WorldWideScience

Sample records for groundwater quality some examples

  1. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe: Chapter 14

    Science.gov (United States)

    Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.

    2015-01-01

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.

  2. Impacts of a large Sahelian city on groundwater hydrodynamics and quality: example of Niamey (Niger)

    Science.gov (United States)

    Hassane, Aïssata B.; Leduc, Christian; Favreau, Guillaume; Bekins, Barbara A.; Margueron, Thomas

    2016-03-01

    The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na-NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca-HCO3, Ca-NO3, and Na-NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L-1 NO3-N (8 meq L-1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.

  3. Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    John Luczaj

    2015-06-01

    Full Text Available The State of Wisconsin is located in an unusually water-rich portion of the world in the western part of the Great Lakes region of North America. This article presents an overview of the major groundwater quantity and quality concerns for this region in a geologic context. The water quantity concerns are most prominent in the central sand plain region and portions of a Paleozoic confined sandstone aquifer in eastern Wisconsin. Water quality concerns are more varied, with significant impacts from both naturally occurring inorganic contaminants and anthropogenic sources. Naturally occurring contaminants include radium, arsenic and associated heavy metals, fluoride, strontium, and others. Anthropogenic contaminants include nitrate, bacteria, viruses, as well as endocrine disrupting compounds. Groundwater quality in the region is highly dependent upon local geology and land use, but water bearing geologic units of all ages, Precambrian through Quaternary, are impacted by at least one kind of contaminant.

  4. Changes in quality of groundwater with seasonal fluctuations: an example from Ghor Sari area, southern Dead Sea coastal aquifers, Jordan

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The demand for water resources in the area south of the Dead Sea due to continued development, especially at the Arab Potash Company (APC) for production and domestic purposes necessitates that water quality in the area be monitored and evaluated based on the local geology and hydrogeology. The objective of this paper is to monitor seasonal fluctuations of groundwater and to determine how fluctuation in the water levels will affect the groundwater quality. Groundwater levels were found to be influenced by rainfall and pumping of water from the wells for domestic and industrial use. Twenty water samples were collected from different wells and analyzed for major chemical constituents both in pre- and post-seasons to determine the quality variation. Chemical constituents are significantly increased after post-season recharge. According to the overall assessment of the area, water quality was found to be useful for drinking, irrigation and industry.

  5. Interpolation of groundwater quality parameters with some values below the detection limit

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2011-05-01

    Full Text Available For many environmental variables, measurements cannot deliver exact observation values as their concentration is below the sensibility of the measuring device (detection limit. These observations provide useful information but cannot be treated in the same manner as the other measurements. In this paper a methodology for the spatial interpolation of these values is described. The method is based on spatial copulas. Here two copula models – the Gaussian and a non-Gaussian v-copula are used. First a mixed maximum likelihood approach is used to estimate the marginal distributions of the parameters. After removal of the marginal distributions the next step is the maximum likelihood estimation of the parameters of the spatial dependence including values below the detection limit into account. Interpolation using copulas yields full conditional distributions for the unobserved sites and can be used to estimate confidence intervals, and provides a good basis for spatial simulation. The methodology is demonstrated on three different groundwater quality parameters, i.e. arsenic, chloride and deethylatrazin, measured at more than 2000 locations in South-West Germany. The chloride values are artificially censored at different levels in order to evaluate the procedures on a complete dataset. Interpolation results are evaluated using a cross validation approach. The method is compared with ordinary kriging and indicator kriging. The uncertainty measures of the different approaches are also compared.

  6. Interpolation of groundwater quality parameters with some values below the detection limit

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2011-09-01

    Full Text Available For many environmental variables, measurements cannot deliver exact observation values as their concentration is below the sensitivity of the measuring device (detection limit. These observations provide useful information but cannot be treated in the same manner as the other measurements. In this paper a methodology for the spatial interpolation of these values is described. The method is based on spatial copulas. Here two copula models – the Gaussian and a non-Gaussian v-copula are used. First a mixed maximum likelihood approach is used to estimate the marginal distributions of the parameters. After removal of the marginal distributions the next step is the maximum likelihood estimation of the parameters of the spatial dependence including taking those values below the detection limit into account. Interpolation using copulas yields full conditional distributions for the unobserved sites and can be used to estimate confidence intervals, and provides a good basis for spatial simulation. The methodology is demonstrated on three different groundwater quality parameters, i.e. arsenic, chloride and deethylatrazin, measured at more than 2000 locations in South-West Germany. The chloride values are artificially censored at different levels in order to evaluate the procedures on a complete dataset by progressive decimation. Interpolation results are evaluated using a cross validation approach. The method is compared with ordinary kriging and indicator kriging. The uncertainty measures of the different approaches are also compared.

  7. Surface and Groundwater Quality in Some Oil Field Communities in the Niger Delta: Implications for Domestic Use and Building Construction

    Directory of Open Access Journals (Sweden)

    E.R. Daka

    2014-02-01

    Full Text Available The aim of this study was to determine surface and groundwater quality in some communities in the Niger Delta and to evaluate the implications for domestic use and building construction. Surface water samples were collected along the Nun River and Taylor creek in the greater Gbaran area; groundwater samples were collected from seven communities in that Gbarain and Ekpetiama kingdoms of Bayelsa State, Nigeria. The surface water turbidity values (24.18 to 130.42 NTU were above the Nigerian drinking water limits. TDS values were low (27-32 mg/L; pH (7.0 to 7.5, conductivity (54.00 to 63.00 &muS/cm, nitrate (0.09-0.61 mg/L. The measured values of conductivity, pH and TDS and nitrate fell within the NIS limits for drinking water in Nigeria. About 50% of the surface water samples had values of iron higher than the Nigerian standard for drinking water. Most of the samples gave values of chromium within the limit for drinking, with a few exceptions. pH of groundwater (6.3-7.8 mostly fell within the Nigerian drinking water limits (6.5-8.5. Mean electrical conductivity values of groundwater was 129.67 µS/cm, the TDS values (51.00 to 81.00 mg/L. The turbidity values ranged from <0.01 NTU to 38.11 NTU. Heavy metals concentrations were generally low; copper values ranged from <0.001 to 0.407 mg/L, chromium (0.020-0.059 mg/L, iron (0. 162 to 0.558 mg/L. The measured physicochemical variables of surface water and groundwater from the study area showed water quality values that were generally within the Nigerian standards for drinking water, apart from turbidity, iron and chromium in both surface and groundwater. However, all the measured parameters showed valued that are within acceptable limits for construction.

  8. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...... into the pristine groundwater residing deeper in the aquifer. Reactant-to-product ratios across reaction fronts are altered by dispersive mixing and transience in reactant input functions. Modelling therefore allowed a direct comparison of observed and simulated ratios of concentrations of NO3 (reactant...

  9. Melnikov's approximation dominance Some examples

    CERN Document Server

    Gallavotti, G; Mastropietro, V

    1998-01-01

    We continue a previous paper to show that Mel'nikov's first order formula for part of the separatrix splitting of a pendulum under fast quasi periodic forcing holds, in special examples, as an asymptotic formula in the forcing rapidity.

  10. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  11. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  12. A groundwater quality index map for Namibia

    Science.gov (United States)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  13. Some examples of geomorphodiversity in Italy

    Science.gov (United States)

    Panizza, Mario

    2014-05-01

    The concept of geomorphodiversity (Panizza, 2009) is presented: "the critical and specific assessment of the geomorphological features of a territory, by comparing them in a way both extrinsic (comparison of the geomorphological characteristics with those from other territories) and intrinsic (comparison of the geomorphological characteristics with other areas within the territory itself) and taking into account the level of their scientific quality, the scale of investigation and the purpose of the research". A first example concerns the Dolomites: they have been included in the UNESCO World Heritage List because of their exceptional beauty and unique landscape, together with their scientific importance from the geological and geomorphological point of view. They are of international significance for geomorphodiversity, as the classic site for the development of mountains in dolomite limestone and present a wide range of landforms related to erosion, tectonics and glaciation. They represent a kind of high altitude, open air laboratory of geomorphological heritage of exceptional global value, among the most extraordinary and accessible in the world and ideal for researching, teaching, understanding and developing Earth Science theories. The second example concerns the Emilia-Romagna Apennines, candidate for enrolment in the List of European Geoparks: they show a multifaceted and complex image from the international and regional geomorphological (extrinsic and intrinsic geomorphodiversity) point of view and are an educational example for illustrating morphotectonic evolution, stratigraphic and sedimentological sequences and morpholithological peculiarities connected with gypsum karst and clay mass wasting phenomena. The third example concerns the Vesuvius, one of the National Italian Parks: it shows an extrinsic geomorphodiversity mainly referred to the type of eruptions, with some exemplary processes inserted in international volcanic nomenclature; it makes up an

  14. Quality of groundwater resources in Afghanistan.

    Science.gov (United States)

    Hayat, Ehsanullah; Baba, Alper

    2017-07-01

    Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.

  15. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  16. Mapping groundwater quality in the Netherlands

    NARCIS (Netherlands)

    Pebesma, Edzer Jan

    2001-01-01

    Groundwater quality is the suitability of groundwater for a certain purpose (e.g. for human consumption), and is mostly determined by its chemical composition. Pollution from agricultural and industrial origin threatens the groundwater quality in the Netherlands. Locally, this pollution is me

  17. Groundwater Quality in Mura Valley (Slovenia)

    Science.gov (United States)

    Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Čenčur Curk, B.

    2012-04-01

    Groundwater quality is one of the most important parameters in drinking water supply management. For safe drinking water supply, the quality of groundwater in the water wells on the recharge area has to be controlled. Groundwater quality data will be presented for one test area in the SEE project CC-WaterS (Climate Change and Impacts on Water Supply) Mura valley, which lies in the northeastern part of Slovenia. The Mura valley is a part of the Pannonian basin tectonic unit, which is filled with Tertiary and Quaternary gravel and sand sediments. The porous aquifer is 17 m thick in average and recharges from precipitation (70 %) and from surface waters (30 %). The aquifer is the main source of drinking water in the area for almost 53.000 inhabitants. Most of the aquifer lies beneath the agricultural area what represents the risk of groundwater quality. The major groundwater pollutants in the Mura valley are nitrates, atrazine, desethyl-atrazine, trichloroethane and tetrachloroethene. National groundwater quality monitoring is carried out twice a year, so some polluting events could be missed. The nitrate concentrations in the past were up to 140 mg/l. Concentration trends are decreasing and are now below 60 mg/l. Concentrations of atrazine and desethyl-atrazine, are decreasing as well and are below 0,1 µg/l. Trichloroethene and tetrachloroethene were detected downstream of main city in Mura valley, in the maximum concentrations of 280 μg/l in June 2005 (trichloroethene) and 880 μg/l in October 1997 (tetrachloroethene). So, it can be summarized that the trends for most pollutants in the Mura valley are decreasing, what is a good prediction for the future. Input estimation of the total nitrogen (N) (mineral and organic fertilizers) in the Mura valley shows, that the risk of leaching is enlarged in the areas, where the N input is larger than 250 kg/ha, this is at 6,3 % of all agricultural areas. Prediction for the period 2021-2050 indicates that the leaching of N

  18. ASSESSMENT OF GROUNDWATER QUALITY IN SHALLOW ...

    African Journals Online (AJOL)

    development of human societies. In Okrika Island ... abstraction of groundwater due to population increase in Port ... 298. Nwankwoala and Walter: Assessment of Groundwater Quality in Shallow Coastal Aquifers ..... and Tai-Eleme areas.

  19. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia

    Directory of Open Access Journals (Sweden)

    Shirazi Sharif Moniruzzaman

    2015-03-01

    Full Text Available Groundwater quality and aquifer productivity of Malacca catchment in Peninsular Malaysia are presented in this article. Pumping test data were collected from 210 shallow and 17 deep boreholes to get well inventory information. Data analysis confirmed that the aquifers consisting of schist, sand, limestone and volcanic rocks were the most productive aquifers for groundwater in Malacca state. GIS-based aquifer productivity map was generated based on bedrock and discharge capacity of the aquifers. Aquifer productivity map is classified into three classes, namely high, moderate and low based on discharge capacity. Groundwater potential of the study area is 35, 57 and 8% of low, moderate and high class respectively. Fifty two shallow and 14 deep aquifer groundwater samples were analyzed for water quality. In some cases, groundwater quality analysis indicated that the turbidity, total dissolved solids, iron, chloride and cadmium concentrations exceeded the limit of drinking water quality standards.

  20. 583 GROUNDWATER QUALITY ASSESSMENT AND MONITORING ...

    African Journals Online (AJOL)

    Osondu

    2012-10-30

    Oct 30, 2012 ... monitor and assess groundwater quality. Key words: ... improved yield/production and discharge of waste from ... Thus, the groundwater quality monitoring and .... D/Line. 28.51. 6.76. 49.42. 65.6. 23. ND. 60.24. 1.58. 10.361.

  1. Applied orienting response research: some examples.

    Science.gov (United States)

    Tremayne, P; Barry, R J

    1990-01-01

    The development of orienting response (OR) theory has not been accompanied by many applications of the concept--most research still appears to be lab-based and "pure," rather than "applied." We present some examples from our own work in which the OR perspective has been applied in a wider context. These cover the exploration of processing deficits in autistic children, aspects of the "repression" of anxiety in elite athletes, and the locus of alcohol effects. Such applications of the OR concept in real-life situations seem a logical and, indeed, necessary step in the evolution of this area of psychophysiology.

  2. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  3. Groundwater quality and water quality index at Bhandara District.

    Science.gov (United States)

    Rajankar, Prashant N; Tambekar, Dilip H; Wate, Satish R

    2011-08-01

    The present investigation reports the results of a monitoring study focusing on groundwater quality of Bhandara District of central India. Since, remediation of groundwater is very difficult, knowledge of the existing nature, magnitude, and sources of the various pollution loads is a prerequisite to assessing groundwater quality. The water quality index (WQI) value as a function of various physicochemical and bacteriological parameters was determined for groundwater obtained from a total of 21 locations. The WQI during pre-monsoon season varied from 68 to 83, while for post-monsoon, it was between 56 and 76. Significantly (P < 0.01) lower WQI for the post-monsoon season was observed, indicating deterioration of the groundwater overall in corresponding season. The study revealed that groundwater from only 19% locations was fit for domestic use, thus indicating the need of proper treatment before use.

  4. [Effects of reclaimed water recharge on groundwater quality: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Lü, Si-Dan; Wang, Mei-E; Jiao, Wen-Tao

    2013-05-01

    Reclaimed water recharge to groundwater is an effective way to relieve water resource crisis. However, reclaimed water contains some pollutants such as nitrate, heavy metals, and new type contaminants, and thus, there exists definite environmental risk in the reclaimed water recharge to groundwater. To promote the development of reclaimed water recharge to groundwater and the safe use of reclaimed water in China, this paper analyzed the relevant literatures and practical experiences around the world, and summarized the effects of different reclaimed water recharge modes on the groundwater quality. Surface recharge makes the salt and nitrate contents in groundwater increased but the risk of heavy metals pollution be smaller, whereas well recharge can induce the arsenic release from sedimentary aquifers, which needs to be paid more attention to. New type contaminants are the hotspots in current researches, and their real risks are unknown. Pathogens have less pollution risks on groundwater, but some virus with strong activity can have the risks. Some suggestions were put forward to reduce the risks associated with the reclaimed water recharge to groundwater in China.

  5. Determination of some dissolved trace metals from groundwater in ...

    African Journals Online (AJOL)

    ... of the groundwater at both Flic en Flac and GRNW were not significant in 1998. ... The data demonstrated the potential for concentrations of some dissolved ... 74 of the Environmental Protection Act 1991 and cited as the new Environmental ...

  6. Microstructural pavement material characterization: some examples

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2008-07-01

    Full Text Available in the way materials respond to loading at the macro-level. The objective of the paper is to demonstrate how Scanning Electron Microscopy (SEM) as an example of advanced measurement techniques was used for material characterization. A range of samples...

  7. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  8. [Bacteriological quality of groundwaters in cemeteries].

    Science.gov (United States)

    Martins, M T; Pellizari, V H; Pacheco, A; Myaki, D M; Adams, C; Bossolan, N R; Mendes, J M; Hassuda, S

    1991-02-01

    Groundwater samples collected by piezometers from three cemeteries in geologically distinct areas of S. Paulo and Santos, Brazil, were analysed in order to determine their hygienic and sanitary conditions. Fecal coliformes, fecal streptococci, sulfite reducer clostridia and Salmonella were searched for the purpose of evaluating sanitary conditions, and total coliforms, heterotrophic bacteria, proteolitic and lipolitic microorganisms for evaluating hygienic conditions. In some samples, nitrate levels were also determined. It was discovered that these waters do not present adequate sanitary and hygienic conditions and that, in some cases, nitrate levels were extremely high (75.7 mg/l). In most samples, higher levels of fecal streptococci and sufite reducer clostridia than fecal coliforms were detected, which seems to show that the two former indicators would be more appropriate for evaluating the sanitary conditions of this kind of water. Salmonella were detected in only one of 44 samples analysed and coliphages in none. In the statistical analysis, the correlation matrix showed significant correlations among three fecal pollution indicators, as well as among anaerobic and aerobic heterotrophs and lipolitic bacteria. A direct relationship between the deterioration of water quality and the geological and hydrogeological conditions of the environment studied was observed. When cemeteries are constructed these conditions should, therefore, be taken into consideration.

  9. Changes of Groundwater Quality in the Sorrounding Pollution Sources Due to Earthquake Dissaster

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2016-05-01

    Full Text Available Groundwater is the main domestic water supply of the population of the Yogyakarta Special Region, both in the urban and as well as in the rural area due to its quantity and quality advantages. The rapid population growth has caused an increase of groundwater demand, consequently it is facing some problems to the sustainability of groundwater supply. Lowering of groundwater level has been observed in some places, as well as the degradation of groundwater quality. Earthquake which stroke Yogyakarta on 27 May 2006, damaged buildings and other infrastructures in the area, including roads and bridges. It might also damage the underground structures such as septic tanks, and pipes underneath the earth surface. It might cause cracking of the geologic structures. Furthermore, the damage of underneath infrastructures might create groundwater quality changes in the area. Some complains of local community on lowering and increasing groundwater level and groundwater quality changes were noted. Field observation and investigation were conducted, including collection of groundwater samples close to (the pollution sources. Laboratory analyses indicated that some parameters increased to exceed the drinking water quality standards. The high content of Coli form bacteria possibly was caused by contamination of nearby septic tanks or other pollution sources to the observed groundwater in the dug well.

  10. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States

    Science.gov (United States)

    Katz, B.G.; Eberts, S.M.; Kauffman, L.J.

    2011-01-01

    A detailed review was made of chemical indicators used to identify impacts from septic tanks on groundwater quality. Potential impacts from septic tank leachate on groundwater quality were assessed using the mass ratio of chloride-bromide (Cl/Br), concentrations of selected chemical constituents, and ancillary information (land use, census data, well depth, soil characteristics) for wells in principal aquifers of the United States. Chemical data were evaluated from 1848 domestic wells in 19 aquifers, 121 public-supply wells in 6 aquifers, and associated monitoring wells in four aquifers and their overlying hydrogeologic units. Based on previously reported Cl/Br ratios, statistical comparisons between targeted wells (where Cl/Br ratios range from 400 to 1100 and Cl concentrations range from 20 to 100 mg/L) and non-targeted wells indicated that shallow targeted monitoring and domestic wells (0.5. mg/L) shallow groundwater from target domestic wells, relative to non-target wells (1.5. mg/L), corresponded to significantly higher potassium, boron, chloride, dissolved organic carbon, and sulfate concentrations, which may also indicate the influence of septic-tank effluent. Impacts on groundwater quality from septic systems were most evident for the Eastern Glacial Deposits aquifer and the Northern High Plains aquifer that were associated with the number of housing units using septic tanks, high permeability of overlying sediments, mostly oxic conditions, and shallow wells. Overall, little or no influence from septic systems were found for water samples from the deeper public-supply wells.The Cl/Br ratio is a useful first-level screening tool for assessing possible septic tank influence in water from shallow wells (indicators). ?? 2010.

  11. Schools and linguistic normalization (some comparative examples

    Directory of Open Access Journals (Sweden)

    Fito Rodriguez Bornaetxea

    2002-04-01

    Full Text Available Historically schools have been used to favour certain languages and cultures to the detriment of others, which have been marginalized, for the sake of the modern nation state. Schools can help, with their traditional functions (mainly pedagogical, but also political, ethical and so on, to recover such historically discriminated against languages. In this article the author compares real cases which relate to this issue. In cases like Ireland and Algeria, political independence has been shown not to help restore languages and cultures, while in other cases like Greece, Norway and Finland it was precisely that political independence that was needed in order for there to be partial success. There are also other cases like Quebec and Belgium where this process of recovery has been brought about in other ways. The author concludes with some proposals that may be generalized to all of these comparative cases.

  12. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States

    Science.gov (United States)

    Katz, Brian G.; Eberts, Sandra M.; Kauffman, Leon J.

    2011-02-01

    SummaryA detailed review was made of chemical indicators used to identify impacts from septic tanks on groundwater quality. Potential impacts from septic tank leachate on groundwater quality were assessed using the mass ratio of chloride-bromide (Cl/Br), concentrations of selected chemical constituents, and ancillary information (land use, census data, well depth, soil characteristics) for wells in principal aquifers of the United States. Chemical data were evaluated from 1848 domestic wells in 19 aquifers, 121 public-supply wells in 6 aquifers, and associated monitoring wells in four aquifers and their overlying hydrogeologic units. Based on previously reported Cl/Br ratios, statistical comparisons between targeted wells (where Cl/Br ratios range from 400 to 1100 and Cl concentrations range from 20 to 100 mg/L) and non-targeted wells indicated that shallow targeted monitoring and domestic wells (0.5 mg/L) shallow groundwater from target domestic wells, relative to non-target wells (1.5 mg/L), corresponded to significantly higher potassium, boron, chloride, dissolved organic carbon, and sulfate concentrations, which may also indicate the influence of septic-tank effluent. Impacts on groundwater quality from septic systems were most evident for the Eastern Glacial Deposits aquifer and the Northern High Plains aquifer that were associated with the number of housing units using septic tanks, high permeability of overlying sediments, mostly oxic conditions, and shallow wells. Overall, little or no influence from septic systems were found for water samples from the deeper public-supply wells. The Cl/Br ratio is a useful first-level screening tool for assessing possible septic tank influence in water from shallow wells (<20 m) with the range of 400-1100. The use of this ratio would be enhanced with information on other chloride sources, temporal variability of chloride and bromide concentrations in shallow groundwater, knowledge of septic-system age and maintenance, and

  13. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  14. Groundwater Quality and Quantity in a Coastal Aquifer Under High Human Pressure: Understand the Aquifer Functioning and the Social Perception of Water Use for a Better Water Management. Example of Recife (PE, Brazil)

    Science.gov (United States)

    Petelet-Giraud, E.; Cary, L.; Bertrand, G.; Alves, L. M.; Cary, P.; Giglio-Jacquemot, A.; Aquilina, L.; Hirata, R.; Montenegro, S.; Aurouet, A.; Franzen, M.; Chatton, E.

    2015-12-01

    The Recife Metropolitan Region is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. This study is based on an interdisciplinary approach, coupling "hard" geosciences together with "soft" social sciences with the aim to study the human impact on coastal aquifers in a context of overexploitation to improve the existing water management tools. By revisiting the geological and hydrogeological conceptual models, field campaigns of groundwater and surface water sampling and analysis, and of interviews of different actors on the theme of water supply and management in Recife Metropolitan Region, the main results can be summarized as follows: (1) The recharge of the deep strategic confined aquifers is very limited resulting in water level decrease (up to -90m in 25y) due to overexploitation. (2) Groundwater residence time in these deep aquifers is over 10,000 years. (3) The natural upward flux of these confined aquifers is observed inland, but is reversed in the heavily populated areas along the coast leading to mixing with modern groundwater coming from the shallow aquifers. (4) Groundwater salinization is inherited from the Pleistocene marine transgression, only partly diluted by the recharge through the mangroves during the subsequent regression phase. Today, leakage from surficial aquifers induces local salinization. (5) Local climatic scenarios predict a reduction of rainfall volume of 20% together with an increase of sea level (18-59cm by 2100). (5) The Public authorities tend to deny the difficulties that people, especially those in precarious situation, are confronted with regarding water, especially in times of drought. The COQUEIRAL research project is financially supported by ANR (ANR-11-CEPL-012); FACEPE (APQ-0077-3.07/11); FAPESP (2011/50553-0

  15. Groundwater Quality in Central New York, 2007

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, J.E.; Shaw, Stephen B.

    2009-01-01

    Water samples were collected from 7 production wells and 28 private residential wells in central New York from August through December 2007 and analyzed to characterize the chemical quality of groundwater. Seventeen wells are screened in sand and gravel aquifers, and 18 are finished in bedrock aquifers. The wells were selected to represent areas of greatest groundwater use and to provide a geographical sampling from the 5,799-square-mile study area. Samples were analyzed for 6 physical properties and 216 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and 4 types of bacteria. Results indicate that groundwater used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at several wells. The cations detected in the highest concentrations were calcium, magnesium, and sodium; anions detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia, but no nutrients exceeded Maximum Contaminant Levels (MCLs). The trace elements barium, boron, lithium, and strontium were detected in every sample; the trace elements present in the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Fifteen pesticides, including seven pesticide degradates, were detected in water from 17 of the 35 wells, but none of the concentrations exceeded State or Federal MCLs. Sixteen volatile organic compounds were detected in water from 15 of the 35 wells. Nine analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which typically are identical. One sample had a water color that exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) and the New York State MCL of 10 color

  16. Groundwater Quality Monitoring at Logan Cave National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the current project was to continue establishing a long term groundwater quality monitoring program at Logan Cave that would allow groundwater threats...

  17. Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2009-04-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  18. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-10-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  19. Groundwater Dynamics and Quality Assessment in an Agricultural Area

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2011-01-01

    Full Text Available Problem statement: The analysis of the relationships among the different hydrogeological Units and the assessment of groundwater quality are fundamental to adopt suitable territorial planning measures aimed to reduce the potential groundwater pollution especially in agricultural regions. In this study, the characteristics of groundwater dynamics and the assessment of its quality in the Cuneo Plain (NW Italy were examined. Approach: In order to define the geological setting an intense bibliographic analysis has been performed by the authors. This analysis was implemented by several correlated land controls and specific surveys that have permitted to analyze to certain reliability the Quaternary evolution of the entire plain sector and the current relationships among the different geological bodies that strongly affect the groundwater dynamics. Results: The Quaternary alluvial deposits overlap a Tertiary sedimentary succession through a series of erosional unconformity surfaces. These Quaternary deposits highlight a variable thickness ranging from 80-100 m in the foothills of the mountains up to a few meters in the more distal portion of the plain. In these deposits there are several unconfined aquifers which are not hydraulically interconnected due to the deep fluvial incisions that reach the underlying tertiary substrate. The Cuneo plain is intensively populated and lot of villages and farms characterize the landscape. In the overall area it is present an intensive agricultural and livestock activity predominantly represented by crops of wheat and corn and farms of cattle and pigs. All these activities represent point and diffuse groundwater pollution sources and require a considerable amount of groundwater which is withdrawn from the Quaternary aquifers by means of thousands of water wells. The groundwater quality is strongly influenced by the content of nitrates and manganese. The nitrates are linked to pollution due to agricultural activities

  20. Natural releases from contaminated groundwater, Example Reference Biosphere 2B

    Energy Technology Data Exchange (ETDEWEB)

    Simon, I. [CIEMAT/PIRA, Avda Complutense 22, 28040 Madrid (Spain)]. E-mail: isc@csn.es; Naito, M. [Nuclear Waste Management Organization of Japan (NUMO), 4-1-23 Shiba, Minato-ku, Tokyo, 108-0014 (Japan); Thorne, M.C. [Mike Thorne and Associates Limited, Abbotsleigh, Kebroyd Mount, Ripponden, Halifax, West Yorkshire HX6 3JA (United Kingdom); Walke, R. [Enviros QuantiSci, Building D5, Culham Science Centre, Culham, Oxfordshire OX14 3DB (United Kingdom)

    2005-07-01

    Safety assessment is a tool which, by means of an iterative procedure, allows the evaluation of the performance of a disposal system and its potential impact on human health and the environment. Radionuclides from a deep geological disposal facility may not reach the surface environment until many tens of thousands of years after closure of the facility. The BIOMASS Programme on BIOsphere Modelling and ASSessment developed Examples of 'Reference Biospheres' to illustrate the use of the methodology and to demonstrate how biosphere models can be developed and justified as being fit for purpose. The practical examples are also intended to be useful in their own right. The Example Reference Biosphere 2B presented here involves the consideration of alternative types of geosphere-biosphere interfaces and calculation of doses to members of hypothetical exposure groups arising from a wide range of exposure pathways within agricultural and semi-natural environments, but without allowing for evolution of the corresponding biosphere system. The example presented can be used as a generic analysis in some situations although it was developed around a relatively specific conceptual model. It should be a useful practical example, but the above numerical results are not intended to be understood as prescribed biosphere 'conversion factors'.

  1. Groundwater quality in the Santa Barbara Coastal Plain, California

    Science.gov (United States)

    Davis, Tracy A.; Belitz, Kenneth

    2016-10-03

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.

  2. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  3. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    OpenAIRE

    I Nanda Balan; Shivakumar, M.; Madan Kumar, P. D.

    2012-01-01

    Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and ...

  4. Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China

    Directory of Open Access Journals (Sweden)

    Li Pei-Yue

    2010-01-01

    Full Text Available The aim of this work is to assess the groundwater quality in Pengyang County based on an improved water quality index. An information entropy method was introduced to assign weight to each parameter. For calculating WQI and assess the groundwater quality, total 74 groundwater samples were collected and all these samples subjected to comprehensive physicochemical analysis. Each of the groundwater samples was analyzed for 26 parameters and for computing WQI 14 parameters were chosen including chloride, sulphate, pH, chemical oxygen demand (COD, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia nitrogen, fluoride, total iron (Tfe, arsenic, iodine, aluminum, nitrite, metasilicic acid and free carbon dioxide. At last a zoning map of different water quality was drawn. Information entropy weight makes WQI perfect and makes the assessment results more reasonable. The WQI for 74 samples ranges from 12.40 to 205.24 and over 90% of the samples are below 100. The excellent quality water area covers nearly 90% of the whole region. The high value of WQI has been found to be closely related with the high values of TDS, fluoride, sulphate, nitrite and TH. In the medium quality water area and poor quality water area, groundwater needs some degree of pretreated before consumption. From the groundwater conservation view of point, the groundwater still need protection and long term monitoring in case of future rapid industrial development. At the same time, preventive actions on the agricultural non point pollution sources in the plain area are also need to be in consideration.

  5. Megacity pumping and preferential flow threaten groundwater quality

    Science.gov (United States)

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-09-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

  6. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  7. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  8. Groundwater-Quality Assessment, Pike County, Pennsylvania, 2007

    Science.gov (United States)

    Senior, Lisa A.

    2009-01-01

    Pike County, a 545 square-mile area in northeastern Pennsylvania, has experienced the largest relative population growth of any county in the state from 1990 to 2000 and its population is projected to grow substantially through 2025. This growing population may result in added dependence and stresses on water resources, including the potential to reduce the quantity and degrade the quality of groundwater and associated stream base flow with changing land use. Groundwater is the main source of drinking water in the county and is derived primarily from fractured-rock aquifers (shales, siltstones, and sandstones) and some unconsolidated glacial deposits that are recharged locally from precipitation. The principal land uses in the county as of 2005 were public, residential, agricultural, hunt club/private recreational, roads, and commercial. The public lands cover a third of the county and include national park, state park, and other state lands, much of which are forested. Individual on-site wells and wastewater disposal are common in many residential areas. In 2007, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, began a study to provide current information on groundwater quality throughout the county that will be helpful for water-resource planning. The countywide reconnaissance assessment of groundwater quality documents current conditions with existing land uses and may serve as a baseline of groundwater quality for future comparison. Twenty wells were sampled in 2007 throughout Pike County to represent groundwater quality in the principal land uses (commercial, high-density and moderate-density residential with on-site wastewater disposal, residential in a sewered area, pre-development, and undeveloped) and geologic units (five fractured-rock aquifers and one glacial unconsolidated aquifer). Analyses selected for the groundwater samples were intended to identify naturally occurring constituents from the aquifer or

  9. Classification management plan of groundwater quality in Taiwan

    Science.gov (United States)

    Chen, Chun Ming; Chen, Yu Ying; Pan, Shih Cheng; Li, Hui Jun; Hsiao, Fang Ke

    2017-04-01

    Taiwan Environmental Protection Administration has been monitoring regional water quality for 14 years. Since the beginning of 2002 till now, there are 453 regional groundwater monitoring wells in ten groundwater subregions in Taiwan, and the monitoring of groundwater quality has been carried out for a long time. Currently, water quality monitoring project has reached 50 items, while the number of water quality monitoring data has reached more than 20,000. In order to use the monitoring data efficiently, this study constructed the localized groundwater quality indicators of Taiwan. This indicator takes into account the different users' point of view, incorporating the Taiwan groundwater pollution monitoring standards (Category II), irrigation water quality standard and drinking water source water quality standard. 50 items of water quality monitoring projects were simplified and classified. The groundwater quality parameters were divided into five items, such as potability for drinking water, salting, external influence, health influences and toxicity hazard. The weight of the five items of groundwater was calculated comprehensively, and the groundwater quality of each monitoring well was evaluated with three grades of good, ordinary, and poor. According to the monitoring results of the groundwater monitoring wells in October to December of 2016, about 70% of groundwater quality in Taiwan is in good to ordinary grades. The areas with poor groundwater quality were mostly distributed in coastal, agriculture and part of the urban areas. The conductivity or ammonia nitrogen concentration was higher in those regions, showing that groundwater may be salinized or affected by external influences. Groundwater quality indicators can clearly show the current comprehensive situation of the groundwater environment in Taiwan and can be used as a tool for groundwater quality classification management. The indicators can coordinate with the Taiwan land planning policy in the

  10. The impact of climatic change on groundwater quality; De invloed van klimaatverandering op de grondwaterkwaliteit

    Energy Technology Data Exchange (ETDEWEB)

    Hooijboer, A.E.J.; De Nijs, A.C.M.

    2011-08-15

    There is a possibility that climate change will affect the quality of groundwater because many processes that influence the groundwater quality depend on temperature and humidity. If the groundwater quality will be affected by a changing climate, and to what extent is unclear because unequivocal scientific evidence is lacking on this. This is the result of a literature review of the RIVM, which contains a list of available scientific knowledge on the impact of climate change on groundwater quality. Groundwater is important for water supply and for the environment. It is therefore important to know the impacts of climate change in an early stage so that measures can be taken to counteract these influences, if these changes represent a worsening. In the literature review, the impact of climate change on soil quality, groundwater recharge and surface water quality are included. There are currently still too few articles that describe specifically the impact of climate change on groundwater quality. On the basis of this three aspects the impacts on salinity, nutrients, pesticides and heavy metals is examined. The available scientific articles on climate change impacts on soil and groundwater are conflicting. For example, according to some studies, a higher temperature can lower water table, because the evaporation is higher. According, due to elevated CO2 concentrations, plants will evaporate less water so that the groundwater will increase. The study also shows that models that simulate the change of groundwater quality due to climate change are not available or not accurate enough. RIVM recommends to extend the research and to improve the existing models. [Dutch] Het is mogelijk dat klimaatverandering van invloed is op de kwaliteit van het grondwater omdat veel processen die de grondwaterkwaliteit beinvloeden afhangen van temperatuur en vochtigheid. Of de grondwaterkwaliteit zal veranderen bij een veranderend klimaat en in welke mate is onduidelijk omdat eenduidig

  11. Effects Of Leaky Sewers On Groundwater Quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds

  12. Zonal management of multi-purposes groundwater utilization based on water quality and impact on the aquifer.

    Science.gov (United States)

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng

    2016-07-01

    Groundwater is widely used for drinking, irrigation, and aquaculture in the Pingtung Plain, Southwestern Taiwan. The overexploitation and poor quality of groundwater in some areas of the Pingtung Plain pose great challenges for the safe use and sustainable management of groundwater resources. Thus, establishing an effective management plan for multi-purpose groundwater utilization in the Pingtung Plain is imperative. Considerations of the quality of the groundwater and potential impact on the aquifer of groundwater exploitation are paramount to multi-purpose groundwater utilization management. This study proposes a zonal management plan for the multi-purpose use of groundwater in the Pingtung Plain. The zonal management plan is developed by considering the spatial variability of the groundwater quality and the impact on the aquifer, which is defined as the ratio of the actual groundwater extraction rate to transmissivity. A geostatistical Kriging approach is used to spatially delineate the safe zones based on the water quality standards applied in the three groundwater utilization sectors. Suitable zones for the impact on the aquifer are then spatially determined. The evaluation results showing the safe water quality zones for the three types of utilization demands and suitable zones for the impact on aquifer are integrated to create a zonal management map for multi-purpose groundwater utilization which can help government administrators to establish a water resource management strategy for safe and sustainable use of groundwater to meet multi-purpose groundwater utilization requirements in the Pingtung Plain.

  13. Groundwater quality in West Virginia, 1993-2008

    Science.gov (United States)

    Chambers, Douglas B.; Kozar, Mark D.; White, Jeremy S.; Paybins, Katherine S.

    2012-01-01

    ), non-enforceable proposed MCL, or non-enforceable advisory health-based screening level (HBSL), were used as benchmarks against which to compare analytical results. Constituent concentrations were less than the MCLs in most samples. However, some samples exceeded non-enforceable SMCLs, proposed MCLs, or advisory HBSLs. Radon-222 concentrations exceeded the proposed MCL of 300 pCi/L in 45 percent of samples, and iron concentrations exceeded the SMCL of 300 µg/L in 57 percent of samples. Manganese concentrations were greater than the SMCL (50 µg/L) in 62 percent of samples and greater than the HBSL (300 µg/L) in 25 percent of the samples. Other sampled constituents, including organic compounds and trace elements, exceeded drinking-water criteria at much lower frequencies. The radon-222 median concentrations in samples from Cambrian, Ordovician, Silurian, Permian, and Quaternary aquifers exceeded the proposed 300 pCi/L MCL. Although median radon concentrations for wells in Devonian, Mississippian, and Pennsylvanian aquifers were less than the proposed MCL, radon concentrations greater than the proposed MCL were measured in samples from aquifers of all geologic ages. The median iron concentrations for samples from Devonian and Pennsylvanian aquifers were greater than the 300 µg/L SMCL. Iron concentrations exceeded the SMCL in aquifers of all geologic ages, except Cambrian. Median concentrations of manganese exceeded the SMCL in samples from Devonian, Pennsylvanian, and Quaternary aquifers. As with iron, manganese concentrations were found to exceed the SMCL in at least one sample from aquifers of all geologic ages, except Cambrian. Pesticides were detected most frequently and in higher concentrations in limestone-dominated areas. Most of West Virginia’s agriculture is concentrated in those areas. This study, the most comprehensive assessment of West Virginia groundwater quality to date, indicates the water quality of West Virginia’s groundwater is generally good

  14. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices.

    Science.gov (United States)

    Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H

    2016-12-15

    Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy

  15. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; DeSimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  16. Groundwater quality in western New York, 2011

    Science.gov (United States)

    Reddy, James E.

    2013-01-01

    Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.

  17. Groundwater-quality data from the National Water-Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014

    Science.gov (United States)

    Arnold, Terri L.; Bexfield, Laura M.; Musgrove, MaryLynn; Lindsey, Bruce D.; Stackelberg, Paul E.; Barlow, Jeannie R.; DeSimone, Leslie A.; Kulongoski, Justin T.; Kingsbury, James A.; Ayotte, Joseph D.; Fleming, Brandon J.; Belitz, Kenneth

    2017-10-05

    Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality; major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply; and enhanced trends networks, which are used to evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, radionuclides, and some constituents of special interest (arsenic speciation, chromium [VI] and perchlorate). These groundwater-quality data, along with data from quality-control samples, are tabulated in this report and in an associated data release.

  18. Groundwater quality in central New York, 2012

    Science.gov (United States)

    Reddy, James E.

    2014-01-01

    Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and

  19. Some Examples of the Application and Validation of the NUFT Subsurface Flow and Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J J

    2001-08-01

    This report was written as partial fulfillment of a subcontract from DOD/DOE Strategic Environmental Research and Development Program (SERDP) as part of a project directed by the U.S. Army Engineer Research and Development Center, Waterways Experiment Station (WES), Vicksburg, Mississippi. The report documents examples of field validation of the Non-isothermal Unsaturated-saturated Flow and Transport model (NUFT) code for environmental remediation, with emphasis on soil vapor extraction, and describes some of the modifications needed to integrate the code into the DOD Groundwater Modeling System (GMS, 2000). Note that this report highlights only a subset of the full capabilities of the NUFT code.

  20. This year`s model: Geochemical modeling and groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Tuchfeld, H.A.; Simmons, S.P.; Jesionek, K.S. [GeoSyntec Consultants, Walnut Creek, CA (United States)]|[GeoSyntec Consultants, Atlanta, GA (United States); Romito, A.A. [Browning-Ferris Industries, Inc., Houston, TX (United States)

    1998-07-01

    It has been determined that landfill gas migration is a source of volatile organic compounds (VOCs) in groundwater. This can occur through: direct partitioning of migrating gas constituents into the groundwater; alteration of the physiochemical properties of the groundwater; and by indirect means (such as migration of landfill gas condensate and vadose zone water contaminated by landfill gas). This article examines the use of geochemical modeling as a useful tool for differentiating the effects of municipal solid waste (MSW) landfill gas versus leachate on groundwater quality at MSW landfill sites.

  1. GROUNDWATER QUALITY AND CONTAMINATION INDEX MAPPING IN CHANGCHUN CITY, CHINA

    Institute of Scientific and Technical Information of China (English)

    Hamadoun BOKAR; TANG Jie; LIN Nian-feng

    2004-01-01

    Groundwater in Changchun City, Jilin Province of China tends to be influenced by human activities.Chemical types of groundwater were detected in both shallow and deep groundwater were: HCO3- - Ca2+ and HCO3-of groundwater quality due to the increase of TDS, NO3- + NO2 (as Nitrogen) and TH contents have been observed from 1991 to 1998. Scatter analyses showed strong positive correlations between Ca2+, Cl- and NO3- ions and weak negative correlations between the depth of water table and Ca2+, 8O42-. C1- and NO3-ions. A mapping of contaminant index based on Chinese standard of groundwater showed that a large proportion of the groundwater in 1998 was deteriorated by human process. Despite their low values of sodium adsorption ratio (SAR), the most of the sampled wells were not suitable for drinking and agriculture purposes due to higher contents of NO3-, NO2 and Mn2+ ions.

  2. Analysis of Groundwater Quality of Aligarh City, (India: Using Water Quality Index.

    Directory of Open Access Journals (Sweden)

    Khwaja M. Anwar

    2014-12-01

    Full Text Available Water is essential for all living organisms for their existence and metabolic process. Unethical human intervention in natural system and over exploitation of groundwater resources induces degradation of its quality. In many instances groundwater is used directly for drinking as well as for other purposes, hence the evaluation of groundwater quality is extremely important. The present study is aimed to analyze the underground water quality at Aligarh. In this study 80 water samples were collected from 40 places and analyzed for 14 water quality parameters for pre-monsoon and post-monsoon seasons (2012. The water quality index of these samples ranges from 18.92 to 74.67 pre-monsoon and 16.82 to 70.34 during post-monsoon. The study reveals that 50 % of the area under study falls in moderately polluted category. The ground water of Aligarh city needs some treatment before consumption and it also needs to be protected from contamination.

  3. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  4. Some new examples of non-degenerate quiver potentials

    CERN Document Server

    de Völcsey, Louis de Thanhoffer

    2010-01-01

    We prove a technical result which allows us to establish the non-degeneracy of potentials on quivers in some previously unknown cases. Our result applies to McKay quivers and also to potentials derived from geometric helices on Del Pezzo surfaces. On the other hand we also give an example of a skew group ring with a degenerate potential. This shows that for 3-CY orders Iyama-Reiten mutations cannot always be iterated indefinitely.

  5. Estimating Groundwater Quality Changes Using Remotely Sensed Groundwater Storage and Multivariate Regression

    Science.gov (United States)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2014-12-01

    Global groundwater dependence is likely to increase with continued population growth and climate-driven freshwater redistribution. Recent groundwater quantity studies have estimated large-scale aquifer depletion rates using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. These innovative approaches currently fail to evaluate groundwater quality, integral to assess the availability of potable groundwater resources. We present multivariate relationships to predict total dissolved solid (TDS) concentrations as a function of GRACE-derived variations in water table depth, dominant land use, and other physical parameters in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. Model evaluations were performed using goodness of fit procedures and cross validation to identify general model forms. Results of this work demonstrate the potential to characterize global groundwater potability using remote sensing.

  6. Groundwater Quality Deterioration due to Municipal Solid Waste Dumping Practices

    Science.gov (United States)

    Parameswari, Kaliyaperumal; Karunakaran, Krishnasamy

    2011-07-01

    Groundwater is the major source of drinking water in both urban and rural India. The demand for water has increased over the years and this has led to water scarcity. The scarcity situation, especially in urban areas, is aggravated by the problem of water pollution or contamination by solid waste dumping. In many urban centers in India, the quality of groundwater is getting severely affected because of the widespread pollution, due to the discharge of untreated waste water in water bodies and leachate from the unscientific disposal of solid wastes. It is necessary to realize the importance of groundwater and preserve its quality through careful monitoring and remediation. This study focuses on the magnitude of groundwater pollution due to improper solid waste dumping practices prevailing in the southern part of the Chennai Metropolitan Area. The Perungudi dumpsite, a solid waste dumping site in the periphery of Chennai city, India, has been chosen for this study. The chemical characteristic of solid waste and leachate has been studied, and the groundwater samples from various locations around the dumpsite were collected and analyzed. Samples were analyzed for pH, electrical conductivity, total dissolved solids, chlorides, sulfate, calcium, magnesium, total hardness, sodium, potassium, BOD, and COD. Heavy metals such as lead, iron, and zinc have been analyzed. The study reveals that most of the groundwater samples do not conform to drinking water quality standards. The study also indicates that groundwater remediation techniques and proper groundwater quality monitoring on a regular basis are of utmost importance in the study area. A few in-situ groundwater remediation technologies have been suggested to improve the present water quality.

  7. Environmental impacts during geothermal development: Some examples from Central America

    Energy Technology Data Exchange (ETDEWEB)

    Goff, S.; Goff, F.

    1997-04-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development.

  8. Overview of groundwater quality in the Piceance Basin, western Colorado, 1946--2009

    Science.gov (United States)

    Thomas, J.C.; McMahon, P.B.

    2013-01-01

    Groundwater-quality data from public and private sources for the period 1946 to 2009 were compiled and put into a common data repository for the Piceance Basin. The data repository is available on the web at http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml. A subset of groundwater-quality data from the repository was compiled, reviewed, and checked for quality assurance for this report. The resulting dataset consists of the most recently collected sample from 1,545 wells, 1,007 (65 percent) of which were domestic wells. From those samples, the following constituents were selected for presentation in this report: dissolved oxygen, dissolved solids, pH, major ions (chloride, sulfate, fluoride), trace elements (arsenic, barium, iron, manganese, selenium), nitrate, benzene, toluene, ethylbenzene, xylene, methane, and the stable isotopic compositions of water and methane. Some portion of recharge to most of the wells for which data were available was derived from precipitation (most likely snowmelt), as indicated by δ2H [H2O] and δ18O[H2O] values that plot along the Global Meteoric Water Line and near the values for snow samples collected in the study area. Ninety-three percent of the samples were oxic, on the basis of concentrations of dissolved oxygen that were greater than or equal to 0.5 milligrams per liter. Concentration data were compared with primary and secondary drinking-water standards established by the U.S. Environmental Protection Agency. Constituents that exceeded the primary standards were arsenic (13 percent), selenium (9.2 percent), fluoride (8.4 percent), barium (4.1 percent), nitrate (1.6 percent), and benzene (0.6 percent). Concentrations of toluene, xylenes, and ethylbenzene did not exceed standards in any samples. Constituents that exceeded the secondary standard were dissolved solids (72 percent), sulfate (37 percent), manganese (21 percent), iron (16 percent), and chloride (10 percent). Drinking-water standards have not been established for

  9. Strategy Guideline: Quality Management in Existing Homes; Cantilever Floor Example

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented. The goal of existing home high performing remodeling quality management systems (HPR-QMS) is to establish practices and processes that can be used throughout any remodeling project. The research presented in this document provides a comparison of a selected retrofit activity as typically done versus that same retrofit activity approached from an integrated high performance remodeling and quality management perspective. It highlights some key quality management tools and approaches that can be adopted incrementally by a high performance remodeler for this or any high performance retrofit. This example is intended as a template and establishes a methodology that can be used to develop a portfolio of high performance remodeling strategies.

  10. Impact of geochemical stressors on shallow groundwater quality

    Science.gov (United States)

    An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.

    2005-01-01

    Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional geochemical stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.

  11. 基于灰色聚类的物元可拓法在地下水水质评价中的应用——以洮南市为例%Application of Matter-element Extension Method Based on Grey Clustering Theory in the Groundwater Quality Evaluation -- Give an Example of Taonan City

    Institute of Scientific and Technical Information of China (English)

    尹继娟; 梁秀娟; 肖长来; 张楠; 肖霄

    2012-01-01

    灰色聚类分析法和物元可拓法都是进行水质评价时常用的方法。以吉林省洮南市为例,在灰色聚类法计算权重的基础上,运用物元可拓法对研究区的水环境质量状况进行评价和分析。研究结果表明,改进后的基于灰色聚类的物元可拓法模型具有较好的评价结果,与当地实际水环境质量状况更为一致,对研究区地下水的开采规划具有指导意义,为以后的水质评价提供借鉴。%The gray-clustering analysis method and the matter-element extension method are often used for water quality evaluation. Giving an example of Taonan City, on the basis of the gray clustering method to calculate weight, the matter-element extension method is used to assess and analyze the groundwater quality of the study area. The result proves that the improved matter-element extension method based on grey clustering theory has good evaluation results, and is consistent to the filed water environmental qual- ity. This method has guiding significance for the plan of groundwater exploitation in the study area, and it can provide reference for the future water quality assessment.

  12. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce.

    Science.gov (United States)

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  13. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    Science.gov (United States)

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-01-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  14. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    KAUST Repository

    Alsalah, Dhafer

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  15. Ground-water flow related to streamflow and water quality

    Science.gov (United States)

    Van Voast, W. A.; Novitzki, R.P.

    1968-01-01

    A ground-water flow system in southwestern Minnesota illustrates water movement between geologic units and between the land surface and the subsurface. The flow patterns indicate numerous zones of ground-water recharge and discharge controlled by topography, varying thicknesses of geologic units, variation in permeabilities, and the configuration of the basement rock surface. Variations in streamflow along a reach of the Yellow Medicine River agree with the subsurface flow system. Increases and decreases in runoff per square mile correspond, apparently, to ground-water discharge and recharge zones. Ground-water quality variations between calcium sulfate waters typical of the Quaternary drift and sodium chloride waters typical of the Cretaceous rocks are caused by mixing of the two water types. The zones of mixing are in agreement with ground-water flow patterns along the hydrologic section.

  16. Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2010-01-01

    -water standards. Groundwater in some agricultural areas had concentrations of nitrate and some pesticides that exceeded drinking-water standards. Elevated concentrations of chloride were measured near salt storage areas and highways. Formaldehyde was detected in groundwater near cemeteries. In residential areas with on-site wastewater disposal, effects on groundwater quality included elevated nitrate concentrations and low concentrations of volatile organic compounds and wastewater compounds, such as antibiotics and detergents. Base-flow samples indicated that groundwater discharge to streams carried contaminants such as nitrate, pesticides, wastewater compounds, and other contaminants. Radionuclides, including radium-226, radium-228, radium-224, and radon-222, and gross alpha-particle activity were measured in groundwater at levels above established and proposed drinking-water standards in some geologic units, particularly in quartzite and quartzite schists. Arsenic concentrations above drinking-water standards were measured in a few samples and were most likely to occur in groundwater in the shales and sandstones in the northern part of the county. Other potential natural hazards, such as lead from aquifer materials or leached from plumbing because of pH, were present in concentrations above drinking-water standards infrequently (less than 10 percent of samples). Limited temporal sampling suggested that chloride concentrations in groundwater increased in the county since the program began in 1980 through 2008, reflecting increasing population and urbanization in that period.

  17. Some Examples of the Relations Between Processing and Damage Tolerance

    Science.gov (United States)

    Nettles, Alan T.

    2012-01-01

    Most structures made of laminated polymer matrix composites (PMCs) must be designed to some damage tolerance requirement that includes foreign object impact damage. Thus from the beginning of a part s life, impact damage is assumed to exist in the material and the part is designed to carry the required load with the prescribed impact damage present. By doing this, some processing defects may automatically be accounted for in the reduced design allowable due to these impacts. This paper will present examples of how a given level of impact damage and certain processing defects affect the compression strength of a laminate that contains both. Knowledge of the impact damage tolerance requirements, before processing begins, can broaden material options and processing techniques since the structure is not being designed to pristine properties.

  18. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China.

    Science.gov (United States)

    Li, Peiyue; Tian, Rui; Xue, Chenyang; Wu, Jianhua

    2017-05-01

    Groundwater quality research is extremely important for supporting the safety of the water supply and human health in arid and semi-arid areas of China. This review article was constructed to report the latest research progress of groundwater quality in western China where groundwater quality is undergoing fast deterioration because of fast economic development and extensive anthropogenic activities. The opportunities brought by increasing public awareness of groundwater quality protection were also highlighted and discussed. To guide and promote further development of groundwater quality research in China, especially in western China, ten key groundwater quality research fields were proposed. The review shows that the intensification of human activities and the associated impacts on groundwater quality in China, especially in western China, has made groundwater quality research increasingly important, and has caught the attention of local, national, and international agencies and scholars. China has achieved some progress in groundwater quality research in terms of national and regional laws, regulations, and financial supports. The future of groundwater quality research in China, especially in western China, is promising reflected by the opportunities highlighted. The key research fields proposed in this article may also inform groundwater quality protection and management at the national and international level.

  19. Groundwater Quality Assessment in the Upper East Region of Ghana

    Science.gov (United States)

    Apambire, W. B.

    2001-05-01

    In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high

  20. Geographical Information System Techniques for Evaluation of Groundwater Quality

    Directory of Open Access Journals (Sweden)

    Shahram Ashraf

    2011-01-01

    Full Text Available Problem statement: The present paper tries to assess groundwater suitability for irrigation purpose in Damghan plain (5400 ha. Approach: Twenty four water samples were collected from the active wells. Parameters such as Electrical Conductivity (EC, pH, Total Dissolved Solids (TDS, were recorded in the field and major anions and cations (Ca2+, Mg2+, K+, Na+, CO32-, HCO3-, Cl-, SO42- and NO3- were analyzed in the laboratory. The data of water wells were imported into the GIS software and the different water quality maps were produced using point data. Then Suitability index of groundwater quality determined by overlaying of water quality maps. Results: Suitability index values revealed that the ground water in Amin Abad, Abdi, Abd Abad, Nasr Abad and parts of Shams Abad villages of study area had "Suitable" quality with the suitability index range between 75-100 and therefore can be used for irrigation usage. Suitability index of the groundwater in Hasnie, Gani Abad and parts of Shams Abad villages were "Moderate" quality with the range between 35-70 and Abas Abad, Abir Abad and Shaman villages had "unsuitable" quality and cannot be used for irrigation purposes. In respect of all evaluating criteria, villages of study areas that had "Suitable" and Moderate quality could safely be used for longterm irrigation purposes. Conclusion: The present study demonstrated high efficiency for GIS to analyze complex spatial data and groundwater quality suitability.

  1. Assessment of Groundwater Quality of Ilorin Metropolis using Water ...

    African Journals Online (AJOL)

    Akorede

    groundwater samples from Ilorin metropolis, Nigeria, using the water quality index ... index to represent gradation in water quality was first ... defined as a rating reflecting the composite influence of a ... the susceptibility of water resources to atmospheric pollutant .... are largely undifferentiated and cover about 50% of the.

  2. Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana

    Science.gov (United States)

    Anku, Y.S.; Banoeng-Yakubo, B.; Asiedu, D.K.; Yidana, S.M.

    2009-01-01

    Hydrochemical data are presented for groundwater samples, collected from fractured aquifers in parts of northern Ghana. The data was collected to assess the groundwater suitability for domestic and agricultural use. Results of the study reveal that the pH of the groundwater in the area is slightly acidic to slightly alkaline. The electrical conductivity values, total dissolved solids (TDS) values and calcium, magnesium and sodium concentrations in the groundwater are generally below the limit set by the WHO for potable water supply. On the basis of activity diagrams, groundwater from the fractured aquifers appears to be stable within the montmorillonite field, suggesting weathering of silicate minerals. An inverse distance weighting interpolator with a power of 2 was applied to the data points to produce prediction maps for nitrate and fluoride. The distribution maps show the presence of high nitrate concentrations (50-194??mg/l) in some of the boreholes in the western part of the study area indicating anthropogenic impact on the groundwater. Elevated fluoride level (1.5-4??mg/l), higher than the WHO allowable fluoride concentration of 1.5, is recorded in the groundwater underlying the northeastern part of the study area, more specifically Bongo and its surrounding communities of the Upper East region. Results of this study suggest that groundwater from the fractured aquifers in the area exhibit low sodicity-low salinity (S1-C1), low sodicity-medium salinity (S1-C2) characteristics [United States Salinity Laboratory (USSL) classification scheme]. All data points from this study plot within the 'Excellent to good' category on a Wilcox diagram. Groundwater in this area thus appears to provide irrigation water of excellent quality. The hydrochemical results indicate that, although nitrate and fluoride concentrations in some boreholes are high, the groundwater in the study area, based on the parameters analyzed, is chemically potable and suitable for domestic and

  3. Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana

    Science.gov (United States)

    Anku, Yvonne S.; Banoeng-Yakubo, Bruce; Asiedu, Daniel K.; Yidana, Sandow M.

    2009-09-01

    Hydrochemical data are presented for groundwater samples, collected from fractured aquifers in parts of northern Ghana. The data was collected to assess the groundwater suitability for domestic and agricultural use. Results of the study reveal that the pH of the groundwater in the area is slightly acidic to slightly alkaline. The electrical conductivity values, total dissolved solids (TDS) values and calcium, magnesium and sodium concentrations in the groundwater are generally below the limit set by the WHO for potable water supply. On the basis of activity diagrams, groundwater from the fractured aquifers appears to be stable within the montmorillonite field, suggesting weathering of silicate minerals. An inverse distance weighting interpolator with a power of 2 was applied to the data points to produce prediction maps for nitrate and fluoride. The distribution maps show the presence of high nitrate concentrations (50-194 mg/l) in some of the boreholes in the western part of the study area indicating anthropogenic impact on the groundwater. Elevated fluoride level (1.5-4 mg/l), higher than the WHO allowable fluoride concentration of 1.5, is recorded in the groundwater underlying the northeastern part of the study area, more specifically Bongo and its surrounding communities of the Upper East region. Results of this study suggest that groundwater from the fractured aquifers in the area exhibit low sodicity-low salinity (S1-C1), low sodicity-medium salinity (S1-C2) characteristics [United States Salinity Laboratory (USSL) classification scheme]. All data points from this study plot within the ‘Excellent to good’ category on a Wilcox diagram. Groundwater in this area thus appears to provide irrigation water of excellent quality. The hydrochemical results indicate that, although nitrate and fluoride concentrations in some boreholes are high, the groundwater in the study area, based on the parameters analyzed, is chemically potable and suitable for domestic and

  4. Modeling of Groundwater Quantity and Quality Management, Nile Valley, Egypt

    Science.gov (United States)

    Owlia, R.; Fogg, G. E.

    2012-12-01

    Groundwater levels have been rising in the Luxor area of Egypt due to increased agricultural irrigation following the construction of the Aswan High Dam (AHD) in 1970. This has led to soil and groundwater salinity problems caused by increasing evapotranspiration from shallower water table, as well as the degradation of historical monuments whose foundations are weakening by capillary rise of water into the columns and stonework. While similar salinity problems exist elsewhere in the world (e.g., San Joaquin Valley of California), we hypothesize that as long as groundwater discharge to the Nile River continues and serves as a sink for the salt, the regional salt balance will be manageable and will not lead to irreversible salinization of soils. Further, we hypothesize that if a groundwater system such as this one becomes overdrafted, thereby cutting off groundwater discharge to the River, the system salt balance will be less manageable and possibly non-sustainable. With groundwater flow modeling we are investigating approaches for managing the irrigation and groundwater levels so as to eliminate water stresses on Egyptian monuments and antiquities. Consequences of possible actions for managing the water table through groundwater pumping and alternative irrigation practices will be presented. Moreover, through the use of high resolution modeling of system heterogeneity, we will simulate the long term salt balance of the system under various scenarios, including the overdraft case. The salt source will be a function of groundwater discharge to the surface via bare-soil evaporation and crop transpiration. The built-in heterogeneity will account for dispersion, fast transport in connected media and slow mass transfer between aquifer and aquitard materials. Key Words: Groundwater, modeling, water quality, sustainability, salinity, irrigated agriculture, Nile aquifer.

  5. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  6. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    Science.gov (United States)

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains.

  7. Temporal changes in groundwater quality of the Saloum coastal aquifer

    Directory of Open Access Journals (Sweden)

    Ndeye Maguette Dieng

    2017-02-01

    High variation in rainfall between the 2 reference years (2003 and 2012 also changes chemical patterns in the groundwater. Chemical evolution of the groundwater is geographically observed and is due to a combination of dilution by recharge, anthropic contamination and seawater intrusion. The results of environmental isotopes (δ18O, δ2H compared with the local meteoric line indicate that the groundwater has been affected by evaporation processes before and during infiltration. The results also clearly indicate mixing with saltwater and an evolution towards relative freshening between 2003 and 2012 in some wells near the Saloum River.

  8. Assessment of groundwater quality status in Amini Island of Lakshadweep.

    Science.gov (United States)

    Prasad, N B Narasimha; Mansoor, O A

    2005-01-01

    Amini Island is one of the 10 inhabited islands in Lakshadweep. Built on the ancient volcanic formations Lakshadweep is the the tiniest Union Territory of India. The major problem experienced by the islanders is the acute scarcity of fresh drinking water. Groundwater is the only source of fresh water and the availability of the same is very restricted due to peculiar hydrologic, geologic, geomorphic and demographic features. Hence, proper understanding of the groundwater quality, with reference to temporal and spatial variations, is very important to meet the increasing demand and also to formulate future plans for groundwater development. In this context, the assessment of groundwater quality status was carried out in Amini Island. All the available information on water quality, present groundwater usage pattern, etc. was collected and analyzed. Total hardness and salinity are found to be the most critical water quality parameters exceeding the permissible limits of drinking water standards. Spatial variation diagrams of salinity and hardness have been prepared for different seasons. It is also observed from these maps that the salinity and hardness are comparatively better on the lagoon side compared to the seaside. These maps also suggest that the salinity and the hardness problem is more in the southern tip compared to northern portion.

  9. Assessment of groundwater quality data for the Turtle Mountain Indian Reservation, Rolette County, North Dakota

    Science.gov (United States)

    Lundgren, Robert F.; Vining, Kevin C.

    2013-01-01

    The Turtle Mountain Indian Reservation relies on groundwater supplies to meet the demands of community and economic needs. The U.S. Geological Survey, in cooperation with the Turtle Mountain Band of Chippewa Indians, examined historical groundwater-level and groundwater-quality data for the Fox Hills, Hell Creek, Rolla, and Shell Valley aquifers. The two main sources of water-quality data for groundwater were the U.S. Geological Survey National Water Information System database and the North Dakota State Water Commission database. Data included major ions, trace elements, nutrients, field properties, and physical properties. The Fox Hills and Hell Creek aquifers had few groundwater water-quality data. The lack of data limits any detailed assessments that can be made about these aquifers. Data for the Rolla aquifer exist from 1978 through 1980 only. The concentrations of some water-quality constituents exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. No samples were analyzed for pesticides and hydrocarbons. Numerous water-quality samples have been obtained from the Shell Valley aquifer. About one-half of the water samples from the Shell Valley aquifer had concentrations of iron, manganese, sulfate, and dissolved solids that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. Overall, the data did not indicate obvious patterns in concentrations.

  10. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    Science.gov (United States)

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.

  11. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Floyd N.; Chou, Charissa J.

    2000-08-04

    As a result of the most recent recalculation one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41, triggering a change from detection monitoring to groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents (i.e., sodium, calcium, magnesium, chloride, sulfate, and bicarbonate). Nitrate, chromium, and technetium-99 are present and are increasing; however, they are significantly below their drinking waster standards. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the waste management area are a result of surface water infiltration in the southern portion of the facility. There is evidence for both upgradient and waste management area sources for observed nitrate concentrations. There is no indication of an upgradient source for the observed chromium and technetium-99.

  12. Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang; Prem. Parajuli

    2013-01-01

    Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land...

  13. Seasonal variations of some physicochemical parameters of groundwater in crude oil flow stations

    Directory of Open Access Journals (Sweden)

    Inengite A.K.

    2013-01-01

    Full Text Available Groundwater quality monitoring of some oil locations in the Niger Delta were investigated in order to establish the influence of oil production and storage activities on the groundwater quality of these areas. Water samples were collected from groundwater monitoring boreholes, monthly for twenty four months, during the operational phase of the facilities and evaluated. Analytical techniques employed were those specified by the Department of Petroleum Resources and American Public Health Association. The physicochemical parameters analysed were temperature, pH, electrical conductivity, turbidity, chloride, total hardness, nitrate, sulphate, phosphate and dissolved oxygen. Results obtained indicated that temperature, showed no significant difference for both seasons at P<0.05 using the students t- test, while conductivity, chloride and total hardness showed significantly higher values in the dry than in the rainy season. While pH, nitrate, sulphate, phosphate, dissolved oxygen (DO and turbidity showed higher values in the rainy than in the dry season. The mean values ranged from 24.0 to 27.90C for temperature which showed no significant difference between rainy and dry season at P<0.05 confidence limit. pH values for the groundwater ranged from 4.83 to 7.99, indicating that some locations were more acidic than the FMENV and WHO standards of 6.5 to 8.5. Conductivity ranged from 38.22 to 241.776µS/cm, chloride 7.14 to 39.17mg/l, DO 1.98 to 6.23mg/l, turbidity 0.11 to 5.45NTU and total hardness 9.06 to 64.75mg/l. The nutrient values of the samples ranged from 0.75 to 33.64mg/l for sulphate, 0.22 to 3.84mg/l for phosphate and 0.11 to 3.54mg/l for nitrate. All these were within permissible limits for domestic water acceptability. Although, the concentration of some parameters fell within the acceptable limits, these sources of water may be unacceptable for potable and industrial uses without treatment.

  14. Factors influencing groundwater quality: towards an integrated management approach.

    Science.gov (United States)

    De Giglio, O; Quaranta, A; Barbuti, G; Napoli, C; Caggiano, G; Montagna, M T

    2015-01-01

    The safety of groundwater resources is a serious issue, particularly when these resources are the main source of water for drinking, irrigation and industrial use in coastal areas. In Italy, 85% of the water used by the public is of underground origin. The aim of this report is to analyze the main factors that make groundwater vulnerable. Soil characteristics and filtration capacity can promote or hinder the diffusion of environmental contaminants. Global climate change influences the prevalence and degree of groundwater contamination. Anthropic pressure causes considerable exploitation of water resources, leading to reduced water availability and the progressive deterioration of water quality. Management of water quality will require a multidisciplinary, dynamic and practical approach focused on identifying the measures necessary to reduce contamination and mitigate the risks associated with the use of contaminated water resources.

  15. Groundwater Quality Assessment in Jazan Region, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Adel M. Alhababy

    2015-04-01

    Full Text Available Jazan province is an arid area, located at the southwestern part of Saudi Arabia along the Red Sea coast. Groundwater is the only resource of drinking water in this area; thus, its suitability for drinking and domestic uses is of public and scientific concern. In this study, groundwater samples were collected from 23 sites in Jazan area during fall 2014; measurements and analysis of water quality parameters including pH, total dissolved solids TDS, turbidity, hardness, alkalinity, ammonia, nitrite, nitrate, sulfate, calcium, magnesium, chloride, iron and fluoride were carried out with references to WHO and Gulf Standardization Organization GSO. TDS values exceeded the permissible limit of 600 mg/l in 30.4% of samples, total hardness values exceeded the permissible limits of 300 mg/l in 34.8% of samples, and nitrate concentration exceeded the permissible limit of 50 mg/l in only one sample. However, the concentrations of investigated parameters in the groundwater samples were within the permissible limits of WHO. Our results showed that the water quality of groundwater in Jazan area is acceptable and could be used safely for drinking and domestic purposes. However, a special attention should be paid to the concentration of TDS and nitrate in groundwater in future studies.

  16. Implications of groundwater quality to corrosion problem and urban ...

    African Journals Online (AJOL)

    Bheema

    interaction with subsurface water. Being the major ... dealt with hydrogeochemistry but none on the impact of water quality on water pipes and ...... contamination of surface and subsurface water and saline residues in soils. ... for water supply(lifting, transportation and distribution). ..... Groundwater in the Urban Environment.

  17. Effects of Oil Spillage on Groundwater Quality In Nigeria

    Directory of Open Access Journals (Sweden)

    Nwachukwu A. N

    2014-06-01

    Full Text Available The purpose of the study was to ascertain the effect of oil spillage on groundwater quality in the oil producing Niger Delta region of Nigeria. The study was carried out in Abacheke community in Egbema Local Government area, Imo state.Water Samples were collected forquality analysis in boreholes/wells at three locations A, B, C. Locations A and B are areas with history of spillage while C is a location downstream with no history of oil spillage. The following parameters were tested for; physical parameters (temperature and turbidity, inorganic constituents (Conductivity, PH, TDS, DO, BOD, Mg, and P and organic constituents (Total hydro-carbonThe results showed the some parameters exceeded the WHO permissible levels. Comparatively, Sample C had a lower value of hydrocarbon content (0.6 mg/l while Samples A and B values were 0.9mg/l and 1.1mg/l respectively.The Turbidityvalue for sample C was 5 NTU compared to values of 14 and 18 NTU from samples A and B respectively. Results of PH test also showed that samples A and B were more acidic (5.56 and 5.98 respectively than Sample C. The higher level of Turbidity and Total hydro-carbon for samples A and B isan indication of oil pollution which is attributable to incessant spillage. It is therefore necessary that appropriate treatment be carried out on the water samples to avoid adverse health effects.We also recommend that comprehensive groundwater monitoring should be carried out in the Niger Delta area and cleanup exercises carried outwhenever there is an oil spill to prevent infiltration of oil into the ground water.

  18. Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks.

    Science.gov (United States)

    Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R

    2013-04-01

    Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.

  19. Groundwater quality in the Chemung River Basin, New York, 2008

    Science.gov (United States)

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    The second groundwater quality study of the Chemung River Basin in south-central New York was conducted as part of the U.S. Geological Survey 305(b) water-quality-monitoring program. Water samples were collected from five production wells and five private residential wells from October through December 2008. The samples were analyzed to characterize the chemical quality of the groundwater. Five of the wells are screened in sand and gravel aquifers, and five are finished in bedrock aquifers. Two of these wells were also sampled for the first Chemung River Basin study of 2003. Samples were analyzed for 6 physical properties and 217 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and four types of bacterial analyses. Results of the water-quality analyses for individual wells are presented in tables, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were: sodium (one sample), total dissolved solids (one sample), aluminum (one sample), iron (one sample), manganese (four samples), radon-222 (eight samples), trichloroethene (one sample), and bacteria (four samples). The pH of all samples was typically neutral or slightly basic (median 7.5); the median water temperature was 11.0 degrees Celsius (?C). The ions with the highest median concentrations were bicarbonate (median 202 milligrams per liter [mg/L]) and calcium (median 59.0 mg/L). Groundwater in the study area is moderately hard to very hard, but more samples were hard or very hard (121 mg/L as calcium carbonate (CaCO3) or greater) than were moderately hard (61-120 mg/L as Ca

  20. Groundwater quality characterization around Jawaharnagar open dumpsite, Telangana State

    Science.gov (United States)

    Unnisa, Syeda Azeem; Zainab Bi, Shaik

    2017-03-01

    In the present work groundwater samples were collected from ten different data points in and around Jawaharnagar municipal dumpsite, Telangana State Hyderabad city from May 2015 to May 2016 on monthly basis for groundwater quality characterization. Pearson's correlation coefficient (r) value was determined using correlation matrix to identify the highly correlated and interrelated water quality standards issued by Bureau of Indian Standard (IS-10500:2012). It is found that most of the groundwater samples are above acceptable limits and are not potable. The chemical analysis results revealed that pH range from 7.2 to 7.8, TA 222 to 427 mg/l, TDS 512 to 854 mg/l, TH 420 to 584 mg/l, Calcium 115 to 140 mg/l, Magnesium 55 to 115 mg/l, Chlorides 202 to 290 mg/l, Sulphates 170 to 250 mg/l, Nitrates 6.5 to 11.3 mg/l, and Fluoride 0.9 to 1.7 mg/l. All samples showed higher range of physicochemical parameters except nitrate content which was lower than permissible limit. Highly positive correlation was observed between pH-TH (r = 0.5063), TA-Cl- (r = 0.5896), TDS-SO4 - (r = 0.5125), Mg2+-NO3 - (r = 0.5543) and Cl--F- (r = 0.7786). The groundwater samples in and around Jawaharnagar municipal dumpsite implies that groundwater samples were contaminated by municipal leachate migration from open dumpsite. The results revealed that the systematic calculations of correlation coefficient between water parameters and regression analysis provide qualitative and rapid monitoring of groundwater quality.

  1. Groundwater quality in Maharashtra, India: focus on nitrate pollution.

    Science.gov (United States)

    Gupta, Indrani; Salunkhe, Abhaysinh; Rohra, Nanda; Kumar, Rakesh

    2011-10-01

    Groundwater Survey and Development Agency (GSDA), Central Ground Water Board (CGWB) and Maharashtra Pollution Control Board (MPCB) have been carrying out groundwater quality monitoring at about 1407 monitoring locations in various districts of Maharashtra state in India. The groundwater quality data for pH, TDS, total hardness, sulphate, flouride and nitrate were compared with BIS: 10500:2004-2005 standards for drinking purpose. The results show that nitrate pollution is becoming more prevalent in groundwater of Maharashtra. Water quality data during the period 2007-2009 show that 544 locations out of 1407 locations exceeded 45 mgl(-1), the allowable NO3 level for drinking water. About 227 locations exceeded nitrate level beyond 100 mgl(-1). At 87 talukas in 23 districts of Maharashtra the NO3 levels exceeded the standard in all samples monitored during 2007-2009. The Buldana district with highest locations (27) had nitrate above 100 mgl(-1) followed by Amravati (24) and Akola (20) districts. At 7 talukas in 4 districts, fluoride was found above permissible limit of 1.5 mgl(-1), 100% of the time. 2 talukas in 2 districts of Maharashtra showed 100% non compliance of pH as per BIS standard of 6.5-8.5 mgl(-1). The districts having good to excellent quality of groundwater were Bhandara, Gondia, Kolhapur, Mumbai city, Mumbai Suburban, Nandurbar, Raigad, Ratnagiri, Satara, Sindhudurg, Thane and Washim. Vaijapur taluka in Aurangabad, Sinnar in Nashik and Kalambh taluka in Osmanabad have very poor water quality. Paithan taluka in Aurangabad, Shegaon taluka at Buldhana district, Amolner taluka at Jalgaon district and Jafrabad in Jalna district have water unsuitable for drinking.

  2. Assessment of spatial structure of groundwater quality variables based on the entropy theory

    Directory of Open Access Journals (Sweden)

    Y. Mogheir

    2003-01-01

    Full Text Available Fundamental to the spatial sampling design of a groundwater quality monitoring network is the spatial structure of groundwater quality variables. The entropy theory presents an alternative approach to describe this variability. A case study is presented which used groundwater quality observations (13 years; 1987-2000 from groundwater domestic wells in the Gaza Strip, Palestine. The analyses of the spatial structure used the following variables: Electrical Conductivity (EC, Total Dissolved Solids (TDS, Calcium (Ca, Magnesium (Mg, Sodium (Na, Potassium (K, Chloride (Cl, Nitrate (NO3, Sulphate (SO4, alkalinity and hardness. For all these variables the spatial structure is described by means of Transinformation as a function of distance between wells (Transinformation Model and correlation also as a function of distance (Correlation Model. The parameters of the Transinformation Model analysed were: (1 the initial value of the Transinformation; (2 the rate of information decay; (3 the minimum constant value; and (4 the distance at which the Transinformation Model reaches its minimum value. Exponential decay curves were fitted to both models. The Transinformation Model was found to be superior to the Correlation Model in representing the spatial variability (structure. The parameters of the Transinformation Model were different for some variables and similar for others. That leads to a reduction of the variables to be monitored and consequently reduces the cost of monitoring. Keywords: transinformation, correlation, spatial structure, municipal wells, groundwater monitoring, entropy

  3. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    Science.gov (United States)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards

  4. Application of optimisation techniques in groundwater quantity and quality management

    Indian Academy of Sciences (India)

    Amlan Das; Bithin Datta

    2001-08-01

    This paper presents the state-of-the-art on application of optimisation techniques in groundwater quality and quantity management. In order to solve optimisation-based groundwater management models, researchers have used various mathematical programming techniques such as linear programming (LP), nonlinear programming (NLP), mixed-integer programming (MIP), optimal control theory-based mathematical programming, differential dynamic programming (DDP), stochastic programming (SP), combinatorial optimisation (CO), and multiple objective programming for multipurpose management. Studies reported in the literature on the application of these methods are reviewed in this paper.

  5. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  6. Identification of dangerous fibers: some examples in Northern Italy

    Science.gov (United States)

    Zanetti, Giovanna; Marini, Paola; Giorgis, Ilaria

    2016-04-01

    The presence of asbestiform minerals has to be foreseen in the planning of infrastructural activities: Asbestos can be a component of sedimentary rocks or of mafic and ultra mafic metamorphic rocks. Surveys and core drilling, in addition to providing important information on the quality of the rock and its geotechnical characteristics, allow for a prediction of the presence of asbestiform minerals in the areas affected by mining or infrastructural activities. During the excavation, workers can be exposed to the asbestos risk, therefore, the control of the air quality and of the excavated materials are fundamental for the safety of involved people. In this work some problems we met in the analysis of airborne filters and bulk samples from sites in northern Italy are presented. The asbestos fibers present in rocks as accessory minerals, are often different in habit and dimension from the well-known asbestos fibers used as industrial minerals and moreover can be erroneously identified as minerals morphologically and chemically similar present in the same rock or environment. In the case of tunnel muck it could be contaminated by substances used for the excavation that could modify colours and optical properties of asbestos minerals. In the PCOM (Phase Contrast Optical Microscope) analysis chrysotile, sepiolite and antigorite, due to their different refraction index, when the fibers have dimension > 0,5 micron and aren't contaminated by lubricant can be easely identified even if the morphology of chrysotile is very similar to that of sepiolite. In Electron Scanning Microscope (SEM) the discrimination between chrysotile and antigorite on the airborne filters is not always possible because the fibers of thin dimensions show similar habit and spectrum. In the case of the tremolite amphibole, morphology changes from prismatic to fibrous depending on its origin (p.eg. Monastero, Val Grana, Verrayes, Brachiello). Both prismatic and asbestiform tremolite (Gamble and Gibbs

  7. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    FN Hodges; CJ Chou

    2000-08-04

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  8. Virological control of groundwater quality using biomolecular tests.

    Science.gov (United States)

    Carducci, A; Casini, B; Bani, A; Rovini, E; Verani, M; Mazzoni, F; Giuntini, A

    2003-01-01

    specificity tests have been carried out in the presence of some of the commoner microorganisms. The most efficient, sensitive and specific protocols were used to test 35 x 100L deep groundwater samples. Sample concentrates were split with one part treated with chloroform and analysed by cell culture (BGM and Frp/3, derived from FrHK/4, cells) and the other tested by RT-PCR for HAV, EV and SRSV. Results demonstrated the high efficiency of the classic and QIAamp methods. Microcon-100 did not increase the sensitivity of the technique used. The highest sensitivity was observed for RT-PCR with specific primers for SRSV and for nested RT-PCR for HAV. One sample showed a cytopathic effect, not confirmed at the third subculture, while the RT-PCR allowed the detection of echovirus 7. Cell culture did not allow detection of the majority of the enteric viruses while PCR gave sensitive, specific and rapid detection of a range of agents in the same samples. Even if it was impossible to fix a virological quality standard, it would be necessary to find a viral indicator in order to achieve a complete preventive check which would be particularly useful in some cases (e.g. water never used before, after pollution accidents, for seasonal checking).

  9. Groundwater: Quality Levels and Human Exposure, SW Nigeria

    Directory of Open Access Journals (Sweden)

    Olusola Adeyemi

    2017-04-01

    Full Text Available Groundwater serves as a source of freshwater for agricultural, industrial and domestic purposes and it accounts for about 42%, 27% and 36% respectively. As it remains the only source of all-year-round supply of freshwater globally, it is of vital importance as regards water security, human survival and sustainable agriculture. The main goal of this study is to identify the main cause-effect relationship between human activities and the state of groundwater quality using a communication tool (the DPSIR Model; Drivers, Pressures, State, Impact and Response. A total of twenty-one samples were collected from ten peri-urban communities scattered across three conterminous Local Government Areas in Southwestern Nigeria. Each of the groundwater samples was tested for twelve parameters - total dissolved solids, pH, bicarbonate, chloride, lead, electrical conductivity, dissolved oxygen, nitrate, sulphate, magnesium and total suspended solids. The study revealed that the concentrations of DO and Pb were above threshold limits, while pH and N were just below the threshold and others elements were within acceptable limits based on Guidelines for Drinking Water Quality and Nigeria Standard for Drinking Water Quality. The study revealed that groundwater quality levels from the sampled wells are under pressure leading to reduction in the amount of freshwater availability. This is a first-order setback in achieving access to freshwater as a sustainable development goal across Less Developed Communities (LDCs globally. To combat this threat, there is the need for an integrated approach in response towards groundwater conservation and sustainability by all stakeholders.

  10. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    Science.gov (United States)

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  11. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER ...

    African Journals Online (AJOL)

    2013-12-31

    Dec 31, 2013 ... measurement units in a single metric and its effectiveness as a communication tool. ... Fair. Water quality is usually protected but occasionally threatened or ... Electrical Conductivity (EC) value is an index to represent the total.

  12. Seasonal Variation in Groundwater Quality of Yavatmal District, India

    Directory of Open Access Journals (Sweden)

    P. N. Rajankar

    2011-01-01

    Full Text Available Seventy samples of groundwater were collected from different parts of Yavatmal District, India and analyzed. The results of this analysis were compared with the WHO water quality standards. The groundwater quality in this district showed slightly seasonal variation while the data computed in Water Quality Index (WQI calculator. The WQI was varied from 73.0 to 80.2 during pre monsoon and 68.7 to 72.4 in post monsoon season, which showed slightly seasonal variation. This may be attributed to surface runoff and percolation process. The results showed that, the water in these areas are bacteriologically not safe and need treatment before it is used for drinking.

  13. The assessment of groundwater geochemistry of some wells in Rafsanjan plain, Iran

    Directory of Open Access Journals (Sweden)

    Milad Mirzaei Aminiyan

    2016-07-01

    Full Text Available Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples analyzed. The results showed that four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity and based on Wilcox diagram have critical status. The analysis suggested that more than 87% of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.

  14. Status and understanding of groundwater quality in the North San Francisco Bay groundwater basins, 2004

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher

    2010-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or

  15. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  16. Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, western Iran

    Science.gov (United States)

    Jalali, Mohsen

    2007-06-01

    Study of the groundwater samples from Tajarak area, western Iran, was carried out in order to assess their chemical compositions and suitability for agricultural purposes. All of the groundwaters are grouped into two categories: relatively low mineralized of Ca-HCO3 and Na-HCO3 types and high mineralized waters of Na-SO4 and Na-Cl types. The chemical evolution of groundwater is primarily controlled by water-rock interactions mainly weathering of aluminosilicates, dissolution of carbonate minerals and cation exchange reactions. Calculated values of pCO2 for the groundwater samples range from 2.34 × 10-4 to 1.07 × 10-1 with a mean value of 1.41 × 10-2 (atm), which is above the pCO2 of the earth’s atmosphere (10-3.5). The groundwater is oversaturated with respect to calcite, aragonite and dolomite and undersaturated with respect to gypsum, anhydrite and halite. According to the EC and SAR the most dominant classes (C3-S1, C4-S1 and C4-S2) were found. With respect to adjusted SAR (adj SAR), the sodium (Na+) content in 90% of water samples in group A is regarded as low and can be used for irrigation in almost all soils with little danger of the development of harmful levels of exchangeable Na+, while in 40 and 37% of water samples in group B the intensity of problem is moderate and high, respectively. Such water, when used for irrigation will lead to cation exchange and Na+ is adsorbed on clay minerals while calcium (Ca2+) and magnesium (Mg2+) are released to the liquid phase. The salinity hazard is regarded as medium to high and special management for salinity control is required. Thus, the water quality for irrigation is low, providing the necessary drainage to avoid the build-up of toxic salt concentrations.

  17. An attribute recognition model based on entropy weight for evaluating the quality of groundwater sources

    Institute of Scientific and Technical Information of China (English)

    CHEN Suo-zhong; WANG Xiao-jing; ZHAO Xiu-jun

    2008-01-01

    In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people's needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.

  18. Relationship of Shallow Groundwater Quality to Hydraulic Fracturing Activities in Antrim and Kalkaska Counties, MI

    Science.gov (United States)

    Stefansky, J. N.; Robertson, W. M.; Chappaz, A.; Babos, H.; Israel, S.; Groskreutz, L. M.

    2015-12-01

    Hydraulic fracturing (fracking) of oil and natural gas (O&G) wells is a widely applied technology that can increase yields from tight geologic formations. However, it is unclear how fracking may impact shallow groundwater; previous research into its effects has produced conflicting results. Much of the worry over potential impacts to water quality arises from concerns about the produced water. The water produced from O&G formations is often salty, contains toxic dissolved elements, and can be radioactive. If fracking activities cause or increase connectivity between O&G formations and overlying groundwater, there may be risks to aquifers. As one part of a groundwater quality study in Antrim and Kalkaska Counties, MI, samples were collected from the unconfined glacial aquifer (3-300 m thick) and produced water from the underlying Antrim formation, a shallow (180-670 m deep) natural gas producing black shale. Groundwater samples were collected between 200 to 10,000 m distance from producing Antrim gas wells and from a range of screened intervals (15-95 m). Samples were analyzed for major constituents (e.g., Br, Cl), pH, conductivity, and dissolved oxygen (DO). The specific conductance of groundwater samples ranged from 230-1020 μS/cm; DO ranged from 0.4-100% saturation. Preliminary results show a slight inverse correlation between specific conductance and proximity to producing Antrim wells. The observed range of DO saturation in glacial aquifer groundwater appears to be related to both screened depth of the water wells and proximity to Antrim wells. During sampling, some well owners expressed concerns about the effects of fracking on groundwater quality and reported odd smells and tastes in their water after O&G drilling occurred near their homes. The results of this study and reported observations provide evidence to suggest a potential hydrogeological connection between the Antrim formation and the overlying glacial aquifer in some locations; it also raises

  19. Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007

    Science.gov (United States)

    McFarland, E. Randolph

    2010-01-01

    A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater

  20. On Childhood and the Logic of Difference: Some Empirical Examples

    Science.gov (United States)

    Dahlbeck, Johan

    2012-01-01

    This article argues that universal documents on children's rights can provide illustrative examples as to how childhood is identified as a unity using difference as an instrument. Using Gille Deleuze's theorising on difference and sameness as a framework, the article seeks to relate the children's rights project with a critique of representation.…

  1. On Childhood and the Logic of Difference: Some Empirical Examples

    Science.gov (United States)

    Dahlbeck, Johan

    2012-01-01

    This article argues that universal documents on children's rights can provide illustrative examples as to how childhood is identified as a unity using difference as an instrument. Using Gille Deleuze's theorising on difference and sameness as a framework, the article seeks to relate the children's rights project with a critique of representation.…

  2. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran.

    Science.gov (United States)

    Nematollahi, M J; Ebrahimi, P; Razmara, M; Ghasemi, A

    2016-01-01

    Hydrogeochemical investigations of groundwater in Torbat-Zaveh plain have been carried out to assess the water quality for drinking and irrigation purposes. In this study, 190 groundwater samples were collected and analyzed for physicochemical parameters and major ion concentrations. The abundance of major cations and anions was in the following order: Na(+) > Mg(2+) > Ca(2+) > K(+), and Cl(-) > [Formula: see text] > [Formula: see text] > [Formula: see text]. As a result, alkaline element (Na(+)) exceeds alkaline earth elements (Mg(2+) and Ca(2+)), and strong acids (Cl(-) and [Formula: see text]) dominate weak acids ([Formula: see text] and [Formula: see text]) in majority of the groundwater samples. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na(+), Mg(2+), Ca(2+), Cl(-) and [Formula: see text]. The results display that rock-weathering interactions and ion-exchange processes play important role in controlling groundwater chemistry. Saturation index values also indicate that water chemistry is significantly affected by carbonate minerals such as calcite, aragonite and dolomite. US Salinity Laboratory(USSL) and Wilcox diagrams together with permeability index values reveal that most of the groundwater samples are suitable for irrigation purpose. However, in some regions, the water samples do not indicate required irrigational quality.

  3. Prospects and quality indices for groundwater development in Ibadan metropolis, southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Ajibade, O.M.

    2013-03-01

    Full Text Available An integrated geophysical and hydrogeochemical studies were conducted in part of Ibadan metropolis, Southwestern Nigeria to investigate the groundwater potential and quality for sustainable development. Interpreted results of vertical electrical sounding data revealed three to four geo-electric layers; top soil (22.1-441.4 Ωm, lateritic horizon (402.1-712.2 Ωm, clayey/sandyclay layer (2.95-66.0 Ωm and weathered/fractured bedrock (66.3-1056.7 Ωm. Stacked overburden isopach and basement isoresitivity maps revealed few areas with thick overburden and fractured basement, hence of apparently high groundwater prospect. Hydrogeochemical study indicates that groundwater in the study area is generally fresh, soft- moderately hard, slightly acidic and dominated by Na, Ca, Mg, Cl and HCO3 ions. The dominant hydrochemical facies is Na-Cl type with minor mixed Ca-Na-Cl and Ca-Cl types. Many of the analyzed parameters fall within recommended limits and thus, most of the groundwater in the study area are chemically suitable for drinking. A few however, recorded TDS, pH, NO3, Al, Mg and Cl concentrations above permissible levels, suggesting some concern in terms of potability. The groundwater quality for agricultural purposes was assessed using Sodium absorption ratio, permeability index and electrical conductivity values along with USSL and Wilcox diagrams, all indicating that most of the samples are excellent to good for irrigation.

  4. ASSESSMENT OF GROUNDWATER QUALITY IN SUNAMGANJ OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    F. Raihan, J. B. Alam

    2008-07-01

    Full Text Available In this study, groundwater quality in Sunamganj of Bangladesh was studied based on different indices for irrigation and drinking uses. Samples were investigated for sodium absorption ratio, soluble sodium percentage, residual sodium carbonate, electrical conductance, magnesium adsorption ratio, Kelly's ratio, total hardness, permeability index, residual sodium bi-carbonate to investigate the ionic toxicity. From the analytical result, it was revealed that the values of Sodium Adsorption Ratio indicate that ground water of the area falls under the category of low sodium hazard. So, there was neither salinity nor toxicity problem of irrigation water, so that ground water can safely be used for long-term irrigation. Average Total Hardness of the samples in the study area was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. Average total hardness of the samples was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. It was shown based on GIS analysis that the groundwater quality in Zone-1 could be categorized of "excellent" class, supporting the high suitability for irrigation. In Zone-2 and Zone-3, the groundwater quality was categorized as "risky" and "poor" respectively. The study has also made clear that GIS-based methodology can be used effectively for ground water quality mapping even in small catchments.

  5. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    Science.gov (United States)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2016-06-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  6. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    Science.gov (United States)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2017-09-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  7. Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK)

    Science.gov (United States)

    Weitowitz, Damiano C.; Maurice, Louise; Lewis, Melinda; Bloomfield, John P.; Reiss, Julia; Robertson, Anne L.

    2017-07-01

    Groundwater ecosystems comprising micro-organisms and metazoans provide an important contribution to global biodiversity. Their complexity depends on geology, which determines the physical habitat available, and the chemical conditions within it. Despite this, methods of classifying groundwater habitats using geological data are not well established and researchers have called for higher resolution habitat frameworks. A novel habitat typology for England and Wales (UK) is proposed, which distinguishes 11 geological habitats (geo-habitats) on hydrogeological principles and maps their distribution. Hydrogeological and hydrochemical data are used to determine the characteristics of each geo-habitat, and demonstrate their differences. Using these abiotic parameters, a new method to determine abiotic habitat quality is then developed. The geo-habitats had significantly different characteristics, validating the classification system. All geo-habitats were highly heterogeneous, containing both high quality habitat patches that are likely to be suitable for fauna, and areas of low quality that may limit faunal distributions. Karstic and porous habitats generally were higher quality than fractured habitats. Overall, 70% of England and Wales are covered by lower quality fractured habitats, with only 13% covered by higher quality habitats. The main areas of high quality habitats occur in central England as north-south trending belts, possibly facilitating dispersal along this axis. They are separated by low quality geo-habitats that may prevent east-west dispersal of fauna. In south-west England and Wales suitable geo-habitats occur as small isolated patches. Overall, this paper provides a new national-scale typology that is adaptable for studies in other geographic areas.

  8. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    , selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

  9. Groundwater Quality Assessment near a Municipal Landfill, Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    E.O. Longe

    2010-01-01

    Full Text Available The current research examined the level of groundwater contamination near a municipal landfill sitein Alimosho Local Government Area of Lagos State, Nigeria. Water quality parameters (physico-chemical andheavy metals of leachate and groundwater samples were analyzed. The mean concentrations of all measuredparameters except NO3G, PO4+ and CrG conform to the stipulated World Health Organization potable waterstandards and the Nigerian Standard for Drinking Water Quality. Mean concentration values for TDS, DO,NH4+, SO4+, PO4+, NO3G and ClG are 9.17 mg LG1, 3.19 mg LG1, 0.22 mg LG1, 1.60 mg LG1, 10.73 mg LG1, 38.5mg LG1 and 7.80 mg LG1 respectively. The mean concentration values for Fe, Mn, Zn and Cr- in groundwatersamples are 0.07mg LG1, 0.08mg LG1, 0.08mg LG1 and 0.44mg LG1 respectively. The current results showinsignificant impact of the landfill operations on the groundwater resource. The existing soil stratigraphy atthe landfill site consisting of clay and silty clay is deduced to have significantly influenced natural attenuationof leachate into the groundwater resource. It is however observed that in the absence of a properly designedleachate collection system, uncontrolled accumulation of leachates at the base of the landfill pose potentialcontamination risk to groundwater resource in the very near future. The research recommends an upgrade ofthe solous landfill to a standard that would guarantee adequate protection of both the surface and thegroundwater resources in the locality.

  10. Groundwater Quality Data for the Northern Sacramento Valley, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth

    2009-01-01

    to 11 percent of the wells, and the results for these samples were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples were within acceptable ranges for nearly all compounds, indicating acceptably low variability. Matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples from REDSAC were below drinking-water thresholds. Volatile organic compounds (VOC) and pesticides were detected in less than one-quarter of the samples and were generally less than a hundredth of any health-based thresholds. NDMA was detected in one grid well above the NL-CA. Concentrations of all nutrients and trace elements in samples from REDSAC wells were below the health-based thresholds except those of arsenic in three samples, which were above the USEPA maximum contaminant level (MCL-US). However

  11. A CORRELATION AND REGRESSION STUDY ON THE GROUNDWATER QUALITY IN ALIGARH CITY, UTTAR PRADESH

    Directory of Open Access Journals (Sweden)

    Ummatul Fatima

    2015-07-01

    Full Text Available Ground water is the vital source of sustenance and survival of every living organism. The present study aimed at a statistical regression analysis of Groundwater at 16 locations of Aligarh city, Uttar Pradesh. A correlation study has been carried out amongst all possible pairs of 15 physico-chemical parameters viz., pH, total acidity, phenolphthalein alkalinity, total alkalinity, total hardness, calcium, magnesium, dissolved oxygen, chemical oxygen demand, turbidity, electrical conductivity, total solid, total dissolved solid, total suspended solid and chloride to assess groundwater quality. The correlation analysis provides an excellent tool for the prediction of parameter values within reasonable degree of accuracy. The existence of strong correlation between Total Hardness & Magnesium and Total Dissolved Solid & Total Solid are ascertained. The analysis reveals that the groundwater of the area needs some treatment before consumption and it also needs to be protected from the perils of contamination.

  12. Some examples of tactical crime mapping in South Africa

    CSIR Research Space (South Africa)

    Cooper, Antony K

    2002-01-01

    Full Text Available , and the principle objective of this work was to prepare maps for use in court, to facilitate the understanding by the whole of the court of the proceedings of complex cases. In addition, the mapping process often enhanced the quality of the preparation of the case...

  13. Some examples of tactical crime mapping in South Africa.

    CSIR Research Space (South Africa)

    Cooper, Anthony K

    2002-01-01

    Full Text Available , and the principle objective of this work was to prepare maps for use in court, to facilitate the understanding by the whole of the court of the proceedings of complex cases. In addition, the mapping process often enhanced the quality of the preparation of the case...

  14. Examining the contradiction in 'sustainable urban growth': an example of groundwater sustainability

    Science.gov (United States)

    Zellner, Moira L.; Reeves, Howard W.

    2012-01-01

    The environmental planning literature proposes a set of 'best management practices' for urban development that assumes improvement in environmental quality as a result of specific urban patterns. These best management practices, however, often do not recognise finite biophysical limits and social impacts that urban patterns alone cannot overcome. To shed light on this debate, we explore the effects of different degrees of urban clustering on groundwater levels using a coupled land-use change and groundwater-flow model. Our simulations show that specific urban forms only slow down the impact on groundwater. As population increases, the pattern in which it is accommodated ceases to matter, and widespread depletion ensues. These results are predictable, yet current planning practice tends to take growth for granted and is reluctant to envision either no-growth scenarios or the prospect of depletion. We propose to use simulations such as those presented here to aid in policy discussions that allow decision makers to question the assumption of sustainable growth and suggest alternative forms of development.

  15. The effects of urbanization on groundwater quantity and quality in the Zahedan aquifer, southeast Iran

    Science.gov (United States)

    Khazaei, E.; Mackay, R.; Warner, J.W.

    2004-01-01

    This paper investigates the impacts of urban growth on groundwater quality and quantity in the Zahedan aquifer, which is the sole source of water supply for the city of Zahedan, Iran. The investigation is based on the collection of available historical data, supplemented by field and laboratory investigations. Groundwater levels in 40 wells were measured in December 2000. In addition, 102 water samples were taken in two periods during November and December 2000. Of these, 43 samples were analyzed for major ions, 32 samples were analyzed for nitrogen and phosphorus and the remainder for bacteriological contamination. The water level data show that there has been a general decline since 1977 due to over-abstraction. The magnitude of this decline has reached about 20 m in some places. However, in one area over the same period, a rise of about 3 m has been observed. This occurs as a result of the local hydrogeological conditions of shallow bedrock and relatively low permeability materials down stream of this area that limits the flow of groundwater towards the northeastern part of the aquifer. The general fall in groundwater levels has been accompanied by a change in the direction of the groundwater flow and an overall reduction of the areal extent of the saturated region of the aquifer. The city now has a serious problem such that even if the abstracted groundwater is rationed, water is not available for long periods because the demand far exceeds the supply. The heavy impact of urbanization on the groundwater quality is shown through the observed high nitrate (up to 295 mg/l as nitrate) and high phosphorus values (about 0.1 mg/l as P). Significant changes in the chloride concentration are also observed in two areas: increasing from 100 mg/l to 1,600 mg/l and from 2,000 mg/l to 4,000 mg/l, respectively. Furthermore, the bacteriological investigations show that 33 percent of the 27 collected groundwater samples are positive for total coliform and 11 percent of the

  16. Assessing groundwater quality for irrigation using indicator kriging method

    Science.gov (United States)

    Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini

    2016-11-01

    One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.

  17. Groundwater quality in the Upper Santa Ana Watershed study unit, California

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Upper Santa Ana Watershed is one of the study units being evaluated.

  18. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  19. Some Examples of Photogrammetry for the Characterization of Rock Masses

    Science.gov (United States)

    Tonon, Fulvio

    2015-04-01

    The presentation starts by briefly describing the basic elements of close-range photogrammetry, which are then used to understand its limitations, its accuracy, and its differences with respect to the LiDAR. Examples of applications will follow: • Baseline model accurate to 1.5 cm for a sub-vertical slope (800 m wide and 450 m high) in a narrow canyon in Colorado. • 3-D model for a 2.6 km long, 300 m high slope in Northern Italy. Its use for fracture mapping and analysis, and the determination of unstable blocks. • Monitoring of a by-pass tunnel in a Hydroelectric Power Scheme in California, where a major shear zone creates water seepage and movements

  20. Computers as Teaching Tools: Some Examples and Guidelines.

    Science.gov (United States)

    Beins, Bernard C.

    The use of computers in the classroom has been touted as an important innovation in education. This article features some recently developed software for use in teaching psychology and different approaches to classroom computer use. Uses of software packages for psychological research designs are included as are applications and limitations of…

  1. Study on the mechanisms making the deep groundwater quality. Part 3

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kin-ichi [CHISHITSU-KISO-KOGYO Co., Ltd. (Japan)

    1997-03-01

    We compiled geological data and chemical data of deep groundwater in the Joban Coal Field, and examined the qualities and the changes of groundwater by geochemical analysis and numerical simulation. On the chemical analysis, we classified the chemical type of the water which gathered in the coal mine tunnels, and clarified their distributions. Moreover we analyzed isotopes in the water which picked up from wells under running. As a consequence of these analysis, the origin of the groundwater character in the Joban Coal Field is inferred to be mostly mixed water with present sea water and fresh water. We detected some groundwater were mixed with fresh water in some ten years, while we recognized that some groundwater which were mixed clearly with fossilized sea water also exist. Concerning the numerical simulation, we set up the 3 dimensional model in this field which roughly represents the geological structures and physical conditions, and collected the data to inspect the analytical results. We simulated hydraulic conditions of this model for 100 years including three phases; those are the model with no tunnels, the model at mining, and abandoned mine model with re-submergence. In consequence, volume of influx water to the tunnels and restoration of water level after re-submergence are nearly represented, and we recognized the availability of this large-scale analysis. Moreover, we tried to simulate the very large 2 dimensional water system including the boundary of fresh water and sea water, and analyzed very long time change of the deep groundwater which was caused by sea level change. (author). 63 refs.

  2. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  3. Hydrogeochemical assessment of groundwater quality in parts of the niger delta, Nigeria

    Science.gov (United States)

    Amadi, P. A.; Ofoegbu, C. O.; Morrison, T.

    1989-11-01

    Detailed hydrogeochemical analysis of several samples of groundwater collected from parts of the Niger Delta, Nigeria has been carried out in an effort to assess the quality of groundwater in the area. Results obtained showed the groundwater in the area to be enriched in Na+, Ca++, Mg++, Cl-, HCO{3/-}, and SO{4/-}. The concentration of these ions as well as such parameters as salinity, total hardness, and TDS are below the World Health Organization (WHO) standards for drinking water. The concentration of Ca++ was found to be higher than Mg++ except in some areas very close to the coast suggesting the encroachment of saltwater. This encroachment of saltwater is further indicated by the general increase in Cl- and a decreased in HCO{3/-} content towards the coast and Na/Cl ratios. On the basis of the present hydrogeochemical studies, five groundwater types have been recognized to occur in the area of study. These are (1) Sodium-Calcium-Magnesium-Bicarbonate type (Na-Ca-Mg-5HCO3), (2) Iron-Calcium-Bicarbonate type (Fe-Ca-4HCO3), (3) Sodium-Calcium-Magnesium-Sulfate type (Na - Ca - Mg - tfrac{5}{2}SO_4 ), (4) Iron-Chloride-Bicarbonate (Fe-Cl-HCO3), and (5) Magnesium-Chloride type (Mg-2Cl). The assemblage of groundwater types in the area shows that both compound and single groundwater types occur. The geochemical characteristics of the groundwaters are thought to be closely related to the peculiar geologic and hydrologic conditions that prevail in the Niger Delta area of Nigeria.

  4. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    Science.gov (United States)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3- in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  5. On desire: its development and some clinical examples.

    Science.gov (United States)

    Owen, I R

    1993-09-01

    This paper defines a progression through five aspects of the concept of desire: (1) the Hegelian concept of desire given to Jacques Lacan by Alexandre Kojeve; (2) Lacan's subsequent addition of the Freudian concept; (3) Anthony Wilden's redefinition of the Lacanian rendition used to illustrate some aspects of clinical practice; (4) the Freudian theory of social behaviour recapped: a tension exists between what the mass of others expects us to do and what we want to do; and finally (5) the philosopher Stuart Hampshire's elucidation of how desire may be known. This paper combines these authors' expositions of desire and sketches out its meaning and relevance for practitioners.

  6. Decreasing groundwater quality at Cisadane riverbanks: groundwater-surface water approach

    CERN Document Server

    Irawan, Dasapta Erwin; Yeni, Defitri; Kuntoro, Arno Adi; Julian, Miga Magenika

    2016-01-01

    The decreasing of groundwater quality has been the major issue in Tangerang area. One of the key process is the interaction between groundwater and Cisadane river water, which flows over volcanic deposits of Bojongmanik Fm, Genteng Fm, Tuf Banten, and Alluvial Fan. The objective of this study is to unravel such interactions based on the potentiometric mapping in the riverbank. We had 60 stop sites along the riverbank for groundwater and river water level observations, and chemical measurements (TDS, EC, temp, and pH). Three river water gauge were also analyzed to see the fluctuations. We identified three types of hydrodynamic relationships with fairly low flow gradients: effluent flow at Segmen I (Kranggan - Batuceper) with 0.2-0.25 gradient, perched flow at Segmen II (Batuceper-Kalibaru) with gradient 0.2-0.25, and influent flow at Segmen III (Kalibaru-Tanjungburung) with gradient 0.15-0.20. Such low flow gradient is controlled by the moderate to low morphological slope in the area. The gaining and losing st...

  7. Ancient-modern concordance in Ayurvedic plants: some examples.

    Science.gov (United States)

    Dev, S

    1999-10-01

    Ayurveda is the ancient (before 2500 b.c.) Indian system of health care and longevity. It involves a holistic view of man, his health, and illness. Ayurvedic treatment of a disease consists of salubrious use of drugs, diets, and certain practices. Medicinal preparations are invariably complex mixtures, based mostly on plant products. Around 1,250 plants are currently used in various Ayurvedic preparations. Many Indian medicinal plants have come under scientific scrutiny since the middle of the nineteenth century, although in a sporadic fashion. The first significant contribution from Ayurvedic materia medica came with the isolation of the hypertensive alkaloid from the sarpagandha plant (Rouwolfia serpentina), valued in Ayurveda for the treatment of hypertension, insomnia, and insanity. This was the first important ancient-modern concordance in Ayurvedic plants. With the gradual coming of age of chemistry and biology, disciplines central to the study of biologic activities of natural products, many Ayurvedic plants have been reinvestigated. Our work on Commiphora wightti gum-resin, valued in Ayurveda for correcting lipid disorders, has been described in some detail; based on these investigations, a modern antihyperlipoproteinemic drug is on the market in India and some other countries. There has also been concordance for a few other Ayurvedic crude drugs such as Asparagus racemosus, Cedrus deodara, and Psoralea corylifolia.

  8. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste- management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of the three regimes defined for the purposes of groundwater quality monitoring and remediation (Figure 2). The Health, Safety, Environment, and Accountability (HSEA) Division of the Y-12 Plant Environmental Management Department manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  9. Correlated randomness: Some examples of exotic statistical physics

    Indian Academy of Sciences (India)

    H Eugene Stanley

    2005-05-01

    One challenge of biology, medicine, and economics is that the systems treated by these sciences have no perfect metronome in time and no perfect spatial architecture – crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. To understand this `miracle', one might consider placing aside the human tendency to see the universe as a machine. Instead, one might address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at many spatial and temporal patterns in biology, medicine, and economics. Inspired by principles developed by statistical physics over the past 50 years – scale invariance and universality – we review some recent applications of correlated randomness to fields that might startle Boltzmann if he were alive today.

  10. Groundwater-quality data in the Cascade Range and Modoc Plateau study unit, 2010-Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    , radioactive constituents, and microbial indicators. Naturally occurring isotopes and dissolved noble gases also were measured to provide a dataset that will be used to help interpret the sources and ages of the sampled groundwater in subsequent reports. In total, 221 constituents were investigated for this study. Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at approximately 10 percent of the wells in the CAMP study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples generally were within the limits of acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 90 percent of the compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH, and to non-regulatory benchmarks established for aesthetic concerns by CDPH. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks. All organic constituents and most inorganic constituents that were detected in groundwater samples from the 90 grid wells

  11. Assessing the `wicked problems' associated with the quality of groundwater used in irrigation: a case study from the North China Plain

    Science.gov (United States)

    Davidson, Brian; Wei, Yong Ping

    2012-08-01

    Studies on the quality of groundwater have moved beyond the physical realm of contamination and purification, towards the economic concerns of choice and the management of the problem. With these approaches the complex biophysical processes are assessed from the users' perspective and the policy outcomes that could be used to resolve the problems of groundwater contamination are evaluated. However, in a set of unrelated studies, it has been found that attempts by governments to resolve the problems of groundwater contamination in agriculture have a poor record of success. This could be because the problem is too extensive and diverse to handle or it could be a case of poor policy selection. Taking an example from the North China Plain to illustrate some of the major issues raised in this study, it is concluded that the problem itself is unresolvable on a large scale. In other words, groundwater contamination can be defined as a `wicked problem', i.e. unresolvable by applying pure science, closely linked with social issues, and for which there are no optimal solutions. In this situation, the best solution is possibly to encourage farmers to live with and handle the problem as they best see fit.

  12. Groundwater Quality Data in the Mojave Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2009-01-01

    ground water. In total, over 230 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 5-8 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptable analytical reproducibility. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated ground water. However, to provide some context for the results, concentrations of constituents measured in the untreated ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking-water are for illustrative purposes only, and are not indicative of compliance or non-compliance with those thresholds. Most constituents that were detected in groundwater samples in the 59 wells in MOJO were found at concentrations below drinking-water thresholds. In MOJO's 52 grid wells, volatile organic compounds (VOCs) were detected in 40 percent of the wells, and pesticides and pesticide degradates were detected in 23 percent of the grid wel

  13. Groundwater resource degradation in coastal plains: The example of the Cecina area (Tuscany - Central Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Sergio [Institute of Geosciences and Earth Resources, Via Moruzzi 1, I-56124 Pisa (Italy)], E-mail: grassi@igg.cnr.i; Cortecci, Gianni; Squarci, Paolo [Institute of Geosciences and Earth Resources, Via Moruzzi 1, I-56124 Pisa (Italy)

    2007-11-15

    The paper describes the degradation of the groundwater resources in the Cecina area, where seawater intrusion, B contamination and NO{sub 3} pollution are all affecting the heavily exploited Pleistocene aquifer. Over-pumping has brought water levels to about 0 m.a.s.l. as far as about 7 km from the shore line, thereby promoting the seawater intrusion. The intrusion, which is characterized by cation exchange phenomena and Ca-Cl type waters, enters the plain mostly through the shallower horizons. The saline front, which advanced from 0.5 to 1 km in 4 a, has by now reached the foot of the hills to the east of the town, where it is also affecting wells of the local aqueduct. Boron contamination, linked to past discharge of industrial waste transported downstream by the river, reached concentrations as high as 3.5 mg/L in the mid-1980s. Although a decreasing trend is now under way, B content is still close to 1 mg/L. The presence of high NO{sub 3}, which, together with the seawater intrusion, represents a major issue for groundwater management in the area, is linked to the widespread utilization of fertilizers. Nitrate concentration, which reaches a maximum of about 300 mg/L in the shallow aquifer horizons and then decreases rather regularly with depth, is strongly influenced by precipitation. However, irrigation also contributes significantly to transporting the NO{sub 3} contamination to depth, as clearly shown by {delta}{sup 18}O data. The severe decline in the quality of the groundwater resource in the Cecina area is further compounded by an overall decrease in water availability in the region of Tuscany, as evidenced by long-term monitoring of precipitation and fluvial discharge.

  14. Groundwater quality in the Lake Champlain Basin, New York, 2009

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2011-01-01

    Water was sampled from 20 production and domestic wells from August through November 2009 to characterize groundwater quality in the Lake Champlain Basin in New York. Of the 20 wells sampled, 8 were completed in sand and gravel, and 12 were completed in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were color (1 sample), pH (3 samples), sodium (3 samples), total dissolved solids (4 samples), iron (4 samples), manganese (3 samples), gross alpha radioactivity (1 sample), radon-222 (10 samples), and bacteria (5 samples). The pH of all samples was typically neutral or slightly basic (median 7.1); the median water temperature was 9.7°C. The ions with the highest median concentrations were bicarbonate [median 158 milligrams per liter (mg/L)] and calcium (median 45.5 mg/L). Groundwater in the study area is soft to very hard, but more samples were hard or very hard (121 mg/L or more as CaCO3) than were moderately hard or soft (120 mg/L or less as CaCO3); the median hardness was 180 mg/L as CaCO3. The maximum concentration of nitrate plus nitrite was 3.79 mg/L as nitrogen, which did not exceed established drinking-water standards for nitrate plus nitrite (10 mg/L as nitrogen). The trace elements with the highest median concentrations were strontium (median 202 micrograms per liter [μg/L]), and iron (median 55 μg/L in unfiltered water). Six pesticides and pesticide degradates, including atrazine, fipronil, disulfoton, prometon, and two pesticide degradates, CIAT and desulfinylfipronil, were detected among five samples at concentrations

  15. Geochemical evolution of groundwater in southern Bengal Basin: The example of Rajarhat and adjoining areas, West Bengal, India

    Indian Academy of Sciences (India)

    Paulami Sahu; P K Sikdar; Surajit Chakraborty

    2016-02-01

    Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: `excellent', `good' and `poor' and seven hydrochemical facies are assigned to three broad types: `fresh', `mixed' and `brackish' waters. The `fresh' water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich `brackish' groundwater represents freshening of modified connate water. The `mixed' type groundwater has possibly evolved due to hydraulic mixing of `fresh' and `brackish' waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.

  16. An Assessment of Peri-Urban Groundwater Quality from Shallow Dug Wells, Mzuzu, Malawi

    Science.gov (United States)

    Holm, R.; Felsot, A.

    2012-12-01

    Throughout Malawi, governmental, non-governmental, religious and civic organizations are targeting the human need for water. Diarrheal diseases, often associated with unsafe drinking water, are a leading cause of mortality in children under five in Malawi with over 6,000 deaths per year (World Health Organization, 2010). From January to March 2012, a field study was undertaken in Malawi to study water quality and develop a public health risk communication strategy. The region studied, Area 1B, represents a comparatively new peri-urban area on the edge of Mzuzu city. Area 1B is serviced by a piped municipal water supply, but many shallow dug wells are also used for household water. Groundwater samples were collected from 30 shallow dug well sites and analyzed for nitrate, total coliform, Escherichia coli, total hardness, total alkalinity and pH. In addition to water quality analyses, a structured household questionnaire was administered to address water use, sanitation, health, consumption patterns, and socioeconomics. Results showed that more than half of the groundwater samples would be considered of unacceptable quality based on World Health Organization (WHO) standards for E. coli contamination. Low levels of nitrate were found in groundwater, but only one well exceeded WHO standards. The structured questionnaire revealed that some residents were still consuming groundwater despite the access to safer municipal water. In general, the widespread E. coli contamination was not statistically correlated with well depth, latrine proximity, or surface features. Similarly, nitrate concentrations were not significantly correlated with proximity to latrines. On the other hand, nitrate was correlated with well depth, which is expected given the high potential for leaching of anionic highly water soluble compounds. E. coli was significantly correlated with nitrate concentration. Projects targeting the need for clean water need to recognize that households with access to a

  17. Hydrogeochemistry and Water Quality Index in the Assessment of Groundwater Quality for Drinking Uses.

    Science.gov (United States)

    Batabyal, Asit Kumar; Chakraborty, Surajit

    2015-07-01

    The present investigation is aimed at understanding the hydrogeochemical parameters and development of a water quality index (WQI) to assess groundwater quality of a rural tract in the northwest of Bardhaman district of West Bengal, India. Groundwater occurs at shallow depths with the maximum flow moving southeast during pre-monsoon season and south in post-monsoon period. The physicochemical analysis of groundwater samples shows the major ions in the order of HCO3>Ca>Na>Mg>Cl>SO4 and HCO3>Ca>Mg>Na>Cl>SO4 in pre- and post-monsoon periods, respectively. The groundwater quality is safe for drinking, barring the elevated iron content in certain areas. Based on WQI values, groundwater falls into one of three categories: excellent water, good water, and poor water. The high value of WQI is because of elevated concentration of iron and chloride. The majority of the area is occupied by good water in pre-monsoon and poor water in post-monsoon period.

  18. Groundwater-quality data in the Santa Barbara study unit, 2011: results from the California GAMA Program

    Science.gov (United States)

    Davis, Tracy A.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    elements, nutrients, major and minor ions, silica, total dissolved solids [TDS], alkalinity, and arsenic, chromium, and iron species); and radioactive constituents (radon-222 and gross alpha and gross beta radioactivity). Naturally occurring isotopes (stable isotopes of hydrogen and oxygen in water, stables isotopes of inorganic carbon and boron dissolved in water, isotope ratios of dissolved strontium, tritium activities, and carbon-14 abundances) and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 281 constituents and water-quality indicators were measured. Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 12 percent of the wells in the Santa Barbara study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples generally were within the limits of acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 82 percent of the compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH and to non-regulatory benchmarks established for aesthetic concerns by

  19. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  20. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  1. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  2. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  3. Groundwater Quality Assessment Using Averaged Water Quality Index: A Case Study of Lahore City, Punjab, Pakistan

    Science.gov (United States)

    Umair Shahid, Syed; Iqbal, Javed

    2016-10-01

    Water quality is considered as a major issue in mega cities of developing countries. The city of Lahore has over 10 million populations with the highest population density in the Punjab Province, Pakistan. Groundwater is the main source of drinking water in Lahore. The groundwater quality should be regularly monitored to cope up with drinking water quality issues. The water quality index (WQI), previously used in many studies was usually based on one-year data to analyze the water quality situation of the study area. However, the results obtained from the data, based on single observation from different points may have distortion. This might have occurred due to the inclusion of multiple types of errors induced in the data as a result of improper sampling design, lack of expertise in terms of both sampling method and sample testing, instrumental and human errors, etc. Therefore, the study evaluated the groundwater physicochemical parameters (turbidity, pH, total dissolved solids, hardness, chlorides, alkalinity and calcium) for three years. The averaged water quality index (AWQI) was computed using ArcGIS 10.3 model builder. The AWQI map indicated that the water quality in the study area was generally good except in few places like Anarkali, Baghbanpura, Allama Iqbal Town, Mughalpura and Mozang due to relatively higher turbidity levels. The results of this study can be used for decision making regarding provision of clean drinking water to the city of Lahore. Moreover, the methodology adopted in this study can be implemented in other mega cities as well to monitor groundwater quality.

  4. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  5. Groundwater quality in the Genesee River Basin, New York, 2010

    Science.gov (United States)

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  6. Groundwater and surface water monitoring program for karst river basin: example of the Jadro and Žrnovnica Rivers

    Science.gov (United States)

    Jukić, D.; Denić-Jukić, V.

    2009-04-01

    The catchment of the Jadro and Žrnovnica Springs is situated in the Dinaric karst mainly formed of carbonate rocks and partly of impermeable flysch. The Jadro Spring has been used for water supply for almost 2000 years. Nowadays, it is the main water supply resource for the wider area of Split, the second largest city in Croatia, and it represents a valuable natural resource and as such should be protected from deterioration and chemical pollution. Reliable and comparable methods for groundwater monitoring are an important tool for assessment of groundwater quality and also for choosing the most appropriate measures. The present meteorological, hydrological and water quality monitoring networks have several drawbacks, and consequently, do not provide a coherent and comprehensive overview of meteorological, hydrological or water quality situation within the river basin. Namely, there is no meteorological station located inside the river basin, so continuous measurements of meteorological parameters have not been performed. However, daily precipitations have been measured since 1961 at eight locations: Dugopolje, Lećevica, Dicmo, Muć, Klis, Bisko, Gornje Sitno and Prančević Brana. Hydrological observations have been performed in profiles which are interesting in terms of water use (e.g. determination of spring capacities, or discharge control for proscribed minimum flow rates). The collection of hydrological data including water levels and flow rates started in 1983. In the interim period, some hydrological stations ceased operating, some have unreliable data, mostly due to the changes in riverbeds and the influence of backwater, whereas some stations experience longer periods of very poor coverage of rate of flow measurements, particularly at high water levels. Currently, five hydrological stations are active: Jadro-Majdan, Jadro-Dioklecijanov kanal, Jadro-Novi kanal, Žrnovnica-Izvor and Žrnovnica-Laboratorij. Water temperatures and quantities of sediment

  7. Groundwater-Quality Data in the Madera-Chowchilla Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    , oxygen, and carbon, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 300 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at approximately 11 percent of the wells sampled for each analysis, and the results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from MADCHOW wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides

  8. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  9. Geoinformatics Approach for Groundwater Prospects and Quality Studies - A Review

    Directory of Open Access Journals (Sweden)

    Rajvir Singh

    2015-06-01

    Full Text Available Water is a prime requirement for all the living and non-living processes. On the earth, 71% is water but the availability of useable fresh water for drinking and other purposes is about 2.8%. Out of this 2.8 % fresh water, the share of groundwater is only 0.6% that makes it more pertinent to conservation, preservation, and management. The urbanization, industrialization, and intensive agricultural practices have put further pressure on the available fresh water. The modern techniques like space technology, GIS and GPS have great utility in mapping, monitoring, planning and management of water resources. The temporal satellite data in different spectral bands and on different spatial resolutions make the remote sensing satellite data highly useful for mapping and monitoring of an area. The geographical information system (GIS has the capability to store, retrieve, edit and represent the data in informative way. The global positioning system (GPS gives the real time geo-coordinates, path and altitude of desired object or terrain. Thus, the geoinformatics have huge potential for solving the problems of groundwater availability and quality, and there is a need to harness the potential of these techniques for societal benefits to provide water everyone.

  10. Some Quality Traits of Different Wild Plants

    Directory of Open Access Journals (Sweden)

    Mehmet BASBAG

    2009-12-01

    Full Text Available This research was carried out to determine quality properties of some pasture plant species. In this research, 10 different pasture plant species were used as materials which were collected from Diyarbakir pasture areas of Turkey. At the end of research, quality properties of pasture plants were ranged from lowest to highest for average dry matter 11.5-30.9%, average crude protein 12.6-26.6%, crude ash 5.5-21.2%, acid detergent fiber 22.0-43.0%, neutral detergent fiber 20.5-56.1%, digestible dry matter 55.4-71.8%, dry matter intake 2.1-5.9% and relative feed value 90.2-327.0. Among the pasture plants studied, higher crude protein level than averages of species following plants may have importance, respectively: Centaurea iberica, Sinapsis arvensis, Convolvulus arvensis, Rumex conglomeratus, Crambe orientalis, Amaranthus retroflexus, Polygonum aviculare, Anchusa strigosa and Malva neglecta. For relative feed value has been remarked: Sinapsis arvensis, Rumex conglomeratus, Amaranthus retroflexus, Crambe orientalis, Centaurea iberica and Hypecoum imberbe.

  11. Some Quality Traits of Different Wild Plants

    Directory of Open Access Journals (Sweden)

    Mehmet BASBAG

    2010-03-01

    Full Text Available This research was carried out to determine quality properties of some pasture plant species. In this research, 10 different pasture plant species were used as materials which were collected from Diyarbakir pasture areas of Turkey. At the end of research, quality properties of pasture plants were ranged from lowest to highest for average dry matter 11.5-30.9%, average crude protein 12.6-26.6%, crude ash 5.5-21.2%, acid detergent fiber 22.0-43.0%, neutral detergent fiber 20.5-56.1%, digestible dry matter 55.4-71.8%, dry matter intake 2.1-5.9% and relative feed value 90.2-327.0. Among the pasture plants studied, higher crude protein level than averages of species following plants may have importance, respectively: Centaurea iberica, Sinapsis arvensis, Convolvulus arvensis, Rumex conglomeratus, Crambe orientalis, Amaranthus retroflexus, Polygonum aviculare, Anchusa strigosa and Malva neglecta. For relative feed value has been remarked: Sinapsis arvensis, Rumex conglomeratus, Amaranthus retroflexus, Crambe orientalis, Centaurea iberica and Hypecoum imberbe.

  12. Some Quality Traits of Different Wild Plants

    Directory of Open Access Journals (Sweden)

    Mustafa AVCI

    2009-12-01

    Full Text Available This research was carried out to determine quality properties of some pasture plant species. In this research, 10 different pasture plant species were used as materials which were collected from Diyarbakir pasture areas of Turkey. At the end of research, quality properties of pasture plants were ranged from lowest to highest for average dry matter 11.5-30.9%, average crude protein 12.6-26.6%, crude ash 5.5-21.2%, acid detergent fiber 22.0-43.0%, neutral detergent fiber 20.5-56.1%, digestible dry matter 55.4-71.8%, dry matter intake 2.1-5.9% and relative feed value 90.2-327.0. Among the pasture plants studied, higher crude protein level than averages of species following plants may have importance, respectively: Centaurea iberica, Sinapsis arvensis, Convolvulus arvensis, Rumex conglomeratus, Crambe orientalis, Amaranthus retroflexus, Polygonum aviculare, Anchusa strigosa and Malva neglecta. For relative feed value has been remarked: Sinapsis arvensis, Rumex conglomeratus, Amaranthus retroflexus, Crambe orientalis, Centaurea iberica and Hypecoum imberbe.

  13. Groundwater quality in the Santa Clara River Valley, California

    Science.gov (United States)

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  14. Groundwater Quality in the Central Eastside San Joaquin Valley, California

    Science.gov (United States)

    Belitz, Kenneth; Landon, Matthew K.

    2010-01-01

    The Central Eastside study unit is located in California's San Joaquin Valley. The 1,695 square mile study unit includes three groundwater subbasins: Modesto, Turlock, and Merced (California Department of Water Resources, 2003). The primary water-bearing units consist of discontinuous lenses of gravel, sand, silt, and clay, which are derived largely from the Sierra Nevada Mountains to the east. Public-supply wells provide most of the drinking water supply in the Central Eastside. Consequently, the primary aquifer in the Central Eastside study unit is defined as that part of the aquifer corresponding to the perforated interval of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 350 feet, consist of solid casing from the land surface to a depth of about 100 to 200 feet, and they are perforated below the solid casing. Water quality in the shallower and deeper parts of the aquifer system may differ from that in the primary aquifer. The Central Eastside study unit has hot and dry summers and cool, moist, winters. Average annual rainfall ranges from 11 to 15 inches. The Stanislaus, Tuolumne, and Merced Rivers, with headwaters in the Sierra Nevada Mountains, are the primary streams traversing the study unit. Land use in the study unit is approximately 59 percent (%) agricultural, 34% natural (primarily grassland), and 7% urban. The primary crops are almonds, walnuts, peaches, grapes, grain, corn, and alfalfa. The largest urban areas (2003 population in parentheses) are the cities of Modesto (206,872), Turlock (63,467), and Merced (69,512). Municipal water use accounts for about 5% of the total water use in the Central Eastside study unit, with the remainder used for irrigated agriculture. Groundwater accounts for about 75% of the municipal supply, and surface water accounts for about 25%. Recharge to the groundwater flow system is primarily from percolation of irrigation return

  15. Groundwater and geothermal resources of Eritrea with the emphasis on their chemical quality

    Science.gov (United States)

    Zerai, Habteab

    1996-05-01

    Available chemical analyses have been evaluated and a water quality map prepared using electrical conductivity values. The country has been divided into three water quality regions. The quality of each region is variously a combination of climate, geology, waste disposal and irrigation practices and salt water intrusion. Region 1 has the best water quality, though in the Asmara area the groundwater is polluted by nitrate (50-150 mg l -1 NO 3). The impact on the natural environment due to the salinity hazard created by high evapotranspiration and irrigation practices becomes more pronounced across Region 2 and reaches a peak in the Red Sea catchments (Region 3), where it is supplemented by saline intrusion and mineralized upflows. In this region, soil fertility has been greatly affected and the development of groundwater has been constrained. Fluoride concentrations of 7-17 mg l -1 are common in Regions 2 and 3 and some dental fluorosis has been noted. Upflows of thermal water (34-100°C) exist in the Red Sea coastal zone and provide a potential energy resource. Both these and the factors affecting water resource quality in general require careful investigation and conservation measures.

  16. Quality assessment of groundwater from the south-eastern Arabian Peninsula.

    Science.gov (United States)

    Zhang, H W; Sun, Y Q; Li, Y; Zhou, X D; Tang, X Z; Yi, P; Murad, A; Hussein, S; Alshamsi, D; Aldahan, A; Yu, Z B; Chen, X G; Mugwaneza, V D P

    2017-08-01

    Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.

  17. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  18. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    Science.gov (United States)

    Dawson, Barbara J.

    2001-01-01

    , and non-agricultural purposes. All pesticide concentrations were below state and federal 2000 drinking-water standards. The relation of the ground-water quality to natural processes and human activities was tested using statistical methods (Spearman rank correlation, Kruskal?Wallis, or rank-sum tests) to determine whether an influence from rice land-use or other human activities on ground-water chemistry could be identified. The detection of pesticides in 89 percent of the wells sampled indicates that human activities have affected shallow ground-water quality. Concentrations of dissolved solids and inorganic constituents that exceeded state or federal 2000 drinking-water standards showed a statistical relation to geomorphic unit. This is interpreted as a relation to natural processes and variations in geology in the Sacramento River Basin; the high concentrations of dissolved solids and most inorganic constituents did not appear to be related to rice land use. No correlation was found between nitrate concentration and pesticide occurrence, indicating that an absence of high nitrate concentrations is not a predictor of an absence of pesticide contamination in areas with reducing ground-water conditions in the Sacramento Valley. Tritium concentrations, pesticide detections, stable isotope data, and dissolved-solids concentrations suggest that shallow ground water in the ricegrowing areas of the Sacramento Valley is a mix of recently recharged ground water containing pesticides, nitrate, and tritium, and unknown sources of water that contains high concentrations of dissolved solids and some inorganic constituents and is enriched in oxygen-18. Evaporation of applied irrigation water, which leaves behind salt, accounts for some of the elevated concentrations of dissolved solids. More work needs to be done to understand the connections between the land surface, shallow ground water, deep ground water, and the drinking-water supplies in the Sacramento Valley.

  19. Ground-Water Quality in Western New York, 2006

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  20. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations

    Science.gov (United States)

    MacDonald, A. M.; Bonsor, H. C.; Ahmed, K. M.; Burgess, W. G.; Basharat, M.; Calow, R. C.; Dixit, A.; Foster, S. S. D.; Gopal, K.; Lapworth, D. J.; Lark, R. M.; Moench, M.; Mukherjee, A.; Rao, M. S.; Shamsudduha, M.; Smith, L.; Taylor, R. G.; Tucker, J.; van Steenbergen, F.; Yadav, S. K.

    2016-10-01

    Groundwater abstraction from the transboundary Indo-Gangetic Basin comprises 25% of global groundwater withdrawals, sustaining agricultural productivity in Pakistan, India, Nepal and Bangladesh. Recent interpretations of satellite gravity data indicate that current abstraction is unsustainable, yet these large-scale interpretations lack the spatio-temporal resolution required to govern groundwater effectively. Here we report new evidence from high-resolution in situ records of groundwater levels, abstraction and groundwater quality, which reveal that sustainable groundwater supplies are constrained more by extensive contamination than depletion. We estimate the volume of groundwater to 200 m depth to be >20 times the combined annual flow of the Indus, Brahmaputra and Ganges, and show the water table has been stable or rising across 70% of the aquifer between 2000 and 2012. Groundwater levels are falling in the remaining 30%, amounting to a net annual depletion of 8.0 +/- 3.0 km3. Within 60% of the aquifer, access to potable groundwater is restricted by excessive salinity or arsenic. Recent groundwater depletion in northern India and Pakistan has occurred within a longer history of groundwater accumulation from extensive canal leakage. This basin-wide synthesis of in situ groundwater observations provides the spatial detail essential for policy development, and the historical context to help evaluate recent satellite gravity data.

  1. Ground-water flow and quality near Canon City, Colorado

    Science.gov (United States)

    Hearne, G.A.; Litke, D.W.

    1987-01-01

    Water in aquifers that underlie the Lincoln Park area near Canon City, Colorado, contains measurable concentrations of chemical constituents that are similar to those in raffinate (liquid waste) produced by a nearby uranium ore processing mill. The objective of this study was to expand the existing geohydrologic data base by collecting additional geohydrologic and water quality, in order to refine the description of the geohydrologic and geochemical systems in the study area. Geohydrologic data were collected from nine tests wells drilled in the area between the U.S. Soil Conservation Service dam and Lincoln Park. Lithologic and geophysical logs of these wells indicated that the section of Vermejo Formation penetrated consisted of interbedded sandstone and shale. The sandstone beds had a small porosity and small hydraulic conductivity. Groundwater flow from the U.S. Soil Conservation Service dam to Lincoln Park seemed to be along an alluvium-filled channel in the irregular and relatively undescribed topography of the Vermejo Formation subcrop. North of the De Weese Dye Ditch, the alluvium becomes saturated and groundwater generally flows to the northeast. Water samples from 28 sites were collected and analyzed for major ions and trace elements; selected water samples also were analyzed for stable isotopes; samples were collected from wells near the uranium ore processing mill, from privately owned wells in Lincoln Park, and from the test wells drilled in the intervening area. Results from the quality assurance samples indicate that cross-contamination between samples from different wells was avoided and that the data are reliable. Water in the alluvial aquifer underlying Lincoln Park is mainly a calcium bicarbonate type. Small variations in the composition of water in the alluvial aquifer appears to result from a reaction of water leaking from the De Weese Dye Ditch with alluvial material. Upward leakage from underlying aquifers does not seem to be significant in

  2. Improvement of Groundwater Quality Using Constructed Wetland for Agricultural Irrigation

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek

    2014-06-01

    Full Text Available This research was designed to evaluate the performance of Constructed Wetlands (CW for groundwater quality improvement. In the first phase of this study, performance of CW planted with cattails for Manganese (Mn and Iron (Fe reduction was evaluated at 12, 24 and 48 hours of Hydraulic Retention Time (HRT. Average efficiencies of all tested CW systems were higher than 90 and 75% for Mn and Fe concentration reduction. Subsequently, the efficiency of CW operated at 12 hours of HRT was investigated at different plant harvest intervals. In the second phase of study, Mn and Fe removal efficiencies were 75-100 and 48-99%, respectively. Both Mn and Fe removal efficiencies for the CW system were not different between 4, 6 and 8 weeks of harvest intervals. However, the efficiency obviously increased after the first plant harvest. Average Mn and Fe removal rates of the CWs operated at the tested harvest intervals were 0.068 to 0.092 and 0.383 to 0.432 g/m2/d, respectively. Fe removal rate was not significantly different under the various test conditions. However the highest Mn removal rate was obtained in CWs operated with a harvest interval of 4 weeks. Mn accumulation rates in cattail shoots and roots were 0.04-8.25 and 0.83-23.14 mg/m2/d, respectively. Fe accumulation rates in those were 0.04-164.27 and 249.62-1,701.54 mg/m2/d, respectively. Obviously, cattail underground tissues accumulated both Mn and Fe at higher concentrations than those of the above ground tissue. These results show that CW can improve the quality of groundwater before agricultural irrigation.

  3. Impact of Earthquake Demolition Debris on the Quality of Groundwater

    Directory of Open Access Journals (Sweden)

    M. S. Benmenni

    2010-01-01

    Full Text Available Problem statement: Debris from construction or demolition/deconstruction processes have no significant impact on the environment as they are res-usable and inert. This has been also long admitted for solid waste generated by the demolition of damaged cities following violent earthquakes. Approach: This study is a contribution to the assessment of actual impact on the quality of groundwater of buried demolition debris from the city of Boumerdes, in the North of Algeria 5 years after the May 21st 2003 earthquake hit the region. The public discharge of Boumerdes city has been used as a temporary landfill. It is located about 5 km downtown of Boumerdes at the Tidjelabine site which is marly-calcareous formation. Leachate from the landfill was directly rejected in the receiving environment, where the soil is marly-calcareous type with cracks giving a variable permeability (10-2 m sec-1 to nearly 10-6 m sec-1 that facilitates infiltration of potential pollutants to the groundwater. The slope character (from 5-10% of the field contributes to pollutants movement and may accentuate water quality deterioration. Three domestic wells (designated S1, S2 and S3 were selected in the vicinity of the landfill and served as piezometers. Leachate samples were taken from the landfill and evaluated. Results: Leachate analysis indicated organic matter with relatively high COD (1136 mg L-1 O2 and BOD5 (200 mg L-1 O2; whereas the pH yielded 7.65 thus indicating fermentation phase of the landfill. Heavy metal contents were beyond national standard limits except for Pb with 0.51 mg L-1 which is slightly higher than limit value of 0.5 mg L-1. More than five years after the creation of this landfill and despite its predominant C&D nature, these results showed that it was following a typical urban wastes decomposition scheme. Same analysis carried on water samples drawn from the piezometers yielded following results: acidic pH (6.88, acceptable values of target heavy metals

  4. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  5. Ground-water flow and quality in Wisconsin's shallow aquifer system

    Science.gov (United States)

    Kammerer, P.A.

    1995-01-01

    The areal concentration distribution of commonmineral constituents and properties of ground water in Wisconsin's shallow aquifer system are described in this report. Maps depicting the water quality and the altitude of the water table are included. The shallow aquifer system in Wisconsin, composed of unconsolidated sand and gravel and shallow bedrock, is the source of most potable ground-water supplies in the State. Most ground water in the shallow aquifer system moves in local flow systems, but it interacts with regional flow systems in some areas.

  6. Groundwater-Quality Data in the South Coast Interior Basins Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth

    2009-01-01

    ], and radioactive constituents [gross alpha and gross beta radioactivity and radon-222]. Naturally occurring isotopes [stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14] and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 288 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 4-11 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data obtained from the groundwater samples. Differences between replicate samples generally were less than 10 percent relative standard deviation, indicating acceptable analytical reproducibility. Matrix spike recoveries were within the acceptable range (70 to 130 percent) for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and/or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and to nonregulatory thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking water are for illustrative purposes only, and are not indicative of complia

  7. Assessment of groundwater utilization for irrigating park trees under the spatiotemporal uncertainty condition of water quality

    Science.gov (United States)

    Jang, Cheng-Shin; Kuo, Yi-Ming

    2013-04-01

    Parks have a variety of functions for residents and are important for urban landscape planning. The healthy growth of urban park trees requires regular irrigation. To reduce the pressure of high groundwater levels and to avoid wasting groundwater resources, proper groundwater extraction for irrigating park trees in the Taipei Basin is regarded as a reciprocal solution of sustainable groundwater management and preserving excellent urban landscapes. Therefore, this study determines pristine groundwater use for irrigating park trees in the metropolitan Taipei Basin under the spatiotemporal uncertainty condition of water quality. First, six hydrochemical parameters in groundwater associated with an irrigation water quality standard were collected from a 12-year survey. Upper, median and lower quartiles of the six hydrochemical parameters were obtained to establish three thresholds. According to the irrigation water quality standard, multivariate indicator kriging (MVIK) was adopted to probabilistically evaluate the integration of the six hydrochemical parameters. Entropy was then applied to quantify the spatiotemporal uncertainty of the hydrochemical parameters. Finally, locations, which have high estimated probabilities for the median-quartile threshold and low local uncertainty, are suitable for pumping groundwater for irrigating park trees. The study results demonstrate that MVIK and entropy are capable of characterizing the spatiotemporal uncertainty of groundwater quality parameters and determining suitable parks of groundwater utilization for irrigation. Moreover, the upper, median and lower quartiles of hydrochemical parameters are served as three estimated thresholds in MVIK, which is robust to assessment predictions. Therefore, this study significantly improves the methodological application and limitation of MVIK for spatiotemporally analyzing environmental quality compared with the previous related works. Furthermore, the analyzed results indicate that 64

  8. Using soil and Quaternary geological information to assess the intrinsic groundwater vulnerability of shallow aquifers: an example from Lithuania

    Science.gov (United States)

    Holman, I.; Palmer, R.; Leonavičiūtė, N.

    2000-12-01

    Lithuania, in the Baltic region of northern Europe, is heavily dependent on groundwater resources for its public water supply, with a large proportion, especially in rural areas, derived from shallow Quaternary aquifers. A national groundwater-vulnerability methodology, based upon the UK approach, has been developed on behalf of the Lithuanian Ministry of Environmental Protection as a possible basis for the future protection of shallow groundwater resources for the rural inhabitants. Some modifications to the UK methodology were required to enable archive data to be used. The four aquifer classes depicted on the final groundwater vulnerability map are based upon the assessed relative permeabilities of the uppermost Quaternary deposits. The derivation of the classification of soil-leaching potential required a reassessment of Soviet-based soil wetness and particle-size classes and a calculation of subsoil-saturated hydraulic conductivity. A preliminary validation of the final maps against available shallow groundwater samples suggests that the methodology satisfactorily predicts the intrinsic groundwater vulnerability. The final methodology, based upon its low-cost approach using archive data, is relevant to the current needs of Lithuania and can be applied in other regions of similar geology and climate.

  9. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  10. Application of multi-isotope ratios to study the source and quality of urban groundwater in Metro Manila, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Takahiro, E-mail: hosono@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Siringan, Fernando [Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Yamanaka, Tsutomu [Terrestrial Environment Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Umezawa, Yu [Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi Nagasaki, 852-8521 (Japan); Onodera, Shin-ichi [Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Nakano, Takanori; Taniguchi, Makoto [Research Institute for Humanity and Nature, 457-4 Motoyama Kamigamo, Kita-ku, Kyoto 603-8047 (Japan)

    2010-06-15

    To characterize water quality in terms of dissolved elements and to investigate both the origin of the water and the source and behavior of groundwater contaminants in Metro Manila, 33 water (groundwater and surface water) samples were analyzed for ion and element concentrations, H and O isotope ratios ({delta}D-H{sub 2}O and {delta}{sup 18}O-H{sub 2}O), SO{sub 4}{sup 2-} isotope ratios ({delta}{sup 34}S-SO{sub 4}{sup 2-} and {delta}{sup 18}O-SO{sub 4}{sup 2-}), and Sr isotope ratio ({sup 87}Sr/{sup 86}Sr). The chemical measurements showed that the primary important environmental concerns within Metro Manila are groundwater salinization for both shallow and deep aquifers, and As concentrations (up to 22.5 {mu}g/L) in shallow groundwaters. Comparison of SO{sub 4}{sup 2-} and Sr isotope values with possible source materials revealed that contamination by man-made materials such as fertilizers and detergents are present in some shallow groundwaters. Shallow groundwater having higher {delta}D-H{sub 2}O and {delta}{sup 18}O-H{sub 2}O values (av. -44 per mille {+-} 5.6 per mille and -6.8 per mille {+-} 0.6 per mille, respectively, n = 15) than deep groundwater (av. -48 per mille {+-} 4.4 per mille and -7.4 per mille {+-} 0.7 per mille, respectively, n = 7) suggests that the origins of H{sub 2}O in both groundwaters are different from each other. Since the mixing of shallow and deep groundwater does not commonly occur under Metro Manila, the contaminants in the shallow aquifers are unlikely to be transported into the deep aquifers. Sulfate reduction by bacterial activity was observed for some groundwaters, resulting in a maximum elevation in {delta}{sup 34}S-SO{sub 4}{sup 2-} values of around 10 per mille. By using SO{sub 4}{sup 2-} isotope ratios as an indicator of changes in redox conditions and Sr isotope ratio as a source indicator, it was shown that As was dissolved from unconsolidated sedimentary deposits of volcanic origin which enclose shallow unconfined aquifers

  11. Groundwater Quality in Jingyuan County, a Semi-Humid Area in Northwest China

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2011-01-01

    Full Text Available Groundwater quality assessment is an essential study which plays an important role in the rational development and utilization of groundwater in any part of the world. In the study, groundwater qualities in Jingyuan County, in Ningxia, China were assessed with entropy weighted water quality index method. In the assessment, 12 hydrochemical parameters including chloride, sulphate, sodium, iron, pH, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia, nitrogen, fluoride, iodine and nitrite were selected. The assessment results show that the concentrations of iodine, TH, iron and TDS are the most influencing parameters affecting the groundwater quality. The assessment results are rational and are in consistency with the results of filed investigation of which both indicates the groundwater in Jingyuan County is fit for drinking.

  12. Spatiotemporal evaluation of the groundwater quality in Gharbiya Governorate, Egypt.

    Science.gov (United States)

    Masoud, Alaa A; El Bouraie, Mohamed M; El-Nashar, Wafaa; Mashaly, Hamdy

    2017-03-01

    Groundwater quality indicators were monitored over 6 years (2007-2012) from 55 drinking water supply wells in Gharbiya Governorate (Egypt). The prime objective was to characterize, for the first time, the governorate-wide significant and sustained trends in the concentrations of the groundwater pollutants. Quality indicators included turbidity, pH, total dissolved solid (TDS), electric conductivity (EC), Cl(-), SO4(2-), Na(+), total alkalinity, hardness (total, Mg, and Ca), Fe(2+), Mn(2+), Cu(2+), Zn(2+), F(-), NH4(+), NO2(-), NO3(-), PO4(3-), dissolved oxygen (DO), and SiO2 contents. Detection and estimation of trends and magnitude were carried out applying the non-parametric Mann-Kendall and Thiel-Sen trend statistical tests, respectively. Factor analysis was applied to identify significant sources of quality variation and their loads. Violation of groundwater quality standards clarified emergence of Mn(2+) (46%), Fe(2+) (35%), and NH4(+) (33%). Out of the 55 wells, notable upward trends (deterioration) were significant (>95% level) for TDS (89%), NO3(-) (85), PO4(3-) (75%), NH4(+) (65%), total alkalinity (62%), Fe(2+) (58%), NO2(-) (47%), Mg hardness (36%), turbidity (25%), and Mn(2+) (24%). Ranges of attenuation rates (mg/l/year) varied for TDS (24.3, -0.7), Mg hardness (3.8, -0.85), total alkalinity (1.4, -1.2), NO3(-) (0.52, -0.066), PO4(3-) (0.069, -0.064), NH4(+) (0.038, -0.019), Mn(2+) (0.015, -0.044), Fe(2+) (0.006, -0.014), and NO2(-) (0.006, -0.00003). Highest rates marked Tanta (total alkalinity and Fe(2+)), Al-Mehala Al-Kubra (TDS, Mg hardness, and NO3(-)), Kafr Al-Zayat (NH4(+)), Zifta (Mn(2+)), Bassyun (NO2(-)), and Qutur (PO4(3-)). Precision of the trend estimate varied in goodness of fit, for TDS (86%), Mg hardness (76%), total alkalinity (73%), PO4(3-) (67.4%), NH4(+) (66.8%), Mn(2+) (55%), and Fe(2+) (49.6%), arranged in decreasing order. Two main varimax-rotated factors counted for more than 55% of the quality variance and, in particular

  13. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India.

    Science.gov (United States)

    Rao, N Subba; Rao, P Surya; Reddy, G Venktram; Nagamani, M; Vidyasagar, G; Satyanarayana, N L V V

    2012-08-01

    Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-) > [Formula: see text], Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-) > [Formula: see text] > [Formula: see text], Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-), and Na(+) > Mg(2+) > Ca(2+) : Cl(-) > [Formula: see text] > [Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text

  14. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  15. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening.

  16. Groundwater Quality Assessment for Domestic and Irrigation Purposes in Yola, Adamawa State Northeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Hong, Aliyu Haliru

    2013-01-01

    Full Text Available To assess groundwater quality for domestic and irrigation purposes in Yola Adamawa State during the peak of dry season, groundwater samples were collected for analysis from fifteen boreholes and five hands dug wells that cover twenty wards of the City. The area investigated falls within longitude 12o26' E and Latitude 9o16' N. The groundwater samples collected were analyzed using Atomic Absorption Spectrophotometer (AAS, multi – analyte photometer and flame photometer while interpretation of the results was done by Comparison with the World Health Organization (WHO and the Nigerian Standard for Drinking Water Quality (NSDWQ guidelines for portable water. The pH values ranged from acidic to slightly alkaline 5.5 – 7.4, turbidity recorded 0 – 40NTU with four samples above the limit of 5NTU.TDS and EC recorded values ranged between 17 – 1200mg/l, 129 - 1600µs/cm with two samples each above stipulated limit. The concentrations of the cat ions (Ca, Mg, Na, and K are all found below the guideline of WHO and NSDWQ. Sulphate and bicarbonate recorded value range of 2 – 94.1mg/l and 11 – 630mg/l, which are also below the value of 100mg/l and 1000mg/l set by NSDWQ and WHO standards; however the recorded value of nitrate exceeded the specified limit of 50mg/l in seven water samples. Five water samples are classified as hard water based on the limit of 150mg/l and 500mg/l total hardness classification by the limit under consideration. The concentrations of heavy metals cadmium, lead, chromium, copper, manganese and iron were all found to exceed the WHO and NSDWQ standards. Iron concentration exceeded 0.3mg/l in seventeen water sample, manganese concentration exceeded 0.2mg/l and 0.05mg/l in twelve water samples, lead exceeded the limit of 0.01mg/l in seven water samples, also, chromium and cadmium exceeded limits of 0.05mg/l and 0.003mg/l in four and six water samples, copper exceeded set limit in only one sample while Nickel concentration

  17. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  18. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md(-1) delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  19. Assessment on seasonal variation of groundwater quality of phreatic aquifers - A river basin system

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.

    suspended solids (TDS), fluoride and total iron content will help to identify the quality of ground water. Groundwater contamination can often have serious ill ef- fects on human health. Groundwater with low pH values can cause gastrointestinal disorders... is considered as an important parameter for irrigation and industrial purposes. Total dissolved solids help to identify the potability of groundwater. Total iron content may not have direct effects on human health but is of importance due to aesthetic reasons...

  20. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  1. Impacts of afforestation on groundwater resources and quality

    Science.gov (United States)

    Allen, Alistair; Chapman, Deborah

    2001-07-01

    Plans to double the proportion of land under forest cover in Ireland by the year 2035 have been initiated. The plan, primarily financially driven, ignores potential environmental impacts of forestry, particularly impacts on groundwater resources and quality. Since groundwater supplies almost 25% of Ireland's total potable water, these impacts are important. Field investigations indicate that afforestation leads to a reduction in runoff by as much as 20%, mainly due to interception of rainfall by forest canopies. Clearfelling has the opposite impact. Implications are that uncoordinated forestry practices can potentially exacerbate flooding. Groundwater recharge is affected by forestry, largely due to greater uptake of soil water by trees and to increased water-holding capacity of forest soils, arising from higher organic contents. Recharge rates under forests can be reduced to one tenth that under grass or heathland. Groundwater quality may be affected by enhanced acidification and nitrification under forests, due partly to scavenging of atmospheric pollutants by forest canopies, and partly to greater deposition of highly acid leaf litter. The slower recharge rates of groundwater under forests lead to significant delays in manifestation of deterioration in groundwater quality. Résumé. Des plans sont à l'étude pour doubler la proportion du couvert forestier en Irlande d'ici à 2035. Le plan, primitivement déterminé sur une base financière, ignore les impacts environnementaux potentiels de la foresterie, et particulièrement les impacts sur les ressources en eau souterraine et leur qualité. Du fait que les eaux souterraines satisfont presque 25% du total de l'eau potable de l'Irlande, ces impacts sont importants. Les études de terrain montrent que le reboisement conduit à une réduction du ruissellement d'au moins 20%, principalement à cause d'une interception de la pluie par le couvert forestier. Les coupes ont un impact contraire. Les implications sont

  2. Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran

    Science.gov (United States)

    Aghazadeh, N.; Chitsazan, M.; Golestan, Y.

    2016-11-01

    In the study area, groundwater is the main water resource for various purposes such as drinking, agriculture and industrial. To evaluate the hydrochemical characteristics of groundwater and suitability for drinking, irrigation and industrial purposes, seventy-seven samples were collected and analyzed for various ions. Results show that, groundwater in the study area is mainly hard to very hard, and slightly alkaline-fresh to brackish in nature. According to the hydrochemistry diagrams, the main groundwater types are Ca, Mg-HCO3, Na-HCO3 and Na-Cl. Calculation of mineral saturation index indicate that the groundwater samples are saturated with respect to carbonate minerals and under-saturated with respect to sulfate minerals such as gypsum and anhydride. The mineral weathering, mixing, ion exchange and anthropogenic activity are the dominant hydrogeochemical natural processes. Results of investigating the quality of heavy metals and calculating the heavy metal index indicated that the groundwater of study area is not contaminated with heavy metals. In this research, the various indices were used to determine the quality of groundwater for various uses. Calculate the indices and comparison results with the WHO standards to determine the quality of groundwater for various uses indicated that the most of the groundwater in study area is chemically suitable for drinking, industrial and agricultural uses.

  3. 48 CFR 22.1003-5 - Some examples of contracts covered.

    Science.gov (United States)

    2010-10-01

    ..., engines, electrical motors, vehicles, and electronic, office and related business and construction... CFR 4.130 for additional examples): (a) Motor pool operation, parking, taxicab, and ambulance services... detection. (h) Some support services at installations, including grounds maintenance and landscaping....

  4. 41 CFR 102-41.210 - What are some examples of drug paraphernalia?

    Science.gov (United States)

    2010-07-01

    ...? Some examples of drug paraphernalia are— (a) Metal, wooden, acrylic, glass, stone, plastic or ceramic pipes with or without screens, permanent screens, hashish heads, or punctured metal bowls; (b)...

  5. Groundwater Quality Assessment in hard rock terrain of Rasipuram Taluk, Namakkal District

    Directory of Open Access Journals (Sweden)

    K.Ramesh,

    2016-02-01

    Full Text Available Groundwater is of most important to rural development in many countries of the world. Over exploitation of groundwater has become a major challenge not only to the present civilization and also for the future generations. The main focus of this study is to assess the suitability of groundwater quality for drinking and irrigation purposes in vicinity of Rasipuram block in Tamil Nadu. Groundwater samples from 15 locations were collected from different wells during January 2015 and analyzed for different physico-chemical parameters. The usefulness of these parameters in predicting groundwater quality characteristics were discussed. The quality of groundwater in the study area is fresh to brackish water, moderately hard to very hard in nature. The piper plot shows that the most of the groundwater samples fall in the field of Na+ -Cland mixed Ca++ -Na+ -Cltype. Water quality index rating was carried out to quantify overall groundwater quality status of the area. The WQI for these samples ranges from 37.34 to 650. Hence majority of the water samples are poor to very poor in water quality. The area in general is characterized by hard water, hence is not suitable for drinking purpose. The samples plotted in the piper and USSL diagram were used to understand the chemical characteristic of groundwater for irrigation purposes. However, the values of SAR, Na% and RSC indicate that groundwater is suitable for irrigation purposes. Overall water quality of the study area was found satisfactory for drinking purpose except in few locations and suitable for irrigation purpose. Hence the local government needs to initiate remedial measures.

  6. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma; analysis of available water-quality data through 1987

    Science.gov (United States)

    Parkhurst, D.L.; Christenson, S.C.; Schlottmann, J.L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to: (1) Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) Define long-term trends (or lack of trends) in water quality; and (3) Identify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends. The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs. At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study area. The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial

  7. On the scope and management of pesticide pollution of Swedish groundwater resources: The Scanian example.

    Science.gov (United States)

    Åkesson, Maria; Sparrenbom, Charlotte J; Dahlqvist, Peter; Fraser, Stephen J

    2015-04-01

    Twenty-three south-Swedish public supply wells were studied to assess pesticide pollution of regional groundwater resources. Relations between pesticide occurrence, hydrogeology, and land use were analyzed using Kohonen's Self-Organizing Maps approach. Pesticides are demonstrated to be substantially present in regional groundwater, with detections in 18 wells. Concentrations above the drinking water threshold are confirmed for nine wells. Observations indicate considerable urban influence, and lagged effects of past, less restricted use. Modern, oxic waters from shallow, unconfined, unconsolidated or fracture-type bedrock aquifers appear particularly vulnerable. Least affected waters appear primarily associated with deeper wells, anoxic conditions, and more confined sediment aquifers lacking urban influence. Comprehensive, standardized monitoring of pesticides in groundwater need to be implemented nationwide to enable sound assessments of pollution status and trends, and to develop sound groundwater management plans in accordance with the Water Framework Directive. Further, existing water protection areas and associated regulations need to be reassessed.

  8. Groundwater Quality Data for the Tahoe-Martis Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Munday, Cathy; Belitz, Kenneth

    2009-01-01

    results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate of compliance or noncompliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from the Tahoe-Martis wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides) were detected in about 40 percent of the samples from grid wells, and most concentrations were less than 1/100th of regulatory and nonregulatory health-based thresholds, although the conentration of perchloroethene in one sample was above the USEPA maximum contaminant level (MCL-US). Concentrations of all trace elements and nutrients in samples from grid wells were below regulatory and nonregulatory health-based thresholds, with five exceptions. Concentra

  9. Groundwater-Quality Data in the Colorado River Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2010-01-01

    approximately 30 percent of the wells, and the results were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data. Differences between replicate samples were within acceptable ranges and matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared to regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and to thresholds established for aesthetic concerns by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples were below drinking-water thresholds. Volatile organic compounds (VOC) were detected in approximately 35 percent of grid well samples; all concentrations were below health-based thresholds. Pesticides and pesticide degradates were detected in about 20 percent of all samples; detections were below health-based thresholds. No concentrations of constituents of special interest or nutrients were detected above health-based thresholds. Most of the major and minor ion constituents sampled do not have health-based thresholds; the exception is chloride. Concentrations of chloride, sulfate, and total dis

  10. Groundwater-Quality Data in the Antelope Valley Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2009-01-01

    -control samples (blanks, replicates, and samples for matrix spikes) were collected at 12 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most compoundsThis study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with drinking water standards. Most constituents that were detected in groundwater samples were found at concentrations below drinking-water thresholds. Volatile organic compounds (VOCs) were detected in about one-half of the samples and pesticides detected in about one-third of the samples; all detections of these constituents were below health-based thresholds. Most detections of trace elements and nutrients in samples from ANT wells were below health-based thresholds. Exceptions include: one detection of nitrite plus nitr

  11. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  12. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    Science.gov (United States)

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land

  13. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    Science.gov (United States)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  14. Effects of a constructed wetland and pond system upon shallow groundwater quality

    Science.gov (United States)

    Ying Ouyang

    2013-01-01

    Constructed wetland (CW) and constructed pond (CP) are commonly utilized for removal of excess nutrients and certain pollutants from stormwater. This study characterized shallow groundwater quality for pre- and post-CW and CP system conditions using data from monitoring wells. Results showed that the average concentrations of groundwater phosphorus (P) decreased from...

  15. Monitoring groundwater quality in South-Africa: Development of a national strategy

    CSIR Research Space (South Africa)

    Parsons, R

    1995-04-01

    Full Text Available Little is known about the temporal distribution of groundwater quality on a national scale in South Africa. The effective management of the country's groundwater resources is thus difficult and a need exists for a national network for monitoring...

  16. Groundwater quality in the Upper Susquehanna River Basin, New York, 2009

    Science.gov (United States)

    Reddy, James E.; Risen, Amy J.

    2012-01-01

    Water samples were collected from 16 production wells and 14 private residential wells in the Upper Susquehanna River Basin from August through December 2009 and were analyzed to characterize the groundwater quality in the basin. Wells at 16 of the sites were completed in sand and gravel aquifers, and 14 were finished in bedrock aquifers. In 2004–2005, six of these wells were sampled in the first Upper Susquehanna River Basin study. Water samples from the 2009 study were analyzed for 10 physical properties and 137 constituents that included nutrients, organic carbon, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, and 4 types of bacterial analyses. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater genrally is of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water standard at 28 of the 30 wells. These constituents include: pH, sodium, aluminum, manganese, iron, arsenic, radon-222, residue on evaporation, total and fecal coliform including Escherichia coli and heterotrophic plate count.

  17. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  18. Hydrochemical Assessment of Surfacewater and Groundwater Quality at Bank Infiltration Site

    Science.gov (United States)

    Shamsuddin, M. K. N.; Suratman, S.; Ramli, M. F.; Sulaiman, W. N. A.; Sefie, A.

    2016-07-01

    Groundwater and surface water quantity and quality are an important factor that contribute for drinking water demand and agriculture use. The water quality analysis was assessed using multivariate statistical analyses based on analytical quantitative data that include Discriminant Analysis (DA) and Principal Component Analysis (PCA), based on 36 water quality parameters from the rivers, lakes, and groundwater sites at Jenderam Hilir, which were collected from 2013 to 2014 (56 observations). The DA identified six significant parameters (pH, NO2-, NO3-, F, Fe2+, and Mn2+) from 36 variables to distinguish between the river, lake, and groundwater groups (classification accuracy = 98%). The PCA had confirmed 10 possible causes of variation in the groundwater quality with an eigenvalue greater than 1, which explained 82.931% of the total variance in the water quality data set.

  19. Quality of bedrock groundwater in western Finland, with special reference to nitrogen compounds

    Directory of Open Access Journals (Sweden)

    Karro, E.

    1999-12-01

    Full Text Available Monitoring of bedrock aquifers utilized for water supply in the Vaasa region, western Finland, suggests slight changes in the chemical composition of groundwater resulting both from natural and anthropogenic factors. Applying the permissible limits for parameters in drinking water reveals that the groundwater quality is generally good. Groundwater occurring in fractures and fissures of the crystalline bedrock is protected from anthropogenic pollution by clay and till deposits with low permeability. Temporally, the contents of nitrogen compounds in groundwater exhibit a decreasing trend. Reducing conditions prevailing in bedrock aquifers are reflected in elevated ammonium, iron and manganese contents in water.

  20. Groundwater quality comparison between rural farms and riparian wells in the western Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Nei K Leite

    2011-01-01

    Full Text Available Groundwater quality of a riparian forest is compared to wells in surrounding rural areas at Urupá River basin. Groundwater types were calcium bicarbonated at left margin and sodium chloride at right, whereas riparian wells exhibited a combination of both (sodium bicarbonate. Groundwater was mostly solute-depleted with concentrations within permissible limits for human consumption, except for nitrate. Isotopic composition suggests that inorganic carbon in Urupá River is mostly supplied by runoff instead of riparian groundwater. Hence, large pasture areas in addition to narrow riparian forest width in this watershed may have an important contribution in the chemical composition of this river.

  1. Evaluating the suitability of groundwater for irrigational purposes in some selected districts of the Upper West region of Ghana

    Science.gov (United States)

    Salifu, Musah; Aidoo, Felix; Hayford, Michael Saah; Adomako, Dickson; Asare, Enoch

    2015-03-01

    Groundwater is a very important asset to the people of the Upper West region of the Ghana where majority of them are farmers. Groundwater serves as the most reliable source of water for their domestic and agricultural activities. This study was aimed at assessing the suitability of groundwater for irrigational purposes in some selected communities of five districts where farming activities are very intensive. Twenty-three groundwater samples were collected and analysed for major anions and cations. Physicochemical parameters such as electrical conductivity (EC) and total dissolved solids (TDS) were also measured. From the results of the analyses and measurements, the suitability of the groundwater for irrigation were evaluated based on the TDS, EC, percentage sodium (%Na), sodium adsorption ratio (SAR), permeability index (PI), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), Kelly's ratio (KR) and chloro-alkaline Indices (CAI). US salinity laboratory diagram and Wilcox diagrams were also applied. The EC results show that the groundwater in the study area can be classified as none and slight to moderate. According to the US salinity diagram, groundwater in the study area falls within the low salinity-low sodium hazard and medium salinity-low sodium hazard class. The %Na and the resulting Wilcox diagram also classify the groundwater as excellent to good and good to permissible. The groundwater in the study area is generally good for irrigation purposes. However, there are few instances which are problematic and would require special irrigation methods.

  2. Evaluating the suitability of groundwater for irrigational purposes in some selected districts of the Upper West region of Ghana

    Science.gov (United States)

    Salifu, Musah; Aidoo, Felix; Hayford, Michael Saah; Adomako, Dickson; Asare, Enoch

    2017-05-01

    Groundwater is a very important asset to the people of the Upper West region of the Ghana where majority of them are farmers. Groundwater serves as the most reliable source of water for their domestic and agricultural activities. This study was aimed at assessing the suitability of groundwater for irrigational purposes in some selected communities of five districts where farming activities are very intensive. Twenty-three groundwater samples were collected and analysed for major anions and cations. Physicochemical parameters such as electrical conductivity (EC) and total dissolved solids (TDS) were also measured. From the results of the analyses and measurements, the suitability of the groundwater for irrigation were evaluated based on the TDS, EC, percentage sodium (%Na), sodium adsorption ratio (SAR), permeability index (PI), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), Kelly's ratio (KR) and chloro-alkaline Indices (CAI). US salinity laboratory diagram and Wilcox diagrams were also applied. The EC results show that the groundwater in the study area can be classified as none and slight to moderate. According to the US salinity diagram, groundwater in the study area falls within the low salinity-low sodium hazard and medium salinity-low sodium hazard class. The %Na and the resulting Wilcox diagram also classify the groundwater as excellent to good and good to permissible. The groundwater in the study area is generally good for irrigation purposes. However, there are few instances which are problematic and would require special irrigation methods.

  3. Assessment of quality and geochemical processes occurring in groundwaters near central air conditioning plant site in Trombay, Maharashtra, India.

    Science.gov (United States)

    Tirumalesh, K; Shivanna, K; Sriraman, A K; Tyagi, A K

    2010-04-01

    This paper summarizes the findings obtained in a monitoring study to understand the sources and processes affecting the quality of shallow and deep groundwater near central air conditioning plant site in Trombay region by making use of physicochemical and biological analyses. All the measured parameters of the groundwaters indicate that the groundwater quality is good and within permissible limits set by (Indian Bureau of Standards 1990). Shallow groundwater is dominantly of Na-HCO(3) type whereas deep groundwater is of Ca-Mg-HCO(3) type. The groundwater chemistry is mainly influenced by dissolution of minerals and base exchange processes. High total dissolved solids in shallow groundwater compared to deeper ones indicate faster circulation of groundwater in deep zone preferably through fissures and fractures whereas groundwater flow is sluggish in shallow zone. The characteristic ionic ratio values and absence of bromide point to the fact that seawater has no influence on groundwater system.

  4. Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Bodrud-Doza

    2016-04-01

    Full Text Available This study investigates the groundwater quality in the Faridpur district of central Bangladesh based on preselected 60 sample points. Water evaluation indices and a number of statistical approaches such as multivariate statistics and geostatistics are applied to characterize water quality, which is a major factor for controlling the groundwater quality in term of drinking purposes. The study reveal that EC, TDS, Ca2+, total As and Fe values of groundwater samples exceeded Bangladesh and international standards. Ground water quality index (GWQI exhibited that about 47% of the samples were belonging to good quality water for drinking purposes. The heavy metal pollution index (HPI, degree of contamination (Cd, heavy metal evaluation index (HEI reveal that most of the samples belong to low level of pollution. However, Cd provide better alternative than other indices. Principle component analysis (PCA suggests that groundwater quality is mainly related to geogenic (rock–water interaction and anthropogenic source (agrogenic and domestic sewage in the study area. Subsequently, the findings of cluster analysis (CA and correlation matrix (CM are also consistent with the PCA results. The spatial distributions of groundwater quality parameters are determined by geostatistical modeling. The exponential semivariagram model is validated as the best fitted models for most of the indices values. It is expected that outcomes of the study will provide insights for decision makers taking proper measures for groundwater quality management in central Bangladesh.

  5. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  6. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    constituents (trace elements, nutrients, major and minor ions, silica, total dissolved solids, and alkalinity) were collected at all 170 sites. In addition to these constituents, the samples from grid wells were analyzed for organic constituents (volatile organic compounds, pesticides and pesticide degradates), constituents of special interest (perchlorate and N-nitrosodimethylamine, or NDMA), radioactive constituents (radon-222 and gross-alpha and gross-beta radioactivity), and geochemical and age-dating tracers (stable isotopes of carbon in dissolved inorganic carbon, carbon-14 abundances, stable isotopes of hydrogen and oxygen in water, and tritium activities).Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 11 percent of the wells in the Monterey–Salinas Shallow Aquifer study unit, and the results for these samples were used to evaluate the quality of the data from the groundwater samples. With the exception of trace elements, blanks rarely contained detectable concentrations of any constituent, indicating that contamination from sample-collection procedures was not a significant source of bias in the data for the groundwater samples. Low concentrations of some trace elements were detected in blanks; therefore, the data were re-censored at higher reporting levels. Replicate samples generally were within the limits of acceptable analytical reproducibility. The median values of matrix-spike recoveries were within the acceptable range (70 to 130 percent) for the volatile organic compounds (VOCs) and N-nitrosodimethylamine (NDMA), but were only approximately 64 percent for pesticides and pesticide degradates.The sample-collection protocols used in this study were designed to obtain representative samples of groundwater. The quality of groundwater can differ from the quality of drinking water because water chemistry can change as a result of contact with plumbing systems or the atmosphere; because of treatment

  7. Groundwater quality assessment using geospatial and statistical tools in Salem District, Tamil Nadu, India

    Science.gov (United States)

    Arulbalaji, P.; Gurugnanam, B.

    2016-11-01

    The water quality study of Salem district, Tamil Nadu has been carried out to assess the water quality for domestic and irrigation purposes. For this purpose, 59 groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), major anions (HCO3 -, CO3 -, F-, Cl-, NO2 - + NO3 -, and SO4 2-), major cations (Ca2+ Mg2+, Na+, and K+), alkalinity (ALK), and hardness (HAR). To assess the water quality, the following chemical parameters were calculated based on the analytical results, such as Piper plot, water quality index (WQI), sodium adsorption ratio (SAR), magnesium hazard (MH), Kelly index (KI), and residual sodium carbonate (RSC). Wilcox diagram represents that 23% of the samples are excellent to good, 40% of the samples are good to permissible, 10% of the samples are permissible to doubtful, 24% of the samples are doubtful unsuitable, and only 3% of the samples are unsuitable for irrigation. SAR values shows that 52% of the samples indicate high-to-very high and low-to-medium alkali water. KI values indicate good quality (30%) and not suitable (70%) for irrigation purposes. RSC values indicate that 89% of samples are suitable for irrigation purposes. MH reveals that 17% suitable and 83% samples are not suitable for irrigation purposes and for domestic purposes the excellent (8%), good (48%), and poor (44%). The agricultural waste, fertilizer used, soil leaching, urban runoff, livestock waste, and sewages are the sources of poor water quality. Some samples are not suitable for irrigation purposes due to high salinity, hardness, and magnesium concentration. In general, the groundwater of the Salem district was polluted by agricultural activities, anthropogenic activities, ion exchange, and weathering.

  8. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India

    Indian Academy of Sciences (India)

    G Tamma Rao; V V S Gurunadha Rao; K Ranganathan

    2013-06-01

    One of the highly polluted areas in India located at Ranipet occupies around 200 tanneries and other small scale chemical industries. Partially treated industrial effluents combined with sewage and other wastes discharged on the surface cause severe groundwater pollution in the industrial belt. This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for the major physico-chemical variables. The water quality variables such as total dissolved solids (TDS), Iron (Fe2+), Hexavalent Chromium (Cr6+), at most of the sampling locations exceeded the ISI and WHO guideline levels for drinking water. Multivariate statistical techniques such as factor analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality. The water quality of groundwater is influenced by both anthropogenic and chemical weathering. The most serious pollution threat to groundwater is from TDS, Cr6+ and Fe2+, which are associated with sewage and pollution of tannery waste. The study reveals that the groundwater quality changed due to anthropogenic and natural influences such as agricultural, natural weathering process.

  9. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India

    Science.gov (United States)

    Rao, G. Tamma; Rao, V. V. S. Gurunadha; Ranganathan, K.

    2013-06-01

    One of the highly polluted areas in India located at Ranipet occupies around 200 tanneries and other small scale chemical industries. Partially treated industrial effluents combined with sewage and other wastes discharged on the surface cause severe groundwater pollution in the industrial belt. This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for the major physico-chemical variables. The water quality variables such as total dissolved solids (TDS), Iron (Fe2 + ), Hexavalent Chromium (Cr6 + ), at most of the sampling locations exceeded the ISI and WHO guideline levels for drinking water. Multivariate statistical techniques such as factor analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality. The water quality of groundwater is influenced by both anthropogenic and chemical weathering. The most serious pollution threat to groundwater is from TDS, Cr6 + and Fe2 + , which are associated with sewage and pollution of tannery waste. The study reveals that the groundwater quality changed due to anthropogenic and natural influences such as agricultural, natural weathering process.

  10. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    Science.gov (United States)

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future

  11. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    Science.gov (United States)

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future

  12. Risk Communication of Groundwater Quality in Northern Malawi, Africa

    Science.gov (United States)

    Holm, R.

    2011-12-01

    Malawi lies in Africa's Great Rift Valley. Its western border is defined by Lake Malawi, the third largest lake in Africa. Over 80% of Malawians live in rural areas and 90% of the labor force is associated with agriculture. More than half of the population lives below the poverty line. Area characteristics indicate a high likelihood of nitrate and total coliform in community drinking water. Infants exposed to high nitrate are at risk of developing methemoglobinemia. In addition, diarrheal diseases from unsafe drinking water are one of the top causes of mortality in children under five. Without sufficient and sustainable supplies of clean water, these challenges will continue to threaten Malawi's ability to overcome the devastating impact of diarrheal diseases on its population. Therefore, Malawi remains highly dependent on outside assistance and influence to reduce or eliminate the threat posed by unsafe drinking water. This research presents a literature review of nitrate and total coliform groundwater quality and a proposed risk communication plan for drinking water in northern Malawi.

  13. Groundwater quality in the Lake Champlain and Susquehanna River basins, New York, 2014

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2016-11-04

    In a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, groundwater samples were collected from 6 production wells and 7 domestic wells in the Lake Champlain Basin and from 11 production wells and 9 domestic wells in the Susquehanna River Basin in New York. All samples were collected from June through December 2014 to characterize groundwater quality in these basins. The samples were collected and processed using standard procedures of the U.S. Geological Survey and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.The Lake Champlain Basin study area covers the 3,050 square miles of the basin in northeastern New York; the remaining part of the basin is in Vermont and Canada. Of the 13 wells sampled in the Lake Champlain Basin, 6 are completed in sand and gravel, and 7 are completed in bedrock. Groundwater in the Lake Champlain Basin was generally of good quality, although properties and concentrations of some constituents— fluoride, iron, manganese, dissolved solids, sodium, radon-222, total coliform bacteria, fecal coliform bacteria, and Escherichia coli bacteria—sometimes equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (5 of 13 samples) was radon-222.The Susquehanna River Basin study area covers the entire 4,522 square miles of the basin in south-central New York; the remaining part of the basin is in Pennsylvania. Of the 20 wells sampled in the Susquehanna River Basin, 11 are completed in sand and gravel, and 9 are completed in bedrock. Groundwater in the Susquehanna River Basin was generally of good quality, although properties and concentrations of some constituents—pH, chloride, sodium, dissolved

  14. Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality.

    Science.gov (United States)

    Muellegger, Christian; Weilhartner, Andreas; Battin, Tom J; Hofmann, Thilo

    2013-01-15

    Groundwater-fed gravel pit lakes (GPLs) affect the biological, organic, and inorganic parameters of inflowing groundwater through combined effects of bank filtration at the inflow, reactions within the lake, and bank filtration at the outflow. GPLs result from wet dredging for sand and gravel and may conflict with groundwater protection programs by removing the protective soil cover and exposing groundwater to the atmosphere. We have investigated the impact on groundwater of five GPLs with different sizes, ages, and mean residence times, and all having low post-excavation anthropogenic usage. The results revealed highly active biological systems within the lake water, in which primary producers significantly reduced inflowing nitrate concentrations. Decalcification also occurred in lake water, reducing water hardness, which could be beneficial for waterworks in hard groundwater areas. Downgradient groundwater nitrate and calcium concentrations were found to be stable, with only minor seasonal variations. Biological degradation of organic material and organic micropollutants was also observed in the GPLs. For young GPLs adequate sediment deposits may not yet have formed and degradation processes at the outflow may consequently not yet be well established. However, our results showed that within 5 years from the cessation of excavation a protective sediment layer is established that is sufficient to prevent the export of dissolved organic carbon to downgradient groundwater. GPLs can improve groundwater quality in anthropogenically (e.g., pesticides and nitrate) or geologically (e.g., hardness) challenging situations. However, post-excavation usage of GPLs is often dominated by human activities such as recreational activities, water sports, or fish farming. These activities will affect lake and groundwater quality and the risks involved are difficult to predict and monitor and can lead to overall negative impacts on groundwater quality. Copyright © 2012 Elsevier B

  15. Status and understanding of groundwater quality in the San Diego Drainages Hydrogeologic Province, 2004: California GAMA Priority Basin Project

    Science.gov (United States)

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 3,900-square-mile (mi2) San Diego Drainages Hydrogeologic Province (hereinafter San Diego) study unit was investigated from May through July 2004 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southwestern California in the counties of San Diego, Riverside, and Orange. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Diego study was designed to provide a statistically robust assessment of untreated-groundwater quality within the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 58 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as the primary aquifers) were defined by the depth interval of the wells listed in the California Department of Public Health (CDPH) database for the San Diego study unit. The San Diego study unit consisted of four study areas: Temecula Valley (140 mi2), Warner Valley (34 mi2), Alluvial Basins (166 mi2), and Hard Rock (850 mi2). The quality of groundwater in shallow or deep water-bearing zones may differ from that in the primary aquifers. For example, shallow groundwater may be more vulnerable to surficial contamination than groundwater in deep water-bearing zones. This study had two components: the status assessment and the understanding assessment. The first component of this study-the status assessment of the current quality of the groundwater resource-was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to

  16. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Science.gov (United States)

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  17. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was used to create graphics associated with manuscript: Garcia et al., Examining the impacts of increased corn production on groundwater quality using a...

  18. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Torbert, H.A. [Blackland, Soil and Water Research Lab., Temple, TX (United States); Prior, S.A.; Rogers, H.H. [National Soil Dynamics Lab., Auburn, AL (United States); Schlesinger, W.H. [Duke Univ., Durham, NC (United States); Mullins, G.L.; Runion, G.B. [Auburn Univ., AL (United States)

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  19. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    Science.gov (United States)

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  20. Evaluation of the groundwater quality in the Alcochete area using GIS

    OpenAIRE

    Cavaleiro, Victor; Casinhas, Cláudio; Albuquerque, António; Carvalho, António; Silva, Flora

    2012-01-01

    Most of the water needed for domestic, agricultural, recreational and industrial activities in the Alcochete municipality (Portugal) comes from groundwater sources. However, doubts remain on the state of its quality and attractiveness for the current uses. A monitoring campaign was set in 67 groundwater sources (26 wells and 41 boreholes) for the period of 4 months to evaluate the water quality status. In order to better analyse the large and complex available information it was necessary to ...

  1. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  2. SEASONAL VARIATIONS IN GROUNDWATER QUALITY OF VALSAD DISTRICT OF SOUTH GUJARAT (INDIA

    Directory of Open Access Journals (Sweden)

    P. Shroff

    2015-05-01

    Full Text Available Groundwater is an important precious natural resource. For optimum utilization of water resources, it is necessary to know both the quality as well as quantity of water. The present investigation is focused on seasonal variation in groundwater quality of Valsad district of south Gujarat (India. Groundwater samples from fifteen sampling stations were collected for two year i.e. from Aug 2007 to July 2009 and analyzed for pH, Colour, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Chloride and Sodium. Marginally higher level was observed in almost all parameters in summer season. No significant change observed in pH, Colour and Calcium.

  3. QUALITY OF GROUNDWATER AND AQUATIC HUMIC SUBSTANCES FROM MAIN RESERVOIRE OF GROUND WATER No. 333

    Directory of Open Access Journals (Sweden)

    Izabella Pisarek

    2015-11-01

    Full Text Available The conducted research included the estimation of the quality of groundwater from the Main Reservoir of Ground Water No. 333 area in Opole District, Poland. The groundwater in the analyzed region shows high diversity in quality. The main threat for the quality of water in this region is the human household activity. The main pollutants of groundwater are: dissolved phosphorus, nitrate and ammonium. The quality and quantity of dissolved humic substances in groundwater were also investigated. The results showed that the contents of water-extractable organic carbon varied. Presently, the analyzed groundwater is characterized by large differences in dissolved forms of organic carbon. During migration of the soil solution through the soil profile to groundwater, dissolved humic substances undergo qualitative and quantitative changes. Correlation analysis between the quantity of carbon in soil and aquatic humic substances, especially fulvic acids, indicates the possibility of their translocation in soil profiles and their transformation and migration to groundwater. This conclusion can be confirmed by FT-IR-analysis.

  4. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Taylour G., E-mail: tgburton@uh.edu [Civil and Environmental Engineering, University of Houston, W455 Engineering Bldg. 2, Houston, TX 77204-4003 (United States); Rifai, Hanadi S., E-mail: rifai@uh.edu [Civil and Environmental Engineering, University of Houston, N138 Engineering Bldg. 1, Houston, TX 77204-4003 (United States); Hildenbrand, Zacariah L., E-mail: zac@informenv.com [Inform Environmental, LLC, Dallas, TX 75206 (United States); Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Carlton, Doug D., E-mail: doug.carlton@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Fontenot, Brian E., E-mail: brian.fonteno@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. - Graphical abstract: A relative increase in beryllium concentrations in groundwater for the Barnett Shale region from 2001 to 2011 was visually correlated with the locations of gas wells in the region that have been hydraulically fractured over the same time period

  5. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  6. Drinking Water Quality and Occurrence of Giardia in Finnish Small Groundwater Supplies

    Directory of Open Access Journals (Sweden)

    Tarja Pitkänen

    2015-08-01

    Full Text Available The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria. Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.

  7. Multivariate statistical approach for the assessment of groundwater quality in Ujjain City, India.

    Science.gov (United States)

    Vishwakarma, Vikas; Thakur, Lokendra Singh

    2012-10-01

    Groundwater quality assessment is an essential study which plays important role in the rational development and utilization of groundwater. Groundwater quality greatly influences the health of local people. The variations of water quality are essentially the combination of both anthropogenic and natural contributions. In order to understand the underlying physical and chemical processes this study analyzes 8 chemical and physical-chemical water quality parameters, viz. pH, turbidity, electrical conductivity, total dissolved solids, total alkalinity, total hardness, chloride and fluoride recorded at the 54 sampling stations during summer season of 2011 by using multivariate statistical techniques. Hierarchical clustering analysis (CA) is first applied to distinguish groundwater quality patterns among the stations, followed by the use of principle component analysis (PCA) and factor analysis (FA) to extract and recognize the major underlying factors contributing to the variations among the water quality measures. The first three components were chosen for interpretation of the data, which accounts for 72.502% of the total variance in the data set. The maximum number of variables, i.e. turbidity, EC, TDS and chloride were characterized by first component, while second and third were characterized by total alkalinity, total hardness, fluoride and pH respectively. This shows that hydro chemical constituents of the groundwater are mainly controlled by EC, TDS, and fluoride. The findings of the cluster analysis are presented in the form of dendrogram of the sampling stations (cases) as well as hydro chemical variables, which produced four major groupings, suggest that groundwater monitoring can be consolidated.

  8. Quality Management System-Some Reflections

    Directory of Open Access Journals (Sweden)

    Sudhakara K. Rao

    2006-01-01

    Full Text Available With the increasing demand for high quality products in every field, the demand for a goodquality management system (QMS in every organisation is increasing. This has since been wellappreciatedby many organisations who have adopted QMS like IS0 9000, which has standardisedthe requirements for QMS. A well-organised QMS benefits the organisation in achieving itsgoals and sucess in its missions.In this paper, author's experiences in QMS and its implementation during his long tenureat ISRO, are briefly described. The author recalls a few incidents he faced during working onthe projects of ISRO and DRDO, highlighting issues wrt quality and reliability, QMS, and IS0 9000implementation. A few guidelines for effective QMS implementation are also suggested

  9. An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

    Science.gov (United States)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-08-01

    The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

  10. Quality Management System-Some Reflections

    OpenAIRE

    2006-01-01

    With the increasing demand for high quality products in every field, the demand for a goodquality management system (QMS) in every organisation is increasing. This has since been wellappreciatedby many organisations who have adopted QMS like IS0 9000, which has standardisedthe requirements for QMS. A well-organised QMS benefits the organisation in achieving itsgoals and sucess in its missions.In this paper, author's experiences in QMS and its implementation during his long tenureat ISRO, are ...

  11. Isotopic and Hydrogeochemical Assessment of Groundwater quality of Punjab and Haryana, India.

    Science.gov (United States)

    Jyoti, V.; Douglas, E. M.; Hannigan, R.; Schaaf, C.; Moore, J.

    2016-12-01

    Punjab and Haryana lie in the semi-arid region of northwestern India and are characterized by a limited access to freshwater resources and an increasing dependence on groundwater resources to meet human demand, resulting in overexploitation. The objectives of the present study was to characterize groundwater recharge sources using stable isotopes of (δ2H) and (δ18O) and to trace geochemical evolution of groundwater using rare earth elements (REEs). Samples were collected from 30 different locations including shallow domestic handpumps, deep irrigation wells, surface water and rainwater. Samples were analyzed for stable isotopes of (δ2H) and (δ18O) using Isotope Ratio Mass Spectrometry (IRMS) and trace elements using Inductively Coupled Plasma Mass Spectrometry (ICPMS) at University of Massachusetts Boston. Precipitation, surface water and irrigation return flow were identified as the primary sources of recharge to groundwater. Sustainability of recharge sources is highly dependent on the glacier-fed rivers from the Himalayas that are already experiencing impacts from climate change. Geochemistry of REEs revealed geochemically evolved groundwater system with carbonate subsurface weathering as major hydrological processes. Enhanced dissolution of carbonates in the future can be a serious issue with extremely hard groundwater leaving scaly deposits inside pipes and wells. This would not only worsen the groundwater quality but would impose financial implications on the groundwater users in the community. If irrigated culture is to survive as an economically viable and environmentally sustainable activity in the region, groundwater management activities have to be planned at the regional scale.

  12. Some possible evolutionary scenarios suggested by {sup 36}Cl measurements in Guarani aquifer groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, R.G. [CSIRO Land and Water, 120 Meiers Road, Indooroopilly, Queensland 4068 (Australia)], E-mail: richard.cresswell@csiro.au; Bonotto, D.M. [Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900 Rio Claro, Sao Paulo (Brazil)], E-mail: danielbonotto@yahoo.com.br

    2008-08-15

    The Guarani aquifer underlies 1.2 M km{sup 2} in the Parana sedimentary basin of South America and is an important source of water for industry, agriculture, and domestic supplies. To determine the sustainability of this aquifer we need to understand the dynamics of the groundwater system. This paper describes the first {sup 36}Cl measurements on aquifer groundwaters and some measurements on South American rainwaters, thought to be indicative of the recharge water. The results are compared to previous work in the region, including other radioisotope analyses. A simple model is developed, incorporating radioactive decay, allowing scenarios to be developed for mixing different waters at different mixing rates. Thus, mixing scenarios consistent with other hydrogeological and hydrogeochemical data could be assessed. A model that mixes fresh recharging waters with formational waters, that contain elevated chloride levels, but low (in situ) {sup 36}Cl levels, can explain most of the results presented here. The expectation that rainwater samples would provide a good end-member for modelling recharge proved problematic, however. As a consequence, it is suggested that either: the recharge waters are not sourced from the same locations as the rains; that the current rainfall and fallout conditions were significantly different in the past; or that the low levels of chloride in rainfall may have allowed some contamination of the samples by old ({sup 36}Cl-free) chloride during the recharge process.

  13. Impact of over-exploitation on groundwater quality: A case study from WR-2Watershed, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Bhushan R Lamsoge; Yashwant B Katpatal; Vijay P Nawale

    2014-10-01

    The WR-2 watershed is located in the Deccan trap basaltic terrain of Maharashtra State, India. The watershed area incorporates a rich orange orchard belt that requires a huge quantity of water for irrigation. This requirement is mostly met through groundwater, extracted from the shallow aquifers of the WR-2 watershed. However, over the years, excess withdrawal of groundwater from these aquifers has resulted in depletion of groundwater level. The declining trends of groundwater level, both long term and short term, have had a negative impact on the groundwater quality of the study area. This effect can be gauged through the rising electrical conductivity (EC) of groundwater in the shallow aquifers (dug wells) of the WR-2 watershed. It is observed that the long term declining trend of groundwater level, during 1977–2010, varied from 0.03 to 0.04 m per year, whereas the corresponding trend of rising EC varied from 1.90 to 2.94 S/cm per year. During 2007–2010, about 56% dug wells showed a positive correlation between depleting groundwater level and rising EC values. The groundwater level depletion during this period ranged from 0.03 to 0.67 m per year, whereas the corresponding trend of rising EC ranged from 0.52 to 46.91 S/cm per year. Moreover, the water quality studies reveal that groundwater from more than 50% of the dug wells of the WR-2 watershed is not suitable for drinking purpose. The groundwater, though mostly suitable for irrigation purpose, is corrosive and saturated with respect to mineral equilibrium and shows a tendency towards chemical scale formation.

  14. Unconfined Groundwater Quality based on the Settlement Unit in Surakarta City

    Directory of Open Access Journals (Sweden)

    Munawar Cholil

    2004-01-01

    Full Text Available The quality of groundwater of unonfined aquifer with growing population density is endangered by population. This may cause serious problem as greatest portion of the population utility groundwater of unconfined aquifer as their drinking water. This research is aim at studying the difference in quality of groundwater of unonfined aquifer in Surakarta Munipicality by settlement units, and studying the impact settlement factors and groundwater depth on the quality of groundwater of unonfined aquifer. The research was executed by a survey methhod, taking 44 units of groundwater of unonfined aquifer samples at stratified proportional random from 44 villages. The samples were analyzed at the laboratory of Local Drinking Water Company (PDAM of Surakarta. Data were analyzed using by stiff diagram, variance analysis, and multiple regression. The research reveals that there is very little differences in the quality of free groundwater in Surakarta, as it is shown by same chemical properties. Several chemical properties were found very high in concentration, but the rest were simultaniously low. On the basis of minimum quality of drinking water coli content have exeeded the allowed limit for drinking water. Among the settlement units observed, there were no significant differences in the physical, chemical (except pH, bacteriological factors. This means that differences among various depth of water. Electrical onductivity (EC, Na, Mg, H2CO3, H2SO4, and NH3 were found different among various depth of water table. Major chemical conentration were significant with geology formation. Population density, built up areas, size of settlement, building density, and the condition of drainage simultaniously affect the quality of free ground water. No differences among settlement units was observed the most important fators determining the free groundwater quality was population density.

  15. Groundwater quality assessment of one former industrial site in Belgium using a TRIAD-like approach

    Energy Technology Data Exchange (ETDEWEB)

    Crevecoeur, Sophie [Aquapole, Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium); Debacker, Virginie, E-mail: Virginie.Debacker@ulg.ac.be [Aquapole, Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium); Joaquim-Justo, Celia [Aquapole, Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium); Gobert, Sylvie [Laboratory of Oceanology, University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium); Scippo, Marie-Louise [Laboratory of Food Analysis, University of Liege, Boulevard de Colonster 20, 4000 Liege (Belgium); Dejonghe, Winnie [Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol (Belgium); Martin, Patrick [Royal Belgian Institute of Natural Sciences (RBINSc), Rue Vautier 29, 1000 Bruxelles (Belgium); Thome, Jean-Pierre [Aquapole, Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium)

    2011-10-15

    Contaminated industrial sites are important sources of pollution and may result in ecotoxicological effects on terrestrial, aquatic and groundwater ecosystems. An effect-based approach to evaluate and assess pollution-induced degradation due to contaminated groundwater was carried out in this study. The new concept, referred to as 'Groundwater Quality TRIAD-like' (GwQT) approach, is adapted from classical TRIAD approaches. GwQT is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. These components are combined in the GwQT using qualitative and quantitative (using zero to one subindices) integration approaches. The TRIAD approach is applied for the first time on groundwater from one former industrial site located in Belgium. This approach will allow the classification of sites into categories according to the degree of contaminant-induced degradation. This new concept is a starting point for groundwater characterization and is open for improvement and adjustment. - Highlights: > This study presents the first application of the TRIAD approach on groundwater system. > Groundwater Quality TRIAD-like approach is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. > None of the three TRIAD components could reliably predict the other one. - This study presents the first application of the TRIAD approach on groundwater system. None of the TRIAD components (chemistry, physico-chemistry and ecotoxicity) could reliably predict the other one.

  16. Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India

    Science.gov (United States)

    Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.

    2015-09-01

    The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - } . The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.

  17. Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India

    Science.gov (United States)

    Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.

    2017-06-01

    The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - }. The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.

  18. Estimates of tracer-based piston-flow ages of groundwater from selected sites-National Water-Quality Assessment Program, 1992-2005

    Science.gov (United States)

    Hinkle, Stephen R.; Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.

    2011-01-01

    This report documents selected age data interpreted from measured concentrations of environmental tracers in groundwater from 1,399 National Water-Quality Assessment (NAWQA) Program groundwater sites across the United States. The tracers of interest were chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis primarily were from wells representing two types of NAWQA groundwater studies - Land-Use Studies (shallow wells, usually monitoring wells, in recharge areas under dominant land-use settings) and Major-Aquifer Studies (wells, usually domestic supply wells, in principal aquifers and representing the shallow, used resource). Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) associated with Land-Use Studies also were included. Tracer samples were collected between 1992 and 2005, although two networks sampled from 2006 to 2007 were included because of network-specific needs. Tracer data from other NAWQA Program components (Flow System Studies, which are assessments of processes and trends along groundwater flow paths, and various topical studies) were not compiled herein. Tracer data from NAWQA Land-Use Studies and Major-Aquifer Studies that previously had been interpreted and published are compiled herein (as piston-flow ages), but have not been reinterpreted. Tracer data that previously had not been interpreted and published are evaluated using documented methods and compiled with aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), estimates of tracer-based piston-flow ages, and selected ancillary data, such as redox indicators, well construction, and major dissolved gases (N2, O2, Ar, CH4, and CO2). Tracer-based piston-flow ages documented in this report are simplistic representations of the tracer data. Tracer-based piston-flow ages are a convenient means of conceptualizing groundwater age. However, the piston

  19. Groundwater Quality Monitoring at Logan Cave National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal is to establish long-term groundwater parameters associated with the outflow from Logan Cave and the implication to the aquatic resources in the cave.

  20. Some Topologies of High Quality Rectifiers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several basic classes of three-phase high-quality rectifiers are described.Both single-switch and six-switch three-phase rectifier topologiescan be derived from parent dc-dc converters.Single-switch rectifiers are compared with the basic six-switch PWM rectifiers performingsimilar power conversion functions,using the measures of total semiconductor stress and active semiconductor utilization.The singleswitchapproach is shown to utilize the semiconductor devices more effectively.Zero current switching and multiresonant approaches are foundto exhibit low switch stress over a wide range of operating points,with lowTHD.

  1. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.

    Science.gov (United States)

    Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando

    2017-06-15

    This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.

  2. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Huiwei; Wang, Yanchao; Yang, Mingnan; Zhu, Liang

    2017-07-01

    Deterioration in groundwater quality has attracted wide social interest in China. In this study, groundwater quality was monitored during December 2014 at 115 sites in the Hutuo River alluvial-pluvial fan region of northern China. Results showed that 21.7% of NO3(-) and 51.3% of total hardness samples exceeded grade III of the national quality standards for Chinese groundwater. In addition, results of gray relationship analysis (GRA) show that 64.3, 10.4, 21.7, and 3.6% of samples were within the I, II, IV, and V grades of groundwater in the Hutuo River region, respectively. The poor water quality in the study region is due to intense anthropogenic activities as well as aquifer vulnerability to contamination. Results of principal component analysis (PCA) revealed three major factors: (1) domestic wastewater and agricultural runoff pollution (anthropogenic activities), (2) water-rock interactions (natural processes), and (3) industrial wastewater pollution (anthropogenic activities). Using PCA and absolute principal component scores-multivariate linear regression (APCS-MLR), results show that domestic wastewater and agricultural runoff are the main sources of groundwater pollution in the Hutuo River alluvial-pluvial fan area. Thus, the most appropriate methods to prevent groundwater quality degradation are to improve capacities for wastewater treatment and to optimize fertilization strategies.

  3. Variable infiltration and river flooding resulting in changing groundwater quality - A case study from Central Europe

    Science.gov (United States)

    Miotliński, Konrad; Postma, Dieke; Kowalczyk, Andrzej

    2012-01-01

    SummaryThe changes in groundwater quality occurring in a buried valley aquifer following a reduction in groundwater exploitation and enhanced infiltration due to extensive flooding of the Odra River in 1997 were investigated. Long-time series data for the chemical composition of groundwater in a large well field for drinking water supply indicated the deterioration of groundwater quality in the wells capturing water from the flooded area, which had been intensively cultivated since the 1960s. Infiltration of flooded river water into the aquifer is suggested by an elevated chloride concentration, although salt flushing from the rewatered unsaturated zone due to the enhanced recharge event is much more feasible. Concomitantly with chloride increases in the concentrations of sulphate, ferrous iron, manganese, and nickel imply the oxidation of pyrite (FeS 2) which is abundant in the aquifer. The proton production resulting from pyrite oxidation is buffered by the dissolution of calcite, while the Ca:SO 4 stoichiometry of the groundwater indicates that pyrite oxidation coupled with nitrate reduction is the dominant process occurring in the aquifer. The pyritic origin of SO42- is confirmed by the sulphur isotopic composition. The resultant Fe 2+ increase induces Mn-oxide dissolution and the mobilisation of Ni 2+ previously adsorbed to Mn-oxide surfaces. The study has a major implication for groundwater quality prediction studies where there are considerable variations in water level associated with groundwater management and climate change issues.

  4. Are groundwater nitrate concentrations reaching a turning point in some chalk aquifers?

    Science.gov (United States)

    Smith, J T; Clarke, R T; Bowes, M J

    2010-09-15

    In past decades, there has been much scientific effort dedicated to the development of models for simulation and prediction of nitrate concentrations in groundwaters, but producing truly predictive models remains a major challenge. A time-series model, based on long-term variations in nitrate fertiliser applications and average rainfall, was calibrated against measured concentrations from five boreholes in the River Frome catchment of Southern England for the period spanning from the mid-1970s to 2003. The model was then used to "blind" predict nitrate concentrations for the period 2003-2008. To our knowledge, this represents the first "blind" test of a model for predicting nitrate concentrations in aquifers. It was found that relatively simple time-series models could explain and predict a significant proportion of the variation in nitrate concentrations in these groundwater abstraction points (R(2)=0.6-0.9 and mean absolute prediction errors 4.2-8.0%). The study highlighted some important limitations and uncertainties in this, and other modelling approaches, in particular regarding long-term nitrate fertiliser application data. In three of the five groundwater abstraction points (Hooke, Empool and Eagle Lodge), once seasonal variations were accounted for, there was a recent change in the generally upward historical trend in nitrate concentrations. This may be an early indication of a response to levelling-off (and declining) fertiliser application rates since the 1980s. There was no clear indication of trend change at the Forston and Winterbourne Abbas sites nor in the trend of nitrate concentration in the River Frome itself from 1965 to 2008. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Hydrogeology and groundwater quality of the glaciated valleys of Bradford, Tioga, and Potter Counties, Pennsylvania

    Science.gov (United States)

    Williams, John H.; Taylor, Larry E.; Low, Dennis J.

    1998-01-01

    -drift aquifers have specific capacities an order of magnitude greater than those completed in till and bedrock, Wells completed in unconfined stratified-drift aquifers and in bedrock aquifers have the highest and lowest median specific capacities -- 24 and 0.80 gallons per minute per foot of drawdown, respectively. Wells completed in confined stratified-drift aquifers and in till have median specific capacties of 11 and 0.87 gallons per minute per foot of drawdown, respectively. The results of 223 groundwater-quality analyses indicate two major hydrogeochemical zones: (1) a zone of unrestricted groundwater flow that contains water of the calcium bicarbonate type (this zone is found in almost all of the stratified-drift aquifers, till, and shallow bedrock systems); and (2) a zone of restricted groundwater slow that contains water of the sodium chloride type (this zone is found in the bedrock, and, in some areas, in till and confined stratified-drift aquifers). Samples pumped from wells that penetrate restricted-flow zones have median concentrations of total dissolved solids, dissolved chloride, and dissolved barium of 840 and 350 milligrams per liter, and 2,100 micrograms per liter, respectively. Excessive concentrations of iron and manganese are common in the groundwater of the study area; about 50 percent of the wells sampled contain water that has iron and manganese concentrations that exceed the U.S. Environmental Protection Agency secondary maximum contaminant levels of 300 and 50 micrograms per liter, respectively. Only water in the unconfined stratified-drift aquifers and the Catskill Formation has median concentrations lower than these limits.

  6. Direction of ground-water flow and ground-water quality near a landfill in Falmouth, Massachusetts

    Science.gov (United States)

    Persky, J.H.

    1986-01-01

    A landfill in Falmouth, Massachusetts, is upgradient of a pond used for municipal water supply, but analysis of groundwater flow directions and groundwater quality indicates that leachate from the landfill does not threaten the municipal water supply. A network of water table observation wells was established, and water table altitudes were measured in these wells on several dates in 1981. Water quality analyses and specific conductance measurements were made on water samples from several wells in the vicinity of the landfill between October 1980 and April 1983. A water table altitude contour map of the area between the landfill and Long Pond for April 16-17, 1981, indicates that the direction of groundwater flow is primarily southwest from the landfill to Buzzards Bay. A similar map for September 2, 1981--a time at which the water table was unusually low--indicates the possibility of groundwater discharge to Long Pond from the landfill site. Groundwater quality beneath the landfill exceeded U.S. EPA water quality criteria for domestic water supply for manganese and total dissolved solids. Concentrations as high as 52 mg/L of nitrogen as ammonia and 4,500 micrograms/L (ug/L) of manganese were found. Concentrations of ammonia, manganese, calcium, potassium, and alkalinity exceeded local background levels by more than a factor of 100; specific-conductance levels and concentrations of hardness, barium, chloride, sodium, magnesium, iron, and strontium exceeded local background levels by more than a factor of 10; and cadmium concentrations exceeded local background levels by more than a factor of 5. Water quality analyses and field specific conductance measurements indicate the presence of a volume of leachate extending south-southwest from the landfill. Average chloride concentrations of landfill leachate, precipitation on the surface of Long Pond, and recharge from the remainder of the recharge area were 180, 3, and 9 mg/L, respectively. No significant degradation of

  7. Quality and Type of Chemical of Groundwater at Coastal Areas of Semarang

    Directory of Open Access Journals (Sweden)

    Setyawan Purnama

    2004-01-01

    Full Text Available There are two objectives of this researh. First, to identify and analyze the condition of ground water quality in the research area, and second to determined the chemial types of groundwater. To ahieve these objectives 59 groundwater samples were taken stratifiedly, base on the different of electrical conductance value. As a result, it is identified that most groundwater in the research area is not suitable for drinking water sources, because has high concentration of electrical conductance, turbidity, hardness, chloride, manganese, and salinity. Thiis conclusion is also supported by stiff diagram analysis. The result of Stuyfzand analysis shhows that the chemical types of groundwater is very variative. Groundwater in coastal areas has higher suply of saline water than fresh water.

  8. Hydrochemical Analysis and Evaluation of Groundwater Quality and Agriculture Soil of Khairpur Taluka, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Tajnees Pirzada

    2016-06-01

    Full Text Available The inhabitants of Khairpur Taluka mostly consume groundwater for drinking and agriculture purposes. The present study was conducted to monitor the essential quality parameters of groundwater and soil. Both groundwater and soil samples of the area were classified as alkaline. All the major ions except Na and SO4 were found within the permissible limits, while the concentrations of Zn, Fe, Co, Pb, Ni and Mn in studied groundwater samples were found above the specified limit of WHO. However, soil samples were found rich in major and trace elements except Cd, which was low in comparison to world average of agriculture soil. Irrigation character of water samples on SAR vs. Na% plot display fair type with few exceptions. The piper diagram implied mixed water composition with Na-Ca-Mg and HCO3-SO4+Cl as dominate ions. Diverse shapes of Stiff polygons also support the mixed nature of groundwater in the study area.

  9. Gases dissolved in groundwaters: analytical methods and examples of applications in central Italy

    Energy Technology Data Exchange (ETDEWEB)

    Chiodini, G. [Osservatorio Vesuviano, Napoli (Italy)

    1998-12-31

    A quick method to analyse dissolved gases in natural waters is described. First partial results show that useful information on the geochemical processes affecting a variety of hydrogeological systems can be obtained from the study of dissolved gases. The study of the CO{sub 2} dissolved in the groundwaters of Central Italy indicates that one of the main factor controlling the P{sub CO2} values in these groundwaters is the input of a deeply originated gas phase. These leakage processes generally occur in correspondence with buried structural highs of the carbonate basement acting as both traps for the gas produced at depth and sources of high CO{sub 2} fluxes toward the surface. This CO{sub 2} causes significant increases in the P{sub {sub O}2} values of shallow groundwaters. The total carbon balance of two regional aquifers has been used to estimate the production rate of deep CO{sub 2} in Tyrrhenian Central Italy. These average production rates, with 5 X 10{sup 6}mol km{sup -2} y{sup -1} both at Stifone and at Colli Albani, are five times higher than the value assumed as baseline for areas of high heat flow, i.e., 10{sup 6} km{sup -2} y{sup -1}.

  10. Communicating Comparative Findings from Meta-Analysis in Educational Research: Some Examples and Suggestions

    Science.gov (United States)

    Higgins, Steve; Katsipataki, Maria

    2016-01-01

    This article reviews some of the strengths and limitations of the comparative use of meta-analysis findings, using examples from the Sutton Trust-Education Endowment Foundation Teaching and Learning "Toolkit" which summarizes a range of educational approaches to improve pupil attainment in schools. This comparative use of quantitative…

  11. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    ground water. A quality-control sample (blank, replicate, or matrix spike) was collected at approximately one quarter of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control information resulted in V-coding less than 0.1 percent of the data collected. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is supplied to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic purposes (secondary maximum contaminant levels, SMCL-CA) by CDPH. Most constituents detected in ground-water samples were at concentrations below drinking-water thresholds. Volatile organic compounds, pesticides, and pesticide degradates were detected in less than one-third of the grid well samples collected. All VOC and pesticide concentrations measured were below health-based thresholds. Potential waste-water indicators were detected in less than half of the wells sampled, and no detections were above health-based thresholds. Perchlorate was detected in seven grid wells; concentrations from two wells were above the CDPH maximum contaminant level (MCL-CA). Most detections of trace elements in samples collected from COA Study Unit wells were below water-quality thresholds. Exceptions include five samples of arsenic that were above the USEPA maximum contaminant level (MCL-US), two detections of boron above the CDPH notification level (NL-CA), and two detections of mol

  12. QUALITY CONTROL OF SOME TRADITIONAL MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    S. DOBRINAS

    2014-03-01

    Full Text Available In this paper, we present the characterization of six traditional meat products: smoked file, smoked bacon, pork sausages, sausage prepared from swine’s entrails, pork pastrami, sheep sausages. Organoleptic tests (the aspect and shape, the aspect of freshly cut in the section, smell, taste and consistency, physico-chemical and microbiological determinations (NTG, Salmonella, Listeria monocytogenes and Escherichia coli were performed. These analyzes are a part of quality control that must be done in order to obtain a certificate from the Ministry of Agriculture for a traditional product. After identification of H2S and starch and according to fat oxidation degree it was concluded that analyzed samples didn’t contain counterfeiters and all parameters analyzed are within the maximum limits allowed by law. Considering all the procedures for manufacturing, characteristics of raw and auxiliary materials, organoleptic properties of final products analyzed in this study, it can be concluded that analyzed meat specialties meet the requirements of Ministry Order no. 690/28.09.2004 for the traditional products certification.

  13. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area.

    Science.gov (United States)

    Rabeiy, Ragab ElSayed

    2017-04-04

    The continuous growth and development of population need more fresh water for drinking, irrigation, and domestic in arid countries like Egypt. Evaluation the quality of groundwater is an essential study to ensure its suitability for different purposes. In this study, 812 groundwater samples were taken within the middle area of Upper Egypt (Sohag Governorate) to assess the quality of groundwater for drinking and irrigation purposes. Eleven water parameters were analyzed at each groundwater sample (Na(+), K(+), Ca(2+), Mg(2+), HCO3(-) SO4(2-), Fe(2+), Mn(2+), Cl(-), electrical conductivity, and pH) to exploit them in water quality evaluation. A classical statistics were applied for the raw data to examine the distribution of physicochemical parameters in the investigated area. The relationship between groundwater parameters was tested using the correlation coefficient where a strong relationship was found between several water parameters such as Ca(2+) and Cl(-). Water quality index (WQI) is a mathematical model used to transform many water parameters into a single indicator value which represents the water quality level. Results of WQI showed that 20% of groundwater samples are excellent, 75% are good for drinking, and 7% are very poor water while only 1% of samples are unsuitable for drinking. To test the suitability of groundwater for irrigation, three indices are used; they are sodium adsorption ration (SAR), sodium percentage (Na%), and permeability index (PI). For irrigation suitability, the study proved that most sampling sites are suitable while less than 3% are unsuitable for irrigation. The spatial distribution of the estimated values of WQI, SAR, Na%, PI, and each groundwater parameter was spatially modeled using GIS.

  14. Modelling groundwater systems: Understanding and improving groundwater quantity and quality management

    NARCIS (Netherlands)

    Ebrahim, G.Y.

    2013-01-01

    Groundwater is one of the most important natural resources. It is the principal source of drinking water in rural and many urban cities, and widely used for irrigation in most arid and semi-arid countries. However, recently it has become apparent that many human activities are negatively impacting b

  15. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  16. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    , replicates, laboratory matrix spikes) were collected at approximately 10 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and are not indicative of compliance or noncompliance with regulatory thresholds. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water thresholds. VOCs were detected in less than one-third and pesticides and pesticide degradates in just over one-half of the grid wells, and all detections of these constituents in samples from all wells of the MSACV study unit were below health-based thresholds. All detections of trace elements in samples from MSACV grid wells were below health-based thresholds, with the exceptions of arsenic and boro

  17. Groundwater potentiality mapping of hard-rock terrain in arid regions using geospatial modelling: example from Wadi Feiran basin, South Sinai, Egypt

    Science.gov (United States)

    Arnous, Mohamed O.

    2016-09-01

    Identifying a good site for groundwater exploitation in hard-rock terrains is a challenging task. In Sinai, Egypt, groundwater is the only source of water for local inhabitants. Interpretation of satellite data for delineation of lithological units and weathered zones, and for mapping of lineament density and their trends, provides a valuable aid for the location of groundwater promising areas. Complex deformational histories of the wide range of lithological formations add to the difficulty. Groundwater prospect mapping is a systematic approach that considers the major controlling factors which influence the aquifer and quality of groundwater. The presented study aims to delineate, identify, model and map groundwater potential zones in arid South Sinai using remote sensing data and a geographic information system (GIS) to prepare various hydromorphogeological thematic maps such as maps of slope, drainage density, lithology, landforms, structural lineaments, rainfall intensity and plan curvature. The controlling-factor thematic maps are each allocated a fixed score and weight, computed by using a linear equation approach. Furthermore, each weighted thematic map is statistically computed to yield a groundwater potential zone map of the study area. The groundwater potential zones thus obtained were divided into five categories (very poor, poor, moderate, good and very good) and were validated using the relation between the zone and the spatial distribution of productive wells and of previous geophysical investigations from a literature review. The results show the groundwater potential zones in the study area, and create awareness for better planning and management of groundwater resources.

  18. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  19. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    Science.gov (United States)

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  20. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    ] and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-fourth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most compounds. Assessment of the quality-control information resulted in applying ?V? codes to approximately 0.1 percent of the data collected for ground-water samples (meaning a constituent was detected in blanks as well as the corresponding environmental data). This study did not attempt to evaluate the quality of drinking water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable drinking-water quality. Regulatory thresholds are applied to the treated drinking water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA), California Department of Public Health (CDPH, formerly California Department of Health Services [CADHS]) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with those thresholds. VOCs were detected in alm

  1. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    and age of the sampled ground water. Quality-control samples (blanks or replicates, or samples for matrix spikes) were collected from approximately 26 percent of the wells, and the analyses of these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the quality of the environmental data was good, with low bias and low variability, and as a result, less than 0.1 percent of the analytes detected in ground-water samples were censored. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is delivered (or, supplied) to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Most constituents that were detected in ground-water samples were reported at concentrations below their established health-based thresholds. VOCs, pesticides and pesticide degradates, and potential wastewater-indicator compounds were detected in about 33 percent or less of the 42 SCRV grid wells. Concentrations of all detected organic constituents were below established health-based thresholds. Perchlorate was detected in approximately 12 percent of the SCRV grid wells; all concentrations reported were below the NL-CA threshold. Additional constituents, including major ions, trace elements, and nutrients were collected at 26 wells (16 grid wells and 10 understanding wells) of the 53 wells sampled f

  2. Status and understanding of groundwater quality in the Sierra Nevada Regional study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Sierra Nevada Regional (SNR) study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment Program Priority Basin Project. The study was designed to provide statistically unbiased assessments of the quality of untreated groundwater within the primary aquifer system of the Sierra Nevada. The primary aquifer system for the SNR study unit was delineated by the depth intervals over which wells in the State of California’s database of public drinking-water supply wells are open or screened. Two types of assessments were made: (1) a status assessment that described the current quality of the groundwater resource, and (2) an evaluation of relations between groundwater quality and potential explanatory factors that represent characteristics of the primary aquifer system. The assessments characterize untreated groundwater quality, rather than the quality of treated drinking water delivered to consumers by water distributors.

  3. GROUNDWATER QUALITY ASSESSMENT FOR DRINKING PURPOSES USING GIS MODELLING (CASE STUDY: CITY OF TABRIZ

    Directory of Open Access Journals (Sweden)

    M. Jeihouni

    2014-10-01

    Full Text Available Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1 specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC, pH, hardness and sulphate (2 mapping groundwater quality for drinking purpose by employing Analytic Hierarchy Process (AHP method in the study area using GIS and Geosatistics. We utilized an interpolation technique of ordinary kriging for generating thematic map of each parameter. The final map indicates that the groundwater quality esaeicni from North to South and from West to East of the study area. The areas located in Center, South and South West of the study area have the optimum quality for drinking purposes which are the best locations to drill wells for supplying water demands of Tabriz city. In critical conditions, the groundwater quality map as a result of this research can be taken into account by East Azerbaijan Regional Water Company as decision support system to drill new wells or selecting existing wells to supply drinking water to Tabriz city.

  4. Groundwater quality across scales: impact on nutrient transport to large water bodies

    Science.gov (United States)

    Dürr, Hans; Moosdorf, Nils; Mallast, Ulf

    2017-04-01

    High concentrations of dissolved nutrients such as nitrogen (N) and phosphorus (P) in groundwater are an increasing concern in many areas of the world. Especially regions with high agriculture impact see widespread declining groundwater quality, with considerable uncertainty mainly regarding the impact of phosphorus (P). Implications reach from direct impacts on different water users to discharge of nutrient-rich groundwater to rivers, lakes and coastal areas, where it can contribute to eutrophication, hypoxia or harmful algal blooms. While local-scale studies are abundant and management options exist, quantitative approaches at regional to continental scales are scarce and frequently have to deal with data inconsistencies or are temporally sparse. Here, we present the research framework to combine large databases of local groundwater quality to data sets of climatical, hydrological, geological or landuse parameters. Pooling of such information, together with robust methods such as water balances and groundwater models, can provide constraints such as upper boundaries and likely ranges of nutrient composition in various settings, or for the nutrient transport to large water bodies. Remote Sensing can provide spatial information on the location of groundwater seepage. Results will eventually help to identify focus areas and lead to improved understanding of the role of groundwater in the context of global biogeochemical cycles.

  5. Groundwater quality of Assini and Iria Valleys in Peloponnese Region, Greece

    Directory of Open Access Journals (Sweden)

    Maria Psychoyou

    2013-01-01

    Full Text Available The degradation of groundwater quality is mainly related to the intensification of agriculture, the use of fertilizers and the overexploitation of groundwater aquifers which in coastal areas leads to sea water intrusion. An assessment of groundwater quality was conducted in Assini and Iria valleys. Groundwater samples was collected in the beginning (May and in the end (October of the irrigation season and subjected to chemical analyses for the main anions and cations. Groundwater was classified using the Piper diagram. Chloride and E.C. (electrical conductivity contour maps of the regions were obtained in order to evaluate the extent of sea water intrusion. The main cultivated crops in the regions are irrigated citrus and high amounts of nitrogen fertilizers are used. Nitrate concentration of groundwater was found often to exceed the value of 50 mg/l. A comparison was made with the situation that was prevailing in the region eight years ago. The suitability of groundwater for irrigation was evaluated.

  6. Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring

    Science.gov (United States)

    Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki

    The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.

  7. Experiences of Mass Pig Carcass Disposal Related to Groundwater Quality Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Zeng-Yei Hseu

    2016-12-01

    Full Text Available The pig industry is the most crucial animal industry in Taiwan; 10.7 million pigs were reared for consumption in 1996. A foot and mouth disease (FMD epidemic broke out on 19 March 1997, and 3,850,536 pigs were culled before July in the same year. The major disposal method of pig carcasses from the FMD outbreak was burial, followed by burning and incineration. To investigate groundwater quality, environmental monitoring of burial sites was performed from October 1997 to June 1999; groundwater monitoring of 90–777 wells in 20 prefectures was performed wo to six times in 1998. Taiwanese governmental agencies analyzed 3723 groundwater samples using a budget of US $1.5 million. The total bacterial count, fecal coliform, Salmonella spp., nitrite-N, nitrate-N, ammonium-N, sulfate, non-purgeable organic carbon, total oil, and total dissolved solid were recognized as indicators of groundwater contamination resulting from pig carcass burial. Groundwater at the burial sites was considered to be contaminated on the basis of the aforementioned indicators, particularly groundwater at burial sites without an impermeable cloth and those located at a relatively short distance from the monitoring well. The burial sites selected during outbreaks in Taiwan should have a low surrounding population, be away from water preservation areas, and undergo regular monitoring of groundwater quality.

  8. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT (INDIA

    Directory of Open Access Journals (Sweden)

    P. Shroff

    2015-07-01

    Full Text Available The present study aims the assessment of the water quality index (WQI for the groundwater of Valsad district of South Gujarat. Total fifteen sampling stations from five talukas of Valsad district were selected and groundwater samples were collected for two years (from August 2007 to July 2009. In this present study, WQI created by Canadian Council of Minister of the Environment (CCME was used. For calculating the WQI, groundwater samples were analyzed for seventeen physico-chemical parameters like pH, Colour, Electrical Conductivity (EC, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Total Dissolved Solids (TDS, Silica, Chloride, Sulphate, Fluoride, Sodium, Chemical Oxygen Demand (COD and metals like Copper (Cu, Lead (Pb and Manganese (Mn.  The WQI for Valsad district suggests that the groundwater quality is marginal.  

  9. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT (INDIA

    Directory of Open Access Journals (Sweden)

    P. Shroff

    2013-12-01

    Full Text Available The present study aims the assessment of the water quality index (WQI for the groundwater of Valsad district of South Gujarat. Total fifteen sampling stations from five talukas of Valsad district were selected and groundwater samples were collected for two years (from August 2007 to July 2009. In this present study, WQI created by Canadian Council of Minister of the Environment (CCME was used. For calculating the WQI, groundwater samples were analyzed for seventeen physico-chemical parameters like pH, Colour, Electrical Conductivity (EC, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Total Dissolved Solids (TDS, Silica, Chloride, Sulphate, Fluoride, Sodium, Chemical Oxygen Demand (COD and metals like Copper (Cu, Lead (Pb and Manganese (Mn. The WQI for Valsad district suggests that the groundwater quality is marginal.

  10. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  11. Assessment of Groundwater Quality for Irrigation in Coimbatore South Taluk, Coimbatore District, Tamil Nadu.

    Science.gov (United States)

    Murali, K; Kumar, R D Swasthik; Elangovan, R

    2014-07-01

    The study was conducted to evaluate the suitability of ground water for irrigation purpose at twenty seven locations in Coimbatore South Taluk, Coimbatore District. The analytical result shows that Na and Cl are the dominant cation and anions respectively in the groundwater. The values of TDS and EC exceed the permissible limits at some locations due to increase in ionic concentrations. Based on SAR, RSC, US Salinity diagram and Wilcox diagram it is observed that the water ranges from excellent to good quality in most of the places and can be used for irrigation without any hazard. Gibbs variation diagram indicates that lithology is main controlling factor for water chemistry. However, the high SAR and RSC values at few locations restrict suitability for irrigation purpose.

  12. Hydrochemical analysis and evaluation of groundwater quality in El Eulma area, Algeria

    Science.gov (United States)

    Belkhiri, Lazhar; Mouni, Lotfi

    2012-06-01

    The groundwater sources in the El Elma plain have been evaluated for their chemical composition and suitability for irrigation uses. Cluster analysis in Q-mode resulted in three major water types (HCO3 --Ca-2+dominated, Cl--HCO3 --Ca2+-dominated and Cl--Ca2+-Na+-dominated) for the groundwater. The US salinity diagram illustrates that most of the groundwater samples fall in C3S1 quality with high salinity hazard and low sodium hazard. Based on RSC values, all the samples of the three groups had values less than 1.25 and were good for irrigation.

  13. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Grift, B. van der; Bierkens, M.F.P.

    2007-01-01

    Recent EU legislation is directed to reverse the upward trends in the concentrations of agricultural pollutants in groundwater. However, uncertainty of the groundwater travel time towards the screens of the groundwater quality monitoring networks complicates the demonstration of trend reversal. We i

  14. Impacts on Groundwater Quality Following the Application of ISCO: Understanding the Cause of and Designing Mitigation for Metals Mobilization

    Science.gov (United States)

    2015-05-01

    FINAL REPORT Impacts on Groundwater Quality Following the Application of ISCO: Understanding the Cause of and Designing Mitigation for Metals... groundwater concentrations before and after 2 ISCO treatment applications...Preliminary Evaluation: Groundwater characterization methods ............................. 13  Table 3.2.1 Initial Screening: ISCO Treatment Details

  15. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Grift, B. van der; Bierkens, M.F.P.

    2007-01-01

    Recent EU legislation is directed to reverse the upward trends in the concentrations of agricultural pollutants in groundwater. However, uncertainty of the groundwater travel time towards the screens of the groundwater quality monitoring networks complicates the demonstration of trend reversal. We

  16. Assessment of chemical quality of groundwater in coastal volcano-sedimentary aquifer of Djibouti, Horn of Africa

    Science.gov (United States)

    Ahmed, Abdoulkader Houssein; Rayaleh, Waiss Elmi; Zghibi, Adel; Ouddane, Baghdad

    2017-07-01

    This research is conducted to evaluate the current status of hydrogeochemical contaminants and their sources in groundwater in the volcano-sedimentary aquifer of Djibouti. Groundwater samples were mostly collected from the volcanic and inferoflux aquifers and then were analyzed for quality on physicochemical parameters (EC, pH, Temperature, Cl-, SO42-, HCO3-, NO3-, Na+, Ca2+, Mg2+, K+, Br-, F-), minor and trace elements (Li, Ba, B, Sr, Si, Al, Cr, Fe, Mn, Mo, Pb, Co, Cu, Ni, Zn, Ti, V, As, Se). The interpretations of hydrochemical data are shown numerically and graphically through the Piper diagram such as the multivariate statistical analysis, binary diagram, the calculation of the saturation indexes, the index of base exchanges and ratio of Na+/Cl-, SO42-/Cl-, HCO3-/Cl-. The seawater ratio and ionic deviation in the groundwater were calculated using the chloride concentration. These processes can be used as indicators of seawater intrusion progress. This study reveals three groundwater quality groups and how the quality of water supply has been deteriorated through the process of seawater intrusion. The seawater intrusion extends into the Gulf basalts aquifer that covers nearly 12% of the whole area according to some observations. Some toxic elements present in drinking water (As and Se) have already exceeded the maximum permissible in almost the entire of the Gulf basalts aquifer affected by seawater intrusion. Indeed, some correlations were found between As, Se, with electrical conductivity and among other minor and trace elements such as Br, B, Sr, Co and Cr. It indicates that all these elements are mainly controlled by naturel/geogenic processes. The Principal component Analysis and the Hierarchical Cluster Analysis have led to the confirmation of the hypotheses developed in the previous hydrochemical study in which two factors explain the major hydrochemical processes in the aquifer. These factors reveal first the existence of an intensive intrusion of

  17. Characterization of Groundwater Quality Based on Regional Geologic Setting in the Piedmont and Blue Ridge Physiographic Provinces, North Carolina

    Science.gov (United States)

    Harden, Stephen L.; Chapman, Melinda J.; Harned, Douglas A.

    2009-01-01

    exceedances, with groundwater from 61 of the 69 sampled wells having activities higher than the U.S. Environmental Protection Agency's proposed maximum contaminant level of 300 picocuries per liter. Overall, the Milton and the Raleigh and Charlotte geozones had the greatest number, eight each, of water-quality properties or constituents that exceeded applicable drinking-water criteria in at least one well. The Eastern Blue Ridge and Felsic intrusive geozones each had seven properties or constituents that exceeded criteria, and the Carolina slate geozone had six. Based on limited data, initial results of statistical comparison tests identified statistically significant differences in concentrations of some groundwater constituents among the geozones. Statistically significant differences in median values of specific conductance and median concentrations of calcium, potassium, sodium, bicarbonate, chloride, silica, ammonia, aluminum, antimony, cadmium, and uranium were identified between one or more geozone pairs. Overall, the groundwater constituents appear to be influenced most significantly by the Inner Piedmont, Carolina slate, and Felsic intrusive geozones. The study data indicate that grouping and evaluating analytical data on the basis of regional geozone setting can be useful for characterizing water-quality conditions in bedrock aquifers of the Piedmont and Blue Ridge Provinces of North Carolina.

  18. Evaluation of Some Organic Pollutants Transport into the Shallow Groundwater and Surface Water of Jiaxing Landfill Area

    Directory of Open Access Journals (Sweden)

    Souleymane Keita

    2009-01-01

    Full Text Available Problem statement: Hangjiahu regions belong to the Yangtze River Delta region in Zhejiang Province in China. The vast majority of this region is flat, so surface and groundwater both have a low flow rate. With the rapid economic development of the area, a large number of industrial and domestic garbage are generated. These landfill or garbage are exposed and stacked. Because of mismanagement of environment, the atmosphere under the leaching rainfall, results in harmful gases and leachate. A serious pollution of the atmosphere surrounding the dump, soil, surface water and groundwater occurred. By studying the area under different hydro geological conditions this groundwater pollution due to the landfill can be stopped and prevented. This research can also provide a scientific basis. Approach: Some samples were taken to some specific sampling points in order to do chemical analysis. A hydro geological investigation was done on the study area. By using all these data, groundwater pollution was evaluated and predicted through numerical simulation software: Groundwater Modeling System (GMS, from 2006-2007. Results: A total of six main organic pollutants were found in the entire study area including: toluene, dichloropropane, benzene, dichloroethane, chloroform and dichloromethane. There concentration increased form 2006 to 2007 and is higher in surface water than groundwater. Conclusion/Recommendations: Experimental and simulation results were compared and showed that close agreement between these two values were obtained. The application of ecological methods to remove harmful substances such as the cultivation of suitable plants is also necessary.

  19. Water Quality Assessment of Groundwater Resources in Nagpur Region (India Based on WQI

    Directory of Open Access Journals (Sweden)

    P. N. Rajankar

    2009-01-01

    Full Text Available Water quality index (WQI has been calculated for different groundwater sources i.e. dug wells, bore wells and tube wells at Khaperkheda region, Maharashtra (India. Twenty two different sites were selected in post monsoon, winter and summer season. And water quality index was calculated using water quality index calculator given by National Sanitation Foundation (NSF information system. The calculated WQI showed fair water quality rating in post monsoon season which then changed to medium in summer and winter seasons for dug wells, but the bore wells and hand pumps showed medium water quality rating in all seasons where the quality was slightly differs in summer and winter season than post monsoon season, so the reasons to import water quality change and measures to be taken up in terms of groundwater quality management are required.

  20. Study of Seasonal Variation in Groundwater Quality of Sagar City (India) by Principal Component Analysis

    OpenAIRE

    Hemant Pathak; S. N. Limaye

    2011-01-01

    Groundwater is one of the major resources of the drinking water in Sagar city (India.). In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis fa...

  1. Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu, India

    Science.gov (United States)

    Singaraja, C.

    2017-09-01

    The present hydrogeochemical study was confined to the Thoothukudi District in Tamilnadu, India. A total of 100 representative water samples were collected during pre-monsoon and post-monsoon and analyzed for the major cations (sodium, calcium, magnesium and potassium) and anions (chloride, sulfate, bicarbonate, fluoride and nitrate) along with various physical and chemical parameters (pH, total dissolved salts and electrical conductivity). Water quality index rating was calculated to quantify the overall water quality for human consumption. The PRM samples exhibit poor quality in greater percentage when compared with POM due to dilution of ions and agricultural impact. The overlay of WQI with chloride and EC corresponds to the same locations indicating the poor quality of groundwater in the study area. Sodium (Na %), sodium absorption ratio (SAR), residual sodium carbonate (RSC), residual sodium bicarbonate, permeability index (PI), magnesium hazards (MH), Kelly's ratio (KR), potential salinity (PS) and Puri's salt index (PSI) and domestic quality parameters such as total hardness (TH), temporary, permanent hardness and corrosivity ratio (CR) were calculated. The majority of the samples were not suitable for drinking, irrigation and domestic purposes in the study area. In this study, the analysis of salinization/freshening processes was carried out through binary diagrams such as of mole ratios of {SO}_{ 4}^{ 2- } /Cl- and Cl-/EC that clearly classify the sources of seawater intrusion and saltpan contamination. Spatial diagram BEX was used to find whether the aquifer was in the salinization region or in the freshening encroachment region.

  2. Impacts of land-use and soil properties on groundwater quality in the hard rock aquifer of an irrigated catchment: the Berambadi (Southern India)

    Science.gov (United States)

    Buvaneshwari, Sriramulu; Riotte, Jean; Ruiz, Laurent; Sekhar, Muddu; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Braun, Jean Jacques; Mohan Kumar, Mandalagiri S.

    2017-04-01

    .5-6, respectively, while in Berambadi Na/Cl drops down to 0.3 due to the addition of KCl-chlorine. Natural [Cl] estimated in Berambadi groundwater was on average 44 ppm (from 8 to 170 ppm). This means that on average, evapotranspiration and recycling in Berambadi groundwater was 2 to 4 times greater than evapotranspiration in the nearby forest. Hot spots (8 to 20 times forest ET) were all located along the stream, associated with Vertisols and long irrigation history. Anthropogenic [Cl] ranged from 0 to 270 ppm, accounting for up to 90% of the total Cl in some wells. Hotspots were also associated with long irrigation history, however extreme values were found in the severely depleted groundwater area, associated with the nitrate hotspot. Our approach allowed to quantify the respective contributions of groundwater recycling and chemical fertilizer inputs to the progressive salinization of groundwater. Using the AICHA model coupling the crop model STICS and a groundwater model under different climate scenarios, we show that the development of contamination hot spots can be mitigated by adequate management options. Keywords: Groundwater quality; salinization; agriculture; hot spots

  3. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    the wells, and the results for these samples were used to evaluate the quality of the data from the ground-water samples. Assessment of the quality-control information resulted in censoring of less than 0.4 percent of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw ground water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply, not to the raw ground water, but to treated water that is served to the consumer. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and as well as with thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs and pesticides each were detected in approximately 60 percent of the grid wells, and detections of all compounds but one were below health-based thresholds. The fumigant, 1,2-dibromo-3-chloropropane (DBCP), was detected above the USEPA maximum contaminant level (MCL-US) in one sample. Detections of most inorganic constituents were also below health-based thresholds. Constituents detected above health-based thresholds include: nitrate, (MCL-US, 2 samples), arsenic (MCL-US, 2 samples), and vanadium (California notification level, NL-CA, 1 sample). All detections of radioactive constituents were below health-based thresholds, although nine samples had activities of radon-222 above the lower proposed MCL-US. Most of the samples from KERN wells had concentrations of major elements, total dissolved solids, and trace elements below the non-enforceable thresholds set for aesthetic concerns.

  4. Status and understanding of groundwater quality in the South Coast Interior groundwater basins, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration

  5. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.

  6. Estimation of impacts on groundwater quality in an urban area of Ljubljana

    Science.gov (United States)

    Janža, Mitja; Prestor, Joerg; Pestotnik, Simona; Jamnik, Brigita

    2016-04-01

    Groundwater is a major source of drinking water supply in many cities worldwide. It is relatively stable and better-protected water resource compared to surface water and will have a vital role in assuring water-supply security in the future. In urbanized catchments numerous human activities (e.g. settling, industry, traffic, agriculture) take place which pose a threat to groundwater quality. For sustainable management of urban groundwater resources an integrated and adaptive approach based on continuous monitoring supported by modeling is needed. The aim of presented study was to develop a model of environmental pressures and impacts on Ljubljansko polje aquifer which is the main source exploited for the public drinking water supply of the city of Ljubljana. It is based on estimation of contaminants emissions from different sources, coupled with numerical transport modelling which is used to assess the impact on groundwater quality. The model was built up on detailed analysis of nitrogen mass balance and validated with monitoring data - concentration measurements of relevant chemical parameters. Based on the model simulations impacts of different sources of pollution on groundwater quality was estimated and priority of measures for improvement of chemical status of groundwater was defined.

  7. Protecting groundwater quality with high frequency subsurface drip irrigation

    Science.gov (United States)

    Nitrate pollution from agriculture is a significant problem in the groundwater of the San Joaquin Valley of California (SJV). Nitrate is very mobile in water and transport is directly related to both water and fertilizer management on a crop. Surface irrigation is the principal method used in the SJ...

  8. Effect of punping on temporal changes in groundwater quality

    NARCIS (Netherlands)

    Kamra, S.K.; Khajanchi Lal,; Singh, O.P.; Boonstra, J.

    2002-01-01

    Pumping studies were conducted at five sites distributed over a 3000 ha area in the Gohana block in Haryana state of India. The project area is a part of the Indo-Gangetic plain and lies in a topographical depression susceptible to waterlogging, soil salinity and groundwater pollution from surroundi

  9. Effect of punping on temporal changes in groundwater quality

    NARCIS (Netherlands)

    Kamra, S.K.; Khajanchi Lal,; Singh, O.P.; Boonstra, J.

    2002-01-01

    Pumping studies were conducted at five sites distributed over a 3000 ha area in the Gohana block in Haryana state of India. The project area is a part of the Indo-Gangetic plain and lies in a topographical depression susceptible to waterlogging, soil salinity and groundwater pollution from surroundi

  10. On the Quality of Examples in Introductory Java Textbooks

    Science.gov (United States)

    Borstler, Jurgen; Nordstrom, Marie; Paterson, James H.

    2011-01-01

    Example programs play an important role in the teaching and learning of programming. Students as well as teachers rank examples as the most important resources for learning to program. Example programs work as role models and must therefore always be consistent with the principles and rules we are teaching. However, it is difficult to find or…

  11. On the Quality of Examples in Introductory Java Textbooks

    Science.gov (United States)

    Borstler, Jurgen; Nordstrom, Marie; Paterson, James H.

    2011-01-01

    Example programs play an important role in the teaching and learning of programming. Students as well as teachers rank examples as the most important resources for learning to program. Example programs work as role models and must therefore always be consistent with the principles and rules we are teaching. However, it is difficult to find or…

  12. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    ) were collected at ten percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 0.03 percent of the analyses of ground-water samples. This study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) (Maximum Contaminant Levels [MCLs], notification levels [NLs], or lifetime health advisories [HA-Ls]) and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels [SMCLs]). All wells were sampled for organic constituents and selected general water quality parameters; subsets of wells were sampled for inorganic constituents, nutrients, and radioactive constituents. Volatile organic compounds were detected in 49 out of 83 wells sampled and pesticides were detected in 35 out of 82 wells; all detections were below health-based thresholds, with the exception of 1 detection of 1,2,3-trichloropropane above a NL. Of the 43 wells sampled for trace elements, 27 had no detections of a trace element above a health-based threshold and 16 had at least one detection above. Of the 18 trace elements with health-based thresholds, 3 (arsenic, barium, and boron) were detected at concentrations higher an MCL. Of the 43 wells sampled for nitrate, only 1 well had a detection above the MCL. Twenty wells were sampled for radioactive constituents; only 1 (radon-222) was measured at activiti

  13. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  14. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China.

    Science.gov (United States)

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca(2+)-HCO3(-) water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na(+)-Cl(-) water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B(3+), F(-), and SO4(2-) and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.

  15. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  16. Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01

    Science.gov (United States)

    Hunt, Charles D.

    2003-01-01

    Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge

  17. Julius Edgar Lilienfeld Prize: Chaotic Dynamics in the Physical Sciences: Some Comments and Examples

    Science.gov (United States)

    Ott, Edward

    2014-03-01

    Chaos was first discovered by Poincare in his famous 1887 work on the motion of N >2 bodies interacting through gravitational attraction. Although steady progress was made by mathematicians following Poincare's work, widespread impact and development of chaos in the physical sciences is only comparatively recent, i.e., approximately starting in the 1970's. This talk will review this history and give some examples illustrating the types of questions, problems and results arising from perspectives resulting from widespread participation of physical scientists.

  18. Some examples of proton-antiproton collisions in the UA1 detector

    CERN Multimedia

    Sideral Films

    1983-01-01

    Computer screen representations of some examples of proton-antiproton collisions in the UA1 detector. Creation of matter in a soft collision. A two jets event: a typical quark antiquark hard scattering. Production of the w-boson decaying into electron-neutrino. Production of the z-boson and its decay into electron-positron. Production of the z-boson and its decay into two muons.Comments : silent well done

  19. Ground-Water Quality Data in the Central Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    the results for these samples were used to evaluate the quality of the data for the ground-water samples. Results from field blanks indicated contamination was not a noticeable source of bias in the data for ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels, SMCL-CA) by CDPH. Therefore, any comparisons of the results of this study to drinking-water standards only is for illustrative purposes and is not indicative of compliance or non-compliance to those standards. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water standards or thresholds. Six constituents? fluoride, arsenic, molybdenum, uranium, gross-alpha radioactivity, and radon-222?were detected at concentrations higher than thresholds set for health-based regulatory purposes. Three additional constituents?pH, iron and manganese?were detected at concentrations above thresholds set for aesthetic concerns. Volatile organic compounds (VOCs) and pesticides, were detected in less than one-third of the samples and generally at less than one one-hundredth of a health-based threshold.

  20. Ground-Water Quality Data in the Central Eastside San Joaquin Basin 2006: Results from the California GAMA Program

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth

    2008-01-01

    for approximately one-sixth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the environmental data were of good quality, with low bias and low variability, and resulted in censoring of less than 0.3 percent of the detections found in ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CADPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CADPH. VOCs and pesticides were detected in approximately half of the grid wells, and all detections in samples from CESJO wells were below health-based thresholds. All detections of nutrients and major elements in grid wells also were below health-based thresholds. Most detections of constituents of special interest, trace elements, and radioactive constituents in samples from grid wells were below health-based thresholds. Exceptions included two detections of arsenic that were above the USEPA maximum contaminant level (MCL-US), one detection of lead above the USEPA action level (AL-US), and one detection of vanadium and three detections of 1,2,3-TCP that were above the CADPH notification levels (NL-CA). All detections of radioactive constituents were below health-based thresholds, although fourteen samples had activities of radon-222 above the lower proposed MCL-US. Most of th

  1. Hydrochemical and microbiological quality of groundwater in West Thrace Region of Turkey

    Science.gov (United States)

    Özler, H. Murat; Aydın, Ali

    2008-03-01

    The aim of this study was to do a preliminary assessment of the hydrochemical and microbial groundwater quality of the West Thrace region. Forty samples of groundwater collected from Edirne (Site 1) to Gelibolu (Site 2) were assessed for their suitability for human consumption. As3- was non-detectable in all the groundwater and Zn2+, Pb2+, F-, Cu2+, NH{4/+}, Cn- PO{4/3-} and Cl- were all below their respective European Union drinking water directive (EU-DWD) and Turkish food codex-drinking water directive (TFC-DWD). Maximum Acceptable Concentrations (MAC) Ni2+, Pb2+, Cd2+, Mg2+, Mn2+, and Ca2+ levels were detected in upper maximum acceptable concentrations 77.5, 42.5, 35.0, 50.0, 50.0, and 32.5% of the groundwater samples, respectively. However, in terms of Cr3+, Ni2+ and Pb2+, the differences between groundwaters of Sites 1 and 2 were significant ( p Enterococcus spp., Salmonella sp., Staphylococcus spp. and P. aeruginosa were detected in 25, 17.5, 15, 47.5, 15, 27.5, and 15% of the groundwater samples, respectively. Furthermore, heavy metals and trace elements were found after chemical analyzes in most samples. The pollution of groundwater come from a variety of sources, Meric and Ergene rivers, including land application of agricultural chemicals and organics wastes, infiltration of irrigation water, septic tanks, and infiltration of effluent from sewage treatment plants, pits, lagoons and ponds used storage.

  2. Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Salem, W M; Embaby, A A; Mohamed, F A

    2017-08-01

    The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.

  3. Spatial variability and long-term analysis of groundwater quality of Faisalabad industrial zone

    Science.gov (United States)

    Nasir, Muhammad Salman; Nasir, Abdul; Rashid, Haroon; Shah, Syed Hamid Hussain

    2016-09-01

    Water is the basic necessity of life and is essential for healthy society. In this study, groundwater quality analysis was carried out for the industrial zone of Faisalabad city. Sixty samples of groundwater were collected from the study area. The quality maps of deliberately analyzed results were prepared in GIS. The collected samples were analyzed for chemical parameters and heavy metals, such as total hardness, alkalinity, cadmium, arsenic, nickel, lead, and fluoride, and then, the results were compared with the WHO guidelines. The values of these results were represented by a mapping of quality parameters using the ArcView GIS v9.3, and IDW was used for raster interpolation. The long-term analysis of these parameters has been carried out using the `R Statistical' software. It was concluded that water is partially not fit for drinking, and direct use of this groundwater may cause health issues.

  4. Groundwater quality assessment of the Limnos Island Volcanic Aquifers, Greece.

    Science.gov (United States)

    Panagopoulos, George; Panagiotaras, Dionisios; Giannoulopoulos, Panagiotis

    2013-05-01

    Limnos Island in Greece, which has been the subject of extensive hydrogeological research, contains confined volcanic aquifers that overlie impermeable flysch. Groundwater salinization is usually the effect of seawater intrusion, and results from a combination of factors such as low annual areal precipitation and exploitation of aquifers for civil, commercial, and agricultural purposes. Areas with intense agricultural activities have also increasingly observed these effects. A geochemical evaluation on the basis of multiple ion (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO4(2-), NO3-) concentrations and physicochemical parameters distribution revealed that ion exchange is the dominant hydrogeochemical process. However, the enrichment of groundwater in potassium and magnesium results from rock and mineral weathering and dissolution.

  5. Groundwater-quality data in the Klamath Mountains study unit, 2010: results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2014-01-01

    radioactivity, and microbial indicators (total coliform and Escherichia coli [E. coli]). Isotopic tracers (stable isotopes of hydrogen and oxygen in water, isotopic ratios of dissolved strontium in water, and stable isotopes of carbon in dissolved inorganic carbon), dissolved noble gases, and age-dating tracers (tritium and carbon-14) were measured to help identify sources and ages of sampled groundwater. Quality-control samples (field blanks, replicate sample pairs, and matrix spikes) were collected at 13 percent of the sites in the KLAM study unit, and the results were used to evaluate the quality of the data from the groundwater samples. Field blank samples rarely contained detectable concentrations of any constituent, indicating that contamination from sample collection or analysis was not a significant source of bias in the data for the groundwater samples. More than 99 percent of the replicate pair samples were within acceptable limits of variability. Matrix-spike sample recoveries were within the acceptable range (70 to 130 percent) for approximately 91 percent of the compounds. This study did not evaluate the quality of water delivered to consumers. After withdrawal, groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is delivered to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH, and to non-health-based benchmarks established for aesthetic concerns by the CDPH. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks. All concentrations of organic constituents from grid sites

  6. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    Science.gov (United States)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2016-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  7. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt

    Directory of Open Access Journals (Sweden)

    S.M. Ghoraba

    2013-06-01

    Full Text Available Groundwater contamination is a major problem related strongly to both; protection of environment and the need of water. In the present study groundwater quality was investigated in the central part of the Nile Delta (El-Gharbiya Governorate. El-Gharbiya Governorate is an agricultural land and its densely populated area inhabited, includes small communities which totally not served by public sewers. Hydrochemical analyses were used to assess the quality of water in samples taken from the canals, drains and groundwater. A laboratory study and mathematical modeling works were presented. Two numerical computer models by the applying of finite difference method were adopted. Both models deal with the flow as a three-dimensional and unsteady. Results obtained include determining the levels of water and the values of solute concentration and distribution of it in the region at different times. The groundwater model MODFLOW was used to deal with the hydrodynamics of the flow through porous media. A solute transport model which can be communicated with MODFLOW through data files MT3DMS, was used to solve the problem of contaminants transport and the change of their concentrations with time. A proposed groundwater remediation scheme by using group of extraction wells was suggested at Birma region where the concentration values of ammonium contaminant are the up most according to hydrochemical analyses results. Proposed scenario for cleaning is to use a set of wells to pump contaminated groundwater extraction for treatment and reused to irrigation.

  8. Agriculture-related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin

    Science.gov (United States)

    Saad, D.A.

    2008-01-01

    Measuring and understanding trends in groundwater quality is necessary for determining whether changes in land-management practices have an effect on groundwater quality. This paper describes an approach that was used to measure and understand trends using data from two groundwater studies conducted in central Wisconsin as part of the USGS NAWQA program. One of the key components of this approach, determining the age of sampled groundwater, gave a temporal component to the snapshots of water quality that were obtained through synoptic-sampling efforts. This approach can be used at other locations where groundwater quality data are collected, groundwater age can be determined, and associated temporal data are available. Results of these studies indicate measured concentrations of nitrate and atrazine plus deethylatrazine were correlated to historical patterns of fertilizer and atrazine use. Concentrations of nitrate in groundwater have increased over time; concentrations of atrazine plus deethylatrazine increased and then decreased. Concentrations of nitrate also were correlated to screen depth below the water level and concentrations of dissolved O2; concentrations of atrazine plus deethylatrazine were correlated to dissolved O2 and annual precipitation. To measure trends in concentrations of atrazine plus deethylatrazine, the data, collected over a near-decadal period, were adjusted to account for changes in laboratory-reporting levels and analytical recoveries. Only after accounting for these changes was it apparent that the median concentrations of atrazine plus deethylatrazine decreased over the near-decadal interval between sampling efforts. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  9. Quality of our groundwater resources: arsenic and fluoride

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  10. Evaluation of groundwater quality in rural-areas of northern Malawi: Case of Zombwe Extension Planning Area in Mzimba

    Science.gov (United States)

    Chidya, Russel C. G.; Matamula, Swithern; Nakoma, Oliver; Chawinga, Charles B. J.

    2016-06-01

    Many people in in the Sub-Saharan region rely on groundwater for drinking and other household uses. Despite this significance, information on the chemical composition of the water in the boreholes and emperical data on groundwater quality is limited in some rural areas of Malawi. This study was conducted to evaluate the physico-chemical quality of water from boreholes (n = 20) in Zombwe Extension Planning Area (EPA), Mzimba in Northern Malawi to ascertain their safety. Desktop studies and participatory approaches were employed to assess the socio-economic activities and water supply regime in the study areas. The water samples were analysed for pH, conductivity (EC), turbidity, water temperature, nitrate (NO3-), magnesium (Mg), calcium (Ca), zinc (Zn), fluoride (F-), and sulphate (SO42-). In-situ and laboratory analyses were carried out using portable meters and standard procedures. The results were compared with national (Malawi Bureau of Standards - MBS) and international standards (World Health Organization - WHO) for drinking water. The following ranges were obtained: pH (6.00-7.80), EC (437-3128 μS/cm), turbidity (0.10-5.80 NTU), water temperature (27.0-30.60 °C), NO3- (0.30-30.00 mg/L), F- (0.10-8.10 mg/L), Mg (31.00-91.00 mg/L), Ca (20.00-197.10 mg/L), SO42- (10.20-190 mg/L), Fe (0.10-3.60 mg/L) and Zn (0.00-5.10 mg/L). Generally, some parameters tested at several sites (>80%, n = 20) complied with both MBS and WHO limits. No significant differences (p > 0.05) was observed for most parameters (>65%, n = 11). Groundwater contamination was not significant in the area despite some parameters like F-, Ca and SO42- showing higher levels at other sites. Some sites registered very hard water (244.60-757.80 mg/L CaCO3) probably due to mineralization influenced by underground rock material. Further studies are needed to ascertain the groundwater quality of other parameters (like F-, and SO42-) which registered higher levels at some sites. Routine monitoring of the

  11. Groundwater quality assessment/corrective action feasibility plan

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  12. An Investigation of Quality of Groundwater of Taluka Nawabshah

    Directory of Open Access Journals (Sweden)

    . Khuhawar

    2011-06-01

    Full Text Available Sixty five water samples (four surface water and sixty one groundwater were collected from taluka Nawabshah and were analyzed for physico-chemical parameters; pH, electrical conductivity (EC, total dissolved salts (TDS and heavy metals, Fe, Zn, Cu, Mn, Co, Pb, Ni and Cd. The results were obtained in the ranges; pH 6.95-8.87, EC 239-13170 µS/cm and TDS 153-8429. The concentration of heavy metals was observed in the ranges; Fe 46-1070 µg/L, Zn 0-460 µg/L, Cu 3-311 µg/L, Mn 4-418 µg/L, Co 0-33 µg/L, Pb 6-50 µg/L, Ni 0-37µg/L and Cd 0-18µg/L. The results were compared with world health organization (WHO and local standards set for drinking water. Contamination index of groundwater was observed within 0.2-20.7. Only two water samples (both surface water were observed suitable for drinking purpose, but all the remaining samples were highly contaminated with toxic heavy metals. An elevated level of toxic heavy metals in the groundwater of the area is of great concern.

  13. Assessment of Groundwater Quality in a Typical Rural Settlement in Southwest Nigeria

    Directory of Open Access Journals (Sweden)

    O. B. Banjoko

    2007-12-01

    Full Text Available In most rural settlements in Nigeria, access to clean and potable water is a great challenge, resulting in water borne diseases. The aim of this study was to assess the levels of some physical, chemical, biochemical and microbial water quality parameters in twelve hand – dug wells in a typical rural area (Igbora of southwest region of the country. Seasonal variations and proximity to pollution sources (municipal waste dumps and defecation sites were also examined. Parameters were determined using standard procedures. All parameters were detected up to 200 m from pollution source and most of them increased in concentration during the rainy season over the dry periods, pointing to infiltrations from storm water. Coliform population, Pb, NO3- and Cd in most cases, exceeded the World Health Organization recommended thresholds for potable water. Effect of distance from pollution sources was more pronounced on fecal and total coliform counts, which decreased with increasing distance from waste dumps. The qualities of the well water samples were therefore not suitable for human consumption without adequate treatment. Regular monitoring of groundwater quality, abolishment of unhealthy waste disposal practices and introduction of modern techniques are recommended.

  14. An Institutional Analysis of Groundwater Quality Control: Experiences in Hadano, Kanagawa Prefecture, Japan

    Directory of Open Access Journals (Sweden)

    Takahiro Endo

    2016-05-01

    Full Text Available A considerable number of studies have been made of institutional arrangements that can prevent excessive groundwater pumping based on Hardin’s seminal work, the “tragedy of the commons.” In contrast, this paper is concerned with groundwater quality control for which policy studies are very limited. This paper not only clarifies institutional challenges specific to groundwater contamination, but also demonstrates how government and industry could solve them using a case study of Hadano, Kanagawa Prefecture, Japan, which has pioneered countermeasures for groundwater pollution in Japan. Hadano solved the challenges by enacting an innovative local ordinance with three pillars: Proxy purification by the city government, fundraising for purification activities and a retroactive system. Lessons learnt from the Hadano case will be very useful to policy makers because these problems already occur in other urban areas, or are likely to occur in the near future.

  15. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    quality-control information resulted in censoring of less than 0.2 percent of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs and pesticides were detected in less than one-third of the grid wells, and all detections in samples from SOSA wells were below health-based thresholds. All detections of trace elements and nutrients in samples from SOSA wells were below health-based thresholds, with the exception of four detections of arsenic that were above the USEPA maximum contaminant level (MCL-US) and one detection of boron that was above the CDPH notification level (NL-CA). All detections of radioactive constituents were below health-based thresholds, although four samples had activities of radon-222 above the proposed MCL-US. Most of the samples from SOSA wells had concentrations of major elements, total dissolved solids, and trace elements below the non-enforceable thresholds set for aesthetic concerns. A few samples contained iron, manganese, or total dissolved solids at concentrations above the SMCL-CA thresholds.

  16. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    Science.gov (United States)

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 1 percent of the detections of constituents measured in ground-water samples. This study did not attempt to evaluate the quality of drinking water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable drinking-water quality. Regulatory thresholds apply to the treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and other health-based thresholds established by the U.S. Environmental Protection Agency and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns by CDPH. Two VOCs were detected above health-based thresholds: 1,2-dibromo-3-chloropropane (DBCP), and benzene. DBCP was detected above the U.S. Environmental Protections Agency's maximum contaminant level (MCL-US) in three grid wells and five understanding wells. Benzene was detected above the CDPH's maximum contaminant level (MCL-CA) in one grid well. All pesticide detections were below health-based thresholds. Perchlorate was detected above its maximum contaminate level for California in one grid well. Nitrate was detected above the MCL-US in six samples from understanding wells, of which one was a public supply well. Two trace elements were detected above MCLs-US: arsenic and uranium. Arsenic was detected above the MCL-US in four grid wells and two understanding wells; uranium was detected above the MCL-US in one grid well and one understanding well. Gross alpha radiation was detected above MCLs-US in five samples; four of them understanding wells, and uranium isotope activity was greater than the MCL-US for one understanding well

  17. A conceptual framework of groundwater flow in some crystalline aquifers in Southeastern Ghana

    Science.gov (United States)

    Yidana, Sandow Mark; Ganyaglo, Samuel; Banoeng-Yakubo, Bruce; Akabzaa, Thomas

    2011-02-01

    A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10 -5 m/d to 7.14 × 10 -4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m 3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast-southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.

  18. The Impact of Some Economic Factors Affecting Groundwater Pollution in Both Developed and Developing Countries

    Directory of Open Access Journals (Sweden)

    H. Biabi

    2016-03-01

    Full Text Available Introduction: The role of economic factors in pollution and environmental degradation is one of the major Issues in economic and environmental studies that many researchers have addressed in their studies. One of the issues in the field of environment to which less attention has been paid is the effect of economic factors such as the openness of the economy on water resource pollution. In this paper we investigate the relation between water pollution and economic factors such as economic size, capital to labor ratio and economic openness in two groups of developed and developing countries with paned data method. In fact we investigate the two hypothesis of Environmental Kuznets curve and pollution havens in two groups of countries. To prevent the pollution of groundwater resources in the process of economic growth, policies must be coordinated by responsible organizations. Changing crop patterns and moving toward the production of organic products to reduce the use of polluting substances in the production of agricultural products is one of these solutions. Materials and Methods: In the present study, using panel data methods, the correlation between some independent economic factors such as per capita GDP, Squared per capita GDP that both indicate Scale effect and capital to labor index with Squared capital to labor index both indicating comparative advantage effect and openness of trade and some composite indices on dependent variables, groundwater pollution, in the two groups of countries both developed and developing countries has been investigated. For this purpose, using the biological oxygen demand index (BOD as an indicator of pollution of groundwater resources and sum of exports and imports divided by GDP as an indicator of economic openness and GDP per capita as an indicator of the economy in the period of 1995 to 2006, the Environmental Kuznets curve and pollution havens hypothesis have been tested. Results Discussion: The issue of

  19. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  20. Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India.

    Science.gov (United States)

    Singh, Vinod K; Bikundia, Devendra Singh; Sarswat, Ankur; Mohan, Dinesh

    2012-07-01

    The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority

  1. Groundwater contamination in coastal urban areas: Anthropogenic pressure and natural attenuation processes. Example of Recife (PE State, NE Brazil)

    Science.gov (United States)

    Bertrand, G.; Hirata, R.; Pauwels, H.; Cary, L.; Petelet-Giraud, E.; Chatton, E.; Aquilina, L.; Labasque, T.; Martins, V.; Montenegro, S.; Batista, J.; Aurouet, A.; Santos, J.; Bertolo, R.; Picot, G.; Franzen, M.; Hochreutener, R.; Braibant, G.

    2016-09-01

    In a context of increasing land use pressure (over-exploitation, surface-water contamination) and repeated droughts, identifying the processes affecting groundwater quality in coastal megacities of the tropical and arid countries will condition their long-term social and environmental sustainability. The present study focuses on the Brazilian Recife Metropolitan Region (RMR), which is a highly urbanized area (3,743,854 inhabitants in 2010) on the Atlantic coast located next to an estuarial zone and overlying a multi-layered sedimentary system featured by a variable sediment texture and organic content. It investigates the contamination and redox status patterns conditioning potential attenuation within the shallow aquifers that constitute the interface between the city and the strategic deeper semi-confined aquifers. These latter are increasingly exploited, leading to high drawdown in potenciometric levels of 20-30 m and up to 70 m in some high well density places, and potentially connected to the surface through leakage. From a multi-tracer approach (major ions, major gases, δ11B, δ18O-SO4, δ34S-SO4) carried out during two field campaigns in September 2012 and March 2013 (sampling of 19 wells and 3 surface waters), it has been possible to assess the contamination sources and the redox processes. The increasing trend for mineralization from inland to coastal and estuarial wells (from 119 to around 10,000 μS/cm) is at first attributed to water-rock interactions combined with natural and human-induced potentiometric gradients. Secondly, along with this trend, one finds an environmental pressure gradient related to sewage and/or surface-channel network impacts (typically depleted δ11B within the range of 10-15‰) that are purveyors of chloride, nitrate, ammonium and sulfate. Nitrate, ammonium and sulfate (ranging from 0 to 1.70 mmol/L, from 0 to 0,65 mmol/L, from 0.03 to 3.91 mmol/L respectively are also potentially produced or consumed through various redox

  2. Groundwater contamination in coastal urban areas: Anthropogenic pressure and natural attenuation processes. Example of Recife (PE State, NE Brazil).

    Science.gov (United States)

    Bertrand, G; Hirata, R; Pauwels, H; Cary, L; Petelet-Giraud, E; Chatton, E; Aquilina, L; Labasque, T; Martins, V; Montenegro, S; Batista, J; Aurouet, A; Santos, J; Bertolo, R; Picot, G; Franzen, M; Hochreutener, R; Braibant, G

    2016-09-01

    In a context of increasing land use pressure (over-exploitation, surface-water contamination) and repeated droughts, identifying the processes affecting groundwater quality in coastal megacities of the tropical and arid countries will condition their long-term social and environmental sustainability. The present study focuses on the Brazilian Recife Metropolitan Region (RMR), which is a highly urbanized area (3,743,854 inhabitants in 2010) on the Atlantic coast located next to an estuarial zone and overlying a multi-layered sedimentary system featured by a variable sediment texture and organic content. It investigates the contamination and redox status patterns conditioning potential attenuation within the shallow aquifers that constitute the interface between the city and the strategic deeper semi-confined aquifers. These latter are increasingly exploited, leading to high drawdown in potenciometric levels of 20-30m and up to 70m in some high well density places, and potentially connected to the surface through leakage. From a multi-tracer approach (major ions, major gases, δ(11)B, δ(18)O-SO4, δ(34)S-SO4) carried out during two field campaigns in September 2012 and March 2013 (sampling of 19 wells and 3 surface waters), it has been possible to assess the contamination sources and the redox processes. The increasing trend for mineralization from inland to coastal and estuarial wells (from 119 to around 10,000μS/cm) is at first attributed to water-rock interactions combined with natural and human-induced potentiometric gradients. Secondly, along with this trend, one finds an environmental pressure gradient related to sewage and/or surface-channel network impacts (typically depleted δ(11)B within the range of 10-15‰) that are purveyors of chloride, nitrate, ammonium and sulfate. Nitrate, ammonium and sulfate (ranging from 0 to 1.70mmol/L, from 0 to 0,65mmol/L, from 0.03 to 3.91mmol/L respectively are also potentially produced or consumed through various redox

  3. Groundwater quality in the Northern Atlantic Coastal Plain aquifer system, eastern United States

    Science.gov (United States)

    Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Northern Atlantic Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 15 percent of the study area and at moderate concentrations in about 17 percent. Organic constituents were not detected at high concentrations in the study area.

  4. Radon monitoring in groundwater of some areas of Himachal Pradesh and Punjab states, India.

    Science.gov (United States)

    Walia, Vivek; Bajwa, B S; Virk, H S

    2003-02-01

    Radon measurements have been carried out in groundwater of Himachal Pradesh and Punjab states, India. Radon concentration values in potable water show a wide range of variation from source to source and from place to place. Generally, radon concentration values in thermal springs groundwater have been found to be higher than the values from other sources.

  5. [Assessment of groundwater quality of different aquifers in Tongzhou area in Beijing Plain and its chemical characteristics analysis].

    Science.gov (United States)

    Guo, Gao-Xuan; Ju, Yi-Wen; Zhai, Hang; Xu, Liang; Shen, Yuan-Yuan; Ji, Yi-Qun

    2014-06-01

    In order to evaluate the groundwater quality of Tongzhou area in Beijing Plain and to discuss the characteristics of its distribution by the view of hydrochemistry, a total of 151 groundwater samples, collected within study area in the dry period of 2008 according to the geological and hydrogeololgical condition of Tongzhou area, were classified as shallow, middle and deep groundwater, respectively. Based on the data, the groundwater quality was evaluated by the method of F value. The mean and variance of main chemical constituents of groundwater samples were presented. Almost all the quaternary groundwater of Chaobai river pluvial fan belonged to the alkaline water type. The evaluation results based on the analysis results showed that from shallow to deep, the quality of groundwater in Beijing became better. The total areas of groundwater belonging to class IV and V area were 884 km2, 599 km2 and 94 km2 respectively for shallow, middle and deep groundwater. The evaluation results showed that the main exceeding chemical constituents were TDS, hardness, NH4(+), F(-) and total Fe. Most exceeding samples belonged to middle and deep aquifers. The main types of shallow groundwater were HCO2-Ca x Mg- and HCO3 x Cl-Ca x Na x Mg, while the chemical types of mid-deep groundwater were mostly HCO3-Na x Ca- and HCO3 x SO4(2-) -Na x Ca type due to the increased Na(+), SO4(2-) and Cl(-) concentration. Study results showed that the quality of shallow groundwater became worse mainly due to human activities. The deterioration of groundwater quality in mid-deep aquifers was due to both human activities and natural occurrence of poor-quality water.

  6. Ground-Water Quality Data in the San Francisco Bay Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Ray, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2009-01-01

    , replicate samples, matrix spike samples) were collected for approximately one-third of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control information from the field blanks resulted in applying 'V' codes to approximately 0.1 percent of the data collected for ground-water samples (meaning a constituent was detected in blanks as well as the corresponding environmental data). See the Appendix section 'Quality-Control-Sample Results'. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is delivered to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs were detected in about one-half of the grid wells, while pesticides were detected in about one-fifth of the grid wells. Concentrations of all VOCs and pesticides detected in samples from all SFBAY wells were below health-based thresholds. No pharmaceutical compounds were detected in any SFBAY well. One potential wastewater-indicator compound, caffeine, was detected in one grid well in SFBAY. Concentrations of most trace elements and nutrients detected in samples from all SFBAY wells were below health-based thresholds. Exceptions include nitrate, detected above the USEPA maximum contaminant level (MCL-US) in 3samples; arsenic, above the USEPA maximum contaminant level (MCL-US) in 3 samples; c

  7. Assessment of groundwater quality using DEA and AHP: a case study in the Sereflikochisar region in Turkey.

    Science.gov (United States)

    Kavurmaci, Murat; Üstün, A Korkut

    2016-04-01

    This study investigated the spatial distribution of groundwater quality in Sereflikochisar Basin, in the Central Anatolian region of Turkey using different hydrochemical, statistical, and geostatistical methods. A total of 51 groundwater samples were collected from the observation wells in the study area to evaluate the characteristics of the groundwater quality. As a relatively simple and practical method, a groundwater quality index (GWQI) was developed to evaluate the overall groundwater quality. In this process, complex decision-making techniques such as analytic hierarchy process (AHP) and data envelopment analysis (DEA) were used. Based on these models, two new indices (A-GWQI and D-GWQI) were proposed. According to the D-GWQI score (from 0.6 to 1), water quality was classified in four categories as unsuitable (0.6–0.7), permissible (0.7–0.8), good (0.8–0.9), and excellent (0.9–1). The spatial distribution maps of the groundwater quality were created using the Kriging method. For each map, seven different semivariogram models were tested and the best-fitted model was chosen based on their root mean square standardized error. These maps showed that the areas with high groundwater quality were in the eastern and southern parts of the study area where the D-GWQI scores were greater than 0.8. Depending on the distance from the Salt Lake, the characteristics of groundwater changed from NaCl to NaHCO3 and CaHCO3 facies. This study shows how to determine the spatial distribution of the groundwater quality and identify the impact of salt lakes on the groundwater quality in inland aquifers. The findings of this study can be applied to ensure the quality of groundwater used for drinking and irrigation purposes in the study area.

  8. Groundwater quality in the Eastern Lake Ontario Basin of New York, 2008

    Science.gov (United States)

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    Water samples were collected from nine production wells and nine private residential wells in the Eastern Lake Ontario Basin of New York from August through October 2008 and analyzed to characterize the chemical quality of groundwater. The wells were selected to provide adequate spatial coverage of the 3,225-square-mile study area; areas of greatest groundwater use were emphasized. Eight of the 18 wells sampled, were screened in sand and gravel aquifers, and 10 were finished in bedrock aquifers. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 223 physical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water standards; these were: color (2 samples), pH (1 sample), sodium (5 samples), chloride (1 sample), aluminum (2 samples), iron (5 unfiltered samples), manganese (3 samples), radon-222 (13 samples), and bacteria (4 samples). Dissolved-oxygen concentrations in samples from wells finished in sand and gravel [median 3.8 milligrams per liter (mg/L)] were greater than those from wells finished in bedrock (median less than 0.7 mg/L). The pH of all samples was typically neutral or slightly basic (median 7.4); the median water temperature was 11.3 degrees Celsius. The ions with the highest concentrations were bicarbonate (median 174 mg/L) and calcium (median 24.1 mg/L). Groundwater in the basin ranges from soft to moderately hard [less than or equal to 120 mg/L as CaCO3] and median hardness was 90 mg/L as CaCO3. Concentrations of nitrate plus nitrite in samples from sand and gravel wells (median concentration 0.42 mg/L as nitrogen) were generally higher than those in samples from bedrock wells (median standard of 300 pCi/L. Five pesticides and

  9. Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India

    Science.gov (United States)

    Shanmugasundharam, A.; Kalpana, G.; Mahapatra, S. R.; Sudharson, E. R.; Jayaprakash, M.

    2015-11-01

    Groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural and industrial purposes. The suitability of groundwater for drinking and irrigation has been assessed in north and eastern part of Krishnagiri district, South-western part of Vellore district and contiguous with Andhra Pradesh states, India. A total of 31 groundwater samples were collected in the study area. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, HCO3^{ - } , Cl-, SO4^{2 - } , Ca2+, Mg2+, Na+ and K+. The dominant cations are in the order of Na+ > K+ > Ca2+ > Mg2+ while the dominant anions have the trends of Cl- > HCO3^{ - } > SO4^{2 - } > CO3. The quality of the water is evaluated using Wilcox diagram and the results reveals that most of the samples are found to be suitable for irrigation. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose.

  10. Impacts of Tanneries on Quality of Groundwater in Pallavaram, Chennai Metropolitan City

    Directory of Open Access Journals (Sweden)

    K.Ramesh,

    2014-01-01

    Full Text Available The present study was carried out with the objective of determining the extent of groundwater pollution caused by tanning industries and solid waster dumpsite in Pallavaram area located south of Chennai (Madras, which is a town of number of small and large scale leather industries. About 22 groundwater samples were collected and analyzed for the concentration of physio-chemical parameters and trace ions during September 2011 and January 2012. Ca-Mg-Cl and Na-Cl are the major water types in this area. It is inferred that, total hardness falls in hard to very hard category. The water quality index rated as poor to very poor quality except few samples. The study reveals that the concentration of major ions and chromium are exceeding the permissible limit. Groundwater is unsuitable for human consumption as it contains higher concentration of major ions and chromium. Tannery uses a large number of chemicals during the process of discharging toxic wastes into open drains and municipality solid waste dumpsite to the nearby land is the major reasons deterioration of water quality in this area. Contamination of groundwater causes water scarcity for domestic purpose of this study is to highlight the impact of tannery effluent on groundwater

  11. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  12. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    Science.gov (United States)

    Shelton, Jennifer L.

    2005-01-01

    Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the

  13. Use of environmental tracers to evaluate ground-water age and water-quality trends in a buried-valley aquifer, Dayton area, southwestern, Ohio

    Science.gov (United States)

    Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter

    1999-01-01

    Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report describes results of CFC and water-quality sampling, summarizes relevant aspects of previously published work, and describes the use of 3H-3He ages to characterize temporal trends in ground-water quality of the buried-valley aquifer near Dayton, Ohio. Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were contaminated with excess CFC's that rendered the ground water unsuitable for age dating. Evaluation of CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were being affected by microbial degradation. The degradation occurred under anoxic conditions that are found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC method were too old and were inconsistent with measured tritium concentrations and independently derived 3H-3He ages. Limited data indicate that dissolved methane may play an important role in the degradation of the CFC's. In contrast, the 3H-3He technique was found to yield ground-water ages that were chemically and hydrologically reasonable. Ground-water ages derived by the 3H-3He technique were compared to values for selected water- quality characteristics to evaluate temporal trends in ground-water quality in the buried- valley aquifer. Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in which the amount of scatter and the number of outlier concentrations increased as ground-water age decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate

  14. Groundwater-quality and quality-control data for two monitoring wells near Pavillion, Wyoming, April and May 2012

    Science.gov (United States)

    Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.

  15. Bacteriological Quality Assessment of some Yoghurt Brands Sold in ...

    African Journals Online (AJOL)

    Bacteriological Quality Assessment of some Yoghurt Brands Sold in Kaduna Metropolis. ... Journal of Research in National Development ... Twenty samples of different brands were purchased and analysed in the laboratory for pH, ...

  16. Assessing Risks of Shallow Riparian Groundwater Quality Near an Oil Sands Tailings Pond.

    Science.gov (United States)

    Roy, J W; Bickerton, G; Frank, R A; Grapentine, L; Hewitt, L M

    2016-07-01

    The potential discharge of groundwater contaminated by oil sands process-affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For "pond-site" samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, "non-pond" samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond-site and non-pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na-Cl ratio, were noted between a small subset of samples from two pond-site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator-based screening suggests that OSPW-affected groundwater may be reaching Athabasca River sediments at a few locations. © 2016 Her Majesty the Queen in Right of Canada. Groundwater © 2016, National Ground Water Association.

  17. Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India.

    Science.gov (United States)

    Jasmin, I; Mallikarjuna, P

    2014-02-01

    Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na(+)) and potassium (K(+)) and anions such as bicarbonate (HCO3 (-)) and chloride (Cl(-)) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca(2+)), magnesium (Mg(2+)), sulfate (SO4 (2-)), nitrate (NO3 (-)), and fluoride (F(-)) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Ca(2+)-Mg(2+)-HCO3 (-) and Na(+)-K(+)-Cl(-)-SO4 (2-) types during the post-monsoon period and Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Na(+)-K(+)-Cl(-)-SO4 (2-) and Ca(2+)-Mg(2+)-HCO3 (-) types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46% of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.

  18. Seismic transmission tomography: determination of the elastic properties of building structures (some examples

    Directory of Open Access Journals (Sweden)

    E. Cardarelli

    2000-06-01

    Full Text Available This paper is a general review on seismic transmission tomography considering data acquisition and processing. Some questions on linear and non linear inversions are tackled, and advice given on the choice of the best damping factor. Taking into account prediction matrices we show that it is possible to point out the best distribution of sensors and shot points in terms of resolution and stability of system. Then two examples in which seismic tomography was used are described concerning the determination of elastic characteristics of building structures.

  19. Geochemical processes controlling the groundwater quality in lower Palar river basin, southern India

    Indian Academy of Sciences (India)

    M Senthilkumar; L Elango

    2013-04-01

    Hydrogeochemical study of groundwater was carried out in a part of the lower Palar river basin, southern India to determine the geochemical processes controlling the groundwater quality. Thirty-nine groundwater samples were collected from the study area and analysed for pH, Eh, EC, Ca, Mg, Na, K, HCO3, CO3, Cl and SO4. The analysed parameters of the groundwater in the study area were found to be well within the safe range in general with respect to the Bureau of Indian Standards for drinking water except for few locations. The results of these analyses were used to identify the geochemical processes that are taking place in this region. Cation exchange and silicate weathering are the important processes controlling the major ion distribution of the study area. Mass balance reaction model NETPATH was used to assess the ion exchange processes. High concentration of Ca in groundwater of the study area is due to the release of Ca by aquifer material and adsorption of Na due to ion exchange processes. Groundwater of the study area is suitable for drinking and irrigation purposes except for few locations.

  20. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana. Water Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    The report presents the results of a study to provide a quantitative evaluation of the ground-water flow system at the Julietta and Tibbs-Banta landfills and provide a general description of the ground-water quality beneath and near the two landfills. These objectives provide the information necessary to evaluate the effects of the landfills on ground-water quality. Geologic, hydrologic, and water-quality data were collected in 1985 and 1986 at the Julietta and Tibbs-Banta landfills to fulfill the study objectives. Ground-water models were used to investigate the flow systems and estimate the volume of flow at the landfills. The report includes descriptions of the data collection, geologic and hydrologic descriptions of the two landfills, and brief histories of trash and sludge disposal. Ground-water-flow models are described and estimates of the volume of flow are discussed. A description of the quality-assurance plan used in conjunction with the water-quality data collection and analysis is included. Water-quality data are presented with statistical summaries of ground-water quality related to well depth and position in the flow system.

  1. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    Science.gov (United States)

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    Land application of municipal wastewater biosolids is the most common method of biosolids management used in North Carolina and the United States. Biosolids have characteristics that may be beneficial to soil and plants. Land application can take advantage of these beneficial qualities, whereas disposal in landfills or incineration poses no beneficial use of the waste. Some independent studies and laboratory analysis, however, have shown that land-applied biosolids can pose a threat to human health and surface-water and groundwater quality. The effect of municipal biosolids applied to agriculture fields is largely unknown in relation to the delivery of nutrients, bacteria, metals, and contaminants of emerging concern to surface-water and groundwater resources. Therefore, the North Carolina Department of Environment and Natural Resources (NCDENR) collaborated with the U.S. Geological Survey (USGS) through the 319 Nonpoint Source Program to better understand the transport of nutrients and bacteria from biosolids application fields to groundwater and surface water and to provide a scientific basis for evaluating the effectiveness of the current regulations.

  2. Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation.

    Science.gov (United States)

    Barca, E; Passarella, G

    2008-02-01

    In some previous papers a probabilistic methodology was introduced to estimate a spatial index of risk of groundwater quality degradation, defined as the conditional probability of exceeding assigned thresholds of concentration of a generic chemical sampled in the studied water system. A crucial stage of this methodology was the use of geostatistical techniques to provide an estimation of the above-mentioned probability in a number of selected points by crossing spatial and temporal information. In this work, spatial risk values were obtained using alternatively stochastic conditional simulation and disjunctive kriging. A comparison between the resulting two sets of spatial risks, based on global and local statistical tests, showed that they do not come from the same statistical population and, consequently, they cannot be viewed as equivalent in a statistical sense. At a first glance, geostatistical conditional simulation may appear to represent the spatial variability of the phenomenon more effectively, as the latter tends to be smoothed by DK. However, a close examination of real case study results suggests that disjunctive kriging is more effective than simulation in estimating the spatial risk of groundwater quality degradation. In the study case, the potentially 'harmful event' considered, threatening a natural 'vulnerable groundwater system,' is fertilizer and manure application.

  3. [Quality indicators pertinence and limits in medicine: example of nosocomial infections].

    Science.gov (United States)

    Petitmermet, D; Troillet, N; Wasserfallen, J B

    2001-11-01

    Insuring that quality indicators really measure quality of care and not other factors, such as the type of intervention or the patients' characteristics, is notoriously difficult. In order to avoid as much as possible these potential methodological pitfalls, the association FoQual (www.hospvd.ch/quality/foqual) requested in the year 2000 the opinion of experts on the scientific value of some indicators, considered for introduction into practice by the commission on quality of care representing the Swiss hospital association and the health insurers' association (H+/CAMS), as well as on theoretical and practical aspects essential to guarantee their efficiency. The expert group Swiss-NOSO (www.hospvd.ch/swiss-noso) was asked to assess the indicator "nosocomial infection". This example illustrates some pitfalls to avoid, the importance of including infectious surveillance into a global prevention program and ask professionals with a specific training and independence from hospital wards to perform this activity. It shows the complexity of setting up and exploiting quality indicators in health care and the side effects that they might have.

  4. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Directory of Open Access Journals (Sweden)

    A. I. Khader

    2013-05-01

    . Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of $ 150/person and $ 0.6/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is no value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to $ 300/person or the bottled water cost increases to $ 2.3/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by manager recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  5. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Science.gov (United States)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150/person and 0.6/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is no value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300/person or the bottled water cost increases to 2.3/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by manager recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  6. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Directory of Open Access Journals (Sweden)

    A. Khader

    2012-12-01

    methemoglobinemia and bottled water costs of 150 $/person and 0.6 $/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is not value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300 $/person or the bottled water cost increases to 2.3 $/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by managers' recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  7. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  8. Assessment of groundwater quality and health risk in drinking water basin using GIS.

    Science.gov (United States)

    Şener, Şehnaz; Şener, Erhan; Davraz, Ayşen

    2017-02-01

    Eğirdir Lake basin was selected as the study area because the lake is the second largest freshwater lake in Turkey and groundwater in the basin is used as drinking water. In the present study, 29 groundwater samples were collected and analyzed for physico-chemical parameters to determine the hydrochemical characteristics, groundwater quality, and human health risk in the study area. The dominant ions are Ca(2+), Mg(2+), HCO3(2-), and SO4(2). According to Gibbs plot, the predominant samples fall in the rock-water interaction field. A groundwater quality index (WQI) reveals that the majority of the samples falls under good to excellent category of water, suggesting that the groundwater is suitable for drinking and other domestic uses. The Ca-Mg-HCO3, Ca-HCO3, Ca-SO4-HCO3, and Ca-Mg-HCO3-SO4 water types are the dominant water types depending on the water-rock interaction in the investigation area. Risk of metals to human health was then evaluated using hazard quotients (HQ) by ingestion and dermal pathways for adults and children. It was indicated that As with HQ ingestion >1 was the most important pollutant leading to non-carcinogenic concerns. It can be concluded that the highest contributors to chronic risks were As and Cr for both adults and children.

  9. Groundwater quality in Imphal West district, Manipur, India, with multivariate statistical analysis of data.

    Science.gov (United States)

    Singh, Elangbam J K; Gupta, Abhik; Singh, N R

    2013-04-01

    The aim of this paper was to analyze the groundwater quality of Imphal West district, Manipur, India, and assess its suitability for drinking, domestic, and agricultural use. Eighteen physico-chemical variables were analyzed in groundwater from 30 different hand-operated tube wells in urban, suburban, and rural areas in two seasons. The data were subjected to uni-, bi-, and multivariate statistical analysis, the latter comprising cluster analysis (CA), principal component analysis (PCA), and factor analysis (FA). Arsenic concentrations exceed the Indian standard in 23.3% and the WHO limit in 73.3% of the groundwater sources with only 26.7% in the acceptable range. Several variables like iron, chloride, sodium, sulfate, total dissolved solids, and turbidity are also beyond their desirable limits for drinking water in a number of sites. Sodium concentrations and sodium absorption ratio (SAR) are both high to render the water from the majority of the sources unsuitable for agricultural use. Multivariate statistical techniques, especially varimax rotation of PCA data helped to bring to focus the hidden yet important variables and understand their roles in influencing groundwater quality. Widespread arsenic contamination and high sodium concentration of groundwater pose formidable constraints towards its exploitation for drinking and other domestic and agricultural use in the study area, although urban anthropogenic impacts are not yet pronounced.

  10. Increasing productivity based on quality management: Baked goods sector example

    DEFF Research Database (Denmark)

    Herbert-Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    as well as intense cost pressures. Quality control is largely manual and often based on the bakers’ intuition. Problems with reusing dough, production stops and quality issues contribute towards waste. This paper addresses the research question “Is there a relation between the dough, production stops...

  11. Artificial neural networks for defining the water quality determinants of groundwater abstraction in coastal aquifer

    Science.gov (United States)

    Lallahem, S.; Hani, A.

    2017-02-01

    Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.

  12. Groundwater Quality in the Wassa West District of the Western ...

    African Journals Online (AJOL)

    B. K. Kortatsi

    Arsenic and barium exceeded the WHO guideline limit in less .... water to attack geological materials and leach toxic trace metals into the water ..... from other sources, for example, from toothpaste to prevent high incidence dental caries. On the.

  13. An example of groundwater modeling to predict impact of climate change and to support optimization of a new intake

    Science.gov (United States)

    Polomcic, D.; Stevanovic, Z.; Ristic Vakanjac, V.; Dokmanovic, P.; Milanovic, S.

    2012-04-01

    scenarios. For the 2070 and 2010 periods, operation of ten pumping wells (? Q = 150 l/s) has been simulated. They are supposed to abstract groundwater along the right bank of the Nišava River where the limestone of Stara Planina comes into close contact with overlying Pliocene sediments. Overall, despite burdened by some uncertainties obtained results from the model indicate a reduction of groundwater reserves in the karst massif of Stara Planina Mt. as a result of a decrease in annual precipitation. Operation of ten simulated wells could be an alternative but in long-term (in 2100) , a more significant decline in groundwater levels in the Pirot basin and karst massif of Stara Planina Mt is to be expected (decrease in the water table for maximal 28 m). Acknowledgements: The activities are conducted as a part of the project CCWaterS under South East Europe programme funded by ERDF and IPA.

  14. Nitrate pollution in groundwater in some rural areas of Nalgonda district, Andhra Pradesh, India.

    Science.gov (United States)

    Brindha, K; Rajesh, R; Murugan, R; Elango, L

    2012-01-01

    Intake of water with high concentration of nitrate is a major problem in many countries as it affects health of humans. The present study was carried out with the objective of determining the causes for higher nitrate concentration in groundwater in parts of Nalgonda district, Andhra Pradesh, India. The study area is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from 46 representative wells. Samples were collected once in two months from March 2008 to January 2009. The nitrate concentration was analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration recorded during the sampling period was 879.65 mg/L and the lowest concentration was below detection limit. Taking into consideration 45 mg/L of nitrate as the maximum permissible limit for drinking water set by BIS, it was found that 13.78% of the groundwater samples collected from this study area possessed nitrate concentration beyond the limit. Overall, wells present in agricultural fields had nitrate levels within permissible limits when compared to those groundwater samples from wells present in settlements which are used for domestic purpose. This indicates that the high nitrate concentration in groundwater of this area is due to poor sanitation facilities and leaching from indiscriminate dumping of animal waste.

  15. Assessment of Groundwater Quality along the Cooum River, Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    N. S. Elangovan

    2013-01-01

    Full Text Available Groundwater quality in Chennai city along the Cooum river, during the premonsoon (June–July and postmonsoon (Dec–Jan for three years, from 2009 to 2011, was analyzed. Groundwater samples were collected from 20 bore wells on either side of the river. The analysis focused on the determination of seven specific water quality parameters, namely, pH, EC, TDS, BOD, COD, Na and Pb, using standard procedures. The statistical analysis, like the mean and standard deviation, coefficient of variance, and correlation, and multilinear regression analysis of the obtained data were carried out. The analysis of the collected samples reveals that the stated water quality parameters have not complied with the WHO standards, and the water is not fit for drinking and domestic purposes. The correlation and multilinear regression analyses suggest that the conductivity has a significant correlation with the other six considered water quality parameters.

  16. Groundwater quality assessment in parts of Eastern Niger Delta, Nigeria

    Science.gov (United States)

    Edet, A. E.

    1993-09-01

    Hydrogeochemical analyses were carried out on groundwater samples collected from 20 producing wells in different parts of the Eastern Niger Delta. Results show that the concentrations of the major cations (Na+, K+, Ca2+, Mg2+) and anions (Cl-, SO{4/2-}, HCO{3/-}) are below the World Health Organization (WHO) standards set for domestic purposes. The occurrence of slightly saline water in certain areas is attributed to local hydrogeological processes occurring in the area. On the basis of the analytical results, two hydrogeochemical facies are delineated. These are calcium-magnesium-chloride-sulfate-bicarbonate (Ca-Mg-Cl-SO4-HCO3) and calcium-sodium-chloride-sulfatebicarbonate (Ca-Na-Cl-SO4-HCO3) to the west and east of the study area, respectively.

  17. Groundwater-quality data in the Western San Joaquin Valley study unit, 2010 - Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Landon, Matthew K.; Shelton, Jennifer L.; Belitz, Kenneth

    2013-01-01

    ), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), and naturally occurring inorganic constituents (trace elements, nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], alkalinity, total arsenic and iron [unfiltered] and arsenic, chromium, and iron species [filtered]). Isotopic tracers (stable isotopes of hydrogen, oxygen, and boron in water, stable isotopes of nitrogen and oxygen in dissolved nitrate, stable isotopes of sulfur in dissolved sulfate, isotopic ratios of strontium in water, stable isotopes of carbon in dissolved inorganic carbon, activities of tritium, and carbon-14 abundance), dissolved standard gases (methane, carbon dioxide, nitrogen, oxygen, and argon), and dissolved noble gases (argon, helium-4, krypton, neon, and xenon) were measured to help identify sources and ages of sampled groundwater. In total, 245 constituents and 8 water-quality indicators were measured. Quality-control samples (blanks, replicates, or matrix spikes) were collected at 16 percent of the wells in the WSJV study unit, and the results for these samples were used to evaluate the quality of the data from the groundwater samples. Blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples all were within acceptable limits of variability. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 87 percent of the compounds. This study did not evaluate the quality of water delivered to consumers. After withdrawal, groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is delivered to the consumer, not to untreated groundwater. However, to provide some context for the results

  18. Designing and Implementing e-Justice Systems: Some Lessons Learned from EU and Canadian Examples

    Directory of Open Access Journals (Sweden)

    Giampiero Lupo

    2014-06-01

    Full Text Available Access to justice has become an important issue in many justice systems around the world. Increasingly, technology is seen as a potential facilitator of access to justice, particularly in terms of improving justice sector efficiency. The international diffusion of information systems (IS within the justice sector raises the important question of how to insure quality performance. The IS literature has stressed a set of general design principles for the implementation of complex information technology systems that have also been applied to these systems in the justice sector. However, an emerging e-justice literature emphasizes the significance of unique law and technology concerns that are especially relevant to implementing and evaluating information technology systems in the justice sector specifically. Moreover, there is growing recognition that both principles relating to the design of information technology systems themselves (“system design principles”, as well as to designing and managing the processes by which systems are created and implemented (“design management principles” can be critical to positive outcomes. This paper uses six e-justice system examples to illustrate and elaborate upon the system design and design management principles in a manner intended to assist an interdisciplinary legal audience to better understand how these principles might impact upon a system’s ability to improve access to justice: three European examples (Italian Trial Online; English and Welsh Money Claim Online; the trans-border European Union e-CODEX and three Canadian examples (Ontario’s Integrated Justice Project (IJP, Ontario’s Court Information Management System (CIMS, and British Columbia’s eCourt project.

  19. Groundwater Quality Assessment for Drinking and Irrigation Purposes in Obuasi Municipality of Ghana, A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Anthony Ewusi

    2013-01-01

    Full Text Available Groundwater quality of the Obuasi municipality was assessed to understand the contamination processes due to the presence of various contaminant sources and complicated geochemical processes and the suitability of groundwater for irrigation and drinking purpose for a sustainable agriculture and basic human needs. Water samples were collected during the raining season when a rise in water table was expected and during the dry season. They were analyzed for major cations and anions. Parameters like sodium adsorption ratio, % sodium, electrical conductivity, total hardness, total dissolve solutes and stoechiometric relations were calculated on the basis of chemical data. A questionnaire was also used to investigate perception of consumers on taste and odour. Comparison of the concentration of the chemical constituents with World Health Organization (WHO drinking water standards of 2004 and various classifications show that present status of groundwater in Obuasi is good for drinking and irrigation purposes. Concentrations of major cations and anions in the groundwater systems vary spatially and temporally. Abundance of these anions is in the following order: Ca2+>Na+>Mg2+>K+ = HCO3->Cl-> SO24->H2SiO4Br->PO24->F-. In terms of rainy season impact, Obuasi groundwater shows dilution and flushing, however, samples show excessive leaching of different chemical components into the groundwater system leading to the enrichment of different anions and cations and this indicate pollution from extraneous sources. No clear correlation between the quality parameters and perceived quality in terms of satisfactory taste response were obtained at electrical conductivity values lower than the threshold minimum acceptable value.

  20. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco.

    Science.gov (United States)

    Malki, Mouna; Bouchaou, Lhoussaine; Hirich, Abdelaziz; Ait Brahim, Yassine; Choukr-Allah, Redouane

    2017-01-01

    The Plio-Quaternary aquifer of Chtouka is located in Southwestern of Morocco. The intensive agricultural activity in Chtouka basin requires the mobilization of 94% of fresh water resources for irrigation. This overexploitation, along with the succession of drought years, sea water intrusion and various sources of pollution, affected the quality and availability of groundwater resources. Several sampling campaigns were carried out in different sites of the study area in order to investigate the spatial variation of groundwater quality. The temporal evolution of groundwater level shows that the water table was subjected to a gradual decline during the last decade, indicating an intensive exploitation mainly in irrigated areas. In the Southern part around Belfaa and the irrigated area along Massa River, nitrate concentrations exceed 50mg/L, which is the threshold set by the World Health Organization, while in the northern part around Biougra and Ait Amira, the nitrate concentration is mostly below 50mg/L indicating a relative good groundwater quality. This finding can be explained by the improvement of agricultural practices, particularly the conversion of flood and sprinkler irrigation to drip irrigation (80% of the total irrigated area) in most of the developed farms in this part of the study area. Moreover, the exploitation of groundwater from the deep aquifer, due to the increasing water demand in the region, can also explain the low chemical concentrations since the deep aquifer is not affected by anthropogenic pollutants or marine intrusion. Stable isotopes ((18)O and (2)H) highlight the different origins of groundwater, indicating the complexity of the aquifer system path flows, which is attributable to the intensive exploitation and irrigation water return. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Strategy Guideline: Quality Management in Existing Homes - Cantilever Floor Example

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Sikora, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wood, A. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented.

  2. The case for NetCDF as a groundwater model output format using R: Example using USGS MODFLOW

    Science.gov (United States)

    Coulibaly, K. M.; Barnes, M.; Barnes, D.

    2011-12-01

    The USGS MODFLOW code has become the most widely used groundwater flow code throughout the world since its release in 1989. Because MODFLOW is a plain FORTRAN code with no graphical user interface (GUI) or visualization capabilities, model results visualization and analysis is usually done with commercial or open-source packages, and self-made FORTRAN snippets. The output format of MODFLOW is a FORTRAN binary which may vary depending on compilers and platforms. NetCDF, on the other hand, is a standardized, sharable and compact format which can be read and visualized with numerous free and commercial packages including R. It is also possible to embed useful geospatial information like coordinates, projection and grid discretization in the NetCDF which are absent in the FORTRAN binary. Using NetCDF as a standard model output format would allow modelers and non-modelers to easily share, visualize and plot model results using readily available software (R, ArcGIS, MS Excel, Paraview, GRASS GIS, SAGA GIS...etc). NetCDF is a particularly good format for storing large, multidimensional datasets. Many NetCDF tools were designed for the climate community, whose datasets are often orders of magnitude larger than datasets typically used in groundwater modeling. In this study R was used to generate a NetCDF file from a MODFLOW binary output and example analyses and visualizations were implemented. R has extensive statistical and plotting capabilities which are available to the user once MODFLOW outputs are available in NetCDF format.

  3. Groundwater vulnerability assessment and validation on the example of Gömör-Torna Karst, Hungary and Slovakia

    Science.gov (United States)

    Iván, Veronika; Mádl-Szőnyi, Judit

    2017-04-01

    A comprehensive resource and source groundwater vulnerability assessment was carried out on a transboundary test site of the Gömör-Torna Karst (Hungary and Slovakia). The main goal of the investigation was to understand and map vulnerability in a more general hydrogeological context, taking into consideration the special characteristics of gravity-driven groundwater flow systems, i.e. the flow dynamics in the area. In order to assess vulnerability, parametric, semi-quantitative approaches were adapted, applied, compared and validated on the test area. Focusing on the usual "weak points" of the assessment (as crucial but nonetheless mainly just roughly estimated parameters), complementary investigations were carried out with diverse techniques. The characteristic clayey sediment cover may have major impact on the infiltration. Its spatial extension and role in the infiltration process were investigated by means of geophysical techniques and grain-size measurements. In order to understand the flow dynamics in the saturated zone better, results of tracer tests were analyzed. Besides that, spring hydrograph and recession curve analysis were carried out based on long-term daily spring discharge data series. The study provides an approach in order to improve the reliability of vulnerability maps. The well-studied and intensively karstified area of the Gömör-Torna Karst serves also as an appropriate example for further similar studies to find the best possible investigation and mapping strategies and thus to create comprehensive, reliable, process-based vulnerability maps. The authors gratefully acknowledge the Geogold Kárpátia Environmental Consulting Ltd and the Aggtelek National Park Directorate for involvement in the project and sharing geophysical and tracer test data.

  4. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    Science.gov (United States)

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  5. Distribution of Redox-Sensitive Groundwater Quality Parameters Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rügge, Kirsten; Pedersen, Jørn K.;

    1995-01-01

    , dinitrogen oxide, nitrite, nitrate, and oxygen in the groundwater samples indicate that methane production, sulfate reduction, iron reduction, manganese reduction, and nitrate reduction take place in the plume. Adjacent to the landfill, methanogenic and sulfatereducing zones were identified, while aerobic......The leachate plume stretching 300 m downgradient from the Grindsted Landfill (Denmark) has been characterized in terms of redox-sensitive groundwater quality parameters along two longitudinal transects (285 samples). Variations in the levels of methane, sulfide, iron(ll), manganese(ll), ammonium...

  6. Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development.

    Science.gov (United States)

    Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Meik, Jesse M; Walton, Jayme L; Thacker, Jonathan B; Korlie, Stephanie; Shelor, C Phillip; Kadjo, Akinde F; Clark, Adelaide; Usenko, Sascha; Hamilton, Jason S; Mach, Phillip M; Verbeck, Guido F; Hudak, Paul; Schug, Kevin A

    2016-08-15

    The recent expansion of natural gas and oil extraction using unconventional oil and gas development (UD) practices such as horizontal drilling and hydraulic fracturing has raised questions about the potential for environmental impacts. Prior research has focused on evaluations of air and water quality in particular regions without explicitly considering temporal variation; thus, little is known about the potential effects of UD activity on the environment over longer periods of time. Here, we present an assessment of private well water quality in an area of increasing UD activity over a period of 13months. We analyzed samples from 42 private water wells located in three contiguous counties on the Eastern Shelf of the Permian Basin in Texas. This area has experienced a rise in UD activity in the last few years, and we analyzed samples in four separate time points to assess variation in groundwater quality over time as UD activities increased. We monitored general water quality parameters as well as several compounds used in UD activities. We found that some constituents remained stable over time, but others experienced significant variation over the period of study. Notable findings include significant changes in total organic carbon and pH along with ephemeral detections of ethanol, bromide, and dichloromethane after the initial sampling phase. These data provide insight into the potentially transient nature of compounds associated with groundwater contamination in areas experiencing UD activity.

  7. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2016-12-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  8. Validation of Student Generated Data for Assessment of Groundwater Quality

    Science.gov (United States)

    Peckenham, John M.; Thornton, Teresa; Peckenham, Phoebe

    2012-01-01

    As part of a research project to evaluate the effects of sand and gravel mining on water quality, students were trained to analyze their own drinking water for simple quality indicators. Indicators analyzed were pH, conductivity, hardness, nitrate, chloride, and dissolved iron. Approximately 523 analyses were completed by students between 2006 and…

  9. Validation of Student Generated Data for Assessment of Groundwater Quality

    Science.gov (United States)

    Peckenham, John M.; Thornton, Teresa; Peckenham, Phoebe

    2012-01-01

    As part of a research project to evaluate the effects of sand and gravel mining on water quality, students were trained to analyze their own drinking water for simple quality indicators. Indicators analyzed were pH, conductivity, hardness, nitrate, chloride, and dissolved iron. Approximately 523 analyses were completed by students between 2006 and…

  10. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-08-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  11. A report on Groundwater quality studies in Malwa region of Punjab, MUKTSAR

    Directory of Open Access Journals (Sweden)

    Rajni Sharma

    2014-12-01

    Full Text Available Punjab is the most cultivated state in India with the highest consumption of fertilizers. Muktsar district is one of them. Economy of the district is based on the Agriculture crops and 80% population of the district is engaged in Agriculture. Sri Muktsar Sahib is situated in the cotton belt of Punjab. Paddy, Wheat, Sugarcane, Oilseeds, Pulses and vegetables are also cultivated in this area. This paper highlights the analysis of groundwater quality parameters and compares its suitability for irrigation and drinking purpose. Water samples were collected from hand-pumps at different depth in October 2010. . Water samples were analysed for almost all major cations, anions, dissolved heavy metals and turbidity. parameters like total hardness, EC, magnesium ratio, were calculated on the basis of chemical data. A questionnaire was also used to investigate perception of villagers on taste and odour. The heavy metals studied in industrial area of Muktsar were Mercury, arsenic and lead. Comparison of the concentration of the chemical constituents with WHO (world health organization drinking water standards of 2004 , ICMR limits and various classifications show that present status of groundwater in Muktsar is not suitable for drinking. Higher totalhardness (TH and total dissolved solids at numerous places indicate the unsuitability of groundwater for drinking and irrigation. Results obtained in this forms baseline data for the utility of groundwater. No clear correlation between the quality parameters studied here and perceived quality in terms of satisfactory taste response were obtained at electrical conductivity values higher than the threshold minimum acceptable value

  12. Identification and description of potential ground-water quality monitoring wells in Florida

    Science.gov (United States)

    Seaber, P.R.; Thagard, M.E.

    1986-01-01

    The results of a survey of existing wells in Florida that meet the following criteria are presented: (1) well location is known , (2) principal aquifer is known, (3) depth of well is known, (4) well casing depth is known, (5) well water had been analyzed between 1970 and 1982, and (6) well data are stored in the U.S. Geological Survey 's (USGS) computer files. Information for more than 20,000 wells in Florida were stored in the USGS Master Water Data Index of the National Water Data Exchange and in the National Water Data Storage and Retrieval System 's Groundwater Site Inventory computerized files in 1982. Wells in these computer files that had been sampled for groundwater quality before November 1982 in Florida number 13,739; 1,846 of these wells met the above criteria and are the potential (or candidate) groundwater quality monitoring wells included in this report. The distribution by principal aquifer of the 1,846 wells identified as potential groundwater quality monitoring wells is as follows: 1,022 tap the Floridan aquifer system, 114 tap the intermediate aquifers, 232 tap the surficial aquifers, 246 tap the Biscayne aquifer, and 232 tap the sand-and-gravel aquifer. These wells are located in 59 of Florida 's 67 counties. This report presents the station descriptions, which include location , site characteristics, period of record, and the type and frequency of chemical water quality data collected for each well. The 1,846 well locations are plotted on 14 USGS 1:250,000 scale, 1 degree by 2 degree, quadrangle maps. This relatively large number of potential (or candidate) monitoring wells, geographically and geohydrologically dispersed, provides a basis for a future groundwater quality monitoring network and computerized data base for Florida. There is a large variety of water quality determinations available from these wells, both areally and temporally. Future sampling of these wells would permit analyses of time and areal trends for selected water quality

  13. A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality.

    Science.gov (United States)

    Foose, Gary J

    2010-01-01

    New adaptations of analytical equations for predicting the impact of solute transport through composite landfill liners on groundwater quality for steady-state conditions are presented. Analytical equations are developed for evaluating average concentration and mass flow rate in an underlying aquifer resulting from diffusion of volatile organic compounds (VOCs) through intact composite liners and transport of inorganic constituents through defects in composite liners. The equations are applied to evaluate the effectiveness and equivalency of composite liners having either a 0.6 m-thick compacted soil liner or a 6.5 mm-thick geosynthetic clay liner (GCL) overlying an intermediate attenuation layer and an aquifer having horizontal flow. Example analyses for designing composite liners meeting particular performance criteria are also provided. The analytical equations are relatively simple to apply and can be used for preliminary design and analysis, to evaluate experimental results, and to possibly verify more complex numerical models for evaluating the impact of landfills on groundwater quality if consistency of the assumptions of the analytical equations and the more complex numerical models can be specified.

  14. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN.

  15. A Comprehensive Analysis of Groundwater Quality in The Barnett Shale Region.

    Science.gov (United States)

    Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Meik, Jesse M; Walton, Jayme L; Taylor, Josh T; Thacker, Jonathan B; Korlie, Stephanie; Shelor, C Phillip; Henderson, Drew; Kadjo, Akinde F; Roelke, Corey E; Hudak, Paul F; Burton, Taylour; Rifai, Hanadi S; Schug, Kevin A

    2015-07-07

    The exploration of unconventional shale energy reserves and the extensive use of hydraulic fracturing during well stimulation have raised concerns about the potential effects of unconventional oil and gas extraction (UOG) on the environment. Most accounts of groundwater contamination have focused primarily on the compositional analysis of dissolved gases to address whether UOG activities have had deleterious effects on overlying aquifers. Here, we present an analysis of 550 groundwater samples collected from private and public supply water wells drawing from aquifers overlying the Barnett shale formation of Texas. We detected multiple volatile organic carbon compounds throughout the region, including various alcohols, the BTEX family of compounds, and several chlorinated compounds. These data do not necessarily identify UOG activities as the source of contamination; however, they do provide a strong impetus for further monitoring and analysis of groundwater quality in this region as many of the compounds we detected are known to be associated with UOG techniques.

  16. Study of Seasonal Variation in Groundwater Quality of Sagar City (India by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Hemant Pathak

    2011-01-01

    Full Text Available Groundwater is one of the major resources of the drinking water in Sagar city (India.. In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis factoring has been used to observe the mode of association of parameters and their interrelationships, for evaluating water quality. Average value of BOD, COD, ammonia and iron was high during entire study period. Elevated values of BOD and ammonia in monsoon, slightly more value of BOD in post-monsoon, BOD, ammonia and iron in pre-monsoon period reflected contribution on temporal effect on groundwater. Results of principal component analysis evinced that all the parameters equally and significantly contribute to groundwater quality variations. Factor 1 and factor 2 analysis revealed the DO value deteriorate due to organic load (BOD/Ammonia in different seasons. Hierarchical cluster analysis grouped 15 stations into four clusters in monsoon, five clusters in post-monsoon and five clusters in pre-monsoon with similar water quality features. Clustered group at monsoon, post-monsoon and pre-monsoon consisted one station exhibiting significant spatial variation in physicochemical composition. The anthropogenic nitrogenous species, as fallout from modernization activities. The study indicated that the groundwater sufficiently well oxygenated and nutrient-rich in study places.

  17. Analysis of Water Quality Index for Groundwater in Gudur Mandal, SPSR Nellore District - Integrated With RS And GIS

    Directory of Open Access Journals (Sweden)

    Nambi Harish

    2016-05-01

    Full Text Available Groundwater has become a necessary resource over the past decades due to the increase in its usage for drinking, water supply, irrigation and industrial uses etc. Groundwater resources are now facing threats due to anthropogenic activities. The groundwater quality is equally important as that of quantity. Mapping of spatial variability of groundwater quality is of vital importance and it is particularly significant where groundwater is primary source of potable water. The present study has been undertaken to analyze the spatial variability of groundwater quality for Gudur Mandal, SPSR Nellore District located in the Andhra Pradesh State. MS ExcelAnalysis ToolPak is used for mathematical analysis of the parameters and ArcGIS Version 10.1 is used for the spatial analysis and it is a powerful tool for representation and analysis of spatial information related to water resources. A total of 280 bore well water samples are collected. The major water quality parameters such as pH, Total dissolved solids, Total alkalinity as calcium carbonate, Total hardness, Chloride, Sulphate, Nitrate, Fluoride, Iron have been analysed as per BIS 10500-2012. The spatial variation maps of these groundwater quality parameters were derived and integrated through GIS. The final integrated map shows five priority classes such as Excellent, Good, Poor, Very poor, Unsuitable for zones of the study area and provides a guideline for the suitability of groundwater for domestic purposes

  18. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS.

    Science.gov (United States)

    Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin

    2017-08-31

    The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO3, NaHCO3, NaCl, CaCl2, and CaSO4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.

  19. Hydrogeology and Water Quality of the Pepacton Reservoir Watershed in Southeastern New York. Part 4. Quantity and Quality of Ground-Water and Tributary Contributions to Stream Base Flow in Selected Main-Valley Reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    constituents such as nutrients. The total gain in streamflow from the upper end to the lower end of each valley reach was positively correlated with the annual-runoff volume calculated for the drainage area of the reach. This correlation was not greatly affected by the proportions of ground-water and tributary contributions, except at two reaches that lost much of their tributary flow after the July survey. In these reaches, the gain in total streamflow showed a negative departure from this correlation. Calculated ground-water discharge exceeded the total tributary inflow in each valley reach in both surveys. Groundwater discharge, as a percentage of streamflow gain, was greatest among reaches in wide valleys (about 1,000-ft wide valley floors) that contain permeable valley fill because tributary flows were seasonally diminished or absent as a result of streambed infiltration. Tributary inflows, as a percentage of streamflow gain, were highest in reaches of narrow valleys (200-500-ft wide valley floors) with little valley fill and high annual runoff. Stream-water and ground-water quality were characterized by major-ion type as either (1) naturally occurring water types, relatively unaffected by road salt, or (2) road-salt-affected water types having elevated concentrations of chloride and sodium. The naturally occurring waters were typically the calcium-bicarbonate type, but some contained magnesium and (or) sulfate as secondary ions. Magnesium concentration in base flow is probably related to the amount of till and its carbonate content, or to the amount of lime used on cultivated fields within a drainage area. Sulfate was a defining ion only in dilute waters (with short or unreactive flow paths) with low concentrations of bicarbonate. Nearly all tributary waters were classified as naturally occurring water types. Ground-water discharge from nearly all valley reaches that contain State or county highways had elevated concentrations of chloride and sod

  20. The Influence of the Earthquakes on the Compositional Change in Basement Groundwater (on the Example of the South Tatarian Arch)

    Science.gov (United States)

    Ibragimov, R.; Plotnikova, I.

    2009-04-01

    The groundwater composition of deconsolidated zones in the Precambrian crystalline basement of the Volga-Ural anteclise's South Tatarstan Arch was monitored during the period from 1998 to 2003. Chemical and gas compositions of basement waters and fluid levels were monitored in five wells. Other monitoring parameters included total dissolved solids, density and acidity of water and the contents of methane, heavy hydrocarbon gases, hydrogen, helium, carbon dioxide, dissolved organic substances (bitumen carbon) and total nitrogen. In order to study the temporal relationship between variations in water composition and seismic activity, sampling was carried out right after seismic events. Earthquake recording in Tatarstan allowed water sampling to be conducted almost immediately after seismic events. Some regularity in the variation of salt and microelement compositions of water has been outlined. Earthquake frequency has been found to be related to salt and microelement compositions of water. Water samples have shown decreased total dissolved solids content. At the same time, the total iron content decreases and the boron content increases. Peaks of tectonic activity have been found to coincide with increased methane contents. Earthquake peaks have also been found to coincide with maximum hydrogen contents over the whole observation period. A similar relationship has been found for nitrogen Archaean/Proterozoic groundwater monitoring shows changes in total salt, trace-component and gas compositions. These can be related to geological processes of various intensities occurring in the Earth's crust. The total hydrocarbon content of groundwaters has been found to depend on the intensity of geological processes, which indicates the possible entry of additional gas amounts from deconsolidated zones of the crystalline basement into the sedimentary Devonian. It has been established that the most informative indicators of the relationship between groundwater parameters and

  1. Groundwater quality for irrigation of deep aquifer in southwestern zone of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mirza A.T.M. Tanvir Rahman

    2012-07-01

    Full Text Available In coastal regions of Bangladesh, sources of irrigation are rain, surface and groundwater. Due to rainfall anomaly andsaline contamination, it is important to identify deep groundwater that is eligible for irrigation. The main goal of the study wasto identify deep groundwater which is suitable for irrigation. Satkhira Sadar Upazila, at the southwestern coastal zone ofBangladesh, was the study area, which was divided into North, Center and South zones. Twenty samples of groundwaterwere analyzed for salinity (0.65-4.79 ppt, sodium absorption ratio (1.14-11.62, soluble sodium percentage (32.95-82.21, electricalconductivity (614-2082.11 μS/cm, magnesium adsorption ratio (21.96-26.97, Kelly’s ratio (0.48-4.62, total hardness(150.76-313.33 mg/l, permeability index (68.02-94.16 and residual sodium bi-carbonate (79.68-230.72 mg/l. Chemical constituentsand values were compared with national and international standards. Northern deep groundwater has the highest salinityand chemical concentrations. Salinity and other chemical concentrations show a decreasing trend towards the south. Lowchemical concentrations in the southern region indicate the best quality groundwater for irrigation.

  2. Hydro chemical characteristic and Quality Assessment of Groundwater of Ranchi Township Area, Jharkhand, India

    Directory of Open Access Journals (Sweden)

    Prabhunath Singh

    2014-12-01

    Full Text Available In the present study, detail investigation of groundwater for the suitability of drinking, domestic and irrigation purposes in Ranchi township area. For this purpose, 27 groundwater samples from wells and tube wellswere collected and analyzed for pH, electrical conductivity (EC, total dissolved solids (TDS , major cations (Ca2+, Mg2+, Na+ and K+ and major anions (HCO3- F-, Cl-, NO3-, SO42-. pH of the analyzed samples indicates slightly alkaline nature of the water samples. Total dissolved solids of 94% of analyzed groundwater samples were falling in the category of fresh water and 6% in the category of brackish water. HCO3- and Cl- are dominant anions and Ca2+and Na+ as the dominant cation in the water chemistry.In majority of the samples, the analyzed parameters are well within the desirable limits and water is potable for drinking purposes. However, concentrations of EC, TDS, TH, Ca2+, and Mg2+exceed the desirable limit at few sites.Parameter like residual sodium carbonate (RSC, permeability index (PI, percent sodium (%Na, sodium adsorption ratio (SAR were calculated and plotted to understand the water quality and utilitarian aspect of groundwater for irrigation uses. The calculated parameters show that the majority of the groundwater samples are suitable for irrigation uses. However,high salinity values at few sites restrict the suitability of the water for irrigation uses.

  3. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  4. CORRELATION STUDY AMONG WATER QUALITY PARAMETERS OF GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT(INDIA

    Directory of Open Access Journals (Sweden)

    R. T. Vashi

    2015-09-01

    Full Text Available Groundwater samples were collected from five talukas of Valsad district for one year (from August 2008 to July 2009 and were analyzed for their physicochemical characteristics.  The present investigation is focused on  determination of parameters like pH, Colour, Electrical Conductivity (EC, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Total Dissolved Solids (TDS, Silica, Chloride, Sulphate, Fluoride, Sodium, Chemical Oxygen Demand (COD and metals like Copper (Cu and Manganese (Mn.  Correlation coefficients were determined to identify the highly correlated parameters and interrelated water quality parameters. Correlation matrix of Valsad district suggests that EC of groundwater is found to be significantly correlated with eight out of seventeen water quality parameters studied.  It may be suggested that the quality of Valsad district can be checked very effectively by controlling EC of water.

  5. [Groundwater quality in two arid areas of Morocco: impact of pollution on biodiversity and paleogeographic implications].

    Science.gov (United States)

    Boughrous, A A; Yacoubi Khebiza, M; Boulanouar, M; Boutin, C; Messana, G

    2007-11-01

    The biodiversity and the quality of subterranean waters have been comparatively studied in the Haouz plain near Marrakesh and in the Tafilalet, in south-eastern Morocco. For this purpose, physicochemical and faunistic analyses were carried out on the water of ten wells and springs located in the area of Marrakesh, and in Errachidia area respectively. In the wells of Marrakesh, the average stygobiologic diversity is relatively high in the wells located upstream the dumping from the city where the ground water presents low contents of nitrates and orthophosphates. In contrast, the wells located in the spreading zone of Marrakesh wastewaters are characterized by the scarcity or the absence of stygobitic species; in these latter wells, the water is highly polluted. It is rich in nitrates, nitrites, ammonium, and the conductivity is rather high. In the area of Errachidia the faunistic inventory gathers some ten species, some of which are living in hot springs. The subterranean water is highly mineralised. In the two studied areas, the biodiversity decreases when well water is locally polluted, and the subterranean fauna completely disappears if the degree of contamination is important. This relation between the biodiversity and water quality which had already appeared in surface water, is confirmed within the wells of Marrakech. The groundwater fauna of both two areas presents similarities in relation to their geological history, mainly the various marine cycles of marine transgressions-regressions, which were at the origin of the settlement of the ancestors of the extant species, and the Atlasic orogenesis which separated the common ancestral populations into two separated stocks, involving a different evolution of the ancestors and a resulting speciation by vicariance.

  6. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India.

    Science.gov (United States)

    Chakraborty, Shubhrasekhar; Kumar, R Naresh

    2016-06-01

    Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater.

  7. Seawater Intrusion Impacts on the Water Quality of the Groundwater on theNorthwest Coast of Oman.

    Science.gov (United States)

    Ahmed, Abdelkader T; Askri, Brahim

    2016-08-01

    The groundwater aquifer in the coastal region of the northwest of Oman has been used extensively since the early 1980s for agricultural, industrial and municipal purposes. The over pumping of this reservoir has led to the intrusion of seawater and therefore to the deterioration of the groundwater quality. In this study, an investigation was carried out in the southern part of this region to identify the quality of groundwater, to understand the main sources of groundwater mineralisation, and to check the suitability of groundwater for drinking and irrigation. The spatial distributions and temporal variations of groundwater level and electrical conductivity were studied for the period from 1982 to 2005 using data collected from 225 wells. In addition, groundwater samples were collected recently in 2012 from eight wells and analysed for pH, EC, and major ions to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The study area was divided into two strips parallel to the coastline, A and B, located in the discharge and recharge parts of the aquifer, respectively. Results showed a significant increase in the degree of water mineralisation in the direction of south to north following the regional flow direction. Results showed also that the groundwater in the last area could be used for irrigation with little danger of exchangeable sodium while this aquifer is unsuitable for irrigation in the discharge area because it presents a very high salinity hazard.

  8. Assessing the Effect of a Dumpsite to Groundwater Quality in Payatas, Philippines

    Directory of Open Access Journals (Sweden)

    Glenn L.S. Su

    2008-01-01

    Full Text Available The study assessed and compared the groundwater quality of 14 selected wells continuously used in the with (Payatas and without dumpsite (Holy Spirit areas at the Payatas estate, Philippines. Water quality monitoring and analyses of the bio-physico-chemical variables (pH, Total Suspended Solids (TSS, Total Dissolved Solids (TDS, total coliform, conductivity, salinity, nitrate-nitrogen, sulfate, color, total chromium, total lead and total cadmium were carried out for six consecutive months, from April to September 2003, covering both dry and wet seasons. Results showed most of the groundwater quality variables in both the with and without dumpsite areas of the Payatas estate were within the normal Philippine water quality standards except for the observed high levels of TDS, TSS and total coliform and low pH levels. No significant differences were observed for nitrate-nitrogen, total cadmium, total lead, total chromium and total coliform in both the with and without dumpsite areas. TDS, conductivity, salinity and sulfate concentrations in the with dumpsite groundwater sources were significantly different compared to those in the without dumpsite areas. Continuous water quality monitoring is encouraged to effectively analyze the impact of dumpsites on the environment and human health.

  9. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    Science.gov (United States)

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  10. Midrash as exegetical approach of early Jewish exegesis, with some examples from the Book of Ruth

    Directory of Open Access Journals (Sweden)

    Man Ki Chan

    2010-02-01

    Full Text Available This article deals with the exegetical approach of the early Jewish school. It discusses the meaning and definition of midrash as a distinctive approach in Jewish interpretation. The relationship between midrash and exegesis is also examined. It is shown how the process of interpretation is affected by the use of midrash principles. It is also pointed out that the ancient interpretative method of midrash had social relevancy. The midrashic interpreters maintained the interest of the community and fulfilled the needs of their generation. The conclusion is drawn that early Jewish exegetes did not explain the text for its inherent meaning, but rather for its use in personal purposes. They tended to read some agendas and issues into the text from the exegetes themselves and their surrounding backgrounds. They aimed to meet the requirement of the social and political expectations of their reader community. Interpretation was used as a tool for this purpose. This exegetical trend is finally illustrated with some examples of interpretation of the Book of Ruth.

  11. Ground-water quality in Bannock, Bear Lake, Caribou, and part of Power counties, southeastern Idaho

    Science.gov (United States)

    Seitz, H.R.; Norvitch, R.F.

    1979-01-01

    The 103 wells sampled during the study establish a quasi-network that could be resampled in the future to document and analyze changes in ground-water quality in the southeastern Idaho study area. The main aquifers are categorized as alluvium of Quaternary age, basalt of Quaternary and (or) Tertiary age, rocks of the Salt Lake Formation of Tertiary age, and undifferentiated bedrock of pre-Tertiary age. Dissolved solids, hardness, nitrite plus nitrate as nitrogen, and chloride concentrations in the ground waters ranged from 165 to 1,690; 78 to 1,700; 0 to 29; and 1.9 to 360 milligrams per liter, respectively. The areal distributions of these constituents are shown on maps. The range and median values of these same constituents are tabulated by aquifer occurrence. Some of the most mineralized and hardest waters occur in the basalt aquifer near travertine deposits (or terraces), which are composed of calcium carbonate precipitates from mineral springs. For irrigation purposes, all the waters are classified as having low-sodium hazard. Most have medium- to high-salinity hazard. (Woodard-USGS)

  12. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, the Netherlands

    NARCIS (Netherlands)

    Janssen RPT; Verweij W; Versteegh JFM; LWD

    1997-01-01

    Speciation calculations were carried out on groundwater samples to shed more light on the chemical processes of rare earth elements (REE). These samples were taken from seven boreholes at several depths near the drinking water pumping station, Vierlingsbeek, The Netherlands. Complexation and precip

  13. Evaluation of groundwater and stream quality characteristics in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... However, the well waters were poor in quality in terms of the levels of pH, Fe, Cu, Ni, Pb and Cd recorded. The ... dissolved oxygen content of the receiving water body ..... fish population was observed at upstream location.

  14. Mapping of groundwater quality in the Turonian aquifer of Oum Er-Rabia Basin, Morocco: a case study

    Science.gov (United States)

    Ettazarini, Said

    2006-08-01

    This study takes the groundwater of the Moroccan limestone aquifer of Oum Er-Rabia as an example of statistical and cartographical approaches in water resources management. Statistical analyses based on frequency distribution and PCA methods revealed the homogeneity of waters with the existence of abnormal points and have helped to assess correlations between the studied variables. The mapping approach illustrated that waters are influenced by the lithology of the surrounding rocks and are of Ca Mg HCO3, Ca Mg Cl SO4, and mixed types according to the Piper classification. The quality of water is of high to medium, north of the basin, but it is of medium to bad, NE and south, due to excessive contents of chloride, sulfate and nitrate. According to the US Salinity Laboratory classification, water used for irrigation in the eastern and the southern parts of the basin should take into consideration the drainage conditions, the nature of plants and the addition of gypsum doses.

  15. Evaluation of groundwater quality in and around Peenya industrial area of Bangalore, South India using GIS techniques.

    Science.gov (United States)

    Pius, Anitha; Jerome, Charmaine; Sharma, Nagaraja

    2012-07-01

    Groundwater resource forms a significant component of the urban water supply. Declining groundwater levels in Bangalore Urban District is generally due to continuous overexploitation during the last two decades or more. There is a tremendous increase in demand in the city for good quality groundwater resource. The present study monitors the groundwater quality using geographic information system (GIS) techniques for a part of Bangalore metropolis. Thematic maps for the study area are prepared by visual interpretation of SOI toposheets on 1:50,000 scale using MapInfo software. Physicochemical analysis data of the groundwater samples collected at predetermined locations form the attribute database for the study, based on which spatial distribution maps of major water quality parameters are prepared using MapInfo GIS software. Water quality index was then calculated by considering the following water quality parameters--pH, total dissolved solids, total hardness, calcium hardness, magnesium hardness, alkalinity, chloride, nitrate and sulphate to find the suitability of water for drinking purpose. The water quality index for these samples ranged from 49 to 502. The high value of water quality index reveals that most of the study area is highly contaminated due to excessive concentration of one or more water quality parameters and that the groundwater needs pretreatment before consumption.

  16. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  17. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  18. Status and understanding of groundwater quality in the central-eastside San Joaquin Basin, 2006: California GAMA Priority Basin Project

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth; Jurgens, Bryant C.; Kulongoski, Justin T.; Johnson, Tyler D.

    2010-01-01

    were detected frequently (detected in greater than 10 percent of samples): the trihalomethanes chloroform, bromoform, bromodichloromethane, and dibromochloromethane; the solvent PCE; the herbicides atrazine, simazine, and metolachlor, and special-interest constituent perchlorate.An assessment of understanding of the groundwater quality included sampling of understanding wells, some of which were perforated in shallower or deeper portions of the aquifer system than the primary aquifer, and analysis of correlations of groundwater quality with land use, depth, age classification, and other potential explanatory factors.The understanding assessment indicated that the concentrations of many constituents were related to depth and groundwater age. However, concentrations of individual constituents or constituent classes also were sometimes related to geochemical conditions, lateral position in the flow system, or land use.High and moderate relative-concentrations of uranium, nitrate, and total dissolved solids (TDS) were detected in some wells where the tops of perforations are within the upper 200 feet of the aquifer system. In wells with the depth to the top of perforations below this depth, concentrations were low. A similar pattern occurred for the sum of herbicide concentrations. These vertical water-chemistry patterns are consistent with the hydrogeologic setting, in which return flows from agricultural and urban land use are the major source of recharge, and withdrawals for irrigation and urban supply are the major source of discharge, resulting in substantial vertical components of groundwater flow.The decrease in concentrations of many constituents with depth reflects in part that groundwater gets older with depth. Tritium, helium-isotopes, and carbon-14 data were used to classify the predominant age of groundwater samples into three categories: modern (water that has entered the aquifer in the last 50 years), pre-modern (water that entered the aquifer more than 50

  19. Application of Multivariate Statistical Techniques for Characterization of Groundwater Quality in the Coastal Aquifer of Nador, Tipaza (Algeria)

    Science.gov (United States)

    Bouderbala, Abdelkader; Remini, Boualem; Saaed Hamoudi, Abdelamir; Pulido-Bosch, Antonio

    2016-06-01

    The study focuses on the characterization of the groundwater salinity on the Nador coastal aquifer (Algeria). The groundwater quality has undergone serious deterioration due to overexploitation. Groundwater samplings were carried out in high and low waters in 2013, in order to study the evolution of groundwater hydrochemistry from the recharge to the coastal area. Different kinds of statistical analysis were made in order to identify the main hydrogeochemical processes occurring in the aquifer and to discriminate between different groups of groundwater. These statistical methods provide a better understanding of the aquifer hydrochem-istry, and put in evidence a hydrochemical classification of wells, showing that the area with higher salinity is located close to the coast, in the first two kilometers, where the salinity gradually increases as one approaches the seaside and suggests the groundwater salinization by sea-water intrusion.

  20. Application of multivariate statistical techniques for characterization of groundwater quality in the coastal aquifer of Nador, Tipaza (Algeria

    Directory of Open Access Journals (Sweden)

    Bouderbala Abdelkader

    2016-06-01

    Full Text Available The study focuses on the characterization of the groundwater salinity on the Nador coastal aquifer (Algeria. The groundwater quality has undergone serious deterioration due to overexploitation. Groundwater samplings were carried out in high and low waters in 2013, in order to study the evolution of groundwater hydrochemistry from the recharge to the coastal area. Different kinds of statistical analysis were made in order to identify the main hydrogeochemical processes occurring in the aquifer and to discriminate between different groups of groundwater. These statistical methods provide a better understanding of the aquifer hydrochemistry, and put in evidence a hydrochemical classification of wells, showing that the area with higher salinity is located close to the coast, in the first two kilometers, where the salinity gradually increases as one approaches the seaside and suggests the groundwater salinization by seawater intrusion.

  1. Deterioration of coastal groundwater quality in Island and mainland regions of Ramanathapuram District, Southern India.

    Science.gov (United States)

    Sivasankar, Venkataramann; Ramachandramoorthy, Thiagarajan; Chandramohan, A

    2013-01-01

    A study was carried out in the Island and mainland regions of Ramanathapuram District to characterize the physico-chemical characteristics of 87 groundwater samples in Island and 112 groundwater samples in mainland which include pH, EC, TDS, salinity, total alkalinity, calcium hardness, magnesium hardness, total hardness, chloride and fluoride. Heavy inorganic load in majority of the groundwater samples has been estimated due to the salinity, TDS, TH and chloride beyond the threshold level which substantiates the percolation of sea water into the freshwater confined zones. Although the groundwater sources are available in plenty, the scarcity of potable water is most prevalent in this coastal area. The Water Quality Index (WQI) and Langeleir Saturation Index (LSI) have also been calculated to know the potable and corrosive/incrusting nature of the water samples. The statistical tools such as principal component analysis, box plots and correlation matrix have also been used to explain the influence of different physico-chemical parameters with respect to one another among the groundwater samples. The percentage of groundwater samples in mainland was more than that in Island with respect to the acceptable limit of WHO drinking standard, especially in TDS, CH, TH and chloride but the converse is observed in the case of fluoride. About 8% of the mainland aquifers and 42% of Island aquifers were identified to have fluoride greater than 1.5 mg/l. The signature of salt-water intrusion is observed from the ratio of Cl/CO(3)(2-) + HCO(3) and TA/TH. A proper management plan to cater potable water to the immediate needs of the people is to be envisaged.

  2. An economic value of remote-sensing information—Application to agricultural production and maintaining groundwater quality

    Science.gov (United States)

    Forney, William M.; Raunikar, Ronald P.; Bernknopf, Richard L.; Mishra, Shruti K.

    2012-01-01

    Does remote-sensing information provide economic benefits to society, and can a value be assigned to those benefits? Can resource management and policy decisions be better informed by coupling past and present Earth observations with groundwater nitrate measurements? Using an integrated assessment approach, the U.S. Geological Survey (USGS) applied an established conceptual framework to answer these questions, as well as to estimate the value of information (VOI) for remote-sensing imagery. The approach uses moderate-resolution land-imagery (MRLI) data from the Landsat and Advanced Wide Field Sensor satellites that has been classified by the National Agricultural Statistics Service into the Cropland Data Layer (CDL). Within the constraint of the U.S. Environmental Protection Agency's public health threshold for potable groundwater resources, the USGS modeled the relation between a population of the CDL's land uses and dynamic nitrate (NO3-) contamination of aquifers in a case study region in northeastern Iowa. Employing various multiscaled, multitemporal geospatial datasets with MRLI to maximize the value of agricultural production, the approach develops and uses multiple environmental science models to address dynamic nitrogen loading and transport at specified distances from specific sites (wells) and at landscape scales (for example, across 35 counties and two aquifers). In addition to the ecosystem service of potable groundwater, this effort focuses on the use of MRLI for the management of the major land uses in the study region-the production of corn and soybeans, which can impact groundwater quality. Derived methods and results include (1) economic and dynamic nitrate-pollution models, (2) probabilities of the survival of groundwater, and (3) a VOI for remote sensing. For the northeastern Iowa study region, the marginal benefit of the MRLI VOI (in 2010 dollars) is $858 million ±$197 million annualized, which corresponds to a net present value of $38

  3. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  4. Environmental engineering education: examples of accreditation and quality assurance

    Science.gov (United States)

    Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.

    2013-12-01

    Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In

  5. Groundwater quality in the Basin and Range Basin-Fill Aquifers, southwestern United States

    Science.gov (United States)

    Musgrove, MaryLynn; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Basin and Range basin-fill aquifers constitute one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 20 percent of the study area and at moderate concentrations in about 49 percent. Organic constituents were not detected at high concentrations in the study area. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.

  6. Groundwater quality in the Southeastern Coastal Plain aquifer system, southeastern United States

    Science.gov (United States)

    Barlow, Jeannie; Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Southeastern Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 6 percent of the study area and at moderate concentrations in about 13 percent. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.

  7. Groundwater quality in the Coastal Lowlands aquifer system, south-central United States

    Science.gov (United States)

    Barlow, Jeannie R.B.; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Coastal Lowlands aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 12 percent of the study area and at moderate concentrations in about 18 percent. Organic constituents were not detected at high or moderate concentrations in the study area.

  8. Equilibrium of Groundwater with Carbonate Minerals of the Water-Bearing Rocks under Anthropogenic Impact (by the example of Kishinev, Moldova)

    Science.gov (United States)

    Timoshenkova, A. N.; Pasechnik, E. Yu; Tokarenko, O. G.

    2014-08-01

    The paper presents calculation results of equilibrium of groundwater in Kishenev with a variety of secondary carbonate minerals. It is shown that the groundwater-rock system is in equilibrium with some minerals, such as calcite, magnesite, dolomite, siderite, but at the same time is not in equilibrium with strontianite. It indicates that secondary mineral precipitation is possible. Specific nitrate chemical water type, which is rarely observed in nature and characterized by the presence of anthropogenic impact in this territory, in some cases is of higher saturation as compared to calcite, dolomite and magnesite due to the fact that nitrate ion content increases with the increase of calcium content.

  9. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India

    Directory of Open Access Journals (Sweden)

    K. Srinivasamoorthy

    2014-01-01

    Full Text Available The Pungar sub basin is located in the central part of South India. The geology is mainly composed of Archean crystalline metamorphic complexes. Increased population and intensive agricultural activity make it imperative to assess the quality of the groundwater system to ensure long-term sustainability of the resources. A total of 87 groundwater samples were collected from bore wells for two different seasons, viz., Pre monsoon and Post monsoon and analyzed for major cations and anions. Semi-arid climate, high evaporation rate and nutrient enrichment are the key features for EC enrichment. HigherNO3- and Cl− were observed in groundwater samples. The sources of Ca2+, Mg2+, Na+ and K+ are from silicate weathering process. The facies demarcation suggests base exchanged hardened water. Gibbs plot suggests chemical weathering of rock forming minerals along with evaporation. The plot of (Ca2+ + Mg2+ versus (SO42-+HCO3- suggests both ion exchange and reverse exchange processes. The plot of (Na++K+ versus TZ+ shows higher cations via silicate weathering, alkaline/saline soils and residence time. The disequilibrium index for carbonate minerals point out influence of evaporation and silicate minerals favor incongruent dissolution. Mineral stability diagrams signify groundwater equilibrium with Kaolinite, Muscovite and Chlorite minerals. Comparison of groundwater quality with drinking standards and irrigation suitability standards proves that majority of water samples are suitable for drinking purpose. In general, water chemistry is guided by complex weathering process, ion exchange and influence of agricultural and sewage impact.

  10. Groundwater quality assessment for domestic and agriculture purposes in Puducherry region

    Science.gov (United States)

    Sridharan, M.; Senthil Nathan, D.

    2017-03-01

    Totally about 174 groundwater samples have been collected during pre-monsoon and post-monsoon season to study the suitability for domestic and agriculture purposes along the coastal aquifers of Puducherry region. Parameters such as pH, total dissolved solids (TDS), electrical conductivity (EC), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), bicarbonate (HCO3), chloride (Cl) and sulfate (SO4) were analyzed to assess the suitability of groundwater for domestic purposes. Sodium adsorption ratio (SAR), magnesium adsorption ratio (MAR), residual sodium bicarbonate (RSC), soluble sodium percentage (Na%), permeability index (PI) and chlorinity index were assessed for irrigation purposes. The higher concentration of ions such as Na, Ca, Cl and So4 indicates seawater intrusion, mineral dissolution, intense agricultural practices and improper sewage disposal. The level of EC, TDS and hardness in the water samples indicates that maximum of them are suitable for drinking and domestic purposes. The parameters such as SAR, Na%, PI, MAR and Chlorinity index indicates that majority of water sample are very good to moderately suitable for agriculture. In pre-monsoon, RSC of about 5.7% of samples was higher which when used for a longer time alter the soil properties and reduce crop production. Wilcox diagram suggests that water samples are of medium saline to low sodium type indicating that groundwater is suitable for irrigation. Temporal variation of groundwater quality shows significant increasing trend in EC, TDS and ions like Mg, K and Cl in the last decade, mainly due to anthropogenic activities with little geogenic impact in the quality of groundwater.

  11. [Impacts of reclaimed water irrigation of urban lawn on groundwater quality].

    Science.gov (United States)

    Wang, Qiao-Huan; Chen, Wei-Ping; Wang, Xiao-Ke; Ren, Yu-Fen; Zhang, Ye

    2012-12-01

    Based on long-term monitoring of groundwater and irrigation water quality, the dynamics of the main physicochemical property and pollutant concentration of groundwater influenced by reclaimed water irrigation were examined in this study. The results of our five-year continuous study showed that the ammonium nitrogen concentration in reclaimed water ranged 0.05-65.4 mg x L(-1) with an average of 12.0 mg x L(-1), which exceeded the urban miscellaneous water quality standards for urban greening (GB/T 18920-2002). The total nitrogen in reclaimed water averaged at 28.3 mg x L(-1), ranging from 2.56 mg x L(-1) to 78.0 mg x L(-1), which was also relatively high. The groundwater quality indexes were normal with small fluctuations under tap-water irrigation. The influence of lawn irrigation with reclaimed water on the groundwater water quality was significant in the shallow well with a depth of 6 m, but not obvious in the deep well with a depth of 20 m. The greatest change was found in the enhanced value of nitrate concentration. The nitrate nitrogen concentration in shallow underground water had significantly positive correlation but lagging with the concentration of dissolved nitrogen in the irrigation reclaimed water, which indicated that lawn irrigation with reclaimed water might cause nitrate nitrogen pollution in shallow underground water. Therefore, considering the huge water consumption for the urban greening, it is suggested that the criteria of reclaimed water reuse should be further improved to avoid the risk of environmental pollution.

  12. Groundwater quality in the Eastern Lake Ontario Basin of New York, 2008

    Science.gov (United States)

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    Water samples were collected from nine production wells and nine private residential wells in the Eastern Lake Ontario Basin of New York from August through October 2008 and analyzed to characterize the chemical quality of groundwater. The wells were selected to provide adequate spatial coverage of the 3,225-square-mile study area; areas of greatest groundwater use were emphasized. Eight of the 18 wells sampled, were screened in sand and gravel aquifers, and 10 were finished in bedrock aquifers. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 223 physical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water standards; these were: color (2 samples), pH (1 sample), sodium (5 samples), chloride (1 sample), aluminum (2 samples), iron (5 unfiltered samples), manganese (3 samples), radon-222 (13 samples), and bacteria (4 samples). Dissolved-oxygen concentrations in samples from wells finished in sand and gravel [median 3.8 milligrams per liter (mg/L)] were greater than those from wells finished in bedrock (median less than 0.7 mg/L). The pH of all samples was typically neutral or slightly basic (median 7.4); the median water temperature was 11.3 degrees Celsius. The ions with the highest concentrations were bicarbonate (median 174 mg/L) and calcium (median 24.1 mg/L). Groundwater in the basin ranges from soft to moderately hard [less than or equal to 120 mg/L as CaCO3] and median hardness was 90 mg/L as CaCO3. Concentrations of nitrate plus nitrite in samples from sand and gravel wells (median concentration 0.42 mg/L as nitrogen) were generally higher than those in samples from bedrock wells (median Radon-222 activities were generally high [median

  13. The research of three-dimensional numerical simulation of groundwater-flow: taking the Ejina Basin, Northwest China as example

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Water is a primary controlling factor for economic development and ecological environmental protection in the inland river basins of arid western China. And it is groundwater, as the most important component of total water resources, that plays a dominant role in the development of western China. In recent years, the use-ratio of surface water has been raised, the groundwater recharge rate from surface water has been reduced, and groundwater has been exploited on a large scale. This has led to the decline of ground-water levels and the degradation of eco-environments in the Heihe watershed. Therefore, the study on the change in groundwater levels in recent years, as well as simulating and predicting groundwater levels in the future, have become very significant for im-proving the ecological environment of the Heihe River Basin, to coordinate the water contradiction among upper, middle and lower reaches of Heihe River Basin and to allocate the water resources. The purpose of this study is to analyze the groundwa-ter-level variations of the Ejina region based on a large scale, to develop and evaluate a conceptual groundwater model in Ejina Basin, to establish the groundwater flow model using the experimental observation data and combining Modular Three-Dimensional Groundwater Flow Model (MODFLOW) and GIS software, to simulate the regional hydrologic regime in re-cent 10 years and compare various water-delivery scenarios from midstream, and to determine which one would be the best plan for maintaining and recovering the groundwater levels and increasing the area of Ejina oasis. Finally this paper discusses the pos-sible vegetation changes of Ejina Basin in the future.

  14. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, E.J.; Gordon, D.E. (eds.)

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines.

  15. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  16. Appraisal of ground-water quality in the Bunker Hill Basin of San Bernardino Valley, California

    Science.gov (United States)

    Duell, L.F.; Schroeder, R.A.

    1989-01-01

    Water samples were collected from 47 wells and analyzed for concentration of major inorganic ions, nitrogen species, and volatile (purgeable) organic priority pollutants to assess groundwater quality in the Bunker Hill basin, California. Data were supplemented with additional analysis of nitrate, tetrachloroethylene, and trichloroethylene made by other agencies. The organic quality of groundwater in the basin generally is suitable for most uses, although fluoride concentration exceeded the California public drinking water standard of 1.4 mg/L in water from 5 of 47 wells. Nitrate (as nitrogen) concentration equaled or exceeded the public drinking water standard of 10 mg/L in water from 13 of 47 wells sampled for this study and in an additional 19 of 120 samples analyzed by other agencies. Concentration generally decreased with increasing depth below land surface. Twenty-four of the 33 volatile organic priority pollutants were detected in water from wells sampled during this study. When supplemental data from other agencies are included, tetrachloroethylene concentration exceeded the standard of 5 micrograms/L in water from 49 of 128 wells. No basinwide relation between contamination by these two chemicals and well depth or land use was discerned. A network of 11 observation wells that could be sampled twice a year would enhance the monitoring of changes groundwater quality in the Bunker Hill basin. (USGS)

  17. Groundwater Quality Assessment in Jakarta Capital Region for the Safe Drinking Water

    Science.gov (United States)

    Fadly, M.; Prayogi, T. E.; Mohamad, F.; Zulfaris, D. Y.; Memed, M. W.; Daryanto, A.; Abdillah, F.; Nasution, E. M.; Sudianto, J. R.; Giarto, B.; Maliki, F.

    2017-03-01

    This study aims to determine the quality of Jakarta Capital Region’s groundwater and its recommendation based on the standards set by the Indonesian government especially The Health Minister Decree No. 907 / Menkes / SK / VII / 2002 about The Drinking Water Monitoring. The study activity uses the data that carried out by Geological Agency, Ministry of Energy and Mineral Resources, Indonesia from March to April 2015. The methods used in this study are direct observation and hydrogeological measurement to measure physics and chemistry parameters. The results show that most places in the study area have the low quality of groundwater which is below the drinking water quality standards according to the government. However, at the unconfined aquifer (depth of 0-40 meters), the certain areas such as in the Kramat Jati, Halim Perdana Kusuma, Tongkol-Pademangan, and Duren sawit are still relatively safe for consumption as drinking water. In addition, the confined aquifer (depth> 40 meters) such as in the area of Cibubur, Pasar Rebo, and Jagakarsa are considered safe for consumption as drinking water. This study is expected to be used as a benchmark for researchers, especially academics in the region in order to maintain the sustainable groundwater resources in the area.

  18. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase

  19. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).

    Science.gov (United States)

    Zhang, Xiaoying; Miao, Jinjie; Hu, Bill X; Liu, Hongwei; Zhang, Hanxiong; Ma, Zhen

    2017-07-20

    The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na(+), K(+), Ca(2+), Mg(2+), Sr(2+), Cl(-), SO4(2-), HCO3(-), NO3(-), F(-), and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content in

  20. A preliminary analysis of the hydrogeological conditions and groundwater flow in some parts of a crystalline aquifer system: Afigya Sekyere South District, Ghana

    Science.gov (United States)

    Yidana, Sandow Mark; Essel, Stephen Kwaku; Addai, Millicent Obeng; Fynn, Obed Fiifi

    2015-04-01

    A steady state groundwater flow model was calibrated to simulate the complex groundwater flow pattern in some crystalline aquifer systems in north-central Ghana. The objective was to develop the general geometry of the groundwater system and also estimate spatial variations in the hydraulic conductivity field as part of efforts to thoroughly investigate the general hydrogeology and groundwater conditions of aquifers in the area. The calibrated model was used in a limited fashion to simulate some scenarios of groundwater development in the terrain. The results suggest the dominance of local groundwater flow systems resulting from local variabilities in the hydraulic conductivity field and the topography. Estimated horizontal hydraulic conductivities range between 1.04 m/d and 15.25 m/d, although most of the areas consist of hydraulic conductivities in the range of 1.04 m/d and 5.5 m/d. Groundwater flow is apparently controlled by discrete entities with limited spatial interconnectivities. Recharge rates estimated at calibration range between 4.3% and 13% of the annual rainfall in the terrain. The analysis suggests that under the current recharge rates, the system can sustain increasing groundwater abstraction rates by up to 50% with minimal drawdown in the hydraulic head for the entire terrain. However, with decreasing groundwater recharge as would be expected in the wake of climate change/variability in the area, increased groundwater abstraction by up to 50% can lead to drastic drawdowns by more than 25% if recharge reduces by up to 50% of the current levels. This study strongly recommend the protection of some of the local groundwater recharge areas identified in this study and the promotion of local recharge through the development of dugouts and other conduits to encourage recharge.

  1. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Krieg, R.; Martienssen, M.; Bayer-Raich, M.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-10-01

    Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSOs) can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates per stream length unit Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPTs) up- and downstream of a target section. Due to the large sampled water volume during IPTs the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany). Wastewater constituents K+ and NO3- showed Mex values of 1241 to 4315 and 749 to 924 mg mstream-1 d-1, respectively, while Cl- (16.8 to 47.3 g mstream-1 d-1) and SO42- (20.3 to 32.2 g mstream-1 d-1) revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  2. Shallow ground-water quality in selected agricultural areas of south-central Georgia, 1994

    Science.gov (United States)

    Crandall, C.A.

    1996-01-01

    The Georgia-Florida Coastal Plain National Water-Quality Assessment Program began an agricultural land-use study in March 1994. The study area is located in the upper Suwannee River basin in Tift, Turner, Worth, Irwin, Wilcox, and Crisp Counties, Ga. Twenty-three shallow monitoring wells were installed in a 1,335-square- mile area characterized by intensive row-crop agriculture (peanuts, corn, cotton, and soybeans). The study focused on recently recharged shallow ground water in surficial aquifers to assess the relation between land-use activities and ground- water quality. All wells were sampled in March and April (spring) 1994, and 14 of these wells were resampled in August (summer) 1994. Shallow ground water in the study area is characterized by oxic and acidic conditions, low bicarbonate, and low dissolved-solids concentrations. The median pH of shallow ground water was 4.7 and the median bicarbonate concentration was 1.7 mg/L (milligrams per liter). Dissolved oxygen concentrations ranged from 3.0 to 8.0 mg/L. The median dissolved-solids concentration in samples collected in the spring was 86 mg/L. Major inorganic ion composition was generally mixed with no dominant cation; nitrate was the dominant anion (greater than 60 percent of the anion composition) in 14 of 23 samples. Only concentrations of bicarbonate, dissolved organic carbon, and nitrate had significant differences in concentrations between samples collected in the spring and the background samples. However, median concentrations of some of the major ingredients in fertilizer (including magnesium, chloride, nitrate, iron, and manganese) were higher in water samples from agricultural wells than in background samples. The median concentration of dissolved solids in ground-water samples collected in the spring (86 mg/L) was more than double the median concentration (41 mg/L) of the background samples. The median nitrate as nitrogen concentration of 6.7 mg/L in the spring samples reflects the effects of

  3. Quality Assessment of Some High Consumption Foods in Zanjan City

    Directory of Open Access Journals (Sweden)

    Hassan Hassanzad Azar

    2016-06-01

    Full Text Available Background: Foods go through many changes from production to table and continuous control is necessary to maintain food safety and supply foods with good quality. The aim of this study was to evaluate the quality of some foods with high consumption in Zanjan city within 5 years from 2009 to 2013. Methods: In a case-control descriptive study with an annually- controlled program within 5 years from 2009 to 2014, some food samples including pasteurized milk, vegetable oils, flour, kebab, salt, confectionary products and a special cookie called nan-chay were collected and analyzed in food control laboratory of Zanjan university of medical sciences. Results: According to national standard of Iran, of Nan-chay, salt, vegetable oils, kebab, confectionary products, and pasteurized milk samples 68.4%, 46%, 24.3%, 10.4%, 9.3%, 5% were out of national standard limits and unacceptable, respectively. All flour samples had good standard quality. Mean± sd values of pH in Nan-chay samples were 7.5 and 1.19, respectively. Mean± sd values of the degree of purity in salt samples were 98.21 and 1.75, respectively. Conclusion: Results showed that among the 7 types of collected foods in Zanjan city, the most nonstandard cases were of Nan-chay samples and the best quality was seen in flour samples.

  4. Effect of the decommissioned Roger open dump, João Pessoa, Brazil, on local groundwater quality

    Directory of Open Access Journals (Sweden)

    Giulliano de Souza Fagundes

    2009-04-01

    Full Text Available Throughout 45 years (1958-2003 the solid wastes from João Pessoa were disposed off in the former Roger’s open dump, which is situated adjacent to the mangrove at the sides of Sanhauá river, intensifying environmental problems and threatening the health of people living nearby. Between 1999 and 2003 the decommissioned open dump received wastes from the cities of Cabedelo and Bayeux. Several environmental impacts result from this inadequate disposal of solid wastes, including the pollution of groundwater nearby the former Roger´s open dump, which is the major point of investigation of this paper. The water quality of 6 wells situated in the region of influence of the open dump were monitored. Results have shown that the groundwater near the open dump cannot be drunk by the population without previous treatment, since it has some parameters of water quality in discordance with Brazilian legislation concerned with drinking water. Results have also shown that the level of pollution is higher in the wells closer to the open dump.

  5. Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The

  6. Status of groundwater quality in the Upper Santa Ana Watershed, November 2006--March 2007--California GAMA Priority Basin Project

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) Upper Santa Ana Watershed (USAW) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in Riverside and San Bernardino Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA USAW study was designed to provide a spatially unbiased assessment of untreated groundwater quality within the primary aquifer systems in the study unit. The primary aquifer systems (hereinafter, primary aquifers) are defined as the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the USAW study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey (USGS) from 90 wells during November 2006 through March 2007, and water-quality data from the CDPH database. The status of the current quality of the groundwater resource was assessed based on data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the USAW study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or

  7. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater