WorldWideScience

Sample records for groundwater recharge fluxes

  1. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  2. Artificial recharge of groundwater

    Science.gov (United States)

    The Task Committee on Guidelines for Artificial Recharge of Groundwater, of the American Society of Civil Engineers' (ASCE) Irrigation and Drainage Division, sponsored an International Symposium on Artificial Recharge of Groundwater at the Inn-at-the-Park Hotel in Anaheim, Calif., August 23-27, 1988. Cosponsors were the U.S. Geological Survey, California Department of Water Resources, University of California Water Resources Center, Metropolitan Water District of Southern California, with cooperation from the U.S. Bureau of Reclamation, International Association of Hydrological Sciences, American Water Resources Association, U.S. Agency for International Development, World Bank, United Nations Department of Technical Cooperation for Development, and a number of local and state organizations.Because of the worldwide interest in artificial recharge and the need to develop efficient recharge facilities, the Anaheim symposium brought together an interdisciplinary group of engineers and scientists to provide a forum for many professional disciplines to exchange experiences and findings related to various types of artificial recharge; learn from both successful and unsuccessful case histories; promote technology transfer between the various disciplines; provide an education resource for communication with those who are not water scientists, such as planners, lawyers, regulators, and the public in general; and indicate directions by which cities or other entities can save funds by having reasonable technical guidelines for implementation of a recharge project.

  3. GROUNDWATER RECHARGE AND CHEMICAL ...

    Science.gov (United States)

    The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in groundwater, especially groundwater augmented with treated wastewater. Public acceptance for direct or indirect groundwater recharge using treated municipal wastewater ( especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this article, I detour around the issues most commonly discussed for groundwater recharge and instead focus on some of the less-recognized issues- those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of wastewater reuse -with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision making process for accepting or rejecting water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water 'is' and how it functions in the environment -just what exactly is the 'water cyc

  4. Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø;

    2015-01-01

    Field scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field scale water balances...... because they have larger footprint areas than local soil moisture measurements.. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5 m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D...

  5. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  6. Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes

    Science.gov (United States)

    Robertson, Wendy Marie; Böhlke, John Karl; Sharp, John M.

    2017-01-01

    Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans-Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3−concentrations. Median increases in groundwater NO3− (by 0.7–0.9 mg-N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans-Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human-influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3− to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3− (122–910 kg-N/ha) was sufficient to cause the observed groundwater NO3− increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3− trends can be explained by small volumes of high NO3− modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long-term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.

  7. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  8. Quantification of groundwater recharge in urban environments.

    Science.gov (United States)

    Tubau, Isabel; Vázquez-Suñé, Enric; Carrera, Jesús; Valhondo, Cristina; Criollo, Rotman

    2017-08-15

    Groundwater management in urban areas requires a detailed knowledge of the hydrogeological system as well as the adequate tools for predicting the amount of groundwater and water quality evolution. In that context, a key difference between urban and natural areas lies in recharge evaluation. A large number of studies have been published since the 1990s that evaluate recharge in urban areas, with no specific methodology. Most of these methods show that there are generally higher rates of recharge in urban settings than in natural settings. Methods such as mixing ratios or groundwater modeling can be used to better estimate the relative importance of different sources of recharge and may prove to be a good tool for total recharge evaluation. However, accurate evaluation of this input is difficult. The objective is to present a methodology to help overcome those difficulties, and which will allow us to quantify the variability in space and time of the recharge into aquifers in urban areas. Recharge calculations have been initially performed by defining and applying some analytical equations, and validation has been assessed based on groundwater flow and solute transport modeling. This methodology is applicable to complex systems by considering temporal variability of all water sources. This allows managers of urban groundwater to evaluate the relative contribution of different recharge sources at a city scale by considering quantity and quality factors. The methodology is applied to the assessment of recharge sources in the Barcelona city aquifers. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Groundwater Recharge, Evapotranspiration and Surface Runoff ...

    African Journals Online (AJOL)

    Bheema

    Department of Earth Science, CNCS, P.O. Box 231, Mekelle University, ... The mean annual groundwater recharge, evapotranspiration and runoff were ... Accordingly, recharge accounts for 12% of the precipitation .... So, to apply the WetSpass for Illala catchment, input of the meteorological grid map ..... Review of Australian.

  10. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  11. Groundwater recharge from point to catchment scale

    Science.gov (United States)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  12. Artificial recharge of groundwater: hydrogeology and engineering

    Science.gov (United States)

    Bouwer, Herman

    2002-02-01

    Artificial recharge of groundwater is achieved by putting surface water in basins, furrows, ditches, or other facilities where it infiltrates into the soil and moves downward to recharge aquifers. Artificial recharge is increasingly used for short- or long-term underground storage, where it has several advantages over surface storage, and in water reuse. Artificial recharge requires permeable surface soils. Where these are not available, trenches or shafts in the unsaturated zone can be used, or water can be directly injected into aquifers through wells. To design a system for artificial recharge of groundwater, infiltration rates of the soil must be determined and the unsaturated zone between land surface and the aquifer must be checked for adequate permeability and absence of polluted areas. The aquifer should be sufficiently transmissive to avoid excessive buildup of groundwater mounds. Knowledge of these conditions requires field investigations and, if no fatal flaws are detected, test basins to predict system performance. Water-quality issues must be evaluated, especially with respect to formation of clogging layers on basin bottoms or other infiltration surfaces, and to geochemical reactions in the aquifer. Clogging layers are managed by desilting or other pretreatment of the water, and by remedial techniques in the infiltration system, such as drying, scraping, disking, ripping, or other tillage. Recharge wells should be pumped periodically to backwash clogging layers. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10040-001-0182-4.

  13. Assimilating ambiguous observations to jointly estimate groundwater recharge and conductivity

    Science.gov (United States)

    Erdal, Daniel; Cirpka, Olaf A.

    2016-04-01

    In coupled modelling of catchments, the groundwater compartment can be an important water storage as well as having influence on both rivers and evapotranspirational fluxes. It is therefore important to parameterize the groundwater model as correctly as possible. Primarily important to regional groundwater flow is the spatially variable hydraulic conductivity. However, also the groundwater recharge, in a coupled system coming from the unsaturated zone but in a stand-alone groundwater model a boundary condition, is also of high importance. As with all subsurface systems, groundwater properties are difficult to observe in reality and their estimation is an ongoing topic in groundwater research and practice. Commonly, we have to rely on time series of groundwater head observations as base for any parameter estimation. Heads, however, have the drawback that they can be ambiguous and may not uniquely define the inverse problem, especially if both recharge and conductivity are seen as unknown. In the presented work we use a 2D virtual groundwater test case to investigate how the prior knowledge of recharge and conductivity influence their respective and joint estimation as spatially variable fields using head data. Using the Ensemble Kalman filter, it is shown that the joint estimation is possible if the prior knowledge is good enough. If the prior is erroneous the a-priori sampled fields cannot be corrected by the data. However, it is also shown that if the prior knowledge is directly wrong the estimated recharge field can resemble the true conductivity field, resulting in a model that meets the observations but has very poor predictive power. The study exemplifies the importance of prior knowledge in the joint estimation of parameters from ambiguous measurements.

  14. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  15. Characteristics of groundwater recharge on the North China Plain.

    Science.gov (United States)

    Tan, Xiu-Cui; Wu, Jing-Wei; Cai, Shu-Ying; Yang, Jin-Zhong

    2014-01-01

    Groundwater recharge is an important component of the groundwater system. On the North China Plain (NCP), groundwater is the main water supply. Because of large-scale overexploitation, the water table has declined, which has produced severe adverse effects on the environment and ecosystem. In this article, tracer experiment and watershed model were used to calculate and analyze NCP groundwater recharge. In the tracer experiment, average recharge was 108 mm/year and recharge coefficient 0.16. With its improved irrigation, vegetation coverage and evapotranspiration modules, the INFIL3.0 model was used for calculation of groundwater recharge. Regional modeling results showed an average recharge of 102 mm/year and recharge coefficient 0.14, for 2001-2009. These values are very similar to those from the field tracer experiment. Influences in the two methods were analyzed. The results can provide an important reference for NCP groundwater recharge.

  16. Groundwater recharge at five representative sites in the Hebei Plain, China.

    Science.gov (United States)

    Lu, Xiaohui; Jin, Menggui; van Genuchten, Martinus Th; Wang, Bingguo

    2011-01-01

    Accurate estimates of groundwater recharge are essential for effective management of groundwater, especially when supplies are limited such as in many arid and semiarid areas. In the Hebei Plain, China, water shortage is increasingly restricting socioeconomic development, especially for agriculture, which heavily relies on groundwater. Human activities have greatly changed groundwater recharge there during the past several decades. To obtain better estimates of recharge in the plain, five representative sites were selected to investigate the effects of irrigation and water table depth on groundwater recharge. At each site, a one-dimensional unsaturated flow model (Hydrus-1D) was calibrated using field data of climate, soil moisture, and groundwater levels. A sensitivity analysis of evapotranspirative fluxes and various soil hydraulic parameters confirmed that fine-textured surface soils generally generate less recharge. Model calculations showed that recharge on average is about 175 mm/year in the piedmont plain to the west, and 133 mm/year in both the central alluvial and lacustrine plains and the coastal plain to the east. Temporal and spatial variations in the recharge processes were significant in response to rainfall and irrigation. Peak time-lags between infiltration (rainfall plus irrigation) and recharge were 18 to 35 days in the piedmont plain and 3 to 5 days in the central alluvial and lacustrine plains, but only 1 or 2 days in the coastal plain. This implies that different time-lags corresponding to different water table depths must be considered when estimating or modeling groundwater recharge.

  17. Quantifying Potential Groundwater Recharge In South Texas

    Science.gov (United States)

    Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.

    2015-12-01

    Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.

  18. Thermal Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  19. Urban Network Implications On Groundwater Recharge

    Science.gov (United States)

    Duque, J.; Chambel, A.

    Urbanisation has had a major impact on groundwater beneath Évora city (South Portu- gal). Évora is an ancient city and the growth of impermeable areas due to urbanisation has lead to a reduction in groundwater recharge. The specific type of residential land use has a major influence on the permeability of the recharge area. The use of ground- water inside the city of Évora is largely for particular gardening and small farming supplies. In the oldest part of the city (inside of the city walls) there is little use of groundwater, while in the part of the city outside the city walls usage is more effec- tive. This study provides evidence that the municipality or particular people can use groundwater to irrigate the majority gardens, instead of using cleaned water from the Monte Novo Dam. This will also provide a solution to the control of pollution that occurs due to losses from the sewerage system of the city.

  20. Quantifying Groundwater Recharge Uncertainty: A Multiple-Model Framework and Case Study

    Science.gov (United States)

    Kikuchi, C.; Ferré, T. P. A.

    2014-12-01

    In practice, it is difficult to estimate groundwater recharge accurately. Despite this challenge, most recharge investigations produce a single, best estimate of recharge. However, there is growing recognition that quantification of natural recharge uncertainty is critical for groundwater management. We present a multiple-model framework for estimating recharge uncertainty. In addition, we show how direct water flux measurements can be used to reduce the uncertainty of estimates of total basin recharge for an arid, closed hydrologic basin in the Atacama Desert, Chile. We first formulated multiple hydrogeologic conceptual models of the basin based on existing data, and implemented each conceptual model for the purpose of conducting numerical simulations. For each conceptual model, groundwater recharge was inversely estimated; then, Null-Space Monte Carlo techniques were used to quantify the uncertainty on the initial estimate of total basin recharge. Second, natural recharge components - including both deep percolation and streambed infiltration - were estimated from field data. Specifically, vertical temperature profiles were measured in monitoring wells and streambeds, and water fluxes were estimated from thermograph analysis. Third, calculated water fluxes were incorporated as prior information to the model calibration and Null-Space Monte Carlo procedures, yielding revised estimates of both total basin recharge and associated uncertainty. The fourth and final component of this study uses value of information analyses to identify potentially informative locations for additional water flux measurements. The uncertainty quantification framework presented here is broadly transferable; furthermore, this research provides an applied example of the extent to which water flux measurements may serve to reduce groundwater recharge uncertainty at the basin scale.

  1. Transient,spatially-varied recharge for groundwater modeling

    Science.gov (United States)

    Assefa, Kibreab; Woodbury, Allan

    2013-04-01

    and other parts of Canada by using the HELP code. However, HELP has known limitations related with boundary conditions as well as spatial and temporal discretization options, and thus cannot simulate highly variable fluxes near boundaries. The limitations are even more pronounced in semi-arid areas like the Okanagan Basin where upward fluxes can be high, because HELP assumes that water below evaporative zone simply drains to the base of a soil column without accounting for upward fluxes. In addition to these limitations, previous studies that used HELP for recharge estimation, [Towes and Allen, 2009; Jyrkama and Sykes, 2007], did not attempt to verify model performance in their study area. The study here presents an integrated procedure that can help address some of these often neglected modelling challenges. The significance of the method in transient groundwater modeling is demonstrated by applying the spatially and temporally varying recharge boundary condition to a saturated zone groundwater model, MIKESHE [DHI, 2009a]. The water table simulated using this method is found to be within 0.6 m of the observed values, whereas the water levels estimated using uniform recharge boundary condition can fluctuate by as much as 1.6 m. Root mean square errors were estimated at 0.3 and 0.94 respectively.

  2. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-10-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  3. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-04-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  4. Analysis of subsurface temperature data to quantify groundwater recharge rates in a closed Altiplano basin, northern Chile

    Science.gov (United States)

    Kikuchi, C. P.; Ferré, T. P. A.

    2016-09-01

    Quantifying groundwater recharge is a fundamental part of groundwater resource assessment and management, and is requisite to determining the safe yield of an aquifer. Natural groundwater recharge in arid and semi-arid regions comprises several mechanisms: in-place, mountain-front, and mountain-block recharge. A field study was undertaken in a high-plain basin in the Altiplano region of northern Chile to quantify the magnitude of in-place and mountain-front recharge. Water fluxes corresponding to both recharge mechanisms were calculated using heat as a natural tracer. To quantify in-place recharge, time-series temperature data in cased boreholes were collected, and the annual fluctuation at multiple depths analyzed to infer the water flux through the unsaturated zone. To quantify mountain-front recharge, time-series temperature data were collected in perennial and ephemeral stream channels. Streambed thermographs were analyzed to determine the onset and duration of flow in ephemeral channels, and the vertical water fluxes into both perennial and ephemeral channels. The point flux estimates in streambeds and the unsaturated zone were upscaled to channel and basin-floor areas to provide comparative estimates of the range of volumetric recharge rates corresponding to each recharge mechanism. The results of this study show that mountain-front recharge is substantially more important than in-place recharge in this basin. The results further demonstrate the worth of time-series subsurface temperature data to characterize both in-place and mountain-front recharge processes.

  5. Soil moisture data as a constraint for groundwater recharge estimation

    Science.gov (United States)

    Mathias, Simon A.; Sorensen, James P. R.; Butler, Adrian P.

    2017-09-01

    Estimating groundwater recharge rates is important for water resource management studies. Modeling approaches to forecast groundwater recharge typically require observed historic data to assist calibration. It is generally not possible to observe groundwater recharge rates directly. Therefore, in the past, much effort has been invested to record soil moisture content (SMC) data, which can be used in a water balance calculation to estimate groundwater recharge. In this context, SMC data is measured at different depths and then typically integrated with respect to depth to obtain a single set of aggregated SMC values, which are used as an estimate of the total water stored within a given soil profile. This article seeks to investigate the value of such aggregated SMC data for conditioning groundwater recharge models in this respect. A simple modeling approach is adopted, which utilizes an emulation of Richards' equation in conjunction with a soil texture pedotransfer function. The only unknown parameters are soil texture. Monte Carlo simulation is performed for four different SMC monitoring sites. The model is used to estimate both aggregated SMC and groundwater recharge. The impact of conditioning the model to the aggregated SMC data is then explored in terms of its ability to reduce the uncertainty associated with recharge estimation. Whilst uncertainty in soil texture can lead to significant uncertainty in groundwater recharge estimation, it is found that aggregated SMC is virtually insensitive to soil texture.

  6. Simulating Groundwater Recharge Across the Southern High Plains

    Science.gov (United States)

    Smidt, S. J.; Haacker, E. M.; Kendall, A. D.; Hyndman, D. W.

    2015-12-01

    Quantifying recharge and water availability across the Southern High Plains is a difficult, but necessary, challenge for future groundwater and agricultural projections. Overland flow is not common due to limited precipitation, dry soils, and high evapotranspiration. The majority of runoff is temporarily stored in playa lakes, leading to the bulk of recharge across the region occurring in localized infiltration zones beneath these lakes. Despite the importance of regional recharge estimates, limited information exists that integrates complex characteristics of the land, climate, and hydrology in order to quantify recharge across the entire Southern High Plains aquifer. This study applies the Landscape Hydrology Model (LHM) to capture these characteristics and simulate surface water flow and groundwater recharge. This model simulates the complete water cycle across large regions, including irrigation estimates, establishing a framework to estimate recharge and groundwater availability in the Southern High Plains region. Results from this study can be used to predict the likely impacts of climate change and improve water management strategies.

  7. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  8. [Effects of reclaimed water recharge on groundwater quality: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Lü, Si-Dan; Wang, Mei-E; Jiao, Wen-Tao

    2013-05-01

    Reclaimed water recharge to groundwater is an effective way to relieve water resource crisis. However, reclaimed water contains some pollutants such as nitrate, heavy metals, and new type contaminants, and thus, there exists definite environmental risk in the reclaimed water recharge to groundwater. To promote the development of reclaimed water recharge to groundwater and the safe use of reclaimed water in China, this paper analyzed the relevant literatures and practical experiences around the world, and summarized the effects of different reclaimed water recharge modes on the groundwater quality. Surface recharge makes the salt and nitrate contents in groundwater increased but the risk of heavy metals pollution be smaller, whereas well recharge can induce the arsenic release from sedimentary aquifers, which needs to be paid more attention to. New type contaminants are the hotspots in current researches, and their real risks are unknown. Pathogens have less pollution risks on groundwater, but some virus with strong activity can have the risks. Some suggestions were put forward to reduce the risks associated with the reclaimed water recharge to groundwater in China.

  9. Aquifer characteristics and groundwater recharge pattern in a typical ...

    African Journals Online (AJOL)

    EJIRO

    IFO JUNCTION ... precipitation and secondarily through lateral flow from rivers and .... recharge and groundwater through flow (Wright, 1992). ..... T. IT. U. D. E. Scale(m). 0. 50 100 150 200. LONGITUDE. Figure 4a. Contour maps showing ...

  10. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    Directory of Open Access Journals (Sweden)

    H. Hashemi

    2013-02-01

    Full Text Available Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.

  11. A VISUAL BASIC PPREADSHEET MACRO FOR ESTIMATING GROUNDWATER RECHARGE

    Directory of Open Access Journals (Sweden)

    Kristijan Posavec

    2009-12-01

    Full Text Available A Visual Basic spreadsheet macro was written to automate the estimation of groundwater recharge from stream or spring hydrographs using the adapted Meyboom’s method. The program fits exponential regression model available in widely accessible platform (i.e. MS Excel to baseflow recessions that precede and follow groundwater recharge, and uses regression equations to calculate recharge volume that occur between these recessions. An example of field data from Croatia (Bulaž spring is given to illustrate its application.

  12. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  13. Identifying Seasonal Groundwater Recharge Using Environmental Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Hsin-Fu Yeh

    2014-09-01

    Full Text Available In this study, the stable isotope values of oxygen and hydrogen were used to identify the seasonal contribution ratios of precipitation to groundwater recharge in the Hualien River basin of eastern Taiwan. The differences and correlations of isotopes in various water bodies were examined to evaluate the groundwater recharge sources for the Hualian River basin and the interrelations between groundwater and surface water. Proportions of recharge sources were calculated based on the results of the mass balance analysis of the isotope composition of hydrogen and oxygen in the basin. Mountain river water accounted for 83% and plain rainfall accounted for 17% of the groundwater recharge in the Huanlian River basin. Using the mean d-values, a comparison of d-values of precipitation and groundwater indicates the groundwater consists of 75.5% wet seasonal sources and 24.5% dry seasonal sources, representing a distinct seasonal variation of groundwater recharge in the study area. Comparisons between hydrogen and oxygen isotopes in rainwater showed that differences in the amount of rainfall resulted in depleted oxygen and hydrogen isotopes for precipitation in wet seasons as compared to dry seasons. The river water contained more depleted hydrogen and oxygen isotopes than was the case for precipitation, implying that the river water mainly came from the upstream catchment. In addition, the hydrogen and oxygen isotopes in the groundwater slightly deviated from the hydrogen and oxygen isotopic meteoric water line in Huanlian. Therefore, the groundwater in this basin might be a mixture of river water and precipitation, resulting in the effect of the river water recharge being greater than that of rainfall infiltration.

  14. Macroscopic Thermal Energy Balance on Montane Valley Aquifers and Groundwater Recharge Source Identification

    Science.gov (United States)

    Trask, J. C.; Fogg, G. E.

    2010-12-01

    conductive heat flux at depth (available for most regions) (ii) Temperature (T) data from one or more wells in the valley aquifer (iii) data or estimates of mean annual surface T (Ts) at areal scales, and estimates of recharge T for different recharge sources. We emphasize the importance of accurate determination of Ts and recharge T for reliable modeling of subsurface heat flow. Data and models are presented showing that accurate estimates of Ts are achievable, and that subsurface T of recharge water can be substantially different from Ts near sites of intensive focused seasonal or episodic recharge. For any particular montane valley aquifer study site, we propose that a macroscopic energy balance approach to heat and groundwater flow modeling can complement and aid in development and validation of conventional grid-based numerical models. This conceptually simple approach is particularly valuable in determining the rate of aquifer recharge from cool mountain-front sources.

  15. A screening tool for delineating subregions of steady recharge within groundwater models

    Science.gov (United States)

    Dickinson, Jesse E.; Ferré, T. P. A.; Bakker, Mark; Crompton, Becky

    2014-01-01

    We have developed a screening method for simplifying groundwater models by delineating areas within the domain that can be represented using steady-state groundwater recharge. The screening method is based on an analytical solution for the damping of sinusoidal infiltration variations in homogeneous soils in the vadose zone. The damping depth is defined as the depth at which the flux variation damps to 5% of the variation at the land surface. Groundwater recharge may be considered steady where the damping depth is above the depth of the water table. The analytical solution approximates the vadose zone diffusivity as constant, and we evaluated when this approximation is reasonable. We evaluated the analytical solution through comparison of the damping depth computed by the analytic solution with the damping depth simulated by a numerical model that allows variable diffusivity. This comparison showed that the screening method conservatively identifies areas of steady recharge and is more accurate when water content and diffusivity are nearly constant. Nomograms of the damping factor (the ratio of the flux amplitude at any depth to the amplitude at the land surface) and the damping depth were constructed for clay and sand for periodic variations between 1 and 365 d and flux means and amplitudes from nearly 0 to 1 × 10−3 m d−1. We applied the screening tool to Central Valley, California, to identify areas of steady recharge. A MATLAB script was developed to compute the damping factor for any soil and any sinusoidal flux variation.

  16. Ground-Water Recharge in the Arid and Semiarid Southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferre, Ty P.A.; Leake, Stanley A.

    2007-01-01

    , and distinct modes of recharge in the Colorado Plateau and Basin and Range subregions. The chapters in this professional paper present (first) an overview of climatic and hydrogeologic framework (chapter A), followed by a regional analysis of ground-water recharge across the entire study area (chapter B). These are followed by an overview of site-specific case studies representing different subareas of the geographically diverse arid and semiarid southwestern United States (chapter C); the case studies themselves follow in chapters D?K. The regional analysis includes detailed hydrologic modeling within the framework of a high-resolution geographic-information system (GIS). Results from the regional analysis are used to explore both the distribution of ground-water recharge for mean climatic conditions as well as the influence of two climatic patterns?the El Ni?o-Southern Oscillation and Pacific Decadal Oscillation?that impart a high degree of variability to the hydrologic cycle. Individual case studies employ a variety of geophysical and geochemical techniques to investigate recharge processes and relate the processes to local geologic and climatic conditions. All of the case studies made use of naturally occurring tracers to quantify recharge. Thermal and geophysical techniques that were developed in the course of the studies are presented in appendices. The quantification of ground-water recharge in arid settings is inherently difficult due to the generally low amount of recharge, its spatially and temporally spotty nature, and the absence of techniques for directly measuring fluxes entering the saturated zone from the unsaturated zone. Deep water tables in arid alluvial basins correspond to thick unsaturated zones that produce up to millennial time lags between changes in hydrologic conditions at the land surface and subsequent changes in recharge to underlying ground water. Recent advances in physical, chemical, isotopic, and modeling techniques have foster

  17. Crash test for groundwater recharge models: The effects of model complexity and calibration period on groundwater recharge predictions

    Science.gov (United States)

    Moeck, Christian; Von Freyberg, Jana; Schrimer, Maria

    2016-04-01

    An important question in recharge impact studies is how model choice, structure and calibration period affect recharge predictions. It is still unclear if a certain model type or structure is less affected by running the model on time periods with different hydrological conditions compared to the calibration period. This aspect, however, is crucial to ensure reliable predictions of groundwater recharge. In this study, we quantify and compare the effect of groundwater recharge model choice, model parametrization and calibration period in a systematic way. This analysis was possible thanks to a unique data set from a large-scale lysimeter in a pre-alpine catchment where daily long-term recharge rates are available. More specifically, the following issues are addressed: We systematically evaluate how the choice of hydrological models influences predictions of recharge. We assess how different parameterizations of models due to parameter non-identifiability affect predictions of recharge by applying a Monte Carlo approach. We systematically assess how the choice of calibration periods influences predictions of recharge within a differential split sample test focusing on the model performance under extreme climatic and hydrological conditions. Results indicate that all applied models (simple lumped to complex physically based models) were able to simulate the observed recharge rates for five different calibration periods. However, there was a marked impact of the calibration period when the complete 20 years validation period was simulated. Both, seasonal and annual differences between simulated and observed daily recharge rates occurred when the hydrological conditions were different to the calibration period. These differences were, however, less distinct for the physically based models, whereas the simpler models over- or underestimate the observed recharge depending on the considered season. It is, however, possible to reduce the differences for the simple models by

  18. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, Bridget R.; Keese, Kelley E.; Flint, Alan L.; Flint, Lorraine E.; Gaye, Cheikh B.; Edmunds, W. Michael; Simmers, Ian

    2006-10-01

    Global synthesis of the findings from 140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374 000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to 720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Niño Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Niños (1977-1998) relative to periods dominated by La Niñas (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The impact of LU

  19. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

    2006-01-01

    Global synthesis of the findings from ???140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ???720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Nin??o Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Nin??os (1977-1998) relative to periods dominated by La Nin??as (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (??? 10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The

  20. Can we calibrate simultaneously groundwater recharge and aquifer hydrodynamic parameters ?

    Science.gov (United States)

    Hassane Maina, Fadji; Ackerer, Philippe; Bildstein, Olivier

    2017-04-01

    By groundwater model calibration, we consider here fitting the measured piezometric heads by estimating the hydrodynamic parameters (storage term and hydraulic conductivity) and the recharge. It is traditionally recommended to avoid simultaneous calibration of groundwater recharge and flow parameters because of correlation between recharge and the flow parameters. From a physical point of view, little recharge associated with low hydraulic conductivity can provide very similar piezometric changes than higher recharge and higher hydraulic conductivity. If this correlation is true under steady state conditions, we assume that this correlation is much weaker under transient conditions because recharge varies in time and the parameters do not. Moreover, the recharge is negligible during summer time for many climatic conditions due to reduced precipitation, increased evaporation and transpiration by vegetation cover. We analyze our hypothesis through global sensitivity analysis (GSA) in conjunction with the polynomial chaos expansion (PCE) methodology. We perform GSA by calculating the Sobol indices, which provide a variance-based 'measure' of the effects of uncertain parameters (storage and hydraulic conductivity) and recharge on the piezometric heads computed by the flow model. The choice of PCE has the following two benefits: (i) it provides the global sensitivity indices in a straightforward manner, and (ii) PCE can serve as a surrogate model for the calibration of parameters. The coefficients of the PCE are computed by probabilistic collocation. We perform the GSA on simplified real conditions coming from an already built groundwater model dedicated to a subdomain of the Upper-Rhine aquifer (geometry, boundary conditions, climatic data). GSA shows that the simultaneous calibration of recharge and flow parameters is possible if the calibration is performed over at least one year. It provides also the valuable information of the sensitivity versus time, depending on

  1. Climatic controls on diffuse groundwater recharge across Australia

    Directory of Open Access Journals (Sweden)

    O. V. Barron

    2012-05-01

    Full Text Available Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modeling for a range of Köppen-Geiger climate types (tropical, arid and temperate to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types the total annual rainfall had a weaker correlation with recharge than the rainfall parameters reflecting rainfall intensity. In regions with winter-dominated rainfall, annual recharge under the same annual rainfall, soils and vegetation conditions is greater than in regions with summer-dominated rainfall. The relative importance of climate parameters other than rainfall is higher for recharge under annual vegetation, but overall is highest in the tropical climate type. Solar radiation and vapour pressure deficit show a greater relative importance than mean annual daily mean temperature. Climate parameters have lowest relative importance in the arid climate type (with cold winters and the temperate climate type. For 75% of all considered cases of soil, vegetation and climate types recharge elasticity varies between 2 and 4, indicating a 20% to 40% change in recharge for a 10% change in annual rainfall Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.

  2. Groundwater suitability recharge zones modelling - A GIS application

    Science.gov (United States)

    Dabral, S.; Bhatt, B.; Joshi, J. P.; Sharma, N.

    2014-11-01

    Groundwater quality in Gujarat state is highly variable and due to multiplicity of factors viz. influenced by direct sea water encroachment, inherent sediment salinity, water logging, overexploitation leading to overall deterioration in ground water quality, coupled with domestic and industrial pollution etc. The groundwater scenario in the state is not very encouraging due to imbalance between recharge and groundwater exploitation. Further, the demand for water has increased manifold owing to agricultural, industrial and domestic requirement and this has led to water scarcity in many parts of the state, which is likely to become more severe in coming future due to both natural and manmade factors. Therefore, sustainable development of groundwater resource requires precise quantitative assessment based on reasonably valid scientific principles. Hence, delineation of groundwater potential zones (GWPZ), has acquired great significance. The present study focuses on the integrated Geospatial and Multi-Criteria Decision Making (MCDM) techniques to determine the most important contributing factors that affect the groundwater resources and also to delineate the potential zones for groundwater recharge. The multiple thematic layers of influencing parameters viz. geology, geomorphology, soil, slope, drainage density and land use, weightages were assigned to the each factor according to their relative importance as per subject experts opinion owing to the natural setup of the region. The Analytical Hierarchy Process (AHP) was applied to these factors and potential recharge zones were identified. The study area for the assessment of groundwater recharge potential zones is Mahi-Narmada inter-stream region of Gujarat state. The study shows that around 28 % region has the excellent suitability of the ground water recharge.

  3. Climatic controls on diffuse groundwater recharge across Australia

    Directory of Open Access Journals (Sweden)

    O. V. Barron

    2012-12-01

    Full Text Available Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modelling for a range of Köppen-Geiger climate types (tropical, arid and temperate to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types, the correlation between the modelled recharge and total annual rainfall is weaker than the correlation between recharge and the annual rainfall parameters reflecting rainfall intensity. Under similar soil and vegetation conditions for the same annual rainfall, annual recharge in regions with winter-dominated rainfall is greater than in regions with summer-dominated rainfall. The importance of climate parameters other than rainfall in recharge estimation is highest in the tropical climate type. Mean annual values of solar radiation and vapour pressure deficit show a greater importance in recharge estimation than mean annual values of the daily mean temperature. Climate parameters have the lowest relative importance in recharge estimation in the arid climate type (with cold winters and the temperate climate type. For 75% of all soil, vegetation and climate types investigated, recharge elasticity varies between 2 and 4 indicating a 20% to 40% change in recharge for a 10% change in annual rainfall. Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.

  4. Groundwater recharge measurements in gravel sandy sediments with monolith lysimeter

    Science.gov (United States)

    Bracic Zeleznik, Branka; Souvent, Petra; Cencur Curk, Barbara; Zupanc, Vesna

    2013-04-01

    Ljubljana field aquifer is recharging through precipitation and the river Sava, which has the snow-rain flow regime. The sediments of the aquifer have high permeability and create fast flow as well as high regeneration of the dynamic reserves of the Ljubljana field groundwater resource. Groundwater recharge is vulnerable to climate change and it is very important for drinking water supply management. Water stored in the soil and less permeable layers is important for water availability under extreme weather conditions. Measurements of water percolation through the vadose zone provide important input for groundwater recharge assessment and estimation of contaminant migration from land surface to the groundwater. Knowledge of the processes governing groundwater recharge in the vadose zone is critical to understanding the overall hydrological cycle and quantifying the links between land uses and groundwater quantity and quality. To improve the knowledge on water balance for Ljubljana field aquifer we establish a lysimeter for measurements of processes in unsaturated zone in well field Kleče. The type of lysimeter is a scientific lysimeter designed to solve the water balance equation by measuring the mass of the lysimeter monolith as well as that of outflow tank with high accuracy and high temporal resolution. We evaluated short period data, however the chosen month demonstrates weather extremes of the local climate - relatively dry periods, followed by high precipitation amount. In time of high water usage of vegetation only subsequent substantial precipitation events directly results in water flow towards lower layers. At the same time, gravely layers of the deeper parts of the unsaturated zone have little or no capacity for water retention, and in the event that water line leaves top soil, water flow moves downwards fairly quickly. On one hand this confirms high recharge capacity of Ljubljana field aquifer from precipitation on green areas; on the other hand it

  5. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    Directory of Open Access Journals (Sweden)

    S. Eeman

    2012-10-01

    Full Text Available In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens

  6. Response to recharge variation of thin lenses and their mixing zone with underlying saline groundwater

    Directory of Open Access Journals (Sweden)

    S. Eeman

    2012-01-01

    Full Text Available In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalized lens volume and the main lens and recharge characteristics, enabling an analytical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase, and increase of recharge frequency causes decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the center of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens

  7. Partitioning groundwater recharge between rainfall infiltration and irrigation return flow using stable isotopes: The Crau aquifer

    Science.gov (United States)

    Séraphin, Pierre; Vallet-Coulomb, Christine; Gonçalvès, Julio

    2016-11-01

    This study reports an assessment of the water budget of the Crau aquifer (Southern France), which is poorly referenced in the literature. Anthropogenically controlled by a traditional irrigation practice, this alluvial type aquifer requires a robust quantification of the groundwater mass balance in order to establish sustainable water management in the region. In view of the high isotopic contrast between exogenous irrigation waters and local precipitations, stable isotopes of water can be used as conservative tracers to deduce their contributions to the surface recharge. Extensive groundwater sampling was performed to obtain δ18O and δ2H over the whole aquifer. Based on a new piezometric contour map, combined with an updated aquifer geometry, the isotopic data were implemented in a geostatistical approach to produce a conceptual equivalent homogeneous reservoir. This makes it possible to implement a parsimonious water and isotope mass-balance mixing model. The isotopic compositions of the two end-members were assessed, and the quantification of groundwater flows was then used to calculate the two recharge fluxes (natural and irrigation). Nearly at steady-state, the set of isotopic data treated by geostatistics gave a recharge by irrigation of 4.92 ± 0.89 m3 s-1, i.e. 1109 ± 202 mm yr-1, and a natural recharge of 2.19 ± 0.85 m3 s-1, i.e. 128 ± 50 mm yr-1. Thus, 69 ± 9% of the surface recharge is caused by irrigation return flow. This study constitutes a straightforward and independent approach to assess groundwater surface recharges including uncertainties and will help to constrain future transient groundwater models of the Crau aquifer.

  8. Predicted impacts of land use change on groundwater recharge of ...

    African Journals Online (AJOL)

    2012-04-13

    Apr 13, 2012 ... resulted in a highly increased (278%) predicted mean groundwater recharge. Simulated .... on land cover, soil type, slope, rainfall intensity, and antecedent moisture .... from two meteorological stations, with daily measurements of precipitation and ... South African Department of Land Affairs (DWAF, 2006).

  9. Review: Current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater

    Science.gov (United States)

    Doble, Rebecca C.; Crosbie, Russell S.

    2016-09-01

    A review is provided of the current and emerging methods for modelling catchment-scale recharge and evapotranspiration (ET) in shallow groundwater systems. With increasing availability of data, such as remotely sensed reflectance and land-surface temperature data, it is now possible to model groundwater recharge and ET with more physically realistic complexity and greater levels of confidence. The conceptual representation of recharge and ET in groundwater models is critical in areas with shallow groundwater. The depth dependence of recharge and vegetation water-use feedback requires additional calibration to fluxes as well as heads. Explicit definition of gross recharge vs. net recharge, and groundwater ET vs. unsaturated zone ET, in preparing model inputs and reporting model results is necessary to avoid double accounting in the water balance. Methods for modelling recharge and ET include (1) use of simple surface boundary conditions for groundwater flow models, (2) coupling saturated groundwater models with one-dimensional unsaturated-zone models, and (3) more complex fully-coupled surface-unsaturated-saturated conceptualisations. Model emulation provides a means for including complex model behaviours with lower computational effort. A precise ET surface input is essential for accurate model outputs, and the model conceptualisation depends on the spatial and temporal scales under investigation. Using remote sensing information for recharge and ET inputs in model calibration or in model-data fusion is an area for future research development. Improved use of uncertainty analysis to provide probability bounds for groundwater model outputs, understanding model sensitivity and parameter dependence, and guidance for further field-data acquisition are also areas for future research.

  10. Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

    Science.gov (United States)

    Dawes, W.; Ali, R.; Varma, S.; Emelyanova, I.; Hodgson, G.; McFarlane, D.

    2012-05-01

    The groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south west Western Australia, provides approximately 60% of the drinking water for the metropolitan population of Perth. Rainfall decline over the past three decades coupled with increasing water demand from a growing population has resulted in falling dam storage and groundwater levels. Projected future changes in climate across south-west Western Australia consistently show a decline in annual rainfall of between 5 and 15%. There is expected to be a continuing reduction of diffuse recharge across the Swan Coastal Plain. This study aims to quantify the change in groundwater recharge in response to a range of future climate and land cover patterns across south-west Western Australia. Modelling the impact on the groundwater resource of potential climate change was achieved with a dynamically linked unsaturated/saturated groundwater model. A Vertical Flux Manager was used in the unsaturated zone to estimate groundwater recharge using a variety of simple and complex models based on land cover type (e.g. native trees, plantation, cropping, urban, wetland), soil type, and taking into account the groundwater depth. These recharge estimates were accumulated on a daily basis for both observed and projected climate scenarios and used in a MODFLOW simulation with monthly stress periods. In the area centred on the city of Perth, Western Australia, the patterns of recharge change and groundwater level change are not consistent spatially, or consistently downward. In the Dandaragan Plateau to the north-east of Perth there has been groundwater level rise since the 1970s associated with land clearing, and with rainfall projected to reduce the least in this area the groundwater levels are estimated to continue to rise. Along the coastal zone north of Perth there is an interaction between projected rainfall decline and legislated removal to pine forests. This results in areas of increasing

  11. Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

    Directory of Open Access Journals (Sweden)

    W. Dawes

    2012-05-01

    Full Text Available The groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south west Western Australia, provides approximately 60% of the drinking water for the metropolitan population of Perth. Rainfall decline over the past three decades coupled with increasing water demand from a growing population has resulted in falling dam storage and groundwater levels. Projected future changes in climate across south-west Western Australia consistently show a decline in annual rainfall of between 5 and 15%. There is expected to be a continuing reduction of diffuse recharge across the Swan Coastal Plain. This study aims to quantify the change in groundwater recharge in response to a range of future climate and land cover patterns across south-west Western Australia.

    Modelling the impact on the groundwater resource of potential climate change was achieved with a dynamically linked unsaturated/saturated groundwater model. A Vertical Flux Manager was used in the unsaturated zone to estimate groundwater recharge using a variety of simple and complex models based on land cover type (e.g. native trees, plantation, cropping, urban, wetland, soil type, and taking into account the groundwater depth. These recharge estimates were accumulated on a daily basis for both observed and projected climate scenarios and used in a MODFLOW simulation with monthly stress periods.

    In the area centred on the city of Perth, Western Australia, the patterns of recharge change and groundwater level change are not consistent spatially, or consistently downward. In the Dandaragan Plateau to the north-east of Perth there has been groundwater level rise since the 1970s associated with land clearing, and with rainfall projected to reduce the least in this area the groundwater levels are estimated to continue to rise. Along the coastal zone north of Perth there is an interaction between projected rainfall decline and legislated removal to pine forests. This

  12. Partitioning groundwater recharge between rainfall infiltration and irrigation return flows using stable isotopes: the Crau aquifer.

    Science.gov (United States)

    Seraphin, Pierre; Vallet-Coulomb, Christine; Gonçalvès, Julio

    2016-04-01

    Traditional flood irrigation is used since the 16th century in the Crau plain (Southern France) for hay production. To supply this high consuming irrigation practice, water is diverted from the Durance River, originating from the Alps, and the large amount of irrigation return flows constitutes the main recharge of the Crau aquifer, which is in turn largely exploited for domestic, industrial and agricultural water use. A possible reduction of irrigation fluxes due to a need of water saving or to a future land-use change could endanger the groundwater resource. A robust quantification of the groundwater mass balance is thus required to assess a sustainable water management in the region. The high isotopic contrast between these exogenous irrigation waters and local precipitations allows the use of stable isotopes of water as conservative tracers to deduce their contributions to the surface recharge. An extensive groundwater sampling was performed to obtain δ18O and δ2H over the whole aquifer. Based on a new piezometric contour map, combined with a reestimate of the aquifer geometry, the isotopic data are implemented in a geostatistical approach to produce a conceptual equivalent-homogeneous reservoir, in order to apply a simple water and isotope mass balance mixing model. The isotopic composition of the two end-members is assessed, and the quantification of groundwater flows is then used to calculate the two recharge fluxes. Near to steady-state condition, the set of isotopic data treated by geostatistics leads to a recharge by irrigation of 5.20 ± 0.93 m3 s-1 i.e. 1173 ± 210 mm yr-1, and a natural recharge of 2.26 ± 0.91 m3 s-1 i.e. 132 ± 53 mm yr-1. Thus, 70 ± 9% of the effective surface recharge comes from the irrigation return flow, consistent with the literature (between 67% and 78%). This study constitutes a straightforward and independent approach to assess groundwater surface recharges with uncertainties and will help to constrain a future transient

  13. Conceptualisation of groundwater recharge from the Wairau River, New Zealand

    Science.gov (United States)

    Wilson, Scott; Wöhling, Thomas; Davidson, Peter

    2016-04-01

    lateral direction than it can be recharged from above. We propose that this stratigraphic anisotropy can inherently create hydraulic a disconnection in a braided river environment. A numerical model of the Wairau Aquifer has been developed to test our conceptual understanding of river-aquifer exchange dynamics (Wöhling et al. 2015). The numerical model is only able to integrate and accurately simulate the variety of available observational types if disconnected conditions are simulated consistently over the majority of the recharge area. This confirms our hypothesis drawn from indirect observations. References Brunner, P, Cook, PG, & Simmons, CT, 2011. Disconnected surface water and groundwater: From theory to practice. Ground Water, vol. 49, no. 4, pp. 460-467. Wöhling, T, Gosses, M, Troyer, J, Ede, M, Davidson, P, Wilson, S (2015). Towards modelling Wairau river - aquifer exchange flux dynamics: Data integration and upscaling. 2015 NZHS Conference, Hamilton, New Zealand.

  14. Fate of human viruses in groundwater recharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  15. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States

    Directory of Open Access Journals (Sweden)

    Brian F. Thomas

    2016-03-01

    Full Text Available Episodic recharge as a result of infrequent, high intensity precipitation events comprises the bulk of groundwater recharge in arid environments. Climate change and shifts in precipitation intensity will affect groundwater continuity, thus altering groundwater recharge. This study aims to identify changes in the ratio of groundwater recharge and precipitation, the R:P ratio, in the arid southwestern United States to characterize observed changes in groundwater recharge attributed to variations in precipitation intensity. Our precipitation metric, precipitation intensity magnification, was used to investigate the relationship between the R:P ratio and precipitation intensity. Our analysis identified significant changes in the R:P ratio concurrent with decreases in precipitation intensity. The results illustrate the importance of precipitation intensity in relation to groundwater recharge in arid regions and provide further insights for groundwater management in nonrenewable groundwater systems and in a changing climate.

  16. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. East Bay (CalState), Hayward, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in part as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.

  17. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers.

    Science.gov (United States)

    Li, Zhi; Chen, Xi; Liu, Wenzhao; Si, Bingcheng

    2017-05-15

    Studying the groundwater recharge mechanism in regions with thick unsaturated zone can greatly improve our understanding of hydrological processes since these regions have complex groundwater processes. This study attempted to discuss the groundwater recharge in a region covered by loess over 130m deep in China's Loess Plateau. The water stable isotope, tritium and chloride in precipitation, groundwater and soil water were determined and used as inputs of mass balance methods. The tracer technique is found to be applicable and effective this region with thick unsaturated zone. The groundwater originates from rapid precipitation infiltration through some fast flow paths. The total recharge is likely to be 107±55mmyr(-1) accounting for 19±10% of average annual precipitation, while the recharge from preferential flow accounts for 87±4% of the total recharge. The identified recharge mechanism has important implication to groundwater management and recharge modeling for regions covered by thick loess.

  18. Estimation of spatial distribution of groundwater recharge from stream baseflow and groundwater chloride

    Science.gov (United States)

    Niazi, Amir; Bentley, Laurence R.; Hayashi, Masaki

    2017-03-01

    In this study groundwater chloride concentration and baseflow are used to estimate the spatial variability of recharge. Total recharge over the entire watershed is estimated using the baseflow method, and then the spatial variability of recharge is approximated using groundwater chloride concentration. The efficacy of the method is demonstrated using data from a rural watershed in Alberta, Canada. By using the combination of two well established methods of estimating recharge, baseflow and chloride mass balance, there is no need to estimate wet and dry deposition rate of chloride. The presented method is tested by using a steady-state groundwater flow model. The groundwater model showed higher agreement between modeled vs observed heads when spatially variable recharge forced the upper boundary of the model (root mean square error reduced from 13.5 m to 8 m). In addition, we demonstrate a unique method for parameterizing hydraulic conductivity of a fluvial aquifer using a sand fraction transfer function. This new method reduces the dimensionality of the parameter estimation problem and provides a consistency check on the spatially varying recharge estimates.

  19. Groundwater and climate change in Africa : review of recharge studies

    OpenAIRE

    Bonsor, H. C.; MacDonald, A. M.

    2010-01-01

    The review of recharge studies was conducted as part of a one year DFID-funded research programme, aimed at improving understanding of the impacts of climate change on groundwater resources and local livelihoods – see http://www.bgs.ac.uk/GWResilience/. The review is one of a series of components within the project. The overall outputs of the project are: Two hydrogeological case studies in West and East Africa – which assess the storage and availability of groundwater in different aquifers a...

  20. Groundwater Recharge and Hydrogeochemical Evolution in Leizhou Peninsula, China

    Directory of Open Access Journals (Sweden)

    Yintao Lu

    2015-01-01

    Full Text Available An analysis of the stable isotopes and the major ions in the surface water and groundwater in the Leizhou Peninsula was performed to identify the sources and recharge mechanisms of the groundwater. In this study, 70 water samples were collected from rivers, a lake, and pumping wells. The surface water was considered to have a lower salinity than the groundwater in the region of study. The regression equations for δD and δ18O for the surface water and the groundwater are similar to those for precipitation, indicating meteoric origins. The δD and δ18O levels in the groundwater ranged from −60‰; to −25‰; and −8.6‰; to −2.5‰, respectively, and were lower than the stable isotope levels from the winter and spring precipitation. The groundwater in the southern area was classified as the Ca2+-Mg2+-HCO3--type, whereas the groundwater in the northern area included three types (Na+-Cl−-type, Ca2+-Mg2+-HCO3--type, and Ca2+-Mg2+-Cl−-type, indicating rapid and frequent water-rock exchange in the region. A reasonable conclusion is that the groundwater chemistry is dominated by rock weathering and rainwater of local origin, which are influenced by seawater carried by the Asian monsoon.

  1. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-07-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950-2015) through future (2016-2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  2. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  3. Uncertainties in the simulation of groundwater recharge at different scales

    Directory of Open Access Journals (Sweden)

    H. Bogena

    2005-01-01

    Full Text Available Digital spatial data always imply some kind of uncertainty. The source of this uncertainty can be found in their compilation as well as the conceptual design that causes a more or less exact abstraction of the real world, depending on the scale under consideration. Within the framework of hydrological modelling, in which numerous data sets from diverse sources of uneven quality are combined, the various uncertainties are accumulated. In this study, the GROWA model is taken as an example to examine the effects of different types of uncertainties on the calculated groundwater recharge. Distributed input errors are determined for the parameters' slope and aspect using a Monte Carlo approach. Landcover classification uncertainties are analysed by using the conditional probabilities of a remote sensing classification procedure. The uncertainties of data ensembles at different scales and study areas are discussed. The present uncertainty analysis showed that the Gaussian error propagation method is a useful technique for analysing the influence of input data on the simulated groundwater recharge. The uncertainties involved in the land use classification procedure and the digital elevation model can be significant in some parts of the study area. However, for the specific model used in this study it was shown that the precipitation uncertainties have the greatest impact on the total groundwater recharge error.

  4. Organic Carbon Fluxes in a Stressed Groundwater System

    Science.gov (United States)

    Baker, A.; Graham, P. W.; Grbich, N.; Chinu, K.; Yu, D.

    2013-12-01

    Dissolved Organic Carbon (DOC) flux in groundwater is poorly understood: influenced by recharge, extraction and surface processes. We reviewed existing datasets for DOC concentration and flux in Australian groundwater systems. In a temperate, semi-arid, Australian research site we measured variations in DOC content during a series of high intensity extraction and recovery events in the surrounding aquifer and abstracted groundwater. Groundwater was abstracted from a fractured basalt / metasediment aquifer overlain by residual soils and flanked by a Quaternary alluvial channel. Groundwater systems included the fractured rock system interconnected with the alluvial aquifer through a leaky aquitard and a perched aquifer held at the soil bedrock interface. Prior to and throughout the test, groundwater samples were collected from wells within the fractured rock, alluvial aquifer and soil bedrock interface and analysed for DOC. Initial DOC concentrations in the upper aquifer were ~2 mg/L, following pumping concentrations increased 36 mg/L (ave) peaking at 72 mg/L. In the lower aquifer initial TOC concentrations were ~1.6 mg/L, during pumping levels increased to 3.98 mg/L (ave) peaking at 14.32 mg/L. Results indicate the fractured rock aquifers ability to recharge was exceeded during intense pumping periods and a larger component of water was drawn from the upper aquifer. This increased the volume of water being drawn through the soil profile and increased DOC content in abstracted groundwater. Hydrological setting, well construction and pumping regime are likely to affect the concentration of DOC within abstracted groundwater. Further attention to abstracted groundwater as a component in terrestrial DOC fluxes is warranted.

  5. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  6. Application limits of the interpretation of near-surface temperature time series to assess groundwater recharge

    Science.gov (United States)

    Gosselin, J. S.; Rivard, C.; Martel, R.; Lefebvre, R.

    2016-07-01

    The main objective of this study was to test the application limits of a groundwater recharge assessment technique based on the inversion of a vertical one-dimensional numerical model of advective-conductive heat transport, using temperature time series at three different depths (1, 3, 5 m) in the unsaturated zone. For this purpose, several synthetic hourly datasets of subsurface temperatures, representing various weather, ground cover, and soil texture conditions, thus covering a wide range of groundwater recharge values, were produced with the vertical one-dimensional coupled heat and moisture transport simulator SHAW (Simultaneous Heat and Water model). Estimates of the vertical flux of water in the soil were then retrieved from these realistic temperature profiles using a simple one-dimensional numerical simulator of advective and conductive heat transport in the unsaturated zone that was developed as part of this study. The water flux was assumed constant on a weekly, monthly, semiannual, and annual basis. From these vertical water flux estimates, annual (potential) groundwater recharge rates were then computed and results were compared to those calculated previously with SHAW to assess the accuracy of the method. Results showed that, under ideal conditions, it would be possible to estimate annual recharge rates that are above 200 mm/y, with an acceptable error of less than 20%. These "ideal" conditions include the resolution of the water flux on a weekly basis, error-free temperature measurements below the soil freezing zone, and model parameter values (thermal conductivity and heat capacity of the soil) known a priori with no uncertainty. However, this work demonstrates that the accuracy of the method is highly sensitive to the uncertainty of the input model parameters of the numerical model used to carry out the inversion and to measurement errors of temperature time series. For the conditions represented in this study, these findings suggest that, despite

  7. Groundwater recharge in different physiognomies of the Brazilian Cerrado

    Science.gov (United States)

    Oliveira, P. T. S.; Leite, M.; Mattos, T.; Wendland, E.; Nearing, M. A.

    2015-12-01

    Since 2014, several cities of southeastern Brazil have grappled with their worst drought in nearly 80 years. To improve water availability in this region, the Brazilian government has studied the possibility of increasing groundwater use, mainly in the Guarani Aquifer System (GAS), the largest (~1.2 million km2) transnational boundary groundwater reservoir in South America. Approximately one half of the outcrop areas of the GAS are located in the Cerrado biome, the main agricultural expansion region in Brazil. Large areas of Cerrado vegetation have been converted into farmland in recent years; however, little attention has been paid to the consequences of this land cover and land use change on groundwater recharge. In this study we assessed groundwater recharge in different physiognomies of the Cerrado located in an outcrop area of the GAS. Water table fluctuations were measured from October 2011 through August 2013, by 64 monitoring wells distributed on five physiognomies of the undisturbed Cerrado. We used 20 (2.2±0.3 m), 20 (4.3±1.4 m), 14 (4.7±1.9 m), 9 (6.2±0.7 m), and 1 (42 m) monitoring wells (and average depth of wells) for "campo limpo" (cerrado grassland), "campo sujo" (shrub cerrado), "campo cerrado" (shrub cerrado), "cerrado sensu stricto" (wooded cerrado), and "cerrado sensu stricto denso" (cerrado woodland), respectively. Recharge was computed for each well using the Water Table Fluctuation method. The measured precipitation for hydrological years 2011-12 and 2012-13 were 1247 mm and 1194 mm, respectively. We found values of average annual recharge of 363 mm, 354 mm, 324 mm, and 315 mm for "campo limpo", "campo sujo","campo cerrado", and "cerrado sensu stricto", respectively. We did not find changes in the water table level in the one well located in the "cerrado sensu stricto denso". The water table in this well was 35 m deep; therefore, the amount of water that eventually reached the saturated zone was not enough to cause a rapid change in the

  8. Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region

    Science.gov (United States)

    Sánchez-Murillo, Ricardo; Birkel, Christian

    2016-05-01

    Stable isotope variations and groundwater recharge mechanisms remain poorly understood across the tropics, particularly in Central America. Here stable isotopes (δ18O and δ2H) in groundwater, surface water, and rainfall are used to produce high-resolution (100 m2 grid) isoscapes for Costa Rica, from which an isotope ratio of precipitation to groundwater (P/GW) is estimated to elucidate the dominant groundwater recharge processes. Spatially, groundwater and surface water isotope ratios depict the strong orographic separation into the Caribbean and Pacific slopes induced by moisture transport directly from the Caribbean Sea and the eastern tropical Pacific Ocean. P/GW isotope ratios reveal that groundwater recharge is biased toward intensive and more depleted monthly rainfall across the Pacific slope with clear evidence of secondary evaporation indicating slower soil matrix recharge processes. On the other hand, P/GW isotope ratios indicate a weak influence of secondary evaporation across the Caribbean slope suggesting rapid recharge via preferential flow paths.

  9. Using EARTH Model to Estimate Groundwater Recharge at Five Representative Zones in the Hebei Plain, China

    Institute of Scientific and Technical Information of China (English)

    Bingguo Wang; Menggui Jin; Xing Liang

    2015-01-01

    Accurate estimation of groundwater recharge is essential for efficient and sustainable groundwater management in many semi-arid regions. In this paper, a lumped parameter model (EARTH) was established to simulate the recharge rate and recharge process in typical areas by the ob-servation datum of weather, soil water and groundwater synthetically, and the spatial and temporal variation law of groundwater recharge in the Hebei Plain was revealed. The mean annual recharge rates at LQ, LC, HS, DZ and CZ representative zones are 220.1, 196.7, 34.1, 141.0 and 188.0 mm/a and the recharge coefficients are 26.5%, 22.3%, 7.2%, 20.4%, and 22.0%, respectively. Recharge rate and re-charge coefficient are gradually reduced from piedmont plain to coastal plain. Groundwater recharge appears as only yearly waves, with higher frequency components of the input series filtered by the deep complicated unsaturated zone (such as LC). While at other zones, groundwater recharge series strongly dependent on the daily rainfall and irrigation because of the shallow water table or coarse lithology.

  10. Recharge Net Metering to Incentivize Sustainable Groundwater Management

    Science.gov (United States)

    Fisher, A. T.; Coburn, C.; Kiparsky, M.; Lockwood, B. S.; Bannister, M.; Camara, K.; Lozano, S.

    2016-12-01

    Stormwater runoff has often been viewed as a nuisance rather than a resource, but with passage of the Sustainable Groundwater Management Act (2014), many basins in California are taking a fresh look at options to enhance groundwater supplies with excess winter flows. In some basins, stormwater can be used for managed aquifer recharge (MAR), routing surface water to enhance groundwater resources. As with many public infrastructure programs, financing for stormwater-MAR projects can be a challenge, and there is a need for incentives that will engage stakeholders and offset operation and maintenance costs. The Pajaro Valley Water Management Agency (PVWMA), in central costal California, recently launched California's first Recharge Net Metering (ReNeM) program. MAR projects that are part of the ReNeM program are intended to generate ≥100 ac-ft/yr of infiltration benefit during a normal water year. A team of university and Resource Conservation District partners will collaborate to identify and assess potential project sites, screening for hydrologic conditions, expected runoff, ease and cost of project construction, and ability to measure benefits to water supply and quality. The team will also collect data and samples to measure the performance of each operating project. Groundwater wells within the PVWMA's service area are metered, and agency customers pay an augmentation fee for each unit of groundwater pumped. ReNeM projects will earn rebates of augmentation fees based on the amount of water infiltrated, with rebates calculated using a formula that accounts for uncertainties in the fate of infiltrated water, and inefficiencies in recovery. The pilot ReNeM program seeks to contribute 1000 ac-ft/yr of infiltration benefit by the end of the initial five-year operating period. ReNeM offers incentives that are distinct from those derived from traditional groundwater banking, and thus offers the potential for an innovative addition to the portfolio of options for

  11. Groundwater recharge estimation and water resources assessment in a tropical crystalline basement aquifer

    NARCIS (Netherlands)

    Nyagwambo, N.L.

    2006-01-01

    Groundwater recharge estimation in crystalline basement aquifers in semi-arid tropical areas is best estimated at monthly time scales as this best captures the dynamics of recharge processes in these areas. Whilst it is standard practice to use at least two methods to estimate the recharge it may be

  12. Groundwater recharge estimation and water resources assessment in a tropical crystalline basement aquifer

    NARCIS (Netherlands)

    Nyagwambo, N.L.

    2006-01-01

    Groundwater recharge estimation in crystalline basement aquifers in semi-arid tropical areas is best estimated at monthly time scales as this best captures the dynamics of recharge processes in these areas. Whilst it is standard practice to use at least two methods to estimate the recharge it may be

  13. Natural water purification and water management by artificial groundwater recharge.

    Science.gov (United States)

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  14. Treatment of Organic Compounds in Reclaimed Wastewater for Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    皮运正; 胡俊; 云桂春

    2004-01-01

    To study water quality problems associated with groundwater recharge,a tertiary treatment process,consisting of coagulation,sand filtration,and granular activated carbon (GAC) adsorption,was used in combination with a simulated soil aquifer treatment.The process significantly improved secondary effluent quality.GAC adsorption reduced organic substances expressed by UV-254,dissolved organic carbon as well as partially adsorbable organic halogens.The results of the Ames test show that the secondary effluent contains a high concentration of mutagens.GAC filtration removed adsorbable organic bromine slightly whereas GAC adsorption removed mutagens effectively.The simulated soil aquifer treatment was able to further reduce UV-254,dissolved organic carbon,and adsorbable organic halogens through biodegradation.Adsorbable organic bromine levels were also reduced by the soil aquifer treatment process.The given reclamation technology used for groundwater recharge is of benefit to the removal of dissolved organic carbon,UV-254,adsorbable organic halogens,and mutagenicity.

  15. Natural water purification and water management by artificial groundwater recharge

    Institute of Scientific and Technical Information of China (English)

    Klaus-Dieter BALKE; Yan ZHU

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and fiver water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant puri- fication and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quanti-tative advantages. The contamination of infiltrated fiver water will be reduced by natural attenuation. Clay minerals, iron hy-droxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing fiver discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the fiver discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  16. Linking denitrification and infiltration rates during managed groundwater recharge.

    Science.gov (United States)

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los

    2011-11-15

    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  17. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  18. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1994-12-31

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data.

  19. Groundwater recharge variation under climatic variability in Ajlun area and the recharge zone of Wadi Arab well field - Jordan

    Science.gov (United States)

    Raggad, Marwan Al; Alqadi, Mohammad; Magri, Fabien; Disse, Markus; Chiogna, Gabriele

    2017-04-01

    Pumping of 75 MCM/yr from Ajlun area and Wadi Arab well field has led to diminished groundwater levels in North Jordan and dramatically affects ecosystem services. Climate change compounds these issues by reducing recharge and increasing the ecosystem's hydrological demand. This paper investigates groundwater recharge response to climatic changes in North Jordan by modeling climatic parameters for the time frame 2015 - 2050. Water budget components were modeled through the J2000 hydrological model considering a groundwater recharge of 47 MCM/yr. Statistical downscaling of global circulation models indicated a decline in precipitation of around 30% by the year 2050 with 2.5 and 2 °C increases in maximum and minimum temperature, respectively. Recharge for the year 2050 was recalculated based on the downscaling results to be 27% less than current recharge. Continuous over-pumping with recharge reduction will cause a 30-70% reduction in saturated thickness by the same year. Modeling groundwater resilience under the new conditions showed a severe impact on the study area especially in the central parts which are expected to comprise a semi dry aquifer by 2050.

  20. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Directory of Open Access Journals (Sweden)

    A. P. Atkinson

    2014-06-01

    14C ages are between 100 and 10 000 years. 3H activities are negligible in most of the groundwater and groundwater electrical conductivity in individual areas remains constant over the period of study. Although diffuse local recharge is evident, the depth to which it penetrates is limited to the upper 10 m of the aquifer. Rather, groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High, and acts as a regional discharge zone where upward head gradients are maintained annually, limiting local recharge. Additionally, the Gellibrand River does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.

  1. Effects of Soil and Water Conservation Measures on Groundwater Levels and Recharge

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2014-12-01

    Full Text Available Measures of soil and water conservation (SWC could affect the hydrological process. The impacts of typical measures on groundwater recharge, levels and flow were analyzed based on simulated rainfall experiments and a groundwater model. The three-dimensional finite-difference groundwater flow model (MODFLOW was calibrated and verified for bare slope, grassland and straw mulching scenarios based on the experiments. The results of the verification in groundwater balance, levels, runoff and flow field all showed that MODFLOW could be applied to study the impact of SWC measures on groundwater. Meanwhile, the results showed the recharge rate (α and specific yield of the three soil layers (Sy1, Sy2 and Sy3 were the most sensitive parameters to the change in the underlying surface. Then, the impacts of the SWC measures’ construction and destruction on the groundwater regime were studied. The results indicated the measures could strengthen groundwater recharge. The amounts of groundwater recharge, runoff and level were on the order of straw mulching > grassland > bare slope. When the underlying surface was converted from grass and mulching to bare slope, the recharge decreased by 42.2% and 39.1%. It was concluded that SWC measure construction would increase groundwater recharge and the measure destruction would decrease recharge.

  2. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data - Modeling future groundwater recharge to predict potential climate change impacts

    Science.gov (United States)

    Gemitzi, Alexandra; Ajami, Hoori; Richnow, Hans-Hermann

    2017-03-01

    Groundwater recharge is one of main components of the water budget that is difficult to quantify due to complexity of recharge processes and limited observations. In the present work a simple regression equation for monthly groundwater recharge estimation is developed by relating simulated recharge from a calibrated Soil and Water Assessment tool (SWAT) model to effective precipitation. Monthly groundwater recharge and actual evapotranspiration (AET) were computed by applying a calibrated (SWAT) model for a ten year period (2005-2015) in Vosvozis river basin in NE Greece. SWAT actual evapotranspiration (AET) results were compared to remotely sensed AET values from the MODerate Resolution Imaging Spectroradiometer (MODIS), indicating the integrity of the modeling process. Water isotopes of 2H and 18O, originally presented herein, were used to infer recharge resources in the basin and provided additional evidence of the applicability of the developed formula. Results showed that the developed recharge estimation method can be effectively applied using MODIS evapotranspiration data, without having to adhere to numerical modeling which is many times constrained by the lack of available data especially in poorly gauged basins. Future trends of groundwater recharge up to 2100 using an ensemble of five downscaled climate change projections indicated that annual recharge will increase up to the middle of the present century and gradually decrease thereafter. However, the predicted magnitude is highly variable depending on the Global Climate Model (GCM) used. While winter recharge will likely increase in the future, summer recharge is expected to decrease as a result of temperature rise in the future.

  3. Recharging California's Groundwater: Crop Suitability and Surface Water Availability for Agricultural Groundwater Banking

    Science.gov (United States)

    Dahlke, H. E.; Kocis, T. N.; Brown, A.

    2016-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California (CA). A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands (alfalfa/pasture) for recharging groundwater. Understanding soil suitability for ag-GB, crop health and flooding tolerance, leaching of soil nitrate and salts, the availability of surface water for recharge, and the economic costs and benefits of ag-GB is fundamental to assessing the feasibility of local-scale implementation of ag-GB. The study presented here considers both the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flow) for ag-GB and the risks and benefits associated with using alfalfa fields as spreading grounds for ag-GB. The availability of surface water for winter (Nov to Apr) ag-GB were estimated based on daily streamflow records for 93 stream gauges within the Central Valley, CA. Analysis focused on high-magnitude (>90thpercentile) flows because most lower flows are likely legally allocated in CA. Results based >50 years of data indicate that an average winter/spring (Nov. - Apr.) in the Sacramento River Basin could provide 7 million acre-feet (AF) (8.6 km3) of water for ag-GB from flows above the 90th percentile. These flows originate from few storm events (5-7 events) and occur on average for 25-30 days between November and April. Wintertime on-farm recharge experiments were conducted on a 9-yr old, 15-acre alfalfa field in the Scott Valley, CA, where 135 AF and 107 AF of water were recharged during the winters of 2015 and 2016, respectively. Biomass data collected indicates that pulsed application of 6-10 ft of water on dormant alfalfa results in minimal yield loss (0.5 ton/acre reduction), short-duration saturated conditions in the root-zone, and high recharge

  4. Survey of human virus occurrence in wastewater-recharged groundwater on Long Island

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.; Baranosky, L.J.; Beckwith, C.A.; Dahl, M.C.; Delihas, N.C.

    1978-07-01

    Treated wastewater effluents and groundwater observation wells from three sewage recharge installations located on Long Island were assayed on a monthly basis for indigenous human enteroviruses and coliform bacteria for a period of 1 year. Viruses were detected in groundwater at sites where recharge basins were located less than 35 feet (ca. 10.6 m) above the aquifer. Results from one of the sites indicated the horizontal transfer of viable viruses through the groundwater aquifer.

  5. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    Science.gov (United States)

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  6. Groundwater recharge simulation under the steady-state and transient climate conditions

    Science.gov (United States)

    Pozdniakov, S.; Lykhina, N.

    2010-03-01

    Groundwater recharge simulation under the steady-state and transient climate conditions Diffusive groundwater recharge is a vertical water flux through the water table, i.e. through the boundary between the unsaturated and saturated zones. This flux features temporal and spatial changes due to variations in the climatic conditions, landscape the state of vegetation, and the spatial variability of vadoze zone characteristics. In a changing climate the non-steady state series of climatic characteristics will affect on the groundwater recharge.. A well-tested approach to calculating water flux through the vadoze zone is the application of Richard’s equations for a heterogeneous one-domain porosity continuum with specially formulated atmospheric boundary conditions at the ground surface. In this approach the climatic parameters are reflected in upper boundary conditions, while the recharge series is the flux through the low boundary. In this work developed by authors code Surfbal that simulates water cycle at surface of topsoil to take into account the various condition of precipitation transformation at the surface in different seasons under different vegetation cover including snow accumulation in winter and melting in spring is used to generate upper boundary condition at surface of topsoil for world-wide known Hydrus-1D code (Simunek et al, 2008). To estimate the proposal climate change effect we performed Surfbal and Hydrus simulation using the steady state climatic condition and transient condition due to global warming on example of Moscow region, Russia. The following scenario of climate change in 21 century in Moscow region was selected: the annual temperature will increase on 4C during 100 year and annual precipitation will increase on 10% (Solomon et al, 2007). Within the year the maximum increasing of temperature and precipitation falls on winter time, while in middle of summer temperature will remain almost the same as observed now and monthly

  7. Present-day groundwater recharge estimation in parts of the Indian Sub-Continent

    Science.gov (United States)

    Bhanja, S. N.; Mukherjee, A.; Wada, Y.; Scanlon, B. R.; Taylor, R. G.; Rodell, M.; Malakar, P.

    2015-12-01

    Large part of global population has been dependent on groundwater as a source of fresh water. The demand would further increase with increasing population and stress associated with climate change. We tried to provide regional-scale groundwater recharge estimates in a large part of Indian Sub-Continent. A combination of ground-based, satellite-based and numerical model simulated recharge estimates were presented in the densely populated region. Three different methods: an intense network of observational wells (n>13,000 wells), a satellite (TRMM) and global land-surface model (CLM) outputs, and a global-scale hydrological model (PCR GLOBWB) were employed to calculate recharge estimates. Groundwater recharge values exhibit large spatial variations over the entire region on the basis of aquifer hydrogeology, precipitation and groundwater withdrawal patterns. Groundwater recharge estimates from all three estimation techniques were found to be higher (>300 mm/year) in fertile planes of Indus-Ganges-Brahmaputra (IGB) river basins. A combination of favorable hydrogeologic conditions (porosity, permeability etc.), comparatively higher rates of precipitation, and return flow from rapidly withdrawn irrigation water might influence occurrence of high recharge rates. However, central and southern study area experiences lower recharge rates (recharge estimates show good matches in some of the areas. Recharge estimates indicate dynamic nature of groundwater recharge as a function of precipitation, land use pattern, and hydrogeologic parameters. On a first hand basis, the estimates will help policy makers to understand groundwater recharge process over the densely populated region and finally would facilitate to implement sustainable policy for securing water security.

  8. Removal of Organic Pollutants in Municipal Wastewater for Artificial Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to construct a demonstration artificial groundwater recharge system for wastewater reuse in China, three years of laboratory work has been conducted on advanced treatment technologies in combination with soil aquifer treatment of secondary effluent from sewage treatment plants. An effective and inexpensive process was selected, which uses DGB adsorption, PAC coagulation, sedimentation, sand filtration, ozone disinfection, and soil aquifer treatment. The effluent meets the recommended water quality criteria for groundwater recharge. Ozonation is effective for disinfection as well as for water quality improvement. Results showed that the total N in the SAT system remained constant thus the secondary effluent must have a low NH3-N concentration for groundwater recharge.

  9. Groundwater recharge estimation under semi arid climate: Case of Northern Gafsa watershed, Tunisia

    Science.gov (United States)

    Melki, Achraf; Abdollahi, Khodayar; Fatahi, Rouhallah; Abida, Habib

    2017-08-01

    Natural groundwater recharge under semi arid climate, like rainfall, is subjected to large variations in both time and space and is therefore very difficult to predict. Nevertheless, in order to set up any strategy for water resources management in such regions, understanding the groundwater recharge variability is essential. This work is interested in examining the impact of rainfall on the aquifer system recharge in the Northern Gafsa Plain in Tunisia. The study is composed of two main parts. The first is interested in the analysis of rainfall spatial and temporal variability in the study basin while the second is devoted to the simulation of groundwater recharge. Rainfall analysis was performed based on annual precipitation data recorded in 6 rainfall stations over a period of 56 years (1960-2015). Potential evapotranspiration data were also collected from 1960 to 2011 (52 years). The hydrologic distributed model WetSpass was used for the estimation of groundwater recharge. Model calibration was performed based on an assessment of the agreement between the sum of recharge and runoff values estimated by the WetSpass hydrological model and those obtained by the climatic method. This latter is based on the difference calculated between rainfall and potential evapotranspiration recorded at each rainy day. Groundwater recharge estimation, on monthly scale, showed that average annual precipitation (183.3 mm/year) was partitioned to 5, 15.3, 36.8, and 42.8% for interception, runoff, actual evapotranspiration and recharge respectively.

  10. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge

    Science.gov (United States)

    Leach, James M.; Coulibaly, Paulin; Guo, Yiping

    2016-10-01

    This study explores the inclusion of a groundwater recharge based design objective and the impact it has on the design of optimum groundwater monitoring networks. The study was conducted in the Hamilton, Halton, and Credit Valley regions of Ontario, Canada, in which the existing Ontario Provincial Groundwater Monitoring Network was augmented with additional monitoring wells. The Dual Entropy-Multiobjective Optimization (DEMO) model was used in these analyses. The value of using this design objective is rooted in the information contained within the estimated recharge. Recharge requires knowledge of climate, geomorphology, and geology of the area, thus using this objective function can help account for these physical characteristics. Two sources of groundwater recharge data were examined and compared, the first was calculated using the Precipitation-Runoff Modeling System (PRMS), and the second was an aggregation of recharge found using both the PRMS and Hydrological Simulation Program-Fortran (HSP-F). The entropy functions are used to identify optimal trade-offs between the maximum information content and the minimum shared information between the monitoring wells. The recharge objective will help to quantify hydrological characteristics of the vadose zone, and thus provide more information to the optimization algorithm. Results show that by including recharge as a design objective, the spatial coverage of the monitoring network can be improved. The study also highlights the flexibility of DEMO and its ability to incorporate additional design objectives such as the groundwater recharge.

  11. Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

    Science.gov (United States)

    Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.

    2015-12-01

    For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.

  12. Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems

    Science.gov (United States)

    Gurdak, Jason

    2017-04-01

    Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate

  13. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events 14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Multi-scale experimental programs for estimating groundwater recharge in hydrologically changing basins

    Science.gov (United States)

    McIntyre, Neil; Larsen, Josh; Reading, Lucy; Bulovic, Nevenka; Jarihani, Abdollah; Finch, Warren

    2015-04-01

    Groundwater recharge estimates are required to evaluate sustainable groundwater abstractions and to support groundwater impacts assessments associated with minerals and energy extraction. Increasingly, recharge estimates are also needed for regional and global scale water cycle modelling. This is especially the case in the great arid and semi-arid basins of the world due to increased water scarcity and dependence of ecosystems and livelihoods on their water supplies, and the considerable potential influence of groundwater on the hydrological cycle. Groundwater resources in the semi-arid Surat Basin of south-east Queensland, Australia, support extensive groundwater-dependent ecosystems and have historically been utilised for regional agriculture and urban water-use. Large volumes of water are currently being produced and will continue to do so as a part of coal seam gas extraction. There is considerable uncertainty about the impacts of gas extraction on water resources and the hydrological cycle, and much of this uncertainty stems from our limited knowledge about recharge processes and how to upscale them. Particular questions are about the role of storm events in controlling annual recharge, the relative contributions of local 'recharge zones' versus diffuse recharge and the translation of (relatively easily quantified) shallow drainage estimates to groundwater recharge. A multi-scale recharge research program is addressing these questions, using multiple approaches in estimating groundwater recharge, including plot and catchment scale monitoring, use of remote sensed data and simulation models. Results during the first year of the program have resulted in development of process hypotheses and experimental designs at three field sites representing key gaps in knowledge. The presentation will overview the process of designing the experimental program; how the results from these sites will be integrated with existing knowledge; and how results will be used to advance

  15. Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic

    Science.gov (United States)

    Zaidi, Faisal K.; Nazzal, Yousef; Ahmed, Izrar; Naeem, Muhammad; Jafri, Muhammad Kamran

    2015-11-01

    Identifying potential groundwater recharge zones is a pre-requisite for any artificial recharge project. The present study focuses on identifying the potential zones of Artificial Groundwater Recharge (AGR) in Northwestern Saudi Arabia. Parameters including slope, soil texture, vadose zone thickness, groundwater quality (TDS) and type of water bearing formation were integrated in a GIS environment using Boolean logic. The results showed that 17.90% of the total studied area is suitable for AGR. The identified zones were integrated with the land use/land cover map to avoid agricultural and inhabited lands which reduced the total potential area to 14.24%. Geomorphologically the wadi beds are the most suitable sites for recharge. On the basis of the potential AGR zones closeness to the available recharge water supply (rain water, desalinated sea water and treated waste water) the potential zones were classified as Category A (high priority) and Category B (low priority).

  16. Downstream of downtown: urban wastewater as groundwater recharge

    Science.gov (United States)

    Foster, S. S. D.; Chilton, P. J.

    Wastewater infiltration is often a major component of overall recharge to aquifers around urban areas, especially in more arid climates. Despite this, such recharge still represents only an incidental (or even accidental) byproduct of various current practices of sewage effluent handling and wastewater reuse. This topic is reviewed through reference to certain areas of detailed field research, with pragmatic approaches being identified to reduce the groundwater pollution hazard of these practices whilst attempting to retain their groundwater resource benefit. Since urban sewage effluent is probably the only `natural resource' whose global availability is steadily increasing, the socioeconomic importance of this topic for rapidly developing urban centres in the more arid parts of Asia, Africa, Latin America and the Middle East will be apparent. L'infiltration des eaux usées est souvent la composante essentielle de toute la recharge des aquifères des zones urbaines, particulièrement sous les climats les plus arides. Malgré cela, une telle recharge ne constitue encore qu'un sous-produit incident, ou même accidentel, de pratiques courantes variées du traitement de rejets d'égouts et de réutilisation d'eaux usées. Ce sujet est passé en revue en se référant à certaines régions étudiées en détail, par des approches pragmatiques reconnues pour permettre de réduire les risques de pollution des nappes dues à ces pratiques tout en permettant d'en tirer profit pour leur ressource en eau souterraine. Puisque les effluents d'égouts urbains sont probablement la seule « ressource naturelle » dont la disponibilité globale va croissant constamment, l'importance socio-économique de ce sujet est évidente pour les centres urbains à développement rapide de l'Asie, de l'Afrique, de l'Amérique latine et du Moyen-Orient. La infiltración de aguas residuales es a menudo un componente principal de la recarga total en acuíferos ubicados en torno a zonas urbanas

  17. Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain

    Science.gov (United States)

    Cao, Guoliang; Scanlon, Bridget R.; Han, Dongmei; Zheng, Chunmiao

    2016-06-01

    Unsustainable groundwater development shown by rapid groundwater depletion in the North China Plain (NCP) underscores the need to quantify spatiotemporal variability in groundwater recharge for improved management of the resource. The objective of this study was to assess spatiotemporal variability in recharge in response to thickening of the unsaturated zone in the NCP. Recharge was estimated by linking a soil water balance (SWB) model, on the basis of monthly meteorological data, irrigation applications, and soil moisture monitoring data (1993-2008), to the water table using a deep unsaturated zone flow model. The dynamic bottom boundary (water table) position was provided by the saturated zone flow component, which simulates regional pumping. The model results clearly indicate the effects of unsaturated zone thickening on both temporal distribution and magnitude of recharge: smoothing temporal variability in recharge, and increasing unsaturated storage and lag time between percolation and recharge. The thickening unsaturated zone can result in average recharge reduction of up to ∼70% in loam soils with water table declines ⩾30 m. Declining groundwater levels with irrigation sourced by groundwater converts percolation to unsaturated zone storage, averaging 14 mm equivalent water depth per year in mostly loam soil over the study period, accounting for ∼30% of the saturated groundwater storage depletion. This study demonstrates that, in thickening unsaturated zones, modeling approaches that directly equate deep drainage with recharge will overestimate the amount and underestimate the time lag between percolation and recharge, emphasizing the importance of more realistic simulation of the continuity of unsaturated and saturated storage to provide more reliable estimates of spatiotemporal variability in recharge.

  18. Temporal and spatial variability of groundwater recharge on Jeju Island, Korea

    Science.gov (United States)

    Mair, Alan; Hagedorn, Benjamin; Tillery, Suzanne; El-Kadi, Aly I.; Westenbroek, Stephen; Ha, Kyoochul; Koh, Gi-Won

    2013-09-01

    Estimates of groundwater recharge spatial and temporal variability are essential inputs to groundwater flow models that are used to test groundwater availability under different management and climate conditions. In this study, a soil water balance analysis was conducted to estimate groundwater recharge on the island of Jeju, Korea, for baseline, drought, and climate-land use change scenarios. The Soil Water Balance (SWB) computer code was used to compute groundwater recharge and other water balance components at a daily time step using a 100 m grid cell size for an 18-year baseline scenario (1992-2009). A 10-year drought scenario was selected from historical precipitation trends (1961-2009), while the climate-land use change scenario was developed using late 21st century climate projections and a change in urban land use. Mean annual recharge under the baseline, drought, and climate-land use scenarios was estimated at 884, 591, and 788 mm, respectively. Under the baseline scenario, mean annual recharge was within the range of previous estimates (825-959 mm) and only slightly lower than the mean of 902 mm. As a fraction of mean annual rainfall, mean annual recharge was computed as only 42% and less than previous estimates of 44-48%. The maximum historical reported annual pumping rate of 241 × 106 m3 equates to 15% of baseline recharge, which is within the range of 14-16% computed from earlier studies. The model does not include a mechanism to account for additional sources of groundwater recharge, such as fog drip, irrigation, and artificial recharge, and may also overestimate evapotranspiration losses. Consequently, the results presented in this study represent a conservative estimate of total recharge.

  19. Estimated mean annual natural ground-water recharge in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This 1-kilometer resolution raster (grid) dataset is an index of mean annual natural ground-water recharge. The dataset was created by multiplying a grid of...

  20. Hydrogeology, Kennedy-Jenks groundwater recharge report, Published in 2004, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Hydrogeology dataset, was produced all or in part from Published Reports/Deeds information as of 2004. It is described as 'Kennedy-Jenks groundwater recharge...

  1. Comparison of groundwater recharge estimation techniques in an alluvial aquifer system with an intermittent/ephemeral stream (Queensland, Australia)

    Science.gov (United States)

    King, Adam C.; Raiber, Matthias; Cox, Malcolm E.; Cendón, Dioni I.

    2017-09-01

    This study demonstrates the importance of the conceptual hydrogeological model for the estimation of groundwater recharge rates in an alluvial system interconnected with an ephemeral or intermittent stream in south-east Queensland, Australia. The losing/gaining condition of these streams is typically subject to temporal and spatial variability, and knowledge of these hydrological processes is critical for the interpretation of recharge estimates. Recharge rate estimates of 76-182 mm/year were determined using the water budget method. The water budget method provides useful broad approximations of recharge and discharge fluxes. The chloride mass balance (CMB) method and the tritium method were used on 17 and 13 sites respectively, yielding recharge rates of 1-43 mm/year (CMB) and 4-553 mm/year (tritium method). However, the conceptual hydrogeological model confirms that the results from the CMB method at some sites are not applicable in this setting because of overland flow and channel leakage. The tritium method was appropriate here and could be applied to other alluvial systems, provided that channel leakage and diffuse infiltration of rainfall can be accurately estimated. The water-table fluctuation (WTF) method was also applied to data from 16 bores; recharge estimates ranged from 0 to 721 mm/year. The WTF method was not suitable where bank storage processes occurred.

  2. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    Science.gov (United States)

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-10-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  3. Groundwater Recharge Estimation And Water Resources Assessment In A Tropical Crystalline Basement Aquifer

    NARCIS (Netherlands)

    Nyagwambo, N.L.

    2006-01-01

    While most groundwater recharge estimation methods give reasonable long-term annual average estimates very few if any methods offer guidance on monthly recharge. In crystalline basement aquifers (CBAs) the problem is compounded by the high seasonal, intra-annual and inter-annual variability. The chl

  4. Changes in projected spatial and seasonal groundwater recharge in the upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.

  5. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA

    Science.gov (United States)

    Sophocleous, M.

    2005-01-01

    Sustainable use of groundwater must ensure not only that the future resource is not threatened by overuse, but also that natural environments that depend on the resource, such as stream baseflows, riparian vegetation, aquatic ecosystems, and wetlands are protected. To properly manage groundwater resources, accurate information about the inputs (recharge) and outputs (pumpage and natural discharge) within each groundwater basin is needed so that the long-term behavior of the aquifer and its sustainable yield can be estimated or reassessed. As a first step towards this effort, this work highlights some key groundwater recharge studies in the Kansas High Plains at different scales, such as regional soil-water budget and groundwater modeling studies, county-scale groundwater recharge studies, as well as field-experimental local studies, including some original new findings, with an emphasis on assumptions and limitations as well as on environmental factors affecting recharge processes. The general impact of irrigation and cultivation on recharge is to appreciably increase the amount of recharge, and in many cases to exceed precipitation as the predominant source of recharge. The imbalance between the water input (recharge) to the High Plains aquifer and the output (pumpage and stream baseflows primarily) is shown to be severe, and responses to stabilize the system by reducing water use, increasing irrigation efficiency, adopting water-saving land-use practices, and other measures are outlined. Finally, the basic steps necessary to move towards sustainable use of groundwater in the High Plains are delineated, such as improving the knowledge base, reporting and providing access to information, furthering public education, as well as promoting better understanding of the public's attitudinal motivations; adopting the ecosystem and adaptive management approaches to managing groundwater; further improving water efficiency; exploiting the full potential of dryland and

  6. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D

    Science.gov (United States)

    Leterme, B.; Mallants, D.; Jacques, D.

    2012-08-01

    The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from -42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain), considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra) climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from -69% to -14% compared to the present-day climate.

  7. Evaluating storm-scale groundwater recharge dynamics with coupled weather radar data and unsaturated zone modeling

    Science.gov (United States)

    Nasta, P.; Gates, J. B.; Lock, N.; Houston, A. L.

    2013-12-01

    Groundwater recharge rates through the unsaturated zone emerge from complex interactions within the soil-vegetation-atmosphere system that derive from nonlinear relationships amongst atmospheric boundary conditions, plant water use and soil hydraulic properties. While it is widely recognized that hydrologic models must capture soil water dynamics in order to provide reliable recharge estimates, information on episodic recharge generation remains uncommon, and links between storm-scale weather patterns and their influence on recharge is largely unexplored. In this study, the water balance of a heterogeneous one-dimensional soil domain (3 m deep) beneath a typical rainfed corn agro-ecosystem in eastern Nebraska was numerically simulated in HYDRUS-1D for 12 years (2001-2012) on hourly time steps in order to assess the relationships between weather events and episodic recharge generation. WSR-88D weather radar reflectivity data provided both rainfall forcing data (after estimating rain rates using the z/r ratio method) and a means of storm classification on a scale from convective to stratiform using storm boundary characteristics. Individual storm event importance to cumulative recharge generation was assessed through iterative scenario modeling (773 total simulations). Annual cumulative recharge had a mean value of 9.19 cm/yr (about 12 % of cumulative rainfall) with coefficient of variation of 73%. Simulated recharge generation events occurred only in late winter and spring, with a peak in May (about 35% of total annual recharge). Recharge generation is observed primarily in late spring and early summer because of the combination of high residual soil moisture following a winter replenishment period, heavy convective storms, and low to moderate potential evapotranspiration rates. During the growing season, high rates of root water uptake cause rapid soil water depletion, and the concurrent high potential evapotranspiration and low soil moisture prevented recharge

  8. Impact of climate on groundwater recharge in the crystalline basement rocks aquifer of Northern Ghana

    Science.gov (United States)

    Koffi, K. V.

    2015-12-01

    Water is the cornerstone of human life and for all economic developments. West Africa and specifically Ghana are no exception to this reality.Northern Ghana is characterized by a semi-arid climate, with prolonged dry season (7 months of very few rainfall) leading to the drying up of many rivers and streams. In addition, rainfall is highly variable in space and time. Therefore, surface water is unreliable and insufficient to meet the water demands for socio-economic development in this area. As a result, the area is heavily dependent on groundwater for domestic water supply as well as for dry season irrigation of vegetables (cash crops).However, aquifers in northern Ghana are dominantly the hard rock type (Crystalline basement rock). This aquifer has no primary porosity and may not be able to sustain the increasing demand on the resource. Further, climate change may worsen the situation as recharge is dependent on rainfall in northern Ghana. Therefore, it is important to understand exactly how climate change will impact on recharge to the groundwater for sustainable development and management of the resource.Previous groundwater studies in Northern Ghana barely analyzed the combined impacts of Climate change on the recharge to the groundwater. This research is aimed at determining the current relationship between groundwater recharge and rainfall and to use the relationships to determine the impacts of changes in climate on the groundwater recharge. The results will inform plans and strategies for sustainably managing groundwater resources in Ghana and the Volta basin.

  9. Groundwater recharge and time lag measurement through Vertosols using impulse response functions

    Science.gov (United States)

    Hocking, Mark; Kelly, Bryce F. J.

    2016-04-01

    Throughout the world there are many stressed aquifers used to support irrigated agriculture. The Condamine River catchment (southern Queensland, Australia) is one example of a globally significant agricultural region where groundwater use has exceeded recharge over the last 50 years. There is a high dependence on groundwater in this catchment, because yearly rainfall is highly variable, and actual evapotranspiration often exceeds rainfall. To better manage the aquifer there is a need to correctly conceptualise the primary inputs and outputs of the system, and characterise the lags in system response to all forcings. In catchment models it is particularly important to correctly proportion diffuse (areal) rainfall recharge and to account for the lag between rainfall and recharge at the water table. Throughout large portions of the Condamine Catchment, groundwater levels are now 20 or more metres below the ground surface. This study aimed to better quantify the lag between rainfall and recharge at the water table using the predefined impulse response function in continuous time method (PIRFICT; von Asmuth et al., 2002; von Asmuth, 2012). The PIRFICT method was applied to 255 multi-decadal groundwater level data sets throughout the catchment. Inputs into the modelling include rainfall, irrigation deep drainage, stream water level, evapotranspiration, and groundwater extractions. As an independent check the PIRFICT model derived diffuse recharge estimates are compared to point lysimeter and geochemical recharge estimates in the Vertosol soils within this catchment. It is estimated using the PIRFICT method that in the Condamine Catchment between 1990 and 2012, the mean rain-derived groundwater recharge is 4.4 mm/year. Mean groundwater response from rainfall was determined to be 5.3 years: range 188 days to 48 years. The recharge estimates are consistent with both geochemical and lysimeter point measurements of recharge. It is concluded that where extensive groundwater

  10. Dug Well Recharge Method for Insitu Mitigation of Fluoride Contamination in Groundwater

    Science.gov (United States)

    Ganesan, G.; Lakshmanan, E.; Gunalan, J.

    2016-12-01

    Groundwater with fluoride concentration exceeding 1.5 mg/l is not suitable for drinking water supply as it may cause health issues such as dental and skeletal fluorosis to humans. Several million people around the world has been affected by fluorosis. The objective of the study is to mitigate the problem of fluoride contamination in groundwater by increasing groundwater recharge through a dug well recharge system. The study was carried out in a part of Vaniyar river basin, northwest Tamil Nadu, India where fluorosis is prevalent. A cylindrical pit of 1m diameter and 1.5 m height was constructed during May 2014 at a distance of about 4 m from a dug well existing in this area. This cylindrical pit was divided into 3 compartments and one of them was filled with gravel and one with sand. The third compartment was kept empty for inspection and maintenance. The rainfall collected in a funnel shaped depression was allowed to pass through these compartments to discharge in the nearby dug well through a pipe. The concentration of the fluoride in groundwater from this well was had been monitoring on bi-monthly basis from the year 2012 to 2014. After construction of dug well recharge system, the groundwater level has raised by about 5 m and the fluoride concentration has decreased from 3.1 mg/l to 1.44 mg/l due to recharge. The concentration of fluoride and groundwater level is being monitored on daily basis from June 2014. It is evident that the recharge system constructed is working well and the concentration of fluoride in groundwater is within the permissible limit. The advantage of this dug well recharge system is its low cost and the ease of implementation. Thus this pilot study on dug well recharge system demonstrated it's potential in reducing the concentration of fluoride in groundwater which is more beneficial to the society as they cannot afford the well proven water treatment methods.

  11. An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

    Science.gov (United States)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-08-01

    The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

  12. Groundwater Diffuse Recharge and its Response to Climate Changes in Semi-Arid Northwestern China

    Directory of Open Access Journals (Sweden)

    Lin Deng

    2015-01-01

    Full Text Available Understanding the processes and rates of groundwater recharge in arid and semi-arid areas is crucial for utilizing and managing groundwater resources sustainably. We obtained three chloride profiles of the unsaturated-zone in the desert/loess transition zone of northwestern China and reconstructed the groundwater recharge variations over the last 11, 21, and 37 years, respectively, using the generalized chloride mass balance (GCMB method. The average recharge rates were 43.7, 43.5, and 45.1 mm yr-1, respectively, which are similar to those evaluated by the chloride mass balance (CMB or GCMB methods in other semi-arid regions. The results indicate that the annual recharge rates were not in complete linear proportion to the corresponding annual precipitations, although both exhibited descending tendencies on the whole. Comparisons between the daily precipitation aggregate at different intensity and recharge rates reveal that the occurrence of relatively heavy daily precipitation per year may contribute to such nonlinearity between annual precipitation and recharge. The possible influences of vegetation cover alterations following precipitation change cannot be excluded as well. The approximately negative correlation between the average annual recharge and temperature suggests that changes in temperature have had significant influences on recharge.

  13. Groundwater recharge in the tropics: a pan-African analysis of observations

    Science.gov (United States)

    Taylor, R. G.

    2015-12-01

    Groundwater is a vital source of freshwater in sub-Saharan Africa where rainfall and river discharge are unreliable and per-capita reservoir storage is among the lowest in the world. Groundwater is widely considered a distributed, low-cost and climate-resilient option to meet rapidly growing freshwater demand and alleviate endemic poverty by expanding access to safe water and improving food security through irrigation. Recent research indicates that groundwater storage in Africa is about 100 times greater than annual river discharge yet major uncertainties remain in the magnitude and nature of replenishment through recharge as well as the impacts of land-use and climate change. Here, we present newly compiled, multi-decadal observations of groundwater levels from 5 countries (Benin, Burkina Faso, Niger, Tanzania, Uganda) and paired measurements of stable isotope ratios of O and H in precipitation and groundwater at 11 locations. These data reveal both a distinct bias in groundwater recharge to intensive rainfall and rapid recharge pathways (e.g. focused, macropore flow) that are inconsistent with conventional recharge models assuming pore-matrix flow defined by the Darcy-Richards equation. Further the records highlight the substantial influence of land-use change (e.g. conversion of natural, perennial cover to croplands) on groundwater recharge. The compiled observations also provide, for the first time, a pan-African baseline to evaluate the performance of large-scale hydrological models and Land-Surface Models incorporating groundwater in this region. Our results suggest that the intensification of precipitation brought about by global warming favours groundwater replenishment in sub-Saharan Africa. As such, groundwater may prove to be a climate-resilient source of freshwater in the tropics, enabling adaptive strategies such as groundwater-fed irrigation and sustaining domestic and industrial water supplies.

  14. Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table.

    Science.gov (United States)

    Schütz, Kirsten; Nagel, Peter; Vetter, Walter; Kandeler, Ellen; Ruess, Liliane

    2009-01-01

    Subsurface microorganisms are crucial for contaminant degradation and maintenance of groundwater quality. This study investigates the microbial biomass and community composition [by phospholipid fatty acids (PLFAs)], as well as physical and chemical soil characteristics at woodland flooding sites of an artificial groundwater recharge system used for drinking water production. Vertical soil profiles to c. 4 m at two watered and one nonwatered site were analyzed. The microbial biomass was equal in watered and nonwatered sites, and considerable fractions (25-42%) were located in 40-340 cm depth. The microbial community structure differed significantly between watered and nonwatered sites, predominantly below 100 cm depth. Proportions of the bacterial PLFAs 16:1omega5, 16:1omega7, cy17:0 and 18:1omega9t, and the long-chained PLFAs 22:1omega9 and 24:1omega9 were more prominent at the watered sites, whereas branched, saturated PLFAs (iso/anteiso) dominated at the nonwatered site. PLFA community indices indicated stress response (trans/cis ratio), higher nutrient availability (unsaturation index) and changes in membrane fluidity (iso/anteiso ratio) due to flooding. In conclusion, water recharge processes led to nutrient input and altered environmental conditions, which resulted in a highly active and adapted microbial community residing in the vadose zone that effectively degraded organic compounds.

  15. Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

    Science.gov (United States)

    Neff, K.; Meixner, T.; De La Cruz, L.

    2014-12-01

    Groundwater recharge is the primary source of aquifer replenishment, an important source of freshwater for human consumption and riparian area sustainability in semi-arid regions. It is critical to understand the current groundwater recharge regimes in groundwater basins throughout the Western U.S. and how those regimes might shift in the face of climate change, land use change and management manipulations that impact the availability and composition of groundwater resources. Watersheds in the Basin and Range Province are characterized by a variable precipitation regime of wet winters, and variable summer precipitation. The horst-graben structure of these basins lends itself to orographic and continental precipitation effects that make mountain block and mountain front recharge critical components of annual recharge. The current assumption is that the relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation dominating in the northern parts of the region, and summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon extends its influence. To test this hypothesis, stable water isotope data of groundwater and precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to characterize and compare groundwater recharge regimes throughout the region. Preliminary stable water isotope results from the southernmost Rio San Miguel Basin in Sonora, Mexico indicate that groundwater is composed of 64%±14% summer monsoon precipitation, in contrast to more northern basins where winter precipitation is the source of 79-90% of basin groundwater.

  16. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    NARCIS (Netherlands)

    Eeman, S.; Zee, van der S.E.A.T.M.; Leijnse, A.; Louw, de P.G.B.; Maas, C.

    2012-01-01

    In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not co

  17. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  18. Evaluation of groundwater recharge in Choushui River alluvial fan and Mingchu Basin for specific rainfall events

    Science.gov (United States)

    Lin, Zong Sheng; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    Sound groundwater resources planning and management are lack in the Choushui River alluvial fan, resulting in the occurrence of serious land subsidence and seawater intrusion. Even the disasters induced by overpumping of groundwater pose a potential threat on the Taiwan High Speed Rail. In addition to improving the water resources management in the alluvial fan, the development of groundwater resources in the neighboring hills. Mingchu Basin, which is located on the midstream segment of the Choushui River and comprised of the gravel formation of Pleistocene, is an effective solution to resolve the problem in limited water resources. Moreover, the Dongpurui River and Qingshui River both converge into Choushui River in this basin. Because of wide drainage areas and good hydrogeological conditions, the Mingchu Basin is considered a high potential recharging region of groundwater. This work is to evaluate the groundwater recharge in the Choushui River alluvial fan and Mingchu Basin, using the WASH123D model equipped with the Groundwater Modeling System (GMS) to simulate the interaction of surface water and groundwater for specific five rainfall events. This study particularly focuses on the simulation of the groundwater flow, and evaluates the effect of different rainfall events on the groundwater recharge. First, to meet in-situ hydrogeological structure and hydraulic parameters, the GMS is used to construct hydrogeological database, mesh, hydrogeological parameters, initial condition and boundary conditions. Then, simulated parameters, such as hydraulic conductivity and pumping rates, need to be calibrated and verified in the model. After the calibration and verification, the simulated groundwater flow can reflect actual groundwater situation. Finally, when specific five rainfall events impose on the ground, groundwater recharge can be determined using the groundwater model.

  19. Analytical models for the groundwater tidal prism and associated benthic water flux

    Science.gov (United States)

    King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.

    2010-01-01

    The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.

  20. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed

  1. Applicability of Artificial Recharge of Groundwater in the Yongding River Alluvial Fan in Beijing through Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    Qichen Hao; Jingli Shao; Yali Cui; Zhenhua Xie

    2014-01-01

    A groundwater transient flow model was developed to evaluate the applicability and ef-fectiveness of artificial recharge scenarios in the middle-upper part of the Yongding River alluvial fan in Beijing. These scenarios were designed by taking into account different types of recharge facilities and their infiltration rate with the Middle Route Project for South-to-North Water Transfer (MRP) as the recharge water source. The simulation results suggest that: (1) the maximum amount of artificial recharge water, for scenario I, would be 127.42×106 m3 with surface infiltration facilities;and would be 243.48×106 m3 for scenario II with surface infiltration and recharge wells under the constraint of the upper limit of groundwater;(2) with preferred pattern of recharge facilities, groundwater levels in both optimized recharge scenarios would not exceed the upper limit within the given recharge period;and (3) implementation of the recharge scenarios would efficiently increase the aquifer replenishment and the groundwater budget will change from-54.11×106 to 70.89×104 and 183.36×104 m3, respectively. In addi-tion, under these two scenarios groundwater level would rise up to 30 and 34 m, respectively, without increasing the amount of evaporation. The simulation results indicate that the proposed recharge sce-narios are practically feasible, and artificial recharge can also contribute to an efficient recovery of groundwater storage in Beijing.

  2. Understanding Groundwater Storage Changes and Recharge in Rajasthan, India through Remote Sensing

    Directory of Open Access Journals (Sweden)

    Pennan Chinnasamy

    2015-10-01

    Full Text Available Groundwater management practices need to take hydrogeology, the agro-climate and demand for groundwater into account. Since agroclimatic zones have already been demarcated by the Government of India, it would aid policy makers to understand the status of groundwater recharge and discharge in each agroclimatic zone. However, developing effective policies to manage groundwater at agroclimatic zone and state levels is constrained due to a paucity of temporal data and information. With the launch of the Gravity Recovery and Climate Experiment (GRACE mission in 2002, it is now possible to obtain frequent data at broad spatial scales and use it to examine past trends in rain induced recharge and groundwater use. In this study, the GRACE data were used to estimate changes to monthly total water storage (TWS and groundwater storage in different agroclimatic zones of Rajasthan, India. Furthermore, the long-term annual and seasonal groundwater storage trends in the state were estimated using the GRACE data and the trends were compared with those in rainfall data. The methodology based on GRACE data was found to be useful in detecting large scale trends in groundwater storage changes covering different agroclimatic zones. The analysis of data shows that groundwater storage trends depend on rainfall in previous years and, therefore, on the antecedent moisture conditions. Overall, the study indicates that if suitable groundwater recharge methods and sites are identified for the state, there is potential to achieve more groundwater recharge than what is currently occurring and, thus, enhancing the availability of water for irrigated agriculture.

  3. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  4. Using atmospheric tracers to reduce uncertainty in groundwater recharge areas.

    Science.gov (United States)

    Starn, J Jeffrey; Bagtzoglou, Amvrossios C; Robbins, Gary A

    2010-01-01

    A Monte Carlo-based approach to assess uncertainty in recharge areas shows that incorporation of atmospheric tracer observations (in this case, tritium concentration) and prior information on model parameters leads to more precise predictions of recharge areas. Variance-covariance matrices, from model calibration and calculation of sensitivities, were used to generate parameter sets that account for parameter correlation and uncertainty. Constraining parameter sets to those that met acceptance criteria, which included a standard error criterion, did not appear to bias model results. Although the addition of atmospheric tracer observations and prior information produced similar changes in the extent of predicted recharge areas, prior information had the effect of increasing probabilities within the recharge area to a greater extent than atmospheric tracer observations. Uncertainty in the recharge area propagates into predictions that directly affect water quality, such as land cover in the recharge area associated with a well and the residence time associated with the well. Assessments of well vulnerability that depend on these factors should include an assessment of model parameter uncertainty. A formal simulation of parameter uncertainty can be used to delineate probabilistic recharge areas, and the results can be expressed in ways that can be useful to water-resource managers. Although no one model is the correct model, the results of multiple models can be evaluated in terms of the decision being made and the probability of a given outcome from each model.

  5. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics

    Science.gov (United States)

    Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.

    2016-02-01

    Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people.

  6. Groundwater recharge and flow on Montserrat, West Indies: Insights from groundwater dating

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-09-01

    New hydrological insights: δ2H and δ18O analysis indicates uniform recharge elevations for groundwaters on Montserrat. CFC-11 and CFC-12 analysis reveals age differences between isotopically similar, high elevation springs and low elevation aquifer waters. Low CFC concentrations within a confined low elevation aquifer suggest water ages of ∼45 years. High CFC concentrations in the northern and western springs are explained by rapid infiltration of cool (high CFC concentration rainfall into saturated compartments, with flow through the vadose zone to the phreatic zone dominated by compartment flow. Lower CFC concentrations in a number of aligned warmer springs suggest a contribution from older, warmer waters from depth. Temperatures and CFC concentrations indicate older component supply rates of up to 8 L/s to the highest yielding spring on Centre Hills, with contributions of up to 75% in the warmest spring waters.

  7. Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China

    Science.gov (United States)

    Zhu, G. F.; Li, Z. Z.; Su, Y. H.; Ma, J. Z.; Zhang, Y. Y.

    2007-02-01

    SummaryA hydrochemical investigation was conducted in the Minqin Basin to identify the groundwater evolution and recharge in the aquifer. The mBr/Cl ratio is strongly depleted (average 0.000451) compared with sea water (0.0035), indicating an evaporite origin. The ionic ration plot, saturation index (SI), and chloro alkaline indices (CAI) suggest that the dissolution of halite, the glauberite, gypsum, dolomite and calcite determine Na +, Cl -, Ca 2+, Mg 2+, SO42-, and HCO3- chemistry, but other processes, such as Na + exchange for Ca 2+ and Mg 2+, and calcite precipitation also contribute to the water composition. The δ18O and δ2H in precipitation near the study area are linearly correlated, similar to that for the world meteoric water line (WMWL), with an equation of δ2H = 7.49 δ18O + 5.11 ( r2 = 0.97). According to radiocarbon residence time estimates, the deep groundwater is approximately 40 ka old, and was recharged during a period when the climate was wetter and colder. The radiocarbon content of shallow groundwater shows a clear evolution along the groundwater flow path. From the beginning of the groundwater flow path to ˜31 km the radiocarbon values are >73.6 pmc, whereas beyond this point the values are <42.9 pmc. Based on radiocarbon content, the shallow groundwater is older than 1 ka, and represents palaeowaters mixed with a limited quality of modern recharge. The rain-fed groundwater direct recharge was estimated by chloride mass balance (CMB) method to range from 1.55 to 1.64 mm yr -1, with a mean value of 1.6 mm yr -1. This value represents about 1.5% of local rainfall. The direct recharge volumes is about 0.666 × 10 8 m 3 yr -1. Indirect recharge volumes by the surface water is about 0.945 × 10 8 m 3 yr -1. The total natural recharge in the Minqin Basin is 1.6 × 10 8 m 3 yr -1, whereas the groundwater abstraction has reached 11.6 × 10 8 m 3 yr -1, far exceeding the groundwater natural recharge.

  8. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques

    Directory of Open Access Journals (Sweden)

    I.P. Senanayake

    2016-01-01

    Full Text Available The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources. Therefore, management of available groundwater resources is critical, to fulfil potable water requirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Hambantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, lithology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49% of Ambalantota area.

  9. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques

    Institute of Scientific and Technical Information of China (English)

    I.P. Senanayake; D.M.D.O.K. Dissanayake; B.B. Mayadunna; W.L. Weerasekera

    2016-01-01

    The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources. Therefore, management of available groundwater resources is critical, to fulfil potable water re-quirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Ham-bantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, li-thology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49%of Ambalantota area.

  10. Estimation of Groundwater Recharge Using Tracers and Numerical Modeling in the North China Plain

    Directory of Open Access Journals (Sweden)

    Qinghua Wu

    2016-08-01

    Full Text Available Water resource shortage has been a serious problem since the 1980s in the North China Plain (NCP, resulting in plenty of environmental problems. Estimating the groundwater recharge rate accurately is vital for managing groundwater effectively. This study applied several methods, including chloride mass-balance, tracers (bromide and tritium and numerical modeling (Hydrus-1D, to estimate groundwater recharge at three representative sites of the NCP: Zhengding (ZD, Luancheng (LC and Hengshui (HS. The chloride concentration of the soil profile in the ZD site showed that the mean recharge was 3.84 mm/year with the residence time of 105 years for soil water transferring through the vadose area of 45.0 m in depth in the preferential flow model mainly. Considering the influence of preferential flow on the soil water movement in the field scale, the traditional methods (e.g., peak method of bromide and tritium tracers based on piston flow described in the literature could be unsuitable to estimate groundwater recharge in the LC and HS sites, especially in areas with low recharge rates. Therefore, multi-region and mass balance methods were applied in this study. The results of this investigation showed that the mean values of recharge were 124.3 and 18.0 mm/year in the LC and HS sites, respectively, in 2010. Owing to complexity and uncertainty on the surface resulting from the measuring of evapotranspiration, the upper boundary of 1.4 m (under the ground where most of the plant roots did not reach was chosen for the numerical modeling of Hydrus-1D, and the result showed that the mean recharge was 225 mm/year from 2003 to 2007, consistent with the result of tracers in the previous literature. The result also showed that the positive relation of groundwater recharge and the sum of irrigation and rainfall was presented in the spatial and temporal scale. Additionally, human activities promoted the recharge rate, and recharge rates increased with greater

  11. Estimation of future groundwater recharge using climatic analogues and Hydrus-1D

    Science.gov (United States)

    Leterme, B.; Mallants, D.; Jacques, D.

    2012-01-01

    The impact of climate change on groundwater recharge is simulated using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimating groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richard's based soil water balance model Hydrus-1D and meteorological time series from analogue stations. Water balance calculations showed that transition from a temperate oceanic to a warmer subtropical climate without rainfall seasonality is expected to yield a decrease in groundwater recharge (-12% for the chosen representative analogue station of Gijon, Northern Spain). Based on a time series of 24 yr of daily climate data, the long-term average annual recharge decreased from 314 to 276 mm, although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). This is due to a higher soil evaporation (233 mm versus 206 mm) and higher plant transpiration (350 versus 285 mm) under the warmer climate.

  12. Identifying long-term empirical relationships between storm characteristics and episodic groundwater recharge

    Science.gov (United States)

    Tashie, Arik M.; Mirus, Benjamin B.; Pavelsky, Tamlin M.

    2016-01-01

    Shallow aquifers are an important source of water resources and provide base flow to streams; yet actual rates of groundwater recharge are difficult to estimate. While climate change is predicted to increase the frequency and magnitude of extreme precipitation events, the resulting impact on groundwater recharge remains poorly understood. We quantify empirical relations between precipitation characteristics and episodic groundwater recharge for a wide variety of geographic and land use types across North Carolina. We extract storm duration, magnitude, average rate, and hourly weighted intensity from long-term precipitation records over periods of 12-35 years at 10 locations. Using time series of water table fluctuations from nearby monitoring wells, we estimate relative recharge to precipitation ratios (RPR) to identify statistical trends. Increased RPR correlates with increased storm duration, whereas RPR decreases with increasing magnitude, average rate, and intensity of precipitation. Agricultural and urban areas exhibit the greatest decrease in RPR due to increasing storm magnitude, average rate, and intensity, while naturally vegetated areas exhibit a larger increase in RPR with increased storm duration. Though RPR is generally higher during the winter than the summer, this seasonal effect is magnified in the Appalachian and Piedmont regions. These statistical trends provide valuable insights into the likely consequences of climate and land use change for water resources in subtropical climates. If, as predicted, growing seasons lengthen and the intensity of storms increases with a warming climate, decreased recharge in Appalachia, the Piedmont, and rapidly growing urban areas of the American Southeast could further limit groundwater availability.

  13. Identifying long term empirical relationships between storm characteristics and episodic groundwater recharge

    Science.gov (United States)

    Tashie, Arik; Mirus, Benjamin B.; Pavelsky, Tamlin

    2016-01-01

    Shallow aquifers are an important source of water resources and provide base flow to streams; yet actual rates of groundwater recharge are difficult to estimate. While climate change is predicted to increase the frequency and magnitude of extreme precipitation events, the resulting impact on groundwater recharge remains poorly understood. We quantify empirical relations between precipitation characteristics and episodic groundwater recharge for a wide variety of geographic and land use types across North Carolina. We extract storm duration, magnitude, average rate, and hourly weighted intensity from long-term precipitation records over periods of 12–35 years at 10 locations. Using time series of water table fluctuations from nearby monitoring wells, we estimate relative recharge to precipitation ratios (RPR) to identify statistical trends. Increased RPR correlates with increased storm duration, whereas RPR decreases with increasing magnitude, average rate, and intensity of precipitation. Agricultural and urban areas exhibit the greatest decrease in RPR due to increasing storm magnitude, average rate, and intensity, while naturally vegetated areas exhibit a larger increase in RPR with increased storm duration. Though RPR is generally higher during the winter than the summer, this seasonal effect is magnified in the Appalachian and Piedmont regions. These statistical trends provide valuable insights into the likely consequences of climate and land use change for water resources in subtropical climates. If, as predicted, growing seasons lengthen and the intensity of storms increases with a warming climate, decreased recharge in Appalachia, the Piedmont, and rapidly growing urban areas of the American Southeast could further limit groundwater availability.

  14. Impact of artificial recharge on dissolved noble gases in groundwater in California.

    Science.gov (United States)

    Cey, Bradley D; Hudson, G Bryant; Moran, Jean E; Scanlon, Bridget R

    2008-02-15

    Dissolved noble gas concentrations in groundwater can provide valuable information on recharge temperatures and enable 3H-3He age-dating with the use of physically based interpretive models. This study presents a large (905 samples) data set of dissolved noble gas concentrations from drinking water supply wells throughout California, representing a range of physiographic, climatic, and water management conditions. Three common interpretive models (unfractionated air, UA; partial re-equilibration, PR; and closed system equilibrium, CE) produce systematically different recharge temperatures or ages; however, the ability of the different models to fit measured data within measurement uncertainty indicates that goodness-of-fit is not a robust indicator for model appropriateness. Therefore caution is necessary when interpreting model results. Samples from multiple locations contained significantly higher Ne and excess air concentrations than reported in the literature, with maximum excess air tending toward 0.05 cm3 STP g(-1) (deltaNe approximately 400%). Artificial recharge is the most plausible cause of the high excess air concentrations. The ability of artificial recharge to dissolve greater amounts of atmospheric gases has important implications for oxidation-reduction dependent chemical reactions. Measured gas concentration ratios suggest that diffusive degassing may have occurred. Understanding the physical processes controlling gas dissolution during groundwater recharge is critical for optimal management of artificial recharge and for predicting changes in water quality that can occur following artificial recharge.

  15. Pilot Test of Advanced Treatments Combination of Wastewater for Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    成徐洲; 杨磊; 吴天宝; 甘一苹; 胡俊

    2002-01-01

    To solve the water shortage problem, an artificial groundwater recharge system will be constructed in Beijing for wastewater reuse as a demonstration and training center. Design and operating experience for the demonstration plant was gained through pilot tests of advanced treatment technologies with soil infiltration of well treated secondary effluent. The test results showed that the selected treatment technology meets the recommended water quality criteria for groundwater recharge and the gas chromatography-mass spectrometer (GC/MS) analysis results showed significantly improved water quality.

  16. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  17. Hydrometeorology of the Dhofar cloud forest and its implications for groundwater recharge

    Science.gov (United States)

    Friesen, J.; Mueller, T. H.; Zink, M.; Bawain, A. M., Sr.; Hildebrandt, A.

    2015-12-01

    Cloud forests have the ability to harvest cloud water or horizontal precipitation in addition to rainfall and, through rainfall re-distribution, provide markedly different infiltration and therefore recharge behavior. Forest interception studies required to formulate interception processes and to quantify the recharge relevant net precipitation are, however, often only possible at point or experimental plot scale and limited to the studied tree species. Groundwater recharge, in contrast, is often linked to groundwater aquifer boundaries and thus is located at the other end of the spatial scale. To be able to utilize findings from ecohydrological site studies for regional groundwater studies we regionalize field site studies through cloud forest distribution and rainfall interpolation in a semi-arid, data scarce region heavily dependent on groundwater resources. Through different rainfall scenarios, based on regular precipitation and on cloud forest modified precipitation, for two mountainous groundwater recharge catchments we can show that even moderately forested catchments provide up to 1/3 more precipitation through cloud water.

  18. Groundwater Recharge Modeling in Azraq Basin (Jordan) Considering the Unsaturated Flow Components

    Science.gov (United States)

    Sharif, M. Al; Jazzar, T. Al

    2009-04-01

    Water resources in Azraq basin at the northeastern part of Jordan are at critical juncture, due to the continual and excessive abstraction of groundwater accompanied with small amounts of groundwater recharge by precipitation, and high rates of evaporation losses over the entire basin. Groundwater recharge from precipitation over the basin was estimated using soil water balance. It was found that only about 2% to 3 % of annual average rainfall infiltrates ground surface to reach the shallow aquifer. The three dimensional finite difference groundwater flow model MODFLOW (Processing Modflow Pro, version7) was utilized in order to simulate groundwater flow in the basin. Steady state was calibrated using hydraulic conductivity and flows. The calibrated hydraulic conductivity ranged between 0.1 m/day to 7.0 m/day, the system water balance for the steady state showed that spring discharge from the basin was about 15.0 MCM/yr, groundwater recharge by precipitation was about 9.5 MCM/yr, and the trans-boundaries inflow was 5.5 MCM/yr. Transient state was also calibrated using the specific yield ranged between 0.02 to 0.4. Water balance for the year 2002 showed that there are about 40 MCM/yr as water deficit and a maximum drawdown of about 22 m occur in the well field area. Groundwater recharge at five earth dams have been simulated starting from 1995, it was shown that water deficit that occur in 2002 will decreases by about 15 MCM/yr, drawdown has been slightly affected by these recharge dams. This was attributed to the high abstraction rate at the well field area; the second reason is that the locations of these earth dams are far from the well field area. The calibrated model was used to predict the aquifer future subjected to different scenarios, four scenarios were tested to verify the model ability to be a prediction tool. These scenarios showed that continuing with the current abstraction rate which is 57 MCM/yr until year 2025 will lead to an increase of the

  19. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    Science.gov (United States)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  20. Characterizing In Situ Uranium and Groundwater Flux

    Science.gov (United States)

    Cho, J.; Newman, M. A.; Stucker, V.; Peacock, A.; Ranville, J.; Cabaniss, S.; Hatfield, K.; Annable, M. D.; Klammler, H.; Perminova, I. V.

    2010-12-01

    The goal of this project is to develop a new sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of uranium and groundwater fluxes. The sensor uses two sorbents and resident tracers to measure uranium flux and specific discharge directly; but, sensor principles and design should also apply to fluxes of other radionuclides. Flux measurements will assist with obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) and further advance conceptual and computational models for field scale simulations. Project efforts will expand our current understanding of how field-scale spatial variations in uranium fluxes and those for salient electron donor/acceptors, and groundwater are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The new sensor uses an anion exchange resin to measure uranium fluxes and activated carbon with resident tracers to measure water fluxes. Several anion-exchange resins including Dowex 21K and 21K XLT, Purolite A500, and Lewatit S6328 were tested as sorbents for capturing uranium on the sensor and Lewatit S6328 was determined to be the most effective over the widest pH range. Four branched alcohols proved useful as resident tracers for measuring groundwater flows using activated carbon for both laboratory and field conditions. The flux sensor was redesigned to prevent the discharge of tracers to the environment, and the new design was tested in laboratory box aquifers and the field. Geochemical modeling of equilibrium speciation using Visual Minteq and an up-to-date thermodynamic data base suggested Ca-tricarbonato-uranyl complexes predominate under field conditions, while calculated uranyl ion activities were sensitive to changes in pH, dissolved inorganic carbon (DIC) and alkaline earth

  1. GIS and SBF for estimating groundwater recharge of a mountainous basin in the Wu River watershed, Taiwan

    Indian Academy of Sciences (India)

    Hsin-Fu Yeh; Hung-I Lin; Shing-Tsz Lee; Min-Hsiang Chang; Kuo-Chin Hsu; Cheng-Haw Lee

    2014-04-01

    The temporal and spatial distributions of precipitation are extremely uneven; so, careful management of water resources in Taiwan is crucial. The long-term overexploitation of groundwater resources poses a challenge to water resource management in Taiwan. However, assessing groundwater resources in mountainous basins is challenging due to limited information. In this study, a geographic information system (GIS) and stable base-flow (SBF) techniques were used to assess the characteristics of groundwater recharge considering the Wu River watershed in central Taiwan as a study area. First, a GIS approach was used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge were obtained from aerial photos, geological maps, a land use database, and field verification. Second, the SBF was used to estimate the groundwater recharge in a mountainous basin scale. The concept of the SBF technique was to separate the base-flow from the total streamflow discharge in order to obtain a measure of groundwater recharge. The SBF technique has the advantage of integrating groundwater recharge across an entire basin without complex hydro-geologic modelling and detailed knowledge of the soil characteristics. In this study, our approach for estimating recharge provides not only an estimate of how much water becomes groundwater, but also explains the characteristics of a potential groundwater recharge zone.

  2. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by interannual variations in recharge

    Science.gov (United States)

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-01-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe ) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three-year study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 g/yr to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 g/yr to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 cm/month to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite’s method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously, with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  3. Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge

    Directory of Open Access Journals (Sweden)

    Móricz N

    2016-10-01

    Full Text Available Groundwater uptake of vegetation in discharge regions is known to play an important role, e.g., in the Hungarian Great Plain. Nevertheless, only little detailed monitoring of water table fluctuations and groundwater uptake (ETgw were reported under varying hydrologic conditions and vegetation cover. In this study, results of water table monitoring under forest plantations and adjacent corn plots in discharge and recharge regions were analyzed to gain better understanding of the relation of vegetation cover to groundwater uptake. A poplar (Populus tremula plantation and adjacent corn field plot were surveyed in a local discharge area, while a black locust (Robinia pseudoacacia plantation and adjacent corn field plot were analyzed in a recharge area. The water table under the poplar plantation displayed a night-time recovery in the discharge region, indicating significant groundwater supply. In this case an empirical version of the water table fluctuation method was used for calculating the ETgw that included the groundwater supply. The mean ETgw of the poplar plantation was 3.6 mm day-1, whereas no water table fluctuation was observed at the nearby corn plot. Naturally, the root system of the poplar was able to tap the groundwater in depths of 3.0-3.3 m while the shallower roots of the corn did not reach the groundwater reservoir in depths of 2.7-2.8 m. In the recharge zone the water table under the black locust plantation showed step-like changes referring to the lack of groundwater supply. The mean ETgw was 0.7 mm day-1 (groundwater depths of 3.0-3.2 m and similarly no ETgw was detected at the adjacent corn plot with groundwater depths between 3.2 and 3.4 m. The low ETgw of the young black locust plantation was due to the lack of groundwater supply in recharge area, but also the shallow root system might have played a role. Our results suggest that considerations should be given to local estimations of ETgw from water table measurements that

  4. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    Science.gov (United States)

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  5. Recharge source identification using isotope analysis and groundwater flow modeling for Puri city in India

    Science.gov (United States)

    Nayak, P. C.; Vijaya Kumar, S. V.; Rao, P. R. S.; Vijay, T.

    2016-11-01

    The holy city of Lord Jagannath is situated on the sea shore of the Bay of Bengal in Odisha state in India. Puri is a city of high religious importance and heritage value, details of the rituals, fairs, and festivals, and related aspects are covered extensively. It is found that water levels in two wells (Ganga and Yamuna) are declining and the causes are studied by undertaking modeling study of rainfall-recharge processes, surface water-groundwater interactions, and increasing demands due to urbanization at basin scale. Hydrochemical analysis of groundwater samples indicates that pH value is varying from 7 to 8.4 and electrical conductivity (EC) is found in between 238 and 2710 μmhos/cm. The EC values indicate that the shallow groundwater in Puri is not saline. Stable isotopic signatures of O-18, Deuterium indicate two different sources are active in the city area. In most of the handpumps, water recharged by the surface water sources. From the current investigation, it is evident that in a few handpumps and most of the dug-wells, isotopic signatures of water samples resembles with local precipitation. The groundwater recharge is taking place from the north-southern direction. Visual MODFLOW has been used for studying groundwater aspects and different scenarios have been developed. It is suggested to maintain water level in Samang Lake to restore depletion in groundwater level in two wells.

  6. A water-budget model and estimates of groundwater recharge for Guam

    Science.gov (United States)

    Johnson, Adam G.

    2012-01-01

    On Guam, demand for groundwater tripled from the early 1970s to 2010. The demand for groundwater is anticipated to further increase in the near future because of population growth and a proposed military relocation to Guam. Uncertainty regarding the availability of groundwater resources to support the increased demand has prompted an investigation of groundwater recharge on Guam using the most current data and accepted methods. For this investigation, a daily water-budget model was developed and used to estimate mean recharge for various land-cover and rainfall conditions. Recharge was also estimated for part of the island using the chloride mass-balance method. Using the daily water-budget model, estimated mean annual recharge on Guam is 394.1 million gallons per day, which is 39 percent of mean annual rainfall (999.0 million gallons per day). Although minor in comparison to rainfall on the island, water inflows from water-main leakage, septic-system leachate, and stormwater runoff may be several times greater than rainfall at areas that receive these inflows. Recharge is highest in areas that are underlain by limestone, where recharge is typically between 40 and 60 percent of total water inflow. Recharge is relatively high in areas that receive stormwater runoff from storm-drain systems, but is relatively low in urbanized areas where stormwater runoff is routed to the ocean or to other areas. In most of the volcanic uplands in southern Guam where runoff is substantial, recharge is less than 30 percent of total water inflow. The water-budget model in this study differs from all previous water-budget investigations on Guam by directly accounting for canopy evaporation in forested areas, quantifying the evapotranspiration rate of each land-cover type, and accounting for evaporation from impervious areas. For the northern groundwater subbasins defined in Camp, Dresser & McKee Inc. (1982), mean annual baseline recharge computed in this study is 159.1 million gallons

  7. Groundwater Recharge Estimation using Low-Cost Observation Techniques and Potential Applications

    Science.gov (United States)

    Holländer, Hartmut; Wang, Zijian; Assefa, Kibreab; Woodbury, Allan

    2016-04-01

    Sustainable groundwater management requests groundwater recharge estimation as a critical quantity. We used physical-based modelling using data from a low-cost weather station and tested the feasibility and robustness of recharge estimation. The method was tested on two locations in British Columbia (B.C.), Canada. The main study was conducted in Southern Abbotsford, B.C. and applications related to water management in future climates and to water usage optimization were conducted in Okanagan Valley, B.C. Recharge was determined using HYDRUS-1D. The meteorological data were recorded by a HOBO weather station for a short observation period (about 1 year) and an existing weather station (Abbotsford A) for long-term study purpose (27 years). The derived soil hydraulic parameters of two undisturbed soil cores were used to characterize the soil. Model performance was evaluated by using observed soil moisture and soil temperature data. A rigorous sensitivity analysis was used to test the robustness of the model. Recharge during the short observation period was estimated at 863 mm and 816 mm. The mean annual recharge was estimated at 848 mm/year, and 859 mm/year based on a time series of 27 years. 80% of precipitation contributed to recharge in hydrologic winter period. The comparison of the recharge estimates with other studies indicates a good agreement. Being able to predict transient recharge estimates, this method can provide a tool for estimates on nutrient leaching which is often controlled by strong precipitation events and rapid infiltration of water and nitrate into the soil. Modeling supports that recharge estimates at high temporal resolution also increase the prediction quality of nitrate leaching. The application for water resources related problems in the Okanagan Valley showed that linking groundwater and surface water using regional groundwater estimates improved calibration of existing groundwater model strongly and that our method is capable to use

  8. Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal

    Science.gov (United States)

    Prada, Susana; Cruz, J. Virgílio; Figueira, Celso

    2016-05-01

    The hydrogeology of volcanic islands remains poorly understood, despite the fact that populations that live on them rely on groundwater as a primary water source. This situation is exacerbated by their complex structure, geological heterogeneity, and sometimes active volcanic processes that hamper easy analysis of their hydrogeological dynamics. Stable isotope analysis is a powerful tool that has been used to assess groundwater dynamics in complex terrains. In this work, stable isotopes are used to better understand the hydrogeology of Madeira Island and provide a case-study that can serve as a basis for groundwater studies in other similar settings. The stable isotopic composition (δ18O and δ2H) of rain at the main recharge areas of the island is determined, as well as the sources and altitudes of recharge of several springs, groundwater in tunnels and wells. The water in tunnels was found to be recharged almost exclusively by rain in the deforested high plateaus, whilst several springs associated with shallow perched aquifers are recharged from rain and cloud water interception by the vegetated slopes. Nevertheless some springs thought to be sourced from deep perched aquifers, recharge in the central plateaus, and their isotopic composition is similar to the water in the tunnels. Recharge occurs primarily during autumn and winter, as evidenced by the springs and tunnels Water Lines (WL). The groundwater in wells appears to originate from runoff from rain that falls along the slopes that infiltrates near the streams' mouths, where the wells are located. This is evident by the evaporation line along which the wells plot. Irrigation water is also a possible source of recharge. The data is compatible with the hydrogeological conceptual model of Madeira. This work also shows the importance of cloud water interception as a net contributor to groundwater recharge, at least in the perched aquifers that feed numerous springs. As the amount of rainfall is expected to

  9. Comparing groundwater recharge and base flow in the Bukmoongol small-forested watershed, Korea

    Indian Academy of Sciences (India)

    E A Combalicer; S H Lee; S Ahn; D Y Kim; S Im

    2008-10-01

    Groundwater recharge and base flow using different investigated methods are simulated in the 15-ha Bukmoongol small-forested watershed located at the southern part of Korea.The WHAT system, PART,RORA,PULSE,BFI,and RAP software are used to estimate groundwater recharge or base flow and base flow index from the measured stream flow.Results show that about 15 –31 per cent of annual rainfall might be contributed for base flow.The watershed groundwater recharge proportions are computed to about 10 –21 per cent during the wet period and 23 –32 per cent for the remainder periods.Mean annual base flow indices vary from 0.25 to 0.76 estimated using different methods. However,the study found out that all methods were significantly correlated with each other.The similarity of various methods is expressed as a weighted relationship provided by the matrix product from the principal component analysis.Overall,the BFI and WHAT software appeared consistent in estimating recharge or base flow,and base flow index under Korea ’s conditions.The case study recommends the application of different models to other watersheds as well as in low-lying areas where most observation groundwater wells are located with available stream flow data.

  10. Groundwater Recharge Evaluation in Semi-Arid Northeast Mexico in Response to Projected Climate Change

    Science.gov (United States)

    Wolaver, B. D.

    2007-12-01

    This research evaluates the effects of projected climate change on mountain recharge in the semi-arid Cuatrocinegas Basin (CCB) of northeast Mexico. The CCB UNESCO Biosphere Reserve is located in Coahuila, Mexico (~27° N, ~102° W) and includes > 500 springs that discharge from a regional flow system to wetlands with > 70 endemic species and to an irrigation network. This study tests the hypothesis that projected climate changes will reduce CCB recharge. In CCB, ~75% of annual precipitation (~220 mm at 700 m, ~400 mm at 2350 m) falls between May and October and ~40% falls during the North American Monsoon in June, July, and August. Environmental isotopes indicate aquifer residence times of > 50 years. Stable isotopes (O and H) show that mountain precipitation (at an elevation of ~1170 to 2350 m) dominates groundwater recharge. Recharge is insignificant at lower- elevation valleys that cover the majority of the study area due to high evapotranspiration rates. A Cl--balance water-budget recharge analysis estimates a spatially distributed recharge rate of ~1 to 3% of precipitation to provide at least 35x106 m3/year spring discharge (as measured in canals that drain dozens of springs). IPCC AR4 climate projections predict an annual temperature increase of 3.0 to 3.5°C and an annual precipitation decrease of 5 to 10% for Subregion CNA (located adjacent to CCB) by 2099. During June to August, models project a temperature increase of 3.5 to 4.0°C and a precipitation increase of 0 to 5%. Although global and regional circulation models evaluate mountain regions poorly, a first-order evaluation of climate projections on CCB recharge is needed input to develop effective long-term groundwater management policies. Climate projections suggest that the minimum elevation at which recharge occurs in CCB may increase by ~615 m to 1785 m, which would limit recharge to the highest mountain elevations. If annual precipitation is reduced by 5 to 10% and temperatures increase as

  11. Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran

    Science.gov (United States)

    Karami, Gholam Hossein; Bagheri, Rahim; Rahimi, Fahimeh

    2016-12-01

    Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55-70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.

  12. Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran

    Science.gov (United States)

    Karami, Gholam Hossein; Bagheri, Rahim; Rahimi, Fahimeh

    2016-08-01

    Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55-70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.

  13. Mitigating agricultural impacts on groundwater using distributed managed aquifer recharge ponds

    Science.gov (United States)

    Schmidt, C. M.; Russo, T. A.; Fisher, A. T.; Racz, A. J.; Wheat, C. G.; Los Huertos, M.; Lockwood, B. S.

    2010-12-01

    Groundwater is likely to become increasingly important for irrigated agriculture due to anticipated changes to the hydrologic cycle associated with climate change. Protecting the quantity and quality of subsurface water supplies will require flexible management strategies that can enhance groundwater recharge. We present results from a study of managed aquifer recharge (MAR) in central coastal California, and propose the use of distributed, small-scale (1-5 ha) MAR systems to improve the quantity and quality of recharge in agricultural basins. Our field site is located in a basin where the primary use of groundwater is irrigation for agriculture, and groundwater resources are increasingly threatened by seawater intrusion and nutrient contamination from fertilizer application. The MAR system we are monitoring is supplied by stormwater and irrigation runoff of variable quality, which is diverted from a wetland during periods of high flow. This MAR system delivers approximately 1x106 m3 of recharge annually to the underlying aquifer, a portion of which is recovered and distributed to growers during the dry season. Our sampling and measurements (at high spatial and temporal resolution) show that a significant percentage of the nitrogen load added during MAR operation is eliminated from recharge during shallow infiltration (~30% to 60%, ~40 kg NO3-N/d). Isotopic analyses of the residual nitrate indicate that a significant fraction of the nitrate load reduction is attributable to denitrification. When normalized to infiltration pond area, this system achieves a mean load reduction of 7 kg NO3-N/d/ha, which compares favorably with the nitrogen load reduction efficiency achieved by treatment wetlands receiving agricultural runoff. Much of the reduction in nitrogen load occurs during periods of rapid infiltration (0.2 to 2.0 m/day), as demonstrated with point measurements of infiltration rate collocated with fluid samples. These results suggest that developing a network of

  14. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  15. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    Science.gov (United States)

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-07-14

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ((3)H) and stable isotopes ((2)H and (18)O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ(18)O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ(18)O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ(18)O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ((3)H: 5 - 10 T.U.) and deeper zone ((3)H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Numerical study on the responses of groundwater and strata to pumping and recharge in a deep confined aquifer

    Science.gov (United States)

    Zhang, Yang-Qing; Wang, Jian-Hua; Chen, Jin-Jian; Li, Ming-Guang

    2017-05-01

    Groundwater drawdown and strata settlements induced by dewatering in confined aquifers can be relieved by artificial recharge. In this study, numerical simulations of a field multi-well pumping-recharge test in a deep confined aquifer are conducted to analyze the responses of groundwater and strata to pumping and recharge. A three-dimensional numerical model is developed in a finite-difference software, which considers the fluid-mechanical interaction using the Biot consolidation theory. The predicted groundwater drawdown and ground settlements are compared to the measured data to confirm the validation of the numerical analysis of the pumping and recharge. Both numerical results and measured data indicate that the effect of recharge on controlling the groundwater drawdown and strata settlements correlates with the injection rate and well arrangements. Since the groundwater drawdown induced by pumping can be controlled by artificial recharge, soil compression can be relieved by reducing the changes of effective stress of the soils. Consequently, strata settlement induced by pumping can be relieved by artificial recharge and ground settlements can be eliminated if an appropriate injection rate and well arrangement are being determined. Moreover, the changes of the pore pressure and seepage force induced by pumping and recharge will also result in significant horizontal deformations in the strata near the recharge wells.

  17. Groundwater recharge in a semi-arid environment under high climatic variability and over-pumping: Ajlun Highlands example, Jordan.

    Science.gov (United States)

    Raggad, Marwan; Salameh, Elias; Magri, Fabien; Siebert, Christian; Roediger, Tino; Moller, Peter

    2016-04-01

    Jordan's ground water resources are being exploited up to 190% of the safe yield while rainfall rates are decreasing and highly variable, thereby affecting recharge volumes of the aquifers. The Ajlun highlands, forming the northwestern edge of Jordan are characterized by annual rainfall rates exceeding 500 mm, the highest in the country, which leads to accordingly high replenishment of almost the entire groundwater system in northern Jordan. The high recharge and the NW-wards dipping strata lead to a groundwater flow towards the north and northwest, areas which host the vital aquifers of the region. Limited and degraded groundwater recharge combined with growing over-pumping are the main issues that regard the northern groundwater basins, such as Wadi Arab, Yarmouk and the Jordan Valley side basins. To evaluate the groundwater potential under high recharge variability, groundwater recharge was modeled and compared to different Global Circulation Models (GCMs). Groundwater recharge was calculated based on climatic data covering the time period from 1965 to 2014. Recharge modeling was conducted by applying the J2000 water budget model. The simulation of hydrologic processes uses independent parameters that are calculated prior to simulate the recharge flow. The simulations estimate recharge of 47.6 MCM, which is 12% less than the values given by the Jordanian authorities. The low calculated recharge is likely due to an overestimation of the evapotranspiration in areas with high topographic slopes. To examine the variability of groundwater recharge under current climatic conditions, statistical downscaling of global circulation models was conducted for the time period 1965 - 2000. Data for the time period 2001 - 2014 was used for the model validation. Results indicated a decline of 18.7% in precipitation by the year 2050 with an increase of 1.7 and 2.2 degrees in maximum and minimum temperatures respectively. Accordingly recharge for the year 2050 is 27% less than

  18. An Analysis on Groundwater Recharge by Mathematical Model in Inclined Porous Media.

    Science.gov (United States)

    Pathak, Shreekant P; Singh, Twinkle

    2014-01-01

    The present paper discusses the analysis of solution of groundwater flow in inclined porous media. The problem related to groundwater flow in inclined aquifers is usually common in geotechnical and hydrogeology engineering activities. The governing partial differential equation of one-dimensional groundwater recharge problem has been formed by Dupuit's assumption. Three cases have been discussed with suitable boundary conditions and different slopes of impervious incline boundary. The numerical as well as graphical interpretation has been given and its coding is done in MATLAB.

  19. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  20. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Gangopadhyay, Subhrendu; Masbruch, Melissa D.; Pruitt, Tom; Rumsey, Christine; Susong, David D.

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 million cubic meters. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  1. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine A.; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-10-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960-2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11-13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  2. Labile Organic Carbon in Recharge and its Impact on Groundwater Arsenic Concentrations in Bangladesh

    Science.gov (United States)

    Neumann, R. B.; Ashfaque, K. N.; Badruzzaman, A. M.; Ali, M.; Shoemaker, J. K.; Harvey, C. F.

    2009-12-01

    Researchers have puzzled over the origin of dissolved arsenic in the aquifers of the Ganges Delta since widespread arsenic poisoning from groundwater was publicized two decades ago. Previous work has concluded that biological oxidation of organic carbon drives geochemical transformations that mobilize arsenic from sediments; however, the source of the organic carbon that fuels these processes remains controversial. A combined hydrologic and biogeochemical analysis of a typical site in Bangladesh, where constructed ponds and groundwater-irrigated rice fields are the main sources of recharge, shows that only recharge through pond sediments provides the biologically degradable organic carbon that can drive arsenic mobilization. Numerical groundwater simulations as well as chemical and isotopic indicators suggest that contaminated groundwater originates from excavated ponds and that water originating from rice fields is low in arsenic. In fact, rice fields act as an arsenic sink. Irrigation moves arsenic-rich groundwater from the aquifers and deposits it on the rice fields. Most of the deposited arsenic does not return to the aquifers; it is sorbed by the field’s surface soil and bunds, and is swept away in the monsoon floods. The findings indicate that patterns of arsenic contamination in the shallow aquifer are due to recharge-source variation and complex three-dimensional flow.

  3. Transient Soil Moisture Characteristics Below Different Land Cover Types: Implications for Quantifying Groundwater Recharge

    Science.gov (United States)

    Jayawickreme, D. H.; van Dam, R. L.; Hyndman, D. W.

    2006-12-01

    Statistical analysis of temporal water budgets in Michigan watersheds shows a significant link between land covers and streamflow characteristics. The observed differences in water budgets between the investigated watersheds are largely attributed to spatial heterogeneity and temporal variability of vegetation characteristics. Our findings suggest that management of regional groundwater resources should consider the effects of spatial and temporal vegetation changes. However, due to inadequate information, vegetation dynamics are not considered in most hydrologic models. By instrumenting suitable field sites in Michigan with different land cover types to monitor spatial and temporal variations in subsurface soil moisture , we investigate the interdependence of land cover, climate, soil moisture, and groundwater recharge in regional watersheds. Our approach involves resistivity and ground penetrating radar surveys, in-situ continuous moisture/temperature monitoring at field sites, and computer modeling of evapotranspiration and groundwater recharge. The results of this research are expected to improve our understanding of the impact of vegetation on soil moisture and groundwater recharge from site to regional scales and demonstrate the importance of incorporating land cover types and vegetation dynamics in regional groundwater resource assessment models.

  4. Uncertainty of Coupled Soil-Vegetation-Atmosphere Modelling Methods for Estimating Groundwater Recharge

    Science.gov (United States)

    Xie, Y.; Cook, P. G.; Simmons, C. T.; Partington, D.; Crosbie, R.; Batelaan, O.

    2016-12-01

    Coupled soil-vegetation-atmosphere models have become increasingly popular for estimating groundwater recharge, because of the integration of carbon, energy and water balances. The carbon and energy balances act to constrain the water balance and as a result should reduce the uncertainty of groundwater recharge estimates. However, the addition of carbon and energy balances also introduces a large number of plant physiological parameters which complicates the estimation of groundwater recharge. Moreover, this method often relies on existing pedotransfer functions to derive soil water retention curve parameters and saturated hydraulic conductivity from soil attribute data. The choice of a pedotransfer function is usually subjective and several pedotransfer functions may be fit for the purpose. These different pedotransfer functions (and thus the uncertainty of soil water retention curve parameters and saturated hydraulic conductivity) are likely to increase the prediction uncertainty of recharge estimates. In this study, we aim to assess the potential uncertainty of groundwater recharge when using a coupled soil-vegetation-atmosphere modelling method. The widely used WAter Vegetation Energy and Solute (WAVES) modelling code was used to perform simulations of different water balances in order to estimate groundwater recharge in the Campaspe catchment in southeast Australia. We carefully determined the ranges of the vegetation parameters based upon a literature review. We also assessed a number of existing pedotransfer functions and selected the four most appropriate. Then the Monte Carlo analysis approach was employed to examine potential uncertainties introduced by different types of errors. Preliminary results suggest that for a mean rainfall of about 500 mm/y and annual pasture vegetation, the estimated recharge may range from 10 to 150 mm/y due to the uncertainty in vegetation parameters. This upper bound of the recharge range may double to 300 mm/y if different

  5. Spatial and Temporal Variability of Groundwater Recharge in Changing Semiarid Dune Environments

    Science.gov (United States)

    Zlotnik, Vitaly; Rossman, Nathan; Rowe, Clinton; Szilagyi, Jozsef

    2014-05-01

    Groundwater recharge (GWR) is one of the major factors controlling water resources in semiarid and arid regions. This time-space-dependent flux is needed for groundwater modeling, analysis of climate change impacts, and water resources management. Typically, climate changes are studied on multi-decadal to centennial time scales, but travel times of soil moisture across the vadose zone vary broadly and may exceed multi-centennial periods in semiarid and arid environments. For given climatic conditions on the land surface, we evaluate travel times in the vadose zone and compare with times scales of climate change studies. This comparison defines the land surface areas contributing to GWR changes where travel times are shorter than times scales of climate change studies. In areas with travel times longer than climate change time scales, GWR remains unchanged over the considered period of water resources management. Such analysis allows for separation of the effect of land surface topography and vadose zone thickness from that of spatial and temporal variations in climate. Our simple travel time estimates are based on the velocity of a pressure pulse from the land surface, equivalent to a kinematic wave approximation of Richards' equation. The underlying assumptions of a unit hydraulic head gradient and relatively small magnitude of changes to upper boundary flux, caused by slow climate changes, are supported by observations in the High Plains aquifer region, USA. The input data include DEMs of land surface and groundwater table elevations, future projections of hydroclimatic variables, precipitation and evapotranspiration (WCRP-CMIP3 with hydrology VIC model outputs), and estimates of hydraulic conductivity from pedotransfer functions. Future GWR rates are estimated in four steps: GIS analysis of vadose zone thickness using difference in DEMs; evaluation of deep drainage rates based on difference between precipitation and evapotranspiration rates (PRISM and MODIS

  6. Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones

    Directory of Open Access Journals (Sweden)

    T. S. Ahring

    2012-11-01

    Full Text Available Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with pre-development and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50% in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photography is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  7. Groundwater surface water interactions through streambeds and the role of phreatophytes in identifying important recharge zones

    Directory of Open Access Journals (Sweden)

    T. S. Ahring

    2012-06-01

    Full Text Available Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with predevelopment and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50% in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photophaphy is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  8. Quantifying groundwater travel time near managed recharge operations using 35S as an intrinsic tracer

    Science.gov (United States)

    Urióstegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; Clark, Jordan F.

    2016-12-01

    Identifying groundwater retention times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. To protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2-6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times on the managers. Natural concentrations of 35S found in water as dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that 35SO4 in MAR source water can vary seasonally and therefore careful characterization of 35SO4 is needed to accurately quantify groundwater travel time. More data is needed to fully assess whether or not this tracer could become a valuable tool for managers.

  9. Characterizing Field Biodegradation of N-nitrosodimethylamine (NDMA) in Groundwater with Active Reclaimed Water Recharge

    Science.gov (United States)

    McCraven, S.; Zhou, Q.; Garcia, J.; Gasca, M.; Johnson, T.

    2007-12-01

    N-Nitrosodimethylamine (NDMA) is an emerging contaminant in groundwater, because of its aqueous miscibility, exceptional animal toxicity, and human carcinogenicity. NDMA detections in groundwater have been tracked to either decomposition of unsymmetrical dimethylhydrazine (UDMH) used in rocket fuel facilities or chlorine disinfection in wastewater reclamation plants. Laboratory experiments on both unsaturated and saturated soil samples have demonstrated that NDMA can be biodegraded by microbial activity, under both aerobic and anaerobic conditions. However, very limited direct evidence for its biodegradation has been found from the field in saturated groundwater. Our research aimed to evaluate photolysis and biodegradation of NDMA occurring along the full travel path - from wastewater reclamation plant effluent, through rivers and spreading grounds, to groundwater. For this evaluation, we established an extensive monitoring network to characterize NDMA concentrations at effluent discharge points, surface water stations, and groundwater monitoring and production wells, during the operation of the Montebello Forebay Groundwater Recharge facilities in Los Angeles County, California. Field monitoring for NDMA has been conducted for more than six years, including 32 months of relatively lower NDMA concentrations in effluent, 43 months of elevated NDMA effluent concentrations, and 7 months with significantly reduced NDMA effluent concentrations. The NDMA effluent concentration increase and significant concentration decrease were caused by changes in treatment processes. The NDMA sampling data imply that significant biodegradation occurred in groundwater, accounting for a 90% mass reduction of NDMA over the six-year monitoring period. In addition, the occurrence of a discrete well monitored effluent release during the study period allowed critical analysis of the fate of NDMA in a well- characterized, localized groundwater flow subsystem. The data indicate that 80% of the

  10. Effects of acidic recharge on groundwater at the St. Kevin Gulch site, Leadville, Colorado

    Science.gov (United States)

    Paschke, S.S.; Harrison, W.J.; Walton-Day, K.

    2001-01-01

    The acid rock drainage-affected stream of St. Kevin Gulch recharges the Quaternary sand and gravel aquifer of Tennessee Park, near Leadville, Colorado, lowering pH and contributing iron, cadmium, copper, zinc and sulphate to the ground-water system. Dissolved metal mobility is controlled by the seasonal spring runoff as well as oxidation/reduction (redox) reactions in the aquifer. Oxidizing conditions occur in the unconfined portions of the aquifer whilst sulphate-reducing conditions are found down gradient where semi-confined groundwater flow occurs beneath a natural wetland. Iron-reducing conditions occur in the transition from unconfined to semi-confined groundwater flow. Dissolved iron concentrations are low to not detectable in the alluvial fan recharge zone and increase in a down gradient direction. The effects of low-pH, metal-rich recharge are pronounced during low-flow in the fall when there is a defined area of low pH groundwater with elevated concentrations of dissolved zinc, cadmium, copper and sulphate adjacent to St. Kevin Gulch. Dissolved metal and sulphate concentrations in the recharge zone are diluted during spring runoff, although the maximum concentrations of dissolved zinc, cadmium, copper and sulphate occur at selected down gradient locations during high flow. Dissolved zinc, cadmium and copper concentrations are low to not detectable, whereas dissolved iron concentrations are greatest, in groundwater samples from the sulphate-reducing zone. Attenuation of zinc, cadmium and copper beneath the wetland suggests sulphide mineral precipitation is occurring in the semi-confined aquifer, in agreement with previous site investigations and saturation index calculations. Adsorption of dissolved zinc, cadmium and copper onto iron hydroxides is a minor attenuation process due to the low pH of the groundwater system.

  11. Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA

    Science.gov (United States)

    Beigi, Ehsan; Tsai, Frank T.-C.

    2015-02-01

    A geographic information system (GIS)-based water-budget framework has been developed to study the climate-change impact on regional groundwater recharge, and it was applied to the Southern Hills aquifer system of southwestern Mississippi and southeastern Louisiana, USA. The framework links historical climate variables and future emission scenarios of climate models to a hydrologic model, HELP3, to quantify spatiotemporal potential recharge variations from 1950 to 2099. The framework includes parallel programming to divide a large amount of HELP3 simulations among multiple cores of a supercomputer, to expedite computation. The results show that a wide range of projected potential recharge for the Southern Hills aquifer system resulted from the divergent projections of precipitation, temperature and solar radiation using three scenarios (B1, A2 and A1FI) of the National Center for Atmospheric Research's Parallel Climate Model 1 (PCM) and the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Lab's (GFDL) model. The PCM model projects recharge change ranging from -33.7 to +19.1 % for the 21st century. The GFDL model projects less recharge than the PCM, with recharge change ranging from -58.1 to +7.1 %. Potential recharge is likely to increase in 2010-2039, but likely to decrease in 2070-2099. Projected recharge is more sensitive to the changes in the projected precipitation than the projected solar radiation and temperature. Uncertainty analysis confirms that the uncertainty in projected precipitation yields more changes in the potential recharge than in the projected temperature for the study area.

  12. Artificial groundwater recharge as integral part of a water resources system in a humid environment

    Science.gov (United States)

    Kupfersberger, Hans; Stadler, Hermann

    2010-05-01

    In Graz, Austria, artificial groundwater recharge has been operated as an integral part of the drinking water supply system for more than thirty years. About 180 l/s of high quality water from pristine creeks (i.e. no pre-treatment necessary) are infiltrated via sand and lawn basins and infiltration trenches into two phreatic aquifers to sustain the extraction of approximately 400 l/s. The remaining third of drinking water for roughly 300.000 people is provided by a remote supply line from the East alpine karst region Hochschwab. By this threefold model the water supply system is less vulnerable to external conditions. In the early 1980's the infiltration devices were also designed as a hydraulic barrier against riverbank infiltration from the river Mur, which at that time showed seriously impaired water quality due to upstream paper mills. This resulted into high iron and manganese groundwater concentrations which lead to clogging of the pumping wells. These problems have been eliminated in the meantime due to the onsite purification of paper mill effluents and the construction of many waste water treatment plants. The recharge system has recently been thoroughly examined to optimize the operation of groundwater recharge and to provide a basis for further extension. The investigations included (i) field experiments and laboratory analyses to improve the trade off between infiltration rate and elimination capacities of the sand filter basins' top layer, (ii) numerical groundwater modelling to compute the recovery rate of the recharged water, the composition of the origin of the pumped water, emergency scenarios due to the failure of system parts, the transient capture zones of the withdrawal wells and the coordination of recharge and withdrawal and (iii) development of an online monitoring setup combined with a decision support system to guarantee reliable functioning of the entire structure. Additionally, the depreciation, maintenance and operation costs of the

  13. GIS based site and structure selection model for groundwater recharge: a hydrogeomorphic approach.

    Science.gov (United States)

    Vijay, Ritesh; Sohony, R A

    2009-10-01

    The groundwater in India is facing a critical situation due to over exploitation, reduction in recharge potential by change in land use and land cover and improper planning and management. A groundwater development plan needs a large volume of multidisciplinary data from various sources. A geographic information system (GIS) based hydrogeomorphic approach can provide the appropriate platform for spatial analysis of diverse data sets for decision making in groundwater recharge. The paper presents development of GIS based model to provide more accuracy in identification and suitability analysis for finding out zones and locating suitable sites with suggested structures for artificial recharge. Satellite images were used to prepare the geomorphological and land use maps. For site selection, the items such as slope, surface infiltration, and order of drainage were generated and integrated in GIS using Weighted Index Overlay Analysis and Boolean logics. Similarly for identification of suitable structures, complex matrix was programmed based on local climatic, topographic, hydrogeologic and landuse conditions as per artificial recharge manual of Central Ground Water Board, India. The GIS based algorithm is implemented in a user-friendly way using arc macro language on Arc/Info platform.

  14. A comparison of recharge rates in aquifers of the United States based on groundwater-age data

    Science.gov (United States)

    McMahon, P.B.; Plummer, L.N.; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R.

    2011-01-01

    An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

  15. Sensitivity of quantitative groundwater recharge estimates to volumetric and distribution uncertainty in rainfall forcing products

    Science.gov (United States)

    Werner, Micha; Westerhoff, Rogier; Moore, Catherine

    2017-04-01

    Quantitative estimates of recharge due to precipitation excess are an important input to determining sustainable abstraction of groundwater resources, as well providing one of the boundary conditions required for numerical groundwater modelling. Simple water balance models are widely applied for calculating recharge. In these models, precipitation is partitioned between different processes and stores; including surface runoff and infiltration, storage in the unsaturated zone, evaporation, capillary processes, and recharge to groundwater. Clearly the estimation of recharge amounts will depend on the estimation of precipitation volumes, which may vary, depending on the source of precipitation data used. However, the partitioning between the different processes is in many cases governed by (variable) intensity thresholds. This means that the estimates of recharge will not only be sensitive to input parameters such as soil type, texture, land use, potential evaporation; but mainly to the precipitation volume and intensity distribution. In this paper we explore the sensitivity of recharge estimates due to difference in precipitation volumes and intensity distribution in the rainfall forcing over the Canterbury region in New Zealand. We compare recharge rates and volumes using a simple water balance model that is forced using rainfall and evaporation data from; the NIWA Virtual Climate Station Network (VCSN) data (which is considered as the reference dataset); the ERA-Interim/WATCH dataset at 0.25 degrees and 0.5 degrees resolution; the TRMM-3B42 dataset; the CHIRPS dataset; and the recently releases MSWEP dataset. Recharge rates are calculated at a daily time step over the 14 year period from the 2000 to 2013 for the full Canterbury region, as well as at eight selected points distributed over the region. Lysimeter data with observed estimates of recharge are available at four of these points, as well as recharge estimates from the NGRM model, an independent model

  16. A validation of the 3H/3He method for determining groundwater recharge

    Science.gov (United States)

    Solomon, D. K.; Schiff, S. L.; Poreda, R. J.; Clarke, W. B.

    1993-09-01

    Tritium and He isotopes have been measured at a site where groundwater flow is nearly vertical for a travel time of 100 years and where recharge rates are spatially variable. Because the mid-1960s 3H peak (arising from aboveground testing of thermonuclear devices) is well-defined, the vertical groundwater velocity is known with unusual accuracy at this site. Utilizing 3H and its stable daughter 3He to determine groundwater ages, we compute a recharge rate of 0.16 m/yr, which agrees to within about 5% of the value based on the depth of the 3H peak (measured both in 1986 and 1991) and two-dimensional modeling in an area of high recharge. Zero 3H/3He age occurs at a depth that is approximately equal to the average depth of the annual low water table, even though the capillary fringe extends to land surface during most of the year at the study site. In an area of low recharge (0.05 m/yr) where the 3H peak (and hence the vertical velocity) is also well-defined, the 3H/3He results could not be used to compute recharge because samples were not collected sufficiently far above the 3H peak; however, modeling indicates that the 3H/3He age gradient near the water table is an accurate measure of vertical velocities in the low-recharge area. Because 3H and 3He have different diffusion coefficients, and because the amount of mechanical mixing is different in the area of high recharge than in the low-recharge area, we have separated the dispersive effects of mechanical mixing from molecular diffusion. We estimate a longitudinal dispersivity of 0.07 m and effective diffusion coefficients for 3H (3HHO) and 3He of 2.4×10-5 and 1.3×10-4 m2/day, respectively. Although the 3H/3He age gradient is an excellent indicator of vertical groundwater velocities above the mid-1960s 3H peak, dispersive mixing and diffusive loss of 3He perturb the age gradient near and below the 3H peak.

  17. Inverse modeling and uncertainty analysis of potential groundwater recharge to the confined semi-fossil Ohangwena II Aquifer, Namibia

    Science.gov (United States)

    Wallner, Markus; Houben, Georg; Lohe, Christoph; Quinger, Martin; Himmelsbach, Thomas

    2017-07-01

    The identification of potential recharge areas and estimation of recharge rates to the confined semi-fossil Ohangwena II Aquifer (KOH-2) is crucial for its future sustainable use. The KOH-2 is located within the endorheic transboundary Cuvelai-Etosha-Basin (CEB), shared by Angola and Namibia. The main objective was the development of a strategy to tackle the problem of data scarcity, which is a well-known problem in semi-arid regions. In a first step, conceptual geological cross sections were created to illustrate the possible geological setting of the system. Furthermore, groundwater travel times were estimated by simple hydraulic calculations. A two-dimensional numerical groundwater model was set up to analyze flow patterns and potential recharge zones. The model was optimized against local observations of hydraulic heads and groundwater age. The sensitivity of the model against different boundary conditions and internal structures was tested. Parameter uncertainty and recharge rates were estimated. Results indicate that groundwater recharge to the KOH-2 mainly occurs from the Angolan Highlands in the northeastern part of the CEB. The sensitivity of the groundwater model to different internal structures is relatively small in comparison to changing boundary conditions in the form of influent or effluent streams. Uncertainty analysis underlined previous results, indicating groundwater recharge originating from the Angolan Highlands. The estimated recharge rates are less than 1% of mean yearly precipitation, which are reasonable for semi-arid regions.

  18. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    Science.gov (United States)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  19. Hydro-chemical assessment and groundwater recharge mechanism in the humid tropics: a case study.

    Science.gov (United States)

    Hameed, A Shahul; Prasad, N B Narasimha

    2008-10-01

    The study related to assessment of various chemical constituents in the groundwater, their origin and suitability for human use has been carried out in the Chaliyar river basin of Kerala (India). Groundwater samples were collected from 27 open dug wells and 7 bore wells, and analyzed. Piper tri-linear classification was followed in segregating the data with respect to source of dissolved constituents in groundwater. Most of the wells fall within the no dominant ion zone in the piper diagram, indicating the equal distribution of alkalis and alkaline earths. High level of dissolved solids, with the presence of chloride and sulphate, was observed in a few wells in the coastal region, which may be due to the salinity intrusion from the sea. The groundwater quality was found fairly good and potable in the lateritic midland region, except for a few wells, which were having significant level of nitrate and/or chloride. An attempt has been made to understand the source of groundwater recharge in the basin using environmental tritium as a tracer. It has been observed that the groundwater is predominantly recharged through rainfall, as evidenced from the level of tritium close to that of local precipitation.

  20. Groundwater recharge on east side soils of the Salinas Valley

    Science.gov (United States)

    After four years of drought, groundwater levels in the Salinas Valley are at historically low levels which threaten to adversely affect farming in the Salinas Valley. Given the prospect of a strong El Niño this coming winter, it seems prudent to plan to capture as much of the rainfall as possible to...

  1. A review of groundwater recharge estimation in humid and semi-arid African regions

    Science.gov (United States)

    Chung, Il-Moon; Kim, Nam Won

    2016-04-01

    For the review of African recharge estimation, the distinct methods such as the geochemical approach, a method using groundwater level data, the streamflow method, and the water balance methods were first outlined. The major challenge of an African recharge study is the lack of basic data. Thus, this work suggests how to deal with this limitation and from future perspective using recently developed technologies such as RS, GIS, etc. With the rapid growth of information technology, more and more data, in terms of both volume and variety, are expected to be made available on the internet in the near future. RS technology has a great potential to revolutionize the groundwater development and management in the future by providing unique and completely new hydrological and hydrogeological data. However, at present, the RS data should be considered along with the conventional field data. In spite of the weaknesses of water balance methods in semi-arid areas, recently developed water balance methods combined with GIS technology are powerful tools for estimating groundwater re-charge, when spatial-temporal variability of components in water balance is taken into account (Lerner et al., 1990; De Vries and Simmers, 2002; Eilers et al., 2007).When enough data sets are available, integrated surface-groundwater modeling is recommended for more accurate estimation of groundwater recharge and discharge. Acknowledgements This work was supported by a grant(14RDRP-B076275-01-000000) from Infrastructure and transportation technology promotion research Program funded by the Ministry of Land, Infrastructure and Transport of Korean government.

  2. Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Clay A [DRI; Hershey, Ronald L [DRI; Healey, John M [DRI; Lyles, Brad F [DRI

    2013-07-01

    Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.

  3. Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Liu, Jilai; Ma, Jinzhu; Gates, John

    2017-05-01

    Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55-71 mm yr-1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160-400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July-September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.

  4. Estimability of recharge through groundwater model calibration: Insights from a field-scale steady-state example

    Science.gov (United States)

    Knowling, Matthew J.; Werner, Adrian D.

    2016-09-01

    The ability of groundwater models to inform recharge through calibration is hampered by the correlation between recharge and aquifer parameters such as hydraulic conductivity (K), and the insufficient information content of observation datasets. These factors collectively result in non-uniqueness of parameter estimates. Previous studies that jointly estimate spatially distributed recharge and hydraulic parameters are limited to synthetic test cases and/or do not evaluate the effect of non-uniqueness. The extent to which recharge can be informed by calibration is largely unknown for practical situations, in which complexities such as parameter heterogeneities are inherent. In this study, a systematic investigation of recharge, inferred through model calibration, is undertaken using a series of numerical experiments that include varying degrees of hydraulic parameter information. The analysis involves the use of a synthetic reality, based on a regional-scale, highly parameterised, steady-state groundwater model of Uley South Basin, South Australia. Parameter identifiability is assessed to evaluate the ability of parameters to be estimated uniquely. Results show that a reasonable inference of recharge (average recharge error 100 K values across the 129 km2 study area). The introduction of pumping data into the calibration reduces error in both the average recharge and its spatial variability, whereas submarine groundwater discharge (as a calibration target) reduces average recharge error only. Nonetheless, the estimation of steady-state recharge through inverse modelling may be impractical for real-world settings, limited by the need for unrealistic amounts of hydraulic parameter and groundwater level data. This study provides a useful benchmark for evaluating the extent to which field-scale groundwater models can be used to inform recharge subject to practical data-availability limitations.

  5. Land cover or climate? In search of dominant factors inducing groundwater recharge and fen hydrology in European scale

    Science.gov (United States)

    Grygoruk, Mateusz; Kotowski, Wiktor

    2016-04-01

    Groundwater recharge plays the crucial role in development and stability of fens. It was hypothesized that the mid- and late-Holocene acceleration of fens' development in Europe could have been induced by changes in land cover: decreasing areas of forests resulting from the expanding agriculture have enhanced groundwater recharge by decreasing evapotranspiration and interception and promoting infiltration. However, regardless human-related changes of the landscape, recorded climatic fluctuations could also be considered as drivers of changing groundwater recharge that affects fen stability and development. Nowadays, when up to 90% of European wetlands is considered degraded, assessing vulnerability of groundwater recharge to changing landscape and climate is of the crucial importance for setting fen restoration and management strategies. Main goal of our study was to assess the magnitude of changes in groundwater recharge estimation resulting from modelled changes of the landscape and climatic features in >300 fens located in Poland, Germany, The Netherlands, Sweden, UK and Norway. In our approach we (1) delineated the most probable extents of catchments of particular fens analysed, (2) assumed hypothetical and the most probable changes of land cover within these catchments, (3) assumed the most probable ranges of climatic changes in each of the catchments including historical reconstructions (Holocene) and future projections (A1B scenario, CSIRO:MK3 and UKMO:HADCM3 GCM-RCM ensembles), (4) developed, tested and calibrated automatic, GIS-based groundwater recharge calculation algorithm to be applied in the study, (5) calculated groundwater recharge in multiple probable combinations of landscape and climatic conditions and (6) performed statistical analysis in order to reveal whether the climate or landscape changes were the dominant factors that could have probably influenced groundwater recharge in catchments of fens analysed. We revealed that in the case of 80% of

  6. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    Science.gov (United States)

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  7. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every catchment of NHDPlus for the conterminous United States....

  8. Application Of Water Table Fluctuation Method To Quantify Spatial Groundwater Recharge Witidn The Southern Slope Of Merapi Volcano, Indonesia

    Directory of Open Access Journals (Sweden)

    Tjahyo Nugroho Adji

    2013-07-01

    that results in groundwater recharge characteristic. The volcanic slope unit (above 600 m as! has the lowest water table fluctuation indicates the resistant comportment to the annual rainfall. Ihis unit is characterized by the relatively high magnitude of recharge of approximately 4270 mm/year.

  9. Isotope Method for Confined Groundwater Recharge of the Lower Reaches of the Heihe River, Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Environmental isotopes have been applied to analyze confined groundwater recharge in the lower reaches of the Heihe River, Inner Mongolia. CFC is regarded as a tracer that determines the date of groundwater, the date being less than 45 a. The confined groundwater within the Gurinai area and Ejin Basin other than the surface water of Heihe River might have originated from precipitation from Qilian Mountain or/and the Tibetan Plateau. The deep confined groundwater overflows into an upper aquifer and emerges into the ground, forming springs and lakes within the low-lying area. The recharge volume is estimated to be around 400 million-cubic meters.

  10. Using environmental tracers and transient hydraulic heads to estimate groundwater recharge and conductivity

    Science.gov (United States)

    Erdal, Daniel; Cirpka, Olaf A.

    2017-04-01

    Regional groundwater flow strongly depends on groundwater recharge and hydraulic conductivity. While conductivity is a spatially variable field, recharge can vary in both space and time. None of the two fields can be reliably observed on larger scales, and their estimation from other sparse data sets is an open topic. Further, common hydraulic-head observations may not suffice to constrain both fields simultaneously. In the current work we use the Ensemble Kalman filter to estimate spatially variable conductivity, spatiotemporally variable recharge and porosity for a synthetic phreatic aquifer. We use transient hydraulic-head and one spatially distributed set of environmental tracer observations to constrain the estimation. As environmental tracers generally reside for a long time in an aquifer, they require long simulation times and carries a long memory that makes them highly unsuitable for use in a sequential framework. Therefore, in this work we use the environmental tracer information to precondition the initial ensemble of recharge and conductivities, before starting the sequential filter. Thereby, we aim at improving the performance of the sequential filter by limiting the range of the recharge to values similar to the long-term annual recharge means and by creating an initial ensemble of conductivities that show similar pattern and values to the true field. The sequential filter is then used to further improve the parameters and to estimate the short term temporal behavior as well as the temporally evolving head field needed for short term predictions within the aquifer. For a virtual reality covering a subsection of the river Neckar it is shown that the use of environmental tracers can improve the performance of the filter. Results using the EnKF with and without this preconditioned initial ensemble are evaluated and discussed.

  11. Factors influencing ground-water recharge in the eastern United States

    Science.gov (United States)

    Nolan, B.T.; Healy, R.W.; Taber, P.E.; Perkins, K.; Hitt, K.J.; Wolock, D.M.

    2007-01-01

    Ground-water recharge estimates for selected locations in the eastern half of the United States were obtained by Darcian and chloride-tracer methods and compared using statistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone (RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and 16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian estimates are a nonlinear function of moisture content and also reflect the uncertainty of pedotransfer functions used to estimate hydraulic parameters. Significance level is 0.3. Estimates of RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aquifers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. Westernmost portions of the study area have low recharge, receive somewhat less precipitation, and contain fine-grained sediment. The NLR model simulates water input to the land surface followed by transport to ground water, depending on factors that either promote or inhibit water infiltration. The model explains a moderate amount of variation in the data set (coefficient of determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temperature, and precipitation, and an index of ground-water exfiltration potential most influence estimates of recharge at sampled sites in the region. Soil characteristics and land use have less influence on the recharge estimates, but nonetheless are significant in the NLR model. ?? 2006 Elsevier B.V. All rights reserved.

  12. Vulnerability of recently recharged groundwater in principal [corrected] aquifers of the United States to nitrate contamination.

    Science.gov (United States)

    Gurdak, Jason J; Qi, Sharon L

    2012-06-05

    Recently recharged water (defined here as aquifer to subaquifer scale. New logistic regression models were developed using data from the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program and National Water Information System for 17 principal aquifers of the U.S. to identify important source, transport, and attenuation factors that control nonpoint source nitrate concentrations greater than relative background levels in recently recharged groundwater and were used to predict the probability of detecting elevated nitrate in areas beyond the sampling network. Results indicate that dissolved oxygen, crops and irrigated cropland, fertilizer application, seasonally high water table, and soil properties that affect infiltration and denitrification are among the most important factors in predicting elevated nitrate concentrations. Important differences in controlling factors and spatial predictions were identified in the principal aquifer and national-scale models and support the conclusion that similar spatial scales are needed between informed groundwater management and model development.

  13. Estimation of groundwater recharge in sedimentary rock aquifer systems in the Oti basin of Gushiegu District, Northern Ghana

    Science.gov (United States)

    Afrifa, George Yamoah; Sakyi, Patrick Asamoah; Chegbeleh, Larry Pax

    2017-07-01

    Sustainable development and the management of groundwater resources for optimal socio-economic development constitutes one of the most effective strategies for mitigating the effects of climate change in rural areas where poverty is a critical cause of environmental damage. This research assessed groundwater recharge and its spatial and temporal variations in Gushiegu District in the Northern Region of Ghana, where groundwater is the main source of water supply for most uses. Isotopic data of precipitation and groundwater were used to infer the origin of groundwater and the possible relationship between groundwater and surface water in the partially metamorphosed sedimentary aquifer system in the study area. Though the data do not significantly establish strong relation between groundwater and surface water, the study suggests that groundwater in the area is of meteoric origin. However, the data also indicate significant enrichment of the heavy isotopes (18O and 2H) in groundwater relative to rainwater in the area. The Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) techniques were used to quantitatively estimate the groundwater recharge in the area. The results suggest groundwater recharge in a range of 13.9 mm/y - 218 mm/y, with an average of 89 mm/yr, representing about 1.4%-21.8% (average 8.9%) of the annual precipitation in the area. There is no clearly defined trend in the temporal variations of groundwater recharge in the area, but the spatial variations are discussed in relation to the underlying lithologies. The results suggest that the fraction of precipitation that reaches the saturated zone as groundwater recharge is largely controlled by the vertical hydraulic conductivities of the material of the unsaturated zone. The vertical hydraulic conductivity coupled with humidity variations in the area modulates the vertical infiltration and percolation of precipitation.

  14. Analysis of confidence in continental-scale groundwater recharge estimates for Africa using a distributed water balance model

    Science.gov (United States)

    Mackay, Jonathan; Mansour, Majdi; Bonsor, Helen; Pachocka, Magdalena; Wang, Lei; MacDonald, Alan; Macdonald, David; Bloomfield, John

    2014-05-01

    There is a growing need for improved access to reliable water in Africa as population and food production increases. Currently approximately 300 million people do not have access to a secure source of safe drinking water. To meet these current and future demands, groundwater will need to be increasingly abstracted; groundwater is more reliable than surface water sources due to its relatively long response time to meteorological stresses and therefore is likely to be a more secure water resource in a more variable climate. Recent studies also quantified the volumes of groundwater potentially available which suggest that, if exploited, groundwater could help to meet the demand for fresh water. However, there is still considerable uncertainty as to how these resources may respond in the future due to changes in groundwater recharge and abstraction. Understanding and quantifying groundwater recharge is vital as it forms a primary indicator of the sustainability of underlying groundwater resources. Computational hydrological models provide a means to do this, but the complexity of recharge processes in Africa mean that these simulations are often highly uncertain. This study aims to evaluate our confidence in simulating groundwater recharge over Africa based on a sensitivity analysis using a distributed hydrological model developed by the British Geological Survey, ZOODRM. The model includes land surface, canopy, river, soil and groundwater components. Each component is able to exchange water and as such, forms a distributed water balance of Africa. The components have been parameterised using available spatial datasets of African vegetation, land-use, soil and hydrogeology while the remaining parameters have been estimated by calibrating the model to available river flow data. Continental-scale gridded precipitation and potential evapotranspiration datasets, based on remotely sensed and ground observations, have been used to force the model. Following calibration, the

  15. Estimating annual effective infiltration coefficient and groundwater recharge for karst aquifers of the southern Apennines

    Directory of Open Access Journals (Sweden)

    V. Allocca

    2013-08-01

    Full Text Available To assess the mean annual groundwater recharge of the karst aquifers in southern Apennines (Italy, the estimation of the mean annual effective infiltration coefficient (AEIC was conducted by means of an integrated approach based on hydrogeological, hydrological, geomorphological, land use and soil cover analyses. We studied a large part of the southern Apennines that is covered by a meteorological network and containing 40 principal karst aquifers. Using precipitation and air temperature time series gathered through monitoring stations operating in the period 1926–2012, the annual effective precipitation (AEP was estimated, and its distribution was modelled, by considering the orographic barrier and rain shadow effects of the Apennines chain, as well as the altitudinal control. Four sample karst aquifers with available long spring discharge time series were identified for estimating the AEIC by means of the hydrological budget equation. The resulting AEIC values were correlated with other parameters that control groundwater recharge, such as the extension of outcropping karst-rock, morphological settings, land use and covering soil type. A simple correlation relationship between AEIC, lithology and the summit flat and endorheic areas was found. This empirical model has been used to estimate AEIC and mean annual groundwater recharge in other regional karst aquifers. The estimated AEIC values ranged between 48% and 78%, thus matching intervals estimated for other karst aquifers in European and Mediterranean countries. These results represent a deeper understanding of an aspect of groundwater hydrology in karst aquifers which is fundamental for the formulation of appropriate management models of groundwater resources, also taking into account mitigation strategies for climate change impacts. Finally, the proposed hydrological characterisations are also perceived as useful for the assessment of mean annual runoff over carbonate mountains, which is

  16. Quantitative estimation of groundwater recharge ratio along the riparian of the Yellow River.

    Science.gov (United States)

    Yan, Zhang; Fadong, Li; Jing, Li; Qiang, Liu; Guangshuai, Zhao

    2013-01-01

    Quantitative estimation of groundwater recharge is crucial for limited water resources management. A combination of isotopic and chemical indicators has been used to evaluate the relationship between surface water, groundwater, and rainfall around the riparian of the Yellow River in the North China Plain (NCP). The ion molar ratio of sodium to chloride in surface- and groundwater is 0.6 and 0.9, respectively, indicating cation exchange of Ca(2+) and/or Mg(2+) for Na(+) in groundwater. The δD and δ(18)O values in rainfall varied from -64.4 to -33.4‰ and from -8.39 to -4.49‰. The groundwater samples have δD values in the range of -68.7 to -58.0‰ and δ(18)O from -9.29 to -6.85‰. The δ(18)O and δD in surface water varied from -8.51 to -7.23‰ and from -64.42 to -53.73‰. The average values of both δD and δ(18)O from surface water are 3.92‰ and 0.57‰, respectively, higher compared to groundwater. Isotopic composition indicated that the groundwater in the riparian area of the Yellow River was influenced by heavy rainfall events and seepage of surface water. The mass balance was applied for the first time to estimate the amount of recharge, which is probably 6% and 94% of the rainfall and surface water, respectively.

  17. Impacts of Future Climate Change and Baltic Sea Level Rise on Groundwater Recharge, Groundwater Levels, and Surface Leakage in the Hanko Aquifer in Southern Finland

    Directory of Open Access Journals (Sweden)

    Samrit Luoma

    2014-11-01

    Full Text Available The impact of climate change and Baltic Sea level rise on groundwater resources in a shallow, unconfined, low-lying coastal aquifer in Hanko, southern Finland, was assessed using the UZF1 model package coupled with the three-dimensional groundwater flow model MODFLOW to simulate flow from the unsaturated zone through the aquifer. The snow and PET models were used to calculate the surface water availability for infiltration from the precipitation data used in UZF1. Infiltration rate, flow in the unsaturated zone and groundwater recharge were then simulated using UZF1. The simulation data from climate and sea level rise scenarios were compared with present data. The results indicated changes in recharge pattern during 2071–2100, with recharge occurring earlier in winter and early spring. The seasonal impacts of climate change on groundwater recharge were more significant, with surface overflow resulting in flooding during winter and early spring and drought during summer. Rising sea level would cause some parts of the aquifer to be under sea level, compromising groundwater quality due to intrusion of sea water. This, together with increased groundwater recharge, would raise groundwater levels and consequently contribute more surface leakage and potential flooding in the low-lying aquifer.

  18. Understanding infiltration and groundwater flow at an artificial recharge facility using time-lapse gravity data

    Science.gov (United States)

    Kennedy, Jeffrey

    Groundwater provides a fundamental resource for modern life. Throughout the world, groundwater is managed by storing (recharging) it underground in natural aquifers for future withdrawal and consumptive use. In Arizona, over 4 million people benefit from managed aquifer storage, but little effort is made to track the movement of recharged water through the subsurface. Motivated by current limitations in our ability to monitor percolation and groundwater movement at the scale of a recharge facility, an effort to collect time-lapse gravity data was carried out at the Southern Avra Valley Storage and Recovery Project (SAVSARP) operated by the City of Tucson, Arizona. In addition to collecting water-level data 12 wells, there were three primary gravity experiments: (1) five continuously-recording gravity meters (2 iGrav superconducting gravity meters and 3 gPhone gravity meters) were installed semi-permanently in control buildings adjacent to the recharge basins, (2) absolute gravity measurements were made at nine locations over a 17 month period, and (3) three relative-gravity campaigns were carried out on a network of 70 stations. This large-scale controlled experiment, with known infiltration and pumping rates, resulted in one of the most comprehensive datasets of its kind. Gravity data led to several hydrologic insights, both through direct measurement and modeling. First, the infiltration rate could be estimated accurately based on the initial rate of gravity change during infiltration, regardless of the specific yield. Using two gravity meters, the depth, and therefore speed, of the wetting front beneath a recharge basin was observed, including the time at which the water table was reached. Spatial maps of gravity change from relative gravity surveys show areas where infiltration efficiency is highest, and where groundwater accumulates; storage accumulated preferentially to the west of the recharge basins, away from pumping wells. Such information would be

  19. The investigation of fault-controlled groundwater recharge within a suburban area of Damascus, Syria

    Science.gov (United States)

    Wannous, M.; Siebert, C.; Tröger, Uwe

    2016-08-01

    Al-Mazraa is a heavily populated suburb of Damascus (Syria) with agricultural activity. It is adjacent to the Cretaceous Qassioun Mountain Range, from which it is structurally separated by the Damascus fault. Al-Mazraa waterworks abstracts from a shallow Quaternary aquifer, whose recharge processes are unidentified. The functions of Qassioun Mountain, the Damascus fault, the agricultural activities, the ascending deeper groundwater, and the through-flowing Tora River are not well understood and they are, hence, subject to study. The application of hydrochemical parameters and ratios in combination with signatures of δD and δ18O revealed that recharge predominantly occurs in the outcropping Cretaceous rocks through subsurface passages rather than through influent conditions of the Tora River or through direct rainfall. Interestingly, high Na/Cl ratios indicate contact with volcanic rocks which exist within the Cretaceous anticline and also in the subsurface of the studied Quaternary aquifer. Evidence for deeper circulating groundwater is given, since replenishing waters are up to 4 °C warmer and have much lower nitrate concentrations than the groundwater in the study area. From these points, it is indicated that the Damascus fault is conductive in respect to groundwater, rather than being impermeable, as it is elsewhere.

  20. Estimates of groundwater recharge rates and sources in the East Mountain area, Eastern Bernalillo County, New Mexico, 2005-12

    Science.gov (United States)

    Rice, Steven E.; Crilley, Dianna M.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Bernalillo County Public Works Division, has conducted a monitoring program in the East Mountain area of eastern Bernalillo County, New Mexico, since 2000 to better define the hydrogeologic characteristics of the East Mountain area and to provide scientific information that will assist in the sustainable management of water resources. This report presents estimates of groundwater recharge to the aquifers that supply water to a network of springs that discharged within the East Mountain area of eastern Bernalillo County during 2005–12. Chloride concentration, the mass ratio of chloride to bromide, and the stable isotope ratios of hydrogen and oxygen were used to estimate annual groundwater recharge rates and to identify the sources and timing of recharge to the aquifers in the East Mountain area. Groundwater recharge rates were estimated by using a chloride mass-balance (CMB) method applied to data from selected springs located in the study area.

  1. Evaluation of Groundwater Recharge Estimates in a Partially Metamorphosed Sedimentary Basin in a Tropical Environment: Application of Natural Tracers

    Science.gov (United States)

    Oteng Mensah, Felix; Alo, Clement

    2014-01-01

    This study tests the representativeness of groundwater recharge estimates through the chloride mass balance (CMB) method in a tropical environment. The representativeness of recharge estimates using this methodology is tested using evaporation estimates from isotope data, the general spatial distribution of the potential field, and the topographical variations in the area. This study suggests that annual groundwater recharge rates in the area ranges between 0.9% and 21% of annual precipitation. These estimates are consistent with evaporation rates computed from stable isotope data of groundwater and surface water in the Voltaian Basin. Moreover, estimates of groundwater recharge through numerical model calibration in other parts of the terrain appear to be consistent with the current data in this study. A spatial distribution of groundwater recharge in the area based on the estimated data takes a pattern akin to the spatial pattern of distribution of the hydraulic head, the local topography, and geology of the terrain. This suggests that the estimates at least qualitatively predicts the local recharge and discharge locations in the terrain. PMID:24772021

  2. Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996-2010

    Science.gov (United States)

    Smith, Erik A.; Westenbroek, Stephen M.

    2015-01-01

    Groundwater recharge is one of the most difficult components of a water budget to ascertain, yet is an important boundary condition necessary for the quantification of water resources. In Minnesota, improved estimates of recharge are necessary because approximately 75 percent of drinking water and 90 percent of agricultural irrigation water in Minnesota are supplied from groundwater. The water that is withdrawn must be supplied by some combination of (1) increased recharge, (2) decreased discharge to streams, lakes, and other surface-water bodies, and (3) removal of water that was stored in the system. Recent pressure on groundwater resources has highlighted the need to provide more accurate recharge estimates for various tools that can assess the sustainability of long-term water use. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, used the Soil-Water-Balance model to calculate gridded estimates of potential groundwater recharge across Minnesota for 1996‒2010 at a 1-kilometer (0.621-mile) resolution. The potential groundwater recharge estimates calculated for Minnesota from the Soil-Water Balance model included gridded values (1-kilometer resolution) of annual mean estimates (that is, the means for individual years from 1996 through 2010) and mean annual estimates (that is, the mean for the 15-year period 1996−2010).

  3. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  4. Groundwater ages from the freshwater zone of the Edwards aquifer, Uvalde County, Texas—Insights into groundwater flow and recharge

    Science.gov (United States)

    Hunt, Andrew G.; Landis, Gary P.; Faith, Jason R.

    2016-02-23

    Tritium–helium-3 groundwater ages of the Edwards aquifer in south-central Texas were determined as part of a long-term study of groundwater flow and recharge in the Edwards and Trinity aquifers. These ages help to define groundwater residence times and to provide constraints for calibration of groundwater flow models. A suite of 17 samples from public and private supply wells within Uvalde County were collected for active and noble gases, and for tritium–helium-3 analyses from the confined and unconfined parts of the Edwards aquifer. Samples were collected from monitoring wells at discrete depths in open boreholes as well as from integrated pumped well-head samples. The data indicate a fairly uniform groundwater flow system within an otherwise structurally complex geologic environment comprised of regionally and locally faulted rock units, igneous intrusions, and karst features within carbonate rocks. Apparent ages show moderate, downward average, linear velocities in the Uvalde area with increasing age to the east along a regional groundwater flow path. Though the apparent age data show a fairly consistent distribution across the study area, many apparent ages indicate mixing of both modern (less than 60 years) and premodern (greater than 60 years) waters. This mixing is most evident along the “bad water” line, an arbitrary delineation of 1,000 milligrams per liter dissolved solids that separates the freshwater zone of the Edwards aquifer from the downdip saline water zone. Mixing of modern and premodern waters also is indicated within the unconfined zone of the aquifer by high excess helium concentrations in young waters. Excess helium anomalies in the unconfined aquifer are consistent with possible subsurface discharge of premodern groundwater from the underlying Trinity aquifer into the younger groundwater of the Edwards aquifer.

  5. An extended modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas

    Directory of Open Access Journals (Sweden)

    H. Hashemi

    2014-10-01

    Full Text Available The impact of future climate scenarios on surface and groundwater resources was simulated using a modeling approach for an artificial recharge area in arid southern Iran. Future climate data for the periods of 2010–2030 and 2030–2050 were acquired from the Canadian Global Coupled Model (CGCM 3.1 for scenarios A1B, A2, and B1. These scenarios were adapted to the studied region using the delta-change method. The modified version of the HBV model (Qbox was used to simulate runoff in a flash flood prone catchment. The model was calibrated and validated for the period 2002–2011 using daily discharge data. The projected climate variables were used to simulate future runoff. The rainfall–runoff model was then coupled to a calibrated groundwater flow and recharge model (MODFLOW to simulate future recharge and groundwater hydraulic head. The results of the rainfall–runoff modeling showed that under the B1 scenario the number of floods might increase in the area. This in turn calls for a proper management, as this is the only source of fresh water supply in the studied region. The results of the groundwater recharge modeling showed no significant difference between present and future recharge for all scenarios. Owing to that, four abstraction and recharge scenarios were assumed to simulate the groundwater level and recharged water in the studied aquifer. The results showed that the abstraction scenarios have the most substantial effect on the groundwater level and the continuation of current pumping rate would lead to a groundwater decline by 18 m up to 2050.

  6. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-01-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  7. Investigation of Groundwater Flow Variations near a Recharge Pond with Repeat Deliberate Tracer Experiments

    Directory of Open Access Journals (Sweden)

    Jordan F Clark

    2014-06-01

    Full Text Available Determining hydraulic connections and travel times between recharge facilities and production wells has become increasingly important for permitting and operating managed aquifer recharge (MAR sites, a water supply strategy that transfers surface water into aquifers for storage and later extraction. This knowledge is critical for examining water quality changes and assessing the potential for future contamination. Deliberate tracer experiments are the best method for determining travel times and identifying preferential flow paths between recharge sites over the time scales of weeks to a few years. This paper compares the results of two deliberate tracer experiments at Kraemer Basin, Orange County, CA, USA. Results from the first experiment, which was conducted in October 1998, showed that a region of highly transmissive sedimentary material extends down gradient from the basin for more than 3 km [1]. Mean groundwater velocities were determined to be approximately 2 km/year in this region based on the arrival time of the tracer center of mass. A second experiment was initiated in January 2008 to determine if travel times from this basin to monitoring and production wells changed during the past decade in response to new recharge conditions. Results indicate that flow near Kraemer Basin was stable, and travel times to most wells determined during both experiments agree within the experimental uncertainty.

  8. Modeling the groundwater recharge in karst aquifers by using a reservoir model.

    Science.gov (United States)

    Ke, Tingting; Shu, Longcang; Chen, Xunhong

    2013-01-01

    The estimation of the groundwater recharge in a karstic system becomes an important challenge due to the great hydrodynamic variability in both time and space. This paper proposes a two reservoir conceptual model to simulate inflow into both the conduit system and the fissure network system based on the analysis of the spring hydrograph. The structure of the model and the governing equations are proposed on the basis of the physical considerations, with the assumption that flow at the outlet of the reservoirs obeys a linear threshold function. The model is applied on the Houzhai karstic underground river basin where it successfully reflects the temporal recharge distribution. The simulated accumulation recharge is 34.29 mm, which is reasonable in relation to the actual rainfall of 92.8 mm. The variations of water volume in two reservoirs represent the storage and transform characteristics of the karst aquifer system. However, this model is particularly well suited to simulate the recharge event after intensive rainfall.

  9. Nitrate reduction during ground-water recharge, Southern High Plains, Texas

    Science.gov (United States)

    Fryar, Alan E.; Macko, Stephen A.; Mullican, William F., III; Romanak, Katherine D.; Bennett, Philip C.

    2000-01-01

    In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO 3- contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km 2 area of Texas suggest that reduction during recharge limits NO 3- loading to ground water. Tritium and Cl - concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO -3-N suggest denitrification, but O 2 concentrations ≥3.24 mg l -1 indicate that NO 3- reduction in ground water is unlikely. The presence of denitrifying and NO 3--respiring bacteria in cores, typical soil-gas δ15N values water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.

  10. Hydrogeochemical evolution of confined groundwater in northeastern Osaka Basin, Japan: estimation of confined groundwater flux based on a cation exchange mass balance method

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masaru [Department of Geosystem Sciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550 (Japan)]. E-mail: yamanaka@chs.nihon-u.ac.jp; Nakano, Takanori [Research Institute for Humanity and Nature, Kamigyo-ku, Kyoto 602-0878 (Japan); Tase, Norio [Institute of Geoscience, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan)

    2005-02-01

    A confined aquifer system has developed in argillaceous marine and freshwater sediments of Pliocene-Holocene age in the northeastern Osaka Basin (NEOB) in central Japan. The shallow groundwater (<100 m) in the system is recharged in a northern hilly to mountainous area with dominantly Ca-HCO{sub 3} type water, which changes as it flows toward the SW to Mg-HCO{sub 3} type and then to Na-HCO{sub 3} type water. Comparison of the chemical and Sr isotopic compositions of the groundwater with those of the bulk and exchangeable components of the underground sediments indicates that elements leached from the sediments contribute negligibly to the NEOB aquifer system. Moreover, model calculations show that contributions of paleo-seawater in the deep horizon and of river water at the surface are not major factors of chemical change of the groundwater. Instead, the zonal pattern of the HCO{sub 3}-dominant groundwater is caused by the loss of Ca{sup 2+} from the water as it is exchanged for Mg{sup 2+} in clays, followed by loss of Mg + Ca as they are exchanged for Na + K in clays between the Ca-HCO{sub 3} type recharge water and the exchangeable cations in the clay layers, which were initially enriched in Na{sup +}. Part of this process was reproduced in a chromatographic experiment in which Na type water with high {sup 87}Sr/{sup 86}Sr was obtained from Mg type water with low {sup 87}Sr/{sup 86}Sr by passing it through marine clay packed in a column. The flux of recharge water into the confined aquifer system according to this chromatographic model is estimated to be 0.99 mm/day, which is compatible with the average recharge flux to unconfined groundwater in Japan (1 mm/day)

  11. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-arid Environments

    Science.gov (United States)

    Owuor, Steven; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana; Pelster, David; Díaz-Pinés, Eugenio; Breuer, Lutz; Merbold, Lutz

    2017-04-01

    Conclusive evidence and understanding of the effects of land use and land cover (LULC) on both groundwater recharge and surface runoff is critical for effective management of water resources in semi-arid region as those heavily depend on groundwater resources. However, there is limited quantitative evidence on how changes to LULC in semi-arid tropical and subtropical regions affect the subsurface components of the hydrologic cycle, particularly groundwater recharge. In this study, we reviewed a total of 27 studies (2 modelling and 25 experimental), which reported on pre- and post-land use change groundwater recharge or surface runoff magnitude, and thus allowed to quantify the response of groundwater recharge rates and runoff to LULC. Restoration of bare land induces a decrease in groundwater recharge from 42 % of precipitation to between 6 and 12 % depending on the final LULC. If forests are cleared for rangelands, groundwater recharge increases by 7.8 ± 12.6 %, while conversion to cropland or grassland results in increases of 3.4 ± 2.5 and 4.4 ± 3.3 %, respectively. Rehabilitation of bare land to cropland results in surface runoff reductions of between 5.2 and 7.3 %. The conversion of forest vegetation to managed LULC shows an increase in surface runoff from 1 to 14.1 % depending on the final LULC. Surface runoff is reduced from 2.5 to 1.1 % when grassland is converted to forest vegetation. While there is general consistency in the results from the selected case studies, we conclude that there are few experimental studies that have been conducted in tropical and subtropical semi-arid regions, despite that many people rely heavily on groundwater for their livelihoods. Therefore, there is an urgent need to increase the body of quantitative evidence given the pressure of growing human population and climate change on water resources in the region.

  12. A field study of advanced municipal wastewater treatment technology for artificial groundwater recharge

    Institute of Scientific and Technical Information of China (English)

    PI Yun-zheng; WANG Jian-long

    2006-01-01

    Field studies were conducted to investigate the advanced treatment of the municipal secondary effluent and a subsequent artificial groundwater recharge at Gaobeidian Wastewater Treatment Plant, Beijing. To improve the secondary effluent quality, the combined process of powdered activated carbon adsorption, flocculation and rapid sand filtration was applied, which could remove about 40% dissolved organic carbon (DOC) and 70% adsorbable organic halogens. The results of liquid size exclusion chromatography indicate that in the adsorption unit the removed organic fiaction was mainly low molecular weight compounds. The fiactions removed by the flocculation unit were polysaccharides and high molecular weight compounds. The retention of water in summer in the open recharge basins resulted in a growth of algae. Consequently, DOC increased in the polysaccharide and high molecular weight humic substances fiaction. The majority of the DOC removal during soil passage took place in the unsaturated area.A limited reduction of DOC was observed in the aquifer zone.

  13. Using Decision Support System to Find Suitable Sites for Groundwater Artificial Recharge

    Science.gov (United States)

    Ghasemian, D.; Winter, C. L.; Kheirkhah Zarkesh, M. M.; Moradi, H. R.

    2014-12-01

    Some parts of Iran are considered as one of the driest regions of the world, where water is a limiting factor for lasting life therefore using seasonal floodwaters is very important in these arid regions. On the other hand, special attention has been paid to artificial groundwater recharge in these regions. Floodwater spreading on the permeable terrain is one of the flood control and utilization methods. Determination of appropriate site for water spreading is one of the most important stages of this project. Parameters considered in the selection of groundwater artificial recharge locations are diverse and complex. These factors consist of earth sciences (geology, geomorphology and soils), hydrology (runoff, sediment yield, infiltration and groundwater conditions) and socio-economic aspects (irrigated agriculture, flood damage mitigation, environment, job creation and so on). Hence, decision making depends on criteria of diverse nature. The goal of this study is defining a Decision Support System for floodwater site selection in Shahriary area. Four main criteria were selected in this research which are floodwater characters, infiltration, water applications and flood damage. In order to determine the weight of factors, Analytical Hierarchy Process was used. The results showed that soil texture and floodwater volume of infiltration are the most important factors. After providing output maps which had been defined in five scenarios, Kappa Index was used to evaluate the model. Based on the obtained results, the maps showed an acceptable agreement with control zones.

  14. Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment

    Science.gov (United States)

    Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

    2013-04-01

    Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993

  15. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Kapil K., E-mail: kkn2104@columbia.edu [Columbia Water Center (India Office), Columbia University, New Delhi 110 016 (India); Gosain, A.K. [Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016 (India)

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km{sup 2} with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO{sub 3}) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO{sub 3} transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R{sup 2} correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO{sub 3} removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO{sub 3} concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the

  16. Sources of groundwater and characteristics of surface-water recharge at Bell, White, and Suwannee Springs, Florida, 2012–13

    Science.gov (United States)

    Stamm, John F.; McBride, W. Scott

    2016-12-21

    Discharge from springs in Florida is sourced from aquifers, such as the Upper Floridan aquifer, which is overlain by an upper confining unit that locally can have properties of an aquifer. Water levels in aquifers are affected by several factors, such as precipitation, recharge, and groundwater withdrawals, which in turn can affect discharge from springs. Therefore, identifying groundwater sources and recharge characteristics can be important in assessing how these factors might affect flows and water levels in springs and can be informative in broader applications such as groundwater modeling. Recharge characteristics include the residence time of water at the surface, apparent age of recharge, and recharge water temperature.The groundwater sources and recharge characteristics of three springs that discharge from the banks of the Suwannee River in northern Florida were assessed for this study: Bell Springs, White Springs, and Suwannee Springs. Sources of groundwater were also assessed for a 150-foot-deep well finished within the Upper Floridan aquifer, hereafter referred to as the UFA well. Water samples were collected for geochemical analyses in November 2012 and October 2013 from the three springs and the UFA well. Samples were analyzed for a suite of major ions, dissolved gases, and isotopes of sulfur, strontium, oxygen, and hydrogen. Daily means of water level and specific conductance at White Springs were continuously recorded from October 2012 through December 2013 by the Suwannee River Water Management District. Suwannee River stage at White Springs was computed on the basis of stage at a U.S. Geological Survey streamgage about 2.4 miles upstream. Water levels in two wells, located about 2.5 miles northwest and 13 miles southeast of White Springs, were also used in the analyses.Major ion concentrations were used to differentiate water from the springs and Upper Floridan aquifer into three groups: Bell Springs, UFA well, and White and Suwannee Springs. When

  17. Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential

    Science.gov (United States)

    Edwards, Emily C.; Harter, Thomas; Fogg, Graham E.; Washburn, Barbara; Hamad, Hamad

    2016-08-01

    Drywells are gravity-fed, excavated pits with perforated casings used to facilitate stormwater infiltration and groundwater recharge in areas where drainage and diversion of storm flows is problematic. Historically, drywells have predominantly been used as a form of stormwater management in locations that receive high volumes of precipitation; however the use of drywells is increasingly being evaluated as a method to supplement groundwater recharge, especially in areas facing severe drought. Studies have shown that drywells can be an effective means to increase recharge to aquifers; however, the potential for groundwater contamination caused by polluted stormwater runoff bypassing transport through surface soil and near surface sediment has prevented more widespread use of drywells as a recharge mechanism. Numerous studies have shown that groundwater and drinking water contamination from drywells can be avoided if drywells are used in appropriate locations and properly maintained. The effectiveness of drywells for aquifer recharge depends on the hydrogeologic setting and land use surrounding a site, as well as influent stormwater quantity and quality. These parameters may be informed for a specific drywell site through geologic and hydrologic characterization and adequate monitoring of stormwater and groundwater quality.

  18. Recharge heterogeneity and high intensity rainfall events increase contamination risk for Mediterranean groundwater resources

    Science.gov (United States)

    Hartmann, Andreas; Jasechko, Scott; Gleeson, Tom; Wada, Yoshihide; Andreo, Bartolomé; Barberá, Juan Antonio; Brielmann, Heike; Charlier, Jean-Baptiste; Darling, George; Filippini, Maria; Garvelmann, Jakob; Goldscheider, Nico; Kralik, Martin; Kunstmann, Harald; Ladouche, Bernard; Lange, Jens; Mudarra, Matías; Francisco Martín, José; Rimmer, Alon; Sanchez, Damián; Stumpp, Christine; Wagener, Thorsten

    2017-04-01

    Karst develops through the dissolution of carbonate rock and results in pronounced spatiotemporal heterogeneity of hydrological processes. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries like Austria or Slovenia. Previous work showed that karstic recharge processes enhance and alter the sensitivity of recharge to climate variability. The enhanced preferential flow from the surface to the aquifer may be followed by enhanced risk of groundwater contamination. In this study we assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of karst hydraulic properties, we were able to simulate karstic groundwater recharge including its heterogeneous spatiotemporal dynamics. The model is driven by gridded daily climate data from the Global Land Data Assimilation System (GLDAS). Transit time distributions are calculated using virtual tracer experiments. We evaluated our simulations by independent information on transit times derived from observed time series of water isotopes of >70 karst springs over Europe. The simulations indicate that, compared to humid, mountain and desert regions, the Mediterranean region shows a stronger risk of contamination in Europe because preferential flow processes are most pronounced given thin soil layers and the seasonal abundance of high intensity rainfall events in autumn and winter. Our modelling approach includes strong simplifications and its results cannot easily be generalized but it still highlights that the combined effects of variable climate and heterogeneous catchment properties constitute a strong risk on water quality.

  19. Sources of water for the outflow channels on Mars: Implications of the Late Noachian "icy highlands" model for melting and groundwater recharge on the Tharsis rise

    Science.gov (United States)

    Cassanelli, James P.; Head, James W.; Fastook, James L.

    2015-04-01

    predicted "cold and icy" conditions is required. We test basal melting of surface snow and ice in response to a regionally elevated geothermal heat flux throughout the Tharsis rise (resulting from widespread volcanic and magmatic activity during the Noachian) as a mechanism that can provide: (1) liquid water generation at the surface of Mars under generally "cold and icy" conditions, and (2) potentially large scale integration of the hydrological system (through thinning or breaching of the cryosphere), allowing for infiltration of meltwater to provide groundwater recharge during the Late Noachian to supply the later formation of outflow channels. We find: (1) Regional scale basal melting of LNIH ice sheets is not likely to occur at the predicted nominal average ice sheet thicknesses, even in the presence of the anomalous bottom-up heating conditions expected in the Tharsis region (although the increased baseline heating will render the LNIH ice sheets more susceptible to melting through additional anomalous heating conditions introduced by top-down and bottom-up processes). (2) Local scale basal melting and groundwater recharge through a "heat-pipe drain pipe" mechanism is likely to occur, but is not predicted to produce sufficient groundwater recharge to supply the water needed to form the outflow channels. (3) Under the assumption of an ice saturated cryosphere, regional scale melting of the cryosphere due to the insulating effect of the LNIH ice sheets does not provide enough water to explain the formation of all of the outflow channels. Therefore, if the LNIH model is correct, the groundwater recharge that supplied outflow channel formation requires a source that operated earlier in martian history, or the recharge was supplied by other mechanisms.

  20. Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data

    Science.gov (United States)

    Coelho, Victor Hugo R.; Montenegro, Suzana; Almeida, Cristiano N.; Silva, Bernardo B.; Oliveira, Leidjane M.; Gusmão, Ana Cláudia V.; Freitas, Emerson S.; Montenegro, Abelardo A. A.

    2017-05-01

    Data limitations on groundwater (GW) recharge over large areas are still a challenge for efficient water resource management, especially in semi-arid regions. Thus, this study seeks to integrate hydrological cycle variables from satellite imagery to estimate the spatial distribution of GW recharge in the Ipanema river basin (IRB), which is located in the State of Pernambuco in Northeast Brazil. Remote sensing data, including monthly maps (2011-2012) of rainfall, runoff and evapotranspiration, are used as input for the water balance method within Geographic Information Systems (GIS). Rainfall data are derived from the TRMM Multi-satellite Precipitation Analysis (TMPA) Version 7 (3B43V7) product and present the same monthly average temporal distributions from 15 rain gauges that are distributed over the study area (r = 0.93 and MAE = 12.7 mm), with annual average estimates of 894.3 (2011) and 300.7 mm (2012). The runoff from the Natural Resources Conservation Service (NRCS) method, which is based on regional soil information and Thematic Mapper (TM) sensor image, represents 29% of the TMPA rainfall that was observed across two years of study. Actual evapotranspiration data, which were provided by the SEBAL application of MODIS images, present annual averages of 1213 (2011) and 1067 (2012) mm. The water balance results reveal a large inter-annual difference in the IRB GW recharge, which is characterized by different rainfall regimes, with averages of 30.4 (2011) and 4.7 (2012) mm year-1. These recharges were mainly observed between January and July in regions with alluvial sediments and highly permeable soils. The GW recharge approach with remote sensing is compared to the WTF (Water Table Fluctuation) method, which is used in an area of alluvium in the IRB. The estimates from these two methods exhibit reliable annual agreement, with average values of 154.6 (WTF) and 124.6 (water balance) mm in 2011. These values correspond to 14.89 and 13.53% of the rainfall that was

  1. Coupling of Groundwater Recharge and Biodegradation of Subsurface Crude-Oil Contamination (Invited)

    Science.gov (United States)

    Bekins, B. A.; Hostettler, F. D.; Delin, G. N.; Herkelrath, W. N.; Warren, E.; Campbell, P.; Rosenbauer, R. J.; Cozzarelli, I.

    2010-12-01

    Surface hydrologic properties controlling groundwater recharge can have a large effect on biodegradation rates in the subsurface. Two studies of crude oil contamination show that degradation rates are dramatically increased where recharge rates are enhanced. The first site, located near Bemidji, Minnesota, was contaminated in August, 1979 when oil from a pipeline rupture infiltrated into a surficial glacial outwash aquifer. Discrete oil phases form three separate pools at the water table, the largest of which is 25x75 m at a depth of 6-8 m. Gas and water concentrations and microbial community data show that methanogenic conditions prevail in this oil pool. There is extreme spatial dependence in the degradation rates such that most of the n-alkanes have been degraded in the upgradient end, but in the downgradient end n-alkane concentrations are nearly unaltered from the original spill. Recharge rates through the two ends of the oil body were estimated using a water table fluctuation method. In 2002, the more degraded end received 15.2 cm of recharge contrasted to 10.7 cm at the less degraded end. The enhanced recharge is caused by topographic focusing of runoff toward a local depression. Microbial data using the Most Probable Number method show that the methanogen concentrations are 10-100 times greater in the more degraded end of the oil body suggesting that a growth nutrient is supplied by recharge. A decrease in partial pressure of N2 compared to Ar in the soil gas indicates nitrogen fixation probably meets N requirements (Amos et al., 2005, WRR, doi:10.1029/2004WR003433). Organic phosphorus is the main form of P in infiltrating pore water and concentration decreases with depth. The second site is located 40 km southeast of the Bemidji site at an oil pipeline pumping station near Cass Lake, Minnesota. This site was contaminated by oil leaking from a pipe coupling for an unknown duration of time between 1971 and 2002. The oil body at this site lies under a fenced

  2. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  3. Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy

    Science.gov (United States)

    Allocca, V.; De Vita, P.; Manna, F.; Nimmo, J. R.

    2015-10-01

    Groundwater recharge assessment of karst aquifers, at various spatial and temporal scales, is a major scientific topic of current importance, since these aquifers play an essential role for both socio-economic development and fluvial ecosystems. In this study, groundwater recharge was estimated at local and episodic scales in a representative perched karst aquifer in a region of southern Italy with a Mediterranean climate. The research utilized measurements of precipitation, air temperature, soil water content, and water-table depth, obtained in 2008 at the Acqua della Madonna test area (Terminio Mount karst aquifer, Campania region). At this location the aquifer is overlain by ash-fall pyroclastic soils. The Episodic Master Recession (EMR) method, an improved version of the Water Table Fluctuation (WTF) method, was applied to estimate the amount of recharge generated episodically by individual rainfall events. The method also quantifies the amount of precipitation generating each recharge episode, thus permitting calculation of the Recharge to the Precipitation Ratio (RPR) on a storm-by-storm basis. Depending on the seasonally varying air temperature, evapotranspiration, and precipitation patterns, calculated values of RPR varied between 35% and 97% among the individual episodes. A multiple linear correlation of the RPR with both the average intensity of recharging rainfall events and the antecedent soil water content was calculated. Given the relatively easy measurability of precipitation and soil water content, such an empirical model would have great hydrogeological and practical utility. It would facilitate short-term forecasting of recharge in karst aquifers of the Mediterranean region and other aquifers with similar hydrogeological characteristics. By establishing relationships between the RPR and climate-dependent variables such as average storm intensity, it would facilitate prediction of climate-change effects on groundwater recharge. The EMR methodology

  4. Hydrogeological evaluation of an over-exploited aquifer in Dhaka, Bangladesh towards the implementation of groundwater artificial recharge

    Science.gov (United States)

    Azizur Rahman, M.; Rusteberg, Bernd; Sauter, Martin

    2010-05-01

    The population of Dhaka City is presently about 12 million and according to present trends in population growth, that number will most likely increase to 17.2 million by the year 2025. A serious water crisis is expected due to the extremely limited quality and quantity of water resources in the region. Previous studies have shown that the current trend in groundwater resource development is non-sustainable due to over-exploitation of the regional aquifer system, resulting in rapidly decreasing groundwater levels of about 2 to 3 meters per year. Today, annual groundwater extraction clearly exceeds natural groundwater recharge. New water management strategies are needed to guarantee future generations of Dhaka City a secured and sustained water supply as well as sustainable development of the city. The implementation of groundwater artificial recharge (AR) is one potential measure. As the first step towards a new water management strategy for Dhaka City, the authors report on the hydrogeological conditions of the greater Dhaka region and from this are able to present the location of potential recharge sites and identify appropriate recharge technologies for AR implementation. The aquifers of greater Dhaka can be grouped in three major categories: Holocene Deposit, Pleistocene Deposit and Plio-Pleistocene Deposit. The aquifers are generally thick and multilayered with relatively high transmissivity and storage coefficients. AR is considered feasible due to the fact these aquifers are alluvium deposit aquifers which characteristically have moderate to high hydraulic conductivity. Low costs for recovery of recharged water and large recharge volume capacity are generally associated with aquifers of unconsolidated sediments. Spatial analysis of the region has shown that Karaniganj, Kotoali, Savar, Dhamrai, Singair upazila, which are situated in greater Dhaka region and close to Dhaka City, could serve as recharge sites to the subsurface by pond infiltration technique. A

  5. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”

    Science.gov (United States)

    Krishnaswamy, Jagdish; Bonell, Michael; Venkatesh, Basappa; Purandara, Bekal K.; Rakesh, K. N.; Lele, Sharachchandra; Kiran, M. C.; Reddy, Veerabasawant; Badiger, Shrinivas

    2013-08-01

    demonstrated a higher frequency and longer duration of low flows under NF when compared to the other more disturbed land covers in both the Coastal and Malnaad basins. Groundwater recharge estimated using water balance during the wet-season in the Coastal basins under NF, AC and DF was estimated to be 50%, 46% and 35% respectively and in the Malnaad it was 61%, 55% and 36% respectively. Soil Water Infiltration and Movement (SWIM) based recharge estimates also support the pattern (46% in NF; 39% in AC and 14% in DF). Furey-Gupta filter based estimates associated with the Coastal basins also suggest similar groundwater recharge values and trends across the respective land-covers: 69% in NF, 49% in AC, and 42% in DF. Soil water potential profiles using zero flux plane methods suggest that during the dry-season, natural forests depend on deep soil moisture and groundwater. Catchments with higher proportion of forest cover upstream were observed to sustain flow longer into the dry-season. These hydrologic responses provide some support towards the “infiltration-evapotranspiration trade-off” hypothesis in which differences in infiltration between land-cover rather than evapotranspiration determines the differences in groundwater recharge, low flows and dry-season flow. Groundwater recharge is the most temporally stable under natural forest, although substantial recharge occurs under all three ecosystems, which helps to sustain dry-season flow downstream in higher order streams that sustain local communities and agro-ecosystems. In addition to spatial scale effects, greater attention also needs to be given to the role of hydrogeology within the context of the above hypothesis and its implications for hydrologic services.

  6. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems

    Science.gov (United States)

    Michael, Holly A.; Russoniello, Christopher J.; Byron, Lindsay A.

    2013-04-01

    Impacts of rising sea level on the hydraulic balance between aquifers and the ocean threaten fresh water resources and aquatic ecosystems along many world coastlines. Understanding the vulnerability of groundwater systems to these changes and the primary factors that determine the magnitude of system response is critical to developing effective management and adaptation plans in coastal zones. We assessed the vulnerability of two types of groundwater systems, recharge-limited and topography-limited, to changes caused by sea-level rise over a range of hydrogeologic settings. Vulnerability in this context is defined by the rate and magnitude of salinization of coastal aquifers and changes in groundwater flow to the sea. Two-dimensional variable-density groundwater flow and salt transport simulations indicate that the response of recharge-limited systems is largely minimal, whereas topography-limited systems are vulnerable for various combinations of permeability, vertical anisotropy in permeability, and recharge. World coastlines were classified according to system type as a vulnerability indicator. Results indicate that approximately 70% of world coastlines may be topography-limited, though variability in hydrogeologic conditions strongly affects classification. Future recharge and sea-level rise scenarios have much less influence on the proportion of vulnerable coastlines than differences in permeability, distance to a hydraulic divide, and recharge, indicating that hydrogeologic properties and setting are more important factors to consider in determining system type than uncertainties in the magnitude of sea-level rise and hydrologic shifts associated with future climate change.

  7. Multi-criteria analysis of site selection for groundwater recharge with treated municipal wastewater.

    Science.gov (United States)

    Ahmadi, Mohammad Mehdi; Mahdavirad, Hadi; Bakhtiari, Bahram

    2017-08-01

    Geographic information systems (GIS) and remote sensing techniques are used as a decision support system to identify potential soil aquifer treatment (SAT) sites for groundwater recharge of Kerman aquifer, which is located in the southeast of Iran. These sites are identified using a single-objective multi-criteria analysis. To ensure technical feasibility, environmental sustainability, social acceptability and economical viability a number of criteria are considered for the site selection. The criteria selected for the different variables and acceptable ranges are based on standards published in national and international guidelines and technical documents. Multi-criteria evaluation was performed combining all produced thematic maps by means of the weighted index overlay method in order to select sites meeting all the criteria. The resulting map of this analysis shows potential sites are located in the north, southwest and southeast of the study area. Considering field observations, a potential site, which is located in the southwest of the study area, is proposed as the most suitable site for SAT. The result indicates that the study area has sufficient required suitable space for groundwater recharge with treated wastewater.

  8. Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system.

    Science.gov (United States)

    Chen, Guoli; Liu, Xiang; Tartakevosky, Daniel; Li, Miao

    2016-11-01

    Three fluoroquinolone antibiotics agents (FQs) in groundwater and reclaimed water have been investigated in Changzhou and Beijing, China. The occurrence of ofloxacin (OFL), enrofloxacin (ENR) and norfloxacin (NOR) is in nanograms per liter and has 100% frequency. The concentration order of FQs in reclaimed water is NOR>OFL>ENR, whilst the order in groundwater is NOR>ENR>OFL. And then the single and mixture adsorption-desorption have been studied and showed that (i) silty clay loam has higher sorption capacity than loamy sand, (ii) competitive adsorption exists when the three selected FQs coexist, (iii) ENR has a significantly priority sorption to NOR, whilst OFL has a least sorption among the mixture, (iv) there is no significant difference between the desorption results of mixture and the indivdual compound in relatively low concentration, (v) the formed chemical bonds and the irreversible combination of adsorption point are the significant influential factors for explaining desorption hysteresis of the selected FQs. Based on the above study, transport model and risk quotient have been performed, and the calculated risk quotient reveals that: (i) the selected FQs risk order in reclaimed water is OFL>ENR>NOR, (ii) in groundwater, OFL and ENR pose a higher risk than NOR no matter whether considering the long time groundwater recharge. This study will help policy makers to decide which FQs need to be covered in the priority substance lists defined in legislative frameworks. Copyright © 2016. Published by Elsevier Inc.

  9. Investigation of discharge-area groundwaters for recharge source characterization on different scales: the case of Jinan in northern China

    Science.gov (United States)

    Wang, Jiale; Jin, Menggui; Lu, Guoping; Zhang, Dele; Kang, Fengxin; Jia, Baojie

    2016-05-01

    Discharge-area groundwater in Jinan, a typical karst region in northern China, was investigated by studying both the hydrological and chemical processes evolving from the recharge in mountainous terrains to the karst-spring outflows in the metropolitan area. Large-scale exploitation of karst groundwater has led to a disturbing trend in the ever-decreasing spring outflow rates and groundwater level. There is insufficient information about the Jinan karst aquifers, which provide the main water sources to meet human demand and to sustain spring outflow. The coupling of hydrological and chemical processes quantifies the flow system through aqueous chemistry characterization of the water sources. This approach is used to study the groundwater flow discharges in different locations and geological settings. The potentiometric data indicated limited vertical connectivity between distinct hydrogeological units and alteration of the recharge regime by the faults and by artificial exploitation. Shallow groundwater primarily belongs to the local flow system, with high nitrate concentration and enriched stable isotopic contents. Thermal groundwater has high concentrations of chloride and total dissolved solids, derived from a regional flow system with the highest recharge altitudes and long residence time. Non-thermal karst water may be attributed to the intermediate flow system, with uniform HCO3-Ca(Mg) facies and low nitrate concentration. This work highlighted discharge as a fingerprint of groundwater flow conditions and provides a better insight into the hydrogeological system.

  10. Evaluation of the potential impact of climate changes on groundwater recharge in Karkheh river basin (Khuzestan, Iran)

    Science.gov (United States)

    Abrishamchi, A.; Beigi, E.; Tajrishy, M.; Abrishamchi, A.

    2009-12-01

    Groundwater is an important natural resource for human beings and ecosystems, especially in arid semi arid regions with scarce water resources and high climate variability. This vital resource is under stress in terms of both quantity and quality due to increased demands as well as the drought. Wise groundwater management requires vulnerability and susceptibility assessment of groundwater resources to natural and anthropogenic phenomena such as drought, over-abstraction and quality deterioration both in the current climatic situation and in the context of climate change. There is enough evidence that climate change is expected to affect all elements of hydrologic cycle and have negative effects on water resources due to increased variability in extreme hydrologic events of droughts and floods. .In this study impact of climate change on groundwater recharge in Karkheh river basin in province of Khuzestan, Iran, has been investigated using a physically-based methodology that can be used for predicting both temporal and spatial varying groundwater recharge. To ensure the sustainability of the land and water resources developments, assessment of the possible impacts of climate change on hydrology and water resources in the basin is necessary. Quantifying groundwater recharge is essential for management of groundwater resources. Recharge was estimated by using the hydrological evaluation of landfill performance (HELP3) water budget model. Model’s parameters were calibrated and validated using observational data in 1990-1998. The impact of climate change was modeled using downscaled precipitation and temperature from runs of CGCM2 model. These data were derived from two scenarios, A2 and B2 for three periods: 2010-2039, 2040-2069, and 2070-2099. Results of the study indicate that due to global warming evapotranspiration rates will increase and winter-precipitation will fall, spring-snowmelt will shift toward winter and consequently it will cause recharge to increase

  11. Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran Desert for groundwater recharge estimation

    Science.gov (United States)

    Hou, Lizhu; Wang, Xu-Sheng; Hu, Bill X.; Shang, Jie; Wan, Li

    2016-09-01

    Quantification of groundwater recharge from precipitation in the huge sand dunes is an issue in accounting for regional water balance in the Badain Jaran Desert (BJD) where about 100 lakes exist between dunes. In this study, field observations were conducted on a sand dune near a large saline lake in the BJD to investigate soil water movement through a thick vadose zone for groundwater estimation. The hydraulic properties of the soils at the site were determined using in situ experiments and laboratory measurements. A HYDRUS-1D model was built up for simulating the coupling processes of vertical water-vapor movement and heat transport in the desert soil. The model was well calibrated and validated using the site measurements of the soil water and temperature at various depths. Then, the model was applied to simulate the vertical flow across a 3-m-depth soil during a 53-year period under variable climate conditions. The simulated flow rate at the depth is an approximate estimation of groundwater recharge from the precipitation in the desert. It was found that the annual groundwater recharge would be 11-30 mm during 1983-2012, while the annual precipitation varied from 68 to 172 mm in the same period. The recharge rates are significantly higher than those estimated from the previous studies using chemical information. The modeling results highlight the role of the local precipitation as an essential source of groundwater in the BJD.

  12. The advantages, and challenges, in using multiple techniques in the estimation of surface water-groundwater fluxes.

    Science.gov (United States)

    Shanafield, M.; Cook, P. G.

    2014-12-01

    When estimating surface water-groundwater fluxes, the use of complimentary techniques helps to fill in uncertainties in any individual method, and to potentially gain a better understanding of spatial and temporal variability in a system. It can also be a way of preventing the loss of data during infrequent and unpredictable flow events. For example, much of arid Australia relies on groundwater, which is recharged by streamflow through ephemeral streams during flood events. Three recent surface water/groundwater investigations from arid Australian systems provide good examples of how using multiple field and analysis techniques can help to more fully characterize surface water-groundwater fluxes, but can also result in conflicting values over varying spatial and temporal scales. In the Pilbara region of Western Australia, combining streambed radon measurements, vertical heat transport modeling, and a tracer test helped constrain very low streambed residence times, which are on the order of minutes. Spatial and temporal variability between the methods yielded hyporheic exchange estimates between 10-4 m2 s-1 and 4.2 x 10-2 m2 s-1. In South Australia, three-dimensional heat transport modeling captured heterogeneity within 20 square meters of streambed, identifying areas of sandy soil (flux rates of up to 3 m d-1) and clay (flux rates too slow to be accurately characterized). Streamflow front modeling showed similar flux rates, but averaged over 100 m long stream segments for a 1.6 km reach. Finally, in central Australia, several methods are used to decipher whether any of the flow down a highly ephemeral river contributes to regional groundwater recharge, showing that evaporation and evapotranspiration likely accounts for all of the infiltration into the perched aquifer. Lessons learned from these examples demonstrate the influences of the spatial and temporal variability between techniques on estimated fluxes.

  13. Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India

    Science.gov (United States)

    Sahoo, Sasmita; Jha, Madan K.

    2017-07-01

    Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997-2006, followed by validation (2007-2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.

  14. Three-dimensional hydrostratigraphical modelling to support evaluation of recharge and saltwater intrusion in a coastal groundwater system in Vietnam

    OpenAIRE

    2014-01-01

    Saltwater intrusion is generally related to seawater-level rise or induced intrusion due to excessive groundwater extraction in coastal aquifers. However, the hydrogeological heterogeneity of the subsurface plays an important role in (non-)intrusion as well. Local hydrogeological conditions for recharge and saltwater intrusion are studied in a coastal groundwater system in Vietnam where geological formations exhibit highly heterogeneous lithologies. A three-dimensional (3D) hydrostratigraphic...

  15. Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan

    Science.gov (United States)

    Ting, Cheh-Shyh; Kerh, Tienfuan; Liao, Chiu-Jung

    Due to rapid economic growth in the Pingtung Plain of Taiwan, the use of groundwater resources has changed dramatically. Over-pumping of the groundwater reservoir, which lowers hydraulic heads in the aquifers, is not only affecting the coastal area negatively but has serious consequences for agriculture throughout the plain. In order to determine the safe yield of the aquifer underlying the plain, a reliable estimate of groundwater recharge is desirable. In the present study, for the first time, the chloride mass-balance method is adopted to estimate groundwater recharge in the plain. Four sites in the central part were chosen to facilitate the estimations using the ion-chromatograph and Thiessen polygon-weighting methods. Based on the measured and calculated results, in all sites, including the mountain and river boundaries, recharge to the groundwater is probably 15% of the annual rainfall, excluding recharge from additional irrigation water. This information can improve the accuracy of future groundwater-simulation and management models in the plain. Résumé Du fait de la croissance économique rapide de la plaine de Pingtung à Taiwan, l'utilisation des ressources en eau souterraine s'est considérablement modifié. La surexploitation des aquifères, qui a abaissé le niveau des nappes, n'affecte pas seulement la région côtière, mais a de sérieuses répercutions sur l'agriculture dans toute la plaine. Afin de déterminer les ressources renouvelables de l'aquifère sous la plaine, une estimation précise de la recharge de la nappe est nécessaire. Dans cette étude, le taux de recharge de la nappe a d'abord été estimé au moyen d'un bilan de matière de chlorure. Quatre sites de la partie centrale ont été sélectionnés pour réaliser ces estimations, à l'aide d'un chromatographe ionique et de la méthode des polygones de Thiessen. A partir des résultats mesurés et calculés, à chaque site, et en prenant comme limites les montagnes et les rivi

  16. Sustainable Hydro Assessment and Groundwater Recharge Projects (SHARP) in Germany - Water Balance Models

    Science.gov (United States)

    Niemand, C.; Kuhn, K.; Schwarze, R.

    2010-12-01

    SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for

  17. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran

    Science.gov (United States)

    Izady, A.; Davary, K.; Alizadeh, A.; Ziaei, A. N.; Akhavan, S.; Alipoor, A.; Joodavi, A.; Brusseau, M. L.

    2015-02-01

    Increased irrigation in the Neishaboor watershed, Iran, during the last few decades has caused serious groundwater depletion, making the development of comprehensive mitigation strategies and tools increasingly important. In this study, SWAT and MODFLOW were employed to integratively simulate surface-water and groundwater flows. SWAT and MODFLOW were iteratively executed to compute spatial and temporal distributions of hydrologic components. The combined SWAT-MODFLOW model was calibrated (2000-2010) and validated (2010-2012) based on streamflow, wheat yield, groundwater extraction, and groundwater-level data. This multi-criteria calibration procedure provided greater confidence for the partitioning of water between soil storage, actual evapotranspiration, and aquifer recharge. The SWAT model provided satisfactory predictions of the hydrologic budget for the watershed outlet. It also provided good predictions of irrigated wheat yield and groundwater extraction. The 10-year mean annual recharge rate estimated using the combined model varied greatly, ranging from 0 to 960 mm, with an average of 176 mm. This result showed good agreement with the independently estimated annual recharge rate from an earlier study. The combined model provides a robust tool for the sustainable planning and management of water resources for areas with stressed aquifers where interaction between groundwater and surface water cannot be easily assessed.

  18. Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy

    Science.gov (United States)

    Paternoster, M.; Liotta, M.; Favara, R.

    2008-01-01

    SummaryA rain gauge network consisting of five sites located at different altitudes, ranging from 320 to 1285 m.a.s.l., was installed at Mt. Vulture volcano (southern Italy). Rain water samples were collected monthly over a two-year period and their isotopic composition (δ 18O and δD) was analyzed. During the same period, circulating groundwater was sampled from 24 springs and wells distributed throughout the study area. Monthly isotopic composition values were used to determine the local meteoric water line (LMWL). Its slope is slightly lower than the relationship defined by Longinelli and Selmo (Longinelli, A., Selmo, E., 2003. Isotopic composition of precipitation in Italy: a first overall map. J. Hydrol. 270, 75-88) for southern Italy. The groundwater samples analyzed were distributed essentially along the LMWL. The weighted local meteoric water line (WLMWL), defined through the mean values weighted by the rainfall amount, however, may define in a short range the meteoric end-member in the local hydrological cycle more precisely. Since most of the groundwater sampling locations do not show seasonal variations in their stable isotope values, the flow system appears to be relatively homogeneous. The mean altitude of the recharge by rainfall infiltration was estimated on the basis of the local vertical isotopic gradient δ 18O. A few springs, which show anomalous isotopic values, reveal more regional circulation systems, associated with tectonic structures responsible for the ascent of deeper water.

  19. Role of the Lakes in Groundwater Recharge and Discharge in the Young Glacial Area, Northern Poland.

    Science.gov (United States)

    Jaworska-Szulc, Beata

    2016-07-01

    The aim of this research was to delineate characteristic hydrogeological lake types in the Young Glacial Area (YGA). The YGA is in the central and east part of the Kashubian Lake District (KLD) in Northern Poland, an area covered by deposits of Quaternary glaciation. All the bigger lakes were investigated in the area of about 1500 km(2) (39 lakes). The role of lakes in groundwater recharge and discharge was determined from total dissolved solids (TDS) in lake waters and also from groundwater flow simulation. The general trend was that gaining lakes, as determined by flow modeling, had higher values of TDS than losing lakes. In addition to typical gaining lakes (with TDS > 250 mg/l), there were losing lakes perched on glacial till deposits with very low TDS (lakes were delineated: ones with very low TDS and another group with slightly higher TDS (due to local contact with groundwater). Flow-through lakes with TDS of 170-200 mg/l were also delineated.

  20. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply

    Science.gov (United States)

    Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.

    2013-01-01

    Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

  1. Application of the rainfall infiltration breakthrough (RIB) model for groundwater recharge estimation in west coastal South Africa

    CSIR Research Space (South Africa)

    Sun, X

    2013-04-01

    Full Text Available level fluctuations (WLF) on a monthly basis was proposed in the rainfall infiltration breakthrough (RIB) model for the purpose of groundwater recharge estimation. In this paper, the physical meaning of parameters in the CRD and previous RIB models...

  2. Simulations of historical and future trends in snowfall and groundwater recharge for basins draining to Long Island Sound

    Science.gov (United States)

    Bjerklie, David M.; Viger, Roland; Trombley, Thomas J.

    2011-01-01

    A regional watershed model was developed for watersheds contributing to Long Island Sound, including the Connecticut River basin. The study region covers approximately 40 900 km2, extending from a moderate coastal climate zone in the south to a mountainous northern New England climate zone dominated by snowmelt in the north. The input data indicate that precipitation and temperature have been increasing for the last 46 years (1961– 2006) across the region. Minimum temperature has increased more than maximum temperature over the same period (1961–2006). The model simulation indicates that there was an upward trend in groundwater recharge across most of the modeled region. However, trends in increasing precipitation and groundwater recharge are not significant at the 0.05 level if the drought of 1961–67 is removed from the time series. The trend in simulated snowfall is not significant across much of the region, although there is a significant downward trend in southeast Connecticut and in central Massachusetts. To simulate future trends, two input datasets, one assuming high carbon emissions and one assuming low carbon emissions, were developed from GCM forecasts. Under both of the carbon emission scenarios, simulations indicate that historical trends will continue, with increases in groundwater recharge over much of the region and substantial snowfall decreases across Massachusetts, Connecticut, southern Vermont, and southern New Hampshire. The increases in groundwater recharge and decreases in snowfall are most pronounced for the high emission scenario.

  3. Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories

    Directory of Open Access Journals (Sweden)

    P. Ala-aho

    2014-07-01

    Full Text Available Climate change and land use are rapidly changing the amount and temporal distribution of recharge in northern aquifers. This paper presents a novel method for distributing Monte Carlo simulations of 1-D soil profile spatially to estimate transient recharge in an unconfined esker aquifer. The modeling approach uses data-based estimates for the most important parameters controlling the total amount (canopy cover and timing (depth of the unsaturated zone of groundwater recharge. Scots pine canopy was parameterized to leaf area index (LAI using forestry inventory data. Uncertainty in the parameters controlling soil hydraulic properties and evapotranspiration was carried over from the Monte Carlo runs to the final recharge estimates. Different mechanisms for lake, soil, and snow evaporation and transpiration were used in the model set-up. Finally, the model output was validated with independent recharge estimates using the water table fluctuation method and baseflow estimation. The results indicated that LAI is important in controlling total recharge amount, and the modeling approach successfully reduced model uncertainty by allocating the LAI parameter spatially in the model. Soil evaporation compensated for transpiration for areas with low LAI values, which may be significant in optimal management of forestry and recharge. Different forest management scenarios tested with the model showed differences in annual recharge of up to 100 mm. The uncertainty in recharge estimates arising from the simulation parameters was lower than the interannual variation caused by climate conditions. It proved important to take unsaturated depth and vegetation cover into account when estimating spatially and temporally distributed recharge in sandy unconfined aquifers.

  4. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger

  5. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  6. Linking soil moisture balance and source-responsive preferential flow models for estimating groundwater recharge

    Science.gov (United States)

    Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

    2012-04-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a fieldsite in Shropshire, UK. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. However, recharge does not occur until near-positive pressures are achieved at the top of the glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Thus, although the wetting process in the topsoil is highly complex, a soil moisture balance model (SMBM) is shown to be skilful in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table suggests that Stokes type film flow rather than Richards type capillarity dominated flow is occurring and this conjecture is tested using a range of numerical models. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well, when linked to a SMBM as the source of recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils. If the conceptual and numerical models can be shown to be transferable to other ploughed soils, it promises to be a very useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation. Nimmo, J. R. (2010). Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow. Vadose Zone Journal, 9, 295-306.

  7. A multitracer approach to estimate groundwater residence time distributions at a managed aquifer recharge site

    Science.gov (United States)

    Popp, Andrea; Kipfer, Rolf

    2017-04-01

    Managed aquifer recharge (MAR) has become a common water management tool and serves various purposes such as improving the quality of groundwater (GW). At the study site, the Hardwald in Muttenz (Switzerland), MAR has been implemented in the mid-1950s to overcome increasing water demands. GW is artificially recharged with water from the river Rhine through a system of channels and ponds. The area is surrounded by potential contamination sites such as chemical industry, former landfills, a highway and a freight depot. Furthermore, the area shows a complex hydrogeologic setting with several fault zones and two main aquifers, the Quaternary Rhine gravel aquifer overlying a karstified Upper Muschelkalk limestone aquifer. Water from the deeper limestone aquifer is suspected to contain contaminants originating from the landfills. The fractures might serve as a hydraulic connection between the upper and lower aquifer. Further, groundwater pumping might enhance the mixing of recently infiltrated water with older water from the lower aquifer. Hence, the proximity to potential contamination sites and the complex geologic setting both pose risks for GW pollution and challenge the drinking water production in this area. To guarantee a safe drinking water supply, it is crucial to know the mixing patterns of young and old GW abstracted from the pumping wells. With this study we aim to determine the spatial variability of GW residence time distributions to differentiate between recently infiltrated river water and older groundwater. To reach our objectives, we use a combination of the following tracers to cover a wide range of possible GW ages: (1) radiogenic 222Rn (young water := product 3He (old water := 0.5-50 years); and (3) radiogenic 4He (very old water := 100-1000 years). Additionally, we analysed other dissolved (noble) gases (O2, N2, Ar, Kr) to estimate the amount of excess air and to derive the equilibration temperature. We also sampled for physico-chemical parameters

  8. Groundwater recharge and capillary rise in a clayey catchment: modulation by topography and the Arctic Oscillation

    Directory of Open Access Journals (Sweden)

    T. M. Schrøder

    2004-01-01

    Full Text Available The signature left by capillary rise in the water balance is investigated for a 16 km2 clayey till catchment in Denmark. Integrated modelling for 1981–99 substantiates a 30% uphill increase in average net recharge, caused by the reduction in capillary rise when the water table declines. Calibration of the groundwater module is constrained by stream flow separation and water table wells. Net recharge and a priori parameterisation has been estimated from those same data, an automatic rain gauge and electrical sounding. Evaluation of snow storage and compensation for a simplified formulation of unsaturated hydraulic conductivity contribute to a modelling of the precipitation-runoff relation that compares well with measurements in other underdrained clayey catchments. The capillary rise is assumed to be responsible for a 30% correlation between annual evapotranspiration and the North Atlantic Oscillation. The observed correlation, and the hypothesis of a hemispherical Arctic Oscillation linking atmospheric pressure with surface temperature, suggests that modelled evapotranspiration from clayey areas is better than precipitation records for identifying the region influenced by oscillation. Keywords: catchment modelling, MIKE SHE, capillary rise, degree-day model, climate

  9. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992-93

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Ground-water recharge occurred after five separate streamflow event periods in the Pah Canyon area of Fortymile Wash approximately 10 kilometers from Yucca Mountain, Nevada during 1992-93. Ground-water levels rose in two wells, UE-29 a No.1 and UE-29 a No.2, and one neutron-access borehole, UE-29 UZN-91, after each streamflow event period. A maximum rise of 2.9 meters occurred at UE-29 a No.1 thirteen days after the largest streamflow event where depth to water changed from 27.3 to 24.4 meters. Water levels fluctuated 3.89 meters in UE-29 a No.1, 2.92 meters in UE-29 a No.2, and 2.10 meters in UE-29 UZN-91 during the period January, 1992 to September, 1993. During two of the streamflow event periods, one in 1992 and one in 1993, there was flow around the neutron-access borehole located in the Fortymile Wash channel. Three other streamflow event periods were documented in Pah Canyon Wash but the streamflow infiltrated prior to reaching the neutron-access borehole location. Volumetric-water-content profiles were measured periodically in the neutron-access borehole. After the 1992 streamflow event period, water content increased in the upper six meters of the unsaturated zone. After the 1993 streamflow event period, water content increased in the entire unsaturated section, approximately 16 meters thick at the neutron-access borehole. Water levels in the neutron-access borehole rose even when there was no apparent water movement through the unsaturated zone as inferred by changes in the volumetric-water contents. This rise is attributed to ground-water recharge from nearby infiltration of Pah Canyon Wash streamflow. A groundwater mound probably formed beneath Pah Canyon Wash and spread laterally as evidence by larger rises in water levels in UE-29 a No.1 and UE-29 a No.2, which are closer to Pah Canyon Wash than UE-29 UZN-91.

  10. Vertical Sampling in Recharge Areas Versus Lateral Sampling in Discharge Areas: Assessing the Agricultural Nitrogen Legacy in Groundwater

    Science.gov (United States)

    Gilmore, T. E.; Genereux, D. P.; Solomon, D. K.; Mitasova, H.; Burnette, M.

    2014-12-01

    Agricultural nitrogen (N) is a legacy contaminant often found in shallow groundwater systems. This legacy has commonly been observed using well nests (vertical sampling) in recharge areas, but may also be observed by sampling at points in/beneath a streambed using pushable probes along transects across a channel (lateral sampling). We compared results from two different streambed point sampling approaches and from wells in the recharge area to assess whether the different approaches give fundamentally different pictures of (1) the magnitude of N contamination, (2) historic trends in N contamination, and (3) the extent to which denitrification attenuates nitrate transport through the surficial aquifer. Two different arrangements of streambed points (SP) were used to sample groundwater discharging into a coastal plain stream in North Carolina. In July 2012, a 58 m reach was sampled using closely-spaced lateral transects of SP, revealing high average [NO3-] (808 μM, n=39). In March 2013, transects of SP were widely distributed through a 2.7 km reach that contained the 58 m reach and suggested overall lower [NO3-] (210 μM, n=30), possibly due to variation in land use along the longer study reach. Mean [NO3-] from vertical sampling (2 well nests with 3 wells each) was 296 μM. Groundwater apparent ages from SP in the 58 m and 2.7 km reaches suggested lower recharge [NO3-] (observed [NO3-] plus modeled excess N2) in 0-10 year-old water (1250 μM and 525 μM, respectively), compared to higher recharge [NO3-] from 10-30 years ago (about 1600 μM and 900 μM, respectively). In the wells, [NO3-] was highest (835 μM) in groundwater with apparent age of 12-15 years and declined as apparent age increased, a trend that was consistent with SP in the 2.7 km reach. The 58 m reach suggested elevated recharge [NO3-] (>1100 μM) over a 50-year period. Excess N2 from wells suggested that about 62% of nitrate had been removed via denitrification since recharge, versus 51% and 78

  11. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers

    Science.gov (United States)

    Wang, B.; Jin, M.; Nimmo, J.R.; Yang, L.; Wang, W.

    2008-01-01

    Tritium and bromide were used as applied tracers to determine groundwater recharge in Hebei Plain, North China, to evaluate the impacts of different soil types, land use, irrigation, and crop cultivation practice on recharge. Additional objectives were to evaluate temporal variability of recharge and the effect on results of the particular tracer used. Thirty-nine profiles at representative locations were chosen for investigation. Average recharge rates and recharge coefficient determined by tritium and bromide tracing for different sites were 0.00-1.05 mm/d and 0.0-42.5%, respectively. The results showed relative recharge rates for the following paired influences (items within each pair are listed with the influence producing greater recharge first): flood-irrigated cropland and non-irrigated non-cultivation land, flood irrigation (0.42-0.58 mm/d) and sprinkling irrigation (0.17-0.23 mm/d), no stalk mulch (0.56-0.80 mm/d) and stalk mulch (0.44-0.60 mm/d), vegetable (e.g. Chinese cabbage and garlic, 0.70 mm/d) and wheat-maize (0.38 mm/d), peanut (0.51 mm/d) and peach (0.43 mm/d). The results also showed greater recharge for the first year of tracer travel than for the second. Because total precipitation and irrigation were greater in the first year than in the second, this may reflect temporal variability of recharge. The method may not be applicable where the water table is shallow (less than 3 m). A comparison of the near-ideal tritium tracer with the more common but less ideal bromide showed that bromide moved approximately 23% faster than tritiated water, perhaps because of anion exclusion. ?? 2008 Elsevier B.V.

  12. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers

    Science.gov (United States)

    Wang, Bingguo; Jin, Menggui; Nimmo, John R.; Yang, Lei; Wang, Wenfeng

    2008-07-01

    SummaryTritium and bromide were used as applied tracers to determine groundwater recharge in Hebei Plain, North China, to evaluate the impacts of different soil types, land use, irrigation, and crop cultivation practice on recharge. Additional objectives were to evaluate temporal variability of recharge and the effect on results of the particular tracer used. Thirty-nine profiles at representative locations were chosen for investigation. Average recharge rates and recharge coefficient determined by tritium and bromide tracing for different sites were 0.00-1.05 mm/d and 0.0-42.5%, respectively. The results showed relative recharge rates for the following paired influences (items within each pair are listed with the influence producing greater recharge first): flood-irrigated cropland and non-irrigated non-cultivation land, flood irrigation (0.42-0.58 mm/d) and sprinkling irrigation (0.17-0.23 mm/d), no stalk mulch (0.56-0.80 mm/d) and stalk mulch (0.44-0.60 mm/d), vegetable (e.g. Chinese cabbage and garlic, 0.70 mm/d) and wheat-maize (0.38 mm/d), peanut (0.51 mm/d) and peach (0.43 mm/d). The results also showed greater recharge for the first year of tracer travel than for the second. Because total precipitation and irrigation were greater in the first year than in the second, this may reflect temporal variability of recharge. The method may not be applicable where the water table is shallow (less than 3 m). A comparison of the near-ideal tritium tracer with the more common but less ideal bromide showed that bromide moved approximately 23% faster than tritiated water, perhaps because of anion exclusion.

  13. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  14. Identifying groundwater recharge connections in the Moscow (USA) sub-basin using isotopic tracers and a soil moisture routing model

    Science.gov (United States)

    Candel, Jasper; Brooks, Erin; Sánchez-Murillo, Ricardo; Grader, George; Dijksma, Roel

    2016-06-01

    Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1 × 105 km2) can be found in the Northwest of the USA. This Columbia River Basalt Group (CRBG) consists of a thick series of basalt flows of Miocene age. The two major hydrogeological units (Wanapum and Grand Ronde formations) are widely used for water abstraction. The mean decline over recent decades has been 0.6 m year-1. At present day, abstraction wells are drying up, and base flow of rivers is reduced. At the eastern part of CRBG, the Moscow sub-basin on the Idaho/Washington State border can be found. Although a thick poorly permeable clay layer exists on top of the basalt aquifer, groundwater level dynamics suggest that groundwater recharge occurs at certain locations. A set of wells and springs has been monitored bi-weekly for 9 months for δ18O and δ2H. Large isotopic fluctuations and d-excess values close to the meteoric water line in some wells are indicating that recharge occurs at the granite/basalt interface through lateral flow paths in and below the clay. A soil moisture routing (SMR) model showed that most recharge occurs on the granitic mountains. The basaltic aquifer receives recharge from these sedimentary zones around the granite/basalt interface. The identification of these types of areas is of major importance for future managed-aquifer recharge solutions to solve problems of groundwater depletion.

  15. Identifying groundwater recharge connections in the Moscow (USA) sub-basin using isotopic tracers and a soil moisture routing model

    Science.gov (United States)

    Candel, Jasper; Brooks, Erin; Sánchez-Murillo, Ricardo; Grader, George; Dijksma, Roel

    2016-11-01

    Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1 × 105 km2) can be found in the Northwest of the USA. This Columbia River Basalt Group (CRBG) consists of a thick series of basalt flows of Miocene age. The two major hydrogeological units (Wanapum and Grand Ronde formations) are widely used for water abstraction. The mean decline over recent decades has been 0.6 m year-1. At present day, abstraction wells are drying up, and base flow of rivers is reduced. At the eastern part of CRBG, the Moscow sub-basin on the Idaho/Washington State border can be found. Although a thick poorly permeable clay layer exists on top of the basalt aquifer, groundwater level dynamics suggest that groundwater recharge occurs at certain locations. A set of wells and springs has been monitored bi-weekly for 9 months for δ18O and δ2H. Large isotopic fluctuations and d-excess values close to the meteoric water line in some wells are indicating that recharge occurs at the granite/basalt interface through lateral flow paths in and below the clay. A soil moisture routing (SMR) model showed that most recharge occurs on the granitic mountains. The basaltic aquifer receives recharge from these sedimentary zones around the granite/basalt interface. The identification of these types of areas is of major importance for future managed-aquifer recharge solutions to solve problems of groundwater depletion.

  16. Contributing recharge areas, groundwater travel time, and groundwater water quality of the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1997-2008

    Science.gov (United States)

    Kelly, Brian P.

    2011-01-01

    The City of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Contributing recharge areas (CRA) were last determined for the well field in 1996. Since that time, eight supply wells have been installed in the area north of the Missouri River and well pumpage has changed for the older supply wells. The change in pumping has altered groundwater flow and substantially changed the character of the CRA and groundwater travel times to the supply wells. The U.S Geological Survey, in a cooperative study with the City of Independence, Missouri, simulated steady-state groundwater flow for 2007 well pumpage, average annual river stage, and average annual recharge. Particle-tracking analysis was used to determine the CRA for supply wells and monitoring wells, and the travel time from recharge areas to supply wells, recharge areas to monitoring wells, and monitoring wells to supply wells. The simulated CRA for the well field is elongated in the upstream direction and extends to both sides of the Missouri River. Groundwater flow paths and recharge areas estimated for monitoring wells indicate the origin of water to each monitoring well, the travel time of that water from the recharge area, the flow path from the vicinity of each monitoring well to a supply well, and the travel time from the monitoring well to the supply well. Monitoring wells 14a and 14b have the shortest groundwater travel time from their contributing recharge area of 0.30 years and monitoring well 29a has the longest maximum groundwater travel time from its contributing recharge area of 1,701 years. Monitoring well 22a has the shortest groundwater travel time of 0.5 day to supply well 44 and monitoring well 3b has the longest maximum travel time of 31.91 years to supply well 10. Water-quality samples from the Independence groundwater monitoring well network were collected from 1997 to 2008 by USGS personnel during ongoing annual sampling within the 10-year contributing

  17. Regression Method for Estimating Long-Term Mean Annual Ground-Water Recharge Rates from Base Flow in Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370

  18. Groundwater recharge - climatic and vegetation induced variations. Simulations in the Emaan and Aespoe areas in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Losjoe, K.; Johansson, Barbro; Bringfelt, B.; Oleskog, I.; Bergstroem, S. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    1999-01-01

    Climate change and man-made interference will cause an impact on runoff and groundwater recharge in the future. With the aim to give a conception of seasonal variations and the magnitude of the differences, the HBV model has been used as a tool for simulating five climate alternatives in two areas of south-east Sweden. The climate alternatives include both increased and decreased temperature and precipitation. These are not predictions of a future climate change, and should only be regarded as examples. The purpose has been to exemplify a conceivable magnitude of change during temperate/boreal conditions. It has not been within the scope of this report to evaluate the most probable climate change scenarios. The impacts of different climate scenarios on the total groundwater recharge and the deep groundwater recharge have been calculated as long-term mean values and are presented in comparison with model-simulated values with an actual (recorded) climate sequence. The results show great differences between the climate alternatives. An increase in temperature will decrease snow accumulation and increase the evapotranspiration and can totally extinguish the spring snowmelt peak in runoff and groundwater recharge. A decreased temperature, on the contrary, will imply decreased winter runoff and recharge values and an increase in spring and summer values. Evapotranspiration and soil water content play a key role in the runoff and recharge processes. This report makes a review of some literature about work done within the areas of investigation and calculation of evapotranspiration. Research is in progress, not only on formulating future climate scenarios, but also on distinguishing evapotranspiration from different kinds of vegetation. These are complex questions, but vital ones, as a climate change will also affect the vegetation. Until new research results are presented, well-known methods can be used for simulating the effects of logging on runoff and groundwater

  19. Groundwater recharge estimation in semi-arid zone: a study case from the region of Djelfa (Algeria)

    Science.gov (United States)

    Ali Rahmani, S. E.; Chibane, Brahim; Boucefiène, Abdelkader

    2017-09-01

    Deficiency of surface water resources in semi-arid area makes the groundwater the most preferred resource to assure population increased needs. In this research we are going to quantify the rate of groundwater recharge using new hybrid model tack in interest the annual rainfall and the average annual temperature and the geological characteristics of the area. This hybrid model was tested and calibrated using a chemical tracer method called Chloride mass balance method (CMB). This hybrid model is a combination between general hydrogeological model and a hydrological model. We have tested this model in an aquifer complex in the region of Djelfa (Algeria). Performance of this model was verified by five criteria [Nash, mean absolute error (MAE), Root mean square error (RMSE), the coefficient of determination and the arithmetic mean error (AME)]. These new approximations facilitate the groundwater management in semi-arid areas; this model is a perfection and amelioration of the model developed by Chibane et al. This model gives a very interesting result, with low uncertainty. A new recharge class diagram was established by our model to get rapidly and quickly the groundwater recharge value for any area in semi-arid region, using temperature and rainfall.

  20. Impact of climate Change on Groundwater Recharge in the Tiber River Basin (Central Italy) Using Regional Climate model Outputs

    Science.gov (United States)

    Muluneh, F. B.; Setegn, S. G.; Melesse, A. M.; Fiori, A.

    2011-12-01

    Quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by many internal and external drivers. Changes in climate variables can affect the quantity and quality of various components of hydrological cycle. Among others, the local effects of climate change on groundwater resources were not fully studied in different part of the world as compared to the surface water. Moreover, understanding the potential impact of climate change on groundwater is more complex than surface water. The main objective of this study is to analyze the potential impact of climate change on Groundwater recharge in the Tiber River Basin using outputs from Regional Climate model. In this study, a physically-based watershed model called Soil Water Assessment Tool (SWAT) was used to estimate recharge characteristics and its response to climate change in Tiber River Basin (central Italy). The SWAT model was successfully calibrated and validated using observed weather and flow data for the period of 1963-1970 and 1971-1978 respectively. During calibration, the model was highly sensitivity to groundwater flow parameters. Dynamically downscaled rainfall and temperature datasets from ten Regional Climate Models (RCM) archived in 'Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE)' were used to force the model to assess the climate change impact on the study area. A quantile-mapping statistical correction procedure was applied to the RCM dataset to correct the inherent systematic biases. The climate change analysis indicated that by the end of 2080s the rainfall was found to decrease nearly up to 40% in dry period and there was an increase in temperature that could reach as high as 3 to 5 oC. By the end of 2080s the ground water recharge shows a decreasing trend as a response to changes in rainfall. However as the timing of both precipitation and

  1. Groundwater Mounding in Non-uniform Aquifers with Implications for Managed Aquifer Recharge

    Science.gov (United States)

    Zlotnik, V. A.; Noel, P.; Kacimov, A. R.; Al Maktoumi, A. K.

    2015-12-01

    Many areas of the world (e.g. the Middle East and North Africa countries) are deficient in observation networks and hydrogeological data needed for Managed Aquifer Recharge (MAR) design. Therefore, diagnostic analytical approaches are appropriate for feasibility studies of MAR. It was found that the common assumption of aquifer thickness uniformity often does not hold, especially in mountainous watersheds. However, the only practical result available for non-uniform aquifers was developed for well hydraulics applications (point sinks or sources) by Hantush (1962), while the recharge zones may cover large areas on the scale of kilometers, such as temporarily filled impoundments (natural and engineered reservoirs in wadis, depressions, trenches, etc.) or perennial streams accepting massive treated wastewater discharge. To address these important, but overlooked MAR problems in sloping aquifers, a set of new closed-form analytical solutions for water table elevations were obtained. Interestingly, the 2D groundwater flow equation acquires the advection-dispersion equation form in these cases. The quadratures in closed-form solutions obtained by the Green's function method converge rapidly. These models account for both shapes and orientations of sources with respect to the direction of the aquifer base gradient. Qualitatively, solutions in sloping aquifers have an important trait: the mounding is limited in time and space, unlike in aquifers with a horizontal base. Aquifers with the greater slopes have the lesser potential of waterlogging from the rising water table and different storage characteristics (height and volume of locally stored water). Computational aspects of these solutions for MAR analyses are illustrated by example utilizing regional aquifer properties near Az Zarqa River, Jordan. (This study was supported by a grant from USAID-FABRI, project contract: AID-OAA-TO-11-00049, Subcontract: 1001624 -12S-19745).

  2. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the

  3. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every MRB_E2RF1catchment of selected Major River Basins...

  4. Long Term Empirical Relations between Storm Characteristics and Episodic Groundwater Recharge across Geographic and Land-Use Gradients

    Science.gov (United States)

    Tashie, A.; Mirus, B. B.; Pavelsky, T.

    2015-12-01

    Shallow aquifers are an important water resource and provide baseflow to streams, yet estimating rates of groundwater recharge is difficult. While climate change is predicted to increase the frequency and magnitude of extreme precipitation events, the resulting impact on recharge remains poorly understood. We quantify empirical relations between precipitation characteristics and episodic groundwater recharge for a wide variety of geographic and land-use types across North Carolina. We extract storm duration, magnitude, average rate, and storm intensity from precipitation records over periods of twelve to thirty-five years at ten locations, for a total of 3,544 individual storm events. Using time-series of water-table fluctuations from nearby monitoring wells, we estimate relative recharge to precipitation ratios (RPR) to identify statistical trends. RPR increases with increased storm duration, whereas RPR decreases with increasing magnitude, average rate, and intensity. Agricultural and urban areas exhibit the greatest decrease in RPR due to increasing storm magnitude, average rate, and intensity, while naturally vegetated areas exhibit a larger increase in RPR with increased storm duration. Though RPR is generally higher during the winter than the summer, this seasonal effect is magnified in the Appalachian and Piedmont regions. These statistical trends provide valuable insights into the likely consequences of climate and land-use change for water resources in humid, subtropical climates in the American southeast. If, as predicted, growing seasons lengthen and the intensity of storms increases with a warming climate, decreased recharge in Appalachia, the Piedmont, and rapidly growing urban areas in the region would further limit groundwater availability.

  5. A comparison of groundwater recharge estimation methods in a semi-arid, coastal avocado and citrus orchard (Ventura County, California)

    Science.gov (United States)

    Grismer, Mark E.; Bachman, S.; Powers, T.

    2000-10-01

    by progressive wetting during the winter rainy season was observed in both irrigated and non-irrigated soil profiles, confirming that groundwater recharge was rainfall driven and that micro-irrigation did not predispose the soil profile to excess rainfall recharge. The ability to make this recharge assessment, however, depended on making multiple field measurements associated with all three methods, suggesting that any one should not be used alone.

  6. Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater.

    Science.gov (United States)

    Ma, Weifang; Nie, Chao; Chen, Bin; Cheng, Xiang; Lun, Xiaoxiu; Zeng, Fangang

    2015-05-01

    Endocrine disrupting chemical (EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and bisphenol A (BPA). The three recharge columns were operated under the conditions of continual sterilization recharge (CSR), continual recharge (CR), and wetting and drying alternative recharge (WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR>CR>CSR system and E2>EE2>BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m(-1) for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature. In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation. Copyright © 2015. Published by Elsevier B.V.

  7. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  8. Dual-porosity modeling of groundwater recharge: testing a quick calibration using in situ moisture measurements, Areuse River Delta, Switzerland

    Science.gov (United States)

    Alaoui, Abdallah; Eugster, Werner

    A simple method for calibrating the dual-porosity MACRO model via in situ TDR measurements during a brief infiltration run (2.8 h) is proposed with the aim of estimating local groundwater recharge (GR). The recharge was modeled firstly by considering the entire 3 m of unsaturated soil, and secondly by considering only the topsoil to the zero-flux plane (0-0.70 m). The modeled recharge was compared against the GR obtained from field measurements. Measured GR was 313 mm during a 1-year period (15 October 1990-15 October 1991). The best simulation results were obtained when considering the entire unsaturated soil under equilibrium conditions excluding the macropore flow effect (330 mm), whereas under non-equilibrium conditions GR was overestimated (378 mm). Sensitivity analyses showed that the investigation of the topsoil is sufficient in estimating local GR in this case, since the water stored below this depth appears to be below the typical rooting depth of the vegetation and is not available for evapotranspiration. The modeled recharge under equilibrium conditions for the 0.7-m-topsoil layer was found to be 364 mm, which is in acceptable agreement with measurements. Une méthode simple pour la calibration du modèle à double porosité MACRO par des mesures TDR in situ durant un bref essai d'infiltration (2.8 h) a été proposée pour l'estimation locale de la recharge de la nappe (RN). La RN a été d'abord simulée en tenant compte de toute la zone non saturée (3 m) et ensuite, en considérant uniquement la couverture du sol entre zéro et le plan du flux nul (0.70 m). La RN simulée a été comparée à la RN observée. La RN mesurée durant une année (15 octobre 1990-15 octobre 1991) était de 313 mm. Les meilleures simulations ont été obtenues en tenant compte de toute la zone non saturée sous les conditions d'équilibre excluant le flux préférentiel (330 mm). Sous les conditions de non équilibre, la RN a été surestimée (378 mm). Les analyses de

  9. Ecological Engineering Approaches to Improve Hydraulic Properties of Infiltration Basins Designed for Groundwater Recharge.

    Science.gov (United States)

    Gette-Bouvarot, Morgane; Volatier, Laurence; Lassabatere, Laurent; Lemoine, Damien; Simon, Laurent; Delolme, Cécile; Mermillod-Blondin, Florian

    2015-08-18

    Infiltration systems are increasingly used in urban areas for groundwater recharge. The reduction of sediment permeability by physical and/or biological processes is a major problem in management of infiltration systems often requiring expensive engineering operations for hydraulic performance maintenance. To reduce these costs and for the sake of sustainable development, we proposed to evaluate the ability of ecological engineering approaches to reduce the biological clogging of infiltration basins. A 36-day field-scale experiment using enclosures was performed to test the influences of abiotic (light reduction by shading) and biotic (introduction of the macrophyte Vallisneria spiralis (L.) or the gastropod Viviparus viviparus (Linnaeus, 1758)) treatments to limit benthic biofilm biomass and to maintain or even increase hydraulic performances. We coupled biological characterization of sediment (algal biomass, bacterial abundance, total organic carbon, total nitrogen, microbial enzymatic activity, photosynthetic activity, and photosystem II efficiency) with hydraulic conductivity measurements to assess the effects of treatments on sediment permeability. The grazer Viviparus viviparus significantly reduced benthic biofilm biomass and enhanced hydraulic conductivity. The other treatments did not produce significant changes in hydraulic conductivity although Vallisneria spiralis affected photosynthetic activity of biofilm. Finally, our results obtained with Viviparus viviparus are promising for the development of ecological engineering solutions to prevent biological fouling in infiltration systems.

  10. Is artificial recharge promoting microbial activity and biodegradation processes in groundwater systems?

    Science.gov (United States)

    Barba Ferrer, Carme; Folch, Albert; Gaju, Núria; Martínez-Alonso, Maira; Carrasquilla, Marc; Grau-Martínez, Alba; Sanchez-Vila, Xavier

    2016-04-01

    Managed Artificial Recharge (MAR) represents a strategic tool for managing water resources, especially during scarce periods. On one hand, it can increase water stored in aquifers and extract it when weather conditions do not permit exclusive exploitation of surface resources. On the other, it allows improve water quality due the processes occurring into the soil whereas water crosses vadose zone. Barcelona (Catalonia, Spain) conurbation is suffering significant quantitative and qualitative groundwater disturbances. For this reason, Sant Vicenç MAR system, constituted by a sedimentation and an infiltration pond, was constructed in 2009 as the strategic water management infrastructure. Compared with other MAR facilities, this infiltration pond has a reactive bed formed by organic compost and local material. The objective is to promote different redox states allowing more and different degradation of chemical compounds than regular MAR systems. In previous studies in the site, physical and hydrochemical parameters demonstrated that there was indeed a degradation of different pollutants. However, to go a step further understanding the different biogeochemical processes and the related degradation processes occurring in the system, we studied the existing microbial communities. So, molecular techniques were applied in water and soil samples in two different scenarios; the first one, when the system was fully operating and the second when the system was not operating during some months. We have specifically compared microbial diversity and richness indexes and both cluster dendrograms obtained from DGGEs analysis made in each sampling campaign.

  11. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    Science.gov (United States)

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    OBJECTIVES The purpose of this study was to determine the feasibility and sustainability of in-situ removal of arsenic from water infiltrated through unsaturated alluvium. BACKGROUND Arsenic is naturally present in aquifers throughout the southwestern United States and elsewhere. In January 2006, the U.S. Environmental Protection Agency (EPA) lowered the Maximum Contaminant Level (MCL) for arsenic from 50 to 10 micrograms per liter (g/L). This raised concerns about naturally-occurring arsenic in groundwater. Although commercially available systems using sorbent iron or aluminum oxide resins are available to treat high-arsenic water, these systems are expensive to build and operate, and may generate hazardous waste. Iron and aluminum oxides occur naturally on the surfaces of mineral grains that compose alluvial aquifers. In areas where alluvial deposits are unsaturated, these oxides may sorb arsenic in the same manner as commercial resins, potentially providing an effective low-cost alternative to commercially engineered treatment systems. APPROACH The Antelope Valley within the Mojave Desert of southern California contains a shallow water-table aquifer with arsenic concentrations of 5 g/L, and a deeper aquifer with arsenic concentrations of 30 g/L. Water was pumped from the deep aquifer into a pond and infiltrated through an 80 m-thick unsaturated zone as part of field-scale and laboratory experiments to treat high-arsenic groundwater and recharge the shallow water table aquifer at the site. The field-scale recharge experiment included the following steps: 1) construction of a recharge pond 2) test drilling for sample collection and instrument installation adjacent to the pond 3) monitoring downward migration of water infiltrated from the pond 4) monitoring changes in selected trace-element concentrations as water infiltrated through the unsaturated zone Data from instruments within the borehole adjacent to the pond were supplemented with borehole and

  12. Climate Change Impacts on Precipitation and Groundwater Recharge in Denmark: A Distributed Hydrological Modeling Study using Multiple Downscaling Methods on the Climate Inputs

    Science.gov (United States)

    Seaby, L. P.; Refsgaard, J.; Sonnenborg, T.; Jensen, K. H.

    2011-12-01

    Future changes in climate are expected to result in more extreme hydrological conditions globally. For Denmark, most climate models predict increases in annual precipitation, with higher intensity rainfall events occurring in winter and reduced precipitation and higher evapotranspiration in summer. Changes in the quantity, timing, and delivery of precipitation is expected to result in higher rates of groundwater recharge in the winter months, as well as flooding and water logging in low lying areas, and decreased water tables, dry root zones, and reduced low flows in the summer months. There is, however, variability between climate models on the direction and strength of the climate change signal. Additionally, regional climate models (RCMs) are subject to systematic errors making their outputs, especially precipitation, require further downscaling and bias correction prior to use in hydrological simulations. Consequently, hydrological outputs simulated under climate change compound the uncertainties within individual climate model predictions, between various climate models, and in the choice of downscaling and bias correction method. This study compares 11 transient climate change scenarios from the EU project ENSMEBLES, which makes available a matrix of GCM-RCM pairings for all of Europe at a 25 km2 grid scale to the year 2100. Temperature, precipitation, and potential evapotranspiration (calculated from climate model outputs) are downscaled using two methods: a monthly delta change approach that transfers absolute (state variables) or relative (flux variables) climate change from the RCM scenarios to the observed data, and a seasonal histogram equalization method that fits gamma distributions based on the instensity of daily observed and scenario data (flux variables) and scales scenario data based on the difference in gamma functions. Downscaling is spatially distributed within Denmark according to the seven sub-model regions in the National Water Resources

  13. Recharge sources and residence times of groundwater as determined by geochemical tracers in the Mayfield Area, southwestern Idaho, 2011–12

    Science.gov (United States)

    Hopkins, Candice B.

    2013-01-01

    Parties proposing residential development in the area of Mayfield, Idaho are seeking a sustainable groundwater supply. During 2011–12, the U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used geochemical tracers in the Mayfield area to evaluate sources of aquifer recharge and differences in groundwater residence time. Fourteen groundwater wells and one surface-water site were sampled for major ion chemistry, metals, stable isotopes, and age tracers; data collected from this study were used to evaluate the sources of groundwater recharge and groundwater residence times in the area. Major ion chemistry varied along a flow path between deeper wells, suggesting an upgradient source of dilute water, and a downgradient source of more concentrated water with the geochemical signature of the Idaho Batholith. Samples from shallow wells had elevated nutrient concentrations, a more positive oxygen-18 signature, and younger carbon-14 dates than deep wells, suggesting that recharge comes from young precipitation and surface-water infiltration. Samples from deep wells generally had higher concentrations of metals typical of geothermal waters, a more negative oxygen-18 signature, and older carbon-14 values than samples from shallow wells, suggesting that recharge comes from both infiltration of meteoric water and another source. The chemistry of groundwater sampled from deep wells is somewhat similar to the chemistry in geothermal waters, suggesting that geothermal water may be a source of recharge to this aquifer. Results of NETPATH mixing models suggest that geothermal water composes 1–23 percent of water in deep wells. Chlorofluorocarbons were detected in every sample, which indicates that all groundwater samples contain at least a component of young recharge, and that groundwater is derived from multiple recharge sources. Conclusions from this study can be used to further refine conceptual hydrological models of the area.

  14. Recharge and groundwater use in the North China Plain for six irrigated crops for an eleven year period.

    Science.gov (United States)

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Zhang, Min; Sui, Peng; Steenhuis, Tammo S

    2015-01-01

    Water tables are dropping by approximately one meter annually throughout the North China Plain mainly due to water withdrawals for irrigating winter wheat year after year. In order to examine whether the drawdown can be reduced we calculate the net water use for an 11 year field experiment from 2003 to 2013 where six irrigated crops (winter wheat, summer maize, cotton, peanuts, sweet potato, ryegrass) were grown in different crop rotations in the North China Plain. As part of this experiment moisture contents were measured each at 20 cm intervals in the top 1.8 m. Recharge and net water use were calculated based on these moisture measurement. Results showed that winter wheat and ryegrass had the least recharge with an average of 27 mm/year and 39 mm/year, respectively; cotton had the most recharge with an average of 211 mm/year) followed by peanuts with 118 mm/year, sweet potato with 76 mm/year, and summer maize with 44 mm/year. Recharge depended on the amount of irrigation water pumped from the aquifer and was therefore a poor indicator of future groundwater decline. Instead net water use (recharge minus irrigation) was found to be a good indicator for the decline of the water table. The smallest amount of net (ground water) used was cotton with an average of 14 mm/year, followed by peanut with 32 mm/year, summer maize with 71 mm/year, sweet potato with 74 mm/year. Winter wheat and ryegrass had the greatest net water use with the average of 198 mm/year and 111 mm/year, respectively. Our calculations showed that any single crop would use less water than the prevalent winter wheat summer maize rotation. This growing one crop instead of two will reduce the decline of groundwater and in some rain rich years increase the ground water level, but will result in less income for the farmers.

  15. Recharge and groundwater use in the North China Plain for six irrigated crops for an eleven year period.

    Directory of Open Access Journals (Sweden)

    Xiaolin Yang

    Full Text Available Water tables are dropping by approximately one meter annually throughout the North China Plain mainly due to water withdrawals for irrigating winter wheat year after year. In order to examine whether the drawdown can be reduced we calculate the net water use for an 11 year field experiment from 2003 to 2013 where six irrigated crops (winter wheat, summer maize, cotton, peanuts, sweet potato, ryegrass were grown in different crop rotations in the North China Plain. As part of this experiment moisture contents were measured each at 20 cm intervals in the top 1.8 m. Recharge and net water use were calculated based on these moisture measurement. Results showed that winter wheat and ryegrass had the least recharge with an average of 27 mm/year and 39 mm/year, respectively; cotton had the most recharge with an average of 211 mm/year followed by peanuts with 118 mm/year, sweet potato with 76 mm/year, and summer maize with 44 mm/year. Recharge depended on the amount of irrigation water pumped from the aquifer and was therefore a poor indicator of future groundwater decline. Instead net water use (recharge minus irrigation was found to be a good indicator for the decline of the water table. The smallest amount of net (ground water used was cotton with an average of 14 mm/year, followed by peanut with 32 mm/year, summer maize with 71 mm/year, sweet potato with 74 mm/year. Winter wheat and ryegrass had the greatest net water use with the average of 198 mm/year and 111 mm/year, respectively. Our calculations showed that any single crop would use less water than the prevalent winter wheat summer maize rotation. This growing one crop instead of two will reduce the decline of groundwater and in some rain rich years increase the ground water level, but will result in less income for the farmers.

  16. Three-dimensional hydrostratigraphical modelling to support evaluation of recharge and saltwater intrusion in a coastal groundwater system in Vietnam

    Science.gov (United States)

    Tam, Vu Thanh; Batelaan, Okke; Le, Tran Thanh; Nhan, Pham Quy

    2014-12-01

    Saltwater intrusion is generally related to seawater-level rise or induced intrusion due to excessive groundwater extraction in coastal aquifers. However, the hydrogeological heterogeneity of the subsurface plays an important role in (non-)intrusion as well. Local hydrogeological conditions for recharge and saltwater intrusion are studied in a coastal groundwater system in Vietnam where geological formations exhibit highly heterogeneous lithologies. A three-dimensional (3D) hydrostratigraphical solid model of the study area is constructed by way of a recursive classification procedure. The procedure includes a cluster analysis which uses as parameters geological formation, lithological composition, distribution depth and thickness of each lithologically distinctive drilling interval of 47 boreholes, to distinguish and map well-log intervals of similar lithological properties in different geological formations. A 3D hydrostratigraphical fence diagram is then generated from the constructed solid model and is used as a tool to evaluate recharge paths and saltwater intrusion to the groundwater system. Groundwater level and chemistry, and geophysical direct current (DC) resistivity measurements, are used to support the hydrostratigraphical model. Results of this research contribute to the explanation of why the aquifer system of the study area is almost uninfluenced by saltwater intrusion, which is otherwise relatively common in coastal aquifers of Vietnam.

  17. Measuring Groundwater and Contaminant Flux: Passive Flux Meter Field Applications and Issues with Alcohol Degradability

    Directory of Open Access Journals (Sweden)

    Diane Bondehagen

    2010-05-01

    Full Text Available The passive flux meter (PFM developed at the University of Florida is an innovative device that is inserted into a well in order to measure groundwater and contaminant flux. The in-situ device consists of an activated carbon matrix impregnated with known amounts of alcohols that are desorbed at rates proportional to the groundwater flux through the device. After exposure the sorbent is extracted to quantify the contaminant mass intercepted and the resident alcohol mass remaining. Since the alcohols employed in bioactive sites are degradable, studies were conducted to investigate biodegradation issues and microbial acclimation times in field application. Also, silver-impregnated activated carbon was compared to unamended activated carbon in batch and column studies to determine silver ion effects on degradation. The studies confirm degradation and microbial acclimation occurrence, and demonstrate that silver impregnated activated carbon does inhibit degradation. Issues remain with biofilm/biofouling observed in the field as well as column studies.

  18. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  19. Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain).

    Science.gov (United States)

    Hornero, Jorge; Manzano, Marisol; Ortega, Lucía; Custodio, Emilio

    2016-10-15

    Groundwater recharge is one of the key variables for aquifer management and also one of the most difficult to be evaluated with acceptable accuracy. This is especially relevant in semiarid areas, where the processes involved in recharge are widely variable. Uncertainty should be estimated to know how reliable recharge estimations are. Groundwater recharge has been calculated in the Alcadozo Aquifer System, under steady state conditions, at regional (aquifer) and sub-regional (spring catchment) scales applying different methods. The regional distribution of long-term average recharge values has been estimated with the chloride mass balance method using data from four rain stations and 40 groundwater samples covering almost the whole aquifer surface. A remarkable spatial variability has been found. Average annual recharge rates ranges from 20 to 243mmyear(-1) across the aquifer, with an estimated coefficient of variation between 0.16 and 0.38. The average recharge/precipitation ratio decreases from 34% in the NW to 6% in the SE, following the topographic slope. At spring-catchment scale, recharge has been estimated by modelling the soil water balance with the code Visual Balan 2.0. The results, calibrated with discharge data of the two main springs Liétor and Ayna, are 35.5 and 50mmyear(-1) respectively, with estimated coefficients of variation of 0.49 and 0.36. A sensitivity analysis showed that soil parameters influence the most the uncertainty of recharge estimations. Recharge values estimated with both methods and at two temporal and spatial scales are consistent, considering the regional variability obtained with the chloride method and the respective confidence intervals. Evaluating the uncertainties of each method eased to compare their relative results and to check their agreement, which provided confidence to the values obtained. Thus, the use of independent methods together with their uncertainties is strongly recommended to constrain the magnitude and to

  20. Evaluation of the Benefit of Flood Reduction by Artificial Groundwater Recharge Lake Operation in a Coastal Area

    Science.gov (United States)

    Chen, Ching-Nuo; Tsai, Chih-Heng

    2017-04-01

    Inundation disasters often occur in the southwestern coastal plains of Taiwan. The coastal plains suffers mostly from land-subsidence, surface water is difficult to be drained during the typhoon period, leading to more severe flood disasters. Global climate warming has become more significant, which in turn has resulted in the increase in amplitude and frequency of climate change related disasters. In addition, climate change also induces a rise in sea water level year by year. The rise in sea water level does not only weakens the function of existing drainage system but also increases tidal levels and storm tide levels, which increases the probability and amount of inundation disasters. The serious land subsidence area at Linbian river basin was selected as the study area. An artificial groundwater recharge lake has been set up in Linbian river basin by Pingtung government. The development area of this lake is 58 hectare and the storage volume is 2.1 million cubic meters (210 × 104m3). The surface water from Linbian basin during a wet season is led into the artificial groundwater recharge lake by water diversion project, and then employ special hydro-geological conditions of the area for groundwater recharge, increase groundwater supply and decrease land subsidence rate, and incidentally some of the flood diversion, detention, reduce flooding. In this study, a Real-time Interactive Inundation Model is applied to simulate different flooding storage volume and gate operations to estimate the benefits of flood mitigation. According to the simulation results, the hydrograph shape, peak-flow reduction and time lag to peak of the flood reduction hydrograph into the lake are apparently different for each case of different gate operation at the same storage volume. Therefore, the effect of flood control and disaster mitigation is different. The flood control and disaster mitigation benefits are evaluated by different operation modes, which provide decision makers to

  1. Identification of artificial groundwater recharging zone using a GIS-based fuzzy logic approach: a case study in a coal mine area of the Damodar Valley, India

    Science.gov (United States)

    Tiwari, Ashwani Kumar; Lavy, Muriel; Amanzio, Gianpiero; De Maio, Marina; Singh, Prasoon Kumar; Mahato, Mukesh Kumar

    2017-08-01

    The West Bokaro coalfield is a richest coal-mining belt in the Damodar Valley, India. The extensive mining of the area has resulted in disruption of the groundwater availability in terms of both quantity and quality. This has led to a drinking water crisis, especially during the pre-monsoon period in the West Bokaro coalfield area. The characterization of the hydrogeological system and the artificial recharging of the aquifers might help to better manage the problem of the groundwater-level depletion. For this purpose, seven important hydrogeological factors (water depth, slope, drainage, soil, infiltration, lithology, and landuse) have been considered to define the most suitable locations for artificial groundwater recharging in the mining area. Different thematic maps were prepared from existing maps and data sets, remote-sensing images, and field investigations for identification of the most suitable locations for artificial recharge. Thematic layers for these parameters were prepared, classified, weighted, and integrated into a geographic information system (GIS) environment by means of fuzzy logic. The results of the study indicate that about 29 and 31% of the area are very suitable and suitable for recharging purposes in the West Bokaro coalfield. However, the rest of the area is moderate to unsuitable for recharging due to the ongoing mining and related activities in the study area. The groundwater recharging map of the study area was validated with measured electrical conductivity (EC) values in the groundwater, and it indicated that validation can be accepted for the identification of groundwater recharging sites. These findings are providing useful information for the proper planning and sustainable management of the groundwater resources in the study area.

  2. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA

    Science.gov (United States)

    Fryar, Alan; Mullican, William; Macko, Stephen

    2001-11-01

    The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Résumé. L'aquifère libre des Hautes Plaines (Ogallala) est le plus vaste aquifère des états-Unis et la ressource de base pour l'eau potable de la région semi-aride du sud des Hautes Plaines du Texas et du Nouveau-Mexique. Des analyses de l'eau et des sols prélevés au nord-est d'Amarillo (Texas), associées à des données provenant d'autres études dans cette région, indiquent que des processus intervenant au cours de l'infiltration contrôlent la composition de l'eau de la nappe libre dans la moitié septentrionale du sud des Hautes Plaines. Les données chimiques et isotopiques sont compatibles avec une séquence de précipitation épisodique, avec la reconcentration en solut

  3. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.

    Science.gov (United States)

    Meredith, Karina; Cendón, Dioni I; Pigois, Jon-Philippe; Hollins, Suzanne; Jacobsen, Geraldine

    2012-01-01

    The Gnangara Mound and the underlying Perth Basin aquifers are the largest source of groundwater for the southwest of Australia, supplying between 35 and 50% of Perth's potable water (2009-2010). However, declining health of wetlands on the Mound coupled with the reduction in groundwater levels from increased irrigation demands and drier climatic conditions means this resource is experiencing increased pressures. The northern Gnangara is an area where the Yarragadee aquifer occurs at shallow depths (~50 m) and is in direct contact with the superficial aquifer, suggesting the possibility of direct recharge into a generally confined aquifer. Environmental isotopes ((14)C and (3)H) and hydrochemical modelling were used to assess the presence of a recharge 'window' as well as understand the groundwater residence time within different aquifers. Forty-nine groundwater samples were collected from depths ranging from 11 to 311 m below ground surface. The isotopic variation observed in the superficial aquifer was found to be controlled by the different lithologies present, i.e. quartz-rich Bassendean Sand and carbonate-rich sediments of the Ascot Formation. Rainfall recharge into the Bassendean Sand inherits its dissolved inorganic carbon from the soil CO(2). Organic matter throughout the soil profile is degraded by oxidation leading to anoxic/acidic groundwater, which if in contact with the Ascot Formation leads to enhanced dissolution of carbonates. Hydrochemical mass balance modelling showed that carbonate dissolution could contribute 1-2 mmol kg(-1) of carbon to groundwaters recharged through the Ascot Formation. The corrected groundwater residence times of the Yarragadee aquifer in the northern part of the study area ranged from 23 to 35 ka, while waters in the southeastern corner ranged from sub-modern to 2 ka. Groundwater ages increase with distance radiating from the recharge 'window'. This study delineates a recharge 'window' into the commonly presumed confined

  4. A preliminary analysis of the groundwater recharge to the Karoo formations, mid-Zambesi basin, Zimbabwe

    DEFF Research Database (Denmark)

    Larsen, Flemming; Owen, R.; Dahlin, T.

    2002-01-01

    A multi-disciplinary study is being carried out on recharge to the Karoo sandstone aquifer in the western part of Zimbabwe, where recharge is controlled by the presence of a thick, confining basalt layer. The aquifer is geographically extensive, and has been identified throughout the southern part...

  5. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    Science.gov (United States)

    Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

    2012-01-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  6. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. O. Cuthbert

    2013-03-01

    Full Text Available Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is presented and tested using a range of numerical models, including a modified soil moisture balance model (SMBM for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via preferential flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in preferential flow pathways due to seasonal ploughing of the topsoil and to a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010 is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  7. 3H and 14C as tracers of ground-water recharge

    Science.gov (United States)

    Izbicki, John A.; Michel, Robert L.; Martin, Peter

    1992-01-01

    Surface spreading of water from the Santa Clara River is used to recharge aquifers underlying the Oxnard Plain. These aquifers are divided into an upper system about 400 feet thick, and a lower system more than 1,000 feet thick. In previous studies, it has been reported that surface spreading recharged aquifers in both the upper and lower systems. Water from most wells perforated in the upper system has tritium levels consistent with decay-corrected concentrations found in water recharged after 1952 when tritium levels increased as a result of atmospheric testing of nuclear weapons. Water from most wells in the lower system does not contain measurable tritium and must have been recharged prior to 1952. Carbon-14 ages estimated for water from wells in the lower system range from recent to about 25,000 years before present. These data show that the lower system is not effectively recharged by surface spreading.

  8. Organic Carbon Inventories and Vertical Fluxes Through the Vadose Zone into Groundwater at the Rifle, Colorado River Floodplain Site

    Science.gov (United States)

    Tokunaga, T. K.; Wan, J.; Dong, W.; Williams, K. H.; Robbins, M.; Kim, Y.; Faybishenko, B.; Conrad, M. E.; Christensen, J. N.; Gilbert, B.; Dayvault, R. D.; Long, P. E.; Hubbard, S. S.

    2013-12-01

    Understanding carbon inventories and fluxes within the vadose zone and groundwater of semi-arid regions is challenging because of their typically deep profiles, moderately low soil organic carbon (SOC) inventories, low dissolved organic carbon (DOC) fluxes, and slow changes in soil inorganic carbon (SIC) inventories. The remediated uranium/vanadium mill tailings site situated on a floodplain at Rifle, Colorado possesses a number of characteristics that facilitate investigation of subsurface carbon fluxes. These include locally derived fill soil having SOC and SIC concentrations representative of the region, established vegetation cover (perennial grasses and shrubs) on the fill, boundaries between the fill and underlying alluvium distinguishable through concentrations of SIC and other chemical components, predictable groundwater flow and interaction with the adjacent Colorado River, and a clearly delineated impermeable lower boundary (Wasatch Formation shale) at depths ranging from 6 to 7.5 m. Environmental characteristics of this site permit year-round sampling of both pore water and pore gas throughout most of the moderately deep (~ 3.5 m) vadose zone. Within this well-defined hydrological system, we recently installed a suite of tensiometers, pore water (vadose zone and groundwater) samplers, gas samplers, and neutron probe access tubes at three sites along a transect aligned with the groundwater flow direction in order to determine inventories and fluxes of water, carbon, and other components. The tensiometer and piezometer measurements are revealing impacts of infiltration and groundwater recharge events, evapotranspiration, and capillary fringe-groundwater interactions. The results of pore water analyses are showing relatively high concentrations of DOC (up to 4 mM) in the vadose zone, and particulate organic carbon (POC) mobile in the capillary fringe. Differences in DOC characteristics are being determined using a variety of analytical techniques. Hydraulic

  9. Precipitation, Ground-water Hydrology, and Recharge Along the Eastern Slopes of the Sandia Mountains, Bernalillo County, New Mexico

    Science.gov (United States)

    McCoy, Kurt J.; Blanchard, Paul J.

    2008-01-01

    The spatial and temporal distribution of recharge to carbonate and clastic aquifers along the eastern slopes of the Sandia Mountains was investigated by using precipitation, water-level, dissolved chloride, and specific-conductance data. The U.S. Geological Survey (USGS), in cooperation with the Bernalillo County Public Works Division, conducted a study to assess ground-water conditions and provide technical data that could be used as a basis for management and future planning of eastern Bernalillo County water resources. The intent of the investigation was to improve the current understanding of subsurface mechanisms controlling recharge dynamics in a geologically complex aquifer system. In the Sandia Mountains, precipitation events are generally limited to snowfalls in winter months and monsoon rainfall in late summer. Monthly meteorological data from weather stations in the study area indicate that monsoon rainfall during July and August constitutes close to one-third of annual precipitation totals. Following precipitation and snowmelt events, daily ground-water level data show low-amplitude, long-duration peaks in hydrographs of wells north and west of the Tijeras Fault. Hydrographs of monthly and biannual water-level data from across the study area show seasonal variation and water-level fluctuations in excess of 30 ft during a period of below-average precipitation. Water level observations in 67 percent of wells showing drought-induced water-level declines rebounded to at or near predrought conditions within 6 months of return to normal climate conditions. Cross-correlation of annual hydrologic data shows aquifer response to periods of monsoon recharge to persist from 1 to 6 months following events. The lag time between precipitation input and response of water levels or solute concentrations was largest near the Tijeras and Gutierrez Faults. These results indicate regional faults hydrologically isolate the Tijeras Graben from groundwater recharge originating

  10. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    Directory of Open Access Journals (Sweden)

    W. A. Timms

    2012-04-01

    Full Text Available The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall, potential evapotranspiration >2000 mm yr−1 such as parts of Australia's Murray-Darling Basin (MDB. In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5, whereas deeper groundwater was less saline (290 mS m−1 with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total, and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low

  11. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    Directory of Open Access Journals (Sweden)

    W. A. Timms

    2011-11-01

    Full Text Available The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall, such as parts of Australia's Murray-Darling Basin (MDB. In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥10 m depth that is not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5, whereas deeper groundwater was less saline (290 mS m−1 with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total, and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditionsafter changes

  12. Oxygen and Hydrogen Isotopes of Waters in the Ordos Basin,China: Implications for Recharge of Groundwater in the North of Cretaceous Groundwater Basin

    Institute of Scientific and Technical Information of China (English)

    YANG Yuncheng; SHEN Zhaoli; WENG Dongguang; HOU Guangcai; ZHAO Zhenhong; WANG Dong; PANG Zhonghe

    2009-01-01

    Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation.Oxygen and hydrogen isotopes, with and gradually decrease in summer and fall,illustrating that the seasonal effect is considerable.They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious.and the isotope in the middle portion iS normally depleted.The isotope compositions of 32 samples collected from shallow groundwater(less than a depth of 150 m)in desert plateau range from for JD.Most of them are identical with modern precipitation.The isotope compositions of 22 middle and deep groundwaters(greater than a depth of 275 m)fall in ranges from-11.6‰to-8.8‰with an average of-10.2‰ for £18O and from-89‰ to-63‰ with an average of-76‰ for £D.The average values are significantly less than those of modern precipitation,illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures.Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene.The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend,with a relatively flat slope of 3.77,and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.

  13. APPLICATION OF THE OVERLAY WEIGHTED MODEL AND BOOLEAN LOGIC TO DETERMINE THE BEST LOCATIONS FOR ARTIFICIAL RECHARGE OF GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Peter H.S. Riad

    2011-01-01

    Full Text Available With population increase, lack of conventional fresh water resources and uncertainties due to climate change, there is growing interest in the arid and semi-arid areas to increase groundwater recharge with recycled water. Finding the best locations for artificial recharge of groundwater in such areas is one of the most crucial design steps to guarantee the long life and the sustainability of these projects. This study presents two ways to go about performing analysis; creating a suitability map to find out the suitability of every location on the map and another way is querying the created data sets to obtain a Boolean result of true or false map. These techniques have been applied on Sadat Industrial City which is located in a semi arid area in the western desert fringes of The Nile delta in the north west of Egypt. Thematic layers for number of parameters were prepared from some maps and satellite images and they have been classified, weighted and integrated in ArcGIS environment. By the means of the overlay weighted model in ArcGIS a suitability map which is classified into number of priority zones was obtained and it could be compared with the obtained true-false map of Boolean logic. Both methods suggested mostly the northern parts of the city for groundwater recharge; however the weighted model could give more accurate suitability map while Boolean logic suggested wider ranges of areas. This study recommends Boolean logic as a first estimator for locating the best locations as it is easier and not time consuming, while the overlay weighted model for more accurate results.

  14. APPLICATION OF THE OVERLAY WEIGHTED MODEL AND BOOLEAN LOGIC TO DETERMINE THE BEST LOCATIONS FOR ARTIFICIAL RECHARGE OF GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Max Billib

    2011-12-01

    Full Text Available With population increase, lack of conventional fresh water resources and uncertainties due to climate change, there is growing interest in the arid and semi-arid areas to increase groundwater recharge with recycled water. Finding the best locations for artificial recharge of groundwater in such areas is one of the most crucial design steps to guarantee the long life and the sustainability of these projects. This study presents two ways to go about performing analysis; creating a suitability map to find out the suitability of every location on the map and another way is querying the created data sets to obtain a Boolean result of true or false map. These techniques have been applied on Sadat Industrial City which is located in a semi arid area in the western desert fringes of The Nile delta in the north west of Egypt. Thematic layers for number of parameters were prepared from some maps and satellite images and they have been classified, weighted and integrated in ArcGIS environment. By the means of the overlay weighted model in ArcGIS a suitability map which is classified into number of priority zones was obtained and it could be compared with the obtained true-false map of Boolean logic. Both methods suggested mostly the northern parts of the city for groundwater recharge; however the weighted model could give more accurate suitability map while Boolean logic suggested wider ranges of areas. This study recommends Boolean logic as a first estimator for locating the best locations as it is easier and not time consuming, while the overlay weighted model for more accurate results.

  15. Groundwater capture processes under a seasonal variation in natural recharge and discharge

    Science.gov (United States)

    Maddock, Thomas, III.; Vionnet, Leticia Beatriz

    "Capture" is the increase in recharge and the decrease in discharge that occurs when pumping is imposed on an aquifer system that was in a previous state of approximate dynamic equilibrium. Regional groundwater models are usually used to calculate capture in a two-step procedure. A steady-state solution provides an initial-head configuration, a set of flows through the boundaries for the modeled region, and the initial basis for the capture calculation. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions renders the capture calculation. When seasonality is a modeling issue, the use of a single initial hydraulic head and a single set of boundary flows leads to miscalculations of capture. Instead, an initial condition for each season should be used. This approach may be accomplished by determining steady oscillatory solutions, which vary through the seasons but repeat from year to year. A regional groundwater model previously developed for a portion of the San Pedro River basin, Arizona, USA, is modified to illustrate the effect that different initial conditions have on transient solutions and on capture calculations. Résumé Les "prélèvements" sont constitués par l'augmentation de la recharge et par la diminution de l'écoulement qui se produit lorsqu'un pompage est imposéà un système aquifère qui était auparavant dans un état proche de l'équilibre dynamique. Les modèles régionaux de nappe sont en général utilisés pour calculer les prélèvements dans une procédure à deux étapes. Une solution en régime permanent donne la configuration piézométrique initiale, un jeu de conditions aux limites pour la région modélisée et les données de base pour le calcul des prélèvements. Les solutions transitoires donnent les modifications globales des conditions aux limites. Lorsque des variations saisonnières sont produites en sortie du modèle, le recours à une

  16. Underground Test Area Subproject Phase I Data Analysis Task. Volume III - Groundwater Recharge and Discharge Data Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    Volume III of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the data covering groundwater recharge and discharge. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  17. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  18. River recharge sources and the partitioning of catchment evapotranspiration fluxes as revealed by stable isotope signals in a typical high-elevation arid catchment

    Science.gov (United States)

    Guo, Xiaoyu; Tian, Lide; Wang, Lei; Yu, Wusheng; Qu, Dongmei

    2017-06-01

    Catchment-scale hydrological cycles are expected to suffer more extremes under a background of climate change. Quantifying hydrological changes in high and remote areas is practically challenging. However, stable isotopes in river water can be seen to vary, dependent upon the combined influence exerted by recharge sources and local climatic conditions; the study of river water stable isotopes can therefore provide a meaningful method for delineating catchment-scale hydrological studies. In this study, we present high-resolution time series of river δ18O and d-excess values; additionally, we identify the seasonal dynamics of river recharge sources and major components of the catchment-scale water balance, together with precipitation and groundwater isotopes, and concurrent meteorological data recorded in Magazangbu catchment on the northwestern Tibetan Plateau (TP). Using isotopic analysis, and within a proportional framework, we partitioned the isotopic fractionation (E1) or non-fractionation (E2) from soil evaporation fluxes (Esoil) apparent in different processes, using NDVI (Normal Differential Vegetation Index) data collected by MODIS satellites to calculate the vegetation fractional coverage (VFC), and Global Land Data Assimilation System (GLDAS) records to determine evapotranspiration data (ET). Finally, the contributions made by each ET component (Esoil and plant transpiration) to total catchment ET were computed for the high and remote northwestern TP. Our results show that: (1) river δ18O values were high in summer and low in winter, while d-excess values displayed a contrary seasonal cycle; (2) for the monsoon period, precipitation contributed 60.6% to Magazangbu catchment runoff. Deeper groundwater was the main water source for the winter low base flow, and shallow groundwater or high elevation snowmelt was the principal component of the spring thaw and autumn freezing periods; and (3) a substantial proportion of Esoil (96.4% annually; 92.2% during

  19. Impact of Land-use Patterns on Distributed Groundwater Recharge and Discharge——A Case Study of Western Jilin, China

    Institute of Scientific and Technical Information of China (English)

    Moiwo Juana PAUL

    2006-01-01

    The impact of land-use on distributed groundwater recharge and discharge in the western Jilin (WJ) was analyzed in this study. WJ is a transitional, semi-arid zone with a fragile, hydrological closed ecosystem in the Songhua River Basin (SRB). The research tool includes a seamlessly linked MODFLOW, WetSpass, the Seepage packages, and ArcGIS. The model calibration showed good agreement between simulated water table elevation and measured water table depths, while predicted groundwater discharge zones showed strong correlations with field occurrences of drainage systems and wetlands. Simulated averages for distributed recharge, water table elevation and groundwater drawdown were 377.42mm/yr, 194.43m, and 0.18m respectively. Forest vegetation showed the highest recharge, followed by agricultural farmlands, while open-water and other drainage systems constituted groundwater exit zones. When present land-use conditions were compared with the hypothetical natural pre-development scenario, an overall loss of groundwater recharge (24.09mm/yr) was observed, which for the project area is 18.05 × 108m3. Groundwater abstraction seemed to be the cause of water table drawdown, especially in the immediate vicinities of the supply wells. An important issue of the findings was the ability of the hypothetical forest vegetation to protect, and hence sustain aquifer reserves and dependent ecosystems. The profound data capture capability of ArcGIS makes it particularly useful in spatio-temporal hydroecological modeling.

  20. The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China Plain.

    Science.gov (United States)

    Wang, Shiqin; Tang, Changyuan; Song, Xianfang; Wang, Qinxue; Zhang, Yinghua; Yuan, Ruiqiang

    2014-06-01

    Sewage leakage has become an important source of groundwater recharge in urban areas. Large linear wastewater ponds that lack anti-seepage measures can act as river channels that cause the deterioration of groundwater quality. This study investigated the groundwater recharge by leakage of the Tanghe Wastewater Reservoir, which is the largest industrial wastewater channel on the North China Plain. Additionally, water quality evolution was investigated using a combination of multivariate statistical methods, multi-tracers and geochemical methods. Stable isotopes of hydrogen and oxygen indicated high levels of wastewater evaporation. Based on the assumption that the wastewater was under an open system and fully mixed, an evaporation model was established to estimate the evaporation of the wastewater based on isotope enrichments of the Rayleigh distillation theory using the average isotope values for dry and rainy seasons. Using an average evaporation loss of 26.5% for the input wastewater, the estimated recharge fraction of wastewater leakage and irrigation was 73.5% of the total input of wastewater. The lateral regional groundwater inflow was considered to be another recharge source. Combing the two end-members mix model and cluster analysis revealed that the mixture percentage of the wastewater decreased from the Highly Affected Zone (76%) to the Transition Zone (5%). Ion exchange and redox reaction were the dominant geochemical processes when wastewater entered the aquifer. Carbonate precipitation was also a major process affecting evolution of groundwater quality along groundwater flow paths.

  1. The pulse of a montane ecosystem: coupled diurnal cycles in solar flux, snowmelt, evapotranspiration, groundwater, and streamflow at Sagehen Creek (Sierra Nevada, California)

    Science.gov (United States)

    Kirchner, James

    2016-04-01

    Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). During this transition, the groundwater cycles briefly vanish when the opposing forcings (snowmelt and ET) are of equal magnitude, and thus cancel each other out. Stream stage fluctuations integrate these relationships over the altitude range of the catchment. Rates of rise and fall in stream stage are positively correlated with solar flux when the whole catchment is snow

  2. The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiqin [Faculty of Horticulture, Chiba University, Matsudo-City 271-8510 (Japan); Tang, Changyuan, E-mail: cytang@faculty.chiba-u.jp [Faculty of Horticulture, Chiba University, Matsudo-City 271-8510 (Japan); Song, Xianfang [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Wang, Qinxue [National Institute for Environmental Studies, Tsukuba 305-8506 (Japan); Zhang, Yinghua [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Yuan, Ruiqiang [College of Environment and Resources, Shanxi University (China)

    2014-06-01

    Sewage leakage has become an important source of groundwater recharge in urban areas. Large linear wastewater ponds that lack anti-seepage measures can act as river channels that cause the deterioration of groundwater quality. This study investigated the groundwater recharge by leakage of the Tanghe Wastewater Reservoir, which is the largest industrial wastewater channel on the North China Plain. Additionally, water quality evolution was investigated using a combination of multivariate statistical methods, multi-tracers and geochemical methods. Stable isotopes of hydrogen and oxygen indicated high levels of wastewater evaporation. Based on the assumption that the wastewater was under an open system and fully mixed, an evaporation model was established to estimate the evaporation of the wastewater based on isotope enrichments of the Rayleigh distillation theory using the average isotope values for dry and rainy seasons. Using an average evaporation loss of 26.5% for the input wastewater, the estimated recharge fraction of wastewater leakage and irrigation was 73.5% of the total input of wastewater. The lateral regional groundwater inflow was considered to be another recharge source. Combing the two end-members mix model and cluster analysis revealed that the mixture percentage of the wastewater decreased from the Highly Affected Zone (76%) to the Transition Zone (5%). Ion exchange and redox reaction were the dominant geochemical processes when wastewater entered the aquifer. Carbonate precipitation was also a major process affecting evolution of groundwater quality along groundwater flow paths. - Highlights: • An unlined wastewater reservoir caused the deterioration of groundwater quality. • An evaporation fraction was estimated by Rayleigh distillation theory of isotopes. • 73.5% of wastewater recharge to groundwater by leakage and irrigation infiltration. • The region influenced by wastewater was divided into four subzones. • Mixing, ion exchange, and

  3. Vulnerability of topography-limited and recharge-limited groundwater systems to sea-level rise-induced salinization

    Science.gov (United States)

    Michael, H. A.; Byron, L. A.; Feinson, L. S.; Voss, C. I.; Russoniello, C. J.

    2012-12-01

    The effects of rising sea level on the hydraulic balance between aquifers and the ocean threaten freshwater resources and aquatic ecosystems along many world coastlines. Understanding both the vulnerability of groundwater systems to these changes and the primary factors that determine the magnitude of system response is critical to developing effective management plans in coastal zones. The rate and magnitude of salinization of fresh groundwater due to lateral seawater intrusion and changes in groundwater flow to the sea were assessed over a range of hydrogeologic settings. A primary factor affecting vulnerability is whether the system is recharge-limited or topography-limited. Results of two-dimensional variable-density groundwater-flow and salt-transport simulations indicate that the response of recharge-limited systems is largely minimal, whereas topography-limited systems are vulnerable for various combinations of permeability, vertical anisotropy in permeability, and recharge. World coastlines were classified according to system type as a vulnerability indicator. Results indicate that more than 50 percent of world coastlines are topography-limited over the range of cases tested. Central coastal Bangladesh is an example of a primarily topography-limited system that is highly vulnerable to impacts of sea-level rise as a result of its low elevation, dense population, and extensive groundwater use. Complexities of geologic heterogeneity and salinization processes, including storm-surge overtopping and accelerated salinization rates due to pumping, were considered. Results indicate that geologic heterogeneity has a strong control on the current and evolving pattern of salinity. The process of lateral intrusion can be slow, such that the current salinity distribution may still be changing in response to past sea-level rise. Vertical intrusion from above, where it occurs, is faster, and pumping can accelerate both mechanisms. Bangladesh vulnerability analyses are

  4. Evaluation of chloride mass balance of pore water as an indicator of groundwater recharge to the Monterrey Metropolitan Area, Mexico

    Science.gov (United States)

    Rosales-Lagarde, Laura; Pasten, Ernesto; Mora, Abrahan; Mahlknecht, Jürgen

    2016-04-01

    Monterrey Metropolitan Area in Nuevo Leon, Mexico, is the third largest metropolitan area and one of the most important industrial sites of Mexico. Groundwater constitutes 40% of the water supply to this urban area. This supply is under constant stress due to the population increase. The unsaturated zone at six sites along two cross-sections was characterized to evaluate the potential of chloride concentration as an indicator of recharge. The selected sites include the range of topographic elevations, vegetation, and annual precipitation of the study area. In each site, boreholes up to 5 m deep were drilled and soil was sampled every 0.5 m. The grain size of each soil sample was determined and pore water extracted to determine the water content percentage, and the chloride, sulfate and nitrate concentration of the pore water. The undersaturated zone consists of alluvial deposits with an average gravel and sand content greater than 60% for all but one of the sampling sites. The pore water content varies from 0.4 to 25% by weight with a decreasing trend as depth increases in areas with agriculture. Sulfate has the highest anion concentration in the pore waters, ranging from 42 to 45,000 mg/L and no apparent distribution pattern along the soil profile columns. Chloride concentration ranges from 8 to 3600 mg/L with an increase in concentration below 1.5 m depth in all the profiles. Chloride and sulfate concentrations with depth are directly correlated suggesting a common input, possibly dissolution-precipitation of evaporite minerals from nearby outcrops or an anthropogenic input. Hence, it is unlikely that chloride behaves as a conservative ion. As a result, its concentration is not likely to be a good indicator of groundwater recharge. Finally; the nitrate concentration ranges from 2 to 96 mg/L nitrate, without a clear pattern along the soil profiles. Low concentration of nitrate in the soil profiles below agricultural areas may suggest denitrification as suggested

  5. A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas

    Science.gov (United States)

    Dripps, W.R.; Bradbury, K.R.

    2007-01-01

    Quantifying the spatial and temporal distribution of natural groundwater recharge is usually a prerequisite for effective groundwater modeling and management. As flow models become increasingly utilized for management decisions, there is an increased need for simple, practical methods to delineate recharge zones and quantify recharge rates. Existing models for estimating recharge distributions are data intensive, require extensive parameterization, and take a significant investment of time in order to establish. The Wisconsin Geological and Natural History Survey (WGNHS) has developed a simple daily soil-water balance (SWB) model that uses readily available soil, land cover, topographic, and climatic data in conjunction with a geographic information system (GIS) to estimate the temporal and spatial distribution of groundwater recharge at the watershed scale for temperate humid areas. To demonstrate the methodology and the applicability and performance of the model, two case studies are presented: one for the forested Trout Lake watershed of north central Wisconsin, USA and the other for the urban-agricultural Pheasant Branch Creek watershed of south central Wisconsin, USA. Overall, the SWB model performs well and presents modelers and planners with a practical tool for providing recharge estimates for modeling and water resource planning purposes in humid areas. ?? Springer-Verlag 2007.

  6. Numerical simulation of groundwater artificial recharge in a semiarid-climate basin of northwest Mexico, case study the Guadalupe Valley Aquifer, Baja California

    Science.gov (United States)

    Campos-Gaytan, J. R.; Herrera-Oliva, C. S.

    2013-05-01

    In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge

  7. Groundwater recharge and climatic change during the last 1000 years from unsaturated zone of SE Badain Jaran Desert

    Institute of Scientific and Technical Information of China (English)

    MA Jinzhu; LI Ding; ZHANG Jiawu; W. M. Edmunds; C. Prudhomme

    2003-01-01

    The history of groundwater recharge and climatic changes during the last 1000 years has been estimated and reconstructed using environmental chloride from unsaturated zone profile in the southeast Badain Jaran Desert, NW China. Byusing a steady-state model for duplicate unsaturated zone chloride profiles, the long-term recharge at the site was estimated to be 1.3 mm yr?1. From one profile, which reached the water table, the climatic change events of 10-20 years duration were well preserved. There were 3 wet phases and 4 dry episodes during the recent 800 years according to the peaks and troughs of recharge rate calculated via chloride concentration and moisture content. There was a dry episode before 1290 AD. At ca. 1500-1530 AD, which is an important date, there was an abruptchange from drought to wet conditions. At the beginning of the 1800s, local climate changed from wet to dry occurred and subsequently deteriorated over the past 200 years. The unsaturated profile was compared with the Guliya ice core records. The agreement of wet and dry phases from 1200 to 1900 AD is quite good, whilst trends diverged during the last 100 years. It seems that the large-scale climate difference took place between mountain regions and the desert basin in NW China during the 20th century, which closely correspond to the water table reduction of some 1 metre.

  8. Uncertainty in recharge estimation: impact on groundwater vulnerability assessments for the Pearl Harbor Basin, O'ahu, Hawai'i, U.S.A.

    Science.gov (United States)

    Giambelluca, Thomas W.; Loague, Keith; Green, Richard E.; Nullet, Michael A.

    1996-06-01

    In this paper, uncertainty in recharge estimates is investigated relative to its impact on assessments of groundwater contamination vulnerability using a relatively simple pesticide mobility index, attenuation factor (AF). We employ a combination of first-order uncertainty analysis (FOUA) and sensitivity analysis to investigate recharge uncertainties for agricultural land on the island of O'ahu, Hawai'i, that is currently, or has been in the past, under sugarcane or pineapple cultivation. Uncertainty in recharge due to recharge component uncertainties is 49% of the mean for sugarcane and 58% of the mean for pineapple. The components contributing the largest amounts of uncertainty to the recharge estimate are irrigation in the case of sugarcane and precipitation in the case of pineapple. For a suite of pesticides formerly or currently used in the region, the contribution to AF uncertainty of recharge uncertainty was compared with the contributions of other AF components: retardation factor (RF), a measure of the effects of sorption; soil-water content at field capacity (ΘFC); and pesticide half-life (t1/2). Depending upon the pesticide, the contribution of recharge to uncertainty ranks second or third among the four AF components tested. The natural temporal variability of recharge is another source of uncertainty in AF, because the index is calculated using the time-averaged recharge rate. Relative to the mean, recharge variability is 10%, 44%, and 176% for the annual, monthly, and daily time scales, respectively, under sugarcane, and 31%, 112%, and 344%, respectively, under pineapple. In general, uncertainty in AF associated with temporal variability in recharge at all time scales exceeds AF. For chemicals such as atrazine or diuron under sugarcane, and atrazine or bromacil under pineapple, the range of AF uncertainty due to temporal variability in recharge encompasses significantly higher levels of leaching potential at some locations than that indicated by the

  9. Implications of using on-farm flood flow capture to recharge groundwater and mitigate flood risks along the Kings River, CA.

    Science.gov (United States)

    Bachand, Philip A M; Roy, Sujoy B; Choperena, Joe; Cameron, Don; Horwath, William R

    2014-12-02

    The agriculturally productive San Joaquin Valley faces two severe hydrologic issues: persistent groundwater overdraft and flooding risks. Capturing flood flows for groundwater recharge could help address both of these issues, yet flood flow frequency, duration, and magnitude vary greatly as upstream reservoir releases are affected by snowpack, precipitation type, reservoir volume, and flood risks. This variability makes dedicated, engineered recharge approaches expensive. Our work evaluates leveraging private farmlands in the Kings River Basin to capture flood flows for direct and in lieu recharge, calculates on-farm infiltration rates, assesses logistics, and considers potential water quality issues. The Natural Resources Conservation Service (NRCS) soil series suggested that a cementing layer would hinder recharge. The standard practice of deep ripping fractured the layer, resulting in infiltration rates averaging 2.5 in d(-1) (6 cm d(-1)) throughout the farm. Based on these rates 10 acres are needed to infiltrate 1 cfs (100 m(3) h(-1)) of flood flows. Our conceptual model predicts that salinity and nitrate pulses flush initially to the groundwater but that groundwater quality improves in the long term due to pristine flood flows low in salts or nitrate. Flood flow capture, when integrated with irrigation, is more cost-effective than groundwater pumping.

  10. Prognosis of groundwater recharge by means of the simulation tool PCSiWaPro® under the conditions of climate change

    Science.gov (United States)

    Meyer, M.; Sallwey, J.; Hasan, I.; Graeber, P.-W.

    2012-04-01

    Recent studies showed that varying atmospheric conditions as a result of climate change have a significant impact on the magnitude and time variable development of groundwater recharge. Essentially there are two driving factors that influence groundwater recharge: the temporal distribution of precipitation, and the saturation processes resulting from capillary effects in the unsaturated soil zone. Water balance processes can accurately be modelled by using the Richards' equation for transient flow, together with the Van-Genuchten/Luckner approximation describing hysteresis relationships between water contents and pressure heads in the soil. Precipitation distributions, as boundary conditions for the unsaturated model, can be generated from climate data measurements using statistical analysis tools. These synthetic time series reflect both the real climate conditions in a given model area, as well as statistical variations of rainfall by implementing characteristics of a predefined probability distribution. Depending on the kind of distribution, the resulting time series can represent both annual rainfall variations as well as long-term climate changes. The Institute of Waste Management and Contaminated Site Treatment of the TU Dresden has developed two software programs that help estimate these two driving forces for groundwater recharge. WettGen is a weather generator using a Weibull distribution and Markov chain approximations to create synthetic climate time series. These are applied as an upper boundary condition for PCSiWaPro®, a numerical finite element simulation tool solving the Richards' equation for water balance and a convection dispersion equation for contaminant. The result of this coupled simulation is an outflow at the lower boundary of the PCSiWaPro® model, which can be interpreted as a recharge rate for the underlying aquifer. Considering that climate change scenarios for Germany predict longer dry periods and an increase of extreme precipitation

  11. Impact of artificial recharge and drought in Tafilalet Oasis system: First investigation by GIS and groundwater modeling

    Science.gov (United States)

    Bouaamlat, I.; Larabi, A.; Faouzi, M.

    2013-12-01

    The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Because of this situation, the region has one of the largest palms of North Africa. Thus there is an agricultural activity that is practiced in a 21 irrigation areas whose size rarely exceeds 2,000 hectare. Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the Tafilalet oasis system aquifer, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought, using for the first time the Modflow code. This study takes into account the most possible real hydrogeological conditions and using the geographical information system (GIS) for the organisation and treatment of data and applying a multidisciplinary approach combining geostatistical and hydrogeological modeling. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 14 million m3/year it is possible to

  12. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-08-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  13. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-12-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  14. Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2017-02-01

    Groundwater recharge variations in time and space are crucial for effective water management, especially in low-precipitation regions. To determine comprehensive groundwater recharge processes in a catchment with large seasonal hydrological variations, intensive field surveys were conducted in the Wangkuai Reservoir watershed located in the Taihang Mountains, North China, during three different times of the year: beginning of the rainy season (June 2011), mid-rainy season (August 2012), and dry season (November 2012). Oxygen and hydrogen isotope and chemical analyses were conducted on the groundwater, spring water, stream water, and reservoir water of the Wangkuai Reservoir watershed. The results were processed using endmember mixing analysis to determine the amount of contribution of the groundwater recharging processes. Similar isotopic and chemical signatures between the surface water and groundwater in the target area indicate that the surface water in the mountain-plain transitional area and the Wangkuai Reservoir are the principal groundwater recharge sources, which result from the highly permeable geological structure of the target area and perennial large-scale surface water, respectively. Additionally, the widespread and significant effect of the diffuse groundwater recharge on the Wangkuai Reservoir was confirmed with the deuterium (d) excess indicator and the high contribution throughout the year, calculated using endmember mixing analysis. Conversely, the contribution of the stream water to the groundwater recharge in the mountain-plain transitional area clearly decreases from the beginning of the rainy season to the mid-rainy season, whereas that of the precipitation increases. This suggests that the main groundwater recharge source shifts from stream water to episodic/continuous heavy precipitation in the mid-rainy season. In other words, the surface water and precipitation commonly affect the groundwater recharge in the rainy season, whereas the

  15. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    Science.gov (United States)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  16. Improving AVSWAT Stream Flow Simulation by Incorporating Groundwater Recharge Prediction in the Upstream Lesti Watershed, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Christina Rahayuningtyas

    2014-01-01

    Full Text Available The upstream Lesti watershed is one of the major watersheds of East Java in Indonesia, covering about 38093 hectares. Although there are enough water resources to meet current demands in the basin, many challenges including high spatial and temporal variability in precipitation from year to year exist. It is essential to understand how the climatic condition affects Lesti River stream flow in each sub basin. This study investigated the applicability of using the Soil and Water Assessment Tool (SWAT with the incorporation of groundwater recharge prediction in stream flow simulation in the upstream Lesti watershed. Four observation wells in the upstream Lesti watershed were used to evaluate the seasonal and annual variations in the water level and estimate the groundwater recharge in the deep aquifer. The results show that annual water level rise was within the 2800 - 5700 mm range in 2007, 3900 - 4700 mm in 2008, 3200 - 5100 mm in 2009, and 2800 - 4600 mm in 2010. Based on the specific yield and the measured water level rise, the area-weighted groundwater predictions at the watershed outlet are 736, 820.9, 786.7, 306.4 mm in 2007, 2008, 2009, and 2010, respectively. The consistency test reveals that the R-square statistical value is greater than 0.7, and the DV (% ranged from 32 - 55.3% in 2007 - 2010. Overall, the SWAT model performs better in the wet season flow simulation than the dry season. It is suggested that the SWAT model needs to be improved for stream flow simulation in tropical regions.

  17. Impacts of Groundwater Recharge from Rubber Dams on the Hydrogeological Environment in Luoyang Basin, China

    Science.gov (United States)

    Dong, Shaogang; Liu, Baiwei; Liu, Huamin; Wang, Shidong; Wang, Lixin

    2014-01-01

    In the rubber dam's impact area, the groundwater total hardness (TH) has declined since 2000, ultimately dropping to 100–300 mg/L in 2012. pH levels have shown no obvious changes. NH4-N concentration in the groundwater remained stable from 2000 to 2006, but it increased from 2007 to 2012, with the largest increase up to 0.2 mg/L. NO3-N concentration in the groundwater generally declined in 2000–2006 and then increased from 2007; the largest increase was to 10 mg/L in 2012. Total dissolved solids (TDS) of the groundwater showed a general trend of decline from 2000 to 2009, but levels increased after 2010, especially along the south bank of the Luohe River where the largest increase recorded was approximately 100 mg/L. This study has shown that the increases in the concentrations of NH4-N and NO3-N were probably caused by changes in groundwater levels. Nitrates adsorbed by the silt clay of aeration zone appear to have entered the groundwater through physical and chemical reactions. TDS increased because of groundwater evaporation and some soluble ions entered the groundwater in the unsaturated zone. The distance of the contaminant to the surface of the aquifer became shorter due to the shallow depth of groundwater, resulting in the observed rise in pollutant concentrations more pronounced. PMID:25126593

  18. Impacts of Groundwater Recharge from Rubber Dams on the Hydrogeological Environment in Luoyang Basin, China

    Directory of Open Access Journals (Sweden)

    Shaogang Dong

    2014-01-01

    Full Text Available In the rubber dam’s impact area, the groundwater total hardness (TH has declined since 2000, ultimately dropping to 100–300 mg/L in 2012. pH levels have shown no obvious changes. NH4-N concentration in the groundwater remained stable from 2000 to 2006, but it increased from 2007 to 2012, with the largest increase up to 0.2 mg/L. NO3-N concentration in the groundwater generally declined in 2000–2006 and then increased from 2007; the largest increase was to 10 mg/L in 2012. Total dissolved solids (TDS of the groundwater showed a general trend of decline from 2000 to 2009, but levels increased after 2010, especially along the south bank of the Luohe River where the largest increase recorded was approximately 100 mg/L. This study has shown that the increases in the concentrations of NH4-N and NO3-N were probably caused by changes in groundwater levels. Nitrates adsorbed by the silt clay of aeration zone appear to have entered the groundwater through physical and chemical reactions. TDS increased because of groundwater evaporation and some soluble ions entered the groundwater in the unsaturated zone. The distance of the contaminant to the surface of the aquifer became shorter due to the shallow depth of groundwater, resulting in the observed rise in pollutant concentrations more pronounced.

  19. Drought-related vulnerability and risk assessment of groundwater in Belgium: estimation of the groundwater recharge and crop yield vulnerability with the B-CGMS

    Science.gov (United States)

    Jacquemin, Ingrid; Verbeiren, Boud; Vanderhaegen, Sven; Canters, Frank; Vermeiren, Karolien; Engelen, Guy; Huysmans, Marijke; Batelaan, Okke; Tychon, Bernard

    2016-04-01

    Due to common belief that regions under temperate climate are not affected by (meteorological and groundwater) drought, these events and their impacts remain poorly studied: in the GroWaDRISK, we propose to take stock of this question. We aim at providing a better understanding of the influencing factors (land use and land cover changes, water demand and climate) and the drought-related impacts on the environment, water supply and agriculture. The study area is located in the North-East of Belgium, corresponding approximatively to the Dijle and Demer catchments. To establish an overview of the groundwater situation, we assess the system input: the recharge. To achieve this goal, two models, B-CGMS and WetSpass are used to evaluate the recharge, respectively, over agricultural land and over the remaining areas, as a function of climate and for various land uses and land covers. B-CGMS, which is an adapted version for Belgium of the European Crop Growth Monitoring System, is used for assessing water recharge at a daily timestep and under different agricultural lands: arable land (winter wheat, maize...), orchards, horticulture and floriculture and for grassland. B-CGMS is designed to foresee crop yield and obviously it studies the impact of drought on crop yield and raises issues for the potential need of irrigation. For both yields and water requirements, the model proposes a potential mode, driven by temperature and solar radiation, and a water-limited mode for which water availability can limit crop growth. By this way, we can identify where and when water consumption and yield are not optimal, in addition to the Crop Water Stress Index. This index is calculated for a given crop, as the number of days affected by water stress during the growth sensitive period. Both recharge and crop yield are assessed for the current situation (1980 - 2012), taking into account the changing land use/land cover, in terms of areas and localization of the agricultural land and where

  20. Evaluating impacts of recharging partially treated wastewater on groundwater aquifer in semi-arid region by integration of monitoring program and GIS technique.

    Science.gov (United States)

    Alslaibi, Tamer M; Kishawi, Yasser; Abunada, Ziyad

    2017-05-01

    The current study investigates the impact of recharging of partially treated wastewater through an infiltration basin on the groundwater aquifer quality parameters. A monitoring program supported by a geographic information analysis (GIS) tool was used to conduct this study. Groundwater samples from the entire surrounding boreholes located downstream the infiltration basin, in addition to samples from the recharged wastewater coming from the Beit Lahia wastewater treatment (BLWWTP), were monitored and analysed between 2011 and 2014. The analysis was then compared with the available historical data since 2008. Results revealed a groundwater replenishment with the groundwater level increased by 1.0-2.0 m during the study period. It also showed a slight improvement in the groundwater quality parameters, mainly a decrease in TDS, Cl(-) and NO3(-) levels by 5.5, 17.1 and 20%, respectively, resulting from the relatively better quality of the recharged wastewater. Nevertheless, the level of boron and ammonium in the groundwater wells showed a significant increase over time by 96 and 100%, respectively. Moreover, the infiltration rate was slowed down in time due to the relatively high level of total suspended solid (TSS) in the infiltrated wastewater.

  1. Managed aquifer recharge by a check dam to improve the quality of fluoride-rich groundwater: a case study from southern India.

    Science.gov (United States)

    Gowrisankar, G; Jagadeshan, G; Elango, L

    2017-04-01

    In many regions around the globe, including India, degradation in the quality of groundwater is of great concern. The objective of this investigation is to determine the effect of recharge from a check dam on quality of groundwater in a region of Krishnagiri District of Tamil Nadu State, India. For this study, water samples from 15 wells were periodically obtained and analysed for major ions and fluoride concentrations. The amount of major ions present in groundwater was compared with the drinking water guideline values of the Bureau of Indian Standards. With respect to the sodium and fluoride concentrations, 38% of groundwater samples collected was not suitable for direct use as drinking water. Suitability of water for agricultural use was determined considering the electrical conductivity, sodium adsorption ratio, sodium percentage, permeability index, Wilcox and United States Salinity Laboratory diagrams. The influence of freshwater recharge from the dam is evident as the groundwater in wells nearer to the check dam was suitable for both irrigation and domestic purposes. However, the groundwater away from the dam had a high ionic composition. This study demonstrated that in other fluoride-affected areas, the concentration can be reduced by dilution with the construction of check dams as a measure of managed aquifer recharge.

  2. Characterization of Organic Carbon and Its Bioavailability in Recharge Waters and Aquifer Sediments: Implications for Groundwater Arsenic Contamination in Bangladesh

    Science.gov (United States)

    Pracht, L. E.; Ardissono, R. J.; Polizzotto, M.; Badruzzaman, A. B. M.; Ali, M. A.; Paša-Tolić, L.; Neumann, R. B.

    2014-12-01

    Arsenic contamination of groundwater in Bangladesh affects millions of people, as groundwater is the primary source of both drinking and irrigation water in the country. The arsenic is of geologic origin, naturally-occurring in the aquifer sediment. However, the source of organic carbon that fuels the microbial reactions responsible for mobilizing arsenic off the sediment and into the groundwater has been debated for over a decade. The outstanding question is whether this organic carbon is sedimentary carbon that was co-deposited when the aquifers were formed, or surface-derived organic carbon transported into the subsurface along with recharge water. The answer to this question has implications for managing the contamination problem. Here we present results of recent laboratory incubations of aquifer sediment with recharge waters collected from our field site in Bangladesh. The incubations revealed a hitherto undocumented pool of biodegradable sedimentary organic carbon. Despite the carbon being old (thousands of years), it was rapidly utilized by the native microbial population. The results imply that within the aquifer this pool of sedimentary organic carbon is largely unavailable to the microbial community, but that chemical and/or physical perturbations to the subsurface, induced, for example, by large-scale groundwater pumping or microbial activity, could mobilize this bioavailable organic carbon off the sediment. Currently, we are using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and spectroscopic techniques to understand the initial character of the mobilized organic carbon in our incubation experiments, and to track how its composition changes over time as it is degraded by microbes. These efforts will help clarify the in situ processes that could destabilize the sedimentary organic carbon and identify the components that make the carbon biologically available. Collectively, our data suggest a possible role for both surface-derived and

  3. Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe

    NARCIS (Netherlands)

    Sibanda, T.; Nonner, J.C.; Uhlenbrook, S.

    2009-01-01

    The Nyamandhlovu aquifer is the main water resource in the semi-arid Umguza district in Matebeleland North Province in Zimbabwe. The rapid increase in water demand in the city of Bulawayo has prompted the need to quantify the available groundwater resources for sustainable utilization. Groundwater r

  4. Simulations of Groundwater Flow and Particle Tracking Analysis in the Area Contributing Recharge to a Public-Supply Well near Tampa, Florida, 2002-05

    Science.gov (United States)

    Crandall, Christy A.; Kauffman, Leon J.; Katz, Brian G.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.

    2009-01-01

    groundwater from the surficial aquifer system and lowest (less than the detection level of 0.06 milligram per liter) in the deeper Upper Floridan aquifer. Denitrification occurred near the interface of the surficial aquifer system and the underlying intermediate confining unit, within the intermediate confining unit, and within the Upper Floridan aquifer because of reducing conditions in this part of the flow system. However, simulations indicate that the rapid movement of water from the surficial aquifer system to the selected public-supply well through karst features (sinkholes) and conduit layers that bypass the denitrifying zones (short-circuits), coupled with high pumping rates, allow nitrate to reach the selected public-supply well in concentrations that resemble those of the overlying surficial aquifer system. Water from the surficial aquifer system with elevated concentrations of nitrate and low concentrations of some volatile organic compounds and pesticides is expected to continue moving into the selected public-supply well, because calculated flux-weighted concentrations indicate the proportion of young affected water contributing to the well is likely to remain relatively stable over time. The calculated nitrate concentration in the selected public-supply well indicates a lag of 1 to 10 years between peak concentrations of nonpoint source contaminants in recharge and appearance in the well.

  5. Allogenic groundwater recharge to Erenhot Basin%外源地下水补给二连浩特盆地

    Institute of Scientific and Technical Information of China (English)

    陈建生; 王彦超; 谢飞; 徐燚; 陈亚飞; 詹泸成; 江巧宁

    2016-01-01

    In order to identify the source of groundwater recharge in Erenhot, the transforming relationships between atmospheric precipitation, surface water, soil water, and groundwater were studied through isotope geochemical analysis. Due to evaporation, the soil moisture remains lower than the maximum water holding capacity for a long period, and the infiltration of precipitation is not sufficient to change this situation. Compared with precipitation, the soil water is more depleted in deuterium and oxygen isotopes. Through comparison of deuterium and oxygen isotopes in soil water, groundwater, and local precipitation, it was found that the soil water is mainly recharged by groundwater. The isotopic composition of precipitation in the Qiangtang Basin, in Tibet, is similar to that of the groundwater in Erenhot, indicating that the groundwater in the Erenhot Basin is recharged by an allogenic water source. Ankerite, red clay, travertine, siliceous sinter, gypsum, and other minerals are widely distributed in the basalt eruption regions in the Erenhot Basin. Elements such as Fe, Mg, Ca, and Si in these minerals may come from deep-circulating groundwater. The formation of ankerite and red clay indicates that the deep-circulating groundwater goes through a high-temperature process. The allogenic water may come from the seepage of rivers and lakes in the Tibetan Plateau, and the deep-circulating groundwater recharges the groundwater of Erenhot ’ s volcanic basalt areas via volcanic lava pipes. Based on the principle of deep circulation of groundwater, four artesian wells have been drilled near the craters in Erenhot, with the flow capacity of a single well reaching 30 m3/h.%为了查明二连浩特地下水的补给来源,采用同位素地球化学分析方法,研究了二连浩特地区的大气降水、地表水、土壤水与地下水之间的转化关系。结果表明:土壤含水率在蒸发作用下长期处于亏缺状态,入渗降水不足以改变土壤含

  6. Flood water storage as a resource for agriculture and groundwater recharge: the empting of artificial leaking ponds

    Science.gov (United States)

    D'Oria, M.; Tanda, M.; Zanini, A.

    2008-12-01

    The large industrialization, intensive agriculture and the increasing population is giving rise to a lack of water resources. There is the need of capturing runoff for storing the water and using it during dry periods, but people now opposes to the realization of new dams. In Italy Public Authorities are showing a great interest in using ponds or small lakes located in the fluvial surroundings for storing water. The reservoirs can be filled up during flood events and can become, maintaining the water for a certain period, a resource for agriculture and a source of artificial recharge of groundwater. The hydraulic risks in the management of such small structures and the economic budget are lower than those involved in traditional reservoirs. In this work we propose a set of relationships with the aim of describing the interactions between the pond lakes and the beneath groundwater. This methodology allows to estimate the emptying time of the lake and its relative flow rate in a very fast way. It requires only a few parameters: the geometry of the problem, the initial lake and groundwater level and the hydraulic parameters of the aquifer and of the bottom of the lake. The solution of the problem was split in two cases: groundwater level always below the lakebed and groundwater level interacting with the lake level. It is possible to identify the two cases comparing the maximum flow rate drained from the aquifer (QS) to the one provided by the lake (QL). If QS is greater than QL the groundwater level maintains below the lakebed and vice versa. The two cases are well represented by simple relationships developed by the authors. These relationships were obtained using the results provided by a numerical model developed using MODFLOW 2000 with the LAKE3 package. Considering the first case, the relationship between the lake, groundwater level, the time and the leakance is represented by a straight line in a semi-logarithmic plane. In the case of the lake interconnected

  7. Groundwater recharge and nutrient transport in a tile drained field: The Las Nutrias Groundwater Project, Las Nutrias, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Roth, T.L.; Bowman, R.S. [New Mexico Tech, Socorro, NM (United States). Dept. of Geoscience

    1995-12-31

    With the rapid growth of the Albuquerque region, groundwater contamination from nonpoint sources has become an increasing concern. Agriculture, one major land usage of the basin area, can abe responsible for the leaching of nutrients and chemicals to shallow groundwater via irrigation return flows. Even so, there is almost no available information regarding agricultural impacts on groundwater quality in New Mexico. The major objective of this project has been to develop a data base pertaining to this issue. The main goals of this project are: to adapt the tile drainage system to allow for the collection of irrigation return flows on an actual, operating farm; to utilize the tile drain sampling system to quantify nutrient and pesticide levels in the irrigation return flow; to determine the local hydrology in an around the field site; and to use the collected field data to test the two-dimensional water flow and chemical transport model (CHAIN 2-D).

  8. Hydrodynamic and salinity evolution of groundwaters during artificial recharge within semi-arid coastal aquifers: A case study of El Khairat aquifer system in Enfidha (Tunisian Sahel)

    Science.gov (United States)

    Ketata, Mouna; Gueddari, Moncef; Bouhlila, Rachida

    2014-09-01

    In common with most coastal aquifers, the El Khairat aquifer suffers the imbalance between recharge and intense exploitation and the extent of agricultural activity. As it is part of the Tunisian Sahel, the Enfidha region has a semiarid climate with very irregular rainfall which makes the groundwater resources quite fragile. This region has major difficulties in managing its water resources which are in decline, especially since, for the last decades, their renewal by rainwater has no longer been sufficient to re-establish the equilibrium. In such a case, the artificial recharge of aquifers by water from dams is a credible alternative to preserve the water resources against marine intrusion and pronounced fall in the piezometric level. The present investigation, based on available data, is aimed to monitoring the piezometry of the El Khairat aquifer during artificial recharge operations (2002-2005) by water from the dam and to identify the impact of the artificial recharge on groundwater quality. The results of this monitoring have shown that the artificial recharge realized between 2002 and 2005, had for effect an increase of the piezometric level of the phreatic aquifer of +0.4 to +2.63 m, especially in the “Ain Garci” zone. The piezometric level of the deep aquifer has also recorded an important increase reaching +3.82 m. After artificial recharge of the aquifer, the spatial distribution of the salinity shows quite low salinity values (lower than 2 g/l) in the western and north-eastern parts of the aquifer, the zone of artificial recharge, whereas the highest ones are found especially in the coastal zones and at the boundaries of the Sebkha where they exceeded 3 g/l. Moreover, we note a slight salinity reduction toward a central zone of the aquifer. Indeed, the zone characterized by salinity lower than 2 g/l and situated near the recharge site becomes more extensive.

  9. Investigating the Energy-Water Usage Efficiency of the Reuse of Treated Municipal Wastewater for Artificial Groundwater Recharge.

    Science.gov (United States)

    Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James

    2016-02-16

    This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.

  10. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, J.B. [Geological Survey, Denver, CO (United States); Kroitoru, L. [Roy F. Weston, Inc., Washington, DC (United States); Ronen, D. [Weizmann Inst. of Science, Rehovot (Israel)]|[Hydrological Service, Jerusalem (Israel); Magaritz, M. [Weizmann Inst. of Science, Rehovot (Israel)

    1992-10-01

    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient ({minus}0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient ({minus}0.10) and a 0. 83{minus}meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone.

  11. Spatial and temporal changes in sulphate-reducing groundwater bacterial community structure in response to Managed Aquifer Recharge.

    Science.gov (United States)

    Reed, D A; Toze, S; Chang, B

    2008-01-01

    The population dynamics of bacterial able to be cultured under sulphate reducing condition was studied in conjunction with changes in aquifer geochemistry using multivariate statistics for two contrasting Managed Aquifer Recharge (MAR) techniques at two different geographical locations (Perth, Western Australia and Adelaide, South Australia). Principal component analysis (PCA) was used to investigate spatial and temporal changes in the overall chemical signature of the aquifers using an array of chemical analytes which demonstrated a migrating geochemical plume. Denaturing Gradient Gel Electrophoresis (DGGE) using DNA from sulphate-reducing bacteria cultures was used to detect spatial and temporal changes in population dynamics. Bacterial and geochemical evidence suggested that groundwater at greatest distance from the nutrient source was least affected by treated effluent recharge. The results suggested that bacterial populations that were able to be cultured in sulphate reducing media responded to the migrating chemical gradient and to the changes in aquifer geochemistry. Most noticeably, sulphate-reducing bacterial populations associated with the infiltration galleries were stable in community structure over time. Additionally, the biodiversity of these culturable bacteria was restored when aquifer geochemistry returned to ambient conditions during the recovery phase at the Adelaide Aquifer Storage and Recovery site.

  12. Groundwater recharge processes in the Nasia sub-catchment of the White Volta Basin: Analysis of porewater characteristics in the unsaturated zone

    Science.gov (United States)

    Addai, Millicent Obeng; Yidana, Sandow Mark; Chegbeleh, Larry-Pax; Adomako, Dickson; Banoeng-Yakubo, Bruce

    2016-10-01

    Vertical infiltration of precipitation has been examined in this study for the purpose of evaluating groundwater recharge processes in parts of the Nasia sub-catchment of the White Volta Basin. As recharge is an essential component in the detailed assessment of groundwater resources potential in a basin, evaluating its processes is vital in determining the spatial and temporal variability of the resource. Stable isotope data of precipitation, groundwater, surface water and porewater in the area suggest that the local precipitation is largely enriched compared to global meteoric water. This is consistent with the prevailing local conditions in the region and ties in with observations in other parts of the sub-region. The groundwater and porewater data indicate that prior to, and in the process of infiltration and final percolation into the saturated zone, rainwater undergoes evaporative enrichment such that the finally recharged water plots along an evaporation line with a much shallower gradient and intercept compared to the global meteoric water line and the local meteoric water line. The isotope data further suggest that through the shallow unsaturated zone, a significant fraction of the initial precipitation would have been evaporated by a depth of 3.0 m. Evaporation rates in the range of 38-49% have been estimated for the depth range of 0-3.0 m based on the porewater stable isotope data. Details of the procedures and implications of high evaporation rates within such shallower depths are presented and discussed. Groundwater recharge rates estimated from the chloride mass balance technique report values in the range of 73.26 mm/yr (390 Mm3/yr)-109.89 mm/yr (585.27 Mm3/yr), with an average of 94 mm/yr (500.6 Mm3/yr). These translate into 6.6-10.9% of annual precipitation. Based on the current population trends and per capita water demand of 50 L per capita per day, this study finds that the estimated recharge rates exceed the demand 59 times. This suggests

  13. Water Use, Ground-Water Recharge and Availability, and Quality of Water in the Greenwich Area, Fairfield County, Connecticut and Westchester County, New York, 2000-2002

    Science.gov (United States)

    Mullaney, John R.

    2004-01-01

    Ground-water budgets were developed for 32 small basin-based zones in the Greenwich area of southwestern Connecticut, where crystalline-bedrock aquifers supply private wells, to determine the status of residential ground-water consumption relative to rates of ground-water recharge and discharge. Estimated residential ground-water withdrawals for small basins (averaging 1.7 square miles (mi2) ranged from 0 to 0.16 million gallons per day per square mile (Mgal/d/mi2). To develop these budgets, residential ground-water withdrawals were estimated using multiple-linear regression models that relate water use from public water supply to data on residential property characteristics. Average daily water use of households with public water supply ranged from 219 to 1,082 gallons per day (gal/d). A steady-state finite-difference ground-water-flow model was developed to track water budgets, and to estimate optimal values for hydraulic conductivity of the bedrock (0.05 feet per day) and recharge to the overlying till deposits (6.9 inches) using nonlinear regression. Estimated recharge rates to the small basins ranged from 3.6 to 7.5 inches per year (in/yr) and relate to the percentage of the basin underlain by coarse-grained glacial stratified deposits. Recharge was not applied to impervious areas to account for the effects of urbanization. Net residential ground-water consumption was estimated as ground-water withdrawals increased during the growing season, and ranged from 0 to 0.9 in/yr. Long-term average stream base flows simulated by the ground-water-flow model were compared to calculated values of average base flow and low flow to determine if base flow was substantially reduced in any of the basins studied. Three of the 32 basins studied had simulated base flows less than 3 in/yr, as a result of either ground-water withdrawals or reduced recharge due to urbanization. A water-availability criteria of the difference between the 30-day 2-year low flow and the recharge rate

  14. Effects of rainfall variability and land cover change on groundwater recharge on a volcanic island (Jeju, Korea)

    Science.gov (United States)

    Hagedorn, B.; Mair, A.; El-Kadi, A. I.; Tillery, S.

    2011-12-01

    A GIS-based Soil-Water-Balance (SWB) model was used to estimate spatially distributed recharge across Jeju Island (Korea) for a variety of time periods, and climate and land cover scenarios. SWB is based on a modified Thornthwaite-Mather approach that calculates water balance components for each grid cell at a daily timestep. Rainfall input files were interpolated from daily rainfall measurements recorded at 52-gauges from 1992-2009. Net precipitation was estimated using a bucket model approach in which a daily initial interception storage capacity must be satisfied before precipitation can reach the soil surface. Interception losses were estimated from the literature for each land-use type and season (growing/non-growing). Snowfall was assumed to occur when the mean daily temperature minus one-third of the difference between the daily maximum and minimum temperature was less or equal to the freezing point of water. Snowmelt was calculated assuming that 1.5 mm of snow melts per day per degree Celsius when the daily maximum temperature is above the freezing point. Spatially variable potential evapotranspiration was calculated using the Hargreaves-Samani method which requires gridded minimum and maximum air temperature data for each time step. These were computed using temperature lapse rates calculated from daily temperature data recorded at 19 stations from 1992-2009. Surface runoff was modeled for each rain and snowmelt event using the Natural Resources Conservation Service curve number method. SWB incorporates overland flow routing to ensure that runoff from upslope grid cells either infiltrates soils or continues downslope to the steepest downgradient cell. Root zone depths and water-holding capacities of Jeju's hydrologic soil groups were used to compute maximum soil water storage capacities. Any excess water exited from the bottom of the grid cell as groundwater recharge. Calibration comprised the optimization of interception storage capacities and curve

  15. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    Science.gov (United States)

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  16. Freshwater lenses as archive of climate, groundwater recharge, and hydrochemical evolution: Insights from depth-specific water isotope analysis and age determination on the island of Langeoog, Germany

    Science.gov (United States)

    Houben, Georg J.; Koeniger, Paul; Sültenfuß, Jürgen

    2014-10-01

    The age stratification of a freshwater lens on the island of Langeoog, Germany, was reconstructed through depth-specific sampling and groundwater dating using the tritium-helium method. The stratification is strongly affected by the land use and resulting differences in recharge rates. Infiltration at the dune tops is significantly lower than in the valleys, due to repellency of the dry sand. Dune valleys contribute up to four times more groundwater recharge per area than other areas. Housing development in dune areas might therefore significantly decrease the available fresh groundwater. The freshwater column shows a distinct increase of stable isotope values with decreasing depths. Hence, the freshwater lens contains a climate archive which reflects changing environmental conditions at the time of recharge. Combined with tritium-helium dating, this pattern could be matched to climate records which show an increase of the temperature at the time of recharge and rainfall rates during the last 50 years. The spatial and temporal developments of water chemistry during the passage through the lens follow a marked pattern from a sodium and chloride-dominated rainwater of low conductivity to a more mineralized sodium bicarbonate water type, caused by dissolution of carbonate shells close to the surface and subsequent ion exchange of calcium for sodium in the deeper parts.

  17. Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the Eastern United States

    Science.gov (United States)

    Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.

    2005-01-01

    This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing

  18. A new groundwater radiocarbon correction approach accounting for palaeoclimate conditions during recharge and hydrochemical evolution: The Ledo-Paniselian Aquifer, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, P.C., E-mail: petra.blaser@petraconsult.com [Petraconsult buero fuer angewandte geologie dipl. geol. petra c. blaser, Bergstrasse 269, CH 8707 Uetikon am See (Switzerland); Coetsiers, M. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium); Aeschbach-Hertig, W. [Institut fuer Umweltphysik, Universitaet Heidelberg, D-69120 Heidelberg (Germany); Kipfer, R. [Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland)] [Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, CH-8092 Zurich (Switzerland); Van Camp, M. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium); Loosli, H.H. [Department of Climate and Environmental Physics, University of Bern, CH 3012 Bern (Switzerland); Walraevens, K. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium)

    2010-03-15

    The particular objective of the present work is the development of a new radiocarbon correction approach accounting for palaeoclimate conditions at recharge and hydrochemical evolution. Relevant climate conditions at recharge are atmospheric pCO{sub 2} and infiltration temperatures, influencing C isotope concentrations in recharge waters. The new method is applied to the Ledo-Paniselian Aquifer in Belgium. This is a typical freshening aquifer where recharge takes place through the semi-confining cover of the Bartonian Clay. Besides cation exchange which is the major influencing process for the evolution of groundwater chemistry (particularly in the Bartonian Clay), also mixing with the original porewater solution (fossil seawater) occurs in the aquifer. Recharge temperatures were based on noble gas measurements. Potential infiltration water compositions, for a range of possible pCO{sub 2}, temperature and calcite dissolution system conditions, were calculated by means of PHREEQC. Then the sampled groundwaters were modelled starting from these infiltration waters, using the computer code NETPATH and considering a wide range of geochemical processes. Fitting models were selected on the basis of correspondence of calculated {delta}{sup 13}C with measured {delta}{sup 13}C. The {sup 14}C modelling resulted in residence times ranging from Holocene to Pleistocene (few hundred years to over 40 ka) and yielded consistent results within the uncertainty estimation. Comparison was made with the {delta}{sup 13}C and Fontes and Garnier correction models, that do not take climate conditions at recharge into account. To date these are considered as the most representative process-oriented existing models, yet differences in calculated residence times of mostly several thousands of years (up to 19 ka) are revealed with the newly calculated ages being mostly (though not always) younger. Not accounting for climate conditions at recharge (pCO{sub 2} and temperature) is thus producing

  19. Evaluating conceptual modeling frameworks for farm scale groundwater pathogen transport associated with animal farming and municipal wastewater recharge

    Science.gov (United States)

    Cook, S. J.; Li, X.; Watanabe, N.; Atwill, R.; Puente, C. E.; Harter, T.

    2010-12-01

    Land applications to crops of diluted animal manure associated with concentrated animal feeding operations (CAFOs) and field discharges from municipal wastewater treatment plants are potential pathways for the contamination of shallow domestic and agricultural wells by pathogenic microorganisms. Sampling of soil and groundwater for the indicator and pathogenic microorganisms; Enterococcus spp., Escherichia coli, Campylobacter spp. and Salmonella was undertaken at two CAFOs in the San Joaquin Valley, California between 2006 and 2009. Observed concentrations are highly variable in both magnitude and frequency of detection and indicated no clear relationship to field applications or seasonal effects. To investigate if the observed variability in microorganism concentrations in groundwater could be attributed to aquifer heterogeneity, we developed multiple conceptual frameworks employing nonpoint source loading functions and groundwater transport models to simulate a shallow agricultural monitoring well catchment. We developed both, homogenous and heterogeneous aquifer representations, the latter using stochastic transition probability Markov chain representation. Also, we developd homogeneous and spatio-temporally heterogeneous loading models. Model sensitivity to conceptual frameworks, transport parameters, and spatio-temporal variations in diffuse pathogen loading at the water table was determined by comparing simulated frequency of pathogen detection with measured monitoring well breakthrough curves. Model results indicate that field scale aquifer heterogeneity cannot fully account for the variation in concentrations observed in shallow monitoring wells and that microorganism loading at the water table must also be highly heterogeneous. A two dimensional Neyman-Scott cluster process was found to provide the best representation of heterogeneity in recharge concentration and is conceptually consistent with the presence of low attenuation transport pathways in the

  20. Estimating aquifer properties and distributed groundwater recharge in a hard-rock catchment of Udaipur, India

    Science.gov (United States)

    Machiwal, Deepesh; Singh, P. K.; Yadav, K. K.

    2016-09-01

    The present study determined aquifer parameters in hard-rock aquifer system of Ahar River catchment, Udaipur, India by conducting 19 pumping tests in large-diameter wells. Spreadsheet programs were developed for analyzing pumping test data, and their accuracy was evaluated by root mean square error (RMSE) and correlation coefficient (R). Histograms and Shapiro-Wilk test indicated non-normality (p value 0.95). Distribution of the aquifer parameters and recharge indicated that the northern portion with high ground elevations (575-700 m MSL), and high S y (0.08-0.25) and T (>600 m2/day) values may act as recharge zone. The T and S y values revealed significant spatial variability, which suggests strong heterogeneity of the hard-rock aquifer system. Overall, the findings of this study are useful to formulate appropriate strategies for managing water resources in the area. Also, the developed spreadsheet programs may be used to analyze the pumping test data of large-diameter wells in other hard-rock regions of the world.

  1. Variably-saturated groundwater modeling for optimizing managed aquifer recharge using trench infiltration

    Science.gov (United States)

    Heilweil, Victor M.; Benoit, Jerome; Healy, Richard W.

    2015-01-01

    Spreading-basin methods have resulted in more than 130 million cubic meters of recharge to the unconfined Navajo Sandstone of southern Utah in the past decade, but infiltration rates have slowed in recent years because of reduced hydraulic gradients and clogging. Trench infiltration is a promising alternative technique for increasing recharge and minimizing evaporation. This paper uses a variably saturated flow model to further investigate the relative importance of the following variables on rates of trench infiltration to unconfined aquifers: saturated hydraulic conductivity, trench spacing and dimensions, initial water-table depth, alternate wet/dry periods, and number of parallel trenches. Modeling results showed (1) increased infiltration with higher hydraulic conductivity, deeper initial water tables, and larger spacing between parallel trenches, (2) deeper or wider trenches do not substantially increase infiltration, (3) alternating wet/dry periods result in less overall infiltration than keeping the trenches continuously full, and (4) larger numbers of parallel trenches within a fixed area increases infiltration but with a diminishing effect as trench spacing becomes tighter. An empirical equation for estimating expected trench infiltration rates as a function of hydraulic conductivity and initial water-table depth was derived and can be used for evaluating feasibility of trench infiltration in other hydrogeologic settings

  2. The effects of artificial recharge on groundwater levels and water quality in the west hydrogeologic unit of the Warren subbasin, San Bernardino County, California

    Science.gov (United States)

    Stamos, Christina L.; Martin, Peter; Everett, Rhett; Izbicki, John A.

    2013-01-01

    Between the late 1940s and 1994, groundwater levels in the Warren subbasin, California, declined by as much as 300 feet because pumping exceeded sparse natural recharge. In response, the local water district, Hi-Desert Water District, implemented an artificial-recharge program in early 1995 using imported water from the California State Water Project. Subsequently, the water table rose by as much as 250 feet; however, a study done by the U.S. Geological Survey found that the rising water table entrained high-nitrate septic effluent, which caused nitrate (as nitrogen) concentrations in some wells to increase to more than the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter.. A new artificial-recharge site (site 3) was constructed in 2006 and this study, which started in 2004, was done to address concerns about the possible migration of nitrates in the unsaturated zone. The objectives of this study were to: (1) characterize the hydraulic, chemical, and microbiological properties of the unsaturated zone; (2) monitor changes in water levels and water quality in response to the artificial-recharge program at site 3; (3) determine if nitrates from septic effluent infiltrated through the unsaturated zone to the water table; (4) determine the potential for nitrates within the unsaturated zone to mobilize and contaminate the groundwater as the water table rises in response to artificial recharge; and (5) determine the presence and amount of dissolved organic carbon because of its potential to react with disinfection byproducts during the treatment of water for public use. Two monitoring sites were installed and instrumented with heat-dissipation probes, advanced tensiometers, suction-cup lysimeters, and wells so that the arrival and effects of recharging water from the State Water Project through the 250 to 425 foot-thick unsaturated zone and groundwater system could be closely observed. Monitoring site YVUZ-1 was located between two

  3. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico

    Science.gov (United States)

    Bartolino, James R.; Niswonger, Richard G.

    1999-01-01

    An important gap in the understanding of the hydrology of the Middle Rio Grande Basin, central New Mexico, is the rate at which water from the Rio Grande recharges the Santa Fe Group aquifer system. Several methodologies-including use of the Glover-Balmer equation, flood pulses, and channel permeameters- have been applied to this problem in the Middle Rio Grande Basin. In the work presented here, ground-water temperature profiles and ground-water levels beneath the Rio Grande were measured and numerically simulated at four sites. The direction and rate of vertical ground-water flux between the river and underlying aquifer was simulated and the effective vertical hydraulic conductivity of the sediments underlying the river was estimated through model calibration. Seven sets of nested piezometers were installed during July and August 1996 at four sites along the Rio Grande in the Albuquerque area, though only four of the piezometer nests were simulated. In downstream order, these four sites are (1) the Bernalillo site, upstream from the New Mexico State Highway 44 bridge in Bernalillo (piezometer nest BRN02); (2) the Corrales site, upstream from the Rio Rancho sewage treatment plant in Rio Rancho (COR01); (3) the Paseo del Norte site, upstream from the Paseo del Norte bridge in Albuquerque (PDN01); and (4) the Rio Bravo site, upstream from the Rio Bravo bridge in Albuquerque (RBR01). All piezometers were completed in the inner-valley alluvium of the Santa Fe Group aquifer system. Ground-water levels and temperatures were measured in the four piezometer nests a total of seven times in the 24-month period from September 1996 through August 1998. The flux between the surface- and ground-water systems at each of the field sites was quantified by one-dimensional numerical simulation of the water and heat exchange in the subsurface using the heat and water transport model VS2DH. Model calibration was aided by the use of PEST, a model-independent computer program that uses

  4. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    Science.gov (United States)

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    Arkansas River for the transient simulation is 7,916,564 cubic feet per day (91.6 cubic feet per second) and the RMS error divided by (/) the total range in streamflow (7,916,564/37,461,669 cubic feet per day) is 22 percent. The RMS error calculated for observed and simulated streamflow gains or losses for the Little Arkansas River for the transient simulation is 5,610,089 cubic feet per day(64.9 cubic feet per second) and the RMS error divided by the total range in streamflow (5,612,918/41,791,091 cubic feet per day) is 13 percent. The mean error between observed and simulated base flow gains or losses was 29,999 cubic feet per day (0.34 cubic feet per second) for the Arkansas River and -1,369,250 cubic feet per day (-15.8 cubic feet per second) for the Little Arkansas River. Cumulative streamflow gain and loss observations are similar to the cumulative simulated equivalents. Average percent mass balance difference for individual stress periods ranged from -0.46 to 0.51 percent. The cumulative mass balance for the transient calibration was 0.01 percent. Composite scaled sensitivities indicate the simulations are most sensitive to parameters with a large areal distribution. For the steady-state calibration, these parameters include recharge, hydraulic conductivity, and vertical conductance. For the transient simulation, these parameters include evapotranspiration, recharge, and hydraulic conductivity. The ability of the calibrated model to account for the additional groundwater recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project was assessed by using the U.S. Geological Survey subregional water budget program ZONEBUDGET and comparing those results to metered recharge for 2007 and 2008 and previous estimates of artificial recharge. The change in storage between simulations is the volume of water that estimates the recharge credit for the aquifer storage and recovery system. The estimated increase in storage of 1,607 acre-ft in the basin

  5. Late-Quaternary recharge determined from chloride in shallow groundwater in the central Great Plains

    OpenAIRE

    MacFarlane, PA; Clark, JF; Davisson, ML; Hudson, GB; Whittemore, DO

    2000-01-01

    An extensive suite of isotopic and geochemical tracers in groundwater has been used to provide hydrologic assessments of the hierarchy of flow systems in aquifers underlying the central Great Plains (southeastern Colorado and western Kansas) of the United States and to determine the late Pleistocene and Holocene paleotemperature and paleorecharge record. Hydrogeologic and geochemical tracer data permit classification of the samples into late Holocene, late Pleistocene-early Holocene, and much...

  6. Considerations for Use of the Rora Program to Estimate Ground-Water Recharge From Streamflow Records

    Science.gov (United States)

    2000-01-01

    inch per year (in/yr) 25.4 millimeter per year foot (ft) 0.3048 meter square mile (mi2) 2.590 square kilometer cubic foot per second (ft3...designates those parts of the record that represent ground-water discharge. In extremely flat areas, the time period of surface runoff may not be...by several hydrologists (Gerhart, 1986; Hall and Risser , 1993; Meinzer and Stearns, 1929; Rasmussen and Andreasen, 1959). To isolate the rise caused

  7. Estimated rates of groundwater recharge to the Chicot, Evangeline and Jasper aquifers by using environmental tracers in Montgomery and adjacent counties, Texas, 2008 and 2011

    Science.gov (United States)

    Oden, Timothy D.; Truini, Margot

    2013-01-01

    Montgomery County is in the northern part of the Houston, Texas, metropolitan area, the fourth most populous metropolitan area in the United States. As populations have increased since the 1980s, groundwater has become an important resource for public-water supply and industry in the rapidly growing area of Montgomery County. Groundwater availability from the Gulf Coast aquifer system is a primary concern for water managers and community planners in Montgomery County and requires a better understanding of the rate of recharge to the system. The Gulf Coast aquifer system in Montgomery County consists of the Chicot, Evangeline, and Jasper aquifers, the Burkeville confining unit, and underlying Catahoula confining system. The individual sand and clay sequences of the aquifers composing the Gulf Coast aquifer system are not laterally or vertically continuous on a regional scale; however, on a local scale, individual sand and clay lenses can extend over several miles. The U.S. Geological Survey, in cooperation with the Lone Star Groundwater Conservation District, collected groundwater-quality samples from selected wells within or near Montgomery County in 2008 and analyzed these samples for concentrations of chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), helium-3/tritium (3He/3H), helium-4 (4He), and dissolved gases (DG) that include argon, carbon dioxide, methane, nitrogen and oxygen. Groundwater ages, or apparent age, representing residence times since time of recharge, were determined by using the assumption of a piston-flow transport model. Most of the environmental tracer data indicated the groundwater was recharged prior to the 1950s, limiting the usefulness of CFCs, SF6, and 3H concentrations as tracers. In many cases, no tracer was usable at a well for the purpose of estimating an apparent age. Wells not usable for estimating an apparent age were resampled in 2011 and analyzed for concentrations of major ions and carbon-14 (14C). At six of

  8. Comparative review and synthesis of ground-water recharge estimates for the Great Bend Prairie aquifer of Kansas

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In this report I briefly outline the importance of and difficulties involved in estimating aquifer recharge and compare reported recharge estimates for the Great...

  9. Geohydrology of Big Bear Valley, California: phase 1--geologic framework, recharge, and preliminary assessment of the source and age of groundwater

    Science.gov (United States)

    Flint, Lorraine E.; Contributions by Brandt, Justin; Christensen, Allen H.; Flint, Alan L.; Hevesi, Joseph A.; Jachens, Robert; Kulongoski, Justin T.; Martin, Peter; Sneed, Michelle

    2012-01-01

    The Big Bear Valley, located in the San Bernardino Mountains of southern California, has increased in population in recent years. Most of the water supply for the area is pumped from the alluvial deposits that form the Big Bear Valley groundwater basin. This study was conducted to better understand the thickness and structure of the groundwater basin in order to estimate the quantity and distribution of natural recharge to Big Bear Valley. A gravity survey was used to estimate the thickness of the alluvial deposits that form the Big Bear Valley groundwater basin. This determined that the alluvial deposits reach a maximum thickness of 1,500 to 2,000 feet beneath the center of Big Bear Lake and the area between Big Bear and Baldwin Lakes, and decrease to less than 500 feet thick beneath the eastern end of Big Bear Lake. Interferometric Synthetic Aperture Radar (InSAR) was used to measure pumping-induced land subsidence and to locate structures, such as faults, that could affect groundwater movement. The measurements indicated small amounts of land deformation (uplift and subsidence) in the area between Big Bear Lake and Baldwin Lake, the area near the city of Big Bear Lake, and the area near Sugarloaf, California. Both the gravity and InSAR measurements indicated the possible presence of subsurface faults in subbasins between Big Bear and Baldwin Lakes, but additional data are required for confirmation. The distribution and quantity of groundwater recharge in the area were evaluated by using a regional water-balance model (Basin Characterization Model, or BCM) and a daily rainfall-runoff model (INFILv3). The BCM calculated spatially distributed potential recharge in the study area of approximately 12,700 acre-feet per year (acre-ft/yr) of potential in-place recharge and 30,800 acre-ft/yr of potential runoff. Using the assumption that only 10 percent of the runoff becomes recharge, this approach indicated there is approximately 15,800 acre-ft/yr of total recharge in

  10. Recharge Area on the Slopes of Volcano Based on Geological Setting, Content of Deuterium and Oxygen Isotopes of Groundwater Chemistry: Case Study on the Slopes of Salak Mountain, West Java

    Directory of Open Access Journals (Sweden)

    Hendarmawan

    2011-09-01

    Full Text Available Indonesian is huge areas that have the highest precipitation in the world, therefore water deficit of groundwater is often happened at anywhere. This study was related to determination of recharge area with approached by combining geological setting, stable isotopes and chemical content of groundwater. Case study was carried out at surrounding the Cicurug area, Sukabumi Prefecture, West Java Province. The area is the slopes of Salak Mountain that have elevation of 400 until 1,200 m mean sea level (msl. While, much groundwater supplies industry activities on elevation 450-500 m msl. Based on data and result analysis of the studies, the recharge areas was not around peak of mountain or near, but water infiltrated on elevation of 700-800 m msl for groundwater exploited by industries. Therefore, the accurate determination of recharge area becomes a key for the groundwater sustainability.

  11. Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow

    Science.gov (United States)

    Mirus, Benjamin B.; Nimmo, J.R.

    2013-01-01

    The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.

  12. Dynamic Vulnerability of Karst Systems: a Concept to understand qualitative and quantitative Aspects of Karst springs due to Changes in Groundwater Recharge

    Science.gov (United States)

    Huggenberger, P.; Butscher, C.; Epting, J.; Auckenthaler, A.

    2015-12-01

    Karst groundwater resources represent valuable water resources, which may be affected by different types of pollution and changes of groundwater recharge by climate change. In many parts of Europe, it has been predicted that record-breaking heat waves, such as the one experienced in 2003 and 2015, will become more frequent. At the same time, even as summers become drier, the incidence of severe precipitation events could increase. What is the influence such changes to the quantitative and qualitative aspects of Karst groundwater systems? A factor to be considered in conjunction with groundwater quality is the vulnerability of the resource, which is defined as the sensitivity of a groundwater system to pollution. Intrinsic vulnerability refers to the sensitivity to pollution when considering only natural, geogenic conditions without the effects of human activities such as contaminant release. Intrinsic vulnerability depends on the recharge conditions, which are dependent on the surface and subsurface structure and on precipitation and evaporation patterns. The latter are highly time dependent. Therefore, our groundwater vulnerability concept also includes dynamic aspects of the system, the variations of spatial and temporal components. We present results of combined monitoring and modelling experiments of several types of Karst systems in the Tabular and the Folded Jura of NW Switzerland. The recharge, conduit flow, diffuse flow(RCD) rainfall-discharge model "RCD-seasonal" was used to simulate the discharge and substance concentration of several spring. This lumped parameter model include: the recharge system (soil and epikarst system), the conduit flow system, and the diffuse flow system. The numerically derived Dynamic Vulnerability Index (DVI) can indicate qualitative changes of spring water with sufficient accuracy to be used for drinking water management. In addition, the results obtained from the test sites indicate a decrease in short-lived contaminants in

  13. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.

    2015-05-29

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e. redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e. less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.

  14. Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Kohfahl, Claus [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany)], E-mail: kohfahl@zedat.fu-berlin.de; Sprenger, Christoph [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany); Herrera, Jose Benavente [Instituto del Agua de la Universidad de Granada, Ramon y Cajal, 4, 18071 Granada (Spain); Meyer, Hanno [Isotope Laboratory of the Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A 43, 14473 Potsdam (Germany); Chacon, Franzisca Fernandez [Dpto. Hidrogeologia y Aguas Subterraneas, Instituto Geologico y Minero de Espana, Oficina de Proyectos, Urb. Alcazar del Genil 4, Edificio Zulema bajo, 18006 Granada (Spain); Pekdeger, Asaf [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany)

    2008-04-15

    The objective of this study is to refine the understanding of recharge processes in watersheds representative for karstic semiarid areas by means of stable isotope analysis and hydrogeochemistry. The study focuses on the Granada aquifer system which is located in an intramontane basin bounded by high mountain ranges providing elevation differences of almost 2900 m. These altitude gradients lead to important temperature and precipitation gradients and provide excellent conditions for the application of stable isotopes of water whose composition depends mainly on temperature. Samples of rain, snow, surface water and groundwater were collected at 154 locations for stable isotope studies ({delta}{sup 18}O, D) and, in the case of ground- and surface waters, also for major and minor ion analysis. Thirty-seven springs were sampled between 2 and 5 times from October 2004 to March 2005 along an altitudinal gradient from 552 masl in the Granada basin to 2156 masl in Sierra Nevada. Nine groundwater samples were taken from the discharge of operating wells in the Granada basin which are all located between 540 and 728 masl. The two main rivers were monitored every 2-3 weeks at three different altitudes. Rainfall being scarce during the sampling period, precipitation could only be sampled during four rainfall events. Calculated recharge altitudes of springs showed that source areas of mainly snowmelt recharge are generally located between 1600 and 2000 masl. The isotope compositions of spring water indicate water sources from the western Mediterranean as well as from the Atlantic without indicating a seasonal trend. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different sources of recharge which occur mainly by bankfiltration of the main rivers. Isotopic signatures in the southeastern part of the aquifer indicate a considerable recharge contribution by subsurface flow discharged from the adjacent carbonate aquifer. No evaporation effects due

  15. Integrating urban recharge uncertainty into standard groundwater modeling practice: A case study on water main break predictions for the Barton Springs segment of the Edwards Aquifer, Austin, Texas

    Science.gov (United States)

    Sinner, K.; Teasley, R. L.

    2016-12-01

    Groundwater models serve as integral tools for understanding flow processes and informing stakeholders and policy makers in management decisions. Historically, these models tended towards a deterministic nature, relying on historical data to predict and inform future decisions based on model outputs. This research works towards developing a stochastic method of modeling recharge inputs from pipe main break predictions in an existing groundwater model, which subsequently generates desired outputs incorporating future uncertainty rather than deterministic data. The case study for this research is the Barton Springs segment of the Edwards Aquifer near Austin, Texas. Researchers and water resource professionals have modeled the Edwards Aquifer for decades due to its high water quality, fragile ecosystem, and stakeholder interest. The original case study and model that this research is built upon was developed as a co-design problem with regional stakeholders and the model outcomes are generated specifically for communication with policy makers and managers. Recently, research in the Barton Springs segment demonstrated a significant contribution of urban, or anthropogenic, recharge to the aquifer, particularly during dry period, using deterministic data sets. Due to social and ecological importance of urban water loss to recharge, this study develops an evaluation method to help predicted pipe breaks and their related recharge contribution within the Barton Springs segment of the Edwards Aquifer. To benefit groundwater management decision processes, the performance measures captured in the model results, such as springflow, head levels, storage, and others, were determined by previous work in elicitation of problem framing to determine stakeholder interests and concerns. The results of the previous deterministic model and the stochastic model are compared to determine gains to stakeholder knowledge through the additional modeling

  16. Spatial Distribution of Ground-Water Recharge Estimated with a Water-Budget Method for the Jordan Creek Watershed, Lehigh County, Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.

    2008-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Pennsylvania Geological Survey, to illustrate a water-budget method for mapping the spatial distribution of ground-water recharge for a 76-square-mile part of the Jordan Creek watershed, northwest of Allentown, in Lehigh County, Pennsylvania. Recharge was estimated by using the Hydrological Evaluation of Landfill Performance (HELP) water-budget model for 577 landscape units in Jordan Creek watershed, delineated on the basis of their soils, land use/land cover, and mean annual precipitation during 1951-2000. The water-budget model routes precipitation falling on each landscape unit to components of evapotranspiration, surface runoff, storage, and vertical percolation (recharge) for a five-layer soil column on a daily basis. The spatial distribution of mean annual recharge during 1951-2000 for each landscape unit was mapped by the use of a geographic information system. Recharge simulated by the water-budget model in Jordan Creek watershed during 1951-2000 averaged 12.3 inches per year and ranged by landscape unit from 0.11 to 17.05 inches per year. Mean annual recharge during 1951-2000 simulated by the water-budget model was most sensitive to changes to input values for precipitation and runoff-curve number. Mean annual recharge values for the crop, forest, pasture, and low-density urban land-use/land-cover classes were similar (11.2 to 12.2 inches per year) but were substantially less for high-density urban (6.8 inches per year), herbaceous wetlands (2.5 inches per year), and forested wetlands (1.3 inches per year). Recharge rates simulated for the crop, forest, pasture, and low-density urban land-cover classes were similar because those land-use/land-cover classes are represented in the model with parameter values that either did not significantly affect simulated recharge or tended to have offsetting effects on recharge. For example, for landscapes with forest land

  17. Groundwater recharge estimate at Alto Rio Grande - MG watershed Recarga de aquíferos superficiais na região do Alto Rio Grande-MG

    Directory of Open Access Journals (Sweden)

    Lucas A. da Silva

    2012-12-01

    Full Text Available Springs are outcrops of aquifers surface, and the water cycle in this environment pass through the recharge, generally defined as the amount of water added to the aquifer, which may occur locally from rainwater infiltration. This study uses the Water Table Fluctuation (WTF method to estimate the direct recharge and a groundwater balance to estimate the deep recharge on unconfined aquifers. The WTF method employs data of the aquifer water levels and its specific yield to estimate the direct recharge. The groundwater balance considers the direct recharge estimated by the WTF method, as the water input in the system and outputs as the base flow and deep recharge. The recharge was estimated at four areas at the watershed of Alto Rio Grande city, Minas Gerais (MG state, in Brazil. The direct recharge estimate was 121.11; 64.62; 83.99; 152.46 (mm/year for the L1, L2, M1 and M2 areas. The effect of the presence of forest in the recharge area can prevail over slope of relief, allowing more direct recharge, even in sources with steeper relief. The runoff from the springs in the study period exceeded the direct recharge, indicating a situation in which the saturated zone feeds the vadose zone. The annual flow was above the direct recharge pointing a situation of over exploitation of the aquifer, a non sustainable situation. The specific yield of the aquifers could also have been underestimated.As nascentes são afloramentos dos aquíferos superficiais, e o ciclo da água neste ambiente passa pela recarga que é definida, de maneira geral, como a quantidade de água que é acrescentada ao aquífero, podendo ocorrer localmente a partir da infiltração das águas das chuvas. Neste trabalho, apresenta-se o método de flutuação das superfícies livres (Water Table Fluctuation- WTF para estimativa da recarga direta e um balanço hídrico subterrâneo para estimativa da recarga profunda, em aquíferos livres. O método WTF utiliza dados de monitoramento do n

  18. Identifying Components of Groundwater Flow, Flux, and Storage in Tuolumne Meadows, Yosemite, California

    Science.gov (United States)

    Vialpando, M., III; Lowry, C.; Visser, A.; Moran, J. E.; Esser, B. K.

    2015-12-01

    High elevation meadows in the Sierra Nevada of California, USA represent mixing zones between surface water and groundwater. Quantifying the exchange between stream water and groundwater, and the residence time of water stored in meadow sediments will allow examination of the possible buffer effect that groundwater has on meadows and streams. This in turn has implications for the resilience of the ecosystem as well as the downstream communities that are dependent upon runoff for water supply. Stream flow was measured and water samples were collected along a 5 km reach of the Tuolumne River and adjacent wells during both spring runoff and baseflow. Water samples were analyzed for concentrations of dissolved noble gases and anions, sulfur-35, tritium and radon to study surface water-groundwater interactions and residence times. Although lower than average because of the ongoing drought in California, discharge in early July 2015 was about 35 times that measured during the previous fall. During baseflow, a small component of fracture flow (2%) is identified using dissolved helium. Radon, anions and stream discharge identify reaches of groundwater discharge. Anions show a steady increase in the groundwater component over the western portion of the meadow during baseflow, and over 50% of stream water is exchanged with meadow groundwater, without a net gain or loss of stream flow. Sulfur-35 and tritium results indicated that groundwater contributing to stream flow has recharged within the previous two years. With the current drought, estimated as the most severe in 1200 years, accurate estimations of water availability are becoming increasingly important to water resource managers.

  19. Geoelectric investigation to delineate groundwater potential and recharge zones in Suki river basin, north Maharashtra

    Indian Academy of Sciences (India)

    Gautam Gupta; S N Patil; S T Padmane; Vinit C Erram; S H Mahajan

    2015-10-01

    Suki river basin of Raver sub-division is located towards the northeastern part of Jalgaon district in Maharashtra State. The existing land use pattern of the region clearly shows that more than 60% of the area is utilized for agricultural sector. Groundwater is the major source of irrigation and domestic purposes. To assess the overall water resources development of Raver area for better environment in future, investigation was carried out with the help of geophysical indicators. Vertical electrical sounding studies were conducted at 17 stations in the study area using Wenner configuration. The study was aimed at characterizing the aquifer in the area as well as assessing its potential risk to contaminant seepage in terms of protective capacity of the overburden rock materials using Dar-Z arrouk (D-Z) parameters, viz., the transverse resistance (), longitudinal conductance (), transverse resistivity (ρ) and longitudinal resistivity (ρ). These were computed to generate the resistivity regime of freshwater-bearing formations and its movement. The central-western part of the study area reflects very good to good protective capacity rating as can be seen from the high longitudinal conductance values. The low value of the protective capacity in the eastern part is making the aquifer system in the area highly vulnerable to surface contamination. This indicates that the ground water quality may have been deteriorated in the area and borehole water samples should be randomly sampled for contaminant loads based on this analysis.

  20. Geoelectric investigation to delineate groundwater potential and recharge zones in Suki river basin, north Maharashtra

    Science.gov (United States)

    Gupta, Gautam; Patil, S. N.; Padmane, S. T.; Erram, Vinit C.; Mahajan, S. H.

    2015-10-01

    Suki river basin of Raver sub-division is located towards the northeastern part of Jalgaon district in Maharashtra State. The existing land use pattern of the region clearly shows that more than 60% of the area is utilized for agricultural sector. Groundwater is the major source of irrigation and domestic purposes. To assess the overall water resources development of Raver area for better environment in future, investigation was carried out with the help of geophysical indicators. Vertical electrical sounding studies were conducted at 17 stations in the study area using Wenner configuration. The study was aimed at characterizing the aquifer in the area as well as assessing its potential risk to contaminant seepage in terms of protective capacity of the overburden rock materials using Dar- Zarrouk (D-Z) parameters, viz., the transverse resistance ( T), longitudinal conductance ( S), transverse resistivity ( ρ t ) and longitudinal resistivity ( ρ l ). These were computed to generate the resistivity regime of freshwater-bearing formations and its movement. The central-western part of the study area reflects very good to good protective capacity rating as can be seen from the high longitudinal conductance values. The low value of the protective capacity in the eastern part is making the aquifer system in the area highly vulnerable to surface contamination. This indicates that the ground water quality may have been deteriorated in the area and borehole water samples should be randomly sampled for contaminant loads based on this analysis.

  1. Influence of the flux axial form on the conversion rate and duration of cycle between recharging for ThPu and U{sub nat} fuels in CANDU reactors; Influence de la forme axiale du flux sur le taux de conversion et la duree du cycle entre rechargements pour du combustible ThPu et U{sub nat} dans les reacteurs CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Richard [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-01-15

    To face the increasing world power demand the world nuclear sector must be continuously updated and developed as well. Thus reactors of new types are introduced and advanced fuel cycles are proposed. The technological and economic feasibility and the transition of the present power park to a renewed park require thorough studies and scenarios, which are highly dependent on the reactor performances. The conversion rate and cycle span between recharging are important parameters in the scenarios studies. In this frame, we have studied the utilisation of thorium in the CANDU type reactors and particularly the influence of axial form of the flux, i.e. of the recharging mode, on the conversion rate and duration of the cycle between recharging. The results show that up to a first approximation the axial form of the flux resulting from the neutron transport calculations for assessing the conversion rate is not necessary to be taken into account. However the time span between recharging differs up to several percents if the axial form of the flux is taken into consideration in transport calculations. Thus if the burnup or the recharging frequency are parameters which influence significantly the deployment scenarios of a nuclear park an approach more refined than a simple transport evolution in a typical cell/assembly is recommended. Finally, the results of this study are not more general than for the assumed conditions but they give a thorough calculation method valid for any recharging/fuel combination in a CANDU type reactor.

  2. Understanding the past to interpret the future: comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data

    Science.gov (United States)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-10-01

    In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951-2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970-2000, with much greater variability seen for results using observed climate data.

  3. Understanding the past to interpret the future: comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data

    Science.gov (United States)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-03-01

    In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951-2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970-2000, with much greater variability seen for results using observed climate data.

  4. Estimate of regional groundwater recharge rate in the Central Haouz Plain, Morocco, using the chloride mass balance method and a geographical information system

    Science.gov (United States)

    Ait El Mekki, Ouassil; Laftouhi, Nour-Eddine; Hanich, Lahoucine

    2017-07-01

    Located in the extreme northwest of Africa, the Kingdom of Morocco is increasingly affected by drought. Much of the country is characterised by an arid to semi-arid climate and the demand for water is considerably higher than the supply, particularly on the Haouz Plain in the centre of the country. The expansion of agriculture and tourism, in addition to industrial development and mining, have exacerbated the stress on water supplies resulting in drought. It is therefore necessary to adopt careful management practices to preserve the sustainability of the water resources in this region. The aquifer recharge rate in the piedmont region that links the High Atlas and the Central Haouz Plain was estimated using the chloride mass balance hydrochemical method, which is based on the relationship between the chloride concentrations in groundwater and rainwater. The addition of a geographical information system made it possible to estimate the recharge rate over the whole 400 km2 of the study area. The results are presented in the form of a map showing the spatialized recharge rate, which ranges from 13 to 100 mm/year and the recharge percentage of the total rainfall varies from 3 to 25 % for the hydrological year 2011-2012. This approach will enable the validation of empirical models covering areas >6200 km2, such as the Haouz nappe.

  5. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile

    Science.gov (United States)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón

    2015-11-01

    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  6. Simulation of streamflow, evapotranspiration, and groundwater recharge in the lower San Antonio River Watershed, South-Central Texas, 2000-2007

    Science.gov (United States)

    Lizarraga, Joy S.; Ockerman, Darwin J.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, configured, calibrated, and tested a watershed model for a study area consisting of about 2,150 square miles of the lower San Antonio River watershed in Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties in south-central Texas. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge using rainfall, potential ET, and upstream discharge data obtained from National Weather Service meteorological stations and USGS streamflow-gaging stations. Additional time-series inputs to the model include wastewater treatment-plant discharges, withdrawals for cropland irrigation, and estimated inflows from springs. Model simulations of streamflow, ET, and groundwater recharge were done for 2000-2007. Because of the complexity of the study area, the lower San Antonio River watershed was divided into four subwatersheds; separate HSPF models were developed for each subwatershed. Simulation of the overall study area involved running simulations of the three upstream models, then running the downstream model. The surficial geology was simplified as nine contiguous water-budget zones to meet model computational limitations and also to define zones for which ET, recharge, and other water-budget information would be output by the model. The model was calibrated and tested using streamflow data from 10 streamflow-gaging stations; additionally, simulated ET was compared with measured ET from a meteorological station west of the study area. The model calibration is considered very good; streamflow volumes were calibrated to within 10 percent of measured streamflow volumes. During 2000-2007, the estimated annual mean rainfall for the water-budget zones ranged from 33.7 to 38.5 inches per year; the estimated annual mean rainfall for the entire

  7. Experimental study on the vertical deformation of aquifer soils under conditions of withdrawing and recharging of groundwater in Tongchuan region, China

    Science.gov (United States)

    Wei, Ya-ni; Fan, Wen; Cao, Yanbo

    2017-03-01

    Land subsidence due to aquifer-system compaction accompanying groundwater extraction is a global hazard. Rising urban construction and groundwater demand necessitate increased awareness and better understanding of the geological problem. Motivated by the lack of laboratory-scale studies on this issue, an experimental investigation on the newly developed Tongchuan region, China, is presented. The study addresses the deformation behaviors of three soil samples, with the lithology of silty clay, silt, and fine sand, under the conditions of groundwater withdrawal and recharge using the GDS Consolidation Testing System. Results indicate that all three samples were characterized by elastic-plastic deformation under the conditions of withdrawing and recharging. The vertical deformation of the silty clay in the aquitard above the first confined aquifer was larger than those of the other two samples, and its deformation is a gradual and long process; thus, considerable attention should be paid to deformation in this aquitard due to the apparent creep effect and tiny rebound deformation. However, the settlement of the fine sand in the second confined aquifer cannot be ignored due to the great thickness of the aquifer. For the same soil, as the pore-water pressure declined, the unit rate of vertical deformation decreased gradually, whereas the creep effect of deformation in the later declining stage of pore-water pressure was more apparent than that in the former declining stage. These observations are highly important to the local government, which is developing measures to prevent and control subsidence.

  8. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  9. Groundwater recharge in Pleistocene sediments overlying basalt aquifers in the Palouse Basin, USA: modeling of distributed recharge potential and identification of water pathways

    NARCIS (Netherlands)

    Dijksma, R.; Brooks, E.S.; Boll, J.

    2011-01-01

    Groundwater levels in basalt aquifers around the world have been declining for many years. Understanding water pathways is needed for solutions like artificial drainage. Water supply in the Palouse Basin, Washington and Idaho, USA, primarily relies on basalt aquifers. This study presents a combinati

  10. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    bodies. Distributed output of soil pollutant leaching behaviour, with corresponding statistical uncertainties, will be provided and finally visualized in GIS maps. The example pollutants considered cover much of the practical pollution conditions one may found in the reality. Nevertheless, this regional- scale methodology may be applied to any specific pollutants for any soil, climatic and land use conditions. Also, as the approach is built on physically based equations, it may be extended to the predictions of any water and solute storage and fluxes (i.e., groundwater recharge) in the vadose zone. By integrating the scientific results with economic and political considerations, and with advanced information technologies, the NPS-pollution assessment may become a powerful decision support tool for guiding activities involving soil and groundwater resources and, more in general, for managing environmental resources.

  11. Identification of key factors governing chemistry in groundwater near the water course recharged by reclaimed water at Miyun County, Northern China

    Institute of Scientific and Technical Information of China (English)

    Yilei Yu; Xianfang Song; Yinghua Zhang; Fandong Zheng; Ji Liang; Dongmei Han; Ying Ma

    2013-01-01

    Reclaimed water was successfully used to recover the dry Chaobai River in Northern China,but groundwater may be polluted.To ensure groundwater protection,it is therefore critical to identify the governing factors of groundwater chemistry.Samples of reclaimed water,river and groundwater were collected monthly at Chaobai River from January to September in 2010.Fifteen water parameters were analyzed.Two kinds of reclaimed water were different in type (Na-Ca-Mg-C1-HCO3 or Na-Ca-Cl-HCO3) and concentration of nitrogen.The ionic concentration and type in river were similar to reclaimed water.Some shallow wells near the river bed had the same type (Na-Ca-Mg-Cl-HCO3) and high concentration as reclaimed water,but others were consistent with the deep wells (Ca-Mg-HCO3).Using cluster analysis,the 9 months were divided into two periods (dry and wet seasons),and all samples were grouped into several spatial clusters,indicating different controlling mechanisms.Principal component analysis and conventional ionic plots showed that calcium,magnesium and bicarbonate were controlled by water-rock interaction in all deep and some shallow wells.This included the dissolution of calcite and carbonate weathering.Sodium,potassium,chloride and sulfate in river and some shallow wells recharged by river were governed by evaporation crystallization and mixing of reclaimed water.But groundwater chemistry was not controlled by precipitation.During the infiltration of reclaimed water,cation exchange took place between (sodium,potassium) and (calcium,magnesium).Nitrification and denitrification both happened in most shallow groundwater,but only denitrification in deep groundwater.

  12. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data

    Science.gov (United States)

    Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

    2014-02-01

    Seepage flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

  13. Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters.

    Science.gov (United States)

    Verreydt, G; Bronders, J; Van Keer, I; Diels, L; Vanderauwera, P

    2015-01-01

    Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.

  14. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Grift, B. van der; Bierkens, M.F.P.

    2007-01-01

    Recent EU legislation is directed to reverse the upward trends in the concentrations of agricultural pollutants in groundwater. However, uncertainty of the groundwater travel time towards the screens of the groundwater quality monitoring networks complicates the demonstration of trend reversal. We i

  15. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Grift, B. van der; Bierkens, M.F.P.

    2007-01-01

    Recent EU legislation is directed to reverse the upward trends in the concentrations of agricultural pollutants in groundwater. However, uncertainty of the groundwater travel time towards the screens of the groundwater quality monitoring networks complicates the demonstration of trend reversal. We

  16. Effects of changes in pumping on regional groundwater-flow paths, 2005 and 2010, and areas contributing recharge to discharging wells, 1990–2010, in the vicinity of North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2017-06-06

    A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from

  17. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer, S; Dietrich, P

    2009-01-01

    is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially......Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates. often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative. a further complication may arise...... due to the temporal dynamics of groundwater flow, which may cause a concentration measurement to be not temporally representative. This paper presents results from a numerical modeling study focusing on temporal variations of the groundwater flow direction. "Measurements" are obtained from point...

  18. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  19. Contribution of seawater recirculation to submarine groundwater discharge and related nutrient fluxes in two tropical bays

    Science.gov (United States)

    Vautier, Camille; Dulaiova, Henrietta

    2017-04-01

    Hawaiian coastal waters suffer from excess terrestrial nutrient loading, most of which comes from submarine groundwater discharge (SGD). This study quantifies and distinguishes the role of the fresh terrestrial and tidally pumped salt water components of SGD into the nearshore zone of two reefs on the island of Oahu: Maunalua Bay and Kāneohe Bay. The two components of SGD are characterized using isotopic techniques, and the study mainly focuses on the less understood recirculation component. A two-step approach is implemented: first, a conceptual model of groundwater circulation is established; second, nutrient fluxes associated with seawater recirculation are quantified. Groundwater circulation through the beach berm is quantified and characterized using 222Rn and 224Ra activity measurements. Nutrient fluxes are obtained by coupling nutrient concentration measurements and discharge estimates. The isotopic signatures inform us about the influence of the tidal cycle on groundwater circulation. 222Rn, 224Ra, and δ18O isotopes are used to derive apparent ages of the infiltrated seawater and allow us to quantify recirculation rates. The method is also complemented with the use of silicate concentration as tracers of the recirculation process. The trends in apparent ages observed in pore water in Maunalua match previously published conceptual groundwater circulation models and show a sequentially aging pore water circulation loop. However, the ages obtained in Kāneohe suggest a different tidal pumping dynamic that lacks a circulation loop, perhaps resulting from the absence of freshwater discharge. Derived nutrient fluxes show that the autochthonous production of inorganic nitrogen and phosphorus that occurs during seawater recirculation has a significant impact on nutrient cycles in the nearshore areas of the bays. This result suggests that seawater recirculation should be taken into account in biogeochemical studies of coastal areas.

  20. Membrane scaling and flux decline during fertiliser-drawn forward osmosis desalination of brackish groundwater.

    Science.gov (United States)

    Phuntsho, Sherub; Lotfi, Fezeh; Hong, Seungkwan; Shaffer, Devin L; Elimelech, Menachem; Shon, Ho Kyong

    2014-06-15

    Fertiliser-drawn forward osmosis (FDFO) desalination has been recently studied as one feasible application of forward osmosis (FO) for irrigation. In this study, the potential of membrane scaling in the FDFO process has been investigated during the desalination of brackish groundwater (BGW). While most fertilisers containing monovalent ions did not result in any scaling when used as an FO draw solution (DS), diammonium phosphate (DAP or (NH4)2HPO4) resulted in significant scaling, which contributed to severe flux decline. Membrane autopsy using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) analysis indicated that the reverse diffusion of DAP from the DS to the feed solution was primarily responsible for scale formation during the FDFO process. Physical cleaning of the membrane with deionised water at varying crossflow velocities was employed to evaluate the reversibility of membrane scaling and the extent of flux recovery. For the membrane scaled using DAP as DS, 80-90% of the original flux was recovered when the crossflow velocity for physical cleaning was the same as the crossflow velocity during FDFO desalination. However, when a higher crossflow velocity or Reynolds number was used, the flux was recovered almost completely, irrespective of the DS concentration used. This study underscores the importance of selecting a suitable fertiliser for FDFO desalination of brackish groundwater to avoid membrane scaling and severe flux decline.

  1. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    Science.gov (United States)

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    Arkansas River for the transient simulation is 7,916,564 cubic feet per day (91.6 cubic feet per second) and the RMS error divided by (/) the total range in streamflow (7,916,564/37,461,669 cubic feet per day) is 22 percent. The RMS error calculated for observed and simulated streamflow gains or losses for the Little Arkansas River for the transient simulation is 5,610,089 cubic feet per day(64.9 cubic feet per second) and the RMS error divided by the total range in streamflow (5,612,918/41,791,091 cubic feet per day) is 13 percent. The mean error between observed and simulated base flow gains or losses was 29,999 cubic feet per day (0.34 cubic feet per second) for the Arkansas River and -1,369,250 cubic feet per day (-15.8 cubic feet per second) for the Little Arkansas River. Cumulative streamflow gain and loss observations are similar to the cumulative simulated equivalents. Average percent mass balance difference for individual stress periods ranged from -0.46 to 0.51 percent. The cumulative mass balance for the transient calibration was 0.01 percent. Composite scaled sensitivities indicate the simulations are most sensitive to parameters with a large areal distribution. For the steady-state calibration, these parameters include recharge, hydraulic conductivity, and vertical conductance. For the transient simulation, these parameters include evapotranspiration, recharge, and hydraulic conductivity. The ability of the calibrated model to account for the additional groundwater recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project was assessed by using the U.S. Geological Survey subregional water budget program ZONEBUDGET and comparing those results to metered recharge for 2007 and 2008 and previous estimates of artificial recharge. The change in storage between simulations is the volume of water that estimates the recharge credit for the aquifer storage and recovery system. The estimated increase in storage of 1,607 acre-ft in the basin

  2. Sampling Instruction: Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.

    2012-05-01

    Several types of data are needed to assess the flux of Cr(VI) from the excavation into the groundwater. As described in this plan, these data include (1) temporal Cr(VI) data in the shallow groundwater beneath the pit; (2) hydrologic data to interpret groundwater flow and contaminant transport; (3) hydraulic gradient data; and (4) as a contingency action if necessary, vertical profiling of Cr(VI) concentrations in the shallow aquifer beyond the depth possible with aquifer tubes.

  3. 城市化对地下水补给的影响 ——以石家庄市为例%The Impact of Urbanization on Groundwater Recharge: a Case Study of Shijiazhuang City

    Institute of Scientific and Technical Information of China (English)

    于开宁

    2001-01-01

    城市化对地下水补给的影响对研究城市水循环、水资源供需平衡及地下水超采、防治地下水水质恶化,以及揭示两大主要地下水环境问题(地下水超采与水质恶化)之间的有机联系都具有重要意义。石家庄城市化与地下水之间的相互作用机理研究具有典型示范性。本文以石家庄市为例,在分析地下水在城市供水中的作用及其开发利用基础上,通过研究城市化影响地下水补给的变化规律,进一步探讨了城市化对地下水补给的影响机理,最终建立城市化影响下地下水补给增量的诱发机理框图。研究结果表明,城市化会导致地下水补给量的增加;地下水开采诱发产生对城市周围井场和地表水的袭夺以及城市供、排水系统渗漏所造成的新补给源的引入是城市化诱发产生地下水补给增量的重要机理。%With the rapid urbanization, groundwater has been playing a more and more important role. The study on the impact of urbanization upon groundwater recharge is of great significance not only in studying the hydrologic cycle, supply-demand balance and groundwater overexploitation but also in preventing and controlling the deterioration of groundwater quality and in revealing the relationship between overexploitation and water quality deterioration, the two main problems in groundwater environment. The study on the interaction mechanism between urbanization and groundwater constitutes a typical example. In this paper, based on the analysis of the importance of groundwater in water supply of the city as well as the exploitation and utilization of groundwater, the author studied the change of groundwater recharge under the impact of urbanization, and then discussed the impact mechanism of urbanization on groundwater recharge. On such a basis, a frame-figure on the mechanism inducing the increment of groundwater recharge was constructed. The results show:① urbanization

  4. Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed

    Science.gov (United States)

    Roy, Suvendu; Sahu, Abhay Sankar

    2016-06-01

    A multidisciplinary approach using the integrated field of geosciences (e.g., geomorphology, geotectonics, geophysics, and hydrology) is established to conduct groundwater recharge potential mapping of the Kunur River Basin, India. The relative mean error (RME) calculation of the results of three applied techniques and water table data from twenty-four observation wells in the basin over the 2000-2010 period are presented. Nine subbasins were identified and ranked for the RME calculation, where the observation wells-based ranking was taken as standard order for comparison. A linear model has been developed using six factors (drainage density, surface slope, ruggedness index, lineament density, Bouguer gravity anomaly, and potential maximum water retention capacity) and a grid-wise weighted index. In a separate comparative approach, the sub-basin and grid-wise analyses have been conducted to identify the suitable spatial unit for watershed level hydrological modeling.

  5. Areas contributing recharge to production wells and effects of climate change on the groundwater system in the Chipuxet River and Chickasheen Brook Basins, Rhode Island

    Science.gov (United States)

    Friesz, Paul J.; Stone, Janet R.

    2015-01-01

    The Chipuxet River and Chickasheen Brook Basins in southern Rhode Island are an important water resource for public and domestic supply, irrigation, recreation, and aquatic habitat. The U.S. Geological Survey, in cooperation with the Rhode Island Department of Health, began a study in 2012 as part of an effort to protect the source of water to six large-capacity production wells that supply drinking water and to increase understanding of how climate change might affect the water resources in the basins. Soil-water-balance and groundwater-flow models were developed to delineate the areas contributing recharge to the wells and to quantify the hydrologic response to climate change. Surficial deposits of glacial origin ranging from a few feet to more than 200 feet thick overlie bedrock in the 24.4-square mile study area. These deposits comprise a complex and productive aquifer system.

  6. Availability of Surface Water of Wadi Rajil as a Source of Groundwater Artificial Recharge: A Case Study of Eastern Badia /Jordan

    Directory of Open Access Journals (Sweden)

    Rakad A. Ta'any

    2013-08-01

    Full Text Available Wadi Rajil catchment area is considered as one of the major wadis entering the Azraq Basin from the north. It is ungauged wadi and covers an area of about 3910km2. The annual average rainfall on Wadi Rajil catchment area is about 126.6mm. Heavy thunderstorms occur in April and May, causing significant floods covering the area. The flood waters are not utilized, and a small portion infiltrates into the ground, where the great portion of these waters remain over Qaa’ Azraqfew months before evaporation. Due to the absence of the hydrometric stream flow station, no data are available about surface water runoff in Wadi Rajil catchment area. Therefore, the first part of this study calculates the surface water potential of Wadi Rajil to be utilized for groundwater artificial recharge, applying the SCS curvilinear synthetic unit hydrograph method. The synthesis unit hydrograph of Wadi Rajil catchment is characterized by a peak value of 1146 m3/s (4047 cfs per one inch of rainfall excess. Flood hydrographs for 10,25,50, and 100 years return periods were derived and their peak flow are found to be 10,8,186,412, and 680 m3/s, respectively and the corresponding flood volumes are 0.95, 16.53, 36.89, and 61.5 MCM, respectively.Groundwater artificial recharge conditions are suitably prevailing in the most northern and central part of the catchment area, whereas, geological, Hydrogeological, and water quality characteristics of the floodwater encourage artificial replenishment of the exploited aquifer in the study area.

  7. Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

    National Research Council Canada - National Science Library

    Dawes, W; Ali, R; Varma, S; Emelyanova, I; Hodgson, G; McFarlane, D

    2012-01-01

      The groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south-west Western Australia, provides approximately 60 percent of the drinking water for the metropolitan population of Perth...

  8. Monitoring of recharge water quality under woodland

    Science.gov (United States)

    Krajenbrink, G. J. W.; Ronen, D.; Van Duijvenbooden, W.; Magaritz, M.; Wever, D.

    1988-03-01

    The study compares the quality of groundwater in the water table zone and soil moisture below the root zone, under woodland, with the quality of the regional precipitation. The water quality under forest shows evidence of the effect of atmospheric deposition of acidic components (e.g. SO 2) and ammonia volatilized from land and feed lots. Detailed chemical profiles of the upper meter of groundwater under different plots of forest, at varying distances from cultivated land, were obtained with a multilayer sampler, using the dialysis-cell method. Porous ceramic cups and a vacuum method were used to obtain soil moisture samples at 1.20 m depth under various types of trees, an open spot and arable land, for the period of a year. The investigation took place in the recharge area of a pumping station with mainly mixed forest, downwind of a vast agricultural area with high ammonia volatilization and underlain by an ice-deformed aquifer. Very high NO -3 concentrations were observed in soil moisture and groundwater (up to 21 mg Nl -1) under coniferous forest, especially in the border zone. This raises the question of the dilution capacity of recharge water under woodland in relation to the polluted groundwater under farming land. The buffering capacity of the unsaturated zone varies substantially and locally a low pH (4.5) was observed in groundwater. The large variability of leachate composition on different scales under a forest and the lesser but still significant concentration differences in the groundwater prove the importance of a monitoring system for the actual solute flux into the groundwater.

  9. Effect of ground-water recharge on configuration of the water table beneath sand dunes and on seepage in lakes in the sandhills of Nebraska, U.S.A.

    Science.gov (United States)

    Winter, T.C.

    1986-01-01

    Analysis of water-level fluctuations in about 30 observation wells and 5 lakes in the Crescent Lake National Wildlife Refuge in the sandhills of Nebraska indicates water-table configuration beneath sand dunes in this area varies considerably, depending on the configuration of the topography of the dunes. If the topography of an interlake dunal area is hummocky, ground-water recharge is focused at topographic lows causing formation of water-table mounds. These mounds prevent ground-water movement from topographically high lakes to adjacent lower lakes. If a dune ridge is sharp, the opportunity for focused recharge does not exist, resulting in water-table troughs between lakes. Lakes aligned in descending altitudes, parallel to the principal direction of regional ground-water movement, generally have seepage from higher lakes toward lower lakes. ?? 1986.

  10. Groundwater flux characterization using distributed temperature sensing: Separating advection from thermal conduction

    Science.gov (United States)

    Liu, G.; Knobbe, S.; Butler, J. J., Jr.

    2015-12-01

    Direct measurement of groundwater flux is difficult to obtain in the field so hydrogeologists often use easily-detectable environmental tracers, such as heat or chemicals, as an indirect way to characterize flux. Previously, we developed a groundwater flux characterization (GFC) probe by using distributed temperature sensing (DTS) to monitor the temperature responses to active heating in a well. The temperature responses were consistent with the hydraulic conductivity profiles determined at the same location, and provided high-resolution information (approx. 1.5 cm) about vertical variations in horizontal flux through the screen. One of the key assumptions in the previous GFC approach was that the vertical variations in the thermal conductivity of the aquifer materials near the well are negligible, so that the temperature differences with depth are primarily a result of groundwater flux instead of thermal conduction. Although this assumption is likely valid for wells constructed with an artificial filter pack, it might become questionable for wells with natural filter packs (such as the wells constructed by direct push where the sediments are allowed to directly collapse onto the well screen). In this work, we develop a new procedure for separating advection from thermal conduction during GFC measurement. In addition to the normal open-screen GFC profiling, an impermeable sleeve was used so that heating tests could be performed without advective flow entering the well. The heating tests under sleeved conditions were primarily controlled by the thermal conduction around the well, and therefore could be used to remove the impact of thermal conduction from the normal GFC results obtained under open-screen conditions. This new procedure was tested in a laboratory sandbox, where a series of open-screen and sleeved GFC tests were performed under different flow rates. Results indicated that for the tested range of rates (Darcy velocity 0 - 0.78 m/d), the relation between

  11. Reconnaissance Estimates of Recharge Based on an Elevation-dependent Chloride Mass-balance Approach

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Russell; Tim Minor

    2002-08-31

    Significant uncertainty is associated with efforts to quantity recharge in arid regions such as southern Nevada. However, accurate estimates of groundwater recharge are necessary to understanding the long-term sustainability of groundwater resources and predictions of groundwater flow rates and directions. Currently, the most widely accepted method for estimating recharge in southern Nevada is the Maxey and Eakin method. This method has been applied to most basins within Nevada and has been independently verified as a reconnaissance-level estimate of recharge through several studies. Recharge estimates derived from the Maxey and Eakin and other recharge methodologies ultimately based upon measures or estimates of groundwater discharge (outflow methods) should be augmented by a tracer-based aquifer-response method. The objective of this study was to improve an existing aquifer-response method that was based on the chloride mass-balance approach. Improvements were designed to incorporate spatial variability within recharge areas (rather than recharge as a lumped parameter), develop a more defendable lower limit of recharge, and differentiate local recharge from recharge emanating as interbasin flux. Seventeen springs, located in the Sheep Range, Spring Mountains, and on the Nevada Test Site were sampled during the course of this study and their discharge was measured. The chloride and bromide concentrations of the springs were determined. Discharge and chloride concentrations from these springs were compared to estimates provided by previously published reports. A literature search yielded previously published estimates of chloride flux to the land surface. {sup 36}Cl/Cl ratios and discharge rates of the three largest springs in the Amargosa Springs discharge area were compiled from various sources. This information was utilized to determine an effective chloride concentration for recharging precipitation and its associated uncertainty via Monte Carlo simulations

  12. Effect of soil disturbance on recharging fluxes: case study on the Snake River Plain, Idaho National Laboratory, USA

    Science.gov (United States)

    Nimmo, John R.; Perkins, Kim S.

    2008-08-01

    Soil structural disturbance influences the downward flow of water that percolates deep enough to become aquifer recharge. Data from identical experiments in an undisturbed silt-loam soil and in an adjacent simulated waste trench composed of the same soil material, but disturbed, included (1) laboratory- and field-measured unsaturated hydraulic properties and (2) field-measured transient water content profiles through 24 h of ponded infiltration and 75 d of redistribution. In undisturbed soil, wetting fronts were highly diffuse above 2 m depth, and did not go much deeper than 2 m. Darcian analysis suggests an average recharge rate less than 2 mm/year. In disturbed soil, wetting fronts were sharp and initial infiltration slower; water moved slowly below 2 m without obvious impediment. Richards’ equation simulations with realistic conditions predicted sharp wetting fronts, as observed for disturbed soil. Such simulations were adequate for undisturbed soil only if started from a post-initial moisture distribution that included about 3 h of infiltration. These late-started simulations remained good, however, through the 76 d of data. Overall results suggest the net effect of soil disturbance, although it reduces preferential flow, may be to increase recharge by disrupting layer contrasts.

  13. Identifying groundwater recharge connections in the Moscow (USA) sub-basin using isotopic tracers and a soil moisture routing model

    NARCIS (Netherlands)

    Candel, J.H.J.; Brooks, Erin; Sanchez-Murillo, Ricardo; Grader, George; Dijksma, R.

    2016-01-01

    Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1 × 105 km2) ca

  14. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    earlier flux-based estimates and more similar to estimates based on well data, mainly due to enhanced recharge from surface waters. Our results present a global overview of water table depth and reveal hotspots of groundwater depletion, generally occurring in groundwater irrigated systems.

  15. Climate variability and vadose zone controls on damping of transient recharge

    Science.gov (United States)

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2017-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  16. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux.

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Jiao, Jiu Jimmy; Barry, D A; Li, Ling; Luo, Xin; Wang, Chaoyue; Wan, Li; Wang, Xusheng; Jiang, Xiaowei; Ma, Qian; Qu, Wenjing

    2015-03-06

    Near- and off-shore fresh groundwater resources become increasingly important with the social and economic development in coastal areas. Although large scale (hundreds of km) submarine groundwater discharge (SGD) to the ocean has been shown to be of the same magnitude order as river discharge, submarine fresh groundwater discharge (SFGD) with magnitude comparable to large river discharge is never reported. Here, we proposed a method coupling mass-balance models of water, salt and radium isotopes based on field data of (223)Ra, (226)Ra and salinity to estimate the SFGD, SGD. By applying the method in Laizhou Bay (a water area of ~6000 km(2)), we showed that the SFGD and SGD are 0.57 ~ 0.88 times and 7.35 ~ 8.57 times the annual Yellow River flux in August 2012, respectively. The estimate of SFGD ranges from 4.12 × 10(7) m(3)/d to 6.36 × 10(7) m(3)/d, while SGD ranges from 5.32 × 10(8) m(3)/d to 6.20 × 10(8) m(3)/d. The proportion of the Yellow River input into Laizhou Bay was less than 14% of the total in August 2012. Our method can be used to estimate SFGD in various coastal waters.

  17. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  18. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA

    Science.gov (United States)

    Winograd, Isaac J.; Riggs, Alan C.; Coplen, Tyler B.

    A comparison of the stable-isotope signatures of spring waters, snow, snowmelt, summer (July thru September) rain, and cool season (October thru June) rain indicates that the high-intensity, short-duration summer convective storms, which contribute approximately a third of the annual precipitation to the Spring Mountains, provide only a small fraction (perhaps 10%) of the recharge to this major upland in southern Nevada, USA. Late spring snowmelt is the principal means of recharging the fractured Paleozoic-age carbonate rocks comprising the central and highest portion of the Spring Mountains. Daily discharge measurements at Peak Spring Canyon Creek during the period 1978-94 show that snowpacks were greatly enhanced during El Niño events. Résumé La comparaison des signatures isotopiques stables des eaux de sources, de neige, de fonte de neige, des pluies d'été (juillet à septembre) et de saison froide (octobre à juin) montre que les précipitations convectives d'été de forte intensité et de courte durée, apportant un tiers des précipitations annuelles reçues par les Monts Spring, ne participent que pour une faible part (10%) à la recharge de cette importante zone d'altitude du sud du Nevada (États-Unis). La fonte tardive de la neige au printemps constitue l'essentiel de la recharge des roches carbonatées fracturées d'âge paléozoïque formant la partie centrale et la plus haute des Monts Spring. Les données journalières de débit sur la rivière du canyon de Peak Spring, entre 1978 et 1994, montrent que les hauteurs de neige ont été plus élevées pendant les événements El Niño. Resumen La comparación entre las marcas isotópicas de aguas de manantiales, nieve, deshielo, lluvias de verano (julio a septiembre) y resto de lluvias (octubre a junio) indican que las tormentas de verano, de corta duración y gran intensidad, las cuales suponen alrededor de un tercio de la precipitación total anual en las Spring Mountains, proporcionan sólo una

  19. Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula

    Science.gov (United States)

    Null, Kimberly A.; Knee, Karen L.; Crook, Elizabeth D.; de Sieyes, Nicholas R.; Rebolledo-Vieyra, Mario; Hernández-Terrones, Laura; Paytan, Adina

    2014-04-01

    Submarine groundwater discharge (SGD) to the coastal environment along the eastern Yucatan Peninsula, Quintana Roo, Mexico was investigated using a combination of tracer mass balances and analytical solutions. Two distinct submarine groundwater sources including water from the unconfined surficial aquifer discharging at the beach face and water from a deeper aquifer discharging nearshore through submarine springs (ojos) were identified. The groundwater of nearshore ojos was saline and significantly enriched in short-lived radium isotopes (223Ra, 224Ra) relative to the unconfined aquifer beach face groundwater. We estimated SGD from ojos using 223Ra and used a salinity mass balance to estimate the freshwater discharge at the beach face. Analytical calculations were also used to estimate wave set-up and tidally driven saline seepage into the surf zone and were compared to the salinity-based freshwater discharge estimates. Results suggest that average SGD from ojos along the Yucatan Peninsula Caribbean coast is on the order of 308 m3 d-1 m-1 and varies between sampling regions. Higher discharge was observed in the southern regions (568 m3 d-1 m-1) compared to the north (48 m3 d-1 m-1). Discharge at the beach face was in the range of 3.3-8.5 m3 d-1 m-1 for freshwater and 2.7 m3 d-1 m-1 for saline water based on the salinity mass balance and wave- and tidally-driven discharge, respectively. Although discharge from the ojos was larger in volume than discharge from the unconfined aquifer at the beach face, dissolved inorganic nitrogen (DIN) was significantly higher in beach groundwater; thus, discharge of this unconfined beach aquifer groundwater contributed significantly to total DIN loading to the coast. DIN fluxes were up to 9.9 mol d-1 m-1 from ojos and 2.1 mol d-1 m-1 from beach discharge and varied regionally along the 500 km coastline sampled. These results demonstrate the importance of considering the beach zone as a significant nutrient source to coastal waters

  20. Estimation of groundwater recharge in arid and semi-arid areas based on water cycle simulation%基于水循环模拟的干旱半干旱地区地下水补给评价

    Institute of Scientific and Technical Information of China (English)

    陆垂裕; 孙青言; 李慧; 盖燕如

    2014-01-01

    干旱半干旱地区的地下水补给评价在地下水的开发利用和保护中起着基础性的重要作用。本文从全区域水循环整体的角度出发,以水循环模拟与地下水数值模拟紧密耦合的综合性水文模型 MODCYCLE为工具,以处于半干旱地区的通辽市平原区为例,探索地下水在“自然-社会”二元水循环过程中的补给规律。结果表明:通辽市平原区地下水的主要补给来源为降水入渗,占总补给量的65.2%;降水入渗补给量与降水量的变化趋势基本一致,但受众多因素影响,并不呈线性关系;年均降水入渗补给量农田区107.3 mm,非农田生态区29.1 mm,且前者较后者稳定;地下水从人口分布较少的平原坨沼区向社会经济活动频繁的中部平原区侧向净流动,年均净流量为6570万m3,呈逐年下降趋势。模型反映的地下水补给规律基本符合研究区域的客观情况,可以为当地地下水管理提供参考。该评价方法为类似地区的地下水研究提供一种可以选择的方式。%Groundwater recharge evaluation in arid and semi-arid areas plays a foundational role in the ex⁃ploitation and protection of the groundwater. In this study, from the perspective of water cycle for the whole region, the law of groundwater recharge is explored in the artificial-natural dual water cycle. The in⁃tegrated hydrology model named MODCYCLE is used, which is formed by the tightly-coupling of the water cycle model and the groundwater numerical simulation. The groundwater of the plain area in Tongliao, a typical semi-arid region, is evaluated as an example. The analytical results show that (1) the precipitation recharge, 65.2 % of the total recharge, is the main supply source of groundwater;(2) the variation trends of precipitation recharge and precipitation are basically consistent, but influenced by many factors, not a linear relationship;(3) the average annual amount of

  1. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Chris