WorldWideScience

Sample records for groundwater remediation volume

  1. Basewide Groundwater Operable Unit. Groundwater Operable Unit Remedial Investigation/Feasibility Study Report. Volume 1

    Science.gov (United States)

    1994-06-01

    units would be reused in the remedy. Contingency measures to be included in the remedy are potential metals removal prior to water end use, potential...onbase reuse of a portion of the water, and wellhead treatment on offbase supply wells. The contingency measures will only be implemented if necessary...94 LEGEND Ouatmar aluvi dposts agua Frmaion(cosoldatd aluval epoits W iead rdetilnsMhte omtin(neitccnlmeae ansoe9ndkeca F 70 Quvatei-lernayalvu e pk

  2. Basewide Groundwater Operable Unit. Groundwater Operable Unit Remedial Investigation/Feasibility Study Report. Volume 2

    Science.gov (United States)

    1994-06-01

    Waters Plan Protection of Aquatic Life Freshwater Aquatic ULie Protection Freshwater Freshwater 1-Hour CopudAcute Chronic Average 4-Day...2 of 3 ARARs TB~s Clean Water Act Ambient Water Quality Criteria Inland Surface Waters Plan Protection of Aquatic Life Freshwater Aquatic Life...as a drinking water source. Response: The Air Force concurs with the establishment of a 106 risk target volume as the goal of the interim

  3. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    geographically dispersed community is united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  4. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  5. A process for containment removal and waste volume reduction to remediate groundwater containing certain radionuclides, toxic metals and organics

    International Nuclear Information System (INIS)

    Buckley, L.P.; Killey, D.R.W.; Vijayan, S.; Wong, P.C.F.

    1992-09-01

    A project to remove groundwater contaminants by an improved treatment process was performed during 1990 October--1992 March by Atomic Energy of Canada Limited for the United States Department of Energy, managed by Argonne National Laboratory. The goal was to generate high-quality effluent while minimizing secondary waste volume. Two effluent target levels, within an order of magnitude, or less than the US Drinking Water Limit, were set to judge the process effectiveness. The program employed mixed waste feeds containing cadmium, uranium, lead, iron, calcium, strontium-85-90, cesium-137, benzene and trichlorethylene in simulated and actual groundwater and soil leachate solutions. A combination of process steps consisting of sequential chemical conditioning, cross-flow microfiltration and dewatering by low temperature-evaporation, or filter pressing were effective for the treatment of mixed waste having diverse physico-chemical properties. A simplified single-stage version of the process was implemented to treat ground and surface waters contaminated with strontium-90 at the Chalk River Laboratories site. Effluent targets and project goals were met successfully

  6. Groundwater remediation in the Straz leaching operation

    International Nuclear Information System (INIS)

    Novak, J.

    2001-01-01

    The locality affected by consequences of the chemical mining of the uranium during underground leaching 'in situ' is found in the area of the Czech Republic in the northeastern part of the Ceska Lipa district. In the contribution the complex groundwater remediation project is discussed. First, the risks of the current state are expressed. Then the alternatives of remediation of the both Cenomanian and Turonian aquifers are presented. Evaluation of the remediation alternatives with the view to the time-consumption, economy, ecology and the elimination of unacceptable risks for the population and environment is done. Finally, the present progress of remediation and the conception of remediation of chemical mining on deposit of Straz pod Ralskem are presented. (orig.)

  7. Decision process for Hanford sitewide groundwater remediation

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-06-01

    This document describes a decision process for planning future investigations and remediating contaminated groundwater at the Hanford Site in Richland, Washington. This decision process details the following: identifies key decisions and activities; defines the criteria used in making each decision; and defines the logic that links the decisions and the activities in a stepwise manner

  8. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  9. Colloid remediation in groundwater by polyelectrolyte capture

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Rao, S.; Jain, R.

    1992-01-01

    This paper describes an ongoing study to characterize groundwater colloids, to understand the geochemical factors affecting colloid transport in groundwater, and to develop an in-situ colloid remediation process. The colloids and suspended particulate matter used in this study were collected from a perched aquifer site that has radiation levels several hundred times the natural background and where previous researchers have measured and reported the presence of radiocolloids containing plutonium and americium. At this site, radionuclides have spread over several kilometers. Inorganic colloids collected from water samples are characterized with respect to concentration, mineralogy, size distribution, electrophoretic mobility (zeta potential), and radioactivity levels. Presented are the methods used to investigate the physiochemical factors affecting colloid transport and the preliminary analytical results. Included below are a description of a colloid transport model and the corresponding computational code, water analyses, characterization of the inorganic colloids, and a conceptual description of a process for in-situ colloid remediation using the phenomenon of polyelectrolyte capture

  10. Groundwater remediation at the Hanford site

    International Nuclear Information System (INIS)

    Fries, W.

    1993-01-01

    Ion exchange resin and adsorption technology has been used successfully to treat diversified types of toxic waste water for many years. Even though the Hanford Site presents many unique problems, the author believes these technologies can remediate the groundwater at this site. However, treatment of the sludge in tanks generally is beyond the pale of these technologies except for the possibility of experimental studies being performed at the University of Idaho (Troescher)

  11. Hydrodynamic analysis application of contaminated groundwater remediation to oil hydrocarbons

    Directory of Open Access Journals (Sweden)

    Pajić Predrag R.

    2017-01-01

    Full Text Available In this paper, the application of the hydrodynamic analysis in the selected ‘pumping and treatment’ remediation method of groundwater hydrocarbon pollution in the case of the Pancevo oil refinery is examined. The applied hydrodynamic analysis represents a regular and necessary approach in modern hydrogeology. Previous chemical analysis of soil and groundwater samples at observation objects revealed their pollution by oil products. New researches included the constraction of 12 piezometric boreholes of varying depths, geoelectric soil sounding, ‘in situ’ measurement of the present contaminant, detected as a hydrophobic phase of LNAPL, chemical analysis of soil and groundwater samples with emphasis on total petroleum hydrocarbons (TPH content, total fats and mineral oils, mercury cations and other characteristic compounds, etc. These researches define the volume of contamination issued by the ‘light’ (LNAPL contamination phase. The selected remediation method for this type of pollution is the ‘Pump and Treat’ method, which implies the pumping of contaminated groundwater from aquifer and their subsequent treatment. A hydrodynamic method was used to select the optimal hydrotechnical solution for LNAPL extraction. On the mathematical model, the prediction calculations for two variant solutions were carried out (‘hydraulic isolation’ and complex for the application of groundwater contamination remediation characterized as front pollution substance (by extraction and injection wells or infiltration pool. By extraction wells performing, it would be possible to remove the LNAPL from the surface of the water with special pumps-skimmers. The importance of the hydrodynamic method application is, in addition to the hydrotechnical solution selection for the LNAPL drainage, the provision of quality basis for the dimensioning of these objects based on the results of the groundwater balance.

  12. Fluoride in groundwater: toxicological exposure and remedies.

    Science.gov (United States)

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects.

  13. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  14. Electrochemical remediation technologies for soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Doering, F. [Electrochemical Processes I.I. c. Valley Forge, PA (United States)]|[P2 Soil Remediation, Inc. Stuttgart (Germany); Doering, N. [P2 Soil Remediation, Inc. Stuttgart (Germany)

    2001-07-01

    In Direct Current Technologies (DCTs) a direct current electricity is passed between at least two subsurface electrodes in order to effect the remediation of the groundwater and/or the soil. DCTs in line with the U.S.-terminology comprise of the ElectroChemical Remediation Technologies (ECRTs), and GeoKinetics. The primary distinction between ECRTs and ElectroKinetics are the power input, and the mode of operation, which are electrochemical reactions vs. mass transport. ECRTs combine phenomena of colloid (surface) electrochemistry with the phenomena of Induced Polarization (IP). This report focuses on ECRTs, comprising of the ElectroChemical GeoOxidation (ECGO) for the mineralization of organic pollutants to finally carbon dioxide and water, and Induced Complexation (IC), related to the electrochemical conversion of metals enhancing the mobilization and precipitation of heavy metals on both electrodes. Both technologies are based on reduction-oxidation (redox) reactions at the scale of the individual soil particles. (orig.)

  15. Optimized remedial groundwater extraction using linear programming

    International Nuclear Information System (INIS)

    Quinn, J.J.

    1995-01-01

    Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary

  16. Soil and groundwater remediation guidelines for methanol

    International Nuclear Information System (INIS)

    2010-12-01

    Methanol is used by oil and gas operators to inhibit hydrate formation in the recovery of heavy oils, in natural gas production and transport, as well as in various other production applications. Emissions from methanol primary occur from miscellaneous solvent usage, methanol production, end-product manufacturing, and storage and handling losses. This document provided soil and groundwater remediation guidelines for methanol releases into the environment. The guidelines were consistent with the Alberta Environment tier 1 soil and groundwater framework. The chemical and physical properties of methanol were reviewed. The environmental fate and behavior of methanol releases was discussed, and the behaviour and effects of methanol in terrestrial and aquatic biota were evaluated. The toxicity of methanol and its effects in humans and mammalian species were reviewed. Soil quality and ground water quality guidelines were presented. Surface water and soil guideline calculation methods were provided, and ecological exposure and ground water pathways were discussed. Management limits for methanol concentrations were also provided. 162 refs., 18 tabs., 4 figs.

  17. Integrated remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Dykes, R.S.; Howles, A.C.

    1992-01-01

    Remediation of sites contaminated with petroleum hydrocarbons and other organic chemicals frequently focuses on a single phase of the chemical in question. This paper describes an integrated approach to remediation involving selection of complimentary technologies designed to create a remedial system which achieves cleanup goals in affected media in the shortest possible time consistent with overall environmental protection

  18. Soil and groundwater remediation using dual-phase extraction technology

    International Nuclear Information System (INIS)

    Miller, A.W.; Gan, D.R.

    1995-01-01

    A gasoline underground storage tank (UST) was formerly used to fuel vehicles for a hospital in Madison, Wisconsin. Elevated concentrations of gasoline range organics (GRO) were observed in soils and groundwater at the site during the tank removal and a subsequent site investigation. Based on the extent of soil and groundwater contamination, a dual-phase extraction technology was selected as the most cost effective alternative to remediate the site. The dual-phase extraction system includes one extraction well functioning both as a soil vapor extraction (SVE) and groundwater recovery well. After six months of operation, samples collected from the groundwater monitoring wells indicated that the groundwater has been cleaned up to levels below the Wisconsin preventative action limits. The dual-phase extraction system effectively remediated the site in a short period of time, saving both operation and maintenance costs and overall project cost

  19. Technical options for the remediation of contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    This report provides a description of the nature and extent of problems related to radioactive groundwater contamination by outlining the environmental impacts, the sources of contamination and the contaminants of concern radionuclides and their associated contaminants - the main exposure pathways and transport processes and the assessment of risks associated with contaminated groundwater. The main emphasis of this report is on methodologies used in groundwater remediation and available technologies. The methodology section outlines the importance of an initial scoping analysis including the evaluation of uncertainties of the available data and the necessity for defining clear objectives for data collection. This is then followed by comprehensive site characterization, setting of goals and developing alternatives which will be analysed in detail. Available technologies are grouped generally into in situ methods aiming at a containment of the contaminants in place and engineered treatment methods involving an alteration of groundwater flow, quantity and/or quality to achieve compliance with set goals. Groundwater remediation by natural flushing allows the natural groundwater movement and geochemical processes to decrease the contaminant concentrations to acceptable levels over a specified period of time. This method is increasingly accepted in areas where the use of groundwater can be temporarily restricted or engineered cleanup methods do not offer particular advantage over the natural processes. The application of technological methods for remediating contaminated groundwaters has to be considered in conjunction with management options such as diversion and development of alternative water sources. The experience with groundwater contamination accrued in IAEA Member States is concentrated in those countries with active uranium mining and milling facilities and nuclear energy programmes. This experience is reported in the Annexes, which include case studies. It

  20. Technical options for the remediation of contaminated groundwater

    International Nuclear Information System (INIS)

    1999-06-01

    This report provides a description of the nature and extent of problems related to radioactive groundwater contamination by outlining the environmental impacts, the sources of contamination and the contaminants of concern radionuclides and their associated contaminants - the main exposure pathways and transport processes and the assessment of risks associated with contaminated groundwater. The main emphasis of this report is on methodologies used in groundwater remediation and available technologies. The methodology section outlines the importance of an initial scoping analysis including the evaluation of uncertainties of the available data and the necessity for defining clear objectives for data collection. This is then followed by comprehensive site characterization, setting of goals and developing alternatives which will be analysed in detail. Available technologies are grouped generally into in situ methods aiming at a containment of the contaminants in place and engineered treatment methods involving an alteration of groundwater flow, quantity and/or quality to achieve compliance with set goals. Groundwater remediation by natural flushing allows the natural groundwater movement and geochemical processes to decrease the contaminant concentrations to acceptable levels over a specified period of time. This method is increasingly accepted in areas where the use of groundwater can be temporarily restricted or engineered cleanup methods do not offer particular advantage over the natural processes. The application of technological methods for remediating contaminated groundwaters has to be considered in conjunction with management options such as diversion and development of alternative water sources. The experience with groundwater contamination accrued in IAEA Member States is concentrated in those countries with active uranium mining and milling facilities and nuclear energy programmes. This experience is reported in the Annexes, which include case studies. It

  1. Application of ozone micro-nano-bubbles to groundwater remediation.

    Science.gov (United States)

    Hu, Liming; Xia, Zhiran

    2018-01-15

    Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. LCA of Soil and Groundwater Remediation

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Owsianiak, Mikolaj

    2018-01-01

    Today, there is increasing interest in applying LCA to support decision-makers in contaminated site management. In this chapter, we introduce remediation technologies and associated environmental impacts, present an overview of literature findings on LCA applied to remediation technologies...... and present methodological issues to consider when conducting LCAs within the area. Within the field of contaminated site remediation , a terminology distinguishing three types of environmental impacts: primary, secondary and tertiary, is often applied. Primary impacts are the site-related impacts due...... and efficiency of remediation, which are important for assessment or primary impacts; (ii) robust assessment of primary impacts using site-specific fate and exposure models; (iii) weighting of primary and secondary (or tertiary) impacts to evaluate trade-offs between life cycle impacts from remediation...

  3. Hydrodynamic analysis application of contaminated groundwater remediation to oil hydrocarbons

    OpenAIRE

    Pajić Predrag R.; Čalenić Aleksandar I.; Polomčić Dušan M.; Bajić Dragoljub I.

    2017-01-01

    In this paper, the application of the hydrodynamic analysis in the selected ‘pumping and treatment’ remediation method of groundwater hydrocarbon pollution in the case of the Pancevo oil refinery is examined. The applied hydrodynamic analysis represents a regular and necessary approach in modern hydrogeology. Previous chemical analysis of soil and groundwater samples at observation objects revealed their pollution by oil products. New researches included the constraction of 12 piezometric bor...

  4. Black Swans and the Effectiveness of Remediating Groundwater Contamination

    Science.gov (United States)

    Siegel, D. I.; Otz, M. H.; Otz, I.

    2013-12-01

    Black swans, outliers, dominate science far more than do predictable outcomes. Predictable success constitutes the Black Swan in groundwater remediation. Even the National Research Council concluded that remediating groundwater to drinking water standards has failed in typically complex hydrogeologic settings where heterogeneities and preferential flow paths deflect flow paths obliquely to hydraulic gradients. Natural systems, be they biological or physical, build upon a combination of large-scale regularity coupled to chaos at smaller scales. We show through a review of over 25 case studies that groundwater remediation efforts are best served by coupling parsimonious site characterization to natural and induced geochemical tracer tests to at least know where contamination advects with groundwater in the subsurface. In the majority of our case studies, actual flow paths diverge tens of degrees from anticipated flow paths because of unrecognized heterogeneities in the horizontal direction of transport, let alone the vertical direction. Consequently, regulatory agencies would better serve both the public and the environment by recognizing that long-term groundwater cleanup probably is futile in most hydrogeologic settings except to relaxed standards similar to brownfielding. A Black Swan

  5. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Kshitij C. Jha

    2016-07-01

    Full Text Available Adsorption of chlorinated organic contaminants (COCs on carbon nanotubes (CNTs has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE, the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  6. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    Science.gov (United States)

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-07-21

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  7. The UMTRA PEIS: A strategy for groundwater remediation

    International Nuclear Information System (INIS)

    Burt, C.; Ulland, L.; Weston, R.F.; Metzler, D.

    1993-01-01

    A programmatic environmental impact statement (PEIS) was initiated in 1992 for the uranium mill tailings remedial action (UMTRA) program. The PEIS kicked off the groundwater restoration phase of UMTRA, a project involving remediation of 24 sites in ten states and tribal lands contaminated with tailings from uranium mining and milling operations. The U.S. Department of Energy (DOE) agreed, in early 1992, that a PEIS was an appropriate strategy to comply with the National Environmental Policy Act (NEPA) for this second, groundwater phase of the project. This decision recognized that although a parallel effort was being undertaken in preparing a PEIS for DOE's Environmental Restoration/Waste Management (ER/WM) program, characteristics and the maturity of the UMTRA project made it more appropriate to prepare a separate PEIS. The ER/WM PEIS is intended to examine environmental restoration and waste management issues from a very broad perspective. For UMTRA, with surface remediation completed or well under way at 18 of the 24 sites, a more focused programmatic approach for groundwater restoration is more effective than including the UMTRA project within the ER/WM environmental impact statements. A separate document allows a more focused and detailed analysis necessary to efficiently tier site-specific environmental assessments for groundwater restoration at each of the 24 UMTRA former processing sites

  8. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [Navarro Research and Engineering; Miller, David [Navarro Research and Engineering; Kautsky, Mark [U. S. Department of Energy, Office of Legacy Management; Dander, David [Navarro Research and Engineering; Nofchissey, Joni [Navajo Nation Division of Natural Resources

    2016-03-06

    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  9. Arsenic in the groundwater: Occurrence, toxicological activities, and remedies.

    Science.gov (United States)

    Jha, S K; Mishra, V K; Damodaran, T; Sharma, D K; Kumar, Parveen

    2017-04-03

    Arsenic (As) contamination in groundwater has become a geo-environmental as well as a toxicological problem across the globe affecting more than 100-million people in nearly 21 countries with its associated disease "arsenicosis." Arsenic poisoning may lead to fatal skin and internal cancers. In present review, an attempt has been made to generate awareness among the readers about various sources of occurrence of arsenic, its geochemistry and speciation, mobilization, metabolism, genotoxicity, and toxicological exposure on humans. The article also emphasizes the possible remedies for combating the problem. The knowledge of these facts may help to work on some workable remedial measure.

  10. Remediation of TCE-contaminated groundwater using nanocatalyst and bacteria.

    Science.gov (United States)

    Kang, Ser Ku; Seo, Hyunhee; Sun, Eunyoung; Kim, Inseon; Roh, Yul

    2011-08-01

    The objective of this study was to develop and evaluate the remediation of trichloroethene (TCE)-contaminated groundwater using both a nanocatalyst (bio-Zn-magnetite) and bacterium (similar to Clostridium quinii) in anoxic environments. Of the 7 nanocatalysts tested, bio-Zn-magnetite showed the highest TCE dechlorination efficiency, with an average of ca. 90% within 8 days in a batch experiment. The column tests confirmed that the application of bio-Zn-magnetite in combination with the bacterium achieved high degradation efficiency (ca. 90%) of TCE within 5 days compared to the nanocatalyst only, which degraded only 30% of the TCE. These results suggest that the application of a nanocatalyst and the bacterium have potential for the remediation of TCE-contaminated groundwater in subsurface environments.

  11. Use of LCA as decision support for the selection of remedial strategies for remediation of contaminated soil and groundwater

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2009-01-01

    , there is a trade-off between obtaining local beneficial effects from the remediation and generating environmental impacts on the regional and global scale due to the remedial actions. Therefore there is a need for including the impact of soil contaminants that will potentially leach to the groundwater, e......Groundwater is the dominant source of drinking water in Denmark and the general policy is to maintain the groundwater as a clean source of drinking water. The risk of groundwater contamination is therefore often the prime reason for remediating a contaminated site. Chlorinated solvents are among...... the contaminants most frequently found to be threatening the groundwater quality in Denmark and worldwide. Life cycle assessment has recently been applied as part of decision support for contaminated site management and subsurface remediation techniques. Impacts in the groundwater compartment have only gained...

  12. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    Science.gov (United States)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  13. Application of optimization modeling to groundwater remediation at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Bakr, A.A.; Dal Santo, D.J.; Smalley, R.C.; Phillips, E.C.

    1988-01-01

    This paper outlines and explores the fundamentals of the current strategies for groundwater hydraulic and quality management modeling and presents a scheme for the application of such strategies to DOE facilities. The discussion focuses on the DOE-Savannah River Operations (DOE-SR) facility. Remediation of contaminated groundwater at active and abandoned waste disposal sites has become a major element of environmental programs. Traditional groundwater remediation programs (e.g., pumping and treatment) may not represent optimal water quality management strategies at sites to be remediated. Complex, interrelated environmental (geologic/geohydrologic), institutional, engineering, and economic conditions at a site may require a more comprehensive management strategy. Groundwater management models based on the principles of operations research have been developed and used to determine optimal management strategies for water resources needs and for hypothetical remediation programs. Strategies for groundwater remediation programs have ranged from the simple removal of groundwater to complex, hydraulic gradient control programs involving groundwater removal, treatment, and recharge

  14. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  15. Mechanisms of uranium interactions with hydroxyapatite: Implications for groundwater remediation

    Science.gov (United States)

    Fuller, C.C.; Bargar, J.R.; Davis, J.A.; Piana, M.J.

    2002-01-01

    The speciation of U(VI) sorbed to synthetic hydroxyapatite was investigated using a combination of U LIII-edge XAS, synchrotron XRD, batch uptake measurements, and SEM-EDS. The mechanisms of U(VI) removal by apatite were determined in order to evaluate the feasibility of apatitebased in-situ permeable reactive barriers (PRBs). In batch U(VI) uptake experiments with synthetic hydroxyapatite (HA), near complete removal of dissolved uranium (>99.5%) to use in development of PRBs for groundwater U(VI) remediation.

  16. An innovative funnel and gate approach to groundwater remediation

    International Nuclear Information System (INIS)

    Johnson, D.O.; Wilkey, M.L.; Willis, J.M.

    1996-01-01

    The US Department of Energy, office of Science and Technology (EM-50) sponsored a demonstration project of the Barrier Member Containment Corporation's patented EnviroWall trademark system at the Savannah River site. With this system, contaminated groundwater can be funneled into a treatment system without pumping the contaminated water to the surface. The EnviroWall trademark barrier and pass-through system, an innovative product of sic years of research and development, provides a means to enhance groundwater flow on the upgradient side of an impermeable wall and direct it to an in situ treatment system. The EnviroWall trademark system is adaptable to most site conditions. Remedial applications range form plume containment to more robust designs that incorporate groundwater manipulation coupled with in situ treatment. Several key innovations of the EnviroWall trademark system include the following: a method for guide box installation; a means for using interlocking seals at vertical seams; a down-hole video camera for inspecting seams and panels, installation of horizontal- and vertical-collection systems; installation of vertical monitoring wells and instrumentation on each side of the barrier; site-specific backfill design; and a pass-through system for funneling groundwater into a treatment system

  17. Permeable reactive barrier - innovative technology for ground-water remediation

    International Nuclear Information System (INIS)

    Vidic, D.R.

    2002-01-01

    Significant advances in the application of permeable reactive barriers (PRBs) for ground-water remediation have been witnessed in the last 5 years. From only a few full-scale systems and pilot-scale demonstrations, there are currently at least 38 full-scale PRBs using zero-valent iron (ZVI) as a reactive material. Of those, 26 are continuous reactive walls, 9 are funnel-and- gate systems and 3 are in situ reactive vessels. Most of the PRB systems have used granular iron media and have been applied to address the control of contamination caused by chlorinated volatile organic compounds or heavy metals. Many regulatory agencies have expressed interest in PRB systems and are becoming more comfortable in issuing permits. The main advantage of PRB systems is that the installation costs are comparable with those of other ground-water remediation technologies, while the O and M costs are significantly lower and are mostly due to monitoring requirements, which are required for all remediation approaches. In addition, the land use can resume after the installation of the PRB systems, since there are few visible signs of the installation above grounds except for the monitoring wells. It is difficult to make any definite conclusions about the long-term performance of PRB systems because there is no more than 5 years of the record of performance that can be used for such analysis. The two main challenges still facing this technology are: (1) evaluating the longevity (geochemistry) of a PRB; and (2) ensuring/verifying hydraulic performance. A number of public/private partnerships have been established in recent years that are working together to resolve some of these problems. This organized approach by combining the efforts of several government agencies and private companies will likely result in better understanding and, hopefully, better acceptance of this technology in the future. (author)

  18. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  19. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A; Lance, P E; Downs, A; Kier, Brian P [EMCON Northwest Inc., Portland, OR (United States)

    1994-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  20. [Study on the groundwater petroleum contaminant remediation by air sparging].

    Science.gov (United States)

    Wang, Zhi-Qiang; Wu, Qiang; Zou, Zu-Guang; Chen, Hong; Yang, Xun-Chang; Zhao, Ji-Chu

    2007-04-01

    The groundwater petroleum contaminant remediation effect by air sparging was investigated in an oil field. The results show that the soil geological situation has great influence on the air distribution, and the shape of air distribution is not symmetrical to the air sparging (AS) well as axis. The influence distance in the left of AS well is 6 m, and only 4 m in the right. The petroleum removal rate can reach 70% in the zone with higher air saturation, but only 40% in the zone with lower air saturation, and the average petroleum removal rate reaches 60% in the influence zone for 40 days continuous air sparging. The petroleum components in groundwater were analyzed by GC/MS (gas chromatogram-mass spectrograph) before and after experiments, respectively. The results show that the petroleum removal rate has relationship with the components and their properties. The petroleum components with higher volatility are easily removed by volatilization, but those with lower volatility are difficult to remove, so a tailing effect of lingering residual contaminant exists when the air sparging technology is adopted to treat groundwater contaminated by petroleum products.

  1. A co-metabolic approach to groundwater remediation

    International Nuclear Information System (INIS)

    Palumbo, A.V.; Boerman, P.A.; Herbes, S.E.; White, D.C.; Strandberg, G.W.; Donaldson, T.L.; Lucero, A.J.; Jennings, H.L.; Phelps, T.J.; White, D.C.

    1991-01-01

    In support of the US Department of Energy's (DOE) Integrated Demonstration (Cleanup of Organics in Soils and Groundwater at Non-arid Sites) at the Savannah River Site (SRS), Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) are involved in demonstrations of the use of methanotrophs in bioreactors for remediation of contaminated groundwater. In preparation for a field demonstration at ORNL's K-25 Site in Oak Ridge, Tennessee, ORNL is conducting batch experiments, is operating a number of bench-scale bioreactors, has designed pretreatment systems, and has modified a field-scale bioreactor provided by the Air Force Engineering and Services Center for use at the site. UT is operating benchscale bioreactors with the goal of determining the stability of a trichloroethylene-degrading methanotrophic consortia during shifts in operating conditions (e.g. pH, nutrient inputs, and contaminant mixtures). These activities are all aimed at providing the knowledge base necessary for successful treatment of contaminated groundwater at the SRS and K-25 sites as well as other DOE sites

  2. A co-metabolic approach to groundwater remediation

    International Nuclear Information System (INIS)

    Palumbo, A.V.; Boerman, P.A.; Strandberg, G.W.; Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Herbes, S.E.; Phelps, T.J.; White, D.C.

    1991-01-01

    In support of the US Department of Energy's (DOE) Integrated Demonstration (Cleanup of Organics in Soils and Groundwater at Non-arid Sites) at the Savannah River Site (SRS), Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) are involved in demonstrations of the use of methanotrophs in bioreactors for remediation of contaminated groundwater. In preparation for a field demonstration at ORNL's K-25 Site in Oak Ridge, Tennessee, ORNL is conducting batch experiments, is operating a number of bench-scale bioreactors, has designed pretreatment systems, and has modified a field-scale bioreactor provided by the Air Force Engineering and Services Center for use at the site. UT is operating bench-scale bioreactors with the goal of determining the stability of a trichloroethylene-degrading methanotrophic consortia during shifts in operating conditions (e.g. pH, nutrient inputs, and contaminant mixtures). These activities are all aimed at providing the knowledge base necessary for successful treatment of contaminated groundwater at the SRS and K-25 sites as well as other DOE sites. 18 refs., 1 fig. , 1 tab

  3. Abstracts of Remediation Case Studies, Volume 9

    Science.gov (United States)

    This report, published by the Federal Remediation Technologies Roundtable (FRTR), is a collection of recently published abstracts summarizing 13 cost and performance case studies on the use of remediation technologies at contaminated sites.

  4. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    International Nuclear Information System (INIS)

    STrietelmeir, B.

    2000-01-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), and extremely inexpensive and easy to emplace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels has been discharged from this plant for many years, until recently when the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated this past year to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier. will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mhl nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 microM perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system

  5. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  6. Tailings From Mining Activities, Impact on Groundwater, and Remediation

    Directory of Open Access Journals (Sweden)

    Khalid Al-Rawahy

    2001-12-01

    Full Text Available Effluent wastes from mining operations and beneficiation processes are comprized mostly of the following pollutants: total suspended solids (TTS, alkalinity or acidity (pH, settleable solids, iron in ferrous mining, and dissolved metals in nonferrous mining. Suspended solids consist of small particles of solid pollutants that resist separation by conventional means. A number of dissolved metals are considered toxic pollutants. The major metal pollutants present in ore mining and beneficiation waste waters include arsenic, cadmium, copper, lead, mercury, nickel, and zinc. Tailings ponds are used for both the disposal of solid waste and the treatment of waste-water streams. The supernatant decanted from these ponds contains suspended solids and, at times, process reagents introduced to the water during ore beneficiation. Leakage of material from tailings pond into groundwater is one possible source of water pollution in the mining industry. Percolation of waste-water from impoundment may occur if tailings ponds are not properly designed. This paper addresses potential groundwater pollution due to effluent from mining activities, and the possible remediation options.

  7. Groundwater Radioiodine: Prevalence, Biogeochemistry, And Potential Remedial Approaches

    International Nuclear Information System (INIS)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-01-01

    ) compile the background information necessary to understand behavior of 129 I in the environment, (2) discuss sustainable remediation approaches to 129 I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of 129 I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating 129 I environmental remediation and reducing uncertainty associated with disposal of 129 I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater 129 I. (2) Develop analytical techniques for measurement of total 129 I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize 129 I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various 129 I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on 129 I flux

  8. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  9. Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty

    International Nuclear Information System (INIS)

    Li, Jing; He, Li; Lu, Hongwei; Fan, Xing

    2014-01-01

    Highlights: • We propose an integrated optimal groundwater remediation design approach. • The approach can address stochasticity in carcinogenic risks. • Goal programming is used to make the system approaching to ideal operation and remediation effects. • The uncertainty in slope factor is evaluated under different confidence levels. • Optimal strategies are obtained to support remediation design under uncertainty. - Abstract: An optimal design approach for groundwater remediation is developed through incorporating numerical simulation, health risk assessment, uncertainty analysis and nonlinear optimization within a general framework. Stochastic analysis and goal programming are introduced into the framework to handle uncertainties in real-world groundwater remediation systems. Carcinogenic risks associated with remediation actions are further evaluated at four confidence levels. The differences between ideal and predicted constraints are minimized by goal programming. The approach is then applied to a contaminated site in western Canada for creating a set of optimal remediation strategies. Results from the case study indicate that factors including environmental standards, health risks and technical requirements mutually affected and restricted themselves. Stochastic uncertainty existed in the entire process of remediation optimization, which should to be taken into consideration in groundwater remediation design

  10. Application of Fe-Cu/Biochar System for Chlorobenzene Remediation of Groundwater in Inhomogeneous Aquifers

    OpenAIRE

    Xu Zhang; Yanqing Wu; Pingping Zhao; Xin Shu; Qiong Zhou; Zichen Dong

    2017-01-01

    Chlorobenzene (CB), as a typical Volatile Organic Contaminants (VOC), is toxic, highly persistent and easily migrates in water, posing a significant risk to human health and subsurface ecosystems. Therefore, exploring effective approaches to remediate groundwater contaminated by CB is essential. As an enhanced micro-electrolysis system for CB-contaminated groundwater remediation, this study attempted to couple the iron-copper bimetal with biochar. Two series of columns using sands with differ...

  11. Groundwater remediation from the past to the future: A bibliometric analysis.

    Science.gov (United States)

    Zhang, Shu; Mao, Guozhu; Crittenden, John; Liu, Xi; Du, Huibin

    2017-08-01

    Groundwater is an important component of terrestrial ecosystems and plays a role in geochemical cycling. Groundwater is also used for agricultural irrigation and for the domestic supply of drinking water in most nations. However, groundwater contamination has led to many research efforts on groundwater remediation technologies and strategies. This study evaluated a total of 5486 groundwater remediation-related publications from 1995 to 2015 using bibliometric technology and social network analysis, to provide a quantitative analysis and a global view on the current research trend and future research directions. Our results underline a strong research interest and an urgent need to remediate groundwater pollution due to the increasing number of both groundwater contamination and remediation publications. In the past two decades, the United States (U.S.) published 41.1% of the papers and it was the core country of the international collaboration network, cooperating with the other 19 most productive countries. Besides the active international collaboration, the funding agencies also played positive roles to foster the science and technology publications. With respect to the analysis of the distribution of funding agencies, the National Science Foundation of China sponsored most of the groundwater remediation research. We also identified the most productive journals, Environmental Science and Technology and Journal of Contaminant Hydrology, which published 334 and 259 scientific articles (including research articles and reviews) over the past 20 years, respectively. In addition to journal publications, a patent analysis was performed to show the impact of intellectual property protection on journal publications. Three major remediation technologies, including chemical oxidation, biodegradation and adsorption, have received increasing interest in both journal publication and patent development. Our results provide a valuable reference and global overview to identify

  12. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  13. Development and applications of groundwater remediation technologies in the USA

    Science.gov (United States)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  14. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    Science.gov (United States)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  15. A Sustainability Assessment Methodology for Prioritizing the Technologies of Groundwater Contamination Remediation

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Wang, Yue

    2016-01-01

    More and more groundwater has 23 been polluted recently, and technologies for groundwater contamination remediation are of vital importance; however, it is usually difficult for the users to select the most suitable technology among multiple alternatives. In order to address this, this study aims...... at developing a sustainability assessment framework for prioritizing the technologies for groundwater contamination remediation by combining the concept of sustainability and multi-criteria decision making (MCDM) method. A criterion system which consists of six criteria in three aspects has been proposed...... for sustainability assessment of technologies for groundwater contamination remediation, and a novel MCDM method by combining the logarithmic fuzzy preference programming based fuzzy analytic hierarchy process and the improved ELECTRE method has been developed for prioritizing the alternatives. In order...

  16. Application of natural resource valuation concepts for development of sustainable remediation plans for groundwater.

    Science.gov (United States)

    Connor, John A; Paquette, Shawn; McHugh, Thomas; Gie, Elaine; Hemingway, Mark; Bianchi, Gino

    2017-12-15

    This paper explores the application of natural resource assessment and valuation procedures as a tool for developing groundwater remediation strategies that achieve the objectives for health and environmental protection, in balance with considerations of economic viability and conservation of natural resources. The natural resource assessment process, as applied under U.S. and international guidelines, entails characterization of groundwater contamination in terms of the pre-existing beneficial services of the impacted resource, the loss of these services caused by the contamination, and the measures and associated costs necessary to restore or replace the lost services. Under many regulatory programs, groundwater remediation objectives assume that the impacted groundwater may be used as a primary source of drinking water in the future, even if not presently in use. In combination with a regulatory preference for removal or treatment technologies, this assumed exposure, while protective of human health, can drive the remedy selection process toward remedies that may not be protective of the groundwater resource itself or of the other natural resources (energy, materials, chemicals, etc.) that may be consumed in the remediation effort. To achieve the same health and environmental protection goals under a sustainable remediation framework, natural resource assessment methods can be applied to restore the lost services and preserve the intact services of the groundwater so as to protect both current and future users of that resource. In this paper, we provide practical guidelines for use of natural resource assessment procedures in the remedy selection process and present a case study demonstrating the use of these protocols for development of sustainable remediation strategies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Proceedings (of the) first annual groundwater and soil remediation R, D and D (research, development and demonstration) symposium

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A symposium was held to present results of research on the remediation of contamination of groundwater and soils. Papers were presented on groundwater/soil remediation research and demonstration programs, in-situ bioremediation, remediation of groundwater contaminated by gasoline-derived aromatics, solvent extraction of petroleum hydrocarbons from soil, bioreactors for cleaning hydrocarbon- and salt-contaminated soils, in-situ volatilization technologies, evaluations of spill cleanup technologies, remediating subsurface contamination around sour gas processing plants, and the influence of gasoline oxygenates on the persistence of aromatics in groundwater. Separate abstracts have been prepared for 9 papers from this symposium.

  18. Development of a sitewide groundwater remediation strategy at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Goswami, D.

    1996-01-01

    Over 440 km 2 (170 mi 2 ) of groundwater beneath the Hanford Site are contaminated by hazardous and radioactive waste, out of which almost half is over state and federal drinking water standards. In addition to the complicated nature of these plumes, remediation is further obscured by limited application of available technologies and hydrogeologic information. This paper briefly describes the processes used by the Washington State Department of Ecology (Ecology), U.S. Environmental Protection Agency, and U.S. Department of Energy (USDOE) in developing a sitewide groundwater remediation strategy for Hanford and its outcome. As an initial approach to sitewide groundwater remediation, the strategy is to remediate the major plumes found in the reactor areas (100 Area) adjacent to the Columbia River and contain the major plumes found in the Central Plateau region (200 Area). This approach was based mainly on the qualitative risk, stakeholder's and tribe's values, and available technical feasibility. The strategy emphasizes the use of existing treatment and extraction technology for the remediation of groundwater in combination with proposed and existing site infrastructure. This work is being performed in parallel with ongoing risk and other feasibility activities. Under this strategy, innovative technologies being developed are in the areas of dense nonaqueous phase liquid identification and recovery, and problems associated with strontium-90, cesium-137, and plutonium in the vadose zone and groundwater. The final remediation strategy alternatives remain a product of risk assessment, technical feasibility, site use scenario, and cost consideration. In order to develop a strategy for the final cleanup, several issues such as aquifer restoration, natural attenuation, potential contamination of groundwater from the tank farms and from the existing contamination source in the vadose zone must be looked in detail in conjuction with public and stakeholder's values

  19. Groundwater re-injection at Fernald: Its role in accelerating the aquifer remedy

    International Nuclear Information System (INIS)

    Broberg, Kenneth A.; Janke, Robert

    2000-01-01

    A successful field-scale demonstration of the use of groundwater re-injection at the Fernald Environmental Management Project (FEMP) was recently completed, bringing the U.S. Department of Energy one step closer to achieving an accelerated site remediation. The demonstration marks the end of a several-year effort to evaluate (a) whether re-injection could be conducted efficiently at Fernald and (b) whether the approved aquifer remedy at Fernald would benefit from incorporating re-injection

  20. An introduction to geographic information systems as applied to a groundwater remediation program

    International Nuclear Information System (INIS)

    Hammock, J.K.; Lorenz, R.

    1989-01-01

    While the attention to environmental issues has grown over the past several years, so has the focus on groundwater protection. Addressing the task of groundwater remediation often involves a large-scale program with numerous wells and enormous amounts of data. This data must be manipulated and analyzed in an efficient manner for the remediation program to be truly effective. Geographic Information System's (GIS) have proven to be an extremely effective tool in handling and interpreting this type of groundwater information. The purpose of this paper is to introduce the audience to GIS technology, describe how it is being used at the Savannah River Site (SRS) to handle groundwater data and demonstrate how it may be used in the corporate Westinghouse environment

  1. Remediating Contaminant Plumes in Groundwater with Shallow Excavations Containing Coarse Reactive Media.

    Science.gov (United States)

    Hudak, Paul F

    2018-02-01

    A groundwater flow and mass transport model tested the capability of shallow excavations filled with coarse, reactive media to remediate a hypothetical unconfined aquifer with a maximum saturated thickness of 5 m. Modeled as contaminant sinks, the rectangular excavations were 10 m downgradient of an initial contaminant plume originating from a source at the top of the aquifer. The initial plume was approximately 259 m long, 23 m wide, and 5 m thick, with a downgradient tip located approximately 100 m upgradient of the site boundary. The smallest trench capable of preventing offsite migration was 11 m long (measured perpendicular to groundwater flow), 4 m wide (measured parallel to groundwater flow), and 3 m deep. Results of this study suggest that shallow trenches filled with coarse filter media that partially penetrate unconfined aquifers may be a viable alternative for remediating contaminated groundwater at some sites.

  2. Engineering evaluation/conceptual plan for the 200-UP-1 groundwater operable unit interim remedial measure

    International Nuclear Information System (INIS)

    Myers, D.A.; Swanson, L.C.; Weeks, R.S.; Giacinto, J.; Gustafson, F.W.; Ford, B.H.; Wittreich, C.; Parnell, S.; Green, J.

    1995-04-01

    This report presents an engineering evaluation and conceptual plan for an interim remedial measure (ERM) to address a uranium and technetium-99 groundwater plume and an associated nitrate contamination plume in the 200-UP-1 Groundwater Operable Unit located in the 200 West Area of the Hanford Site. This report provides information regarding the need and potentially achievable objectives and goals for an IRM and evaluates alternatives to contain elevated concentrations of uranium, technetium-99, nitrate, and carbon tetrachloride and to obtain information necessary to develop final remedial actions for the operable unit

  3. Groundwater flow in the Venice lagoon and remediation of the Porto Marghera industrial area (Italy)

    Science.gov (United States)

    Beretta, Giovanni Pietro; Terrenghi, Jacopo

    2017-05-01

    This study aims to determine the groundwater flow in a large area of the Venice (northeast Italy) lagoon that is under great anthropogenic pressure, which is influencing the regional flow in the surficial aquifer (about 30 m depth). The area presents several elements that condition the groundwater flow: extraction by means of drainage pumps and wells; tidal fluctuation; impermeable barriers that define part of the coastline, rivers and artificial channels; precipitation; recharge, etc. All the elements were studied separately, and then they were brought together in a numerical groundwater flow model to estimate the impact of each one. Identification of the impact of each element will help to optimise the characteristics of the Porto Marghera remediation systems. Longstanding industrial activity has had a strong impact on the soil and groundwater quality, and expensive and complex emergency remediation measures in problematic locations have been undertaken to ensure the continuity of industrial and maritime activities. The land reclamation and remediation works withdraw 56-74% of the water budget, while recharge from the river accounts for about 21-48% of the input. Only 21-42% of groundwater in the modelled area is derived from natural recharge sources, untouched by human activity. The drop of the piezometric level due to the realization of the upgradient impermeable barrier can be counteracted with the reduction of the pumping rate of the remediation systems.

  4. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    Science.gov (United States)

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  5. Groundwater arsenic remediation using zerovalent iron: Batch and column tests

    Science.gov (United States)

    Recently, increasing efforts have been made to explore the applicability and limitations of zerovalent iron (Fe0) for the treatment of arsenicbearing groundwater and wastewater. The experimental batch and column tests have demonstrated that arsenate and arsenite are removed effec...

  6. Risk assessment guidance document for the UMTRA project groundwater remediation phase

    International Nuclear Information System (INIS)

    1992-05-01

    The purpose of the groundwater remedial activities at the Uranium Mill Tailings Remedial Action (UMTRA) sites is to reduce, control, or eliminate risks to human health and the environment. This is in accordance with Subpart B of 40 CFR 192. According to this regulation, the need for groundwater restoration is based upon US Environmental Protection Agency (EPA)-defined groundwater cleanup standards and must be consistent with the National Environmental Policy Act (NEPA) process. Risk assessments will be used in the UMTRA Groundwater Program to aid in the evaluation of sites. Risk assessments are conducted for four purposes: (1) Preliminary risk assessments are used to aid in prioritizing sites, scope data collection, end determine if a site presents immediate health risks. (2) Baseline risk assessments provide a comprehensive integration and interpretation of demographic, geographic, physical, chemical, and biological factors at a site to determine the extent of actual or potential harm. This information Is used to determine the need for remedial action. (3) Risk evaluation of remedial alternatives is performed to evaluate risks to humans or the environment associated with the various remedial strategies. (4) After remediation, an evaluation of residual risks is conducted. The information gathered for each of these risk evaluations is used to determine the need for subsequent evaluation. Several sites may be eliminated after a preliminary risk assessment if there is no current or future threat to humans or the environment. Likewise, much of the data from a baseline risk assessment can be used to support alternate concentration limits or supplemental standards demonstrations, or identify sensitive habitats or receptors that may be of concern in selecting a remedy

  7. Status of remedial investigation activities in the Hanford Site 300 Area groundwater operable unit

    International Nuclear Information System (INIS)

    Hulstrom, L.C.; Innis, B.E.; Frank, M.A.

    1993-09-01

    The Phase 1 remedial investigation (RI) and Phase 1 and 2 feasibility studies (FS) for the 300-FF-5 groundwater operable unit underlying the 300 Area on the Hanford Site have been completed. Analysis and evaluation of soil, sediment, and surface water, and biotic sampling data, groundwater chemistry, and radiological data gathered over the past 3 years has been completed. Risk assessment calculations have been performed. Use of the data gathered, coupled with information from an automated water level data collection system, has enabled engineers to track three plumes that represent the most significant contamination of the groundwater

  8. Consensus implementation of a groundwater remediation project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hastings, K.R.; Carlson, D.S.

    1996-01-01

    Because of significant characterization uncertainties existing when the Record of Decision was signed and the unfavorable national reputation of groundwater pump and treat remediation projects, the Test Area North (TAN) groundwater ROD includes the evaluation of five emerging technologies that show potential for treating the organic contamination in situ or reducing the toxicity of contaminants above ground. Treatability studies will be conducted to ascertain whether any may be suitable for implementation at TAN to yield more timely or cost effective restoration of the aquifer. The implementation approach established for the TAN groundwater project is a consensus approach, maximizing a partnership relation with stakeholders in constant, iterative implementation decision making

  9. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    Science.gov (United States)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  10. In Situ Monitoring of Groundwater Contamination Using the Kalman Filter For Sustainable Remediation

    Science.gov (United States)

    Schmidt, F.; Wainwright, H. M.; Faybishenko, B.; Denham, M. E.; Eddy-Dilek, C. A.

    2017-12-01

    Sustainable remediation - based on less intensive passive remediation and natural attenuation - has become a desirable remediation alternative at contaminated sites. Although it has a number of benefits, such as reduced waste and water/energy usage, it carries a significant burden of proof to verify plume stability and to ensure insignificant increase of risk to public health. Modeling of contaminant transport is still challenging despite recent advances in numerical methods. Long-term monitoring has, therefore, become a critical component in sustainable remediation. However, the current approach, which relies on sparse groundwater sampling, is problematic, since it could miss sudden significant changes in plume behavior. A new method is needed to combine existing knowledge about contaminant behavior and latest advances in in situ groundwater sensors. This study presents an example of the effective use of the Kalman filter approach to estimate contaminant concentrations, based on in situ measured water quality parameters (e.g. electrical conductivity and pH) along with the results of sparse groundwater sampling. The Kalman filter can effectively couple physical models and data correlations between the contaminant concentrations and in situ measured variables. We aim (1) to develop a framework capable of integrating different data types to provide accurate contaminant concentration estimates, (2) to demonstrate that these results remain reliable, even when the groundwater sampling frequency is reduced, and (3) to evaluate the future efficacy of this strategy using reactive transport simulations. This framework can also serve as an early warning system for detecting unexpected plume migration. We demonstrate our approach using historical and current groundwater data from the Savannah River Site (SRS) F-Area Seepage Basins to estimate uranium and tritium concentrations. The results show that the developed method can provide reliable estimates of contaminant

  11. 200-UP-1 groundwater remedial design/remedial action work plan. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This 200-UP-1 remedial design report presents the objective and rationale developed for the design and implementation of the selected interim remedial measure for the 200-UP-1 Operable Unit, located in the 200 West Area of the Hanford Site

  12. The impact of abandoned coal gasification plants on groundwater and remediation strategies

    International Nuclear Information System (INIS)

    Werner, P.; Stieber, M.

    1997-01-01

    Areas of abandoned coal gasification-, cokeovenplants and town gasworks normally contain hazardous contaminants as there are among others PAHs, cyanides, mono aromatic compounds and phenols. Therefore a strong impact on the groundwater can be expected. In the thousands of sites existing in Germany a complete remediation is almost impossible. Combustion is the only safe way to eliminate the contaminants by mineralization; but is to expensive and not applicable for the large amount of soil to be treated. Soil washing and bio-remediation is limited by the composition of the contaminants on the one side and by the soil structure on the other. Therefore the success of the mentioned remediation techniques is normally weak and only in some selected cases efficient enough. A combination of different methods according the site characteristics might help to increase the efficiency. On the other hand it it obvious, that there are natural barriers integrated between the contaminants and the groundwater as there are e.g solubility adsorbability and biodegradability of the hazardous compounds and the distance to the groundwater. Recently developed methods for downstream groundwater remediation are presented and discussed for the application in gas work contaminations. Those so called 'passive systems' are said to be very economic and might help to prevent further distribution of the contaminants into the environment. (au)

  13. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    Science.gov (United States)

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  14. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  15. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation

    NARCIS (Netherlands)

    De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M.

    2013-01-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile

  16. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section

  17. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  18. Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy

    International Nuclear Information System (INIS)

    Bhattacharyya, Jessica; Read, David; Amos, Sean; Dooley, Stephen; Killham, Kenneth; Paton, Graeme I.

    2005-01-01

    Shallow groundwater beneath a former airfield site in southern England has been heavily contaminated with a wide range of chlorinated solvents. The feasibility of using bacterial biosensors to complement chemical analysis and enable cost-effective, and focussed sampling has been assessed as part of a site evaluation programme. Five different biosensors, three metabolic (Vibrio fischeri, Pseudomonas fluorescens 10568 and Escherichia coli HB101) and two catabolic (Pseudomonas putida TVA8 and E. coli DH5α), were employed to identify areas where the availability and toxicity of pollutants is of most immediate environmental concern. The biosensors used showed different sensitivities to each other and to the groundwater samples tested. There was generally a good agreement with chemical analyses. The potential efficacy of remediation strategies was explored by coupling sample manipulation to biosensor tests. Manipulation involved sparging and charcoal treatment procedures to simulate remediative engineering solutions. Sparging was sufficient at most locations. - Luminescent bacteria complement chemical analysis and support remediation technology

  19. Soil and groundwater remediation through the program of energy research and development at Environment Canada

    International Nuclear Information System (INIS)

    Bacchus, P.

    2005-01-01

    Research and development in groundwater and soil remediation within the federal Program of Energy Research and Development (PERD) are conducted in the context of activities related to the oil and gas industry. Contamination of groundwater and soil by the oil and gas sector affects the health of ecosystems and the economic viability of impacted lands. This paper presented an outline of remediation research and development activities associated with PERD, as well as an overview of PERD's development of improved generic remediation technologies and approaches for use by industries. In addition, issues concerning the development of key guidelines, methods and protocols for use by regulators were discussed. Science and technology efforts within PERD contribute to the development of national standards and guidelines concerning public safety and environmental needs

  20. The effect of remedial measures upon groundwater quality in connection with soil contamination by chlorinated hydrocarbons and the related costs - by example of the City of Hanover

    International Nuclear Information System (INIS)

    Mull, R.; Mull, J.; Pielke, M.

    1992-01-01

    The effectiveness of remedial actions on the groundwater quality was investigated in the aquifer of the City of Hannover. The improvement of groundwater quality was related to the costs for the remedial actions. The attention was focussed on groundwater pollution by chlorinated hydrocarbons as the most important contaminants of groundwater in urban areas. (orig.)

  1. Remediation of arsenic-contaminated soils and groundwaters

    Science.gov (United States)

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  2. Feasibility of phyto remediation of common soil and groundwater pollutants

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rein, Arno; Clausen, Lauge Peter Westergaard

    to the two Timbre sites : Hunedoara (Romania) and Szprotawa (Poland). Phytoremediation is the technique to clean up (remediate) contaminated sites using plants, typically trees. The principles of the data were deta iled, with focus on obstacles (phytotoxicity) and factors stimulating success (degradation...

  3. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, Rula A.; Hawley, Elisabeth L. [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)

    2013-07-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed

  4. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    International Nuclear Information System (INIS)

    Deeb, Rula A.; Hawley, Elisabeth L.

    2013-01-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate

  5. Remediation of groundwater contaminated with arsenic through enhanced natural attenuation: Batch and column studies.

    Science.gov (United States)

    Hafeznezami, Saeedreza; Zimmer-Faust, Amity G; Jun, Dukwoo; Rugh, Megyn B; Haro, Heather L; Park, Austin; Suh, Jae; Najm, Tina; Reynolds, Matthew D; Davis, James A; Parhizkar, Tarannom; Jay, Jennifer A

    2017-10-01

    Batch and column laboratory experiments were conducted on natural sediment and groundwater samples from a contaminated site in Maine, USA with the aim of lowering the dissolved arsenate [As(V)] concentrations through chemical enhancement of natural attenuation capacity. In batch factorial experiments, two levels of treatment for three parameters (pH, Ca, and Fe) were studied at different levels of phosphate to evaluate their impact on As(V) solubility. Results illustrated that lowering pH, adding Ca, and adding Fe significantly increased the sorption capacity of sediments. Overall, Fe amendment had the highest individual impact on As(V) levels. To provide further evidence for the positive impact of Ca on As(V) adsorption, isotherm experiments were conducted at three different levels of Ca concentrations. A consistent increase in adsorption capacity (26-37%) of sediments was observed with the addition of Ca. The observed favorable effect of Ca on As(V) adsorption is likely caused by an increase in the surface positive charges due to surface accumulation of Ca 2+ ions. Column experiments were conducted by flowing contaminated groundwater with elevated pH, As(V), and phosphate through both uncontaminated and contaminated sediments. Potential in-situ remediation scenarios were simulated by adding a chemical amendment feed to the columns injecting Fe(II) or Ca as well as simultaneous pH adjustment. Results showed a temporary and limited decrease in As(V) concentrations under the Ca treatment (39-41%) and higher levels of attenuation in Fe(II) treated columns (50-91%) but only after a certain number of pore volumes (18-20). This study illustrates the importance of considering geochemical parameters including pH, redox potential, presence of competing ions, and sediment chemical and physical characteristics when considering enhancing the natural attenuation capacity of sediments to mitigate As contamination in natural systems. Copyright © 2017 Elsevier Ltd. All rights

  6. Advanced oxidation for groundwater remediation and for soil decontamination

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.

    2001-01-01

    The advanced oxidation process (AOP) used in this paper is based on EB irradiation of water in the presence and absence of ozone. The paper describes two distinct sets of experiments, one dealing with groundwater contaminated with perchloroethylene (PCE) and some genotoxic compounds, and the other dealing with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). The combination of ozone and EB irradiation has shown to be able to mineralize trace amounts of PCE contained in groundwater in a single stage process without formation of any by-product to be disposed of. Moreover, experiments performed with real groundwater have demonstrated that the combined ozone/EB irradiation process is also apt for total removal of some genotoxic compounds detected in groundwater contaminated with PCE. The design of an ozone/EB irradiation plant for treating 108 m 3 /h is presented. The issue concerning both the occurrences of genotoxic compounds in oxygen containing groundwater and possible processes for their removal is discussed. In the second part soil contaminated with PAHs has been treated in aqueous suspension using ozone and EB irradiation, respectively. Experiments were performed with low contaminated soil (total PAHs about 332 mg/kg soil). With an ozone consumption of 10 g C) 3 /kg soil a total PAH decomposition of about 21% was recorded. EB irradiation with a reasonable radiation dose of 100 kGy results in about 7% total PAH decomposition at room temperature and about 16%, respectively at 55-60 deg. C. It was recorded that almost no transfer of the PAH takes place from the soil into the water when soil is merely suspended in water. Ozone mainly attacked the high molecular fraction (i.e. consisting of 5 or 6 aromatic rings) of the PAHs investigated while EB irradiation of the aqueous soil suspension mostly decomposed the lower fraction (i.e. consisting up to 4 aromatic rings). (author)

  7. Coordinating bifurcated remediation of soil and groundwater at sites containing multiple operable units

    International Nuclear Information System (INIS)

    Laney, D.F.

    1996-01-01

    On larger and/or more complex sites, remediation of soil and groundwater is sometimes bifurcated. This presents some unique advantages with respect to expedited cleanup of one medium, however, it requires skillful planning and significant forethought to ensure that initial remediation efforts do not preclude some long-term options, and/or unduly influence the subsequent selection of a technology for the other operable units and/or media. this paper examines how the decision to bifurcate should be approached, the various methods of bifurcation, the advantages and disadvantages of bifurcation, and the best methods to build flexibility into the design of initial remediation systems so as to allow for consideration of a fuller range of options for remediation of other operable units and/or media at a later time. Pollutants of concern include: metals; petroleum hydrocarbons; and chlorinated solvents

  8. Non-attainment policy: A viable approach for groundwater remediation

    International Nuclear Information System (INIS)

    Javandel, I.

    1995-01-01

    The National Research Council recently completed a three-year study entitled open-quotes Alternatives for Groundwater Cleanupclose quotes. One of the conclusions of this study indicated that for sites with a complex geologic and hydrologic set up, existing technologies may not be able to restore contaminated aquifers to health-based standards. Therefore, the most logical approach in these cases, perhaps, could be to adopt the open-quotes non-attainment zoneclose quotes policy. The essence of this policy is to first contain the plume and stop any further migration of contaminated groundwater, and then to remove the source of contamination. This paper briefly discusses some of the problems encountered with this approach for a contaminated area at the US Department of Energy's Lawrence Berkely National Laboratory

  9. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater

    International Nuclear Information System (INIS)

    Dong Jun; Zhao Yongsheng; Zhang Weihong; Hong Mei

    2009-01-01

    Permeable reactive barrier (PRB) was a promising technology for groundwater remediation. Landfill leachate-polluted groundwater riches in various hazardous contaminants. Two lab-scale reactors (reactors A and B) were designed for studying the feasibility of PRB to remedy the landfill leachate-polluted groundwater. Zero valent iron (ZVI) and the mixture of ZVI and zeolites constitute the first section of the reactors A and B, respectively; the second section of two reactors consists of oxygen releasing compounds (ORCs). Experimental results indicated that BOD 5 /COD increased from initial 0.32 up to average 0.61 and 0.6 through reactors A and B, respectively. Removal efficiency of mixed media for pollutants was higher than that of single media (ZVI only). Zeolites exhibited selective removal of Zn, Mn, Mg, Cd, Sr, and NH 4 + , and removal efficiency was 97.2%, 99.6%, 95.9%, 90.5% and 97.4%, respectively. The maximum DO concentration of reactors A and B were 7.64 and 6.78 mg/L, respectively, while the water flowed through the ORC. Therefore, sequenced PRB system was effective and was proposed as an alternative method to remedy polluted groundwater by landfill leachate

  10. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leah L. [Stanford Univ., CA (United States)

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.

  11. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    International Nuclear Information System (INIS)

    Rogers, L.L.

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ''recycle'' or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models

  12. Engineered wetlands for on-site groundwater remediation

    International Nuclear Information System (INIS)

    Wallace, S.; Davis, B.M.

    2008-01-01

    Engineered wetlands have been touted as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and water. They incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems that enhance oxygen delivery to the wetland's aerobic micro-organisms. Engineered wetlands generally emphasize specific characteristics of wetland ecosystems to improve treatment capacities. Design parameters include biodegradation rate coefficients, flowrate, hydraulic residence time plus influent and required effluent concentrations. This paper described the installation of an engineered wetland system at a former British Petroleum (BP) refinery in Wyoming where a pipeline terminal generated contact wastewater containing benzene, toluene, ethylbenzene and xylene (BTEX) and ammonia. The wetland treatment system was designed to treat 6000 m 3 of contaminated ground water per day and has been in operation since May 2003. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 16 refs., 3 tabs., 6 figs

  13. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    Science.gov (United States)

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  14. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    Science.gov (United States)

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  15. Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Wittreich, C.D.; Ford, B.H.

    1993-04-01

    The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km 2 (560 mi 2 ) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km 2 . The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions

  16. Interim action record of decision remedial alternative selection: TNX area groundwater operable unit

    International Nuclear Information System (INIS)

    Palmer, E.R.

    1994-10-01

    This document presents the selected interim remedial action for the TNX Area Groundwater Operable Unit at the Savannah River Site (SRS), which was developed in accordance with CERCLA of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and to the extent practicable, the National Oil and Hazardous Substances Pollution contingency Plan (NCP). This decision is based on the Administrative Record File for this specific CERCLA unit

  17. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  18. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    International Nuclear Information System (INIS)

    Curry, L.R.

    1997-01-01

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  19. Aquifer characterization and groundwater modeling in support of remedial actions at the Weldon Spring Site

    International Nuclear Information System (INIS)

    Durham, L.A.; Carman, J.D.

    1993-01-01

    Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site

  20. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    Science.gov (United States)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  1. Ferrier Groundwater Remediation Project: A proactive response to public concerns

    International Nuclear Information System (INIS)

    Boulton, B.D.

    1993-01-01

    The Ferrier gas plant in Alberta is owned by Pembina Resources and produces ca 10 m 3 /d of oil, 8,000 l/d of natural gas liquids, and sales gas. In late 1992, contamination from benzene, toluene, ethylbenzene, and xylene was detected in a residential water well south of the plant. A site investigation found that a drain line from the plant's dehydrator still column to the flare was leaking, and that a well in the process building had free condensate on the water. Within the first three weeks of the initial report of contamination, the source of contamination had been identified, soil gas surveys had been conducted, integrity of pipelines was tested, piezometers were installed, and the first of many public meetings was held to inform residents of progress in tackling the problem. An action plan was developed and alternative water supplies were installed for affected residents. Newsletters were mailed to local residents concerning progress on remediation and plans to control the source and to capture the contamination plume were shared with the community at all times. Recovery wells to capture the plume were drilled and the captured water was treated and returned to the aquifer. Control of the source (the free condensate floating on the water table) was tackled by installing a recovery trench with drain lines. Meetings with the local residents' committee will continue to maintain trust with the community

  2. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Two, Appendices C, D, and E

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    These appendices support the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-1371 l/Vol. This volume contains Appendices C-E. Appendix C is a compilation of all recorded data and mathematical calculations made to interpret the data. For the Task 3 and Task 4 work, the spreadsheet column definitions are included immediately before the actual spreadsheet pages and are listed as ''Sample Calculations/Column Definitions'' in the table of contents. Appendix D includes the chronological order in which the experiments were conducted and the final project costs through October 1998. Appendix E is a compilation of the monthly progress reports submitted to INEEL during the course of the project.

  3. Broom fibre PRB for heavy metals groundwater remediation

    Science.gov (United States)

    Molinari, A.; Troisi, S.; Fallico, C.; Paparella, A.; Straface, S.

    2009-04-01

    Soil contamination by heavy metal and, though it, of groundwater represent a serious alteration of original geochemical levels owing to various human activities as: particular industrial processes and their non-correct treatment emission, urban traffic, use of phytosanitary product and mineral fertilizer. Heavy metals are genotoxic contaminants who can be found by environmental matrix analysis or by examination of the genetic damage inducted, after exposition, to sentry organism. In this last case we use a relative quantitation of the gene expression monitoring the mitochondrial oxidative metabolism hepatopancreas's gene of the organism used by bioindicator. This test is based on consideration that the hepatopancreas is the first internal organ affected by heavy metals or any other pollutant that the organism is exposed. In this work, the organism used by bioindicator to evalutate the pollutant contamination of waste water is Danio rerio (Zebrafish) that is a little tropical fish of 2-3 cm, native on asiatic south-east rivers. This organism has a large use in scientific field because its genoma is almost completely mapped and, above all, because the congenital gene cause in human, if it was mutated in zebrafish, similar damage or almost similar mutation that happens in human being so you can develop a dose - response curve. To do this, after prepared a cadmium solution with a concentration 10 times the Italian normative limit, the organisms have been put in the aquarium to recreate the optimal condition to survival of zebrafish observed by continuous monitoring by web-cam. After one month exposition, that we took little by little sample fish to analyzing, for different exposition time, the hepatopancreas's fish. First results shows considerable variation of the gene expression by interested gene in mitochondrial oxidative metabolism compared to control, highlighting the mutagenity caused by heavy metals on Danio rerio's hepatopancreas and, mutatis mutandis, also in

  4. An Elitist Multiobjective Tabu Search for Optimal Design of Groundwater Remediation Systems.

    Science.gov (United States)

    Yang, Yun; Wu, Jianfeng; Wang, Jinguo; Zhou, Zhifang

    2017-11-01

    This study presents a new multiobjective evolutionary algorithm (MOEA), the elitist multiobjective tabu search (EMOTS), and incorporates it with MODFLOW/MT3DMS to develop a groundwater simulation-optimization (SO) framework based on modular design for optimal design of groundwater remediation systems using pump-and-treat (PAT) technique. The most notable improvement of EMOTS over the original multiple objective tabu search (MOTS) lies in the elitist strategy, selection strategy, and neighborhood move rule. The elitist strategy is to maintain all nondominated solutions within later search process for better converging to the true Pareto front. The elitism-based selection operator is modified to choose two most remote solutions from current candidate list as seed solutions to increase the diversity of searching space. Moreover, neighborhood solutions are uniformly generated using the Latin hypercube sampling (LHS) in the bounded neighborhood space around each seed solution. To demonstrate the performance of the EMOTS, we consider a synthetic groundwater remediation example. Problem formulations consist of two objective functions with continuous decision variables of pumping rates while meeting water quality requirements. Especially, sensitivity analysis is evaluated through the synthetic case for determination of optimal combination of the heuristic parameters. Furthermore, the EMOTS is successfully applied to evaluate remediation options at the field site of the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. With both the hypothetical and the large-scale field remediation sites, the EMOTS-based SO framework is demonstrated to outperform the original MOTS in achieving the performance metrics of optimality and diversity of nondominated frontiers with desirable stability and robustness. © 2017, National Ground Water Association.

  5. The use of in-situ dual vacuum extraction for remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Trowbridge, B.E.; Ott, D.E.

    1992-01-01

    Dual Extraction provides a rapid and cost-effective method of remediating soil and groundwater impacted by volatile organic compounds (VOC's). Dual Extraction is the removal of both water and vapors through the same borehole using entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an Underground Storage Tank (UST) was responsible for a hydrocarbon plume spreading over approximately 50,000 square feet. The release produced vadose zone contamination in the silty and sandy clays from 10 - 30 feet below ground surface with TPH concentrations up to 1,400 mg/kg. A layer of free floating liquid hydrocarbon was present on a shallow aquifer located at 30 feet bgs in thicknesses ranging from 0.5 feet to 3.0 feet. An in-situ dual-extraction system was installed to remediate the soils and groundwater to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hours/day for 196 days with an operating efficiency of over 99%. After 196 days, over 17,000 pounds of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings were advanced in the area of highest initial hydrocarbon concentrations and indicated that TPH and BTEX concentrations had decreased over 99% from initial soil concentrations. Three confirmatory groundwater samples were obtained from monitoring wells initially exhibiting up to 3 feet of floating product. Confirmatory samples exhibited non-detectable (ND) concentrations of TPH and BTEX. Based upon the positive confirmatory results, site closure was obtained from the RWQCB in May of 1991. In only 28 weeks of operation, the groundwater contamination was reduced from free floating product to non-detectable concentrations of TPH using Dual Vacuum Extraction

  6. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  7. Least-cost groundwater remediation design using uncertain hydrogeological information. 1998 annual progress report

    International Nuclear Information System (INIS)

    Pinder, G.F.

    1998-01-01

    'The objective of the project is to formulate, test, and evaluate a new approach to the least-cost design of groundwater contamination containment and decontamination systems. The proposed methodology employs robust optimization, the outer-approximation method of non-linear programming, and groundwater flow and transport modeling to find the most cost-effective pump-and-treat design possible given the physical parameters describing the groundwater reservoir are known with uncertainty. The result is a methodology that will provide the least-cost groundwater remediation design possible given a specified set of design objectives and physical and sociological constraints. As of the end of the first year of this 3-year project the author has developed and tested the concept of robust optimization within the framework of least-cost groundwater-contamination-containment design. The outer-approximation method has been employed in this context for the relatively simple linear-constraint case associated with the containment problem. In an effort to enhance the efficiency and applicability of this methodology, a new strategy for selecting the various realizations arising out of the Monte-Carlo underpinnings of the robust-optimization technique has been developed and tested. Based upon observations arising out of this work a yet more promising approach has been discovered. The theoretical foundation for this most recent approach has been, and continues to be, the primary focus of the research.'

  8. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium- 99 T c -Nitrate multi-contaminant IRM plume identified beneath U Plant

  9. Electrical imaging of subsurface nanoparticle propagation for in-situ groundwater remediation

    Science.gov (United States)

    Flores Orozco, Adrián; Gallistl, Jakob; Schmid, Doris; Micic Batka, Vesna; Bücker, Matthias; Hofmann, Thilo

    2017-04-01

    Application of nanoparticles has emerged as a promising in situ remediation technology for the remediation of contaminated groundwater, particularly for areas difficult to access by other remediation techniques. The performance of nanoparticle injections, as a foremost step within this technology, is usually assessed through the geochemical analysis of soil and groundwater samples. This approach is not well suited for a real-time monitoring, and often suffers from a poor spatio-temporal resolution and only provides information from areas close to the sampling points. To overcome these limitations we propose the application of non-invasive Induced Polarization (IP) imaging, a geophysical method that provides information on the electrical properties of the subsurface. The analysis of temporal changes in the electrical images allows tracking the propagation of the injected nanoparticle suspension and detection of the induced bio-geochemical changes in the subsurface. Here, we present IP monitoring results for data collected during the injection of Nano-Goethite particles (NGP) used for simulation of biodegradation of a BTEX plume (i.e., benzene, toluene, ethylbenzene, and xylene) at the Spolchemie II site, CZ. Frequency-domain IP measurements were collected parallel to the groundwater flow direction and centred on the NGP injection point. Pre-injection imaging results revealed high electrical conductivities (> 10 S/m) and negligible polarization effects in the BTEX-contaminated part of the saturated zone (below 5 m depth). The apparently contradictory observation - BTEX compounds are poor electrical conductors - can be explained by the release of carbonic acids (a metabolic by-product of the biodegradation of hydrocarbons), which leads to an increase of the electrical conductivity. Post-injection images revealed a significant decrease (> 50%) of the electrical conductivity, with even larger changes in the proximity of the injection points, most likely due to the

  10. Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations

    International Nuclear Information System (INIS)

    Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

    2010-01-01

    Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on reviewing the

  11. Simulant composition for the Mixed Waste Management Facility (MWMF) groundwater remediation project

    International Nuclear Information System (INIS)

    Siler, J.L.

    1992-01-01

    A project has been initiated at the request of ER to study and remediate the groundwater contamination at the Mixed Waste Management Facility (MWMF). This water contains a wide variety of both inorganics (e.g., sodium) and organics (e.g., benzene, trichloroethylene). Most compounds are present in the ppB range, and certain components (e.g., trichloroethylene, silver) are present at concentrations that exceed the primary drinking water standards (PDWS). These compounds must be reduced to acceptable levels as per RCRA and CERCLA orders. This report gives a listing of the important constituents which are to be included in a simulant to model the MWMF aquifer. This simulant will be used to evaluate the feasibility of various state of the art separation/destruction processes for remediating the aquifer

  12. Application of Fe-Cu/Biochar System for Chlorobenzene Remediation of Groundwater in Inhomogeneous Aquifers

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-12-01

    Full Text Available Chlorobenzene (CB, as a typical Volatile Organic Contaminants (VOC, is toxic, highly persistent and easily migrates in water, posing a significant risk to human health and subsurface ecosystems. Therefore, exploring effective approaches to remediate groundwater contaminated by CB is essential. As an enhanced micro-electrolysis system for CB-contaminated groundwater remediation, this study attempted to couple the iron-copper bimetal with biochar. Two series of columns using sands with different grain diameters were used, consisting of iron, copper and biochar fillings as the permeable reactive barriers (PRBs, to simulate the remediation of CB-contaminated groundwater in homogeneous and heterogeneous aquifers. Regardless of the presence of homogeneous or heterogeneous porous media, the CB concentrations in the effluent from the PRB columns were significantly lower than the natural sandy columns, suggesting that the iron and copper powders coupled with biochar particles could have a significant removal effect compared to the natural sand porous media in the first columns. CB was transported relatively quickly in the heterogeneous porous media, likely due to the fact that the contaminant residence time is proportional to the infiltration velocities in the different types of porous media. The average effluent CB concentrations from the heterogeneous porous media were lower than those from homogeneous porous media. The heterogeneity retarded the vertical infiltration of CB, leading to its extended lateral distribution. During the treatment process, benzene and phenol were observed as the products of CB degradation. The ultimate CB removal efficiency was 61.4% and 68.1%, demonstrating that the simulated PRB system with the mixture of iron, copper and biochar was effective at removing CB from homogeneous and heterogeneous aquifers.

  13. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process...... leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal...... diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model...

  14. Use of toxicity assays for evaluating the effectiveness of groundwater remediation with Fenton’s reagent

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Bennedsen, Lars; Christophersen, Mette

    2011-01-01

    evaluates in situ chemical oxidation (ISCO) using modified Fenton’s reagent (H2O2 + chelated Fe2+) as a groundwater remedy. Three injections were performed over a period to test treatment efficacy. Performance monitoring samples were collected from two depths both prior to and during treatment, and analyzed...... treatment with Fenton’s reagent the toxicity had increased and now needed 7100 times dilution to reduce toxicity to the LC10 probably due to mobilization of metals. It is concluded that toxicity assay is a useful tool for evaluating samples from contaminated sites and that toxicity assays and chemical...

  15. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  16. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are

  17. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design--part I. Model development.

    Science.gov (United States)

    He, L; Huang, G H; Lu, H W

    2010-04-15

    Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.

  18. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design-Part I. Model development

    Energy Technology Data Exchange (ETDEWEB)

    He, L., E-mail: li.he@ryerson.ca [Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); College of Urban Environmental Sciences, Peking University, Beijing 100871 (China); Lu, H.W. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

    2010-04-15

    Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the 'true' ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes.

  19. Full-scale testing and early production results from horizontal air sparging and soil vapor extraction wells remediating jet fuel in soil and groundwater at JFK International Airport, New York

    International Nuclear Information System (INIS)

    Roth, R.J.; Bianco, P.; Pressly, N.C.

    1996-01-01

    Jet fuel contaminated soil and groundwater contaminated at the International Arrivals Building (IAB) of the JFK International Airport in Jamaica, New York, are being remediated using soil vapor extraction (SVE) and air sparging (AS). The areal extent of the contaminated soil is estimated to be 70 acres and the volume of contaminated groundwater is estimated to be 2.3 million gallons. The remediation uses approximately 13,000 feet of horizontal SVE (HSVE) wells and 7,000 feet of horizontal AS (HAS) wells. The design of the HSVE and HAS wells was based on a pilot study followed by a full-scale test. In addition to the horizontal wells, 28 vertical AS wells and 15 vertical SVE wells are used. Three areas are being remediated, thus, three separate treatment systems have been installed. The SVE and AS wells are operated continuously while groundwater will be intermittently extracted at each HAS well, treated by liquid phase activated carbon and discharged into stormwater collection sewerage. Vapors extracted by the SVE wells are treated by vapor phase activated carbon and discharged into ambient air. The duration of the remediation is anticipated to be between two and three years before soil and groundwater are remediated to New York State cleanup criteria for the site. Based on the monitoring data for the first two months of operation, approximately 14,600 lbs. of vapor phase VOCs have been extracted. Analyses show that the majority of the VOCs are branched alkanes, branched alkenes, cyclohexane and methylated cyclohexanes

  20. Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site

    Science.gov (United States)

    Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.

    2011-12-01

    There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.

  1. Information needs for demonstrating compliance with groundwater aspects of 40 CFR 192 for uranium mill tailings remedial action programs

    International Nuclear Information System (INIS)

    Logsdon, M.J.; Verma, T.R.; Martin, D.E.

    1984-01-01

    Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978, provides the Department of Energy with authority to perform remedial actions at designated inactive uranium-mill sites. The Environmental Protection Agency promulgated radiological and non-radiological standards (40 CFR 192) for remedial actions at inactive uranium-mill sites. All remedial actions require the concurrence of the Nuclear Regulatory Commission. Subpart C of 40 CFR 192 addresses the control of pollutants in groundwater at sites for which remedial action is proposed pursuant to P.L 95-604. As the authors interpret the regulation, it is essentially an admonition to carefully evaluate what is useful and practicable to deal with existing contamination and to control potential future contamination. In reviewing groundwater aspects of Uranium Mill Tailings Remedial Action documents, current NRC experience shows that the reports should address the following information needs: (1) The need to identify the physical and chemical nature of the present groundwater flow system in sufficient detail to provide a reasonable expectation that the extent and value of the groundwater resource to be protected is understood adequately; (2) The need to identify reasonable foreseeable events, both natural and man-made, that could alter the present groundwater flow system and the effects of such changes on the definition of the protected zone; (3) The need to identify current groundwater use within the protected zone; (4) The need to identify site-specific models, boundary conditions, and representative values of system parameters to predict with reasonable assurance that the proposed actions will protect groundwater and surface water resources for the design period of 200 - 1000 years

  2. Engineering evaluation/conceptual plan for the 200-UP-1 Groundwater Operable Unit interim remedial measure. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    This report presents an engineering evaluation and conceptual plan for an interim remedial measure (IRM) to address a uranium and technetium-99 groundwater plume in the 200-UP-1 Groundwater Operable Unit located in the 200 West Area of the Hanford Site. This report provides information regarding the need for an IRM and its potentially achievable objectives and goals. The report also evaluates alternatives to contain elevated concentrations of uranium and technetium-99 and to obtain information necessary to develop final remedial actions for the operable unit

  3. Use of a permeable biological reaction barrier for groundwater remediation at a uranium mill tailings remedial action (UMTRA) site

    International Nuclear Information System (INIS)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L.

    1997-01-01

    Previous work at the University of New Mexico and elsewhere has shown that sulfate reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed groundwater remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected and the precipitated U(IV) was determined to be crystalline UO 2 (s) by X-ray Diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials

  4. A stratigraphic model to support remediation of groundwater contamination in the southern San Francisco Bay area

    International Nuclear Information System (INIS)

    Steinpress, M.G.

    1993-01-01

    Some early regional studies in the southern San Francisco Bay Area applied the term 'older bay mud' to Wisconsin and older deposits thought to be estuarine in origin. This outdated interpretation has apparently contributed to an expectation of laterally-continuous aquifers and aquitards. In fact, heterogeneous alluvial deposits often create complex hydrogeologic settings that defy simple remedial approaches. A more useful stratigraphic model provides a foundation for conducting site investigations and assessing the feasibility of remediation. A synthesis of recent regional studies and drilling results at one site on the southwest margin of the Bay indicate that the upper quaternary stratigraphy consists of four primary units in the upper 200 feet of sediments (oldest to youngest): (1) Illinoian glacial-age alluvium (an important groundwater source); (2) Sangamon interglacial-age deposits, which include fine-grained alluvial deposits and estuarine deposits equivalent to the Yerba Buena Mud (a regional confining layer); (3) Wisconsin glacial-age alluvial fan and floodplain deposits; and (4) Holocene interglacial-age sediments, which include fine-grained alluvial and estuarine deposits equivalent to the 'younger bay mud'. Remedial investigations generally focus on groundwater contamination in the Wisconsin and Holocene alluvial deposits. Detailed drilling results indicate that narrow sand and gravel channels occur in anastomosing patterns within a Wisconsin to Holocene floodplain sequence dominated by interchannel silts and clays. The identification of these small-scale high-permeability conduits is critical to understanding and predicting contaminant transport on a local scale. Discontinuous site-specific aquitards do not provide competent separation where stacked channels occur and the correlation of aquitards over even small distance is often tenuous at best

  5. A critical review of ferrate(VI)-based remediation of soil and groundwater.

    Science.gov (United States)

    Rai, Prabhat Kumar; Lee, Jechan; Kailasa, Suresh Kumar; Kwon, Eilhann E; Tsang, Yiu Fai; Ok, Yong Sik; Kim, Ki-Hyun

    2018-01-01

    Over the past few decades, diverse chemicals and materials such as mono- and bimetallic nanoparticles, metal oxides, and zeolites have been used for soil and groundwater remediation. Ferrate (Fe VI O 4 2- ) has been widely employed due to its high-valent iron (VI) oxo compound with high oxidation/reduction potentials. Ferrate has received attention for wide environmental applications including water purification and sewage sludge treatment. Ferrate provides great potential for diverse environmental applications without any environmental problems. Therefore, this paper provides comprehensive information on the recent progress on the use of (Fe VI O 4 2- ) as a green material for use in sustainable treatment processes, especially for soil and water remediation. We reviewed diverse synthesis recipes for ferrates (Fe VI O 4 2- ) and their associated physicochemical properties as oxidants, coagulants, and disinfectants for the elimination of a diverse range of chemical and biological species from water/wastewater samples. A summary of the eco-sustainable performance of ferrate(VI) in water remediation is also provided and the future of ferrate(VI) is discussed in this review. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo, E-mail: thilo.hofmann@univie.ac.at

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  7. Dynamic optimal control of groundwater remediation with management periods: Linearized and quasi-Newton approaches

    International Nuclear Information System (INIS)

    Culver, T.B.

    1991-01-01

    Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced

  8. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    International Nuclear Information System (INIS)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo

    2016-01-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  9. Update on the National Groundwater and Soil Remediation Program (GASReP)

    International Nuclear Information System (INIS)

    Lye, A.

    1992-01-01

    The national Groundwater and Soil Remediation Program (GASReP), supported jointly by government and the petroleum industry, targets research on innovative ways to clean up groundwater and soil contaminated with petroleum hydrocarbons, and conducts technology transfer sessions. Within its broad context as an initiative for research, development and demonstration of innovative cleanup technologies, GASReP now targets basic applied research and/or technology development only. Industry partners and other government programs will be encouraged to extend GASReP research findings to the final stage of technology demonstration. During 1991-92 GASReP shifted its attention from starting new projects to evaluating the program, setting a new direction, and establishing a better way to seek ideas for projects. Unlike previous years, only three projects began during this period. Two technology development projects are iron and manganese pre-treatment for pump and treat clean-up systems, and surface bioreactor to clean soil/waste contaminated with petroleum hydrocarbons. The one technology assessment project dealt with a review of six technologies for in-situ bioremediation of BTEX (benzene, toluene, ethylbenzene, xylene) in groundwater. Current program direction, interests, and research needs are summarized, and candidate proposals for project selection in 1992-93 are listed

  10. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  11. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation

    Directory of Open Access Journals (Sweden)

    Hengzhen Li

    2013-12-01

    Full Text Available Micro-nano bubbles (MNBs are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

  12. Remedial design report and remedial action work plan for the 100-HR-3 and 100-KR-4 groundwater operable units' interim action

    International Nuclear Information System (INIS)

    1996-09-01

    This document is a combination remedial design report and remedial action work plan for the 100-HR-3 and 100-KR-4 Operable Units (located on the Hanford Site in Richland, Washington) interim action. The interim actions described in this document represent the first of an ongoing program to address groundwater contamination in each operable unit. This document describes the design basis, provides a description of the interim action, and identifies how they will meet the requirements set forth in the interim action Record of Decision

  13. Speciation of As in calcite by micro-XAFS: Implications for remediation of As contamination in groundwater

    International Nuclear Information System (INIS)

    Yokoyama, Y; Takahashi, Y; Iwatsuki, T; Terada, Y

    2013-01-01

    To evaluate the role of calcite as a host phase of arsenic (As) in As-contaminated groundwater, distribution behavior of Asbetween natural calcite and groundwater in deep underground was investigated based on As oxidation state. Speciation analyses of As in natural calcite by μ-XRF-XAFS analyses showed (i) preferentialarsenate uptake by calcite, and (ii) promptness of arsenate uptake by minor iron (Fe) carbonate minerals coprecipitated with calcite. These findings suggest that the effect of calcite on As remediation of the As-contamination systems stronglydepends on arsenite to arsenate ratio (i.e., redox condition) in groundwater, and maybe governed bythe amount of Fe coprecipitated with calcite.

  14. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management

    Science.gov (United States)

    2015-05-01

    evaporites, sandstone, gravel, conglomerate, and andesitic basalt . Closed basin; playa, alluvial fan, fluvial 600 to 10,000+ Unconfined, leaky...confined Lower unit Breccia, conglomerate, sandstone, siltstone, and local basaltic to rhyolitic flows and pyroclastic rocks. Alluvial fan, fluvial...with large volumes of groundwater. Three of the cartridges additionally protected by glass fiber filters (Acrodisc AP-4523; Pall GmbH, Dreieich, GE

  15. Independent technical reviews for groundwater and soil remediation projects at US Department Of Energy sites - 59188

    International Nuclear Information System (INIS)

    Kaback, Dawn S.; Chamberlain, Grover; Morse, John G.; Petersen, Scott W.

    2012-01-01

    The US Department of Energy Office of Environmental Management has supported independent technical reviews of soil and groundwater projects at multiple DOE sites over the last 10 years. These reviews have resulted in significant design improvements to remedial plans that have accelerated cleanup and site closure. Many have also resulted in improved understanding of complex subsurface conditions, promoting better approaches to design and implementation of new technologies. Independent technical reviews add value, because they provide another perspective to problem solving and act as a check for especially challenging problems. By bringing in a team of independent experts with a broad experience base, alternative solutions are recommended for consideration and evaluation. In addition, the independence of the panel is significant, because it is able to address politically sensitive issues. The expert panel members typically bring lessons learned from other sites to help solve the DOE problems. In addition, their recommendations at a particular site can often be applied at other sites, making the review even more valuable. The review process can vary, but some common lessons ensure a successful review: - Use a multi-disciplinary broadly experienced team; - Engage the panel early and throughout the project; - Involve regulators and stakeholders in the workshop, if appropriate. - Provide sufficient background information; - Close the workshop with a debriefing followed by a written report. Many groundwater remediation challenges remain at DOE sites. Independent technical reviews have and will ensure that the best capabilities and experience are applied to reduce risks and uncertainties. Even though the groundwater remediation industry has developed significantly over the last twenty years, advancements are needed to address the complexities of the subsurface at the DOE sites. These advancements have tremendous potential to save millions of dollars and to accelerate the

  16. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    International Nuclear Information System (INIS)

    Roth, R.; Bianco, P. Rizzo, M.

    1995-01-01

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treated by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area

  17. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    Science.gov (United States)

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  18. Groundwater remediation of hexavalent chromium along the Columbia River at the Hanford site in Washington state, USA - 59030

    International Nuclear Information System (INIS)

    Foss, Dyan L.; Charboneau, Briant L.

    2012-01-01

    The U.S. Department of Energy Hanford Site, formerly used for nuclear weapons production, encompasses 1500 square kilometers in southeast Washington State along the Columbia River. A principle threat to the river are the groundwater plumes of hexavalent chromium (Cr(VI)), which affect approximately 9.8 square kilometers, and 4.1 kilometers of shoreline. Cleanup goals are to stop Cr(VI) from entering the river by the end of 2012 and remediate the groundwater plumes to the drinking water standards by the end of 2020. Five groundwater pump-and-treat systems are currently in operation for the remediation of Cr(VI). Since the 1990's, over 13.6 billion L of groundwater have been treated; over 1, 435 kg of Cr(VI) have been removed. This paper describes the unique aspects of the site, its environmental setting, hydrogeology, groundwater-river interface, riverine hydraulic effects, remediation activities completed to date, a summary of the current and proposed pump-and-treat operations, the in situ redox manipulation barrier, and the effectiveness of passive barriers, resins, and treatability testing results of calcium polysulfide, bio-stimulation, and electrocoagulation, currently under evaluation. (authors)

  19. Laboratory evaluation of the in situ chemical treatment approach to soil and groundwater remediation

    International Nuclear Information System (INIS)

    Thorton, E.C.; Trader, D.E.

    1993-10-01

    Results of initial proof of principle laboratory testing activities successfully demonstrated the viability of the in situ chemical treatment approach for remediation of soil and groundwater contaminated by hexavalent chromium. Testing activities currently in progress further indicate that soils contaminated with hexavalent chromium and uranium at concentrations of several hundred parts per million can be successfully treated with 100 ppM hydrogen sulfide gas mixtures. Greater than 90% immobilization of hexavalent chromium and 50% immobilization of uranium have been achieved in these tests after a treatment period of one day. Activities associated with further development and implementation of the in situ chemical treatment approach include conducting additional bench scale tests with contaminated geomedia, and undertaking scale-up laboratory tests and a field demonstration. This report discusses the testing and further development of this process

  20. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    International Nuclear Information System (INIS)

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-01-01

    The Waterloo Barrier trademark steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10 -8 to 10 -10 cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier trademark cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier trademark in these applications

  1. Feasibility study for the remediation of groundwater contaminated by organolead compounds

    International Nuclear Information System (INIS)

    Andreottola, Gianni; Dallago, Loris; Ferrarese, Elisa

    2008-01-01

    The aim of this research was to assess the effectiveness of chemical oxidation, Advanced Oxidation Processes (AOPs) and adsorption on granular activated carbon (GAC) for the ex situ remediation of a groundwater contaminated by organolead compounds, including tetraethyl lead (TEL), triethyl lead (TREL) and diethyl lead (DEL). The groundwater of concern was collected from the site of a former tetraalkyllead producing company in Trento (Italy), and showed an average total organic lead (TOL) content about 95.1 μg/L (TEL 0.5 μg/L, TREL 86.4 μg/L, DEL 8.3 μg/L). The main target of the study was to find out which method was more effective in reducing the pollutant content. For this purpose, several laboratory tests were performed, including chemical oxidation tests with different reactants (hydrogen peroxide, modified Fenton's reagent, potassium permanganate, activated potassium persulfate, oxygen and combinations of potassium permanganate and modified Fenton's reagent), AOPs with ozone, UV radiation and hydrogen peroxide and filtration on granular activated carbon. A combination of chemical and physical treatments was also tested, with GAC filtration followed by chemical oxidation. According to the results achieved, the treatments which showed the best remediation performances were: chemical oxidation with modified Fenton's reagent, AOPs with hydrogen peroxide and ozone (perozone), AOPs with hydrogen peroxide and UV radiation, and the combined treatment with activated carbon filtration followed by chemical oxidation with perozone. All these treatments showed a 90% TOL removal, with excellent removals of both TEL and TREL, and final DEL concentrations below 5 μg/L

  2. Feasibility study for the remediation of groundwater contaminated by organolead compounds

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, Gianni; Dallago, Loris [Universita degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale, Via Mesiano 77, 38050 Trento (Italy); Ferrarese, Elisa [Universita degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale, Via Mesiano 77, 38050 Trento (Italy)], E-mail: elisa.ferrarese@ing.unitn.it

    2008-08-15

    The aim of this research was to assess the effectiveness of chemical oxidation, Advanced Oxidation Processes (AOPs) and adsorption on granular activated carbon (GAC) for the ex situ remediation of a groundwater contaminated by organolead compounds, including tetraethyl lead (TEL), triethyl lead (TREL) and diethyl lead (DEL). The groundwater of concern was collected from the site of a former tetraalkyllead producing company in Trento (Italy), and showed an average total organic lead (TOL) content about 95.1 {mu}g/L (TEL 0.5 {mu}g/L, TREL 86.4 {mu}g/L, DEL 8.3 {mu}g/L). The main target of the study was to find out which method was more effective in reducing the pollutant content. For this purpose, several laboratory tests were performed, including chemical oxidation tests with different reactants (hydrogen peroxide, modified Fenton's reagent, potassium permanganate, activated potassium persulfate, oxygen and combinations of potassium permanganate and modified Fenton's reagent), AOPs with ozone, UV radiation and hydrogen peroxide and filtration on granular activated carbon. A combination of chemical and physical treatments was also tested, with GAC filtration followed by chemical oxidation. According to the results achieved, the treatments which showed the best remediation performances were: chemical oxidation with modified Fenton's reagent, AOPs with hydrogen peroxide and ozone (perozone), AOPs with hydrogen peroxide and UV radiation, and the combined treatment with activated carbon filtration followed by chemical oxidation with perozone. All these treatments showed a 90% TOL removal, with excellent removals of both TEL and TREL, and final DEL concentrations below 5 {mu}g/L.

  3. A Discovery-Based Experiment Illustrating How Iron Metal Is Used to Remediate Contaminated Groundwater

    Science.gov (United States)

    Balko, Barbara A.; Tratnyek, Paul G.

    2001-12-01

    In this article, we describe an experiment for undergraduate general chemistry in which students investigate the chemistry behind iron-permeable reactive barriers (iron PRBs), a new technology that is widely used to remediate contaminated groundwater. Contaminant remediation involving iron PRBs is a redox process: the iron metal undergoes oxidative dissolution while the contaminant is reduced. The reaction is complicated, however, by the fact that it involves a surface that changes owing to the development of a layer of rust (iron oxide) on the iron. In this experiment, students examine the iron PRB-contaminant reaction by characterizing the kinetics of the degradation of a dye (the model contaminant) in the presence of granular iron under various experimental conditions. Students can be asked to design their own experiments to investigate aspects of the degradation reaction that are of particular interest to them. The material covered in the lab includes oxidation-reduction reactions, pseudo first-order kinetics, spectrophotometry, and the application of chemistry to solving environmental problems. The experiment can also be used as a vehicle to introduce more advanced topics in chemistry such as heterogeneous reactions, corrosion, passive film growth, and mass transport.

  4. Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater.

    Science.gov (United States)

    Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

    2014-01-01

    Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 μA of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ∼61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Permanganate gel (PG) for groundwater remediation: compatibility, gelation, and release characteristics.

    Science.gov (United States)

    Lee, Eung Seok; Olson, Pamela R; Gupta, Neha; Solpuker, Utku; Schwartz, Franklin W; Kim, Yongje

    2014-02-01

    Permanganate (MnO4(-)) is a strong oxidant that is widely used for treating chlorinated ethylenes in groundwater. This study aims to develop hyper-saline MnO4(-) solution (MnO4(-) gel; PG) that can be injected into aquifers via wells, slowly gelates over time, and slowly release MnO4(-) to flowing water. In this study, compatibility and miscibility of gels, such as chitosan, aluminosilicate, silicate, and colloidal silica gels, with MnO4(-) were tested. Of these gels, chitosan was reactive with MnO4(-). Aluminosilicates were compatible but not readily miscible with MnO4(-). Silicates and colloidal silica were both compatible and miscible with MnO4(-), and gelated with addition of KMnO4 granules. Colloidal silica has low initial viscosity (<15cP), exhibited delayed gelation characteristics with the lag times ranging from 0 to 200min. Release of MnO4(-) from the colloidal silica-based PG gel occurred in a delayed fashion, with maximum duration of 24h. These results suggested that colloidal silica can be used to create PG or delayed-gelling forms containing other oxidants which can be used for groundwater remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation

    Science.gov (United States)

    Xiong, Z.; Kaback, D.; Bennett, P. J.

    2011-12-01

    Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of <450 nm. During field injections, nZVI particles were observed in a monitoring well

  7. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides.

    Science.gov (United States)

    Pi, Kunfu; Wang, Yanxin; Xie, Xianjun; Ma, Teng; Liu, Yaqing; Su, Chunli; Zhu, Yapeng; Wang, Zhiqiang

    2017-02-01

    Severe health problems due to elevated arsenic (As) in groundwater have made it urgent to develop cost-effective technologies for As removal. This field experimental study tested the feasibility of in-situ As immobilization via As incorporation into newly formed biogenic Fe(II) sulfides in a typical As-affected strongly reducing aquifer at the central part of Datong Basin, China. After periodic supply of FeSO 4 into the aquifer for 25 d to stimulate microbial sulfate reduction, dissolved sulfide concentrations increased during the experiment, but the supplied Fe(II) reacted quickly with sulfide to form Fe(II)-sulfides existing majorly as mackinawite as well as a small amount of pyrite-like minerals in sediments, thereby restricting sulfide build-up in groundwater. After the completion of field experiment, groundwater As concentration decreased from an initial average value of 593 μg/L to 159 μg/L, with an overall As removal rate of 73%, and it further declined to 136 μg/L adding the removal rate up to 77% in 30 d after the experiment. The arsenite/As total ratio gradually increased over time, making arsenite to be the predominant species in groundwater residual As. The good correlations between dissolved Fe(II), sulfide and As concentrations, the increased abundance of As in newly-formed Fe sulfides as well as the reactive-transport modeling results all indicate that As could have been adsorbed onto and co-precipitated with Fe(II)-sulfide coatings once microbial sulfate reduction was stimulated after FeSO 4 supply. Under the strongly reducing conditions, sulfide may facilitate arsenate reduction into arsenite and promote As incorporation into pyrite or arsenopyrite. Therefore, the major mechanisms for the in-situ As-contaminated groundwater remediation can be As surface-adsorption on and co-precipitation with Fe(II) sulfides produced during the experimental period. Copyright © 2016. Published by Elsevier Ltd.

  8. Groundwater monitoring for remedial investigation in the Oriskany-Whitestown Sand Plain, Oneida County, New York

    International Nuclear Information System (INIS)

    Kewer, R.P.; Birckhead, E.F.

    1992-01-01

    The 50-acre Whitestown Landfill is listed by NYSDEC as a Class 2 inactive hazardous waste disposal site. During Remedial Investigations, a 23-well groundwater monitoring system was installed, exploring Wisconsin age glaciofluvial deposits of the Oriskany-Whitestown sand plain. These were described in the late 19th century as deltaic sediments deposited in a proglacial lake. However, no recent studies and only limited subsurface data were available, prompting a two-phase installation program. The landfill is located above steep bluffs 70 feet above the Mohawk River and Oriskany Creek valleys. Beneath the landfill, Phase I identified a gradational sequence of coarse to fine deltaic sediments with glacial till. This sequence was partly eroded and overlain by alluvium and colluvium in the valleys. The landfill was constructed on surficial deposits of coarse fluviodeltaic gravel. These were underlain by deltaic deposits grading from sand to silt with depth, the lower silts comprising the uppermost aquifer. The silts made identification of the water table difficult during drilling and caused problems in meeting a stringent development criterion for turbidity. Phase I found that the saturated zone, up to 50 feet thick, is perched on glaciolacustrine clays and, locally, tills, which were the lower boundary of the system investigated. Partly influenced by the clays, groundwater and contaminant movement was to the adjoining valley, causing off-site impacts in the shallow alluvial/colluvial aquifer. Therefore, Phase 11 focused on characterizing flow and groundwater quality in the discharge area, particularly with respect to an adjacent residence and wetlands. Contamination was found to extend northward only as far as the Old Erie Canal, which parallels the base of the bluff. Only limited off-site involvement was documented which will be monitored in the post-closure period using the installed well system

  9. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging

    Science.gov (United States)

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D.

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers.

  10. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs

  11. Numerical modeling of remediation of groundwater in a wellfield of in-situ leaching of uranium by pump-and-treat system

    International Nuclear Information System (INIS)

    Lv Junwen; Shi Wenge; Yang Yong

    2006-01-01

    Based on the hydrogeological conditions at the investigated site, the coupled mathematic model about the flow and the contaminant transportation in groundwater was established. The software Visual MODflow, the most popular simulation of groundwater flow and contaminant transportation, was used to study the contaminants distribution in groundwater during pumping at different pumping rates, and to determine the pumping well arrangement and optimal pumping rate, which directs the remediation of contaminated groundwater by the pump-and-treat system. (authors)

  12. Progress Toward Cleanup of Operable Unit 1 Groundwater at the US DOE Mound, Ohio, Site: Success of a Phase-Combined Remedy – 15310

    Energy Technology Data Exchange (ETDEWEB)

    Hooten, Gwendolyn [U.S. Department of Energy, Harrison, OH (United States). Office of Legacy Management; Cato, Rebecca [Stoller Newport News Nuclear Inc., Weldon Spring, MS (United States); Looney, Brian [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Huntsman, Brent [Terran Corporation, Beavercreek, OH (United States)

    2015-03-01

    Operable Unit 1 (OU-1) soil and groundwater have been affected by volatile organic compounds (VOC) Present groundwater remedy is collection, treatment, and disposal (pump and treat [P&T]) Several combinations of technologies were used to address soil and groundwater contamination Monitored natural attenuation (MNA) is a viable alternative Majority of source term has been excavated VOC concentrations in groundwater have decreased Attenuation mechanisms have been observed in the subsurface at OU-1

  13. In-situ remediation of brine impacted soils and groundwater using hydraulic fracturing, desalinization and recharge wells

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C. [Wiebe Environmental Services Inc., Calgary, AB (Canada); Ratiu, I. [GeoGrid Environmental Inc., Calgary, AB (Canada)

    2006-07-01

    This conference presentation focused on the in-stu remediation of brine impacted soils and groundwater using hydraulic fracturing, desalinization and recharge wells. A former oil battery was established in the 1940s, decommissioned in the late 1960s with a reclamation certificate issued in 1972. The land owner reported poor vegetative growth in the former battery area. The purpose of the study was to investigate the cause of poor growth and delineate contaminants of concern and to remediate impacted soil and groundwater associated with the former battery site. The investigation involved agrological, geophysical and hydrogeological investigation into the extent of anthropogenic impacts as well as the development of remediation options and plans to deal with issues of concern. The presentation provided the results of the investigation, options identified, and discussed limitation on salt remediation and treatment of saline soils. Other topics included hydraulic fracturing, injection wells that were installed to re-circulate treated groundwater though the salt plume, desalinization processes, and next steps. figs.

  14. Geostatistical approach for assessing soil volumes requiring remediation: validation using lead-polluted soils underlying a former smelting works.

    Science.gov (United States)

    Demougeot-Renard, Helene; De Fouquet, Chantal

    2004-10-01

    Assessing the volume of soil requiring remediation and the accuracy of this assessment constitutes an essential step in polluted site management. If this remediation volume is not properly assessed, misclassification may lead both to environmental risks (polluted soils may not be remediated) and financial risks (unexpected discovery of polluted soils may generate additional remediation costs). To minimize such risks, this paper proposes a geostatistical methodology based on stochastic simulations that allows the remediation volume and the uncertainty to be assessed using investigation data. The methodology thoroughly reproduces the conditions in which the soils are classified and extracted at the remediation stage. The validity of the approach is tested by applying it on the data collected during the investigation phase of a former lead smelting works and by comparing the results with the volume that has actually been remediated. This real remediated volume was composed of all the remediation units that were classified as polluted after systematic sampling and analysis during clean-up stage. The volume estimated from the 75 samples collected during site investigation slightly overestimates (5.3% relative error) the remediated volume deduced from 212 remediation units. Furthermore, the real volume falls within the range of uncertainty predicted using the proposed methodology.

  15. An Integrated Simulation, Inference and Optimization Approach for Groundwater Remediation with Two-stage Health-Risk Assessment

    Directory of Open Access Journals (Sweden)

    Aili Yang

    2018-05-01

    Full Text Available In this study, an integrated simulation, inference and optimization approach with two-stage health risk assessment (i.e., ISIO-THRA is developed for supporting groundwater remediation for a petroleum-contaminated site in western Canada. Both environmental standards and health risk are considered as the constraints in the ISIO-THRA model. The health risk includes two parts: (1 the health risk during the remediation process and (2 the health risk in the natural attenuation period after remediation. In the ISIO-THRA framework, the relationship between contaminant concentrations and time is expressed through first-order decay models. The results demonstrate that: (1 stricter environmental standards and health risk would require larger pumping rates for the same remediation duration; (2 higher health risk may happen in the period of the remediation process; (3 for the same environmental standard and acceptable health-risk level, the remediation techniques that take the shortest time would be chosen. ISIO-THRA can help to systematically analyze interaction among contaminant transport, remediation duration, and environmental and health concerns, and further provide useful supportive information for decision makers.

  16. Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0.

    Science.gov (United States)

    Jia, Hanzhong; Gu, Cheng; Li, Hui; Fan, Xiaoyun; Li, Shouzhu; Wang, Chuanyi

    2012-09-01

    Zero-valent iron holds great promise in treating groundwater, and its reactivity and efficacy depend on many surrounding factors. In the present work, the effects of solution chemistry such as pH, humic acid (HA), and inorganic ions on pentachlorophenol (PCP) dechlorination by smectite-templated Pd(0)/Fe(0) were systematically studied. Smectite-templated Pd(0)/Fe(0) was prepared by saturating the negatively charged sites of smectite clay with Fe(III) and a small amount of Pd(II), followed by borohydride reduction to convert Fe(III) and Pd(II) into zero-valent metal clusters. Batch experiments were conducted to investigate the effects of water chemistry on PCP remediation. The PCP dechlorination rate critically depends on the reaction pH over the range 6.0~10.0; the rate constant (k (obs)) increases with decreasing the reaction pH value. Also, the PCP remediation is inhibited by HA, which can be attributed to the electron competition of HA with H(+). In addition, the reduction of PCP can be accelerated by various anions, following the order: Cl(-) > HCO (3) (-) > SO (4) (2-) ~no anion. In the case of cations, Ca(2+) and Mg(2+) (10 mM) decrease the dechlorination rate to 0.7959 and 0.7798 from 1.315 h(-1), respectively. After introducing HA into the reaction systems with cations or/and anions, the dechlorination rates are similar to that containing HA alone. This study reveals that low pH and the presence of some anions such as Cl(-) facilitate the PCP dechlorination and induce the rapid consumption of nanosized zero-valent iron simultaneously. However, the dechlorination rate is no longer correlated to the inhibitory or accelerating effects by cations and anions in the presence of 10 mg/L HA.

  17. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    Energy Technology Data Exchange (ETDEWEB)

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is

  18. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  19. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Volume 2 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This appendix discusses the scope of actions addressed in the Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. To address the purpose and need for agency action identified in Chapter 2.0 of the HRA-EIS, the scope includes an evaluation of the potential environmental impacts associated with the remedial actions to be conducted by the US Department of Energy (DOE) under the provisions of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1989). These remedial actions would bring the Hanford Site into compliance with the applicable requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Resource Conservation and Recovery Act of 1976 (RCRA). The DOE program responsible for conducting remedial actions at the Hanford Site is referred to as the Richland Environmental Restoration (ER) Project. The Richland ER Project encompasses the following projects: radiation area remedial actions and underground storage tanks (UST); RCRA closures; single-shell tank (SST) closures; past-practice waste site operable unit (source and groundwater) remedial actions; surplus facility decommissioning; and waste storage and disposal facilities

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    International Nuclear Information System (INIS)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word

  1. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    International Nuclear Information System (INIS)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-01-01

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field

  2. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  3. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup

    2012-01-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a ...... down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%)....

  4. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    International Nuclear Information System (INIS)

    GERBER MS

    2007-01-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site

  5. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  6. Necessary and Sufficient Standards Closure Process pilot: F- and H-Area groundwater remediation

    International Nuclear Information System (INIS)

    Bullington, M.

    1995-01-01

    The DOE Standards Committee's Necessary and Sufficient (N and S) Standards Closure Process was piloted at SRS on the F- and H- Area Seepage Basins Groundwater Remediation Project. For this existing Environmental Restoration project, the set of N and S standards for design and safety documentation were identified, independently confirmed and approved. Implementation of these standards on the project can lead to a $2.8 Million cost savings on the design, construction/installation, and safety documentation scope of $18 Million. These savings were primarily from site design of power distribution and piping for the water treatment units. Also contributing to the savings were a more appropriate level of safety documentation and the alternate ''commercial'' bids made by vendors in response to a request for proposals for water treatment units. The use of the N and S Process on an ER activity, details on the cost savings, lessons learned and recommendations for broader implementation of the N and S Process are described herein

  7. Remediation of BTEX contaminated groundwater: best technology assessment between pump&treat and bioremediation by oxygen injection

    Directory of Open Access Journals (Sweden)

    Daniele Baldi

    2012-06-01

    Full Text Available The presence of benzene, toluene, ethylbenzene and xylene (BTEX dissolved in the groundwater and migrated from a light non-aqueous phase liquid (LNAPL source in an alluvial aquifer required a remedial action to be taken by the responsible party as established by the Italian regulation (Legislative Decree 152/06 and subsequent amendments. For such purpose, field investigations were conducted on site in order to define the site conceptual model and to identify the appropriate remediation technology to be applied. The remediation design was developed by means of a flow and reactive transport mathematical model, applied to saturated media, using the numerical codes MODFLOW and RT3D. Groundwater field observations showed evidence of occurring BTEX biodegradation processes by bacteria naturally present in the aquifer. Since such specific bacterial activity would be significantly enhanced by the injection of free oxygen in the aquifer, the performance of traditional pump and treat systems (P&T was assessed and compared with cost/efficiency of reactive oxygen bio-barrier technology (OD. The results showed a clear advantage in terms of cost/efficiency with the application of the OD. This presents an overall cost of about 30% of the P&T installation and maintenance, and it reaches remedial target in a shorter timeframe. Moreover, the system is also applicable as a bioremediation technology in case of Environmental Emergency Measures (MISE. The site examined is part of an industrial plant located in Central Italy.

  8. Case study: Free product recovery and site remediation using horizontal trenching, soil vapor treatment and groundwater extraction

    International Nuclear Information System (INIS)

    Sanderson, E.P.; Johnston, H.S. Jr.; Farrell, M.; Twedell, D.B.

    1993-01-01

    Sites with soil and groundwater impacted by petroleum hydrocarbons have been remediated using a variety of traditional techniques. However, when the site impacted lies within a very confined downtown area of an expanding metropolitan city, a more complex array of technologies must be considered. The Law Enforcement Center site is the City of Charlotte's worst known underground storage tank (UST) release to date. A cost effective free product recovery, soil vapor and groundwater extraction system is being piloted here using new horizontal trenching technology and state of the art equipment. On-site low permeability soil required that an alternative to standard recovery wells be developed for groundwater recovery and vapor extraction. Operation and maintenance (O and M) of the large number of recovery wells required would have been extremely costly over the expected lifetime of the project. Although horizontal trenching was the best solution to the O and M costs, many problems were encountered during their installation

  9. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    Energy Technology Data Exchange (ETDEWEB)

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  10. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  11. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  12. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation

  13. Evaluation of remedial alternative of a LNAPL plume utilizing groundwater modeling

    International Nuclear Information System (INIS)

    Johnson, T.; Way, S.; Powell, G.

    1997-01-01

    The TIMES model was utilized to evaluate remedial options for a large LNAPL spill that was impacting the North Platte River in Glenrock, Wyoming. LNAPL was found discharging into the river from the adjoining alluvial aquifer. Subsequent investigations discovered an 18 hectare plume extended across the alluvium and into a sandstone bedrock outcrop to the south of the river. The TIMES model was used to estimate the LNAPL volume and to evaluate options for optimizing LNAPL recovery. Data collected from recovery and monitoring wells were used for model calibration. A LNAPL volume of 5.5 million L was estimated, over 3.0 million L of which is in the sandstone bedrock. An existing product recovery system was evaluated for its effectiveness. Three alternative recovery scenarios were also evaluated to aid in selecting the most cost-effective and efficient recovery system for the site. An active wellfield hydraulically upgradient of the existing recovery system was selected as most appropriate to augment the existing system in recovering LNAPL efficiently

  14. Basewide Groundwater Operable Unit. Groundwater Operable Unit Remedial Investigation/Feasibility Study Report. Volume 3

    Science.gov (United States)

    1994-06-01

    chemicals from offgas streams, such as gases from municipal wastewater treatment plants. Recently, biofiltration has been employed to treat VOCs in...L 6-12 W orks Cited ....................................... L6-12 L7 Cometabolic Biofiltration Implementation Plan .................... L7...by eliminating outlying values that dispro- portionately skewed the results. The average composite scores were plotted (Figures Li-1 through LU-5), and

  15. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  16. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  17. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site

    Energy Technology Data Exchange (ETDEWEB)

    Wirthensohn, T. [University of Natural Resources and Applied Life Sciences-Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria)], E-mail: thomas.wirthensohn@boku.ac.at; Schoeberl, P. [Wienenergie Gasnetz GmbH, Referat 17-Altlasten, Josefstaedterstrasse 10-12, 1080 Vienna (Austria); Ghosh, U. [Department of Civil and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Fuchs, W. [University of Natural Resources and Applied Life Sciences-Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria)

    2009-04-15

    The production of manufactured gas at a site in Vienna, Austria led to the contamination of soil and groundwater with various pollutants including PAHs, hydrocarbons, phenols, BTEX, and cyanide. The site needs to be remediated to alleviate potential impacts to the environment. The chosen remediation concept includes the excavation of the core contaminated site and the setup of a hydraulic barrier to protect the surrounding aquifer. The extracted groundwater will be treated on-site. To design the foreseen pump-and-treat system, a pilot-scale plant was built and operated for 6 months. The scope of the present study was to test the effectiveness of different process steps, which included an aerated sedimentation basin, a submerged fixed film reactor (SFFR), a multi-media filter, and an activated carbon filter. The hydraulic retention time (HRT) was 7.0 h during normal flow conditions and 3.5 h during high flow conditions. The treatment system was effective in reducing the various organic and inorganic pollutants in the pumped groundwater. However, it was also demonstrated that appropriate pre-treatment was essential to overcome problems with clogging due to precipitation of tar and sulfur compounds. The reduction of the typical contaminants, PAHs and BTEX, was more than 99.8%. All water quality parameters after treatment were below the Austrian legal requirements for discharge into public water bodies.

  18. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site.

    Science.gov (United States)

    Wirthensohn, T; Schoeberl, P; Ghosh, U; Fuchs, W

    2009-04-15

    The production of manufactured gas at a site in Vienna, Austria led to the contamination of soil and groundwater with various pollutants including PAHs, hydrocarbons, phenols, BTEX, and cyanide. The site needs to be remediated to alleviate potential impacts to the environment. The chosen remediation concept includes the excavation of the core contaminated site and the setup of a hydraulic barrier to protect the surrounding aquifer. The extracted groundwater will be treated on-site. To design the foreseen pump-and-treat system, a pilot-scale plant was built and operated for 6 months. The scope of the present study was to test the effectiveness of different process steps, which included an aerated sedimentation basin, a submerged fixed film reactor (SFFR), a multi-media filter, and an activated carbon filter. The hydraulic retention time (HRT) was 7.0 h during normal flow conditions and 3.5h during high flow conditions. The treatment system was effective in reducing the various organic and inorganic pollutants in the pumped groundwater. However, it was also demonstrated that appropriate pre-treatment was essential to overcome problems with clogging due to precipitation of tar and sulfur compounds. The reduction of the typical contaminants, PAHs and BTEX, was more than 99.8%. All water quality parameters after treatment were below the Austrian legal requirements for discharge into public water bodies.

  19. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site

    International Nuclear Information System (INIS)

    Wirthensohn, T.; Schoeberl, P.; Ghosh, U.; Fuchs, W.

    2009-01-01

    The production of manufactured gas at a site in Vienna, Austria led to the contamination of soil and groundwater with various pollutants including PAHs, hydrocarbons, phenols, BTEX, and cyanide. The site needs to be remediated to alleviate potential impacts to the environment. The chosen remediation concept includes the excavation of the core contaminated site and the setup of a hydraulic barrier to protect the surrounding aquifer. The extracted groundwater will be treated on-site. To design the foreseen pump-and-treat system, a pilot-scale plant was built and operated for 6 months. The scope of the present study was to test the effectiveness of different process steps, which included an aerated sedimentation basin, a submerged fixed film reactor (SFFR), a multi-media filter, and an activated carbon filter. The hydraulic retention time (HRT) was 7.0 h during normal flow conditions and 3.5 h during high flow conditions. The treatment system was effective in reducing the various organic and inorganic pollutants in the pumped groundwater. However, it was also demonstrated that appropriate pre-treatment was essential to overcome problems with clogging due to precipitation of tar and sulfur compounds. The reduction of the typical contaminants, PAHs and BTEX, was more than 99.8%. All water quality parameters after treatment were below the Austrian legal requirements for discharge into public water bodies

  20. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy's (DOE's) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow

  1. GASReP/DESRT: Proceedings [of the] 2nd annual symposium on groundwater and soil remediation. Comptes rendus [de la] 2e symposium annuel sur la restauration des eaux souterraines et des sois contamines

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A conference was held to discuss ground water and soil remediation with emphasis on the Canadian national Groundwater and Soil Remediation Program (GASReP) and the Development and Demonstration of Site Remediation Technology (DESRT) program. Papers were presented on the subjects of groundwater and soil remediation research projects, bioremediation, excavation and treatment, pumping and treatment/soil venting, and industry and government initiatives. Separate abstracts have been prepared for 15 papers from the conference.

  2. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    Science.gov (United States)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  3. Reduction of waste solution volume generated on electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Koo, Dae-Seo; Kim, Seung-Soo; Jeong, Jung-Whan; Han, Gyu-Seong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, for the reduction of volume of metal oxides generated in cathode chamber, the optimum pH of waste electrolyte in cathode chamber were drawn out through several experiments with the manufactured electrokinetic decontamination equipment. Also, the required time to reach to below the clearance concentration level for self- disposal was estimated through experiments using the manufactured electrokinetic decontamination equipment. A diagram of soil decontamination process for the removal of uranium from contaminated soil was drawn out. The optimum pH of waste electrolyte in cathode chamber for the reduction of volume of metal oxides was below 2.35. Also, when the initial uranium concentration of the soils were 7-20 Bq/g, the required times to reach to below the clearance concentration level for self- disposal were 25-40 days. A diagram of soil decontamination process for the removal of uranium from contaminated soil was drawn out.

  4. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. Volume 3 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This volume of the Environmental Impact Statement contains ten appendices. These appendices contain the following: the ecological risk assessment methodology and calculations; the strategy for remediation of contaminated ground water; a description of the reference barrier and potential quarry sites that could be used to supply materials for barriers; the methodology for estimating socio-economic impacts; the methodology for evaluation of air quality impacts; an assessment of costs and physical impacts; the calculation of estimated industrial health and safety occupational losses; a floodplains and wetlands impact assessment; information about Hanford waste sites, and US EPA guidance on using land-use decisions in remediation

  5. Mobility of Nanoscale and Microscale iron for groundwater remediation: experiments and modelling

    Science.gov (United States)

    Tosco, T.; Gastone, F.; Sethi, R.

    2012-12-01

    Colloidal suspensions of zerovalent iron micro- and nanoparticles (MZVI and NZVI) have been studied in recent years for in-situ groundwater remediation. Thanks to their small size, MZVI and NZVI can be dispersed in aqueous suspensions and directly injected into the subsurface, for a targeted treatment of contamination plumes and even sources. However, colloidal dispersions of such particles are not stable in pure water, due to fast aggregation (for NZVI) and gravitational sedimentation (for MZVI). Viscous, environmentally friendly fluids (guar gum and xanthan gum solutions), which exhibit shear thinning rheological properties, were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1-3). The present work reports laboratory tests and numerical modelling concerning the mobility of MZVI and NZVI viscous suspensions in porous media. The efficacy of xanthan and guar gum was investigated in column transport tests, performed injecting highly concentrated iron suspensions (20 g/L), dispersed in xanthan gum (3g/L) and guar gum (3-6 g/l) solutions. Particle breakthrough curves and concentration profiles were monitored by magnetic susceptibility measurements. Pressure drop at column ends was also continuously monitored. The tests proved that green polymers can greatly improve both colloidal stability and mobility of the particles. Their use is fundamental in particular for MZVI, which cannot be transported nor even dispersed in pure water. A numerical model for NZVI and NZVI transport in porous media was then developed (E-MNM1D, Enhanced Micro-and Nanoparticle transport Model in porous media in 1D geometry) (4). Due to the high concentration of the particles and to the non-Newtonian rheology of the carrier fluid, hydrodynamic parameters, fluid properties and concentration of deposed and suspended particles are mutually influenced. The rheological properties of the suspensions are accounted for through a variable

  6. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    Science.gov (United States)

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  7. The nanotoxicology of a newly developed zero-valent iron nanomaterial for groundwater remediation and its remediation efficiency assessment combined with in vitro bioassays for detection of dioxin-like environmental pollutants

    OpenAIRE

    Schiwy, Andreas Herbert

    2016-01-01

    The assessment of chemicals and new compounds is an important task of ecotoxicology. In this thesis a newly developed zero-valent iron material for nanoremediation of groundwater contaminations was investigated and in vitro bioassays for high throughput screening were developed. These two elements of the thesis were combined to assess the remediation efficiency of the nanomaterial on the groundwater contaminant acridine. The developed in vitro bioassays were evaluated for quantification of th...

  8. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy`s (DOE`s) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement.

  9. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    International Nuclear Information System (INIS)

    1994-01-01

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy's (DOE's) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement

  10. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    International Nuclear Information System (INIS)

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997

  11. Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part B, Remedial Action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1. and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on the RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. Remedial action is the focus of Vol. 2, Pt. B, which has been divided into the three necessary subelements of the RA: characterization, RA, and robotics and automation. Each of these sections address general ORNL problems, which are then broken down by problem area/constituents and linked to potential remedial technologies. The diagrams also contain summary information about a technology`s status, its science and technology needs, and its implementation needs.

  12. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections

  13. Modelling Technique for the Assessment of the Sub-Soil Drain for Groundwater Seepage Remediation

    Directory of Open Access Journals (Sweden)

    Tajul Baharuddin Mohamad Faizal

    2017-01-01

    Full Text Available Groundwater simulation technique was carried out for examining the performance of sub-soil drain at problematic site area. Subsoil drain was proposed as one of solution for groundwater seepage occurred at the slope face by reducing groundwater table at Taman Botani Park Kuala Lumpur. The simulation technique used Modular Three-Dimensional Finite Difference Groundwater Flow (MODFLOW software. In transient conditions, the results of simulation showed that heads increases surpass 1 to 2 m from the elevation level of the slope area that caused groundwater seepage on slope face. This study attempt to decrease the heads increase surpass by using different sub-soil drain size in simulation technique. The sub-soil drain capable to decline the heads ranges of 1 to 2 m.

  14. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minhee, E-mail: heelee@pknu.ac.kr [Department of Environmental Geosciences, Pukyong National University, 599-1 Daeyondong, Namgu, Busan 608-737 (Korea, Republic of); Yang, Minjune [Department of Environmental Geosciences, Pukyong National University, 599-1 Daeyondong, Namgu, Busan 608-737 (Korea, Republic of)

    2010-01-15

    The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24 h by using sunflower and the residual uranium concentration of the treated water was lower than 30 {mu}g/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25 mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.

  15. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater.

    Science.gov (United States)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-02-15

    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10 5 to 10 7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Lee, Minhee; Yang, Minjune

    2010-01-01

    The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24 h by using sunflower and the residual uranium concentration of the treated water was lower than 30 μg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25 mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.

  17. Screening of groundwater remedial alternatives for brownfield sites: a comprehensive method integrated MCDA with numerical simulation.

    Science.gov (United States)

    Li, Wei; Zhang, Min; Wang, Mingyu; Han, Zhantao; Liu, Jiankai; Chen, Zhezhou; Liu, Bo; Yan, Yan; Liu, Zhu

    2018-06-01

    Brownfield sites pollution and remediation is an urgent environmental issue worldwide. The screening and assessment of remedial alternatives is especially complex owing to its multiple criteria that involves technique, economy, and policy. To help the decision-makers selecting the remedial alternatives efficiently, the criteria framework conducted by the U.S. EPA is improved and a comprehensive method that integrates multiple criteria decision analysis (MCDA) with numerical simulation is conducted in this paper. The criteria framework is modified and classified into three categories: qualitative, semi-quantitative, and quantitative criteria, MCDA method, AHP-PROMETHEE (analytical hierarchy process-preference ranking organization method for enrichment evaluation) is used to determine the priority ranking of the remedial alternatives and the solute transport simulation is conducted to assess the remedial efficiency. A case study was present to demonstrate the screening method in a brownfield site in Cangzhou, northern China. The results show that the systematic method provides a reliable way to quantify the priority of the remedial alternatives.

  18. Use of Cometabolic Air Sparging to Remediate Chloroethene-Contaminated Groundwater Aquifers

    National Research Council Canada - National Science Library

    Magar, Victor

    2001-01-01

    ...) process at the McClellan National Test Site, California. The purpose of the demonstration was to evaluate the effectiveness of and costs associated with CAS for removal of chlorinated aromatic hydrocarbons (CAHs) from groundwater...

  19. Cost and Performance Report - Use of Cometabolic Air Sparging to Remediate Chloroethene-Contaminated Groundwater Aquifers

    National Research Council Canada - National Science Library

    Magar, Victor

    2001-01-01

    ...) process at the McClellan National Test Site, California. The purpose of the demonstration was to evaluate the effectiveness of and costs associated with CAS for removal of chlorinated aromatic hydrocarbons (CAHs) from groundwater...

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  2. Final report on Phase II remedial action at the former Middlesex Sampling Plant and associated properties. Volume 2

    International Nuclear Information System (INIS)

    1985-04-01

    Volume 2 presents the radiological measurement data taken after remedial action on properties surrounding the former Middlesex Sampling Plant during Phase II of the DOE Middlesex Remedial Action Program. Also included are analyses of the confirmatory radiological survey data for each parcel with respect to the remedial action criteria established by DOE for the Phase II cleanup and a discussion of the final status of each property. Engineering details of this project and a description of the associated health physics and environmental monitoring activities are presented in Volume 1

  3. Life cycle assessment of soil and groundwater remediation technologies: literature review

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2010-01-01

    Background, aim, and scope Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation...... and scope definition and the applied impact assessment. The studies differ in their basic approach since some are prospective with focus on decision support while others are retrospective aiming at a more detailed assessment of a completed remediation project. Literature review The literature review showed...... scenarios in terms of their associated environmental burden. Main features An overview of the assessed remediation technologies and contaminant types covered in the literature is presented. The LCA methodologies of the 12 reviewed studies were compared and discussed with special focus on their goal...

  4. Development of a biotreatment system for the remediation of groundwater contaminated with hydrocarbons and trichloroethylene

    International Nuclear Information System (INIS)

    Folsom, B.R.; Kurisko, P.R.; Ensley, B.D.

    1992-01-01

    Inadvertent release of fuels and solvents into soil has resulted in groundwater contamination across the United States. This paper reports on the development of biologically based systems for treating mixtures of chemical contaminants which often requires knowledge of both degradative pathways and interactions between individual chemicals. These issues may necessitate the use of specialized microorganisms and/or treatment systems designed to overcome these limitations. One strategy for the treatment of chemical mixtures which cannot be source separated, such as contaminated groundwater, is a modular system to sequentially biodegrade groups of compatible chemicals. A two-stage bioreactor system was constructed for the treatment of groundwater contaminated with benzene and TCE. This treatment system is undergoing development for a field pilot demonstration. Successful implementation of this system should result in significant cost and time savings compared to competitive technologies

  5. Technical summary of Groundwater Quality Protection Program at Savannah River Plant. Volume II. Radioactive waste

    International Nuclear Information System (INIS)

    Stone, J.A.; Christensen, E.J.

    1983-12-01

    This report (Volume II) presents representative monitoring data for radioactivity in groundwater at SRP. Four major groups of radioactive waste disposal sites and three minor sites are described. Much of the geohydrological and and other background information given in Volume I is applicable to these sites and is incorporated by reference. Several of the sites that contain mixed chemical and radioactive wastes are discussed in both Volumes I and II. Bulk unirradiated uranium is considered primarily a chemical waste which is addressed in Volume I, but generally not in Volume II

  6. PETRO-SAFE '94 conference papers: Book 2. Volume 5: Emergency response ampersand spill control; Volume 6: Remediation; Volume 7: Health ampersand safety issues

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The Fifth Annual Environmental, Safety and Health Conference and Exhibition for the oil, gas and petrochemical industries was held January 25--27, 1994 in Houston, Texas. The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art environmental and safety issues. This volume focuses on the following: emergency response and spill control; remediation; and health and safety issues. Individual papers have been processed separately for inclusion in the appropriate data bases

  7. Groundwater contaminant plume maps and volumes, 100-K and 100-N Areas, Hanford Site, Washington

    Science.gov (United States)

    Johnson, Kenneth H.

    2016-09-27

    extents are shown graphically and in tabular form for comparison to previous estimates. Plume data also were interpolated to a finer grid (10 × 10 m) for some processing, particularly to estimate volumes of contaminated groundwater. However, hydrogeologic transport modeling was not considered for the interpolation. The compilation of plume extents for each contaminant also allowed estimates of overlap of the plumes or areas with more than one contaminant above regulatory standards.A mapping of saturated aquifer thickness also was derived across the 100-K and 100–N study area, based on the vertical difference between the groundwater level (water table) at the top and the altitude of the top of the Ringold Upper Mud geologic unit, considered the bottom of the uppermost unconfined aquifer. Saturated thickness was calculated for each cell in the finer (10 × 10 m) grid. The summation of the cells’ saturated thickness values within each polygon of plume regulatory exceedance provided an estimate of the total volume of contaminated aquifer, and the results also were checked using a SURFER® volumetric integration procedure. The total volume of contaminated groundwater in each plume was derived by multiplying the aquifer saturated thickness volume by a locally representative value of porosity (0.3).Estimates of the uncertainty of the plume delineation also are presented. “Upper limit” plume delineations were calculated for each contaminant using the same procedure as the “average” plume extent except with values at each well that are set at a 95-percent upper confidence limit around the log-normally transformed mean concentrations, based on the standard error for the distribution of the mean value in that well; “lower limit” plumes are calculated at a 5-percent confidence limit around the geometric mean. These upper- and lower-limit estimates are considered unrealistic because the statistics were increased or decreased at each well simultaneously and were not

  8. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

  9. Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater

    Science.gov (United States)

    Passive reactive barriers are commonly used to treat groundwater that is contaminated with chlorinated solvents such as trichloroethylene (TCE). A number of passive reactive barriers have been constructed with plant mulch as the reactive medium. The TCE is removed in these barr...

  10. Effects of the proposed EPA groundwater standards on the Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Titus, F.B.

    1988-01-01

    Potential groundwater contamination beneath the 24 tailings piles that are to be stabilized under the UMTRA Project was intended in early project plans to be minimized by placing disposal piles over thick stratigraphic sequences of tight (minimally permeable) formations, and by designing covers that contained low permeability soil/clay infiltration barriers. The court-ordered revision of the UMTRA groundwater standards by EPA (proposed standards of September 1987) include very low Maximum Concentration Limits (MCLs), which are based mostly on Primary Drinking Water Standards. EPA also mandates that the designs should control radioactivity and hazardous constituents...for up to one thousand years, to the extends reasonably achievable, and, in any case, for at least two hundred years.... In order to accommodate this stipulation, transport modeling of water and contaminants in both the vadose and saturated zones beneath the piles is run until steady state conditions are reached. The early decision to locate stabilized piles over tight formations now exacerbates the problem of complying with the standards, since the contaminants percolate to groundwater that moves only slowly through strata having low permeabilities. Innovative solutions have been evaluated that are aimed at further minimizing long-term infiltration, geochemically fixing contaminants in place before they reach groundwater, or otherwise minimizing contaminant flux

  11. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    This report describes environmental monitoring and compliance at eight UMTRA sites where remedial action was underway during 1992 and at the ten sites that were complete at the end of 1992. Volume I contains information for Ambrosia Lake, NM; Cannonsburg/Burrell, PA; Durango, CO; Falls City, TX; Grand Junction, CO; Green River, UT; and Gunnison, CO. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information

  12. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-31

    This report describes environmental monitoring and compliance at eight UMTRA sites where remedial action was underway during 1992 and at the ten sites that were complete at the end of 1992. Volume I contains information for Ambrosia Lake, NM; Cannonsburg/Burrell, PA; Durango, CO; Falls City, TX; Grand Junction, CO; Green River, UT; and Gunnison, CO. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information.

  13. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.

    Science.gov (United States)

    Luo, Ximing; Liu, Haifei; Huang, Guoxin; Li, Ye; Zhao, Yan; Li, Xu

    2016-01-01

    A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels.

  14. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  15. Permeable reactive barriers for the remediation of groundwater in a mining area: results for a pilot-scale project

    Science.gov (United States)

    Martinez-Sanchez, Maria Jose; Perez-Sirvent, Carmen; Garcia-Lorenzo, Maria Luz; Martinez-Lopez, Salvadora; Perez-Espinosa, Victor; Gonzalez-Ciudad, Eva; Belen Martinez-Martinez, Lucia; Hernandez, Carmen; Molina-Ruiz, Jose

    2017-04-01

    The Sierra Minera of Cartagena-La Union is located in the Region of Murcia, Southeast of Spain. This zone presents high levels of heavy metals due to natural, geogenic reasons. In addition, the prolonged mining activity, and subsequent abandonment of farms, has had consequences on the environment, including severe affectation of the groundwater in the area. To remediate this situation, the Permeable Reactive Barrier (PRB) technology was assayed, which required in addition to the hydro-geological study of the zone, a careful optimization study for the design and construction of PRBs. For such a purpose a pilot-scale project was developed, and this communication reports some of the most relevant findings obtained after a four-years monitorization period. The selected reactive material for the PRBs was limestone filler. The filler is a waste material produced in many factories in the zone. These residues have good adsorption properties, high alkalinity, low cost and high availability, which make them suitable for use in remediation. The PRB was constituted by a 50% limestone filler and 50% sand, a proportion optimized by means of independent batch experiments. A layer of gravel was placed at the top, and on it a layer of natural soil. The barrier was designed in the form of a continuous trench, because the level of the contaminated groundwater was not very deep. In this way, the barrier could be prepared with standard excavation equipment. Parallel to the barrier, 6 wells where arranged downstream for sample collection. The pH and conductivity of the samples was measured directly in situ, and the content of Zn, Cd, Cu, Fe, and Pb were analyzed in the laboratory. All the samples collected after the PRB was constructed had basic pH values between 7.5 and 8. The conductivity was between 5 and 11 mS / cm except for the well 4, which had a value of 3.70 mS / cm. The concentration values of trace elements were below the detection limit (atomic absorption measurement) in

  16. Fifth international conference on radioactive waste management and environmental remediation -- ICEM '95: Proceedings. Volume 2: Management of low-level waste and remediation of contaminated sites and facilities

    International Nuclear Information System (INIS)

    Slate, S.; Baker, R.; Benda, G.

    1995-01-01

    The objective of this conference is the broad international exchange of information on technologies, operations, management approaches, economics, and public policies in the critical areas of radioactive waste management and environmental remediation. The ICEM '95 technical program includes four parallel program tracks: Low/intermediate-level waste management; High-level waste, spent fuel, nuclear material management; Environmental remediation and facility D and D; and Major institutional issues in environmental management. Volume 2 contains approximately 200 papers divided into the following topical sections: Characterization of low and intermediate level waste; Treatment of low and intermediate level waste; LLW disposal and near-surface contaminant migration; Characterization and remediation of contaminated sites; and Decontamination and decommissioning technologies and experience. Papers have been processed separately for inclusion on the data base

  17. Evaluation of Groundwater Remediation Technologies Based on Fuzzy Multi-Criteria Decision Analysis Approaches

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-06-01

    Full Text Available Petroleum is an essential resource for the development of society and its production is huge. There is a great risk of leakage of oil during production, refining, and transportation. After entering the environment, the oil pollutants will be a great threat to the environment and may endanger human health. Therefore, it is very important to remediate oil pollution in the subsurface. However, it is necessary to choose the appropriate remediation technology. In this paper, 18 technologies are evaluated through constructing a parameter matrix with each technology and seven performance indicators, and a comprehensive analysis model is presented. In this model, four MCDA methods are used. They are SWA (Simple Weighted Addition Method, WP (Weighted Product Method, CGT (Cooperative Game Theory, and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution. Mean ranking and Borda ranking methods are used to integrate the results of SWA, WP, CGT, and TOPSIS. Then two selection priorities of each method (mean ranking and Borda ranking are obtained. The model is proposed to help decide the best choice of remediation technologies. It can effectively reduce contingency, subjectivity, one-sidedness of the traditional methods and provide scientific reference for effective decision-making.

  18. Remediation of groundwater contaminated by exa valent chromium. Part 1.: Treatment technologies

    International Nuclear Information System (INIS)

    Sbaffoni, S.; Vaccari, M.

    2009-01-01

    Chromium compounds have been used in several industrial activities and they are often found in soil and groundwater of former industrial sites. Chromium exists in various oxidation states, but the trivalent and hexavalent oxidation ones are of major environmental concern due to their stability in the environment. In particular, Cr(V I) is highly soluble and mobile and is very toxic with mutagenic and carcinogenic effects. The present paper describes the main chemical, physical and toxicological properties of Cr(V I), its fate in the subsoil and both the conventional and innovative technologies for its removal from contaminated groundwater. The paper includes also a brief description of few interesting foreign case studies. [it

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  20. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume VI

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department Of Energy and the Washington State Department of Ecology added Appendix L (Volume 6), Response to Public Comments, to the Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington, to fully address and respond to public comments on the Draft EIS. In addition, DOE considered public comments, along with other factors such as programmatic need, short- and long-term impacts, technical feasibility, and cost, in arriving at DOE's preferred alternative. During the public comment period for the Draft EIS, more than 350 individuals, agencies, Tribal Nations, and organizations provided comments. This volume represents a broad spectrum of private citizens; businesses; local, State, and Federal officials; Tribal Nations; and public interest groups

  1. Ion exchange technology in the remediation of uranium contaminated groundwater at Fernald

    International Nuclear Information System (INIS)

    Sutton, Chris; Glassmeyer, Cathy; Bozich, Steve

    2000-01-01

    Using pump and treat methodology, uranium contaminated groundwater is being removed from the Great Miami Aquifer at the Fernald Environmental Management Project (FEMP) per the FEMP Record of Decision (ROD) that defines groundwater cleanup. Standard extraction wells pump about 3900 gallons-per-minute (gpm) from the aquifer through five ion exchange treatment systems. The largest treatment system k the Advanced Wastewater Treatment (AWWT) Expansion System with a capacity of 1800 gpm, which consists of three trains of two vessels. The trains operate in parallel treating 600 gpm each, The two vessels in each train operate in series, one in lead and one in lag. Treated groundwater is either reinfected back into the aquifer to speed up the aquifer cleanup processor discharged to the Great Miami River. The uranium regulatory ROD limit for discharge to the river is 20 parts per billion (ppb), and the FEMP uranium administrative action level for reinfection is 10 ppb. Spent (i.e., a resin that no longer adsorbs uranium) ion exchange resins must either be replaced or regenerated. The regeneration of spent ion exchange resins is considerably more cost effective than their replacement. Therefore, a project was undertaken to learn how best to regenerate the resins in the groundwater vessels. At the outset of this project, considerable uncertainty existed as to whether a spent resin could be regenerated successfully enough so that it performed as well as new resin relative to achieving very low uranium concentrations in the effluent. A second major uncertain y was whether the operational lifetime of a regenerated resin would be similar to that of a new resin with respect to uranium loading capacity and effluent concentration behavior. The project was successful in that a method for regenerating resins has been developed that is operationally efficient, that results in regenerated resins yielding uranium concentrations much lower than regulatory limits, and that results in

  2. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at Hanford, WA

    International Nuclear Information System (INIS)

    Thompson, K.M.; Petersen, Scott W.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Vermeul, Vince R.; Wellman, Dawn M.; Szecsody, Jim E.; Truex, Michael J.; Amonette, James E.; Long, Philip E.

    2007-01-01

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phytoremediation may be a possible way to treat this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium-phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage.

  3. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method.

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability.

  5. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  6. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  7. Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO{sub 2}-based adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jing Chuanyong, E-mail: cyjing@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Meng Xiaoguang; Calvache, Edwin [Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2009-08-15

    A nanocrystalline TiO{sub 2}-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 mug L{sup -1} As(III), 246 mug L{sup -1} As(V), 151 mug L{sup -1} MMA, and 202 mug L{sup -1} DMA was continuously passed through a TiO{sub 2} filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 mug L{sup -1}. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). - A nanocrystalline TiO{sub 2}-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  8. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Meng, X; Calvache, E; Jiang, G

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  9. Remediation of Groundwater Polluted by Aromatic Compounds by Means of Adsorption

    Directory of Open Access Journals (Sweden)

    Silvana Canzano

    2014-07-01

    Full Text Available In this work, an experimental and modeling analysis of the adsorption of four aromatic compounds (i.e., toluene, naphthalene, o-xylene and ethylbenzene onto a commercial activated carbon is carried out. The aim is to assess the suitability of the adsorption process for the treatment of polluted groundwater, also when a multiple contamination is detected. Batch adsorption tests from simulated polluted groundwater are performed in single-compound systems and in two binary systems (i.e., toluene + naphthalene and o-xylene + ethylbenzene, at constant temperature (20 °C and pH (7. Experimental results in single-compound systems reveal that all of the analytes are significantly adsorbed on the tested activated carbon. In particular, toluene and naphthalene adsorption capacities are the highest and of similar value, while for o-xylene and ethylbenzene, the performances are lower. The adsorption of these compounds seems to be influenced by a combined effect of several parameters, such as hydrophobicity, molecule size, structure of the molecule, etc. Experimental results in binary systems show a different behavior of the two systems, which confirms their complexity and explains the interest in these complex adsorption systems. In particular, toluene and naphthalene are mutually competitive, while in the case of o-xylene + ethylbenzene, only the former undergoes competitive effects. The analysis of the entire experimental data set is integrated with a dedicated modeling analysis using the extended Langmuir model. For both single-compound and binary systems, this model provides acceptable results, in particular for low equilibrium concentrations, like those more commonly found in groundwater, and for the compounds involved in adsorptive competitive effects.

  10. A/M Area Groundwater Corrective Action Southern Sector Remediation Technology Alternatives Evaluation

    International Nuclear Information System (INIS)

    Looney, B.B.; Phifer, M.A.

    1994-01-01

    Several technologies for clean up of solvents such as trichloroethylene, from groundwater were examined to determine the most reasonable strategy for the southern Sector in A/M Area of Savannah River Site. The most promising options identified were: pump and treat technology, airlift recirculation technology, and bioremediation technology. These options range from baseline/traditional methods to more innovative technologies. The traditional methods would be straightforward to implement, while the innovative methods have the potential to improve efficiency and reduce long term costs

  11. Review of passive groundwater remediation systems: Lessons learned Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    One of the proposed solutions for treatment of the contaminated groundwater in the Bear Creek Valley is the installation of a passive treatment system. Such a system would use a reactive media installed in a continuous trench or in a gate as part of a barrier wall and gate system. This report evaluates information on five similar systems [no information was available on two additional systems] and evaluates the shortcomings and the advantages of each. Section 5 provides a short summary of the findings and presents some recommendations on how to avoid some of the common problems encountered with the existing systems

  12. Evaluation of the effectiveness of different methods for the remediation of contaminated groundwater by determining the petroleum hydrocarbon content

    Energy Technology Data Exchange (ETDEWEB)

    Voyevoda, Maryna; Geyer, Wolfgang; Mothes, Sibylle [Department of Analytical Chemistry, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Mosig, Peter [Centre for Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Seeger, Eva M. [Department of Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany)

    2012-08-15

    The effectiveness of different remediation procedures for decreasing the amount of TPH (total petroleum hydrocarbons) in contaminated groundwater was evaluated at the site of a former refinery. The investigations were carried out on samples taken from several gravel based HSSF (horizontal subsurface flow) constructed wetlands (CW) which differed in relation to their filter material additives (no additive, charcoal, and ferric oxides additives) and examined the potential effect of these additives on the overall treatment efficiency. Samples of the following gravel based HSSF CW were investigated. No filter additive (system A), 0.1% activated carbon (system B), 0.5% iron(III) hydroxide (system C), and the reference (system D). Systems A-C were planted with common reed (Phragmites australis), whereas system D remained unplanted. In addition, the influence of seasonal conditions on the reduction of these hydrocarbons and the correlation between the amounts of TPH and BTEX (benzene, toluene, ethylbenzene, and xylene isomers), on the one hand, and methyl tert-butyl ether, on the other, was investigated. The study was carried out by using a modified GC-FID approach and multivariate methods. The investigations carried out in the first year of operation demonstrated that the effectiveness of the petroleum hydrocarbon removal was highest and reached a level of 93 {+-} 3.5% when HSSF filters with activated carbon as a filter additive were used. This remediation method allowed the petroleum hydrocarbon content to be reduced independently of seasonal conditions. The correlation between the reduction of TPH and BTEX was found to be R = 0.8824. Using this correlation coefficient, the time-consuming determination of the BTEX content was no longer necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Inorganic photocatalytic membranes for the remediation of VOCs in groundwater at the Portsmouth Site

    International Nuclear Information System (INIS)

    Bischoff, B.L.; Fain, D.E.; James, D.L. II

    1997-01-01

    A small-scale demonstration of a new photocatalytic membrane reactor was undertaken at the X-623 Groundwater Treatment Facility at the Portsmouth Gaseous Diffusion Plant. The photocatalytic membrane reactor initially removed between 60 and 65% of the TCE in a single pass. It also removed significant amounts of three additional compounds (including completely removing one of the compounds). It is believed that these compounds were vinyl chloride, and two isomers of dichloroethylene. Within three days from startup, high suspended solids (mainly bacteria) contained in the feedwater tank caused plugging of the system's prefilter. The high concentration of bacteria was the result of a previously unknown large amount of activated carbon present in the feed tank prior to addition of the groundwater. It was also later discovered that fine colloidal silt particles had fouled the photocatalytic membranes and reduced their activity yielding only about a 20% reduction of TCE. The silt particles were determined to be between 50 and 100 nm and were able to pass through the 500 nm (0.5 μm) diameter pores of the prefilter. The results of this field test demonstrated the potential for success of the deployment of this technology, the simplicity, flexibility, and operability of the process and that improvements to the system design are needed prior to any future demonstrations. 9 figs

  14. Demonstration test and evaluation of Ultraviolet/Ultraviolet Catalyzed Peroxide Oxidation for Groundwater Remediation at Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    1994-03-01

    We demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure trademark process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H 2 O 2 into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure trademark process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another. Although the perox-pure trademark process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure trademark process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the highest concentration organic (TCA) was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system. The demonstration at K-25 included tests with (1) the commercial PSI system, (2) the new UV lamp-based system and (3) the commercial PSI and new UV lamp systems in series

  15. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    Science.gov (United States)

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  16. Innovative Uses of Organo-philic Clays for Remediation of Soils, Sediments and Groundwater

    International Nuclear Information System (INIS)

    Bullock, A.M.

    2009-01-01

    PCBs and similar low-solubility organic compounds continue to offer significant challenges in terrestrial and sediment remediation applications. While selective media such as granular activated carbon (GAC) have proven to be successful at absorbing soluble organics, these media may have reduced performance due to blinding in the presence of high molecular weight organic matter. An alternative technology addresses this problem with a clay-based adsorption media, which effectively and efficiently stabilizes low-solubility organic matter. Organoclay TM reactive media utilizes granular sodium bentonite, which has been chemically modified to attract organic matter without absorbing water. The unique platelet structure of bentonite clays provides tremendous surface area and the capacity of the media to absorb over 60 percent of its own weight in organic matter. Because of these properties, organo-clays allow for several cost-effective in-situ remediation techniques, such as: - Flow-through filtration for removal of organic matter from aqueous solutions. Organo-clay can be utilized as a fixed-bed media in a column operation. This specialty media offers a high efficient alternative to Granular Activated Carbon (GAC) when applied as a flow through media to remove oil, PCB and other low soluble organic contaminates from water. - Placement in a Reactive Core Mat TM . Organo-clay may be encapsulated into carrier textiles which are adhered together to create a thin reactive layer with high strength and even distribution of the reactive media. This type of delivery mechanism can be successfully applied in a sub aqueous or terrestrial environment for sediment capping applications - Permeable reactive barriers. Organo-clay can deliver high sorption capacity, high efficiency, and excellent hydraulic conductivity as a passive reactive media in these applications. (authors)

  17. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground

  18. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    International Nuclear Information System (INIS)

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-01-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  19. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  20. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  1. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives

  2. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime's, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives

  3. Demonstrating practical application of soil and groundwater clean-up and recovery technologies at natural gas processing facilities: Bioventing, air sparging and wetlands remediation

    International Nuclear Information System (INIS)

    Moore, B.

    1996-01-01

    This issue of the project newsletter described the nature of bioventing, air sparging and wetland remediation. It reviewed their effectiveness in remediating hydrocarbon contaminated soil above the groundwater surface. Bioventing was described as an effective, low cost treatment in which air is pumped below ground to stimulate indigenous bacteria. The bacteria then use the oxygen to consume the hydrocarbons, converting them to CO 2 and water. Air sparging involves the injection of air below the groundwater surface. As the air rises, hydrocarbons are stripped from the contaminated soil and water. The advantage of air sparging is that it cleans contaminated soil and water from below the groundwater surface. Hydrocarbon contamination of wetlands was described as fairly common. Conventional remediation methods of excavation, trenching, and bellholes to remove contamination often cause extreme harm to the ecosystem. Recent experimental evidence suggests that wetlands may be capable of attenuating contaminated water through natural processes. Four hydrocarbon contaminated wetlands in Alberta are currently under study. Results to date show that peat's high organic content promotes sorption and biodegradation and that some crude oil spills can been resolved by natural processes. It was suggested that assuming peat is present, a good clean-up approach may be to contain the contaminant source, monitor the lateral and vertical extent of contamination, and wait for natural processes to resolve the problem. 3 figs

  4. Conservative strategy-based ensemble surrogate model for optimal groundwater remediation design at DNAPLs-contaminated sites

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Lin, Jin; Deng, Wenbing; Cheng, Weiguo

    2017-08-01

    The surrogate-based simulation-optimization techniques are frequently used for optimal groundwater remediation design. When this technique is used, surrogate errors caused by surrogate-modeling uncertainty may lead to generation of infeasible designs. In this paper, a conservative strategy that pushes the optimal design into the feasible region was used to address surrogate-modeling uncertainty. In addition, chance-constrained programming (CCP) was adopted to compare with the conservative strategy in addressing this uncertainty. Three methods, multi-gene genetic programming (MGGP), Kriging (KRG) and support vector regression (SVR), were used to construct surrogate models for a time-consuming multi-phase flow model. To improve the performance of the surrogate model, ensemble surrogates were constructed based on combinations of different stand-alone surrogate models. The results show that: (1) the surrogate-modeling uncertainty was successfully addressed by the conservative strategy, which means that this method is promising for addressing surrogate-modeling uncertainty. (2) The ensemble surrogate model that combines MGGP with KRG showed the most favorable performance, which indicates that this ensemble surrogate can utilize both stand-alone surrogate models to improve the performance of the surrogate model.

  5. Spatial distribution of residence time, microbe and storage volume of groundwater in headwater catchments

    Science.gov (United States)

    Tsujimura, Maki; Ogawa, Mahiro; Yamamoto, Chisato; Sakakibara, Koichi; Sugiyama, Ayumi; Kato, Kenji; Nagaosa, Kazuyo; Yano, Shinjiro

    2017-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, and time and stock information of the water is principal to understand hydrological processes in the catchments. Also, a variety of microbes are included in the groundwater and spring water, and those varies in time and space, suggesting that information of microbe could be used as tracer for groundwater flow system. However, there have been few researches to evaluate the relationship among the residence time, microbe and storage volume of the groundwater in headwater catchments. We performed an investigation on age dating using SF6 and CFCs, microbe counting in the spring water, and evaluation of groundwater storage volume based on water budget analysis in 8 regions underlain by different lithology, those are granite, dacite, sedimentary rocks, serpentinite, basalt and volcanic lava all over Japan. We conducted hydrometric measurements and sampling of spring water in base flow conditions during the rainless periods 2015 and 2016 in those regions, and SF6, CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute concentrations and total number of prokaryotes were determined on all water samples. Residence time of spring water ranged from 0 to 16 years in all regions, and storage volume of the groundwater within topographical watershed was estimated to be 0.1 m to 222 m in water height. The spring with the longer residence time tends to have larger storage volume in the watershed, and the spring underlain by dacite tends to have larger storage volume as compared with that underlain by sand stone and chert. Also, total number of prokaryotes in the spring water ranged from 103 to 105 cells/mL, and the spring tends to show clear increasing of total number of prokaryotes with decreasing of residence time. Thus, we observed a certain relationship among residence time, storage volume and total number of prokaryotes in the spring water, and

  6. Groundwater remediation project at Stockem railway station following a pollution with MIAK (Methyl Isoamyl Ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Daelemans, A.; Boden, A.; Schuyteneer, L.W. de; Achter, L.H. van [Soil Service of Belgium, Leuven-Heverlee (Belgium)

    2003-07-01

    On the 20{sup th} of January 2000, a derailment accident happened near the railway station of Stockem in the vicinity of the city of Arlon. An estimated 20.000 litres of MIAK (methyl isoamyl ketone or 5-methyl-2-hexanone) was spilled and lost into the soil. Immediately after the accident, the Soil Service of Belgium received a request from the Belgian National Railway Company to establish an emergency plan for the remediation of the spill, including the design and the follow-up of the clean up operations. The calamity happened to the West of the railway station at a height of 360 m above sea level and in the vicinity of the Semois river (200 m to the South). From a geological point of view, the Formation of Florenville is outcropping at the site. This formation is characterized by an alternation of sandy sediments and sandstone layers. Locally the rock layer are porous allowing vertical migration of the water. The formation is an important but vulnerable aquifer. Further to the South, water is extracted from the aquifer in large quantities for both public distribution and bottling purposes. The spilled product, 5-methyl-2-hexanone (MIAK), has a typical fruity odour and its density is slightly lower than water. The product is relative mobile and fairly easy degraded biologically in low concentrations. (orig.)

  7. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  8. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.

    Science.gov (United States)

    Yang, Jie; Meng, Liang; Guo, Lin

    2018-02-01

    Chlorinated solvents in groundwater pose threats to human health and the environment due to their carcinogenesis and bioaccumulation. These problems are often more severe in developing countries such as China. Thus, methods for chlorinated solvent-contaminated groundwater remediation are urgently needed. This study presents a technique of in situ remediation via the direct-push amendment injection that enhances the reductive dechlorination of chlorinated solvents in groundwater in the low-permeability aquifer. A field-based pilot test and a following real-world, full-scale application were conducted at an active manufacturing facility in Shanghai, China. The chlorinated solvents found at the clay till site included 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), and chloroethane (CA). A commercially available amendment (EHC ® , Peroxychem, Philadelphia, PA) combining zero-valent iron and organic carbon was used to treat the above pollutants. Pilot test results showed that direct-push EHC injection efficiently facilitated the in situ reductive remediation of groundwater contaminated with chlorinated solvents. The mean removal rates of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE at 270 days post-injection were 99.6, 99.3, and 73.3%, respectively, which were obviously higher than those of VC and CA (42.3 and 37.1%, respectively). Clear decreases in oxidation-reduction potential and dissolved oxygen concentration, and increases in Fe 2+ and total organic carbon concentration, were also observed during the monitoring period. These indicate that EHC promotes the anaerobic degradation of chlorinated hydrocarbons primarily via long-term biological reductive dechlorination, with instant chemical reductive dechlorination acting as a secondary pathway. The optimal effective time of EHC injection was 0-90 days, and its radius of influence was 1.5 m. In full-scale application, the maximum concentrations of 1,1,1-TCA

  10. Risk-Based Management of Contaminated Groundwater: The Role of Geologic Heterogeneity, Exposure and Cancer Risk in Determining the Performance of Aquifer Remediation

    International Nuclear Information System (INIS)

    Maxwell, R.M.; Carle, S.F.; Tompson, A.F.B.

    2000-01-01

    The effectiveness of aquifer remediation is typically expressed in terms of a reduction in contaminant concentrations relative to a regulated maximum contaminant level (MCL), and is usually confined by sparse monitoring data and/or simple model calculations. Here, the effectiveness of remediation is examined from a risk-based perspective that goes beyond the traditional MCL concept. A methodology is employed to evaluate the health risk to individuals exposed to contaminated household water that is produced from groundwater. This approach explicitly accounts for differences in risk arising from variability in individual physiology and water use, the uncertainty in estimating chemical carcinogenesis for different individuals, and the uncertainties and variability in contaminant concentrations within groundwater. A hypothetical contamination scenario is developed as a case study in a saturated, alluvial aquifer underlying a real Superfund site. A baseline (unremediated) human exposure and health risk scenario, as induced by contaminated groundwater pumped from this site, is predicted and compared with a similar estimate based upon pump-and-treat exposure intervention. The predicted reduction in risk in the remediation scenario is not an equitable one-that is, it is not uniform to all individuals within a population and varies according to the level of uncertainty in prediction. The importance of understanding the detailed hydrogeologic connections that are established in the heterogeneous geologic regime between the contaminated source, municipal receptors, and remediation wells, and its relationship to this uncertainty is demonstrated. Using two alternative pumping rates, we develop cost-benefit curves based upon reduced exposure and risk to different individuals within the population, under the presence of uncertainty

  11. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    International Nuclear Information System (INIS)

    Christensen, E.J.; Gordon, D.E.

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines

  12. Synchrotron X-ray characterization of mackinawite and uraninite relevant to bio-remediation of groundwater contaminated with uranium

    Science.gov (United States)

    Carpenter, J.; Hyun, S.; Hayes, K. F.

    2010-12-01

    Uranium (U) originating from mining operations for weapon manufacturing and nuclear energy production is a significant radionuclide contaminant in groundwater local to uranium mining, uranium milling, and uranium mill tailing (UMT) storage sites. In the USA, the Department of Energy (DOE) is currently overseeing approximately 24 Uranium Mill Tailing Remediation Action (UMTRA) sites which have collectively processed over 27 million tons of uranium ore1,2. In-Situ microbial bio-reduction of the highly mobile U6+ ion into the dramatically less mobile U4+ ion has been demonstrated as an effective remedial process to inhibit uranium migration in the aqueous phase3. The resistance of this process to oxidization and possible remobilization of U when bioremediation stops (and oxidants such as oxygen from the air or nitrate in water diffuse into the formation) in the long term is not known. UMTRA site studies3 have shown that iron sulfide solids are produced by sulfate reducing bacteria (SRB) during U bioremediation, and some forms of these iron sulfide solids are known to be effective oxidant scavengers, potentially protecting against re-oxidation and thus remobilization of U. This work is investigating the role of iron sulfide solids in the long-term immobilization of reduced U compounds after bioremediation is completed in groundwater local to UMTRA sites. Re-oxidation tests are being performed in packed media columns loaded with both FeS and U solids. High quality mackinawite (FeS), and uraninite (UO2) have been synthesized in our laboratory via a wet chemistry approach. These synthetic materials are expected to mimic the naturally occurring and biogenic materials present in biologically stimulated UMTRA sites. In order to establish the initial conditions of the prepared experimental columns and to compare synthetic and biogenic FeS and UO2, these synthesized materials have been characterized with synchrotron radiation at the Stanford Synchrotron Radiation Lightsource

  13. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  14. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented

  15. Screening Assessment of Radionuclide Migration in Groundwater from the “Dneprovskoe” Tailings Impoundment (Dneprodzerzhynsk City) and Evaluation of Remedial Options

    Energy Technology Data Exchange (ETDEWEB)

    Skalskyi, O.; Bugai, D. [Institute of Geological Sciences, National Academy of Sciences of Ukraine (Ukraine); Ryazantsev, V. [State Nuclear Regularity Committee of Ukraine, Kiev (Ukraine)

    2014-05-15

    The paper presents results of mathematical modeling of the hydrogeological conditions at the “Dneprovskoe” (“D”) tailings impoundment –object of the former industrial association of “Pridneprovsky Chemical Plant”, which contains uranium ore processing wastes. This radioactively polluted site is located in a densely populated region (at the outskirts of Dneprodzerginsk City) near the major watercourse of the Ukraine — Dnieper River.The mathematical modeling utilized Visual Modflow (for groundwater flow) and Ecolego (Facilia AB, Sweden) radioecology modeling software (for radionuclide transport).Modeling results indicate the possibility of essential radioactive contamination in future of the phreatic aquifer in alluvial deposits between the “D” tailings and the Dnieper River (mainly due to migration of uranium). Therefore long-term management strategies should preclude water usage from the aquifer in the zone of the in-fluence of the “D” tailings. Filtration discharge of uranium to the Dnepr River does not represent a significant risk due to large dilution by surface waters. The important modeling conclusion is that besides the uranium ore processing wastes inside the tailings, the major source of radionuclide migration to groundwater is represented by contaminated geological deposits below the tailings. This last source was formed due to leakage of wastewaters during the operational period of the “D” tailings (1954–1968). Therefore an exemption and re-disposal of wastes from the “D” tailings to a more safe storage location (proposed by some remedial plans) will not provide significant benefit from the viewpoint of minimizing of radionuclide transport to the groundwater and Dnieper River (especially in short-and medium-term perspective). The rational remedial strategy for the “D” tailings is conservation of tailing wastes in-situ by means of specially designed “zero flux” soil screen, which would minimize infiltration of

  16. Remediation of lead and cadmium from simulated groundwater in loess region in northwestern China using permeable reactive barrier filled with environmentally friendly mixed adsorbents.

    Science.gov (United States)

    Fan, Chunhui; Gao, Yalin; Zhang, Yingchao; Dong, Wanqing; Lai, Miao

    2018-01-01

    Permeable reactive barrier (PRB) is potentially effective for groundwater remediation, especially using environmentally friendly mixed fillers in representative areas, such as semi-arid loess region in northwestern China. The mixed materials, including corn straw (agricultural wastes), fly ash (industrial wastes), zeolite synthesized from fly ash (reutilized products), and iron-manganese nodule derived from loess (materials with regional characteristics) in northwestern China, were chosen as PRB media to reduce the contents of lead and cadmium in simulated groundwater. A series of lab-scale column experiments were investigated, and the response surface methodology (RSM) was used to optimize the working process; Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were applied to further reveal the reaction mechanism. It shows that the purification efficiencies are more acceptable when the concentrations of lead and cadmium are approximately 7 and 0.7 mg/L, respectively, at 25 °C in weakly acidic solution, and functional groups of -OH and C=C play an important role for contaminants removal. The mixed adsorbents used are effective to remove lead and cadmium in groundwater. This is the first report on the removal of lead and cadmium from groundwater in loess region in northwestern China using PRB filled with environmentally friendly mixed adsorbents.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 7

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.; Fowler, J.W.

    1986-09-01

    The 644 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the seventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. References are arranged alphabetically by leading author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations

  18. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  19. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description

  20. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    Science.gov (United States)

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated

  1. Environmental summary of the F- and H-area seepage basins groundwater remediation project, Savannah River site

    International Nuclear Information System (INIS)

    Friday, G.P.

    1997-01-01

    This report summarizes the results of nearly 70 investigations of the baseline environment, describes the remedial action, and identifies constituents of interest that pose potential risk to human health and the environment. It also proposes an approach for evaluating the effectiveness of the remedial action

  2. Bioaugmentation for Groundwater Remediation

    Science.gov (United States)

    2010-02-01

    FORMER BUILDING X CHAIN LINK FENCE TREELINE EXISTING BUILDING / X 6 Sl1aw· Shaw Environmental, Inc. ESTCP FIELD DEMONSTRATION BIOAUGMENTATION...KIRKWOOD FORMATION) L------ MAG-203 $ MONITORING WELL (MANASQUAN FORMATION) X X CHAIN LINK FENCE $ MONITORING WELL ~ TREELINE (VINCENTOWN FORMATION) S

  3. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    International Nuclear Information System (INIS)

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  6. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  7. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  8. Long-term performance of elemental iron and hydroxyapatite for uranium retention in permeable reactive barriers used for groundwater remediation

    International Nuclear Information System (INIS)

    Biermann, V.

    2007-01-01

    Elemental iron (Fe 0 ) and hydroxyapatite (HAP) were evaluated as reactive mate-rials for use in permeable reactive barriers (PRBs) to remove uranium from conta-minated groundwater. Special attention was given to the long-term performance of the materials, which was investigated by means of column tests with a duration of up to 30 months using two different artificial groundwaters (AGW) with varying composition and uranium concentration. The interaction of the materials with AGW was studied in column tests using 237 U as a radiotracer to monitor the movement of the contamination front through the columns. The tested materials were shredded cast iron (granulated grey cast iron, 0.3 - 1.3 mm) supplied by Gotthard Mayer, Rheinfelden, Germany, and food quality grade hydroxyapatite (Ca 5 (PO 4 ) 3 OH, 99 % 0 (AGW with 9.6 mg U/L and low bicarbonate content of 120 mg/L). No breakthrough was observed for the Fe 0 columns with effluent uranium con-centrations being below the detection limit of 10 μg/L after treating more than 2,000 pore volumes (PV) and no uranium could be leached from loaded Fe 0 columns with 200 PV of uranium free AGW. However, columns with high Fe 0 content (≥ 50%) suffered from severe loss of permeability when AGW with ≥ 320 mg/L bicarbonate was used. In the HAP columns a breakthrough occurred with effluent uranium concentrations > 15 μg/l after treating 1,240 PV (10% and 50% breakthrough after 1,460 PV and 2,140 PV respectively). 12.2% of the accu-mulated uranium could be desorbed again with 840 PV of uranium free AGW. Adsorption was found to be the dominant reaction mechanism for uranium and HAP. Image analysis of high uranium content samples showed uranium and phosphate bearing crystals growing from HAP surfaces. The uranium phases chernikovite and meta-ankoleite of the autunite group were identified by x-ray diffraction. The existence of these mineral phases proves that surface precipitation also occurs under favourable conditions. No uranium

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568

  11. Draft Environmental Impact Statement for the tank waste remediation system. Volume 4

    International Nuclear Information System (INIS)

    1996-04-01

    This appendix describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS)

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  13. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This remedial investigation (RI)/feasibility study (FS) supports the selection of remedial actions for the David Witherspoon, Inc. 901 Maryville Pike Site in Knoxville, Tennessee. Operations at the site, used as a recycling center, have resulted in past, present, and potential future releases of hazardous substances in to the environment. This Site is a Tennessee Superfund site. A phased approach was planned to (1) gather existing data from previous investigations managed by the Tenn. Dept. of Environment and Conservation; (2) perform a preliminary RI, including risk assessments, and an FS with existing data to identify areas where remedial action may be necessary; (3) gather additional field data to adequately define the nature and extent of risk-based contaminants that present identifiable threats to human and/or ecological receptors; and (4) develop remedial action alternatives to reduce risks to acceptable levels.

  14. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 1

    International Nuclear Information System (INIS)

    1996-10-01

    This remedial investigation (RI)/feasibility study (FS) supports the selection of remedial actions for the David Witherspoon, Inc. 901 Maryville Pike Site in Knoxville, Tennessee. Operations at the site, used as a recycling center, have resulted in past, present, and potential future releases of hazardous substances in to the environment. This Site is a Tennessee Superfund site. A phased approach was planned to (1) gather existing data from previous investigations managed by the Tenn. Dept. of Environment and Conservation; (2) perform a preliminary RI, including risk assessments, and an FS with existing data to identify areas where remedial action may be necessary; (3) gather additional field data to adequately define the nature and extent of risk-based contaminants that present identifiable threats to human and/or ecological receptors; and (4) develop remedial action alternatives to reduce risks to acceptable levels

  15. Proceedings of the 2000 contaminated site remediation conference. From source zones to ecosystems. 2 volumes

    International Nuclear Information System (INIS)

    Johnston, C.D.

    2000-01-01

    The conference theme, 'From Source Zones to Ecosystems' , indicate the recognition of the fact that once released into environment, contaminants followed a pathway from the source to the point of impact with an ecosystem or other receptors, consequently care is taken to associate remediation with reducing risk to these receptors. The papers, presented at the conference provide a guide to current practice and future direction of contaminated site remediation in Australia and internationally. Monitored natural attenuation is considered as is an increased body of evidence available to evaluate this approach when managing site contamination for Australian conditions. Remediation strategies for heavy metal contamination appear to be underdeveloped and indeed underrepresented. The phyto remediation is being developed to ameliorate the problem and there is also a focus on the bioavailability of metals and on better defining the risk they pose

  16. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations

  18. A Cercla-Based Decision Model to Support Remedy Selection for an Uncertain Volume of Contaminants at a DOE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Christine E. Kerschus

    1999-03-31

    The Paducah Gaseous Diffusion Plant (PGDP) operated by the Department of Energy is challenged with selecting the appropriate remediation technology to cleanup contaminants at Waste Area Group (WAG) 6. This research utilizes value-focused thinking and multiattribute preference theory concepts to produce a decision analysis model designed to aid the decision makers in their selection process. The model is based on CERCLA's five primary balancing criteria, tailored specifically to WAG 6 and the contaminants of concern, utilizes expert opinion and the best available engineering, cost, and performance data, and accounts for uncertainty in contaminant volume. The model ranks 23 remediation technologies (trains) in their ability to achieve the CERCLA criteria at various contaminant volumes. A sensitivity analysis is performed to examine the effects of changes in expert opinion and uncertainty in volume. Further analysis reveals how volume uncertainty is expected to affect technology cost, time and ability to meet the CERCLA criteria. The model provides the decision makers with a CERCLA-based decision analysis methodology that is objective, traceable, and robust to support the WAG 6 Feasibility Study. In addition, the model can be adjusted to address other DOE contaminated sites.

  19. A Cercla-Based Decision Model to Support Remedy Selection for an Uncertain Volume of Contaminants at a DOE Facility

    International Nuclear Information System (INIS)

    Christine E. Kerschus

    1999-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) operated by the Department of Energy is challenged with selecting the appropriate remediation technology to cleanup contaminants at Waste Area Group (WAG) 6. This research utilizes value-focused thinking and multiattribute preference theory concepts to produce a decision analysis model designed to aid the decision makers in their selection process. The model is based on CERCLA's five primary balancing criteria, tailored specifically to WAG 6 and the contaminants of concern, utilizes expert opinion and the best available engineering, cost, and performance data, and accounts for uncertainty in contaminant volume. The model ranks 23 remediation technologies (trains) in their ability to achieve the CERCLA criteria at various contaminant volumes. A sensitivity analysis is performed to examine the effects of changes in expert opinion and uncertainty in volume. Further analysis reveals how volume uncertainty is expected to affect technology cost, time and ability to meet the CERCLA criteria. The model provides the decision makers with a CERCLA-based decision analysis methodology that is objective, traceable, and robust to support the WAG 6 Feasibility Study. In addition, the model can be adjusted to address other DOE contaminated sites

  20. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  1. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin

  2. Studies of Contaminant Diffusion in an Aquitard and Groundwater Remediation by Reactive Metals at Dover Air Force Base Delaware

    National Research Council Canada - National Science Library

    Ball, William

    1998-01-01

    This project focused on analysis of in-situ concentrations of chlorinated hydrocarbons in an aquitard underlying the site of a prior field-scale investigation of pump-and-treat remediation in sheet...

  3. Studies of Contaminant Diffusion in an Aquitard and Groundwater Remediation by Reactive Metals at Dover Air Force Base, Delaware

    National Research Council Canada - National Science Library

    Ball, William

    1998-01-01

    This project focused on analysis of in-situ concentrations of chlorinated hydrocarbons in an aquitard underlying the site of a prior field-scale investigation of pump-and-treat remediation in sheet...

  4. Risk-based decision analysis for groundwater operable units

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1995-01-01

    This document proposes a streamlined approach and methodology for performing risk assessment in support of interim remedial measure (IRM) decisions involving the remediation of contaminated groundwater on the Hanford Site. This methodology, referred to as ''risk-based decision analysis,'' also supports the specification of target cleanup volumes and provides a basis for design and operation of the groundwater remedies. The risk-based decision analysis can be completed within a short time frame and concisely documented. The risk-based decision analysis is more versatile than the qualitative risk assessment (QRA), because it not only supports the need for IRMs, but also provides criteria for defining the success of the IRMs and provides the risk-basis for decisions on final remedies. For these reasons, it is proposed that, for groundwater operable units, the risk-based decision analysis should replace the more elaborate, costly, and time-consuming QRA

  5. Evaluation of select trade-offs between ground-water remediation and waste minimization for petroleum refining industry

    International Nuclear Information System (INIS)

    Andrews, C.D.; McTernan, W.F.; Willett, K.K.

    1996-01-01

    An investigation comparing environmental remediation alternatives and attendant costs for a hypothetical refinery site located in the Arkansas River alluvium was completed. Transport from the land's surface to and through the ground water of three spill sizes was simulated, representing a base case and two possible levels of waste minimization. Remediation costs were calculated for five alternative remediation options, for three possible regulatory levels and alternative site locations, for four levels of technology improvement, and for eight different years. It is appropriate from environmental and economic perspectives to initiate significant efforts and expenditures that are necessary to minimize the amount and type of waste produced and disposed during refinery operations; or conversely, given expected improvements in technology, is it better to wait until remediation technologies improve, allowing greater environmental compliance at lower costs? The present work used deterministic models to track a light nonaqueous phase liquid (LNAPL) spill through the unsaturated zone to the top of the water table. Benzene leaching from LNAPL to the ground water was further routed through the alluvial aquifer. Contaminant plumes were simulated over 50 yr of transport and remediation costs assigned for each of the five treatment options for each of these years. The results of these efforts show that active remediation is most cost effective after a set point or geochemical quasi-equilibrium is reached, where long-term improvements in technology greatly tilt the recommended option toward remediation. Finally, the impacts associated with increasingly rigorous regulatory levels present potentially significant penalties for the remediation option, but their likelihood of occurrence is difficult to define

  6. Enhancement of stability of various nZVI suspensions used in groundwater remediation with environmentally friendly organic stabilizers

    Science.gov (United States)

    Schmid, Doris; Wagner, Stephan; Velimirović, Milica; Laumann, Susanne; Micić, Vesna; Hofmann, Thilo

    2014-05-01

    The use of nanoscale zero-valent iron (nZVI) particles for in situ remediation of polluted soil and groundwater has been shown as one of the most promising techniques [1]. The success of this technology depends on the mobility, reactivity, and longevity of nZVI particles. The mobility of nZVI particles depends on the properties of the single particles, stability of the particle suspension, and the aquifer material [1,2]. In order to enhance the mobility of nZVI, the mobility-decisive properties of the nZVI particles in suspension such as concentration, size distribution, surface charge, and sedimentation rate have to be investigated and optimized. Previous studies showed that pristine nZVI particles aggregate rapidly in water, reducing the particles radius of influence after injection [3]. In order to prevent aggregation and sedimentation of the nZVI particles, and consequently improve the stability of nZVI suspension and therefore the mobility of the nZVI particles, surface stabilizers can be used to provide electrostatic repulsion and steric or electrosteric stabilization [3,4]. The objective of this lab-scale study is to investigate the potential for enhancing the stability of different nZVI suspensions by means of environmentally friendly organic stabilizers, including carboxymethyl cellulose, pectin, alginate, xanthan, and guar gum. The different nZVI particles used included pristine and polyacrylic acid-coated nZVI particles provided in suspension (Nanofer 25 and Nanofer 25S, respectively, NANOIRON s.r.o., Czech Republic), air-stable nZVI particles (Nanofer Star, (NANOIRON s.r.o., Czech Republic), and milled iron flakes (UVR-FIA, Germany). In order to study the enhancement of nZVI stability (1 g L-1 total iron) different concentrations of organic stabilizers (1-20 wt.%) were applied in these nZVI suspensions. Each nZVI suspension was freshly prepared and treated for 10 minutes with Ultra-Turrax (15 000 rpm) and 10 minutes ultrasonic bath prior to

  7. Future use of tritium in mapping pre-bomb groundwater volumes.

    Science.gov (United States)

    Eastoe, C J; Watts, C J; Ploughe, M; Wright, W E

    2012-01-01

    The tritium input to groundwater, represented as volume-weighted mean tritium concentrations in precipitation, has been close to constant in Tucson and Albuquerque since 1992, and the decrease in tritium concentrations at the tail end of the bomb tritium pulse has ceased. To determine the future usefulness of tritium measurements in southwestern North America, volume-weighted mean tritium levels in seasonal aggregate precipitation samples have been gathered from 26 sites. The averages range from 2 to 9 tritium units (TU). Tritium concentrations increase with site latitude, and possibly with distance from the coast and with site altitude, reflecting local ratios of combination of low-tritium moisture advected from the oceans with high-tritium moisture originating near the tropopause. Tritium used alone as a tool for mapping aquifer volumes containing only pre-bomb recharge to groundwater will become ambiguous when the tritium in precipitation at the end of the bomb tritium pulse decays to levels close to the analytical detection limit. At such a time, tritium in precipitation from the last one to two decades of the bomb pulse will become indistinguishable from pre-bomb recharge. The threshold of ambiguity has already arrived in coastal areas with a mean of 2 TU in precipitation and will follow in the next three decades throughout the study region. Where the mean tritium level is near 5 TU, the threshold will occur between 2025 and 2030, given a detection limit of 0.6 TU. Similar thresholds of ambiguity, with different local timing possible, apply globally. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  8. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. Volume 4 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Energy's (DOE) is preparing this ''Hanford Site Comprehensive Land Use Plan'' (Comprehensive Plan), Appendix M to address future land uses for the Hanford Site. The DOE has integrated this land-use planning initiative with the development of the HRA-EIS to facilitate and expedite land-use and remediation decision making, reduce time and cost of remediation, and optimize the usefulness of the planning process. The HRA-EIS is being developed to evaluate the potential environmental impacts associated with remediation, create a remedial baseline for the Environmental Restoration Program, and provide a framework for future uses at the Hanford Site. This Comprehensive Plan identifies current assets and resources related to land-use planning, and provides the analysis and recommendations for future land sues and accompanying restrictions at the Hanford Site over a 50-year period. This Comprehensive Plan relies on the analysis of environmental impacts in the HRA-EIS. The National Environmental Policy Act of 1969 (NEPA) Record of Decision (ROD) issued for the HRA-EIS will be the decision process for finalization and adoption of this Comprehensive Plan. The HRA-EIS and this Comprehensive Plan will provide a basis for remediation decisions to be identified and contained in site- and area-specific Comprehensive Environmental Response, Compensation and Liability Act of 1980 ROD

  9. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation

  10. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  11. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  12. Variable thickness transient ground-water flow model. Volume 3. Program listings

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow

  13. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  14. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  15. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    International Nuclear Information System (INIS)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory

  16. Redmedial Action Plan for the Risk-Based Remediation of Site ST14 (SWMU 68), LPSTID 104819; the Former Base Refueling Area (A0C7); the French Underdrain System (SWMU 64); and the North Oil/Water Separator (SWMU 67), Carswell Air Force Base, Naval Air Station Fort Worth Joint Reserve Base, Texas. Volume 1: Report

    National Research Council Canada - National Science Library

    1997-01-01

    ...) to prepare a remedial action plan (RAP) in support of a risk-based remediation decision for soil and groundwater contaminated with fuel hydrocarbons at Site ST14 at Carswell Air Force Base (AFB), Texas...

  17. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation.

    Science.gov (United States)

    Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos

    2016-01-01

    Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure

  19. A Mathematical Model for Simulating Remediation of Groundwater Contaminated by Heavy Metals using Bio-Carriers with Dead Baccilus sp. B1 and Polysulfone

    Science.gov (United States)

    Seo, H.; Wang, S.; Lee, M.

    2010-12-01

    The remediation of groundwater contaminated by heavy metals, organic contaminants, etc. using various types of bio-carriers has been widely studied as a novel technology in the literature. In this study, a series of batch experiments were conducted to investigated the fundamental characteristics in the removal process using bio-carriers (beads) with dead Bacillus sp. B1 and polysulfone. Through equilibrium and kinetic sorption experiments, sorption efficiencies for lead and copper under various conditions such as pH, temperature, contaminant concentration, etc. were examined and sorption parameters including maximum sorption capacities were obtained for model applications. Experimental data showed that equilibrium sorption patterns for Pb2+and Cu2+on bio-carrier beads follows Langmuir sorption isotherm and that the sorption dynamics can be described with a pseudo-second-order kinetics. One dimensional advective-dispersive-reactive transport model was also developed for simulating and analyzing the remediation processes. The HSDM (homogeneous surface diffusion model) were incorporated in the model to take into account the mass transfer and sorption mechanisms around/inside the bio-carrier beads. Applying the proposed model, numerical column experiments were carried out and the simulation results reasonably described temporal and spatial distribution of Pb2+and Cu2+in a fixed-bed flow-through sorption column. Experimental and numerical results showed that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers can function as excellent biosorbents for the removal of heavy metal ions from groundwater.

  20. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  1. Superfund Record of Decision (EPA Region 6): United Nuclear Corporation, Mckinley County, New Mexico, ground-water operable unit (first remedial action) September 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The United Nuclear Corporation (UNC) site is located approximately 17 miles northeast of Gallup, New Mexico in McKinley County. The site operated as a State-licensed uranium mill facility from June 1977 to May 1982. It includes an ore-processing mill (about 25 acres) and an unlined tailings pond area (about 100 acres). In July 1979, approximately 23 million gallons of tailings and pond water were released to a nearby river as a result of a dam breach in the tailings pond area. The site damage was repaired; however, attention was focused on ground-water contamination resulting from tailings seepage. Nevertheless, the offsite migration of radionuclides and chemical constituents from uranium milling byproduct materials into the ground water, as well as to surface water and air, are still principal threats at the site. The remedial action will address onsite ground water contamination. Source control and onsite surface reclamation will be implemented under the direction of the Nuclear Regulatory Commission and integrated with this ground water operable unit. The primary contaminants of concern affecting the ground water are metals including arsenic, and radioactive substances including radium-226/228 and gross alpha. The selected remedial action for the site is included

  2. Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2014-01-01

    The main body of research on pesticide removal with membranes has looked at pesticides used for pest control, but during transport from surface to groundwater aquifers, pesticides are transformed. Therefore the real polluting compounds are often transformation products, and this vastly increases ...

  3. Potential of aerobic bacteria use for remediation of groundwater of Pavlodar outskirt contaminated with soluble mercury compounds

    Science.gov (United States)

    In the Republic of Kazakhstan there are some regions contaminated with mercury as a result of technogenic releases from industrial enterprises. The mercury ingress into the environment has resulted in significant pollution of groundwater and surface water with soluble mercury com...

  4. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    International Nuclear Information System (INIS)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-01-01

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment

  5. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-02-25

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment.

  6. Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit.

  7. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Volume 1 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  8. Draft Environmental Impact Statement for the tank waste remediation system. Volume 1

    International Nuclear Information System (INIS)

    1996-04-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, and Ex Situ/In Situ Combination. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. At this time, DOE and Ecology do not have a preferred alternative for the cesium and strontium capsules

  9. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    International Nuclear Information System (INIS)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-01-01

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money

  10. Remedial Investigation Badger Army Ammunition Plant, Baraboo, Wisconsin. Volume 3. Appendices G Through J

    Science.gov (United States)

    1991-01-01

    WATER DEPTHI FTI ,.f’ WELL I NTEGRITY~...- . -rS Ng~ ELEVATIONI GAL/VOL PROT. CA6 +9lG-lECURE U H E I H T O F •....-7\\ - - C ý C R E T E C O L L A R IN... treatment facility for intercepting and stripping contaminated groundwater of volatile organic compounds (VOCs). In order to perform the aquifer test...available in the IRM treatment facility building were used as a backup for flow rate measurements. During the aquifer test, water from BCW-3 was piped

  11. Environmental assessment of remedial action at the Lakeview Uranium Mill Tailings Site, Lakeview, Oregon: Volume 2, Appendices

    International Nuclear Information System (INIS)

    1985-04-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Lakeview uranium mill tailings site located one mile north of Lakeview, Oregon. The site covers 256 acres and contains 30 acres of tailings, 69 acres of evaporation ponds, and 25 acres of windblown materials. Remedial actions must be performed in accordance with standards and with the concurrence of the Nuclear Regulatory Commission. Three alternatives have been addressed in this document. The first alternative (the proposed action) is relocation of all contaminated materials to the Collins Ranch site. The contaminated materials would be consolidated into an embankment constructed partially below grade and covered with radon protection and erosion protection covers. A second alternative would relocate the tailings to the Flynn Ranch site and dispose of the contaminated materials in a slightly below grade embankment. A radon protection and erosion protection cover system would also be installed. The no-action alternative is also assessed. Stabilization in place is not considered due to potential seismic and geothermal hazards associated with the current tailings site, and the inability to meet EPA standards. Volume 2 contains 11 appendices

  12. Computer-model analysis of ground-water flow and simulated effects of contaminant remediation at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    Science.gov (United States)

    Barker, Rene A.; Braun, Christopher L.

    2000-01-01

    In June 1993, the Department of the Navy, Southern Division Naval Facilities Engineering Command (SOUTHDIV), began a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Naval Weapons Industrial Reserve Plant (NWIRP) in north-central Texas. The RFI has found trichloroethene, dichloroethene, vinyl chloride, as well as chromium, lead, and other metallic residuum in the shallow alluvial aquifer underlying NWIRP. These findings and the possibility of on-site or off-site migration of contaminants prompted the need for a ground-water-flow model of the NWIRP area. The resulting U.S. Geological Survey (USGS) model: (1) defines aquifer properties, (2) computes water budgets, (3) delineates major flowpaths, and (4) simulates hydrologic effects of remediation activity. In addition to assisting with particle-tracking analyses, the calibrated model could support solute-transport modeling as well as help evaluate the effects of potential corrective action. The USGS model simulates steadystate and transient conditions of ground-water flow within a single model layer.The alluvial aquifer is within fluvial terrace deposits of Pleistocene age, which unconformably overlie the relatively impermeable Eagle Ford Shale of Late Cretaceous age. Over small distances and short periods, finer grained parts of the aquifer are separated hydraulically; however, most of the aquifer is connected circuitously through randomly distributed coarser grained sediments. The top of the underlying Eagle Ford Shale, a regional confining unit, is assumed to be the effective lower limit of ground-water circulation and chemical contamination.The calibrated steady-state model reproduces long-term average water levels within +5.1 or –3.5 feet of those observed; the standard error of the estimate is 1.07 feet with a mean residual of 0.02 foot. Hydraulic conductivity values range from 0.75 to 7.5 feet per day, and average about 4 feet per day. Specific yield values range from 0

  13. Coupling of bio-PRB and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater.

    Science.gov (United States)

    Liu, Na; Ding, Feng; Wang, Liu; Liu, Peng; Yu, Xiaolong; Ye, Kang

    2016-05-01

    A laboratory-scale bio-permeable reactive barrier (bio-PRB) was constructed and combined with enclosed in-well aeration system to treat nitrobenzene (NB) and aniline (AN) in groundwater. Batch-style experiments were first conducted to evaluate the effectiveness of NB and AN degradation, using suspension (free cells) of degrading consortium and immobilized consortium by a mixture of perlite and peat. The NB and AN were completely degraded in 4 mg L(-1) when the aeration system was applied into the bio-PRB system. The NB and AN were effectively removed when the aeration system was functional in the bio-PRB. The removal efficiency decreased when the aeration system malfunctioned for 20 days, thus indicating that DO was an important factor for the degradation of NB and AN. The regain of NB and AN removal after the malfunction indicates the robustness of degradation consortium. No original organics and new formed by-products were observed in the effluent. The results indicate that NB and AN in groundwater can be completely mineralized in a bio-PRB equipped with enclosed in-well aeration system and filled with perlite and peat attached with degrading consortium.

  14. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  15. Groundwater-level and storage-volume changes in the Equus Beds aquifer near Wichita, Kansas, predevelopment through January 2015

    Science.gov (United States)

    Whisnant, Joshua A.; Hansen, Cristi V.; Eslick, Patrick J.

    2015-10-01

    Development of the Wichita well field began in the 1940s in the Equus Beds aquifer to provide the city of Wichita, Kansas, a new water-supply source. After development of the Wichita well field began, groundwater levels began to decline. Extensive development of irrigation wells that began in the 1970s also contributed to substantial groundwater-level declines. Groundwater-level declines likely enhance movement of brine from past oil and gas production near Burrton, Kansas, and natural saline water from the Arkansas River into the Wichita well field. Groundwater levels reached a historical minimum in 1993 because of drought conditions, irrigation, and the city of Wichita’s withdrawals from the aquifer. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program to ensure that Wichita’s water needs would be met through the year 2050 and beyond as part of its efforts to manage the part of the Equus Beds aquifer Wichita uses. A key component of the Integrated Local Water Supply Program was the Equus Beds Aquifer Storage and Recovery project. The Aquifer Storage and Recovery project’s goal is to store and eventually recover groundwater and help protect the Equus Beds aquifer from oil-field brine water near Burrton, Kansas, and saline water from the Arkansas River. Since 1940, the U.S. Geological Survey has monitored groundwater levels and storage-volume changes in the Equus Beds aquifer to provide data to the city of Wichita in order to better manage its water supply.

  16. Basin F Subregional Groundwater Model

    National Research Council Canada - National Science Library

    Mazion, Edward

    2001-01-01

    The groundwater flow system at Rocky Mountain Arsenal (RMA) is complex. To evaluate proposed remedial alternatives, interaction of the local groundwater flow system with the present contamination control systems must be understood...

  17. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R. [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1993-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  18. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1994-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  19. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  20. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site

  1. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater.

    Science.gov (United States)

    Sheu, Y T; Chen, S C; Chien, C C; Chen, C C; Kao, C M

    2015-03-02

    A long-lasting emulsified colloidal substrate (LECS) was developed for continuous carbon and nanoscale zero-valent iron (nZVI) release to remediate trichloroethylene (TCE)-contaminated groundwater under reductive dechlorinating conditions. The developed LECS contained nZVI, vegetable oil, surfactants (Simple Green™ and lecithin), molasses, lactate, and minerals. An emulsification study was performed to evaluate the globule droplet size and stability of LECS. The results show that a stable oil-in-water emulsion with uniformly small droplets (0.7 μm) was produced, which could continuously release the primary substrates. The emulsified solution could serve as the dispensing agent, and nZVI particles (with diameter 100-200 nm) were distributed in the emulsion evenly without aggregation. Microcosm results showed that the LECS caused a rapid increase in the total organic carbon concentration (up to 488 mg/L), and reductive dechlorination of TCE was significantly enhanced. Up to 99% of TCE (with initial concentration of 7.4 mg/L) was removed after 130 days of operation. Acidification was prevented by the production of hydroxide ion by the oxidation of nZVI. The formation of iron sulfide reduced the odor from produced hydrogen sulfide. Microbial analyses reveal that dechlorinating bacteria existed in soils, which might contribute to TCE dechlorination. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Remediation of sites with dispersed radioactive contamination

    International Nuclear Information System (INIS)

    2004-01-01

    To respond to the needs of Member States, the IAEA launched an environmental remediation project to deal with the problems of radioactive contamination worldwide. The IAEA environmental remediation project includes an IAEA Coordinated Research Project, as well as the participation of IAEA experts in concrete remediation projects when requested by individual Member States. The IAEA has prepared several documents dedicated to particular technical or conceptual areas, including documents on the characterization of contaminated sites, technical and non-technical factors relevant to the selection of a preferred remediation strategy and technique, overview of applicable techniques for environmental remediation,, options for the cleanup of contaminated groundwater and planning and management issues. In addition, a number of other IAEA publications dealing with related aspects have been compiled under different IAEA projects; these include TECDOCs on the remediation of uranium mill tailings, the decontamination of buildings and roads and the characterization of decommissioned sites. Detailed procedures for the planning and implementation of remedial measures have been developed over the past decade or so. A critical element is the characterization of the contamination and of the various environmental compartments in which it is found, in order to be able to evaluate the applicability of remediation techniques. The chemical or mineralogical form of the contaminant will critically influence the efficiency of the remediation technique chosen. Careful delineation of the contamination will ensure that only those areas or volumes of material that are actually contaminated are treated. This, in turn, reduces the amount of any secondary waste generated. The application of a remediation technique requires holistic studies examining the technical feasibility of the proposed measures, including analyses of their impact. Consequently, input from various scientific and engineering

  3. Mechanisms on the Impacts of Alkalinity, pH, and Chloride on Persulfate-Based Groundwater Remediation.

    Science.gov (United States)

    Li, Wei; Orozco, Ruben; Camargos, Natalia; Liu, Haizhou

    2017-04-04

    Persulfate (S 2 O 8 2- )-based in situ chemical oxidation (ISCO) has gained more attention in recent years due to the generation of highly reactive and selective sulfate radical (SO 4 •- ). This study examined the effects of important groundwater chemical parameters, i.e., alkalinity, pH, and chloride on benzene degradation via heterogeneous persulfate activation by three Fe(III)- and Mn(IV)-containing aquifer minerals: ferrihydrite, goethite, and pyrolusite. A comprehensive kinetic model was established to elucidate the mechanisms of radical generation and mineral surface complexation. Results showed that an increase of alkalinity up to 10 meq/L decreased the rates of persulfate decomposition and benzene degradation, which was associated with the formation of unreactive surface carbonato complexes. An increase in pH generally accelerated persulfate decomposition due to enhanced formation of reactive surface hydroxo complexation. A change in the chloride level up to 5 mM had a negligibly effect on the reaction kinetics. Kinetics modeling also suggested that SO 4 •- was transformed to hydroxyl radical (HO • ) and carbonate radical (CO 3 •- ) at higher pHs. Furthermore, the yields of two major products of benzene oxidation, i.e., phenol and aldehyde, were positively correlated with the branching ratio of SO 4 •- reacting with benzene, but inversely correlated with that of HO • or CO 3 •- , indicating that SO 4 •- preferentially oxidized benzene via pathways involving fewer hydroxylation steps compared to HO • or CO 3 •- .

  4. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part B, Remedial action, robotics/automation, waste management

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.L. [ed.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

  5. Ground-water monitoring compliance projects for Hanford Site Facilities: Progress report for the period April 1--June 30, 1988: Volume 1, Text

    International Nuclear Information System (INIS)

    1988-09-01

    This is Volume 1 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses the projects; Volume 2 provides as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area and near the 216-A-36B Crib

  6. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This volume is in support of the findings of an investigation into contamination of the Clinch River and Poplar Creek near the Oak Ridge Reservation (for more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities there). It addresses the quality assurance objectives for measuring the data, presents selected historical data, contains data from several discrete water characterization studies, provides data supporting the sediment characterization, and contains data related to several biota characterization studies.

  7. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments

    Science.gov (United States)

    Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.

    2015-11-01

    Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity

  8. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events

  9. M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1

    International Nuclear Information System (INIS)

    1995-05-01

    This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment

  10. Laboratory evaluation of PAH oxidation by magnesium peroxides and iron oxides mixtures as reactive material for groundwater remediation

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Cortina, J.L.; Farran, A.; Marti, V.

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are a class of compounds consisting of two or more fused aromatic rings. They represent the largest group of compounds that are mutagenic, carcinogenic, and teratogenic and are included in the priority pollutants lists. In recent years, increasing attention has been drawn to PAH contamination in aquatic sediments. Biological aerobic degradation was earlier the promoted option to degrade PAH in soils and sediments; however this could be extended for decades. In this direction, addition of oxygen has been proposed as an effective way to speed up their degradation in contaminated soil or groundwater. This objective could be achieved either by adding oxygen releasing compounds or by using an oxygen pump. The latter option is not economically defensible due to the enormous power needed. The use of ex-situ technologies to treat contaminated soils is in general not effective due to the high costs and work efforts demanded to remove big quantities of soil. For that reason, the use of in-situ technologies based on degradation processes has been identified as a suitable approach. These technologies would reduce costs and environmental impacts due to reduction of soil transportations and digging activities. In-situ degradation of recalcitrant contaminants could be achieved by using strong oxidant agents by soil injection or by using permeable treatment wall or zones. Oxidants typically used have been hydrogen peroxide, potassium permanganate and ozone. In situ chemical oxidation using Fenton's reagent (hydrogen peroxide and iron(II) mixtures) has been evaluated for BTEX and poly-aromatic compounds. The successful application of in situ Fenton's reagent chemical oxidation is based on an understanding of oxidant chemistry and the geology, hydrogeology and chemistry of the contaminant site. Choosing the proper conditions requires the determination of 1) the better way to promote the formation of the OH radicals that react with the

  11. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D A [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1993-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  12. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D. A. [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1992-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  13. Remedial actions at the former Vanadium Corporation of America uranium mill site, Durango, La Plata County, Colorado. Volume II. Appendices. Final Environmental Impact Statement

    International Nuclear Information System (INIS)

    1985-10-01

    Volume 2 contains the following: addendums to Appendices A - Conceptual Designs and Engineering Evaluations for Remedial Action Alternative 3b, D - Meteorological and Air-Quality Information, F - Water Resources Information, H - Radiological Information, I - Information on Populations, Socioeconomics, and Land Use; Appendix K - List of Agencies, Organizations, and Persons Receiving Copies of this Statement; Appendix L - Wildlife Mitigation Plan; Appendix M - Seismic Evaluation; Appendix N - Tourism Evaluation; and Appendix O - Permits, Licenses, and Approvals

  14. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  15. Supplemental feasibility study for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    Site data evaluated indicate that after source removal, dilution and dispersion appear to be the primary processes that would further attenuate groundwater contaminant concentrations. On the basis of these attenuation processes, the calculations presented in Chapter 2 indicate that it would take several years to decades (approximately 60 to 150 and 14 years, respectively, for Zones 1 and 2) for TCE concentrations in Zones 1 and 2 to attenuate to the MCL (or ARAR) of 5 pg/L. The estimates for Zones 1 through 3, where the higher nitrate concentrations are clustered, indicate that it would likely take at least 80 years for nitrate concentrations to attenuate to the MCL (or ARAR) of 10 mg/L. Costs for implementing NINA for groundwater at the chemical plant area are primarily associated with those incurred for monitoring contaminant concentrations and the replacement costs for monitoring wells. Cost estimates are relatively high because a rather lengthy period of monitoring would be involved. Calculations performed to evaluate the feasibility of groundwater removal and subsequent treatment of the extracted water included determinations for the number of extraction wells needed, required number of pore volumes, and the number of years of implementation required to attain bench marks. The calculations were performed per zone of contamination, as discussed in Chapter 1. Several observations can be made about the results presented in Chapter 3 regarding Alternative 4. The first is that by looking at the results for Zones 1 and 2 evaluated under Alternative 4, one can also assess the feasibility of Alternative 7, because Alternative 7 addresses this particular subset of Alternative 4 (i.e., Zones 1 and 2). TCE contamination has been observed in Zones 1 and 2, but has not been reported in any of the remaining five zones. Nitrate, nitroaromatic compounds, and uranium have also been reported in Zones 1 and 2. The present-worth costs for implementing the pump and treat

  16. Simulation–optimization model for groundwater contamination ...

    Indian Academy of Sciences (India)

    used techniques for groundwater remediation in which the contaminated groundwater is pumped ... ing the affected groundwater aquifer down to some drinking water standard. Several .... For simplicity, rectangular support domain is used in this study. Figure 1 ..... For PAT remediation system, decision variables include the.

  17. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

  18. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  19. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  20. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB`s Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B{sub 2} and in the upper portion of Aquifer Zone 2B{sub 1}. However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B{sub 1} and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  2. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 2, Appendixes

    International Nuclear Information System (INIS)

    1996-10-01

    This document contains the appendixes for the remedial investigation and feasibility study for the David Witherspoon, Inc., 901 site in Knoxville, Tennessee. The following topics are covered in the appendixes: (A) David Witherspoon, Inc., 901 Site Historical Data, (B) Fieldwork Plans for the David Witherspoon, Inc., 901 Site, (C) Risk Assessment, (D) Remediation Technology Discussion, (E) Engineering Support Documentation, (F) Applicable or Relevant and Appropriate Requirements, and (G) Cost Estimate Documentation

  3. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 2, Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document contains the appendixes for the remedial investigation and feasibility study for the David Witherspoon, Inc., 901 site in Knoxville, Tennessee. The following topics are covered in the appendixes: (A) David Witherspoon, Inc., 901 Site Historical Data, (B) Fieldwork Plans for the David Witherspoon, Inc., 901 Site, (C) Risk Assessment, (D) Remediation Technology Discussion, (E) Engineering Support Documentation, (F) Applicable or Relevant and Appropriate Requirements, and (G) Cost Estimate Documentation.

  4. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    International Nuclear Information System (INIS)

    Blount, Gerald; Thibault, Jeffrey; Millings, Margaret; Prater, Phil

    2015-01-01

    The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent

  5. Degradation of Nitrobenzene Using Bio-Reduced Fe-Clays: Progress Towards the Development of an in-situ Groundwater Remediation Technology

    Science.gov (United States)

    White, M. L.; Fialips, C. I.

    2008-12-01

    Clay minerals are widely used in agricultural, industrial and environmental engineering applications due to their specific physical and chemical properties and their high abundance in soils in sediments. Currently however, Fe-bearing clays are not widely exploited in these applied fields. Fe-rich smectites, such as nontronite, can contain up to 20wt% of Fe2O3 as structural Fe(III) and if a suitable electron donor is available, this Fe(III) can be utilized by Fe-reducing bacteria as a terminal electron acceptor. When reduced, the overall reactivity of Fe-smectites changes, particularly where interactions with water and various organic compounds are involved. For instance, the presence of reduced Fe-smectites has been found to induce the degradation of certain organic contaminants found in groundwaters and the subsurface, e.g. chlorinated aliphatics and nitroaromatic compounds. The goal of this study is to develop an in-situ groundwater remediation technology that targets redox- sensitive organics, in the form of a permeable Bio Fe-clay barrier. To achieve this, the iron-reducing bacterium Shewanella algae BrY was first used to reduce structural FeIII in <2micron fractions of the Fe- rich smectite nontronite (NAu-2, 41.74wt% Fe2O3) and a Fe-bearing montmorrillonite (Speeton Clay, Yorkshire, UK, ~8wt% Fe2O3). S. algae BrY was able to reduce structural FeIII within these clays to maximum Fe(II)/Fe(II)+Fe(III) ratios 0.34 and 0.19 for the nontronite and Speeton Clay, respectively, in the presence and absence of the electron shuttle, AQDS (9, 10-anthraquinone-2, 6-disulfonic acid). These results are novel because the capability of S. algae BrY to reduce structural Fe(III) in smectite clays has not previously been tested. Nitrobenzene was selected as the test redox-sensitive organic compound as it is a common subsurface contaminant and is of global ecotoxicological concern. To test the capability of bio- reduced Fe-clays to transform nitrobenzene to aniline (the less

  6. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A and B

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin

  7. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A and B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  8. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  9. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    International Nuclear Information System (INIS)

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee

  10. F-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and fourth quarters 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the F-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988

  11. H-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and Fourth quarters 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isocactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1994. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the H-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988

  12. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs

  13. Remedial investigation report on waste area grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4, Appendix C, Risk assessment

    International Nuclear Information System (INIS)

    1995-09-01

    Waste Area Grouping (WAG) 5 is part of Oak Ridge National Laboratory (ORNL) and is located on the United States Department of Energy's Oak Ridge Reservation (DOE-ORR). The site lies southeast of Haw Ridge in Melton Valley and comprises approximately 32 ha (80 ac) [12 ha (30 ac) of forested area and the balance in grassed fields]. Waste Area Grouping 5 consists of several contaminant source areas for the disposal of low-level radioactive, transuranic (TRU), and fissile wastes (1959 to 1973) as well as inorganic and organic chemical wastes. Wastes were buried in trenches and auger holes. Radionuclides from buried wastes are being transported by shallow groundwater to Melton Branch and White Oak Creek. Different chemicals of potential concern (COPCs) were identified (e.g., cesium-137, strontium-90, radium-226, thorium-228, etc.); other constituents and chemicals, such as vinyl chloride, bis(2-ethylhexyl)phthalate, trichloroethene, were also identified as COPCs. Based on the results of this assessment contaminants of concern (COCs) were subsequently identified. The objectives of the WAG 5 Baseline Human Health Risk Assessment (BHHRA) are to document the potential health hazards (i.e., risks) that may result from contaminants on or released from the site and provide information necessary for reaching informed remedial decisions. As part of the DOE-Oak Ridge Operations (ORO), ORNL and its associated waste/contamination sites fall under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund under the Superfund Amendments and Reauthorization Act (SARA). The results of the BHHRA will (1) document and evaluate risks to human health, (2) help determine the need for remedial action, (3) determine chemical concentrations protective of current and future human receptors, and (4) help select and compare various remedial alternatives.

  14. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    International Nuclear Information System (INIS)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives

  15. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    The objective of DOE's Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ''demonstration'' version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing

  16. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  17. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    International Nuclear Information System (INIS)

    1995-09-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  18. Technical approach to groundwater restoration

    International Nuclear Information System (INIS)

    1993-01-01

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures

  19. Improved Understanding of Fenton-like Reactions for the In Situ Remediation of Contaminated Groundwater Including Treatment of Sorbed Contaminants and Destruction of DNAPLs

    National Research Council Canada - National Science Library

    Watts, Richard J; Loge, Frank; Teel, Amy L

    2006-01-01

    .... However, the rapid decomposition of hydrogen peroxide, promoted by natural iron and manganese oxides in the subsurface, has previously limited the utility of CHP for the remediation of contaminated...

  20. NORM remediation project of Der Ezzor Petroleum Company (DEZPC) oil fields in Der Ezzor area, Syrian Arab Republic: Determination of NORM contaminated soil volumes

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Aba, A.; Hamwi, A.; Hassan, M.

    2002-04-01

    DEZP Company has used to collect product water, scale and sludge in artificial pits. Run-off channel had been created to allow water to run-off into the desert. A radioactive contamination by NORM in DEZP oil fields (JAFRA) has occurred and quite significant area of land has been affected. As a part of the remediation project the volume of contaminated soil with NORM according to the Syrian criteria for clean up and disposal has been determined. Surface and core soil samples were collected from the contaminated areas and analyzed for 226 Ra. The results have shown that contamination has reached a depth of more than one meter in the surface water pit. The estimated contaminated soil that needs disposal according to the Syrian criteria was calculated and found to be about 3161 m 3 . Most of the contaminated soil was found to be in the surface water pit. In addition, the contamination in the mud pit and the run-off channel was rather small and could be treated on site. However, the obtained results can be used for preparation of the remediation plan where size of the disposal pit and on site treatment is defined. The plan should be submitted to the Syrian Regulatory Office for review and approval to initiation of the remediation work (author)

  1. Final programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project. Volume 2

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project is to eliminate, reduce, or address to acceptable levels the potential health and environmental consequences of milling activities. One of the first steps in the UMTRA Ground Water Project is the preparation of the Programmatic Environmental Impact Statement (PEIS). This report contains the comments and responses received on the draft PEIS

  2. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  3. Prediction of Groundwater Quality Improvement Down-Gradient of In Situ Permeable Treatment Barriers and Fully-Remediated Source Zones. ESTCP Cost and Performance Report

    National Research Council Canada - National Science Library

    Johnson, Paul C; Carlson, Pamela M; Dahlen, Paul

    2008-01-01

    In situ permeable treatment barriers (PTB) are designed so that contaminated groundwater flows through an engineered treatment zone within which contaminants are eliminated or the concentrations are significantly reduced...

  4. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality.

  5. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality

  6. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs.

  7. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    International Nuclear Information System (INIS)

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs

  8. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program to aid technology development funding decisions for radioactive tank waste remediation. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. These methods do not show the relative effect of new technologies on tank remediation systems as a whole. Consequently, DOE may spend its resources on technologies that promise to improve a single function but have a small or possibly negative, impact on the overall system, or DOE may overlook a technology that does not address a high priority problem in the system but that does, if implemented, offer sufficient overall improvements. Systems engineering and detailed analyses often conducted under the National Environmental Policy Act (NEPA 1969) use a ''whole system'' approach but are costly, too time-consuming, and often not sufficiently focused to support the needs of the technology program decision-makers. An alternative approach is required to evaluate these systems impacts but still meet the budget and schedule needs of the technology program

  9. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-12-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre at sign ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4

  10. Monitored Attenuation of Inorganic Contaminants in Ground Water Volume 2 – Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium

    Science.gov (United States)

    This document represents the second volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. V...

  11. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 3, Groundwater hydrology report. Revised final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include: Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources.

  12. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 3, Groundwater hydrology report

    International Nuclear Information System (INIS)

    1991-12-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include: Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources

  13. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  14. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 4. Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This section contains ecotoxicological profiles for the COPECs for the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The ecotoxicological information is presented for only those endpoints for which the chemicals are COPECs. The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  15. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 4. Appendix F

    International Nuclear Information System (INIS)

    1995-09-01

    This section contains ecotoxicological profiles for the COPECs for the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The ecotoxicological information is presented for only those endpoints for which the chemicals are COPECs. The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  16. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  17. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  18. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    International Nuclear Information System (INIS)

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  19. Litigation Technical Support and Services Rocky Mountain Arsenal. Biota Remedial Investigation, Version 3.2. Volume 4

    Science.gov (United States)

    1989-05-01

    is not justified. .. mmnt 19t L~age 4-43.n tame sgnpeclt The exclusion of certain analytes from certain species (arsenic from mall3rds, DDE from mule...achieve. The 13 ppm figure was calculated using two overly conservative sources: ti) shrews accumulate more cadmium than other small mýnrnals, and (2...tI1BUTION CODE APPROVE.D FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED O IJ. ABSTRA(t (Mjumum200 woJi) tn THE PURPOSE Or TH4E BIOTA REMEDIAL INV

  20. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    Science.gov (United States)

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  1. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  2. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    Lichtman, S.

    1988-01-01

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  3. Feasibility study report for Operable Unit 4: Fernald Environmental Management Project, Fernald, Ohio: Remedial investigation and feasibility study: Volume 3: Final report

    International Nuclear Information System (INIS)

    1994-02-01

    This report documents the Feasibility Study (FS) phase of the Fernald Environmental Management Project (FEMP) Operable Unit 4 Remedial Investigation/Feasibility Study (RI/FS) Program. The FEMP, formerly known as the Feed Materials Production Center (FMPC), is a US Department of Energy (DOE) facility that operated from 1952 to 1989. The facility's primarily function was to provide high purity uranium metal products to support United States defense programs. Production operations were suspended in 1989 to focus on environmental restoration and waste management activities at the facility. The RI/FS is being conducted pursuant to the terms of a Consent Agreement between DOE and the US Environmental Protection Agency (EPA) under Sections 120 and 106(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The Ohio Environmental Protection Agency (OEPA) is also participating in the RI/FS process at the FEMP through direct involvement in program review meetings and technical review of project documentation. The objective of the RI/FS process is to gather information to support an informed risk management decision regarding which remedy appears to be the most appropriate action for addressing the environmental concerns identified at the FEMP. This volume contains appendices F--J

  4. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  5. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  6. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1. Volume 1, Calculations, Final design for construction

    International Nuclear Information System (INIS)

    1995-09-01

    Volume one contains calculations for: embankment design--embankment material properties; Union Carbide site--bedrock contours; vicinity properties--origin of contamination; North Continent and Union Carbide sites contaminated materials--excavation quantities; and demolition debris--quantity estimate

  7. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-05-01

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  8. Proposed Plan for Interim Remedial Actions at the 100-NR-1 Source Sites Operable Unit and the 100-NR-2 Groundwater Operable Unit

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1998-02-01

    This Proposed Plan summary includes brief descriptions of the key issues for the 100-N Area contaminated soil and groundwater. This summary is intended as a simplified introduction to readers who might not be familiar with the contaminated site cleanup process or Hanford Site issues. The detailed Proposed Plan is attached to this summary. Some of the buildings and surrounding soils in the 100 Area of the Hanford Site were contaminated during operation of the nuclear reactors. The contamination poses a potential threat to public health and/or the environment. The potential threat to the public is exposure to people on or near the site to radiation and chemicals. The potential threat to the environment is contamination in the soil that has migrated to the groundwater and could eventually harm the Columbia River. Because of these potential threats, the Federal Government decided that the 100 Area was a high priority for cleanup and placed it on the National Priorities List

  9. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides IncludingTritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium

    Science.gov (United States)

    The current document represents the third volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with nonradionuclide and/or radionuclide inorganic contamina...

  10. Remediation of groundwater containing radionuclides and heavy metals using ion exchange and the AlgaSORB reg-sign biosorbent system

    International Nuclear Information System (INIS)

    Feiler, H.D.; Darnall, D.W.

    1991-01-01

    Bio-Recovery Systems, Inc. (BRS) studied the application of an immobilized algal biomass, termed AlgaSORB reg-sign, which has high affinity for heavy metal ions to DOE-contaminated groundwaters. The material can be packed into columns similar to commercial ion exchange resins. Dilute solutions containing heavy metals are passed through columns where metals are absorbed by the AlgaSORB reg-sign resins. Once saturated, metal ions can be stripped from the resin biomass in a highly concentrated solution. Groundwaters contaminated with heavy metal ions from three different Department of Energy (DOE) sites: Savannah River, Hanford and the Oak Ridge Y-12 Plant were studied. The objective was to perform bench-scale treatability studies to establish treatment protocols and to optimize an AlgaSORB reg-sign/ion exchange technology system to remove and recover toxic metal ions from these contaminated groundwaters. The specialty ion exchange/AlgaSORB reg-sign resins tested in these studies show promise for selectively removing chromium, mercury and uranium from contaminated groundwater at DOE sites. The data show that effluents which satisfy the allowable metal ion limits are possible and most likely achievable. The use of these highly selective resins also offer advantages in terms of cost/benefit, risk and scheduling. Their high selectivity allows for high capacity and opportunities for recovery of removed constituents due to high pollutant concentration possible (3 to 4 orders of magnitude). Ion exchange is a proven technology which is easily automated and can be cost-effective, depending on the application

  11. Horizontal wells in subsurface remediation

    International Nuclear Information System (INIS)

    Losonsky, G.; Beljin, M.S.

    1992-01-01

    This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection

  12. Remedial Measures for Counterbalancing the After Effects of Green Revolution on the Georesources of Groundwater, Land and Soil in Haryana, India

    Science.gov (United States)

    Sharma, A.; Lunkad, S. K.

    2008-05-01

    In Haryana, one of the wheat granaries of India where water resources have depleted to a critical level (1050 m3 /year/person), groundwater alone has 53% share in the irrigation, the remaining 47% comes from canal system of glacier-fed rivers, viz., Yamuna and Satluj originating from Himalayas. The Green Revolution (1971-1990, intensive phase) enabled this small state to become an agro-economic state in northern alluvial plains of India. Though occupying 1.3 % geographical area and containing 2% of the population of India, it produces country's 13% wheat and about 3% quality rice besides other cereals, oil seeds, sugarcane and cotton. However, Haryana paid a heavy price for the impressive agricultural development- one-third of the irrigated land is salinity affected, water level declined by 3-12 m in twelve of its nineteen districts and excessive nitrate levels in the groundwater (114-1800 mg/l) have rendered the groundwater non-potable in many areas. Groundwater in the arid western Haryana is mostly saline (TDS > 4000 mg/l) and irrational canal irrigation has paradoxically raised the water-table by 3-9m in seven districts causing waterlogging over 2346 km2 land of which 251 km2 is fully waterlogged. In the land use pattern 131,000 ha prime cultivable land (about 3% of the total) has been lost to urbanization jeopardizing the FOOD SECURITY. One possible way to arrest the degradation of groundwater and soil, is to switch to dryland farming. This would involve change in the irrigation method as well as proper selection and rotation of food crops like barley, sorghum, maize, different types of beans (pulses) and oil seeds like groundnut, sunflower, mustard, etc. and restricted use of chemical fertilizers and pesticides. Dryland farming could go hand in hand with the plantation of fruit trees, grasses and medicinal plants suitable to this agro-climatic zone, and animal husbandry. The same considerations also hold good to the adjoining eastern Rajasthan.

  13. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1, Volume 3. Calculations, Final design for construction

    International Nuclear Information System (INIS)

    1995-09-01

    Volume three contains calculations for: site hydrology--rainfall intensity, duration, and frequency relations; site hydrology-- probable maximum precipitation; erosion protection--rock quality evaluation; erosion protection--embankment top and side slope; erosion protection--embankment toe apron; erosion protection-- gradations and layer thicknesses; Union Carbide site--temporary drainage ditch design; Union Carbide site--retention basin sediment volume; Union Carbide site--retention basin sizing; Burro Canyon site temporary drainage--temporary drainage facilities; and Union Carbide site temporary drainage--water balance

  14. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    Science.gov (United States)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings

  15. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1. Volume 2, Calculations, Final design for construction

    International Nuclear Information System (INIS)

    1995-09-01

    Volume two contains calculations for: embankment design--slope stability analysis; embankment design--excavation stability; embankment design--settlement and cover cracking analysis; radon barrier design--statistical analysis of ra-226 concentrations for North Continent and Union Carbide sites; radon barrier design--RAECOM input data; radon barrier design--design thickness; and cover design--frost penetration depth

  16. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1, Volume 4. Calculations, Final design for construction

    International Nuclear Information System (INIS)

    1995-09-01

    Volume four contains calculations for: Borrow areas--site evaluation; temporary facilities--material quantities; embankment quantities--excavation and cover materials; Burro Canyon site excavation quantities--rippable and unrippable materials; site restoration--earthwork quantities and seeding; and bid schedule quantities and material balance

  17. Final programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project. Volume 1

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project is to eliminate, reduce, or address to acceptable levels the potential health and environmental consequences of milling activities by meeting Environmental Protection Agency (EPA) ground water standards. One of the first steps in the UMTRA Ground Water Project is the preparation of this Programmatic Environmental Impact Statement (PEIS). The EPA standards allow the use of different strategies for achieving compliance with the standards. This document analyzes the potential impacts of four alternatives for conducting the Ground Water Project. Each of the four alternatives evaluated in the PEIS is based on a different mix of strategies to meet EPA ground water standards. The PEIS is intended to serve as a programmatic planning document that provides an objective basis for determining site-specific ground water compliance strategies and data and information that can be used to prepare site-specific environmental impact analyses more efficiently. DOE will prepare appropriate further National Environmental Policy Act documentation before making site-specific decisions to implement the Ground Water Project. Affected States, Tribes, local government agencies, and members of the public have been involved in the process of preparing this PEIS; DOE encourages their continued participation in the site-specific decision making process

  18. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland: Volume 2, Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S.; Martino, L.; Patton, T.

    1995-03-01

    J-Field encompasses about 460 acres at the southern end of the Gunpowder Neck Peninsula in the Edgewood Area of APG (Figure 2.1). Since World War II, the Edgewood Area of APG has been used to develop, manufacture, test, and destroy chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). For the purposes of this project, J-Field has been divided into eight geographic areas or facilities that are designated as areas of concern (AOCs): the Toxic Burning Pits (TBP), the White Phosphorus Burning Pits (WPP), the Riot Control Burning Pit (RCP), the Robins Point Demolition Ground (RPDG), the Robins Point Tower Site (RPTS), the South Beach Demolition Ground (SBDG), the South Beach Trench (SBT), and the Prototype Building (PB). The scope of this project is to conduct a remedial investigation/feasibility study (RI/FS) and ecological risk assessment to evaluate the impacts of past disposal activities at the J-Field site. Sampling for the RI will be carried out in three stages (I, II, and III) as detailed in the FSP. A phased approach will be used for the J-Field ecological risk assessment (ERA).

  19. F-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    International Nuclear Information System (INIS)

    1996-03-01

    Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB 2 ), however, several other aquifer unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988

  20. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are

  1. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    International Nuclear Information System (INIS)

    1996-01-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings ' ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings.' Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in

  2. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

  3. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1983-07-01

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved

  4. Slow-release Permanganate Gel (SRP-G) for Groundwater Remediation: Spreading, Gelation, and Release in Porous and Low-Permeability Media

    Science.gov (United States)

    Lee, E. S.; Hastings, J.; Kim, Y.

    2015-12-01

    Dense nonaqueous phase liquids (DNAPLs) like trichloroethylene (TCE) serve as the most common form of groundwater pollution in the world. Pore-plugging by the solid oxidation product MnO2 and limited lateral dispersion of the oxidant are two common problems with existing in-situ chemical oxidation (ISCO) schemes that could be alleviated through the development of a delayed gelation method for oxidant delivery. The objective of the current study was to further develop and optimize slow-release permanganate gel (SRP-G), a solution comprising colloidal silica and KMnO4, as a novel low-cost treatment option for large and dilute TCE plumes in groundwater. Batch tests showed that gelation could be delayed through manipulation of KMnO4 concentration, pH, and silica particle size of the SRP-G solution. In flow-through columns and flow-tanks filled with saturated sands, silica concentration had little effect on the gelation lag stage and release rate, but increasing silica concentration was associated with increasing release duration. When compared to a pure KMnO4 solution, visual observations and [MnO4-] measurements from flow tank tests demonstrated that the SRP-G prolonged the release duration and enhanced lateral spreading of the oxidant.

  5. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs

  6. Field-Scale Evaluation of Biostimulation for Remediation of Uranium-Contaminated Groundwater at a Proposed NABIR Field Research Center in Oak Ridge, TN

    International Nuclear Information System (INIS)

    Criddle, Craig S.

    2003-01-01

    A hydrologic, geochemical and microbial characterization of the Area 3 field site has been completed. The formation is fairly impermeable, but there is a region of adequate flow approximately 50 feet bgs. The experiment will be undertaken within that depth interval. Groundwater from that depth is highly acidic (pH 3.2), and has high levels of nitrate, aluminum, uranium, and other heavy metals, as well as volatile chlorinated solvents (VOCs). Accordingly, an aboveground treatment train has been designed to remove these contaminants. The train consists of a vacuum stripper to remove VOCs, two chemical precipitation steps to adjust pH and remove metals, and a fluidized bed bioreactor to remove nitrate. The aboveground system will be coupled to a belowground recirculation system. The belowground system will contain an outer recirculation cell and a nested inner recirculation cell: the outer cells will be continuously flushed with nitrate-free treated groundwater. The inner cell will receive periodic inputs of uranium, tracer, and electron donor. Removal of uranium will be determined by comparing loss rates of conservative tracer and uranium within the inner recirculation cell. Over the past year, a detailed workplan was developed and submitted for regulatory approval. The workplan was presented to the Field Research Advisory Panel (FRAP), and after some extensive revision, the FRAP authorized implementation. Detailed design drawings and numerical simulations of proposed experiments have been prepared. System components are being prefabricated as skid-mounted units in Michigan and will be shipped to Oak Ridge for assembly. One manuscript has been submitted to a peer reviewed journal. This paper describes a novel technique for inferring subsurface hydraulic conductivity values. Two posters on this project were presented at the March 2002 NABIR PI meeting. One poster was presented at the Annual conference of the American Society for Microbiology in Salt Lake City, UT in

  7. Proceedings of the remediation technologies symposium 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference provided an opportunity for industry, practitioners, researchers and regulators to discuss technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies in 13 sessions entitled: hydrocarbon contamination; salt management; liability management; chemical oxidation; light non-aqueous phase liquids (LNAPL); Montreal Center of Excellence in Brownfields Rehabilitation; Alberta government updates; phytoremediation; natural attenuation; Lake Wabamun; ex-situ remediation; in-situ remediation; and, miscellaneous issues. Technological solutions for erosion control and water clarification were highlighted. The conference featured 52 presentations, of which 17 have been catalogued separately for inclusion in this database. tabs., figs.

  8. H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    International Nuclear Information System (INIS)

    1996-03-01

    Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB 2 ), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  10. Superfund Record of Decision (EPA Region 5): Ossineke Groundwater Contamination Site, Alpena County, Ossineke, MI. (First remedial action), June 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The Ossineke Ground Water Contamination site is an area overlying a contaminated aquifer in Ossineke, Alpena County, Michigan. The site hydrogeology is characterized by an upper aquifer and lower confined aquifer, both of which supply drinking water to local residents. Historically there have been two contaminant source areas of concern within Ossineke. Area 1 is in the center of the Town of Ossineke where two gas stations are located, consisting of underground storage tanks, and a former automobile rustproofing shop. Area 2 is a laundry and dry cleaning facility that has an associated wash water pond containing chlorinated hydrocarbons and VOCs. The State advised all users of the upper aquifer to stop using their wells. In 1982, the State discovered that a snow plow had hit a gasoline pump causing an unknown amount of gasoline to spill and, subsequently, contaminate the basements of several businesses. In 1986, the State replaced residential wells affected by ground water contamination. Because the contaminants of concern have been confirmed to be related to petroleum releases from underground storage tanks, the Superfund program does not have the authority to address cleanup under CERLCLA. The selected remedial action for the site is that no further action

  11. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs.

  12. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs

  13. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    Volume II of the programmatic environmental impact statement (PElS) is a comment and response document; it is the collection of the comments received on the draft PElS. The U.S. Department of Energy's (DOE) response to each comment is provided after each comment. If the comment resulted in a change to the PElS, the affected section number of the PElS is provided in the response. Comments 1 through 259 were received at public hearings. The name of the hearing at which the comment was received is listed after each comment. Comments were recorded on flip charts and by notetakers. DOE representatives were present to hear the comments and respond to them. The DOE's written response is provided after each comment. Comments 260 through 576 were received in writing at the hearings, and from various federal, tribal, and state agencies and from individuals during the public comment period. Copies of the written comments follow the comments and responses.

  14. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume II

    International Nuclear Information System (INIS)

    1996-01-01

    Volume II of the programmatic environmental impact statement (PElS) is a comment and response document; it is the collection of the comments received on the draft PElS. The U.S. Department of Energy's (DOE) response to each comment is provided after each comment. If the comment resulted in a change to the PElS, the affected section number of the PElS is provided in the response. Comments 1 through 259 were received at public hearings. The name of the hearing at which the comment was received is listed after each comment. Comments were recorded on flip charts and by notetakers. DOE representatives were present to hear the comments and respond to them. The DOE's written response is provided after each comment. Comments 260 through 576 were received in writing at the hearings, and from various federal, tribal, and state agencies and from individuals during the public comment period. Copies of the written comments follow the comments and responses

  15. Evaluation of contaminated groundwater cleanup objectives

    International Nuclear Information System (INIS)

    Arquiett, C.; Gerke, M.; Datskou, I.

    1996-01-01

    The US Department of Energy's (DOE's) Environmental Restoration Program will be responsible for remediating the approximately 230 contaminated groundwater sites across the DOE Complex. A major concern for remediation is choosing the appropriate cleanup objective. The cleanup objective chosen will influence the risk to the nearby public during and after remediation; risk to remedial and non-involved workers during remediation; and the cost of remediation. This paper discusses the trends shown in analyses currently being performed at Oak Ridge National Laboratories' (ORNL's) Center for Risk Management (CRM). To evaluate these trends, CRM is developing a database of contaminated sites. This paper examines several contaminated groundwater sites selected for assessment from CRM's data base. The sites in this sample represent potential types of contaminated groundwater sites commonly found at an installation within DOE. The baseline risk from these sites to various receptors is presented. Residual risk and risk during remediation is reported for different cleanup objectives. The cost associated with remediating to each of these objectives is also estimated for each of the representative sites. Finally, the general trends of impacts as a function of cleanup objective will be summarized. The sites examined include the Savannah River site, where there was substantial ground pollution from radionuclides, oil, coal stockpiles, and other forms of groundwater contamination. The effects of various types of groundwater contamination on various types of future user is described. 4 refs., 3 figs., 2 tabs

  16. A new risk and stochastic analysis of monitoring and remediation in subsurface contamination

    Science.gov (United States)

    Papapetridis, K.; Paleologos, E.

    2012-04-01

    Sanitary landfills constitute the most widely used management approach for the disposal of solid wastes because of their simplicity and cost effectiveness. However, historical records indicate that landfills exhibit a high failure rate of groundwater contamination. Successful detection of aquifer contamination via monitoring wells is a complicated problem with many factors, such as the heterogeneity of the geologic environment, the dispersion of contamination into the geologic medium, the quantity and nature of the contaminants, the number and location of the monitoring wells, and the frequency of sampling, all contributing to the uncertainty of early detection. Detection of contaminants, of course, is of value if remedial actions follow as soon as possible, so that the volume of contaminated groundwater to be treated is minimized. Practically, there is always a time lag between contaminant detection and remedial action response. Administrative decisions and arrangements with local contractors initiate remedial procedures introduces a time lag between detection and remediation time. During this time lag a plume continues to move into an aquifer contaminating larger groundwater volumes. In the present study these issues are addressed by investigating the case of instantaneous leakage from a landfill facility into a heterogeneous aquifer. The stochastic Monte Carlo framework was used to address, in two dimensions, the problem of evaluating the effectiveness of contaminant detection in heterogeneous aquifers by linear networks of monitoring wells. Numerical experiments based on the random-walk tracking-particle method were conducted to determine the detection probabilities and to calculate contaminated areas at different time steps. Several cases were studied assuming different levels of geologic heterogeneity, contamination dispersion, detectable contamination limits and monitoring wells' sampling frequencies. A new perspective is introduced for the correction of

  17. Cost benefit analysis of remediation alternatives for controlling the flux of strontium-90 into the Columbia River

    International Nuclear Information System (INIS)

    Gustafson, F.W.; Todd, M.E.

    1993-09-01

    The release of large volumes of water to waste disposal cribs at the Hanford Site's 100-N Area caused contaminants, principally strontium-90, to be carried toward the Columbia River through the groundwater. Since shutdown of the N Reactor, these releases have been discontinued, although small water flows continue to be discharged to the 1325-N crib. Most of the contamination which is now transported to the river is occurring as a result of the natural groundwater movement. The contaminated groundwater at N Springs flows into the river through seeps and springs along the river's edge. An expedited response action (ERA) has been proposed to eliminate or restrict the flux of strontium-90 into the river. A cost benefit analysis of potential remedial alternatives was completed that recommends the alternative which best meets given selection criteria prescribed by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The methodology used for evaluation, cost analysis, and alternative recommendation is the engineering evaluation/cost analysis (EE/CA). Complete remediation of the contaminated groundwater beneath 100-N Area was not a principal objective of the analysis. The objective of the cost benefit analysis was to identify a remedial alternative that optimizes the degree of benefit produced for the costs incurred

  18. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Lewis, C. M.; Van Pelt, R.

    2002-01-01

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  19. Proceedings of the remediation technologies symposium 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This conference provided a forum to discuss the remediation of contaminated sites. It was attended by all industry sectors that have an interest in learning about technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation and industrial pollutant treatments. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies. The diversified sessions at this conference were entitled: regulatory update; Montreal Centre of Excellence in Brownfields Rehabilitation; soil and groundwater remediation through the Program of Energy Research and Development at Environment Canada; technology from the Netherlands; bioremediation; hydrocarbons; in-situ remediation; phytoremediation; salt management; unique locations; and, miscellaneous issues. Some areas and case studies covered in the presentations included: biological and non-biological treatments; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; electrochemical remediation; and membrane technology. The conference featured 63 presentations, of which 23 have been catalogued separately for inclusion in this database. tabs., figs.

  20. Proceedings of the remediation technologies symposium 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This conference provided a forum to discuss the remediation of contaminated sites. It was attended by all industry sectors that have an interest in learning about technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation and industrial pollutant treatments. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies. The diversified sessions at this conference were entitled: regulatory update; Montreal Centre of Excellence in Brownfields Rehabilitation; soil and groundwater remediation through the Program of Energy Research and Development at Environment Canada; technology from the Netherlands; bioremediation; hydrocarbons; in-situ remediation; phytoremediation; salt management; unique locations; and, miscellaneous issues. Some areas and case studies covered in the presentations included: biological and non-biological treatments; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; electrochemical remediation; and membrane technology. The conference featured 63 presentations, of which 23 have been catalogued separately for inclusion in this database. tabs., figs

  1. Screening and comparison of remedial alternatives for the South Field and flyash piles at the Fernald site

    International Nuclear Information System (INIS)

    Bumb, A.C.; Jones, G.N.

    1996-05-01

    The South Field, the Inactive Flyash Pile, and the Active Flyash Pile are in close proximity to each other and are part of Operable Unit 2 (OU2) at the Fernald Environmental Management Project (FEMP). The baseline risk assessment indicated that the exposure pathways which pose the most significant risk are external radiation from radionuclides in surface soils and use of uranium contaminated groundwater. This paper presents screening and comparison of various remedial alternatives considered to mitigate risks from the groundwater pathway. Eight remedial alternatives were developed which consisted of consolidation and capping, excavation and off-site disposal with or without treatment, excavation and on-site disposal with or without treatment and combinations of these. Risk-based source (soil) preliminary remediation levels (PRLs) and waste acceptance criteria (WACs) were developed for consolidation and capping, excavation, and on-site disposal cell. The PRLs and WACs were developed using an integrated modeling tool consisting of an infiltration model, a surface water model, a vadose zone model, and a three-dimensional contaminant migration model in saturated media. The PRLs and WACs were then used to determine need for soil treatment, determine excavation volumes, and screen remedial alternatives. The selected remedial alternative consisted of excavation and on-site disposal with off-site disposal of the fraction exceeding the WAC

  2. Planning risk communication for UMTRA project groundwater restoration

    Energy Technology Data Exchange (ETDEWEB)

    Hundertmark, Charles [Jacobs Engineering Group Inc. and University of Phoenix (United States); Hoopes, Jack [Jacobs Engineering Group Inc. (United States); Flowers, Len [Roy F. Weston Company (United States); Jackson, David G [U.S. Department of Energy (United States)

    1992-07-01

    The U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is entering a new phase in which groundwater contamination will become a growing focus as surface remedial action draws toward completion. Planning for risk communication associated with the groundwater project will be a major factor in the successful initiation of the program. (author)

  3. Planning risk communication for UMTRA project groundwater restoration

    International Nuclear Information System (INIS)

    Hundertmark, Charles; Hoopes, Jack; Flowers, Len; Jackson, David G.

    1992-01-01

    The U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is entering a new phase in which groundwater contamination will become a growing focus as surface remedial action draws toward completion. Planning for risk communication associated with the groundwater project will be a major factor in the successful initiation of the program. (author)

  4. Alternative Remedies

    Science.gov (United States)

    ... Home › Aging & Health A to Z › Alternative Remedies Font ... medical treatment prescribed by their healthcare provider. Using this type of alternative therapy along with traditional treatments is ...

  5. Genealogy Remediated

    DEFF Research Database (Denmark)

    Marselis, Randi

    2007-01-01

    Genealogical websites are becoming an increasingly popular genre on the Web. This chapter will examine how remediation is used creatively in the construction of family history. While remediation of different kinds of old memory materials is essential in genealogy, digital technology opens new...... possibilities. Genealogists use their private websites to negotiate family identity and hereby create a sense of belonging in an increasingly complex society. Digital technologies enhance the possibilities of coorporation between genealogists. Therefore, the websites are also used to present archival...

  6. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  7. Remediating MGP brownfields

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1997-01-01

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example

  8. CENTRAL PLATEAU REMEDIATION

    International Nuclear Information System (INIS)

    ROMINE, L.D.

    2006-01-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress

  9. Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases by nonaqueous large-volume injection HPLC-MS/MS.

    Science.gov (United States)

    Backe, Will J; Day, Thomas C; Field, Jennifer A

    2013-05-21

    A new analytical method was developed to quantify 26 newly-identified and 21 legacy (e.g. perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and fluorotelomer sulfonates) per and polyfluorinated alkyl substances (PFAS) in groundwater and aqueous film forming foam (AFFF) formulations. Prior to analysis, AFFF formulations were diluted into methanol and PFAS in groundwater were micro liquid-liquid extracted. Methanolic dilutions of AFFF formulations and groundwater extracts were analyzed by large-volume injection (900 μL) high-performance liquid chromatography tandem mass spectrometry. Orthogonal chromatography was performed using cation exchange (silica) and anion exchange (propylamine) guard columns connected in series to a reverse-phase (C18) analytical column. Method detection limits for PFAS in groundwater ranged from 0.71 ng/L to 67 ng/L, and whole-method accuracy ranged from 96% to 106% for analytes for which matched authentic analytical standards were available. For analytes without authentic analytical standards, whole-method accuracy ranged from 78 % to 144 %, and whole-method precision was less than 15 % relative standard deviation for all analytes. A demonstration of the method on groundwater samples from five military bases revealed eight of the 26 newly-identified PFAS present at concentrations up to 6900 ng/L. The newly-identified PFAS represent a minor fraction of the fluorinated chemicals in groundwater relative to legacy PFAS. The profiles of PFAS in groundwater differ from those found in fluorotelomer- and electrofluorination-based AFFF formulations, which potentially indicates environmental transformation of PFAS.

  10. Developing a disposal and remediation plan

    International Nuclear Information System (INIS)

    Messier, T.S.

    1999-01-01

    The environmental release of wastes generated by the upstream oil and gas industry in Alberta can result in polluted soil and groundwater at several facilities across the province. Responsibility for decommissioning upstream oil and gas facilities falls under the jurisdiction of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection (AEP). This paper outlines a protocol that can serve as a framework for the development of a plan to dispose of oilfield waste and to remediate related contaminated soils. The components involved in developing a disposal and remediation plan for oilfield wastes are: (1) identifying the potential source of pollution and oilfield waste generation, (2) characterizing oilfield wastes, (3) determining the nature and extent of soil and groundwater pollution, (4) preparing a remedial action plan, (5) assessing the viability of various remediation options, and (6) preparing health and safety plan. 12 refs., 2 tabs., 2 figs

  11. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  12. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    Science.gov (United States)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  13. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    International Nuclear Information System (INIS)

    David Watson

    2005-01-01

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  14. Integrated program management for major nuclear decommissioning and environmental remediation projects - 59068

    International Nuclear Information System (INIS)

    Lehew, John

    2012-01-01

    Document available in abstract form only. Full text of publication follows: CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy's (DOE) contractor responsible for the safe, environmental cleanup of the Hanford Sites Central Plateau, sections of the Columbia River Corridor and the Hanford Reach National Monument. The 586-square-mile Hanford Site is located along the Columbia River in southeastern Washington, U.S.A. A plutonium production complex, housing the largest volume of radioactive and contaminated waste in the nation, with nine nuclear reactors and associated processing facilities, Hanford played a pivotal role in the nation's defense for more than 40 years, beginning in the 1940's with the Manhattan Project. Today, under the direction of the DOE, Hanford is engaged in one of the world's largest environmental cleanup project. The Plateau Remediation Contract is a 10-year project paving the way for closure of the Hanford Site. The site through its location, climate, geology and proximity to the Columbia River in combination with the results of past nuclear operations presents a highly complex environmental remediation challenge. The complexity is not only due to the technical issues associated with decommissioning nuclear facilities, remediating soil contamination sites, dispositioning legacy waste and fuel materials and integrating these with the deep vadose zone and groundwater remediation

  15. Case study of an approved corrective action integrating active remediation with intrinsic remediation

    International Nuclear Information System (INIS)

    Teets, D.B.; Guest, P.R.; Blicker, B.R.

    1996-01-01

    Parsons Engineering Science, Inc., performed UST removals and/or site assessments at UST system locations at a former US Air Force Base (AFB) in Denver, Colorado. Four UST systems, incorporating 17 USTs, were located within the petroleum, oils, and lubricants bulk storage yard (POL Yard) of the former AFB. During the tank removals and subsequent site investigations, petroleum hydrocarbon contamination was found in soils at each site. Significant releases from two of the UST systems resulted in a dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) plume in the groundwater, and smear-zone contamination of soils beneath the majority of the POL Yard. Because of the close proximity of the UST systems, and the presence of the groundwater plume beneath the POL Yard, a corrective action plan (CAP) was prepared that encompassed all four UST systems. An innovative, risk-based CAP integrated active remediation of petroleum-contaminated soils with intrinsic remediation of groundwater. A natural attenuation evaluation for the dissolved BTEX was performed to demonstrate that natural attenuation processes are providing adequate remediation of groundwater and to predict the fate of the groundwater plume. BTEX concentrations versus distance were regressed to obtain attenuation rates, which were then used to calculate BTEX degradation rates using a one-dimensional, steady-state analytical solution. Additionally, electron acceptor concentrations in groundwater were compared to BTEX concentrations to provide evidence that natural attenuation of BTEX compounds was occurring. The natural attenuation evaluation was used in the CAP to support the intrinsic remediation with long-term monitoring alternative for groundwater, thereby avoiding the installation of an expensive groundwater remediation system

  16. Status of groundwater levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2006 to January 2010

    Science.gov (United States)

    Hansen, Cristi V.; Aucott, Walter R.

    2010-01-01

    A part of the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County was developed to supply water to residents of Wichita and for irrigation in south-central Kansas. Groundwater pumping for city and agricultural use caused water levels to decline in a large part of the aquifer northwest of Wichita. In 1965, the city of Wichita began using water from Cheney Reservoir in addition to water from the Equus Beds aquifer to meet the city's increasing demand for water. Irrigation pumpage in the area increased substantially during the 1970s and 1980s and contributed to the water-level declines. Water-level declines reached their maximum to date in October 1992.

  17. Technologies for remediation of radioactively contaminated sites

    International Nuclear Information System (INIS)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes

  18. Technologies for remediation of radioactively contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes Refs, figs, tabs

  19. Water budgets and groundwater volumes for abandoned underground mines in the Western Middle Anthracite Coalfield, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania-Preliminary estimates with identification of data needs

    Science.gov (United States)

    Goode, Daniel J.; Cravotta,, Charles A.; Hornberger, Roger J.; Hewitt, Michael A.; Hughes, Robert E.; Koury, Daniel J.; Eicholtz, Lee W.

    2011-01-01

    This report, prepared in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP), the Eastern Pennsylvania Coalition for Abandoned Mine Reclamation, and the Dauphin County Conservation District, provides estimates of water budgets and groundwater volumes stored in abandoned underground mines in the Western Middle Anthracite Coalfield, which encompasses an area of 120 square miles in eastern Pennsylvania. The estimates are based on preliminary simulations using a groundwater-flow model and an associated geographic information system that integrates data on the mining features, hydrogeology, and streamflow in the study area. The Mahanoy and Shamokin Creek Basins were the focus of the study because these basins exhibit extensive hydrologic effects and water-quality degradation from the abandoned mines in their headwaters in the Western Middle Anthracite Coalfield. Proposed groundwater withdrawals from the flooded parts of the mines and stream-channel modifications in selected areas have the potential for altering the distribution of groundwater and the interaction between the groundwater and streams in the area. Preliminary three-dimensional, steady-state simulations of groundwater flow by the use of MODFLOW are presented to summarize information on the exchange of groundwater among adjacent mines and to help guide the management of ongoing data collection, reclamation activities, and water-use planning. The conceptual model includes high-permeability mine voids that are connected vertically and horizontally within multicolliery units (MCUs). MCUs were identified on the basis of mine maps, locations of mine discharges, and groundwater levels in the mines measured by PaDEP. The locations and integrity of mine barriers were determined from mine maps and groundwater levels. The permeability of intact barriers is low, reflecting the hydraulic characteristics of unmined host rock and coal. A steady-state model was calibrated to measured groundwater

  20. Challenges in subsurface in situ remediation of chlorinated solvents

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical...

  1. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  2. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process.

  3. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    International Nuclear Information System (INIS)

    1983-07-01

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process

  4. An integrated approach to planning and rehabilitation for the future: proceedings of the 2. mining and the environment conference - Sudbury '99: volume two: ecosystems: health evaluation and restoration technologies, ground and surface water remediation

    Energy Technology Data Exchange (ETDEWEB)

    Goldsack, D. [ed.] [Laurentian Univ., Sudbury, ON (Canada). Centre in Mining and Mining Environment Research; Belzile, P. [ed.] [Laurentian Univ., Sudbury, ON (Canada). Dept.of Chemistry and Biochemistry; Yearwood, P. [ed.] [Inco Ltd., Copper Cliff, ON (Canada). Environmental Control and Occupational Health; Hall, G. [ed.] [Falconbridge Ltd., Falconbridge, ON (Canada). Technology Centre

    1999-07-01

    Volume two of the symposium featured 27 papers under the general headings of ecosystems - health evaluation and restoration technologies; and ground and surface water remediation. Five papers are abstracted separately on the use of catchment liming for the improvement of drainage water quality from smelter-impacted lands, the effects of emission reductions from the smelters in Sudbury on recovery of lakes within the metal deposition zone, the effects of regional reductions in sulphur deposition on the recovery of biodiversity in lakes, the influence of drought-induced acidification on biotic recovery and the use of catchment liming for the improvement of drainage water quality from smelter-impacted lands.

  5. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  6. Diffusion in Clay Layers and Groundwater Remediation

    Science.gov (United States)

    In a collaborative SERDP-funded study, researchers from the Air Force Institute of Technology, the U.S. Environmental Protection Agency, and the University of Michigan developed a numerical model that simulates the enhanced transport of CAHs into and out of low permeability clay ...

  7. Foam - novel delivery technology for remediation of vadose zone environments - 59019

    International Nuclear Information System (INIS)

    Jansik, Danielle; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Zhang, Fred; Foote, Martin; Wu, Yuxin; Hubbard, Susan

    2012-01-01

    Deep vadose zone environments can be a primary source and pathway for contaminant migration to groundwater. These environments present unique characterization and remediation challenges that necessitate scrutiny and research. The thickness, depth, and intricacies of the deep vadose zone, combined with a lack of understanding of the key subsurface processes (e.g., biogeochemical and hydrologic) affecting contaminant migration, make it difficult to create validated conceptual and predictive models of subsurface flow dynamics and contaminant behavior across multiple scales. These factors also make it difficult to design and deploy sustainable remedial approaches and monitor long-term contaminant behavior after remedial actions. Functionally, methods for addressing contamination must remove and/or reduce transport of contaminants. This problem is particularly challenging in the arid western United States where the vadose zone is hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous deep vadose zone environments present hydrologic and geochemical challenges that limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, by-passing low-permeability zones that frequently contain the majority of contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to the underlying aquifer prior to stabilization. Development of innovative in-situ technologies may be the only means to meet remedial action objectives and long-term stewardship goals. Surfactants can be used to lower the liquid surface tension and create stabile foams, which

  8. Uranium mill tailings remedial action technology

    International Nuclear Information System (INIS)

    Hartley, J.N.; Gee, G.W.

    1984-01-01

    The uranium milling process involves the hydrometallurgical extraction of uranium from ores and the resultant generation of large quantities of waste referred to as tailings. Uranium mill tailings have been identified as requiring remediation because they contain residual radioactive material that is not removed in the milling process. Potential radiation exposure can result from direct contact with the tailings, from radon gas emitted by the tailings, and from radioactive contamination of groundwater. As a result, the technology developed under the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) and the US Nuclear Regulatory Commission (NRC) Uranium Recovery Program have focused on radon control, groundwater contamination and the long-term protection of the containment system. This paper briefly summarizes the UMTRAP and NRC remedial action technology development. 33 references, 9 figures, 5 tables

  9. In-situ arsenic remediation in Carson Valley, Douglas County, west-central Nevada

    Science.gov (United States)

    Paul, Angela P.; Maurer, Douglas K.; Stollenwerk, Kenneth G.; Welch, Alan H.

    2010-01-01

    Conventional arsenic remediation strategies primarily involve above-ground treatment that include costs involved in the disposal of sludge material. The primary advantages of in-situ remediation are that building and maintaining a large treatment facility are not necessary and that costs associated with the disposal of sludge are eliminated. A two-phase study was implemented to address the feasibility of in-situ arsenic remediation in Douglas County, Nevada. Arsenic concentrations in groundwater within Douglas County range from 1 to 85 micrograms per liter. The primary arsenic species in groundwater at greater than 250 ft from land surface is arsenite; however, in the upper 150 ft of the aquifer arsenate predominates. Where arsenite is the primary form of arsenic, the oxidation of arsenite to arsenate is necessary. The results of the first phase of this investigation indicated that arsenic concentrations can be remediated to below the drinking-water standard using aeration, chlorination, iron, and pH adjustment. Arsenic concentrations were remediated to less than 10 micrograms per liter in groundwater from the shallow and deep aquifer when iron concentrations of 3-6 milligrams per liter and pH adjustments to less than 6 were used. Because of the rapid depletion of dissolved oxygen, the secondary drinking-water standards for iron (300 micrograms per liter) and manganese (100 micrograms per liter) were exceeded during treatment. Treatment was more effective in the shallow well as indicated by a greater recovery of water meeting the arsenic standard. Laboratory and field tests were included in the second phase of this study. Laboratory column experiments using aquifer material indicated the treatment process followed during the first phase of this study will continue to work, without exceeding secondary drinking-water standards, provided that groundwater was pre-aerated and an adequate number of pore volumes treated. During the 147-day laboratory experiment, no

  10. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 3; the groundwater pathway

    International Nuclear Information System (INIS)

    Baker, A.; Chambers, A.; Jackson, C.

    1997-01-01

    repository zone beneath Longlands Farm. In style, scope and presentation, Nirex 97 is primarily aimed at the scientific community, other radioactive waste disposal agencies and regulators. The report is published as part of Nirex's commitment to open publication of its scientific findings. The main value of the report currently is as a demonstration of the generic capability which has been developed to assess the radiological safety performance of candidate repository sites. The safety assessment reported as Nirex 97 was carried out between April 1996 and August 1997. It updates a preliminary assessment of the groundwater pathway for a repository at Sellafield, 'Nirex 95' published in July 1995. Nirex 97 takes account of further data obtained from the Nirex waste inventory, design, site characterisation and research programmes. In addition, Nirex 97 extends the Nirex 95 evaluation to include consideration of the potential radiological and flammability hazards in the biosphere arising from the effects of gas generation within the repository and the extent of pressurisation within the repository vaults. The assessment also takes account of the latest guidance from the Environment Agencies on requirements for authorisation of disposal facilities on land. Volume 3: The Groundwater Pathway, describes the groundwater flow models used to develop an analysis of risks from the groundwater pathway due to natural discharges and well abstraction. It describes the models of the repository source term and radionuclide transport through the geosphere and biosphere. The detailed understanding of repository performance is explored through the development of some simple 'insight' models

  11. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    International Nuclear Information System (INIS)

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ''WAG 5''). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5

  12. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ``WAG 5``). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5.

  13. Remedial investigation report on the Melton Valley Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions.

  14. Remedial investigation report on the Melton Valley Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions

  15. Remedial actions at the former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado. Volume 1. Text. Draft environmental impact statement

    International Nuclear Information System (INIS)

    1986-03-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: no action; stabilization at the Grand Junction site; disposal at the Cheney Reservoir site with truck transport; disposal at the Cheney Reservoir site with train and truck transport; disposal at the Two Road site with truck transport; disposal at the Two Road site with train and truck transport. All of the alternatives except include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE's preferred alternative. 29 figs., 25 tabs

  16. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  17. Status of Groundwater Levels and Storage Volume in the Equus Beds Aquifer Near Wichita, Kansas, January 2009

    Science.gov (United States)

    Hansen, Cristi V.

    2009-01-01

    Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita (Williams and Lohman, 1949). In addition to supplying drinking water to the largest city in Kansas, the other primary use of water from the Equus Beds aquifer is to irrigate crops in this agriculture-dominated part of south-central Kansas (Rich Eubank, Kansas Department of Agriculture, Division of Water Resources, oral commun., 2008). The decline of water levels in the aquifer were noted soon after the development of the Wichita well field began (Williams and Lohman, 1949). As water levels in the aquifer decline, the volume of water stored in the aquifer decreases and less water is available to supply future needs. For many years the U.S. Geological Survey (USGS), in cooperation with the city of Wichita, has monitored these changes in water levels and the resulting changes in storage volume in the Equus Beds aquifer as part of Wichita's effort to effectively manage this resource. In 2007, the city of Wichita began using Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) project for large-scale artificial recharge of the Equus Beds aquifer. The ASR project uses water from the Little Arkansas River - either pumped from the river directly or from wells in the riverbank that obtain their water from the river by induced infiltration - as the source of artificial recharge to the Equus Beds aquifer (City of Wichita, 2009).

  18. Corrective measures evaluation report for Tijeras Arroyo groundwater.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Johnathan L (North Wind, Inc., Idaho Falls, ID); Orr, Brennon R. (North Wind, Inc., Idaho Falls, ID); Dettmers, Dana L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID); Howard, M. Hope (North Wind, Inc., Idaho Falls, ID)

    2005-08-01

    This Corrective Measures Evaluation report was prepared as directed by a Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for Tijeras Arroyo Groundwater. Supporting information includes background concerning the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. The evaluation of remedial alternatives included identifying and describing four remedial alternatives, an overview of the evaluation criteria and approach, comparing remedial alternatives to the criteria, and selecting the preferred remedial alternative. As a result of the Corrective Measures Evaluation, monitored natural attenuation of the contaminants of concern (trichloroethene and nitrate) is the preferred remedial alternative for implementation as the corrective measure for Tijeras Arroyo Groundwater. Design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are also presented.

  19. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  20. Source zone remediation by zero valent iron technologies

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann

    at a fifth of these contaminated sites. These source zones pose a serious threat to soil and groundwater quality. Remediation of the heterogeneous source zones is challenging due to irregular downwards migration patterns in the subsurface, low aqueous solubility and matrix diffusion. To protect the soil...... and groundwater resources from long-term deterioration, the development of in situ technologies suitable for remediation of DNAPL is warranted. Currently, an array of aggressive in situ remediation technologies remediation exists. These technologies may be suitable under various site specific conditions; however......, most of them are limited by subsurface heterogeneities and/or the risk of inadvertent DNAPL displacement during field application. This thesis presents the results of an investigation of the potential for remediation of chlorinated solvent source zones by emerging zero valent iron (ZVI) based...

  1. Large-scale sulfolane-impacted soil remediation at a gas plant

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, G.; Rockwell, K. [Biogenie Inc., Calgary, AB (Canada)

    2006-07-01

    A large-scale sulfolane-impacted soil remediation project at a gas plant in central Alberta was discussed. The plant was operational from the 1960s to present and the former operation involved the Sulfinol process which resulted in groundwater contamination. In 2005, the client wanted to address the sources area. The Sulfinol process has been used since the 1960s to remove hydrogen sulfide and other corrosive gases from natural gas streams. Sulfinol uses sulfolane and diisopropanolamine. Sulfolane is toxic, non-volatile, and water soluble. The presentation also addressed the remediation objectives and an additional site assessment that was conducted to better delineate the sulfolane and sulphur plume, as well as metals. The findings of the ESA and site specific challenges were presented. These challenges included: plant operation concerns; numerous overhead, surface, and underground structures; large volume of impacted material, limited space available on site; several types of contaminants; and time required to perform the overall work. Next, the sulfolane remediation strategy was discussed including advantages and results of the investigation. Last, the results of the project were presented. It was found that there were no recordable safety incidents and that all remedial objectives were achieved. tabs., figs.

  2. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    International Nuclear Information System (INIS)

    1995-04-01

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  3. 200 Areas soil remediation strategy -- Environmental Restoration Program

    International Nuclear Information System (INIS)

    1996-09-01

    The remediation and waste management activities in the 200 Areas of the Hanford Site (located in Richland, Washington) currently range from remediating groundwater, remediating source units (contaminated soils), decontaminating and decommissioning of buildings and structures, maintaining facilities, managing transuranic, low-level and mixed waste, and operating tank farms that store high-level waste. This strategy focuses on the assessment and remediation of soil that resulted from the discharge of liquids and solids from processing facilities to the ground (e.g., ponds, ditches, cribs, burial grounds) in the 200 Areas and addresses only those waste sites assigned to the Environmental Restoration Program

  4. The Rush to Remediate: Long Term Performance Favors Passive Systems at SRS

    International Nuclear Information System (INIS)

    Hoffman, D.; Cauthen, K.; Beul, R. R.

    2003-01-01

    The purpose of this paper is to describe the long-term performance of groundwater remediation systems at SRS and compare active versus passive systems. The presentation will focus on the limited effectiveness of active pump and treat systems and share the experience with more passive and natural systems such as soil vapor extraction, barometric pumping, bioremediation, and phytoremediation. Three remediation projects are presented. In each case the waste source is capped with clay or synthetic barriers; however, extensive groundwater contamination remains. The first project features the cleanup of the largest plume in the United States. The second project entails solvent and vinyl chloride remediation of groundwater beneath a hazardous waste landfill. The third project discusses tritium containment from a 160-acre radioactive waste disposal area. Special emphasis is placed on performance data from alternate technology cleanup. The goals are to share remediation data, successes and lessons learned, while making a case for passive systems use in groundwater remediation

  5. Subsurface Interim Measures/Interim Remedial Action Plan/ Environmental Assessment and Decision Document, Operable Unit No. 2

    International Nuclear Information System (INIS)

    1992-01-01

    The subject Interim Measures/Interim Remedial Action plan/Environmental Assessment (IM/IRAP/EA) addresses residual free-phase volatile organic compound (VOC) contamination suspected in the subsurface within an area identified as Operable Unit No. 2 (OU2). This IM/IRAP/EA also addresses radionuclide contamination beneath the 903 Pad at OU2. Although subsurface VOC and radionuclide contamination on represent a source of OU2 ground-water contamination, they pose no immediate threat to public health or the environment. This volume contains five appendices

  6. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lakeview, Oregon: Volume 1, Text and appendices A through D

    International Nuclear Information System (INIS)

    Chernoff, A.R.

    1992-07-01

    The Lakeview inactive uranium processing site is in Lake County, Oregon, approximately one mile northwest of the town of Lakeview, sixteen miles north of the California-Oregon border, and 96 miles east of Klamath Falls. The total designated site covers an area of 258 acres consisting of a tailings pile (30 acres). seven evaporation ponds (69 acres), the mill buildings, and related structures. The mill buildings and other structures have been decontaminated and are currently being used by Goose Lake Lumber Company. The tailings pile at the processing site was originally stabilized by Atlantic Richfield with an earthen cover 18--24 inches thick. The average depth of the tailings, including the cover, varied from six to eight feet. There were estimated to be 662,000 cubic yards of tailings, windblown contaminated materials, and vicinity property materials. During remedial action under the Uranium Mill Tailings Remedial Action (UMTRA) Project, approximately 264,000 cubic yards of additional contaminated materials were identified from excavations required to remove thorium- and arsenic-contaminated soils. The remedial action for the Lakeview site consisted of the cleanup, relocation, consolidation, and stabilization of all residual radioactive materials and thorium- and arsenic-contaminated materials in a partially below-grade disposal cell at a location approximately seven miles northwest of the tailings site, identified as the Collins Ranch site. A cover, including a radon/infiltration barrier and rock layer for protection from erosion, was Placed on top of the tailings. A rock-soil matrix covers the topslope and provides a growth medium for vegetation. The US Department of Energy (DOE) will retain the license and surveillance and maintenance responsibilities for the final restricted site of 13 acres

  8. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 2. Appendixes A, B, C, D

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains appendices A (water characterization), B (sediment characterization), C (biota Characterization), D (applicable or relevant and appropriate requirements) from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  9. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 2. Appendixes A, B, C, D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains appendices A (water characterization), B (sediment characterization), C (biota Characterization), D (applicable or relevant and appropriate requirements) from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  10. Long-term performance of elemental iron and hydroxyapatite for uranium retention in permeable reactive barriers used for groundwater remediation; Langzeitverhalten von elementarem Eisen und Hydroxylapatit zur Uranrueckhaltung in permeablen reaktiven Waenden bei der Grundwassersanierung

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, V.

    2007-11-21

    Elemental iron (Fe{sup 0}) and hydroxyapatite (HAP) were evaluated as reactive mate-rials for use in permeable reactive barriers (PRBs) to remove uranium from conta-minated groundwater. Special attention was given to the long-term performance of the materials, which was investigated by means of column tests with a duration of up to 30 months using two different artificial groundwaters (AGW) with varying composition and uranium concentration. The interaction of the materials with AGW was studied in column tests using {sup 237}U as a radiotracer to monitor the movement of the contamination front through the columns. The tested materials were shredded cast iron (granulated grey cast iron, 0.3 - 1.3 mm) supplied by Gotthard Mayer, Rheinfelden, Germany, and food quality grade hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}OH, 99 % < 0.42 mm) supplied by Che-mische Fabrik Budenheim CFB, Germany. Both materials exhibited uranium retention of more than 99.9% and sorption capacities of up to 28.3 mg U/g HAP and more than 38.4 mg U/g Fe{sup 0} (AGW with 9.6 mg U/L and low bicarbonate content of 120 mg/L). No breakthrough was observed for the Fe{sup 0} columns with effluent uranium con-centrations being below the detection limit of 10 {mu}g/L after treating more than 2,000 pore volumes (PV) and no uranium could be leached from loaded Fe{sup 0} columns with 200 PV of uranium free AGW. However, columns with high Fe{sup 0} content ({>=} 50%) suffered from severe loss of permeability when AGW with {>=} 320 mg/L bicarbonate was used. In the HAP columns a breakthrough occurred with effluent uranium concentrations > 15 {mu}g/l after treating 1,240 PV (10% and 50% breakthrough after 1,460 PV and 2,140 PV respectively). 12.2% of the accu-mulated uranium could be desorbed again with 840 PV of uranium free AGW. Adsorption was found to be the dominant reaction mechanism for uranium and HAP. Image analysis of high uranium content samples showed uranium and phosphate bearing crystals growing

  11. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Appendix A: Characterization methods and data summary

    International Nuclear Information System (INIS)

    1995-03-01

    This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at Waste Area Grouping (WAG) 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The Department of energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used

  12. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    International Nuclear Information System (INIS)

    1996-11-01

    This document contains Appendixes A ''Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed'' and B ''Human Health Risk Assessment for White Oak Creek / Melton Valley Area'' for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites

  13. Mass Flux Measurements of Arsenic in Groundwater (Battelle Conference)

    Science.gov (United States)

    Concentration trends of arsenic are typically used to evaluate the performance of remediation efforts designed to mitigate arsenic contamination in groundwater. A complementary approach would be to track changes in mass flux of the contaminant through the subsurface, for exampl...

  14. Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements

    Science.gov (United States)

    Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.

    2017-12-01

    Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressur