorite. There are no major differences between the fracture mineralogy of the investigated borehole sections from SFR and the fracture mineralogy of the Forsmark site investigation area. The four fracture mineral generations distinguished within the Forsmark site investigation are also found at SFR. However, some differences have been observed: 1) Barite and uranium minerals are more common in the SFR fractures, 2) clay minerals like mixed layer illite-smectite and illite dominates in contrast to Forsmark where corrensite is by far the most common clay mineral and, 3

  15. Evaluating the effect of sampling and spatial correlation on ground-water travel time uncertainty coupling geostatistical, stochastic, and first order, second moment methods

    International Nuclear Information System (INIS)

    Andrews, R.W.; LaVenue, A.M.; McNeish, J.A.

    1989-01-01

    Ground-water travel time predictions at potential high-level waste repositories are subject to a degree of uncertainty due to the scale of averaging incorporated in conceptual models of the ground-water flow regime as well as the lack of data on the spatial variability of the hydrogeologic parameters. The present study describes the effect of limited observations of a spatially correlated permeability field on the predicted ground-water travel time uncertainty. Varying permeability correlation lengths have been used to investigate the importance of this geostatistical property on the tails of the travel time distribution. This study uses both geostatistical and differential analysis techniques. Following the generation of a spatially correlated permeability field which is considered reality, semivariogram analyses are performed upon small random subsets of the generated field to determine the geostatistical properties of the field represented by the observations. Kriging is then employed to generate a kriged permeability field and the corresponding standard deviation of the estimated field conditioned by the limited observations. Using both the real and kriged fields, the ground-water flow regime is simulated and ground-water travel paths and travel times are determined for various starting points. These results are used to define the ground-water travel time uncertainty due to path variability. The variance of the ground-water travel time along particular paths due to the variance of the permeability field estimated using kriging is then calculated using the first order, second moment method. The uncertainties in predicted travel time due to path and parameter uncertainties are then combined into a single distribution

  16. Evaluation of the Purge Water Management System (PWMS) monitor well sampling technology at SRS

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Cardoso-Neto, J.E.; Williams, D.W.

    1997-01-01

    Due to the complex issues surrounding Investigation Derived Waste (IDW) at SRS, the Environmental Restoration Division has been exploring new technologies to deal with the purge water generated during monitoring well sampling. Standard procedures for sampling generates copious amounts of purge water that must be managed as hazardous waste, when containing hazardous and/or radiological contaminants exceeding certain threshold levels. SRS has obtained Regulator approval to field test an innovative surface release prevention mechanism to manage purge water. This mechanism is referred to as the Purge Water Management System (PWMS) and consists of a collapsible bladder situated within a rigid metal tank

  17. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  18. Technology Development and Advanced Planning for Curation of Returned Mars Samples

    Science.gov (United States)

    Lindstrom, David J.; Allen, Carlton C.

    2002-01-01

    Safety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.

  19. Implementation of Sample Graphic Patterns on Derived Scientific/Technologic Documentary Figures

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-bao; WANG Xiao-yu; WANG Lei

    2013-01-01

    The presenting work deals with implementation of sample graphic patterns derived from published scientific/technologic documentation figures on numeric simulation of multiphase flow and FEM analysis of thin walled mechanical structures. First, geometric plane patterns in rectangular/circular form were demonstrated in contrast to gradual change style in color and graphic configuration. Next, selected artistic/graphic sample patterns were implemented in logo conceptual design and visual innovation storming. The way in editing the above original figures is 2D symmetry, rectangular array geometrically, and converting them in inverse color in software like PS. The objective of this work is to cultivate, explore and discipline trainees’ visual ability in artistic/aesthetic appreciation, graphic communication and industrial design and application, thus laying ties closely among comprehensive university students from different majors on science, engineering, arts and humanity.

  20. Evaluation of technological properties of samples burned from a clay tailings as a function of temperature

    International Nuclear Information System (INIS)

    Mendonca, M.; Garcia, G.C.R.; Ribeiro, S.

    2011-01-01

    The objective of this work was to start the study of technological properties of a clayey tailings from a mining of quartz sand - Mineracao Sao Joao Batista, Queluz - SP. For this study, clay samples were pressed (32 MPa) and fired at 1250 deg C, 1350 deg C and 1450 deg C for 180 minutes, with rates of heating and cooling of 5 deg C/min. We evaluated the bulk density, water absorption and apparent porosity. The results showed that increasing the firing temperature of 1250°C to 1450°C increased approximately 20% bulk density, while water absorption and apparent porosity decreased by 70% and 64% respectively. Thus, the increase in firing temperature increased the bulk density, decreasing the apparent porosity, resulting in increased mechanical strength of these samples, allowing the use of waste as raw material in the manufacture of ceramics. (author)

  1. Evaluation of improved technologies for the removal of 90Sr and 137Cs from process wastewater and groundwater: FY 1995 status

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D. Jr.; Burgess, M.W.; McTaggart, D.R.; Taylor, P.A.; Guo, B.

    1996-03-01

    A number of new sorbents are currently being developed for the removal of 90 Sr and 137 Cs from contaminated, caustic low-level liquid waste (LLLW). These sorbents are potentially promising for use in the cleanup of contaminated groundwater and process wastewater containing the two radionuclides. The goal of this subtask is to evaluate the new sorbents to determine whether their associated treatment technology is more selective for the decontamination of wastewater streams than that of currently available processes. Activities during fiscal year 1995 have included completing the characterization of the standard treatment technology, ion exchange on chabazite zeolite. Strontium and cesium sorption on sodium-modified zeolite was observed in the presence of elevated concentrations of wastewater components: sodium, potassium, magnesium, and calcium. The most significant loss of nuclide sorption was noted in the first 0- to 4-meq/L addition of the cations to a wastewater simulant. Radionuclide sorption on the pretreated zeolite was also determined under dynamic flow conditions. Resorcinol-formaldehyde (R-F) resin, which was developed at the Savannah River Site, was selected as the first new sorbent to be evaluated for wastewater treatment. Nuclide sorption on this resin was greater when the resin had been washed with ultrapure water and air dried prior to use

  2. Application of GIS and Visualization Technology in the Regional-Scale Ground-Water Modeling of the Twentynine Palms and San Jose Areas, California

    Science.gov (United States)

    Li, Z.

    2003-12-01

    Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ­¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also

  3. Groundwater: from mystery to management

    International Nuclear Information System (INIS)

    Narasimhan, T N

    2009-01-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  4. Pharmacy in transition: A work sampling study of community pharmacists using smartphone technology.

    Science.gov (United States)

    van de Pol, Jeroen M; Geljon, Jurjen G; Belitser, Svetlana V; Frederix, Geert W J; Hövels, Anke M; Bouvy, Marcel L

    2018-03-09

    The nature of community pharmacy is changing, shifting from the preparation and distribution of medicines to the provision of cognitive pharmaceutical services (CPS); however, often the provision of traditional services leaves little time for innovative services. This study investigated the time community pharmacists spend on the tasks and activities of daily practice and to what extent they are able to implement CPS-related services in daily practice. Self-reporting work sampling was used to register the activities of community pharmacists. A smartphone application, designed specifically for this purpose, alerted participants to register their current activity five times per working day for 6 weeks. Participants also completed an online survey about baseline characteristics. Ninety-one Dutch community pharmacists provided work-sampling data (7848 registered activities). Overall, 51.5% of their time was spent on professional activities, 35.4% on semi-professional activities, and 13.1% on non-professional activities. The proportion of time devoted to CPS decreased during the workweek, whereas the time spent on traditional task increased. This study shows it is feasible to collect work-sampling data using smartphone technology. Community pharmacists spent almost half of their time on semi-professional and non-professional activities, activities that could be delegated to other staff members. In practice, the transition to CPS is hampered by competing traditional tasks, which prevents community pharmacists from profiling themselves as pharmaceutical experts in daily practice. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Problematic Technology Use in a clinical sample of children and adolescents. Personality and behavioral problems associated.

    Science.gov (United States)

    Alonso, Cristina; Romero, Estrella

    2017-03-01

    In parallel to the rapid growth of access to new technologies (NT) there has been an increase in the problematic use of the same, especially among children and adolescents. Although research in this field is increasing, the studies have mainly been developed in the community, and the characteristics associated with the problematic use of NT are unknown in samples that require clinical care. Therefore, the aim of this study is to analyze the relationship between problematic use of video games (UPV) and Internet (UPI) and personality traits and behavior problems in a clinical sample of children and adolescents. The sample consists of 88 patients who were examined in the clinical psychology consultation in the Mental Health Unit for Children and Adolescents of the University Hospital of Santiago de Compostela. Data were obtained from self-reports and rating scales filled out by parents. 31.8% of the participants present UPI and 18.2%, UPV. The children and adolescents with UPNT have lower levels of Openness to experience, Conscientiousness and Agreeableness and higher levels of Emotional instability, global Impulsivity and Externalizing behavior problems, as well as Attention and Thought problems. UPNT is a problem that emerges as an important issue in clinical care for children and adolescents, so its study in child and youth care units is needed. Understanding the psychopathological profile of children and adolescents with UPNT will allow for the development of differential and more specific interventions.

  6. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  7. Task 19 - Sampling, Analysis, and Vitrification Study for Thermochem's Steam Reformer Treatment Technology

    International Nuclear Information System (INIS)

    Lillemoen, C.M.; McCollor, D.P.; Qi Sun

    1998-01-01

    The overall objective of the project is to provide support to Thermochem, Inc., in the demonstration of the steam reformer treatment technology to treat LLMW. Within this program, specific objectives include the following: (1) Analyze cerium, chlorine, and fluorine concentrations in samples from the pilot-scale steam reformer tests to determine partitioning of these elements, mass balances, and changes in concentration with time. (2) Perform experimental characterization of temperature--viscosity profiles to aid in determining vitrification viability for long-term stabilization. Additionally, calculations of viscosity will be performed for several blend combinations to complement the experimentally determined values. (3) Conduct leachability tests on the vitrified slags to aid in determining if product leachability falls within EPA guidelines and to assess the suitability of the vitrified material for long-term disposal

  8. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    Science.gov (United States)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  9. In situ groundwater MOP-UP. Topical report, April 12, 1996--May 11, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Under this FETC-funded program, Biopraxis proposed to demonstrate the feasibility of using its new MOP-UP technology for in situ treatment of metal-contaminated groundwater. Instead of optimizing the technology to demonstrate the feasibility of its use at a single site, the final series of tests were designed to showcase the breadth and flexibility of the MOP-UP technology by demonstrating its capabilities in as many different groundwater environments as possible. Sites that were contaminated with metal pollutants of wide-spread concern to DOE were located; and MOP-UP reagents were screened for their ability to treat any or all of these metals--without any attempt to optimize the technology for use with the new target metals and/or for treating these metals under the diverse conditions found at the sites. Groundwater samples exhibiting a wide range of environments were generously provided by DoD, EPA, and private industry as well as DOE for use in these treatability tests. The tests showed that MOP-UP can readily remove all detectable traces of a wide variety of metals, such as Hg, Pb, Cd, Cu, Cr(VI), As, Ba, Zn, and Al, and take U into the low parts per trillions, in heavily polluted groundwater, with little or no effort needed to optimize the reagent formulation. The second goal of the program was to show that the in situ groundwater MOP-UP technology will either be more cost effective than conventional technologies while achieving the same degree of groundwater purification, or be at least as cost effective as conventional technologies while offering superior performance. MOP-UP far surpassed the goals established for this initial feasibility demonstration. This new technology promises to be extremely effective and very economical whether used in a permeable barrier for treating shallow plumes, or a direct injection or pump-and-treat configuration for treating deep-subsurface plumes of heavy metal, radionuclide, or mixed contamination.

  10. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  11. Natural radioactivity in groundwater from the south-eastern Arabian Peninsula and environmental implications.

    Science.gov (United States)

    Murad, A; Zhou, X D; Yi, P; Alshamsi, D; Aldahan, A; Hou, X L; Yu, Z B

    2014-10-01

    Groundwater is the most valuable resource in arid regions, and recognizing radiological criteria among other water quality parameters is essential for sustainable use. In the investigation presented here, gross-α and gross-β were measured in groundwater samples collected in the south-eastern Arabian Peninsula, 67 wells in Unite Arab Emirates (UAE), as well as two wells and one spring in Oman. The results show a wide gross-α and gross-β activities range in the groundwater samples that vary at 0.01∼19.5 Bq/l and 0.13∼6.6 Bq/l, respectively. The data show gross-β and gross-α values below the WHO permissible limits for drinking water in the majority of the investigated samples except those in region 4 (Jabel Hafit and surroundings). No correlation between groundwater pH and the gross-α and gross-β, while high temperatures probably enhance leaching of radionuclides from the aquifer body and thereby increase the radioactivity in the groundwater. This conclusion is also supported by the positive correlation between radioactivity and amount of total dissolved solid. Particular water purification technology and environmental impact assessments are essential for sustainable and secure use of the groundwater in regions that show radioactivity values far above the WHO permissible limit for drinking water.

  12. Annual INTEC Groundwater Monitoring Report for Group 5 - Snake River Plain Aquifer (2001)

    International Nuclear Information System (INIS)

    Roddy, M.S.

    2002-01-01

    This report describes the monitoring activities conducted and presents the results of groundwater sampling and water-level measurements from October 2000 to September 2001. Groundwater samples were initially collected from 41 wells from the Idaho Nuclear Technology and Engineering Center and the Central Facilities Area and analyzed for iodine- 129, strontium-90, tritium, gross alpha, gross beta, technetium-99, uranium isotopes, plutonium isotopes, neptunium-237, gamma spectrometry, and mercury. Samples from 41 wells were collected in April and May 2001. Additional sampling was conducted in August 2001 and included in two CFA production wells, the CFA point of compliance for the production wells, one well was previously sampled and five additional monitoring wells. Water-level measurements were taken from in the Idaho Nuclear Technology and Engineering Center, Central Facilities Area, and the area south of Central Facilities Area to evaluate groundwater flow directions. Water-level measurements indicated groundwater flow to the south-southwest from the Idaho Nuclear Technology and Engineering Center

  13. Complexed iron removal from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Munter, R.; Ojaste, H.; Sutt, J. [Tallinn Technical University, Tallinn (Estonia). Dept. of Environmental & Chemical Technology

    2005-07-01

    The paper demonstrates an intensive work carried out and results obtained on the pilot plant of the City of Kogalym Water Treatment Station (Tjumen, Siberia, Russian Federation) to elaborate on a contemporary nonreagent treatment technology for the local iron-rich groundwater. Several filter materials (Birm, Pyrolox, hydroanthracite, Everzit, granulated activated carbon) and chemical oxidants (ozone, chlorine, hydrogen peroxide, oxygen, and potassium permanganate) were tested to solve the problem with complexed iron removal from groundwater. The final elaborated technology consists of raw water intensive aeration in the gas-degas treatment unit followed by sequential filtration through hydroanthracite and the special anthracite Everzit.

  14. One-year measurements of chloroethenes in tree cores and groundwater at the SAP Mimoň Site, Northern Bohemia.

    Science.gov (United States)

    Wittlingerova, Z; Machackova, J; Petruzelkova, A; Trapp, S; Vlk, K; Zima, J

    2013-02-01

    Chlorinated ethenes (CE) are among the most frequent contaminants of soil and groundwater in the Czech Republic. Because conventional methods of subsurface contamination investigation are costly and technically complicated, attention is directed on alternative and innovative field sampling methods. One promising method is sampling of tree cores (plugs of woody tissue extracted from a host tree). Volatile organic compounds can enter into the trunks and other tissues of trees through their root systems. An analysis of the tree core can thus serve as an indicator of the subsurface contamination. Four areas of interest were chosen at the experimental site with CE groundwater contamination and observed fluctuations in groundwater concentrations. CE concentrations in groundwater and tree cores were observed for a 1-year period. The aim was to determine how the CE concentrations in obtained tree core samples correlate with the level of contamination of groundwater. Other factors which can affect the transfer of contaminants from groundwater to wood were also monitored and evaluated (e.g., tree species and age, level of groundwater table, river flow in the nearby Ploučnice River, seasonal effects, and the effect of the remediation technology operation). Factors that may affect the concentration of CE in wood were identified. The groundwater table level, tree species, and the intensity of transpiration appeared to be the main factors within the framework of the experiment. Obtained values documented that the results of tree core analyses can be used to indicate the presence of CE in the subsurface. The results may also be helpful to identify the best sampling period for tree coring and to learn about the time it takes until tree core concentrations react to changes in groundwater conditions. Interval sampling of tree cores revealed possible preservation of the contaminant in the wood of trees.

  15. Derivation of validated methods of sampling and analysis for intermediate and final products of the anaerobic material utilization of volatile chlorinated hydrocarbons (LCFC) in groundwater in the context of analyses of contaminated soils; Ableitung validierter Probenahme- und Analysenmethoden fuer Zwischen- und Endprodukte der anaeroben Stoffverwertungsprozesse von Leichtfluechtigen Chlorierten Kohlenwasserstoffen (LCKW) im Grundwasser im Rahmen von Altlastenuntersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Dorgerloh, Ute; Becker, Roland; Win, Tin [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Theissen, Hubert [IMAGO GbR (Germany)

    2010-06-17

    The results of the project ''Methods of sampling and analysis of intermediate and final products of the anaerobic degradation of volatile halogenated hydrocarbons in groundwater in frame of analysis of contaminated sites'' of the German Federal States Program ''Water, Soil, Waste'' (Laenderfinanzierungsprogramm ''Wasser, Boden, Luft'') LFP B2.08 are presented in these report. Different methods of sampling and analysis for the determination of hydrogen, methane, ethene and vinyl chloride in groundwater are developed and validated: For the sampling are described and discussed: i. active sampling: purge and sample of water samples and purging of solvated gases in groundwater in gas sampling tubes ii. passive sampling: diffusion sampling in polyethylene diffusion bags (PDB) and plastic syringes as diffusion sampler for solvated gases The use of active (purge and sample, downhole sampler) and passive (diffusion sampling) sampling techniques for the quantification of VOC, ethene, and methane are evaluated from the viewpoint of public authorities and regarding the reproducibility of measurement results. Based on a groundwater contaminated with trichloroethene, 1,2-dichloroethene, and vinyl chloride it is shown that passive sampling is restricted by low groundwater flow and biological activity inside the well casing. Therefore, active sampling is to be preferred in case of unknown or insufficient flow conditions in the aquifer. The methods of chromatography for the determination of the compounds are validated and compared with other appropriate analytical methods: I. Headspace-GC-FID for the determination of methane, ethene and vinyl chloride in water of the purged sample (i) and the water of the PDB (ii) II. Direct injection - GC-PDD for the determination of hydrogen from the collected gas samples of the gas sampling tube (i) and the plastic syringes (ii) The gas chromatographic procedure for vinyl chloride using

  16. groundwater quality and its suitability for domestic and agricultural

    African Journals Online (AJOL)

    PROF EKWUEME

    Hydrogeochemical analysis of groundwater samples collected from parts of the Wilberforce Island in Bayelsa State,. Southern Nigeria has ... chemical composition of groundwater or anthropogenic factors that ...... of pipelines in the Niger Delta.

  17. hydrogeochemical appraisal of fluoride in groundwater of langtang

    African Journals Online (AJOL)

    DIBAL

    GROUNDWATER OF LANGTANG AREA, PLATEAU STATE, NIGERIA ... trace elements and rare earth elements for the rock samples were determined by the XRF method and fluorine by the ... Fluorine is leached into the groundwater from the ...

  18. 680 SPATIAL VARIATION IN GROUNDWATER POLLUTION BY ...

    African Journals Online (AJOL)

    Osondu

    higher in Group A water samples, and reduced slightly in the Group B and then the Group C samples, ... Keywords: Spatial variation, Groundwater, Pollution, Abattoir, Effluents, Water quality. ... situation which may likely pose a threat to the.

  19. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    International Nuclear Information System (INIS)

    Lindblom, S.R.

    1992-08-01

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits

  20. Electrical conductivity and pH of groundwater: important exploratory ...

    African Journals Online (AJOL)

    Electrical conductivity and pH of groundwater: important exploratory tools in groundwater surveys. ... Journal of Technology and Education in Nigeria ... An analysis of the spatial variation of these parameters indicates that the EC and pH values of groundwater allow us to make deductions not only on the changes in the ...

  1. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Potential impacts of climate change and variability on groundwater resources in Nigeria. ... African Journal of Environmental Science and Technology ... of climate change induced groundwater impacts due to largely multi-scale local and regional heterogeneity, there is need to evaluate groundwater resources, quality and ...

  2. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  3. 85Kr dating of groundwater

    International Nuclear Information System (INIS)

    Rozanski, K.; Florkowski, T.

    1978-01-01

    The possibility of 85 Kr dating of groundwater is being investigated. The method of gas extraction from 200 to 300 litres of water sample has been developed. The Argon and Krypton mixture, separated from the gas extracted from water, was counted in a 1.5 ml volume proportional counter. The amount of krypton gas in the counter was determined by mass spectrometry. A number of surface and groundwater samples were analyzed indicating an 85 Kr concentration ranging from present atmospheric content (river water) to zero values. 85 Kr 'blank value' was determined to be about 5 per cent of present 85 Kr atmospheric content. For groundwater samples, the mean residence time in the system was calculated assuming the exponential model and known 85 Kr input function. Further improvement of the method should bring higher yield of krypton separation and lower volume of water necessary for analysis. (orig.) [de

  4. Subjective and objective outcomes from new BiCROS technology in a veteran sample.

    Science.gov (United States)

    Williams, Victoria A; McArdle, Rachel A; Chisolm, Theresa H

    2012-01-01

    Patients with single-sided deafness (SSD), where one ear has an unaidable hearing loss and the other ear has normal or aidable hearing, often complain of difficulties understanding speech and localizing sound sources, and report a higher self-perceived hearing disability. Patients with SSD may benefit from using contralateral routing of signal (CROS) or bilateral contralateral routing of the signal (BiCROS) amplification. Dissatisfaction of previously available (Bi)CROS devices has been reported, such as, interfering transmissions, low-fidelity sound quality, poor "user-friendly" set-up, and a bulky and cosmetically cumbersome appearance. Recent advances in hearing aid technology have improved (Bi)CROS hearing aids; however, these devices have not been experimentally evaluated. We hypothesized that newer technology with reports of improved digital signal processing, wireless transmission, and physical design would be as good, or better than, our participants' previous-generation BiCROS systems. A within-subjects, pretest-posttest design was executed. Thirty-nine veterans (one female, 38 males; mean age = 74 yr, range = 49-85 yr) from the Audiology Section of the Bay Pines Veterans Affair Healthcare System participated. All participants were previously experienced BiCROS hearing aid users with varying degrees of sensorinerual hearing impairment in their better ear. Participants were provided at least 4 wk of consistent use with the new BiCROS. DATA COLLECTION AND ANALYSES: Participants completed three research visits. At Visit 1, with their previous BiCROS, and at Visit 3, with their new BiCROS, the following objective and subjective measures were obtained: (1) soundfield speech-in-noise testing using the Words-In-Noise (WIN) test; (2) speech, spatial, and qualities of the hearing scale (SSQ) questionnaire; (3) selected questions from the MarkeTrak questionnaire; and, (4) three open-ended questions. Data were analyzed using parametric and nonparametric statistics

  5. Characterization of a clinical unit for digital radiography based on irradiation side sampling technology

    Energy Technology Data Exchange (ETDEWEB)

    Rivetti, Stefano [Fisica Medica, Ospedale di Sassuolo S.p.A., 41049 Sassuolo (Italy); Lanconelli, Nico [Alma Mater Studiorum, Physics Department, University of Bologna, 40127 Bologna (Italy); Bertolini, Marco; Nitrosi, Andrea [Medical Physics Unit, Azienda Ospedaliera ASMN, Istituto di Ricovero e Cura a Carattere Scientifico, 42123 Reggio Emilia (Italy); Burani, Aldo [Ospedale di Sassuolo S.p.A., 41049 Sassuolo (Italy)

    2013-10-15

    Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results: At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best

  6. Application of δ18O, δD, 3H-3He and CFCs to characterize the nitrate contamination of groundwater in Eumsung, Korea

    Science.gov (United States)

    Ju, Y. J.; Kaown, D.; Hahm, D.; Kim, I.; Lee, S. S.; Koh, E. H.; Kim, M.; Yoon, Y. Y.; Lee, K. K.

    2015-12-01

    We measured the major ions, stable oxygen and hydrogen isotopes, 3H-3He and CFCs concentration in groundwater to identify the characteristics of nitrate contamination and to understand the groundwater recharge patterns. In this study, 17 groundwater samples were collected for 5days (from March 3rd to 7th, 2015) in Eumseong, Korea. In the study area, NO3- concentrations in some groundwater samples (16 of 17) ranged from 5.7 to 103.7 mg/L (avg. 43.3 mg/L), which were substantially higher than the drinking water quality standard (10 mg/L). These excess NO3- inputs in groundwater seem to be originated from the agricultural use of chemical fertilizers because major ions associated with fertilizers were significantly correlated with NO3-. It seems that major groundwater recharge event during monsoon season is highly probable from the analysis of δ18O and δD. The apparent groundwater age using 3H-3He and CFCs varies from 5 to 40 yrs although the study area is small (1 km2). For the samples showed large deficiency of 3He, the sensitivity analysis was performed using NOBLE 90 in an effort to quantify the degassed amount. Since nitrate sources are quite evenly distributed through the field site, groundwater ages from shallow aquifer is inversely correlated with the nitrate concentrations. Our result implies that the 3H-3He ratio can be a useful indicator of tracing the recharge pattern of groundwater but also the nitrate loading characteristic in a small scale agricultural area. Acknowlegments: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) and the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+)" in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.

  7. Groundwater use in Pakistan: opportunities and limitations

    International Nuclear Information System (INIS)

    Bhutta, M.N.

    2005-01-01

    Groundwater potential in the Indus Basin is mainly due to recharge from irrigation system, rivers and rainfall. Its quality and quantity varies spatially and temporally. However, the potential is linked with the surface water supplies. Irrigated agriculture is the major user of groundwater. Annual recharge to groundwater in the basin is estimated as 68 MAF. But 50 percent of the area has marginal to hazardous groundwater quality. Existing annual groundwater pumpage is estimated as 45 MAF (55 BCM). More than 13 MAF mainly of groundwater is lost as non-beneficial ET losses. Groundwater contributes 35 percent of total agricultural water requirements in the country. Annual cropping intensities have increased from 70% to 150% due to groundwater use. Increase in crop yield due to groundwater use has been observed 150-200. percent. Total investment on private tube wells has been made more than Rs.25.0 billion. In the areas where farmers are depending more on groundwater. mining of groundwater has been observed. Population pressure, inadequate supply of canal water and development of cheap local tub well technology have encouraged farmers to invest in the groundwater development. Deterioration of groundwater has also been observed due to excessive exploitation. The available information about the private tube wells is insufficient for different areas. Although during the past decade the growth of tube wells was tremendous but was not reflected accordingly in the statistics. Monitoring of groundwater quality is not done systematically and adequately. It is very difficult to manage a resource for which adequate information is not available. The present scenario of groundwater use is not sustainable and therefore certain measures are needed to be taken. It is recommended to. have a systematic monitoring of groundwater. For the sustainable use of groundwater, it is recommended to manage the demand of water i.e. grow more crops with less water. To achieve high productivity of

  8. Rapid determination of 239Pu in urine samples using molecular recognition technology product AnaLigRPu-02 gel

    International Nuclear Information System (INIS)

    Silvia Dulanska; Boris Remenec; Jan Bilohuscin; Miroslav Labaska; Bianka Horvathova; Andrej Matel

    2013-01-01

    This paper describes the use of IBC's AnaLig R Pu-02 molecular recognition technology product to effectively and selectively pre-concentrate, separate and recover plutonium from urine samples. This method uses two-stage column separations consisting of two different commercial products, Eichrom's Pre-filter Material and AnaLig R Pu-02 resin from IBC Advanced Technologies. By eliminating the co-precipitation techniques and the ashing steps to remove residual organics, the analysis time was reduced significantly. The method was successfully tested by adding known activities of reference solutions of 242 Pu and 239 Pu to urine samples. (author)

  9. Hoe Creek groundwater restoration, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  10. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  11. Immediate drop on demand technology (I-DOT) coupled with mass spectrometry via an open port sampling interface.

    Science.gov (United States)

    Van Berkel, Gary J; Kertesz, Vilmos; Boeltz, Harry

    2017-11-01

    The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7. The ability of the system to multiply charge and analyze macromolecules was demonstrated using the protein cytochrome c. This immediate drop on demand technology/open port sampling interface/ESI-MS combination allowed for the quantitative analysis of relatively small mass analytes and was used for the identification of macromolecules like proteins.

  12. Degradation of Nitrobenzene Using Bio-Reduced Fe-Clays: Progress Towards the Development of an in-situ Groundwater Remediation Technology

    Science.gov (United States)

    White, M. L.; Fialips, C. I.

    2008-12-01

    Clay minerals are widely used in agricultural, industrial and environmental engineering applications due to their specific physical and chemical properties and their high abundance in soils in sediments. Currently however, Fe-bearing clays are not widely exploited in these applied fields. Fe-rich smectites, such as nontronite, can contain up to 20wt% of Fe2O3 as structural Fe(III) and if a suitable electron donor is available, this Fe(III) can be utilized by Fe-reducing bacteria as a terminal electron acceptor. When reduced, the overall reactivity of Fe-smectites changes, particularly where interactions with water and various organic compounds are involved. For instance, the presence of reduced Fe-smectites has been found to induce the degradation of certain organic contaminants found in groundwaters and the subsurface, e.g. chlorinated aliphatics and nitroaromatic compounds. The goal of this study is to develop an in-situ groundwater remediation technology that targets redox- sensitive organics, in the form of a permeable Bio Fe-clay barrier. To achieve this, the iron-reducing bacterium Shewanella algae BrY was first used to reduce structural FeIII in <2micron fractions of the Fe- rich smectite nontronite (NAu-2, 41.74wt% Fe2O3) and a Fe-bearing montmorrillonite (Speeton Clay, Yorkshire, UK, ~8wt% Fe2O3). S. algae BrY was able to reduce structural FeIII within these clays to maximum Fe(II)/Fe(II)+Fe(III) ratios 0.34 and 0.19 for the nontronite and Speeton Clay, respectively, in the presence and absence of the electron shuttle, AQDS (9, 10-anthraquinone-2, 6-disulfonic acid). These results are novel because the capability of S. algae BrY to reduce structural Fe(III) in smectite clays has not previously been tested. Nitrobenzene was selected as the test redox-sensitive organic compound as it is a common subsurface contaminant and is of global ecotoxicological concern. To test the capability of bio- reduced Fe-clays to transform nitrobenzene to aniline (the less

  13. Correlation of BTEX levels and toxicity of condensate contaminated groundwater

    International Nuclear Information System (INIS)

    Headley, J.; Goudey, S.; Birkholz, D.; Hardisty, P.

    1995-01-01

    The concentration of BTEX was determined for 60 groundwater samples collected from 6 gas plants in Western Canada, using conventional purge-and-trap GC/MS procedures. The gas plants were selected to cover different types of operations with different amine process chemicals employed for the sweetening of the raw sour-gas condensates. Aliquots of the ground water samples were subjected to toxicity screening tests, specifically, (a) bacterial luminescence (microtox); (b) daphnia mortality and (c) fathead minnow mortality. For the toxicity tests, sample handling procedures were developed to minimize the loss of volatile organics during the experiments. To account for possible losses, the levels of BTEX were monitored at the start and upon completion of these tests. The results indicated that the toxicity of the groundwater was in general, well correlated to the concentration of BTEX (primarily xylene). Approximately 5% of the samples, however, were observed to be toxic although the concentration of BTEX were below the method detection limit (1 microg/1). Thiophenic volatile organics were implicated for the latter. Based on the laboratory results, the remediation of BTEX is expected to correlate with the removal of the toxicity of the groundwater. These findings are of direct relevance to present technologies employed for remediation of ground water at the Sourgas plants

  14. Geochemical studies of groundwater systems of semiarid Yola area ...

    African Journals Online (AJOL)

    This was to determine the process controlling the water chemistry and to assess the ... for the deep groundwater and Na+-Cl- for the surface water bodies. ... Groundwater samples from the shallow groundwater indicate pH values (6.10 to 7.08) ...

  15. Estimation of Ni63, Pu241, Pu242 and Am243 from Co60, Pu239, and Cm244 activities in groundwater samples

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1993-01-01

    The Part B Permit for F ampersand H Seepage Basins calls for analysis of several constituents of concern in groundwater monitoring wells. Four of these analytes are the radionuclides Ni 63 , Pu 241 , Pu 242 , and Am 243 . These are currently not being analyzed due to their very difficult, tedious analytical schemes coupled with their relatively low activity values. This report demonstrates how the activity value for Ni 63 , a week beta emitter, can be estimated from that of Co 60 , an easily detectable, high-energy gamma emitter. Similarly, estimates of Pu 241 , a beta emitter, and the alpha-emitting Pu 242 can be made from the activity value of the more easily detected Pu 239 . Am 243 can be estimated from the activity of Cm 244 , which is easier to detect because of a shorter half-life (higher specific activity) and the emission of higher energy alpha particles. These correlations are made under very specific parameters in order to ensure the validity of this approach. Therefore, assumptions must be established setting ground rules for establishing these activity relationships. Bases for these assumptions are explained and/or referenced. Their degree of uncertainty limits the accuracy of the data so that the term ''estimate'' is used. Such soundly-based, conservative estimates for these four rads can provide a tool for evaluating any hazards from their presence over the next several years. Hopefully, during this time, sufficient advances will be made in their radiochemical analyses and in counting techniques so that in the future, their activities may be quantitatively determined more easily and also more cost effectively

  16. Summary report on groundwater chemistry

    International Nuclear Information System (INIS)

    Lampen, P.; Snellman, M.

    1993-07-01

    The preliminary site investigations for radioactive waste disposal (in Finland) carried out by Teollisuuden Voima Oy (TVO) during the period 1987 to 1992 yielded data on hydrogeochemistry from a total 337 water samples. The main objective of the groundwater chemistry studies was to characterize groundwaters at the investigation sites and, specifically, to create a concept for the mean residence times and evolution of groundwater by means of isotopic analyses. Moreover, the studies yielded input data for geochemical modelling and the performance assessment. Samples were taken from deep boreholes (with a depth of 500 to 1000 m), percussion-drilled boreholes (depth approx. 200 m), flushing-water wells (approx. 100 m) and multi-level pietzometers (approx. 100 m) used in the hydrological tests. The water used for drilling the deep boreholes was taken from local flushing-water wells, whose water was also analyzed in detail. The flushing water used in drilling was marked with two tracers, iodine and uranine, analyzed with two different methods. For reference purposes, samples were also taken from surficial and groundwaters over a large area surrounding the investigation site. Precipitation over a period of at least one year was collected at all the five investigation sites and the samples were analyzed in great detail, particularly with regard to isotopes. Similarly, snow profile samples representing precipitation during the entire winter was taken from each site at least once

  17. Technology Demonstration of the Zero Emissions Chromium Electroplating System; Appendix I: CHPPM Report on Air Sampling

    National Research Council Canada - National Science Library

    Hay, K. J; Maloney, Stephen W; Cannon, John J; Phelps, Max R; Modrell, Jason

    2008-01-01

    This volume is an Appendix to the main report, Volume 1, which documents the demonstration of a technology developed by PRD, Inc, for control of chromium emissions during hard chromium electroplating...

  18. Groundwater Molybdenum from Emerging Industries in Taiwan.

    Science.gov (United States)

    Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long

    2016-01-01

    This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p industry and following wastewater batch treatment were 0.788 and 0.0326 mg/L, respectively. This indicates that wastewater containing Mo is a possible source of both groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.

  19. Groundwater response to heavy precipitation

    International Nuclear Information System (INIS)

    Waring, C.; Bradd, J.; Hankin, S.

    2003-05-01

    An investigation of the groundwater response to heavy rainfall at Lucas Heights Science and Technology Centre (LHSTC) is required under the conditions of Facility Licence F0001 for the ANSTO's Replacement Research Reactor. Groundwater continuous hydrograph monitoring has been used for this purpose. Hydrograph data from four boreholes are presented showing the rainfall recorded during the same period for comparison. The drought conditions have provided only limited cases where groundwater responded to a rainfall event. The characteristic response was local, caused by saturated soil contributing water directly to the borehole and the falling head as the water was redistributed into he aquifer in a few hours. Hydrograph data from borehole near the head of a gully showed that groundwater flow from the plateau to the gully produced a peak a fe days after the rainfall event and that the water level returned to its original level after about 10 days. The hydrograph data are consistent with an imperfect multi-layer groundwater flow regime, developed from earlier seismic and geophysical data, with decreasing rate of flow in each layer due to decreasing hydraulic conductivity with depth. The contrast in hydraulic conductivity between the thin permeable soil layer and the low permeable sandstone forms an effective barrier to vertical flow

  20. Advancement of Solidification Processing Technology Through Real Time X-Ray Transmission Microscopy: Sample Preparation

    Science.gov (United States)

    Stefanescu, D. M.; Curreri, P. A.

    1996-01-01

    Two types of samples were prepared for the real time X-ray transmission microscopy (XTM) characterization. In the first series directional solidification experiments were carried out to evaluate the critical velocity of engulfment of zirconia particles in the Al and Al-Ni eutectic matrix under ground (l-g) conditions. The particle distribution in the samples was recorded on video before and after the samples were directionally solidified. In the second series samples of the above two type of composites were prepared for directional solidification runs to be carried out on the Advanced Gradient Heating Facility (AGHF) aboard the space shuttle during the LMS mission in June 1996. X-ray microscopy proved to be an invaluable tool for characterizing the particle distribution in the metal matrix samples. This kind of analysis helped in determining accurately the critical velocity of engulfment of ceramic particles by the melt interface in the opaque metal matrix composites. The quality of the cast samples with respect to porosity and instrumented thermocouple sheath breakage or shift could be easily viewed and thus helped in selecting samples for the space shuttle experiments. Summarizing the merits of this technique it can be stated that this technique enabled the use of cast metal matrix composite samples since the particle location was known prior to the experiment.

  1. Electronic-nose technology using sputum samples in diagnosis of patients with tuberculosis

    NARCIS (Netherlands)

    Kolk, A.; Hoelscher, M.; Maboko, L.; Jung, J.; Kuijper, S.; Cauchi, M.; Bessant, C.; van Beers, S.; Dutta, R.; Gibson, T.; Reither, K.

    2010-01-01

    We investigated the potential of two different electronic noses (EN; code named "Rob" and "Walter") to differentiate between sputum headspace samples from tuberculosis (TB) patients and non-TB patients. Only samples from Ziehl-Neelsen stain (ZN)- and Mycobacterium tuberculosis culture-positive

  2. Assessing mixed trace elements in groundwater and their health risk of residents living in the Mekong River basin of Cambodia

    International Nuclear Information System (INIS)

    Phan, Kongkea; Phan, Samrach; Huoy, Laingshun; Suy, Bunseang; Wong, Ming Hung; Hashim, Jamal Hisham; Mohamed Yasin, Mohamed Salleh; Aljunid, Syed Mohamed; Sthiannopkao, Suthipong; Kim, Kyoung-Woong

    2013-01-01

    We investigated the potential contamination of trace elements in shallow Cambodian groundwater. Groundwater and hair samples were collected from three provinces in the Mekong River basin of Cambodia and analyzed by ICP-MS. Groundwater from Kandal (n = 46) and Kraite (n = 12) were enriched in As, Mn, Ba and Fe whereas none of tube wells in Kampong Cham (n = 18) had trace elements higher than Cambodian permissible limits. Risk computations indicated that 98.7% and 12.4% of residents in the study areas of Kandal (n = 297) and Kratie (n = 89) were at risk of non-carcinogenic effects from exposure to multiple elements, yet none were at risk in Kampong Cham (n = 184). Arsenic contributed 99.5%, 60.3% and 84.2% of the aggregate risk in Kandal, Kratie and Kampong Cham, respectively. Sustainable and appropriate treatment technologies must therefore be implemented in order for Cambodian groundwater to be used as potable water. -- Highlights: •We investigated the potential contamination of trace elements in Cambodian groundwater. •Residents of Kandal (98.7%) and Kratie (12.4%) were at risk of non-carcinogenic effects. •Significant positive correlation between As, Mn and Ba in groundwater and hair were found. -- Risk assessment indicated that 98.7% of residents in Kandal and 12.4% of Kratie study areas were at risk of non-carcinogenic effects of multiple elements in groundwater

  3. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  4. Laboratory electrical resistivity analysis of geologic samples from Fort Irwin, California: Chapter E in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Bloss, Benjamin R.; Bedrosian, Paul A.

    2015-01-01

    Correlating laboratory resistivity measurements with geophysical resistivity models helps constrain these models to the geology and lithology of an area. Throughout the Fort Irwin National Training Center area, 111 samples from both cored boreholes and surface outcrops were collected and processed for laboratory measurements. These samples represent various lithologic types that include plutonic and metamorphic (basement) rocks, lava flows, consolidated sedimentary rocks, and unconsolidated sedimentary deposits that formed in a series of intermountain basins. Basement rocks, lava flows, and some lithified tuffs are generally resistive (≥100 ohm-meters [Ω·m]) when saturated. Saturated unconsolidated samples are moderately conductive to conductive, with resistivities generally less than 100 Ω·m, and many of these samples are less than 50 Ω·m. The unconsolidated samples can further be separated into two broad groups: (1) younger sediments that are moderately conductive, owing to their limited clay content, and (2) older, more conductive sediments with a higher clay content that reflects substantial amounts of originally glassy volcanic ash subsequently altered to clay. The older sediments are believed to be Tertiary. Time-domain electromagnetic (TEM) data were acquired near most of the boreholes, and, on the whole, close agreements between laboratory measurements and resistivity models were found. 

  5. A Sample Application for Use of Biography in Social Studies; Science, Technology and Social Change Course

    Science.gov (United States)

    Er, Harun

    2017-01-01

    The aim of this study is to evaluate the opinions of social studies teacher candidates on use of biography in science, technology and social change course given in the undergraduate program of social studies education. In this regard, convergent parallel design as a mixed research pattern was used to make use of both qualitative and quantitative…

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, TETRATEC PTFE PRODUCTS, TETRATEX 6212 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  7. Life Science Research Sample Transfer Technology for On Orbit Analysis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — With retirement of the space shuttle program, microgravity researchers can no longer count on bringing experiment samples back to earth for post-flight analysis....

  8. Geophysical and geochemical characterisation of groundwater resources in Western Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Banda, Kawawa Eddy; Bauer-Gottwein, Peter

    Zambia’s rural water supply system depends on groundwater resources to a large extent. However, groundwater resources are variable in both quantity and quality across the country and a national groundwater resources assessment and mapping program is presently not in place. In the Machile area...... in South-Western Zambia, groundwater quality problems are particularly acute. Saline groundwater occurrence is widespread and affects rural water supply, which is mainly based on shallow groundwater abstraction using hand pumps. This study has mapped groundwater quality variations in the Machile area using...... both ground-based and airborne geophysical methods as well as extensive water quality sampling. The occurrence of saline groundwater follows a clear spatial pattern and appears to be related to the palaeo Lake Makgadikgadi, whose northernmost extension reached into the Machile area. Because the lake...

  9. New Technologies Being Developed for the Thermophoretic Sampling of Smoke Particulates in Microgravity

    Science.gov (United States)

    Sheredy, William A.

    2003-01-01

    The Characterization of Smoke Particulate for Spacecraft Fire Detection, or Smoke, microgravity experiment is planned to be performed in the Microgravity Science Glovebox Facility on the International Space Station (ISS). This investigation, which is being developed by the NASA Glenn Research Center, ZIN Technologies, and the National Institute of Standards and Technologies (NIST), is based on the results and experience gained from the successful Comparative Soot Diagnostics experiment, which was flown as part of the USMP-3 (United States Microgravity Payload 3) mission on space shuttle flight STS-75. The Smoke experiment is designed to determine the particle size distributions of the smokes generated from a variety of overheated spacecraft materials and from microgravity fires. The objective is to provide the data that spacecraft designers need to properly design and implement fire detection in spacecraft. This investigation will also evaluate the performance of the smoke detectors currently in use aboard the space shuttle and ISS for the test materials in a microgravity environment.

  10. Summary of chemical data from onsite and laboratory analyses of groundwater samples from the surficial aquifer, Las Vegas, Nevada, April and August 1993 and September 1994

    Science.gov (United States)

    Reddy, Michael M.; Gunther, Charmaine D.

    2012-01-01

    This report presents a summary of data collected during April and August 1993 and September 1994. These results are to be used as a wet-site analog to southern Nevada soils located at the Amargosa Desert Research Site near Beatty, Nevada. The samples were collected and analyzed in conjunction with the Nevada Basin and Range study unit of the U.S. Geological Survey, National Water-Quality Assessment Program (NAWQA).

  11. Spatial and statistical methods for correlating the interaction between groundwater contamination and tap water exposure in karst regions

    Science.gov (United States)

    Padilla, I. Y.; Rivera, V. L.; Macchiavelli, R. E.; Torres Torres, N. I.

    2016-12-01

    Groundwater systems in karst regions are highly vulnerable to contamination and have an enormous capacity to store and rapidly convey pollutants to potential exposure zones over long periods of time. Contaminants in karst aquifers used for drinking water purposes can, therefore, enter distributions lines and the tap water point of use. This study applies spatial and statistical analytical methods to assess potential correlations between contaminants in a karst groundwater system in northern Puerto Rico and exposure in the tap water. It focuses on chlorinated volatile organic compounds (CVOC) and phthalates because of their ubiquitous presence in the environment and the potential public health impacts. The work integrates historical data collected from regulatory agencies and current field measurements involving groundwater and tap water sampling and analysis. Contaminant distributions and cluster analysis is performed with Geographic Information System technology. Correlations between detection frequencies and contaminants concentration in source groundwater and tap water point of use are assessed using Pearson's Chi Square and T-Test analysis. Although results indicate that correlations are contaminant-specific, detection frequencies are generally higher for total CVOC in groundwater than tap water samples, but greater for phthalates in tap water than groundwater samples. Spatial analysis shows widespread distribution of CVOC and phthalates in both groundwater and tap water, suggesting that contamination comes from multiple sources. Spatial correlation analysis indicates that association between tap water and groundwater contamination depends on the source and type of contaminants, spatial location, and time. Full description of the correlations may, however, need to take into consideration variable anthropogenic interventions.

  12. Suitability of Groundwater Quality for Irrigation with Reference to ...

    African Journals Online (AJOL)

    Further, the Sodium Adsorption Ratio (SAR) for the both the groundwater and soil samples and Exchangeable Sodium Percentage (ESP) for the soil samples were also computed. Out of the analyzed 20 groundwater samples, 8 show EC values below 0.7 and the remaining between 0.71 and 1.12 dS/m, and pH values from ...

  13. Relationship of Shallow Groundwater Quality to Hydraulic Fracturing Activities in Antrim and Kalkaska Counties, MI

    Science.gov (United States)

    Stefansky, J. N.; Robertson, W. M.; Chappaz, A.; Babos, H.; Israel, S.; Groskreutz, L. M.

    2015-12-01

    Hydraulic fracturing (fracking) of oil and natural gas (O&G) wells is a widely applied technology that can increase yields from tight geologic formations. However, it is unclear how fracking may impact shallow groundwater; previous research into its effects has produced conflicting results. Much of the worry over potential impacts to water quality arises from concerns about the produced water. The water produced from O&G formations is often salty, contains toxic dissolved elements, and can be radioactive. If fracking activities cause or increase connectivity between O&G formations and overlying groundwater, there may be risks to aquifers. As one part of a groundwater quality study in Antrim and Kalkaska Counties, MI, samples were collected from the unconfined glacial aquifer (3-300 m thick) and produced water from the underlying Antrim formation, a shallow (180-670 m deep) natural gas producing black shale. Groundwater samples were collected between 200 to 10,000 m distance from producing Antrim gas wells and from a range of screened intervals (15-95 m). Samples were analyzed for major constituents (e.g., Br, Cl), pH, conductivity, and dissolved oxygen (DO). The specific conductance of groundwater samples ranged from 230-1020 μS/cm; DO ranged from 0.4-100% saturation. Preliminary results show a slight inverse correlation between specific conductance and proximity to producing Antrim wells. The observed range of DO saturation in glacial aquifer groundwater appears to be related to both screened depth of the water wells and proximity to Antrim wells. During sampling, some well owners expressed concerns about the effects of fracking on groundwater quality and reported odd smells and tastes in their water after O&G drilling occurred near their homes. The results of this study and reported observations provide evidence to suggest a potential hydrogeological connection between the Antrim formation and the overlying glacial aquifer in some locations; it also raises

  14. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination.

    Science.gov (United States)

    Pérez-Rodríguez, Michael; Pellerano, Roberto Gerardo; Pezza, Leonardo; Pezza, Helena Redigolo

    2018-05-15

    Tetracyclines are widely used for both the treatment and prevention of diseases in animals as well as for the promotion of rapid animal growth and weight gain. This practice may result in trace amounts of these drugs in products of animal origin, such as milk and eggs, posing serious risks to human health. The presence of tetracycline residues in foods can lead to the transmission of antibiotic-resistant pathogenic bacteria through the food chain. In order to ensure food safety and avoid exposure to these substances, national and international regulatory agencies have established tolerance levels for authorized veterinary drugs, including tetracycline antimicrobials. In view of that, numerous sensitive and specific methods have been developed for the quantification of these compounds in different food matrices. One will note, however, that the determination of trace residues in foods such as milk and eggs often requires extensive sample extraction and preparation prior to conducting instrumental analysis. Sample pretreatment is usually the most complicated step in the analytical process and covers both cleaning and pre-concentration. Optimal sample preparation can reduce analysis time and sources of error, enhance sensitivity, apart from enabling unequivocal identification, confirmation and quantification of target analytes. The development and implementation of more environmentally friendly analytical procedures, which involve the use of less hazardous solvents and smaller sample sizes compared to traditional methods, is a rapidly increasing trend in analytical chemistry. This review seeks to provide an updated overview of the main trends in sample preparation for the determination of tetracycline residues in foodstuffs. The applicability of several extraction and clean-up techniques employed in the analysis of foodstuffs, especially milk and egg samples, is also thoroughly discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample.

    Directory of Open Access Journals (Sweden)

    Chengwei Luo

    Full Text Available Next-generation sequencing (NGS is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage correlated highly between the two platforms (R(2>0.9. Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.

  16. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample.

    Science.gov (United States)

    Luo, Chengwei; Tsementzi, Despina; Kyrpides, Nikos; Read, Timothy; Konstantinidis, Konstantinos T

    2012-01-01

    Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R(2)>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.

  17. Demonstrating practical application of soil and groundwater clean-up and recovery technologies at natural gas processing facilities: Bioventing, air sparging and wetlands remediation

    International Nuclear Information System (INIS)

    Moore, B.

    1996-01-01

    This issue of the project newsletter described the nature of bioventing, air sparging and wetland remediation. It reviewed their effectiveness in remediating hydrocarbon contaminated soil above the groundwater surface. Bioventing was described as an effective, low cost treatment in which air is pumped below ground to stimulate indigenous bacteria. The bacteria then use the oxygen to consume the hydrocarbons, converting them to CO 2 and water. Air sparging involves the injection of air below the groundwater surface. As the air rises, hydrocarbons are stripped from the contaminated soil and water. The advantage of air sparging is that it cleans contaminated soil and water from below the groundwater surface. Hydrocarbon contamination of wetlands was described as fairly common. Conventional remediation methods of excavation, trenching, and bellholes to remove contamination often cause extreme harm to the ecosystem. Recent experimental evidence suggests that wetlands may be capable of attenuating contaminated water through natural processes. Four hydrocarbon contaminated wetlands in Alberta are currently under study. Results to date show that peat's high organic content promotes sorption and biodegradation and that some crude oil spills can been resolved by natural processes. It was suggested that assuming peat is present, a good clean-up approach may be to contain the contaminant source, monitor the lateral and vertical extent of contamination, and wait for natural processes to resolve the problem. 3 figs

  18. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  19. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  20. Current status of JAERI program on development of ultra-trace-analytical technology for safeguards environmental samples

    International Nuclear Information System (INIS)

    Adachi, T.; Usuda, S.; Watanabe, K.

    2001-01-01

    Full text: In order to contribute to the strengthened safeguards system based on the Program 93+2 of the IAEA, Japan Atomic Energy Research Institute (JAERI) is developing analytical technology for ultra-trace amounts of nuclear materials in environmental samples, and constructed the CLEAR facility (Clean Laboratory for Environmental Analysis and Research) for this purpose. The development of the technology is carried out, at existing laboratories for time being, in the following fields: screening, bulk analysis and particle analysis. The screening aims at estimating the amounts of nuclear materials in environmental samples to be introduced into the clean rooms, and is the first step to avoid cross-contamination among the samples and contamination of the clean rooms themselves. In addition to ordinary radiation spectrometry, Compton suppression technique was applied to low energy γ- and X-ray measurements, and sufficient reduction in background level has been demonstrated. Another technique in examination is imaging-plate method, which is a kind of autoradiography and suitable for determination of radioactive-particle distribution in the samples as well as for semiquantitative determination. As for the bulk analysis, the efforts are temporally made on uranium in swipe samples. Preliminary examination for optimization of sample pre-treatment conditions is in progress. At present, ashing by low-temperature-plasma method gives better results than high-temperature ashing or acid leaching. For the isotopic ratio measurement, instrumental performance of inductively-coupled plasma mass spectrometry (ICP-MS) are mainly examined because sample preparation for ICP-MS is simpler than that for thermal ionization mass spectrometry (TIMS). It was found by our measurement that the swipe material (TexWipe TX304, usually used by IAEA) contains un-negligible uranium blank with large deviation (2-6 ng/sheet). This would introduce significant uncertainty in the trace analysis. JAERI

  1. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  2. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    International Nuclear Information System (INIS)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-01-01

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ"3"7Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water. • Groundwater

  3. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  4. Geochemical Investigations of Groundwater Stability

    International Nuclear Information System (INIS)

    Bath, Adrian

    2006-05-01

    palaeohydrogeological conditions. It is likely that inland areas have had longer durations of post-glacial fresh water infiltration than coastal areas, possibly causing greater degrees of dilution and dispersion of preexisting groundwaters and thus overprinting their hydrochemical and isotopic 'fingerprints'. Lower post-glacial hydraulic gradients relative to inland sites may account for the occurrence of more relict cold-climate water at coastal sites. Some general observations are based on rather thin evidence and therefore speculative. Firstly, it seems that glacial melt water penetrated many hundreds of metres and in some places to at least 1,000 m depth. However the low remaining proportions of melt water and of much older saline Shield water suggest that melt water flux did not fully displace pre-existing groundwaters at these depths. Secondly, where there has been post-glacial infiltration of palaeo-Baltic sea water, the density stratification or compartmentalisation effect coupled with low hydraulic gradient has reduced rates of subsequent fresh water circulation after shoreline recession. There are many uncertainties in interpreting these geochemical indicators in terms of the penetration depths of glacial melt waters and the degree to which they replace preexisting groundwaters, of other aspects of groundwater stability, and of comparisons between inland and coastal groundwater systems. Uncertainties derive partly from the reliability of groundwater samples as being representative of in situ conditions, and partly from the non-uniqueness of interpretative models. Future investigations using these approaches need to improve sampling, to make conjunctive use of geochemical and isotopic indicators which have varying timescales and sensitivities, and to integrate these indicators with palaeohydrogeological modelling to support the development of reliable groundwater flow and solute transport models for Performance Assessment

  5. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    local palaeohydrogeological conditions. It is likely that inland areas have had longer durations of post-glacial fresh water infiltration than coastal areas, possibly causing greater degrees of dilution and dispersion of preexisting groundwaters and thus overprinting their hydrochemical and isotopic 'fingerprints'. Lower post-glacial hydraulic gradients relative to inland sites may account for the occurrence of more relict cold-climate water at coastal sites. Some general observations are based on rather thin evidence and therefore speculative. Firstly, it seems that glacial melt water penetrated many hundreds of metres and in some places to at least 1,000 m depth. However the low remaining proportions of melt water and of much older saline Shield water suggest that melt water flux did not fully displace pre-existing groundwaters at these depths. Secondly, where there has been post-glacial infiltration of palaeo-Baltic sea water, the density stratification or compartmentalisation effect coupled with low hydraulic gradient has reduced rates of subsequent fresh water circulation after shoreline recession. There are many uncertainties in interpreting these geochemical indicators in terms of the penetration depths of glacial melt waters and the degree to which they replace preexisting groundwaters, of other aspects of groundwater stability, and of comparisons between inland and coastal groundwater systems. Uncertainties derive partly from the reliability of groundwater samples as being representative of in situ conditions, and partly from the non-uniqueness of interpretative models. Future investigations using these approaches need to improve sampling, to make conjunctive use of geochemical and isotopic indicators which have varying timescales and sensitivities, and to integrate these indicators with palaeohydrogeological modelling to support the development of reliable groundwater flow and solute transport models for Performance Assessment.

  6. Groundwater mapping program in Denmark - Exemplified by a 450 km2 area in Jutland, Denmark

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Thomsen, Peter

    Due to an ambitious groundwater mapping programme in Denmark the consultancy company Ramboll has attained expertise and technologies for surveying, integrated water resources modelling and decision making systems. The groundwater mapping programme was initiated in 1998 when the Danish Government...

  7. [On the use of FTA technology for collection, archieving, and molecular analysis of microsporidia dna from clinical stool samples].

    Science.gov (United States)

    Sokolova, O I; Dem'ianov, A V; Bovers, L S; Did'e, E S; Sokolova, Iu Ia

    2011-01-01

    The FTA technology was applied for sampling, archiving, and molecular analysis of the DNA isolated from stool samples to diagnose and identify microsporidia, the intracellular opportunistic parasites which induce malabsortion syndrome in immunosuppressed humans, particularly in patients with AIDS. Microsporidia DNA was successfully amplified in 6 of 50 stool samples of HIV-positive patients of the S. P. Botkin Memorial Infectious Disease Hospital (St. Petersburg) applied to FTA cards (FTA-Cars, Whatman Inc. Florham Park, NJ, USA). Amplicons (the fragments of rDNA) were directly sequenced, and microsporidia species--Encephalitozoon intestinalis, E. cuniculi, E. hellem, and Enterocytozoon bieneusi--were identified in Genbank by NCBI BLAST program. The FTA method of DNA immobilization is especially promising for epidemiological and field population studies which involve genotyping of microsporidia species and isolates.

  8. X-ray fluorescence analysis of low concentrations metals in geological samples and technological products

    Science.gov (United States)

    Lagoida, I. A.; Trushin, A. V.

    2016-02-01

    For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.

  9. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review

    International Nuclear Information System (INIS)

    Helsen, Lieve

    2005-01-01

    Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices. - Submicron arsenic fumes are difficult to control in conventional air pollution control devices

  10. Utility of Cytospin and Cell block Technology in Evaluation of Body Fluids and Urine Samples: A Comparative Study.

    Science.gov (United States)

    Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A; Chauhan, Sunanda

    2018-01-01

    Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material.

  11. Groundwater well services site safety and health plan

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1996-08-01

    This Site Specific Health and Safety Plan covers well servicing in support of the Environmental Restoration Contractor Groundwater Project. Well servicing is an important part of environmental restoration activities supporting several pump and treat facilities and assisting in evaluation and servicing of various groundwater wells throughout the Hanford Site. Remediation of contaminated groundwater is a major part of the ERC project. Well services tasks help enhance groundwater extraction/injection as well as maintain groundwater wells for sampling and other hydrologic testing and information gathering

  12. Evaluation of the impact energy of the samples produced by the additive manufacturing technology

    Directory of Open Access Journals (Sweden)

    J. Dobránsky

    2016-07-01

    Full Text Available The article covered the evaluation of the impact energy, notch toughness and morphology of the fracture surfaces of the specimens manufactured by the Direct Metal Laser Sintering Technology. Specimens without heat treatment with no notch were not broken through in course of testing, therefore there was no fracture surface present. The heat treatment resulted in the increase in hardness values. The values of impact energy after the heat treatment was approximately 60 % lower. Ductile intergranular fracture with more or less segmented dimple morphology appeared in every specimen. At places where the internal plastic bond was resisting the test, cracks remaining after particles broke away from the surface can be seen as craters.

  13. Groundwater monitoring program evaluation For A/M Area, Savannah River Site

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Bollinger, J.S.

    1996-01-01

    This investigation was undertaken with the primary purpose of assessing the groundwater monitoring program within the A/M Area to identify ways in which the monitoring program could be improved. The task was difficult due to the large number of wells located within the A/M Area and the huge database of analytical data. It was recognized early in this investigation that one of the key tasks was to develop a way to gain access to the groundwater databases so that recommendations could be made. To achieve this, geographic information systems (GIS) technology was used to extract pertinent groundwater quality information from the Geochemical Information Management System (GIMS) groundwater database and display the extracted information spatially. GIS technology was also used to determine the location of well screen and annular material zones within the A/M Area hydrostratigraphy and to identify wells that may breach confining units. Recommendations developed from this study address: (1) wells that may not be providing reliable data but continue to be routinely sampled (2) wells that may be inappropriately located but continue to be routinely sampled and (3) further work that should be undertaken, including well development, evaluation of wells that may be breaching confining units, and development of an automated link to GIMS using GIS so that GIMS data can easily be accessed and displayed geographically

  14. Halon-1301, a new Groundwater Age Tracer

    Science.gov (United States)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  15. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China.

    Science.gov (United States)

    Li, Xiaohua; Liu, Chong; Chen, Yongxing; Huang, Hongkun; Ren, Tianzhi

    2018-04-01

    A survey was conducted in regions of North China to better understand the effect of antibiotic residue pollution from swine feedlots to nearby groundwater environment. A total of nine experimental sites located in the regions of Beijing, Hebei, and Tianjin were selected to analyze the presence of residues of 11 most commonly used antibiotics, including tetracyclines (TCs), fluoroquinolones (FQNs), sulfonamides (SAs), macrolides, and fenicols, by using liquid chromatography spectrometry. The three most common antibiotics were TCs, FQNs, and SAs, with mean concentrations of 416.4, 228.8, and 442.4 μg L -1 in wastewater samples; 19.9, 11.8, and 0.3 μg L -1 in groundwater samples from swine feedlots; and 29.7, 14.0, and 0 μg L -1 in groundwater samples from villages. Ordination analysis revealed that the composition and distribution of antibiotics and antibiotic resistance genes (AGRs) were similar in groundwater samples from swine feedlots and villages. FQNs and TCs occurred along the path from wastewater to groundwater at high concentrations and showed correlations with ARGs, with a strong correlation between FQN resistance gene (qnrA) copy number. FQN concentration was also found (P swine feedlots through wastewater could disseminate into surrounding groundwater environments together with ARG occurrence (i.e., qnrA, sulI, sulII, tetG, tetM, and tetO). Overall, this study suggests that the spread of veterinary antibiotics from swine feedlots to groundwater environments should be highly attended and controlled by restricting excess antibiotic usage or improving the technology of manure management.

  16. Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides.

    Science.gov (United States)

    Zhao, Fengnian; Wang, Shanshan; She, Yongxin; Zhang, Chao; Zheng, Lufei; Jin, Maojun; Shao, Hua; Jin, Fen; Du, Xinwei; Wang, Jing

    2017-09-15

    A selective, environmentally friendly, and cost-effective sample extraction method based on a combination of subcritical water extraction (SWE) and molecularly imprinted solid-phase extraction (MISPE) was developed for the determination of eight triazine herbicides in soil samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In SWE, the highest extraction yields of triazine herbicides were obtained under 150°C for 15min using 20% ethanol as the organic modifier. Addition of MIP during SWE increased the extraction efficiency, and using MIP as a selective SPE sorbent improved the enrichment capability. Soil samples were treated with the optimized extraction MIP/SWE-MISPE method and analyzed by LC-MS/MS. The novel technique was then applied to soil samples for the determination of triazine herbicides, and better recoveries (78.9%-101%) were obtained compared with using SWE-MISPE (30%-67%). Moreover, this newly developed method displayed good linearity (R 2 >0.99) and precision (2.7-9.8%), and low enough detection limits (0.4-3.3μgkg -1 ). This combination of SWE and MIP technology is a simple, effective and promising method to selectively extract class-specific compounds in complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup

    2012-01-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a ...... down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%)....

  18. Ecology and living conditions of groundwater fauna

    International Nuclear Information System (INIS)

    Thulin, Barbara; Hahn, Hans Juergen

    2008-09-01

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  19. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara [Geo Innova AB (Sweden); Hahn, Hans Juergen [Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany)

    2008-09-15

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  20. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    in the United States. Previously published digital data relating to brackish groundwater resources were limited to a small number of State- and regional-level studies. Data sources for this assessment ranged from single publications to large datasets and from local studies to national assessments. Geochemical data included concentrations of dissolved solids, major ions, trace elements, nutrients, and radionuclides as well as physical properties of the water (pH, temperature, and specific conductance). Additionally, the database provides selected well information (location, yield, depth, and contributing aquifer) necessary for evaluating the water resource.The assessment was divided into national-, regional-, and aquifer-scale analyses. National-scale analyses included evaluation of the three-dimensional distribution of observed dissolved-solids concentrations in groundwater, the three-dimensional probability of brackish groundwater occurrence, and the geochemical characteristics of saline (greater than or equal to 1,000 mg/L of dissolved solids) groundwater resources. Regional-scale analyses included a summary of the percentage of observed grid cell volume in the region that was occupied by brackish groundwater within the mixture of air, water, and rock for multiple depth intervals. Aquifer-scale analyses focused primarily on four regions that contained the largest amounts of observed brackish groundwater and included a generalized description of hydrogeologic characteristics from previously published work; the distribution of dissolved-solids concentrations; considerations for developing brackish groundwater resources, including a summary of other chemical characteristics that may limit the use of brackish groundwater and the ability of sampled wells producing brackish groundwater to yield useful amounts of water; and the amount of saline groundwater being used in 2010.

  1. APPLICATION OF SPATIAL MODELLING APPROACHES, SAMPLING STRATEGIES AND 3S TECHNOLOGY WITHIN AN ECOLGOCIAL FRAMWORK

    Directory of Open Access Journals (Sweden)

    H.-C. Chen

    2012-07-01

    Full Text Available How to effectively describe ecological patterns in nature over broader spatial scales and build a modeling ecological framework has become an important issue in ecological research. We test four modeling methods (MAXENT, DOMAIN, GLM and ANN to predict the potential habitat of Schima superba (Chinese guger tree, CGT with different spatial scale in the Huisun study area in Taiwan. Then we created three sampling design (from small to large scales for model development and validation by different combinations of CGT samples from aforementioned three sites (Tong-Feng watershed, Yo-Shan Mountain, and Kuan-Dau watershed. These models combine points of known occurrence and topographic variables to infer CGT potential spatial distribution. Our assessment revealed that the method performance from highest to lowest was: MAXENT, DOMAIN, GLM and ANN on small spatial scale. The MAXENT and DOMAIN two models were the most capable for predicting the tree's potential habitat. However, the outcome clearly indicated that the models merely based on topographic variables performed poorly on large spatial extrapolation from Tong-Feng to Kuan-Dau because the humidity and sun illumination of the two watersheds are affected by their microterrains and are quite different from each other. Thus, the models developed from topographic variables can only be applied within a limited geographical extent without a significant error. Future studies will attempt to use variables involving spectral information associated with species extracted from high spatial, spectral resolution remotely sensed data, especially hyperspectral image data, for building a model so that it can be applied on a large spatial scale.

  2. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    Lichtman, S.

    1988-01-01

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  3. Extension of Studies with 3M Empore TM and Selentec MAG *SEP SM Technologies for Improved Radionuclide Field Sampling

    International Nuclear Information System (INIS)

    Beals, D.M.; Bibler, J.P.; Brooks, D.A.

    1996-01-01

    The Savannah River Technology Center is evaluating new field sampling methodologies to more easily determine concentrations of radionuclides in aqueous systems. One methodology studied makes use of 3M EmporeTM disks. The disks are composed of selective resins embedded in a Teflon support. The disks remove the ion of interest from aqueous solutions when the solution is passed through the disk. The disk can then be counted directly to quantify the isotope of interest. Four types of disks were studied during this work: for the extraction of technetium (two types), cesium, plutonium, and strontium. A sampler has been developed for automated, unattended, in situ use of the EmporeTM disks

  4. Extension of Studies with 3M Empore TM and Selentec MAG *SEP SM Technologies for Improved Radionuclide Field Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Beals, D.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bibler, J.P.; Brooks, D.A.

    1996-07-10

    The Savannah River Technology Center is evaluating new field sampling methodologies to more easily determine concentrations of radionuclides in aqueous systems. One methodology studied makes use of 3M EmporeTM disks. The disks are composed of selective resins embedded in a Teflon support. The disks remove the ion of interest from aqueous solutions when the solution is passed through the disk. The disk can then be counted directly to quantify the isotope of interest. Four types of disks were studied during this work: for the extraction of technetium (two types), cesium, plutonium, and strontium. A sampler has been developed for automated, unattended, in situ use of the EmporeTM disks.

  5. Deep groundwater chemistry

    International Nuclear Information System (INIS)

    Wikberg, P.; Axelsen, K.; Fredlund, F.

    1987-06-01

    Starting in 1977 and up till now a number of places in Sweden have been investigated in order to collect the necessary geological, hydrogeological and chemical data needed for safety analyses of repositories in deep bedrock systems. Only crystalline rock is considered and in many cases this has been gneisses of sedimentary origin but granites and gabbros are also represented. Core drilled holes have been made at nine sites. Up to 15 holes may be core drilled at one site, the deepest down to 1000 m. In addition to this a number of boreholes are percussion drilled at each site to depths of about 100 m. When possible drilling water is taken from percussion drilled holes. The first objective is to survey the hydraulic conditions. Core drilled boreholes and sections selected for sampling of deep groundwater are summarized. (orig./HP)

  6. The Effects of Leachate on Groundwater in Ota Industrial Area ...

    African Journals Online (AJOL)

    Compositions of landfill leachate and groundwater pollution were studied at industrial sites landfill, which are located at Ota, Nigeria. The leachate was sampled at 5 different locations at the landfill, and at 15 and 20 m downstream of the landfill. Groundwater samples were collected from 10 different sources to study the ...

  7. Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy

    International Nuclear Information System (INIS)

    Bhattacharyya, Jessica; Read, David; Amos, Sean; Dooley, Stephen; Killham, Kenneth; Paton, Graeme I.

    2005-01-01

    Shallow groundwater beneath a former airfield site in southern England has been heavily contaminated with a wide range of chlorinated solvents. The feasibility of using bacterial biosensors to complement chemical analysis and enable cost-effective, and focussed sampling has been assessed as part of a site evaluation programme. Five different biosensors, three metabolic (Vibrio fischeri, Pseudomonas fluorescens 10568 and Escherichia coli HB101) and two catabolic (Pseudomonas putida TVA8 and E. coli DH5α), were employed to identify areas where the availability and toxicity of pollutants is of most immediate environmental concern. The biosensors used showed different sensitivities to each other and to the groundwater samples tested. There was generally a good agreement with chemical analyses. The potential efficacy of remediation strategies was explored by coupling sample manipulation to biosensor tests. Manipulation involved sparging and charcoal treatment procedures to simulate remediative engineering solutions. Sparging was sufficient at most locations. - Luminescent bacteria complement chemical analysis and support remediation technology

  8. Amostra mestra e geoprocessamento: tecnologias para inquéritos domiciliares Master sample and geoprocessing: technologies for household surveys

    Directory of Open Access Journals (Sweden)

    Nilza Nunes da Silva

    2003-08-01

    census enumeration areas in several epidemiological surveys using updated information from the National Survey of Households (PNAD. METHODS: Address data file comprising 72 census enumeration areas was kept as primary sampling units for the city of São Paulo. During the period 1995-2000, three distinct household samples were drawn using the two-stage cluster sampling procedure. Geographic Information System (GIS technology allowed delimiting boundaries, blocks and streets for any primary sampling unit and printing updated maps for selected sub-samples. RESULTS: Twenty-five thousand dwellings made up the permanent address data file of the master sample. A cheaper and quicker selection of each sample, plus gathering information on demographic and topographical profiles of census enumeration areas were the main contribution of the study results. CONCLUSIONS: The master sample concept, integrated with GIS technology, is an advantageous alternative sampling design for household surveys in urban areas. Using the list of addresses from the PNAD updated yearly, although limiting its application to the most populated Brazilian cities, avoids the need of creating an independent sampling procedure for each individual survey carried out in the period between demographic censuses, and it is an important contribution for planning sampling surveys in public health.

  9. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    Science.gov (United States)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  10. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  11. Petrol contaminated groundwater treatment with air-stripper in Balassagyarmat, Hungary

    International Nuclear Information System (INIS)

    Szabo, Peter; Bernath, Balazs

    2005-01-01

    Hydrocarbon contaminated groundwater is a common environmental problem in Hungary. Leakage of underground storage tanks, pipe break or illegal tapping as well as lorry accidents can be mentioned as main reasons. MEGATERRA Ltd. elaborated, adopted and tested several groundwater clean-up methods. These methods are based on detailed survey and investigation, sampling and analysis, delineation of contaminated groundwater, risk assessment, establishment of monitoring wells, pumping tests and remediation action plan. One of these methods was implemented by MEGATERRA Ltd. in Balassagyarmat, Hungary. Contamination source was a 10 m 3 vol. simple wall underground fuel-storage tank, which had been emptied. When the remediation started in April 1998, the petrol had already been accumulated on the ground water table forming a 5-7 m wide and 10-15 m long plume being expanded to SSE-NNW direction. The area of the dissolved hydrocarbon contaminated groundwater-body was 1 000 m 2 and its concentration reached up to 30-40 mg/l TPH. The free-phase hydrocarbon layer was 10 cm thick. For the remediation of contaminated groundwater MEGATERRA Ltd. applied pump and treat method, namely groundwater pumping using extraction well, skimming of free-phase hydrocarbon, stripping of the contaminated ground water in air-stripper tower and draining of the treated groundwater into a drainage ditch. In the centre of the plume we established an extraction well with 300 mm diameter in a 500 mm borehole. Peristaltic skimmer pump was used inside the extraction well to remove the free phase petrol from the ground water surface.Because of the intense volatility of the pollutant we applied aeration (stripping) technology. The extracted contaminated groundwater was cleaned in air-stripper equipment being able to eliminate efficiently the volatile pollutants from the water. The aeration tower is a compact cylindrical shaped column with 650 mm in diameter. Its height depends on the pollutant's type The

  12. Environmental implementation plan: Chapter 7, Groundwater protection

    International Nuclear Information System (INIS)

    Wells, D.

    1994-01-01

    The Savannah River Site (SRS) uses large quantities of groundwater for drinking, processing, and non-contact cooling. Continued industrial and residential growth along with additional agricultural irrigation in areas adjacent to SRS will increase the demand for groundwater. This increasing demand will require a comprehensive management system to ensure the needed quality and quantity of groundwater is available for all users. The Groundwater Protection Program and the Waste Management Program establish the overall framework for protecting this resource. Ground water under SRS is monitored extensively for radiological, hazardous, and water quality constituents. Groundwater quality is known to have been affected at 33 onsite locations, but none of the contaminant plumes have migrated offsite. Onsite and offsite drinking water supplies are monitored to ensure they are not impacted. The site has more than 1800 monitoring wells from which groundwater samples are analyzed for radiological and non-radiological constituents. SRS is complying with all applicable regulations related to groundwater protection, waste treatment, and waste disposal. The existing waste storage facilities are permitted or are being permitted. Existing hazardous- and mixed-waste storage facilities are being included in the site Resource Conservation and Recovery Act (RCRA) Part B Permit. Part B permitting has been initiated for many of the planned hazardous- and mixed-waste treatment and disposal facilities

  13. Geochemical controls on groundwater chemistry in shales

    International Nuclear Information System (INIS)

    Von Damm, K.L.

    1989-01-01

    The chemistry of groundwaters is one of the most important parameters in determining the mobility of species within a rock formation. A three pronged approach was used to determine the composition of, and geochemical controls, on groundwaters specifically within shale formations: (1) available data were collected from the literature, the US Geological Survey WATSTORE data base, and field sampling, (2) the geochemical modeling code EQ3/6 was used to simulate interaction of various shales and groundwaters, and (3) several types of shale were reacted with synthetic groundwaters in the laboratory. The comparison of model results to field and laboratory data provide a means of validating the models, as well as a means of deconvoluting complex field interactions. Results suggest that groundwaters in shales have a wide range in composition and are primarily of the Na-Cl-HCO 3 - type. The constancy of the Na:Cl (molar) ratio at 1:1 and the Ca:Mg ratio from 3:1 to 1:1 suggests the importance of halite and carbonates in controlling groundwater compositions. In agreement with the reaction path modeling, most of the groundwaters are neutral to slightly alkaline at low temperatures. Model and experimental results suggest that reaction (1) at elevated temperatures, or (2) in the presence of oxygen will lead to more acidic conditions. Some acetate was found to be produced in the experiments; depending on the constraints applied, large amounts of acetate were produced in the model results. 13 refs., 1 tab

  14. Quarterly RCRA Groundwater Monitoring Data for the Period April Through June 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.

    2006-11-01

    This report provides information about RCRA groundwater monitoring for the period April through June 2006. Seventeen RCRA sites were sampled during the reporting quarter. Sampled sites include seven monitored under groundwater indicator evaluation (''detection'') programs, eight monitored under groundwater quality assessment programs, and two monitored under final-status programs.

  15. Groundwater remediation at the Hanford site

    International Nuclear Information System (INIS)

    Fries, W.

    1993-01-01

    Ion exchange resin and adsorption technology has been used successfully to treat diversified types of toxic waste water for many years. Even though the Hanford Site presents many unique problems, the author believes these technologies can remediate the groundwater at this site. However, treatment of the sludge in tanks generally is beyond the pale of these technologies except for the possibility of experimental studies being performed at the University of Idaho (Troescher)

  16. Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles

    Science.gov (United States)

    Le Brocque, Andrew F.; Kath, Jarrod; Reardon-Smith, Kathryn

    2018-06-01

    Chronic groundwater decline is a concern in many of the world's major agricultural areas. However, a general lack of accurate long-term in situ measurement of groundwater depth and analysis of trends prevents understanding of the dynamics of these systems at landscape scales. This is particularly worrying in the context of future climate uncertainties. This study examines long-term groundwater responses to climate variability in a major agricultural production landscape in southern Queensland, Australia. Based on records for 381 groundwater bores, we used a modified Mann-Kendall non-parametric test and Sen's slope estimator to determine groundwater trends across a 26-year period (1989-2015) and in distinct wet and dry climatic phases. Comparison of trends between climatic phases showed groundwater level recovery during wet phases was insufficient to offset the decline in groundwater level from the previous dry phase. Across the entire 26-year sampling period, groundwater bore levels (all bores) showed an overall significant declining trend (p 0.05). Spatially, both declining and rising bores were highly clustered. We conclude that over 1989-2015 there is a significant net decline in groundwater levels driven by a smaller subset of highly responsive bores in high irrigation areas within the catchment. Despite a number of targeted policy interventions, chronic groundwater decline remains evident in the catchment. We argue that this is likely to continue and to occur more widely under potential climate change and that policy makers, groundwater users and managers need to engage in planning to ensure the sustainability of this vital resource.

  17. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  18. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities

    KAUST Repository

    Hong, Pei-Ying; Yannarell, A. C.; Dai, Q.; Ekizoglu, M.; Mackie, R. I.

    2013-01-01

    This study aimed to determine if biotic contaminants originating from pig production farms are disseminated into soil and groundwater microbial communities. A spatial and temporal sampling of soil and groundwater in proximity to pig production farms

  19. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  20. Groundwater vulnerability to pollution mapping of Ranchi district using GIS

    Science.gov (United States)

    Krishna, R.; Iqbal, J.; Gorai, A. K.; Pathak, G.; Tuluri, F.; Tchounwou, P. B.

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D), net recharge ( R), aquifer media ( A), soil media ( S), topography or slope ( T), impact of vadose zone ( I) and hydraulic Conductivity( C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  1. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    Science.gov (United States)

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D ), net recharge ( R ), aquifer media ( A ), soil media ( S ), topography or slope ( T ), impact of vadose zone ( I ) and hydraulic Conductivity( C )] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  2. Results of sampling and analysis of groundwater from multi-packered boreholes OL-KR1, OL-KR3, OL-KR5, OL-KR9, OL-KR11 and OL-KR12 at Olkiluoto, Eurajoki, in 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, H. [Teollisuuden Voima Oyj, Eurajoki (Finland); Hatanpaeae, E. [lnsinoeoeritoimisto Paavo Ristola Oy, Hollola (Finland)

    2005-12-15

    Nine groundwater samples were collected at Olkiluoto from deep multi-packered boreholes OL-KR1, OL-KR3, OL-KR5, OL-KR9, OL-KR11 and OL-KR12 between spring 2004 and the beginning of 2005. The aim of the ground water sampling was to get information for the basis of the monitoring program (OMO) during ONKALO construction. Sampling sections were mainly chosen so that the results of the chemical analyses from earlier studies could be used for comparison. This study presents the sampling methods and the results of the laboratory analyses of groundwater samples from the deep multi-packered boreholes OL-KR1 (151.2-156.8 m, 311.2-336.8 m and 524.4-528.4 m), OL-KR3 (242.6-253.2 m), OL-KR5 (277.2-284.6 m and 457.2-476.2 m), OL-KR9 (468.2-482.2 m), OL-KR11 (597.5-628.1 m) and OLKR12 (363-368 m). The analytical results of the groundwater samplings are compared to earlier analytical results. According to Davis and De Wiest's (1967) classification, the collected groundwater samples represent either the borehole water type Na-Cl (OL-KR1/T/151.2-156.8 m, OLK-R1/ T/311.2-336.8 m, OL-KR3/T/242.6-253.2 m, OL-KR5/T/277.2-284.6 m, OL-KR11/ T/597.5-628.1 m and OL-KR12/T/363-368 m) or Na-Ca-Cl (OL-KR1/T/524.4- 528.4 m, OL-KR5/T/457.2-476.2 m and OL-KR9/T/468.2-482.2 m). The groundwater samples from OL-KR1/T/151.2-156.8 m, OL-KR3/T/242.6- 253.2 m, OL-KR3/T/242.6-253.2 m, OL-KR5/T/277.2-284.2 m, OL-KR11/T/597.5-628.1 m and OL-KR12/T/363-368 m were brackish (1000 mg/L < TDS < 10000 mg/L) according to Davis's (1964) TDS classification. Other samples (OL-KR1/T/524.4-528.4 m, OL-KR5/ T/457.2-476.2 m and OL-KR9/T/468.2-482.2 m), were saline (TDS> 10000 mg/L). Comparison of analytical results of the samples to earlier results shows that some changes were seen between samplings done at the different times. Only the groundwater sampled from OL-KR1/T/311.2-336.8 m had significant changes in its chemical composition during the reference period, but also in OL-KR1/T/524.4-528.4 m, OL-KR5/ T

  3. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Justin Wright

    2017-11-01

    Full Text Available The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM, has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26 with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration

  4. Groundwater Monitoring Plan for the Z-Area Saltstone Facility

    International Nuclear Information System (INIS)

    Wells, D.

    2002-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. In 1996 SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC). The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include requirements for groundwater monitoring. The major elements of those regulations and their application at Z-Area are discussed. These are a point of compliance, groundwater protection standards, the groundwater monitoring system, sampling and analysis, and data evaluation and reporting

  5. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    International Nuclear Information System (INIS)

    Puglisi, C.V.; Vold, E.L.

    1995-01-01

    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G's Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC's), 68 semivolatile organic compounds (SVOC's), tritium, lead 210, radium 226 ampersand 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G's disposal units are performing well and no significant liquid phase migration of contaminants has occurred

  6. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  7. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  8. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: Examples from Bangkok and Jakarta

    International Nuclear Information System (INIS)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-01-01

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and akarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl - concentration and δ 18 O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3 - -N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas

  9. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.; Van Halem, Doris; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  10. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  11. Groundwater Assessment Platform

    OpenAIRE

    Podgorski, Joel; Berg, Michael

    2018-01-01

    The Groundwater Assessment Platform is a free, interactive online GIS platform for the mapping, sharing and statistical modeling of groundwater quality data. The modeling allows users to take advantage of publicly available global datasets of various environmental parameters to produce prediction maps of their contaminant of interest.

  12. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  13. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    National Research Council Canada - National Science Library

    Secody, Roland E

    2007-01-01

    .... An innovative technology was recently developed which uses dual-screened treatment wells to mix an electron donor into perchlorate-contaminated groundwater in order to effect in situ bioremediation...

  14. Groundwater arsenic in Chimaltenango, Guatemala.

    Science.gov (United States)

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  15. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  16. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  17. The Groundwater Performance Assessment Project Quality Assurance Plan

    International Nuclear Information System (INIS)

    Luttrell, Stuart P.

    2006-01-01

    U.S. Department of Energy (DOE) has monitored groundwater on the Hanford Site since the 1940s to help determine what chemical and radiological contaminants have made their way into the groundwater. As regulatory requirements for monitoring increased in the 1980s, there began to be some overlap between various programs. DOE established the Groundwater Performance Assessment Project (groundwater project) in 1996 to ensure protection of the public and the environment while improving the efficiency of monitoring activities. The groundwater project is designed to support all groundwater monitoring needs at the site, eliminate redundant sampling and analysis, and establish a cost-effective hierarchy for groundwater monitoring activities. This document provides the quality assurance guidelines that will be followed by the groundwater project. This QA Plan is based on the QA requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--General Provisions/Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory's Standards-Based Management System. In addition, the groundwater project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The groundwater project has determined that the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan

  18. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  19. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  20. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  1. Groundwater colloids: Their mobilization from subsurface deposits. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The overall goal of this program has involved developing basic understandings of the mechanisms controlling the presence of colloidal phases in groundwaters. The presence of colloids in groundwater is extremely important in that they may enable the subsurface transport of otherwise immobile pollutants like plutonium or PCBs. The major findings of this work have included: (1) Sampling groundwaters must be performed with great care in order to avoid false positives; (2) Much of the colloidal load moving below ground derives from the aquifer solids themselves; and (3) The detachment of colloids from the aquifer solids occurs in response to changes in the groundwater solution chemistry

  2. Tight-coupling of groundwater flow and transport modelling engines with spatial databases and GIS technology: a new approach integrating Feflow and ArcGIS

    Directory of Open Access Journals (Sweden)

    Ezio Crestaz

    2012-09-01

    Full Text Available Implementation of groundwater flow and transport numerical models is generally a challenge, time-consuming and financially-demanding task, in charge to specialized modelers and consulting firms. At a later stage, within clearly stated limits of applicability, these models are often expected to be made available to less knowledgeable personnel to support/design and running of predictive simulations within more familiar environments than specialized simulation systems. GIS systems coupled with spatial databases appear to be ideal candidates to address problem above, due to their much wider diffusion and expertise availability. Current paper discusses the issue from a tight-coupling architecture perspective, aimed at integration of spatial databases, GIS and numerical simulation engines, addressing both observed and computed data management, retrieval and spatio-temporal analysis issues. Observed data can be migrated to the central database repository and then used to set up transient simulation conditions in the background, at run time, while limiting additional complexity and integrity failure risks as data duplication during data transfer through proprietary file formats. Similarly, simulation scenarios can be set up in a familiar GIS system and stored to spatial database for later reference. As numerical engine is tightly coupled with the GIS, simulations can be run within the environment and results themselves saved to the database. Further tasks, as spatio-temporal analysis (i.e. for postcalibration auditing scopes, cartography production and geovisualization, can then be addressed using traditional GIS tools. Benefits of such an approach include more effective data management practices, integration and availability of modeling facilities in a familiar environment, streamlining spatial analysis processes and geovisualization requirements for the non-modelers community. Major drawbacks include limited 3D and time-dependent support in

  3. Groundwater protection plan for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Jaeger, G.K.; McMahon, W.J.; Ford, B.H.

    1996-01-01

    This document is the groundwater protection plan for the Environmental Restoration Disposal Facility (ERDF) Project. This plan is prepared based on the assumption that the ERDF will receive waste containing hazardous/dangerous constituents, radioactive constituents, and combinations of both. The purpose of this plan is to establish a groundwater monitoring program that (1) meets the intent of the applicable or relevant and appropriate requirements, (2) documents baseline groundwater conditions, (3) monitors those conditions for change, and (4) allows for modifications to groundwater sampling if required by the leachate management program. Groundwater samples indicate the occurrence of preexisting groundwater contamination in the uppermost unconfined aquifer below the ERDF Project site, as a result of past waste-water discharges in the 200 West Area. Therefore, it is necessary for the ERDF to establish baseline groundwater quality conditions and to monitor changes in the baseline over time. The groundwater monitoring program presented in this plan will provide the means to assess onsite and offsite impacts to the groundwater. In addition, a separate leachate management program will provide an indication of whether the liners are performing within design standards

  4. Fluorine geochemistry in bedrock groundwater of South Korea

    International Nuclear Information System (INIS)

    Chae, Gi-Tak; Yun, Seong-Taek; Mayer, Bernhard; Kim, Kyoung-Ho; Kim, Seong-Yong; Kwon, Jang-Soon; Kim, Kangjoo; Koh, Yong-Kwon

    2007-01-01

    High fluoride concentrations (median = 4.4 mg/L) in deep bedrock groundwater of South Korea prevent the usage of it as a drinking water source. The hydrogeochemistry of deep thermal groundwaters (N = 377) in diverse bedrocks has been studied in order to evaluate the geologic and geochemical controls on fluoride concentrations in groundwater. The groundwater samples were clustered geologically, and the average and median concentrations of fluoride were compared by the Mann-Whitney U test. The order of median fluoride concentration with respect to geology is as follows: metamorphic rocks ≥ granitoids ≥ complex rock >> volcanic rocks ≥ sedimentary rocks. This result indicates that the geological source of fluoride in groundwater is related to the mineral composition of metamorphic rocks and granitoids. With respect to groundwater chemistry, the fluoride concentration was highest in Na-HCO 3 type groundwater and lowest in Ca-HCO 3 type groundwater. Ionic relationships also imply that the geochemical behavior of fluoride in groundwater is related to the geochemical process releasing Na and removing Ca ions. The thermodynamic relationship between the activities of Ca and F indicates that fluoride concentration is controlled by the equilibrium of fluorite (CaF 2 ). In other words, the upper limits of fluoride concentration are determined by the Ca ion; i.e., Ca concentrations play a crucial role in fluoride behavior in deep thermal groundwater. The result of this study suggests that the high fluoride in groundwater originates from geological sources and fluoride can be removed by fluorite precipitation when high Ca concentration is maintained. This provides a basis for a proper management plan to develop the deep thermal groundwater and for treatment of high fluoride groundwater frequently found in South Korea

  5. Electrical imaging of subsurface nanoparticle propagation for in-situ groundwater remediation

    Science.gov (United States)

    Flores Orozco, Adrián; Gallistl, Jakob; Schmid, Doris; Micic Batka, Vesna; Bücker, Matthias; Hofmann, Thilo

    2017-04-01

    Application of nanoparticles has emerged as a promising in situ remediation technology for the remediation of contaminated groundwater, particularly for areas difficult to access by other remediation techniques. The performance of nanoparticle injections, as a foremost step within this technology, is usually assessed through the geochemical analysis of soil and groundwater samples. This approach is not well suited for a real-time monitoring, and often suffers from a poor spatio-temporal resolution and only provides information from areas close to the sampling points. To overcome these limitations we propose the application of non-invasive Induced Polarization (IP) imaging, a geophysical method that provides information on the electrical properties of the subsurface. The analysis of temporal changes in the electrical images allows tracking the propagation of the injected nanoparticle suspension and detection of the induced bio-geochemical changes in the subsurface. Here, we present IP monitoring results for data collected during the injection of Nano-Goethite particles (NGP) used for simulation of biodegradation of a BTEX plume (i.e., benzene, toluene, ethylbenzene, and xylene) at the Spolchemie II site, CZ. Frequency-domain IP measurements were collected parallel to the groundwater flow direction and centred on the NGP injection point. Pre-injection imaging results revealed high electrical conductivities (> 10 S/m) and negligible polarization effects in the BTEX-contaminated part of the saturated zone (below 5 m depth). The apparently contradictory observation - BTEX compounds are poor electrical conductors - can be explained by the release of carbonic acids (a metabolic by-product of the biodegradation of hydrocarbons), which leads to an increase of the electrical conductivity. Post-injection images revealed a significant decrease (> 50%) of the electrical conductivity, with even larger changes in the proximity of the injection points, most likely due to the

  6. Ultrasonic process for detoxification of groundwater

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, H.S.; Livengood, C.D.

    1991-01-01

    In this paper, we present the results of an investigation of the ultrasonic irradiation of carbon tetrachloride at various pH values, temperatures, and power intensities. Kinetic data and selected chemical mechanism are discussed and proposed. To study oxidant efficiency, chemical oxidants, such as hydrogen peroxide, are also considered. This work is part of a project entitled ''Ultrasonic Process for Detoxification of Groundwater and Soil,'' sponsored by the US Department of Energy, Office of Technology Development, to develop an innovative process for the effective destruction of chlorinated organics in soil and groundwater

  7. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  8. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China

    Science.gov (United States)

    Zhang, Zhuo; Guo, Huaming; Zhao, Weiguang; Liu, Shuai; Cao, Yongsheng; Jia, Yongfeng

    2018-04-01

    Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.

  9. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  10. Mobility of radioactive colloidal particles in groundwater

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Long, R.L.

    1993-01-01

    Radiocolloids are a major factor in the rapid migration of radioactive waste in groundwater. For at least two Los Alamos National Laboratory (LANL) sites, researchers have shown that groundwater colloidal particles were responsible for the rapid transport of radioactive waste material in groundwater. On an international scale, a review of reported field observations, laboratory column studies, and carefully collected field samples provides compelling evidence that colloidal particles enhance both radioactive and toxic waste migration. The objective of this project is to understand and predict colloid-contaminant migration through fundamental mathematical models, water sampling, and laboratory experiments and use this information to develop an effective and scientifically based colloid immobilization strategy. The article focuses on solving the suspected radiocolloid transport problems at LANL's Mortandad Canyon site. (author) 6 figs., 5 tabs., 18 refs

  11. Groundwater Study of the Rocky Mountain Arsenal and Some Surrounding Area, 1974 - 1975

    Science.gov (United States)

    1975-01-01

    Table 3. From the sampling, Lake F was found to contain a l~er concentration of OCPD than that found in the groundwaters. In addition, very high copper...be the influent area to Lake F. (3) Reclamation of the groundwater for DIMP Is reco..ended. (4) Reclmatlon of OCPD frca, tli, groundwater appears

  12. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we

  13. A direct observation method for auditing large urban centers using stratified sampling, mobile GIS technology and virtual environments.

    Science.gov (United States)

    Lafontaine, Sean J V; Sawada, M; Kristjansson, Elizabeth

    2017-02-16

    With the expansion and growth of research on neighbourhood characteristics, there is an increased need for direct observational field audits. Herein, we introduce a novel direct observational audit method and systematic social observation instrument (SSOI) for efficiently assessing neighbourhood aesthetics over large urban areas. Our audit method uses spatial random sampling stratified by residential zoning and incorporates both mobile geographic information systems technology and virtual environments. The reliability of our method was tested in two ways: first, in 15 Ottawa neighbourhoods, we compared results at audited locations over two subsequent years, and second; we audited every residential block (167 blocks) in one neighbourhood and compared the distribution of SSOI aesthetics index scores with results from the randomly audited locations. Finally, we present interrater reliability and consistency results on all observed items. The observed neighbourhood average aesthetics index score estimated from four or five stratified random audit locations is sufficient to characterize the average neighbourhood aesthetics. The SSOI was internally consistent and demonstrated good to excellent interrater reliability. At the neighbourhood level, aesthetics is positively related to SES and physical activity and negatively correlated with BMI. The proposed approach to direct neighbourhood auditing performs sufficiently and has the advantage of financial and temporal efficiency when auditing a large city.

  14. Anterior segment and retinal OCT imaging with simplified sample arm using focus tunable lens technology (Conference Presentation)

    Science.gov (United States)

    Grulkowski, Ireneusz; Karnowski, Karol; Ruminski, Daniel; Wojtkowski, Maciej

    2016-03-01

    Availability of the long-depth-range OCT systems enables comprehensive structural imaging of the eye and extraction of biometric parameters characterizing the entire eye. Several approaches have been developed to perform OCT imaging with extended depth ranges. In particular, current SS-OCT technology seems to be suited to visualize both anterior and posterior eye in a single measurement. The aim of this study is to demonstrate integrated anterior segment and retinal SS-OCT imaging using a single instrument, in which the sample arm is equipped with the electrically tunable lens (ETL). ETL is composed of the optical liquid confined in the space by an elastic polymer membrane. The shape of the membrane, electrically controlled by a specific ring, defines the radius of curvature of the lens surface, thus it regulates the power of the lens. ETL can be also equipped with additional offset lens to adjust the tuning range of the optical power. We characterize the operation of the tunable lens using wavefront sensing. We develop the optimized optical set-up with two adaptive operational states of the ETL in order to focus the light either on the retina or on the anterior segment of the eye. We test the performance of the set-up by utilizing whole eye phantom as the object. Finally, we perform human eye in vivo imaging using the SS-OCT instrument with versatile imaging functionality that accounts for the optics of the eye and enables dynamic control of the optical beam focus.

  15. Bikini Atoll groundwater development

    International Nuclear Information System (INIS)

    Peterson, F.L.

    1985-01-01

    Nuclear weapons testing during the 1950's has left the soil and ground water on Bikini Atoll contaminated with cesium-137, and to a lesser extent, strontium-90. Plans currently are underway for the clean-up and resettlement of the atoll by removal of approximately the upper 30 cm of soil. Any large-scale resettlement program must include provisions for water supply. This will be achieved principally by catchment and storage of rain water, however, since rainfall in Bikini is highly seasonal and droughts occur frequently, ground water development must also be considered. The quantity of potable ground water that can be developed is limited by its salinity and radiological quality. The few ground water samples available from Bikini, which have been collected from only about the top meter of the groundwater body, indicate that small bodies of potable ground water exist on Bikini and Eneu, the two principal living islands, but that cesium and strontium in the Bikioni ground water exceed drinking water standards. In order to make a reasonable estimate of the ground water development potential for the atoll, some 40 test boreholes will be drilled during July/August 1985, and a program of water quality monitoring initiated. This paper will describe preliminary results of the drilling and monitoring work

  16. Air sparging of organic compounds in groundwater

    International Nuclear Information System (INIS)

    Hicks, P.M.

    1994-01-01

    Soils and aquifers containing organic compounds have been traditionally treated by excavation and disposal of the soil and/or pumping and treating the groundwater. These remedial options are often not practical or cost effective solutions. A more favorable alternative for removal of the adsorbed/dissolved organic compounds would be an in situ technology. Air sparging will remove volatile organic compounds from both the adsorbed and dissolved phases in the saturated zone. This technology effectively creates a crude air stripper below the aquifer where the soil acts as the ''packing''. The air stream that contacts dissolved/adsorbed phase organics in the aquifer induces volatilization. A case history illustrates the effectiveness of air sparging as a remedial technology for addressing organic compounds in soil and groundwater. The site is an operating heavy equipment manufacturing facility in central Florida. The soil and groundwater below a large building at the facility was found to contain primarily diesel type petroleum hydrocarbons during removal of underground storage tanks. The organic compounds identified in the groundwater were Benzene, Xylenes, Ethylbenzene and Toluenes (BTEX), Methyl tert-Butyl Ether (MTBE) and naphthalenes in concentrations related to diesel fuel

  17. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  18. Technical options for the remediation of contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    This report provides a description of the nature and extent of problems related to radioactive groundwater contamination by outlining the environmental impacts, the sources of contamination and the contaminants of concern radionuclides and their associated contaminants - the main exposure pathways and transport processes and the assessment of risks associated with contaminated groundwater. The main emphasis of this report is on methodologies used in groundwater remediation and available technologies. The methodology section outlines the importance of an initial scoping analysis including the evaluation of uncertainties of the available data and the necessity for defining clear objectives for data collection. This is then followed by comprehensive site characterization, setting of goals and developing alternatives which will be analysed in detail. Available technologies are grouped generally into in situ methods aiming at a containment of the contaminants in place and engineered treatment methods involving an alteration of groundwater flow, quantity and/or quality to achieve compliance with set goals. Groundwater remediation by natural flushing allows the natural groundwater movement and geochemical processes to decrease the contaminant concentrations to acceptable levels over a specified period of time. This method is increasingly accepted in areas where the use of groundwater can be temporarily restricted or engineered cleanup methods do not offer particular advantage over the natural processes. The application of technological methods for remediating contaminated groundwaters has to be considered in conjunction with management options such as diversion and development of alternative water sources. The experience with groundwater contamination accrued in IAEA Member States is concentrated in those countries with active uranium mining and milling facilities and nuclear energy programmes. This experience is reported in the Annexes, which include case studies. It

  19. Technical options for the remediation of contaminated groundwater

    International Nuclear Information System (INIS)

    1999-06-01

    This report provides a description of the nature and extent of problems related to radioactive groundwater contamination by outlining the environmental impacts, the sources of contamination and the contaminants of concern radionuclides and their associated contaminants - the main exposure pathways and transport processes and the assessment of risks associated with contaminated groundwater. The main emphasis of this report is on methodologies used in groundwater remediation and available technologies. The methodology section outlines the importance of an initial scoping analysis including the evaluation of uncertainties of the available data and the necessity for defining clear objectives for data collection. This is then followed by comprehensive site characterization, setting of goals and developing alternatives which will be analysed in detail. Available technologies are grouped generally into in situ methods aiming at a containment of the contaminants in place and engineered treatment methods involving an alteration of groundwater flow, quantity and/or quality to achieve compliance with set goals. Groundwater remediation by natural flushing allows the natural groundwater movement and geochemical processes to decrease the contaminant concentrations to acceptable levels over a specified period of time. This method is increasingly accepted in areas where the use of groundwater can be temporarily restricted or engineered cleanup methods do not offer particular advantage over the natural processes. The application of technological methods for remediating contaminated groundwaters has to be considered in conjunction with management options such as diversion and development of alternative water sources. The experience with groundwater contamination accrued in IAEA Member States is concentrated in those countries with active uranium mining and milling facilities and nuclear energy programmes. This experience is reported in the Annexes, which include case studies. It

  20. Uranium concentrations in groundwater, northeastern Washington

    Science.gov (United States)

    Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.

    2018-04-18

    A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to

  1. Groundwater Quality of Southeastern Brazzaville, Congo

    Directory of Open Access Journals (Sweden)

    Matini Laurent

    2010-01-01

    Full Text Available The groundwater in southeastern Brazzaville (Congo was analyzed for their fluoride contents and others related parameters in rainy season. The fluoride contents in water samples (wells and spring can be gather in three classes in the study area: low, optimal, high. Fluoride concentration in water samples presents a low significant correlation with Ca2+. This suggests that fluoride in the groundwater come from fluoride-bearing minerals such as CaF2 (fluorite. Maps were drawn to show the geographical distribution of EC, Ca2+, Mg2+and F-. Factor analysis and cluster analysis were applied to the dataset. Factor analysis resulted in four factors explained 76.90% of the total groundwater quality variance. Factor 1 (hardness of the groundwater includes total hardness, the concentration of K+, Ca2+ and pH. Factor 2 (low mineralization of the groundwater includes concentrations of TDS, Cl--, SO42+ and EC. Factor 3 (anthropogenic activities with the impact of agricultural fertilizers, farming activities, domestic wastewater, septic tanks includes concentrations of Na+ and NO3-. Factor 4 (weathering of calcium minerals includes concentrations of F-. For cluster analysis, Ward’s method and the Euclidean distance were used. The findings of the cluster analysis are presented in the form of dendrogram of the well water sites (cases. The discriminating parameters between clusters have been highlighted from the Student test. In majority, they are in accordance with those highlighted by factor analysis.

  2. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  3. Environmental water requirements of groundwater dependent ecosystems: conflict between nature and man

    Science.gov (United States)

    Witczak, S.; Kania, J.; Rozanski, K.; Wachniew, P.; Zurek, A.; Dulinski, M.

    2012-04-01

    new pumping wells has been set up close to the northern border of Niepolomice Forest. There is a growing concern that exploitation of those wells may lead to lowering of water table in the Niepolomice Forest area and, as a consequence, trigger drastic changes of this unique groundwater dependent ecosystem. In order to quantify dynamics of groundwater flow in the area of the Niepolomice Forest and Wielkie Bloto fen, physicochemical parameters and concentrations of environmental tracers (stable isotopes of water, tritium, radiocarbon) were measured in wells located in the recharge area of the Bogucice Sands aquifer and in the newly established wellfield. Also, surface water appearances in the area of Wielkie Bloto fen were investigated. To detect potential discharge of deeper groundwater in the area of Wielkie Bloto fen a dedicated Geoprobe sampling of water from different levels of shallow phreatic aquifer was performed for chemical and isotope analyses. Appropriate modeling runs of the existing 3D flow and transport model of the Bogucice Sands aquifer were also made to investigate possible impact of the newly establish wellfield on the groundwater flow in the Niepolomice Forest area. The chemical and isotope data available to date indicate that in the recharge area, upstream of Wielkie Bloto fen groundwater is relatively young. Presence of appreciable amounts of tritium points to recharge in the past several decades. Radiocarbon content fluctuates between 48 and 65 pmc. In contrast, in the newly established wellfield tritium is absent while radiocarbon content drops to a few pmc. Significant age of groundwater in this area is confirmed by stable isotopes of water revealing characteristic shift towards more negative delta values indicating glacial origin of water. The work was carried out as part of the GENESIS project on groundwater systems (http:/www.thegenesisproject.eu) financed by the European Commission 7FP contract 226536 and the statutory funds of the AGH

  4. Dissolved helium, inert gases, radium and radon in groundwaters from the Altnabreac research site

    International Nuclear Information System (INIS)

    Andrews, J.N.; Kay, R.L.F.

    1985-01-01

    A groundwater geochemical study has been carried out at Altnabreac, Cenithness, Scotland, to investigate the feasibility of disposal of high-level radioactive wastes in crystalline rock. A groundwater flow model was constructed for sampling a section at depths up to 300 m. Measurements of inert gases dissolved in groundwaters are used, with parallel measurements of 14 C, tritium, oxygen and hydrogen isotopes to infer groundwater ages and residence times. (UK)

  5. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment - A case study in the Xiangjiang watershed, central-south China

    International Nuclear Information System (INIS)

    Chai, Liyuan; Wang, Zhenxing; Wang, Yunyan; Yang, Zhihui; Wang, Haiying; Wu, Xie

    2010-01-01

    Groundwater samples were collected in the Xiangjiang watershed in China from 2002 to 2008 to analyze concentrations of arsenic, cadmium, chromium, copper, iron, lead, mercury, manganese, and zinc. Spatial and seasonal trends of metal concentrations were then discussed. Combined with geostatistics, an ingestion risk assessment of metals in groundwater was performed using the dose-response assessment method and the triangulated irregular network (TIN) model. Arsenic concentration in groundwater had a larger variation from year to year, while the variations of other metal concentrations were minor. Meanwhile, As concentrations in groundwater over the period of 2002-2004 were significantly higher than that over the period of 2005-2007, indicating the improvement of groundwater quality within the later year. The hazard index (HI) in 2002 was also significantly higher than that in 2005, 2006, 2007 and 2008. Moreover, more than 80% of the study area recorded an HI of more than 1.0 for children, suggesting that some people will experience deleterious health effects from drinking groundwater in the Xiangjiang watershed. Arsenic and manganese were the largest contributors to human health risks (HHRs). This study highlights the value of long-term health risk evaluation and the importance of geographic information system (GIS) technologies in the assessment of watershed-scale human health risk.

  6. Successive use of vacuum-enhanced extraction, in situ chemical oxidation, bioaugmentation and mathematical modeling for the restoration of impacted soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Morin, A.; Lauzon, J.M. [TechnoRem Inc., Laval, PQ (Canada)

    2007-07-01

    A leak from an active gasoline service station in northern Quebec was discussed. Leaking petroleum from an underground storage tank (UST) in June 2005 resulted in a 4,000 m{sup 2} light non-aqueous phase liquid (LNAPL) plume causing both soil and groundwater contamination. This presentation described the site, environmental issues, selected remedial technologies, worked performed and results. TechnoRem conducted laboratory and bench-scale testing to determine the optimal treatment products and conditions for mitigation. The LNAPL was recovered using vacuum-enhanced extraction (VEE). Chemical oxidation (CO) and bioaugmentation (BA) was also used to restore the site. The soil and groundwater targets for various parameters were tabulated for total petroleum hydrocarbons and BTEX (benzene, toluene, ethylbenzene and xylenes). It was noted that groundwater was flowing south towards a lake 100 metres downgradient. Schematics of the VEE, CO and BA equipment were presented along with several images of the design, installation, commission and operation of the systems. A total of 128 pumping/injection wells were used to sample soil, groundwater and LNAPL. In November 2006, soil analyses indicated that the total petroleum hydrocarbons and BTEX met the applicable criteria. The contaminated groundwater plume is now minor and in regression. Groundwater monitoring and supply of nutrients and oxygen will be performed for the coming years to allow for enhanced natural attenuation to mitigate the residual contaminants. tabs., figs.

  7. CHARACTERIZATION OF GROUNDWATER HYDROCHEMISTRY ...

    African Journals Online (AJOL)

    Osondu

    2013-03-01

    Mar 1, 2013 ... It was concluded that water quality of the study area is unsuitable for irrigation ... Key words: Assessment, characterization, Groundwater quality, .... The in-situ measurement was ..... framework of the aquifer in and around East.

  8. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  9. Wetland Groundwater Processes

    National Research Council Canada - National Science Library

    Williams, Greg

    1993-01-01

    This technical note summarizes hydrologic and hydraulic (H AND H) processes and the related terminology that will likely be encountered during an evaluation of the effect of ground-water processes on wetland function...

  10. Natural radionuclides in groundwaters

    International Nuclear Information System (INIS)

    Laul, J.C.

    1990-01-01

    The U-234 and Th-230 radionuclides are highly retarded by factors of 10 4 to 10 5 in basalt groundwater (Hanford) and briny groundwaters from Texas and geothermal brine from the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na + and Cl - ions and RaCl 2 is soluble in brines. Pb-210 is soluble in SSGF brine, probably as a chloride complex. The U-234/Th-230 ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. 19 refs., 3 figs

  11. Natural radionuclides in groundwaters

    International Nuclear Information System (INIS)

    Laul, J.C.

    1992-01-01

    The 234 U and 230 Th radionuclides are highly retarded by factors of 10 4 to 10 5 in basalt groundwater (Hanford) and briny groundwaters from Texas, and geothermal brine form the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na + and Cl - ions, and RaCl 2 is soluble in brines. 210 Pb is soluble in SSGF brine, probably as a chloride complex. The 234 U/ 230 Th ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. (author) 19 refs.; 3 figs

  12. Assessment of Groundwater Quality in Zanzibar Municipality

    African Journals Online (AJOL)

    user

    Saltwater intrusion problems are widespread where there are over pumping of groundwater from coastal aquifers. Water samples were .... urbanized area. Although more than 70% of the municipality residents are connected to public water system, it does not meet the demand (Table 1) and as such there are many private ...

  13. Assessment of Physicochemical Characteristics of Groundwater ...

    African Journals Online (AJOL)

    The aim of the present study is to assess the qualitative aspect of drinking water supply of Firozabad city (India) through index method and comparing it with existing standards for important parameters. The main components of the study include a field sampling analysis of groundwater collected from three different sites viz.

  14. Integrated groundwater data management

    Science.gov (United States)

    Fitch, Peter; Brodaric, Boyan; Stenson, Matt; Booth, Nathaniel; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    The goal of a data manager is to ensure that data is safely stored, adequately described, discoverable and easily accessible. However, to keep pace with the evolution of groundwater studies in the last decade, the associated data and data management requirements have changed significantly. In particular, there is a growing recognition that management questions cannot be adequately answered by single discipline studies. This has led a push towards the paradigm of integrated modeling, where diverse parts of the hydrological cycle and its human connections are included. This chapter describes groundwater data management practices, and reviews the current state of the art with enterprise groundwater database management systems. It also includes discussion on commonly used data management models, detailing typical data management lifecycles. We discuss the growing use of web services and open standards such as GWML and WaterML2.0 to exchange groundwater information and knowledge, and the need for national data networks. We also discuss cross-jurisdictional interoperability issues, based on our experience sharing groundwater data across the US/Canadian border. Lastly, we present some future trends relating to groundwater data management.

  15. Natural radioactivity in groundwater sources in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Currivan, L.; Dowdall, A.; Mcginnity, P.; Ciara, M. [Radiological Protection Institute of Ireland (Ireland); Craig, M. [Environmental Protection Agency (Ireland)

    2014-07-01

    The Radiological Protection Institute of Ireland (RPII) in collaboration with the Irish Environmental Protection Agency (EPA) undertook a national survey of radioactivity in groundwater sources for compliance with parameters set out in the European Communities Drinking Water Directive. The Directive outlines the minimum requirements for the quality of drinking water and water intended for human consumption. Over two hundred samples were screened for radioactivity. Where indicated, analysis for individual radionuclide activity was undertaken and the radiation dose arising calculated. Furthermore, samples were analysed for radon concentration. This survey is the first comprehensive national survey of radioactivity in groundwater sources in Ireland. Approximately 18 per cent of drinking water in Ireland originates from groundwater and springs with the remainder from surface water. Between 2007 and 2011, water samples from a representative network of groundwater sources were analysed and assessed for compliance with the radioactivity parameters set out in the Drinking Water Directive. The assessment was carried out using the methodology for screening drinking water set out by the WHO. For practical purposes the WHO recommended screening levels for drinking water below which no further action is required of 100 mBq/l for gross alpha activity and 1000 mBq/l for gross beta activity were applied. Of the 203 groundwater sources screened for gross alpha and gross beta all met the gross beta activity criteria of less than 1000 mBq/l and 175 supplies had gross alpha activity concentrations of less than 100 mBq/l. For these sources no further analysis was required. The remaining 28 sources required further (radionuclide-specific) analysis from an alpha activity perspective. Results on ranges and distributions of radionuclide concentrations in groundwater as well as ingestion doses estimated for consumers of these water supplies will be presented. Document available in abstract

  16. The influence of technological parameters on the dynamic behavior of "liquid wood" samples obtained by injection molding

    Science.gov (United States)

    Plavanescu Mazurchevici, Simona; Carausu, Constantin; Comaneci, Radu; Nedelcu, Dumitru

    2017-10-01

    The plastic products contribute to environmental pollution. Replacing the plastic materials with biodegradable materials with superior properties is an absolute necessity and important research direction for the near future. The first steps in this regard were the creation of composite materials containing natural fibers with positive effects on the environment that have penetrated in different fields. The bioplastics and biocomposites made from natural fibers is a topical solution. The next step was made towards obtaining biodegradable and recyclable materials based on cellulose, lignin and no carcinogens. In this category fall the "liquid wood" with a use up to five times without affecting the mechanical properties. "Liquid wood" is a high quality thermoplastic biocomposite. "Liquid wood" is a biopolymer composite divided in three categories, ARBOFORM®, ARBOBLEND® and ARBOFILL®, which have differed composition in terms of lignin percentage, being delivered by Tecnaro, as granules, [1]. The paper's research was focus on Arboform L V3 Nature and Arboform L V3 Nature reinforced with aramid fiber. In the experimental plan were taken into account six parameters (Dinj - direction of injection [°]; Ttop - melting temperature [°C]; Pinj - injection pressure [MPa] Ss - speed [m/min]; tinj - injection time [s] and tc - cooling time [s]) each with two levels, research carried on by Taguchi methodology. Processing Taguchi method allowed both Taguchi setting work parameters influence on storage modulus and damping as the size and influence their ranking. Experimental research concerning the influence technological parameters on storage modulus of samples obtained by injection from Arboform L V3 Nature yielded an average of 6055MPa and descending order as follows: Trac, Ss, Pinj, Dinj and Ttop. The average of model for reinforced material was 6419MPa and descending order of parameters influence such as: Dinj, Trac, Ttop, tinj, Ss and Pinj.

  17. U1/U2 crib groundwater biological treatment demonstration project

    International Nuclear Information System (INIS)

    Koegler, S.S.; Brouns, T.M.; Heath, W.O.

    1989-11-01

    The primary objective of the biological treatment project is to develop and demonstrate a process for Hanford groundwater remediation. Biodenitrification using facultative anaerobic microorganisms is a promising technology for the simultaneous removal of nitrates and organics from contaminated aqueous streams. During FY 1988, a consortium of Hanford groundwater microorganisms was shown to degrade both nitrates and carbon tetrachloride (CC1 4 ). A pilot-scale treatment system was designed and constructed based on the results of laboratory-and-bench-scale testing. This report summarizes the results of biological groundwater treatment studies performed during FY 1989 at the pilot-scale. These tests were conducted using a simulated Hanford groundwater with a continuous stirred-tank bioreactor, and a fluidized-bed bioreactor that was added to the pilot-scale treatment system in FY 1989. The pilot-scale system demonstrated continuous degradation of nitrates and CC1 4 in a simulated groundwater. 4 refs., 7 figs., 1 tab

  18. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  19. Impact of excessive groundwater pumping on rejuvenation processes in the Bandung basin (Indonesia) as determined by hydrogeochemistry and modeling

    Science.gov (United States)

    Taufiq, Ahmad; Hosono, Takahiro; Ide, Kiyoshi; Kagabu, Makoto; Iskandar, Irwan; Effendi, Agus J.; Hutasoit, Lambok M.; Shimada, Jun

    2017-12-01

    In the Bandung basin, Indonesia, excessive groundwater pumping caused by rapid increases in industrialization and population growth has caused subsurface environmental problems, such as excessive groundwater drawdown and land subsidence. In this study, multiple hydrogeochemical techniques and numerical modeling have been applied to evaluate the recharge processes and groundwater age (rejuvenation). Although all the groundwater in the Bandung basin is recharged at the same elevation at the periphery of the basin, the water type and residence time of the shallow and deep groundwater could be clearly differentiated. However, there was significant groundwater drawdown in all the depression areas and there is evidence of groundwater mixing between the shallow and deep groundwater. The groundwater mixing was traced from the high dichlorodifluoromethane (CFC-12) concentrations in some deep groundwater samples and by estimating the rejuvenation ratio (R) in some representative observation wells. The magnitude of CFC-12 concentration, as an indicator of young groundwater, showed a good correlation with R, determined using 14C activity in samples taken between 2008 and 2012. These correlations were confirmed with the estimation of vertical downward flux from shallower to deeper aquifers using numerical modeling. Furthermore, the change in vertical flux is affected by the change in groundwater pumping. Since the 1970s, the vertical flux increased significantly and reached approximately 15% of the total pumping amount during the 2000s, as it compensated the groundwater pumping. This study clearly revealed the processes of groundwater impact caused by excessive groundwater pumping using a combination of hydrogeochemical methods and modeling.

  20. How to Incorporate Technology with Inquiry-Based Learning to Enhance the Understanding of Chemical Composition; How to Analyze Unknown Samples

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2017-02-01

    Full Text Available The use of technology in teaching offers numerous amounts of possibilities and can be challenging for physics, chemistry and geology content courses. When incorporating technology into a science content lab it is better to be driven by pedagogy than by technology in an inquiry-based lab setting. Students need to be introduced to real-world technology in the beginning of first year chemistry or physics course to ensure real-world technology concepts while assisting with content such as periodic trends on the periodic table. This article will describe the use of technology with Raman Spectroscopy and Energy Dispersive XRay Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR to research chemical compositions in the real world of unknown samples. Such unknown samples utilized in this lab were clamshell (parts of clams that look like shark teeth versus shark teeth. The data will be shared to show how the students (pre-service teachers and in-service teachers solved the problem using technology while learning important content that will assist in the next level of chemistry, physics and even geology.

  1. Discovery and description of complete ammonium oxidizers in groundwater-fed rapid sand filters

    DEFF Research Database (Denmark)

    Palomo, Alejandro

    as biological filtration has long been acknowledged and recently been investigated. Biological filtration technology is widely used around the world and is especially important in Denmark as groundwater is the main source water for drinking water production. Because the groundwater has a relative high-quality......, aeration followed by biological filtration is the only required treatment before distribution. In the last years, the microbial communities in rapid gravity sand filters, the typical biological filter used in Denmark, have been characterized, but little knowledge had been required about their physiological...... activity and roles in compound removal from the source water. This PhD project focused on a comprehensive investigation of the microbial communities in rapid sand filters beyond their purely taxonomical identification. For this purpose, samples collected from a rapid sand filter were subjected...

  2. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  3. Assessment of groundwater salinity in Nellore district using multi ...

    Indian Academy of Sciences (India)

    water samples at six locations close to the electrical resistivity survey sites also suggest high ... Electrical resistivity imaging; Nellore district; groundwater salinity; geochemistry. ..... Sasaki Y 1992 Resolution of resistivity tomography inferred.

  4. Evaluation of pollution status of heavy metals in the groundwater ...

    African Journals Online (AJOL)

    Evaluation of pollution status of heavy metals in the groundwater system around ... cadmium (Cd), mercury (Hg), manganese (Mn), lead (pb) and arsenic (As) as ... Water samples (from bore holes, hand-dug wells, ponds and streams) were ...

  5. Management of Nitrate m Groundwater: A Simulation Study

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2001-01-01

    Full Text Available Agriculture may cause nitrate and other chemicals to enter into groundwater systems. Nitrate in drinking water is considered a health hazard. A study was conducted to assess the extent of nitrate pollution of groundwater caused by agriculture and to evaluate the possibility of using the LEACHN model to manage nitrate entry into groundwater of agricultural areas of Al-Batinah, which is the most important agricultural region of Oman. Groundwater samples were collected and analyzed to assess the problem and to detect possible trends. Soil sampling and analyses were done to demonstrate the difference in the nitrate concentration in agricultural and non-agricultural soils. A questionnaire survey was conducted to gather information on agricultural practices, fertilizer input, and other possible sources of nitrate pollution. Results from the study show that 23% of groundwater samples have a concentration of nitrate-N concentration of 10 mg/l and 34% samples exceed 8 mg/l. Agricultural soils have higher levels of nitrate compared to non- agricultural soils. Results also demonstrate that nitrate levels in groundwater in Al-Batinah are rising. Application of the ‘LEACHN’ model demonstrated its suitability for use as a management tool to reduce nitrate leaching to groundwater by controlling fertilizer and water input.

  6. Treatability Study of In Situ Technologies for Remediation of Hexavalent Chromium in Groundwater at the Puchack Well Field Superfund Site, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vince R.; Szecsody, Jim E.; Truex, Michael J.; Burns, Carolyn A.; Girvin, Donald C.; Phillips, Jerry L.; Devary, Brooks J.; Fischer, Ashley E.; Li, Shu-Mei W.

    2006-11-13

    This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and at lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids.

  7. Hydraulic characteristics of a radioactive waste repository groundwater analysis

    International Nuclear Information System (INIS)

    1986-09-01

    This report deals with the deep drilling program executed in northern Switzerland by the National Cooperative for the Storage of Radioactive Wastes (NAGRA). Investigations were aimed at describing geologic conditions with respect to waste disposal. One of the main effort was directed at identifying properties and behaviour of groundwater. Among the activities involved was the collecting of groundwater samples for laboratory investigations. The methods used and experience gained during drilling fluid tracing, water sampling and quality control of extracted groundwater are described. The technical constraints (depth, temperature, borehole diameter) led to the deployment of specialized equipment, parts of which were still at the experimental stage [fr

  8. Geostatistical analysis of groundwater chemistry in Japan. Evaluation of the base case groundwater data set

    Energy Technology Data Exchange (ETDEWEB)

    Salter, P.F.; Apted, M.J. [Monitor Scientific LLC, Denver, CO (United States); Sasamoto, Hiroshi; Yui, Mikazu

    1999-05-01

    The groundwater chemistry is one of important geological environment for performance assessment of high level radioactive disposal system. This report describes the results of geostatistical analysis of groundwater chemistry in Japan. Over 15,000 separate groundwater analyses have been collected of deep Japanese groundwaters for the purpose of evaluating the range of geochemical conditions for geological radioactive waste repositories in Japan. The significance to issues such as radioelement solubility limits, sorption, corrosion of overpack, behavior of compacted clay buffers, and many other factors involved in safety assessment. It is important therefore, that a small, but representative set of groundwater types be identified so that defensible models and data for generic repository performance assessment can be established. Principal component analysis (PCA) is used to categorize representative deep groundwater types from this extensive data set. PCA is a multi-variate statistical analysis technique, similar to factor analysis or eigenvector analysis, designed to provide the best possible resolution of the variability within multi-variate data sets. PCA allows the graphical inspection of the most important similarities (clustering) and differences among samples, based on simultaneous consideration of all variables in the dataset, in a low dimensionality plot. It also allows the analyst to determine the reasons behind any pattern that is observed. In this study, PCA has been aided by hierarchical cluster analysis (HCA), in which statistical indices of similarity among multiple samples are used to distinguish distinct clusters of samples. HCA allows the natural, a priori, grouping of data into clusters showing similar attributes and is graphically represented in a dendrogram Pirouette is the multivariate statistical software package used to conduct the PCA and HCA for the Japanese groundwater dataset. An audit of the initial 15,000 sample dataset on the basis of

  9. Chemical speciation of radionuclides migrating in groundwaters

    International Nuclear Information System (INIS)

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., 60 Co and 106 Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters

  10. Uranium in groundwater from Western Haryana, India

    International Nuclear Information System (INIS)

    Balvinder Singh; Nawal Kishore; Vandana Pulhani

    2014-01-01

    This study was undertaken to assess uranium in groundwater and radiological and chemical risks associated with its ingestion in rural habitats in the vicinity of proposed nuclear power project in Western Haryana, India. Uranium concentration in the groundwater of the study area varied from 0.3 to 256.4 μg L -1 . Radiological risk calculated in the form of average life time dose was found 5.1 × 10 -2 mSv to the residents of the area from the ingestion of groundwater. The average cancer mortality and average cancer morbidity risk were calculated to be 4.9 × 10 -6 and 7.7 × 10 -6 respectively indicating the absence of carcinogenic risks. Chemical risk was in the range of 0.02-18.8 μg kg -1 day -1 . Hazard quotient for 72 % samples was greater than unity which indicates health risk due to chemical toxicity of uranium in groundwater. The results indicate that uranium concentrations in the groundwater of the study area are important due to chemical risk than radiological risk. (author)

  11. Recharge Area of Groundwater of Jakarta Basin

    International Nuclear Information System (INIS)

    Wandowo; Abidin, Zainal; Alip; Djiono

    2002-01-01

    Groundwater inside the earth contained in a porous and permeable layers called aquifers. Depend on the hydrogeological structure, the aquifers may be composed of independent layers separated each other by impermeable boundaries. Such a condition may effect the location of recharge where water is able to infiltrate and goes to the aquifers. The objective of this research is to find out and to locate the recharge area of Jakarta basin by utilizing stable isotopes 2H and 18O . The work was done by collecting shallow and deep groundwater samples throughout Jabotabek area and precipitations from different altitudes. Since the stable isotopes composition of precipitation is subject to the altitude, the recharge area would be able to be identified by assessing the correlation of stable isotopes composition of precipitation and corresponding groundwater population. The data obtained from this study suggested that shallow groundwater is originated from local recharge while deep groundwater is recharged from the area having altitude of 125 -230 meters, it correspond to the area between Depok and Bogor

  12. Evaluation of contaminated groundwater cleanup objectives

    International Nuclear Information System (INIS)

    Arquiett, C.; Gerke, M.; Datskou, I.

    1996-01-01

    The US Department of Energy's (DOE's) Environmental Restoration Program will be responsible for remediating the approximately 230 contaminated groundwater sites across the DOE Complex. A major concern for remediation is choosing the appropriate cleanup objective. The cleanup objective chosen will influence the risk to the nearby public during and after remediation; risk to remedial and non-involved workers during remediation; and the cost of remediation. This paper discusses the trends shown in analyses currently being performed at Oak Ridge National Laboratories' (ORNL's) Center for Risk Management (CRM). To evaluate these trends, CRM is developing a database of contaminated sites. This paper examines several contaminated groundwater sites selected for assessment from CRM's data base. The sites in this sample represent potential types of contaminated groundwater sites commonly found at an installation within DOE. The baseline risk from these sites to various receptors is presented. Residual risk and risk during remediation is reported for different cleanup objectives. The cost associated with remediating to each of these objectives is also estimated for each of the representative sites. Finally, the general trends of impacts as a function of cleanup objective will be summarized. The sites examined include the Savannah River site, where there was substantial ground pollution from radionuclides, oil, coal stockpiles, and other forms of groundwater contamination. The effects of various types of groundwater contamination on various types of future user is described. 4 refs., 3 figs., 2 tabs

  13. The use of in-situ dual vacuum extraction for remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Trowbridge, B.E.; Ott, D.E.

    1992-01-01

    Dual Extraction provides a rapid and cost-effective method of remediating soil and groundwater impacted by volatile organic compounds (VOC's). Dual Extraction is the removal of both water and vapors through the same borehole using entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an Underground Storage Tank (UST) was responsible for a hydrocarbon plume spreading over approximately 50,000 square feet. The release produced vadose zone contamination in the silty and sandy clays from 10 - 30 feet below ground surface with TPH concentrations up to 1,400 mg/kg. A layer of free floating liquid hydrocarbon was present on a shallow aquifer located at 30 feet bgs in thicknesses ranging from 0.5 feet to 3.0 feet. An in-situ dual-extraction system was installed to remediate the soils and groundwater to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hours/day for 196 days with an operating efficiency of over 99%. After 196 days, over 17,000 pounds of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings were advanced in the area of highest initial hydrocarbon concentrations and indicated that TPH and BTEX concentrations had decreased over 99% from initial soil concentrations. Three confirmatory groundwater samples were obtained from monitoring wells initially exhibiting up to 3 feet of floating product. Confirmatory samples exhibited non-detectable (ND) concentrations of TPH and BTEX. Based upon the positive confirmatory results, site closure was obtained from the RWQCB in May of 1991. In only 28 weeks of operation, the groundwater contamination was reduced from free floating product to non-detectable concentrations of TPH using Dual Vacuum Extraction

  14. Hydrochemistry and Isotope Hydrology for Groundwater Sustainability of the Coastal Multilayered Aquifer System (Zhanjiang, China

    Directory of Open Access Journals (Sweden)

    Pengpeng Zhou

    2017-01-01

    Full Text Available Groundwater sustainability has become a critical issue for Zhanjiang (China because of serious groundwater level drawdown induced by overexploitation of its coastal multilayered aquifer system. It is necessary to understand the origins, material sources, hydrochemical processes, and dynamics of the coastal groundwater in Zhanjiang to support its sustainable management. To this end, an integrated analysis of hydrochemical and isotopic data of 95 groundwater samples was conducted. Hydrochemical analysis shows that coastal groundwater is fresh; however, relatively high levels of Cl−, Mg2+, and total dissolved solid (TDS imply slight seawater mixing with coastal unconfined groundwater. Stable isotopes (δ18O and δ2H values reveal the recharge sources of groundwater in the multilayered aquifer system. The unconfined groundwater originates from local modern precipitation; the confined groundwater in mainland originates from modern precipitation in northwestern mountain area, and the confined groundwater in Donghai and Leizhou is sourced from rainfall recharge during an older period with a colder climate. Ionic relations demonstrate that silicate weathering, carbonate dissolutions, and cation exchange are the primary processes controlling the groundwater chemical composition. Declining trends of groundwater level and increasing trends of TDS of the confined groundwater in islands reveal the landward extending tendency of the freshwater-seawater mixing zone.

  15. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.

    Science.gov (United States)

    Wang, Junjie; He, Jiangtao; Chen, Honghan

    2012-08-15

    Groundwater contamination risk assessment is an effective tool for groundwater management. Most existing risk assessment methods only consider the basic contamination process based upon evaluations of hazards and aquifer vulnerability. In view of groundwater exploitation potentiality, including the value of contamination-threatened groundwater could provide relatively objective and targeted results to aid in decision making. This study describes a groundwater contamination risk assessment method that integrates hazards, intrinsic vulnerability and groundwater value. The hazard harmfulness was evaluated by quantifying contaminant properties and infiltrating contaminant load, the intrinsic aquifer vulnerability was evaluated using a modified DRASTIC model and the groundwater value was evaluated based on groundwater quality and aquifer storage. Two groundwater contamination risk maps were produced by combining the above factors: a basic risk map and a value-weighted risk map. The basic risk map was produced by overlaying the hazard map and the intrinsic vulnerability map. The value-weighted risk map was produced by overlaying the basic risk map and the groundwater value map. Relevant validation was completed by contaminant distributions and site investigation. Using Beijing Plain, China, as an example, thematic maps of the three factors and the two risks were generated. The thematic maps suggested that landfills, gas stations and oil depots, and industrial areas were the most harmful potential contamination sources. The western and northern parts of the plain were the most vulnerable areas and had the highest groundwater value. Additionally, both the basic and value-weighted risk classes in the western and northern parts of the plain were the highest, indicating that these regions should deserve the priority of concern. Thematic maps should be updated regularly because of the dynamic characteristics of hazards. Subjectivity and validation means in assessing the

  16. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  17. Field demonstration of rapid turnaround, multilevel groundwater screening

    International Nuclear Information System (INIS)

    Tingle, A.R.; Baker, L.; Long, D.D.

    1994-01-01

    A combined technology approach to rapidly characterizing source area and downgradient groundwater associated with a past fuel spill has been field tested. The purpose of this investigation was to determine the presence and extent of fuel-related compounds or indications of their biodegradation in groundwater. The distance from the source area to be investigated was established by calculating the potential extent of a plume based only on groundwater flow velocities. To accomplish this objective, commercially available technologies were combined and used to rapidly assess the source area and downgradient groundwater associated with the fuel discharge. The source of contamination that was investigated overlies glacial sand and gravel outwash deposits. Historical data suggest that from 1955 to 1970 as many as 1 to 6 million pi of aviation gasoline (AVGAS) were god at the study area. Although the remedial investigation (RI) for this study area indicated fuel-related groundwater contamination at the source area, fuel-related contamination was not detected in downgradient monitoring wells. Rapid horizontal groundwater velocities and the 24-year time span from the last reported spill farther suggest that a plume of contaminated groundwater could extend several thousand feet downgradient. The lack of contamination downgradient from the source suggests two possibilities: (1) monitoring wells installed during the RI did not intersect the plume or (2) fuel-related compounds had naturally degraded

  18. Using Web2.0 social network technology for sampling framework identification and respondent recruitment: experiences with a small-scale experiment

    NARCIS (Netherlands)

    Grigolon, A.B.; Kemperman, A.D.A.M.; Timmermans, H.J.P.

    2011-01-01

    In this paper, we report the results of a small–scale experiment to explore the potential of using social network technology for respondent recruitment. Of particular interest are the following questions (i) can social media be used for the identification of sampling frames, (ii) what response rates

  19. Validation of the Technology Acceptance Measure for Pre-Service Teachers (TAMPST) on a Malaysian Sample: A Cross-Cultural Study

    Science.gov (United States)

    Teo, Timothy

    2010-01-01

    Purpose: The purpose of this paper is to assess the cross-cultural validity of the technology acceptance measure for pre-service teachers (TAMPST) on a Malaysian sample. Design/methodology/approach: A total of 193 pre-service teachers from a Malaysian university completed a survey questionnaire measuring their responses to five constructs in the…

  20. Establishing and evaluating bar-code technology in blood sampling system: a model based on human centered human-centered design method.

    Science.gov (United States)

    Chou, Shin-Shang; Yan, Hsiu-Fang; Huang, Hsiu-Ya; Tseng, Kuan-Jui; Kuo, Shu-Chen

    2012-01-01

    This study intended to use a human-centered design study method to develop a bar-code technology in blood sampling process. By using the multilevel analysis to gather the information, the bar-code technology has been constructed to identify the patient's identification, simplify the work process, and prevent medical error rates. A Technology Acceptance Model questionnaire was developed to assess the effectiveness of system and the data of patient's identification and sample errors were collected daily. The average scores of 8 items users' perceived ease of use was 25.21(3.72), 9 items users' perceived usefulness was 28.53(5.00), and 14 items task-technology fit was 52.24(7.09), the rate of patient identification error and samples with order cancelled were down to zero, however, new errors were generated after the new system deployed; which were the position of barcode stickers on the sample tubes. Overall, more than half of nurses (62.5%) were willing to use the new system.

  1. A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation

    Science.gov (United States)

    Xiong, Z.; Kaback, D.; Bennett, P. J.

    2011-12-01

    Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of <450 nm. During field injections, nZVI particles were observed in a monitoring well

  2. Controlling groundwater pumping online.

    Science.gov (United States)

    Zekri, Slim

    2009-08-01

    Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.

  3. Assessment of the impacts of pit latrines on groundwater quality in rural areas: A case study from Marondera district, Zimbabwe

    Science.gov (United States)

    Dzwairo, Bloodless; Hoko, Zvikomborero; Love, David; Guzha, Edward

    In resource-poor and low-population-density areas, on-site sanitation is preferred to off-site sanitation and groundwater is the main source of water for domestic uses. Groundwater pollution potential from on-site sanitation in such areas conflicts with Integrated Water Resources Management (IWRM) principles that advocate for sustainable use of water resources. Given the widespread use of groundwater for domestic purposes in rural areas, maintaining groundwater quality is a critical livelihood intervention. This study assessed impacts of pit latrines on groundwater quality in Kamangira village, Marondera district, Zimbabwe. Groundwater samples from 14 monitoring boreholes and 3 shallow wells were analysed during 6 sampling campaigns, from February 2005 to May 2005. Parameters analysed were total and faecal coliforms, NH4+-N, NO3--N, conductivity, turbidity and pH, both for boreholes and shallow wells. Total and faecal coliforms both ranged 0-TNTC (too-numerous-to-count), 78% of results meeting the 0 CFU/100 ml WHO guidelines value. NH4+-N range was 0-2.0 mg/l, with 99% of results falling below the 1.5 mg/l WHO recommended value. NO3--N range was 0.0-6.7 mg/l, within 10 mg/l WHO guidelines value. The range for conductivity values was 46-370 μS/cm while the pH range was 6.8-7.9. There are no WHO guideline values for these two parameters. Turbidity ranged from 1 NTU to 45 NTU, 59% of results meeting the 5 NTU WHO guidelines limit. Depth from the ground surface to the water table for the period February 2005 to May 2005 was determined for all sampling points using a tape measure. The drop in water table averaged from 1.1 m to 1.9 m and these values were obtained by subtracting water table elevations from absolute ground surface elevation. Soil from the monitoring boreholes was classified as sandy. The soil infiltration layer was taken as the layer between the pit latrine bottom and the water table. It averaged from 1.3 m to 1.7 m above the water table for two latrines

  4. Effective sample labeling

    International Nuclear Information System (INIS)

    Rieger, J.T.; Bryce, R.W.

    1990-01-01

    Ground-water samples collected for hazardous-waste and radiological monitoring have come under strict regulatory and quality assurance requirements as a result of laws such as the Resource Conservation and Recovery Act. To comply with these laws, the labeling system used to identify environmental samples had to be upgraded to ensure proper handling and to protect collection personnel from exposure to sample contaminants and sample preservatives. The sample label now used as the Pacific Northwest Laboratory is a complete sample document. In the event other paperwork on a labeled sample were lost, the necessary information could be found on the label

  5. Hanford Site groundwater monitoring: Setting, sources and methods

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2000-01-01

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports

  6. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  7. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia

    Directory of Open Access Journals (Sweden)

    Shirazi Sharif Moniruzzaman

    2015-03-01

    Full Text Available Groundwater quality and aquifer productivity of Malacca catchment in Peninsular Malaysia are presented in this article. Pumping test data were collected from 210 shallow and 17 deep boreholes to get well inventory information. Data analysis confirmed that the aquifers consisting of schist, sand, limestone and volcanic rocks were the most productive aquifers for groundwater in Malacca state. GIS-based aquifer productivity map was generated based on bedrock and discharge capacity of the aquifers. Aquifer productivity map is classified into three classes, namely high, moderate and low based on discharge capacity. Groundwater potential of the study area is 35, 57 and 8% of low, moderate and high class respectively. Fifty two shallow and 14 deep aquifer groundwater samples were analyzed for water quality. In some cases, groundwater quality analysis indicated that the turbidity, total dissolved solids, iron, chloride and cadmium concentrations exceeded the limit of drinking water quality standards.

  8. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  9. Chlorinated solvents in groundwater of the United States

    Science.gov (United States)