WorldWideScience

Sample records for groundwater project summary

  1. The International hydrocoin project. Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal. Summary report

    International Nuclear Information System (INIS)

    1992-01-01

    In 1984 the Swedish Nuclear Power Inspectorate, SKI, initiated the international cooperation project HYDROCOIN for the study of groundwater flow modelling in the context of radioactive waste disposal. The objective of HYDROCOIN was to improve knowledge of the influence of various strategies for groundwater flow modelling for the safety assessment of final repositories for radioactive wastes. The study comprised: the impact on the groundwater flow calculations of different solution algorithms, the capabilities of different models to describe field tests and bench-scale experiments, and the impact on the groundwater flow calculations of incorporating various physical phenomena. The work was conducted at three levels addressing code verification (Level 1), model validation (Level 2), and sensitivity and uncertainty analysis of groundwater flow calculations (Level 3). This report gives an overview and summary of test cases of HYDROCOIN Level 1, the issue of validation groundwater flow models (HYDROCOIN Level 2), the methodologies used in uncertainty and sensitivity analysis (HYDROCOIN Level 3). 108 figs., 24 tabs., 2 appendices

  2. Validation summary report for the 100-HR-3 Groundwater Round 9 Phase 1 and 2

    International Nuclear Information System (INIS)

    1996-02-01

    This report presents a summary of data validation results on groundwater samples collected for the 100-HR-3 Groundwater Round 9-Phase I and II Project. The analyses performed for this project were as follows: Metals--inductively coupled plasma (ICP) metals (filtered and unfiltered); General Chemistry--anions (fluoride, chloride, nitrate, nitrite, phosphate, and sulfate), turbidity, ammonia, nitrate+nitrite, and sulfide; and Radiochemistry--gross alpha, gross beta, technetium-99, tritium, and uranium-234/235/238. The objectives of this project were to validate sample detection limit as defined in the data validation procedures (WHC 1993). In addition, this report provides a summary of the data as defined by laboratory performance criteria and project-specific data quality objectives

  3. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    Science.gov (United States)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  4. Data validation summary report for the 100-HR-3 Round 8, Phases 1 and 2 groundwater sampling task

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents a summary of data validation results on groundwater samples collected for the 100-HR-3 Round 8 Groundwater Sampling task. The analyses performed for this project consisted of: metals, general chemistry, and radiochemistry. The laboratories conducting the analyses were Quanterra Environmental Services (QES) and Lockheed Analytical Services. As required by the contract and the WHC statement of work (WHC 1994), data validation was conducted using the Westinghouse data validation procedures for chemical and radiochemical analyses (WHC 1993a and 1993b). Sample results were validated to levels A and D as described in the data validation procedures. At the completion of validation and verification of each data package, a data validation summary was prepared and transmitted with the original documentation to Environmental Restoration Contract (ERC) for inclusion in the project QA record

  5. The Groundwater Performance Assessment Project Quality Assurance Plan

    International Nuclear Information System (INIS)

    Luttrell, Stuart P.

    2006-01-01

    U.S. Department of Energy (DOE) has monitored groundwater on the Hanford Site since the 1940s to help determine what chemical and radiological contaminants have made their way into the groundwater. As regulatory requirements for monitoring increased in the 1980s, there began to be some overlap between various programs. DOE established the Groundwater Performance Assessment Project (groundwater project) in 1996 to ensure protection of the public and the environment while improving the efficiency of monitoring activities. The groundwater project is designed to support all groundwater monitoring needs at the site, eliminate redundant sampling and analysis, and establish a cost-effective hierarchy for groundwater monitoring activities. This document provides the quality assurance guidelines that will be followed by the groundwater project. This QA Plan is based on the QA requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--General Provisions/Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory's Standards-Based Management System. In addition, the groundwater project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The groundwater project has determined that the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan

  6. Biofuels: Project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  7. Mirror Confinement Systems: project summaries

    International Nuclear Information System (INIS)

    1980-07-01

    This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided

  8. 7 CFR 3402.12 - Project summary.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Project summary. 3402.12 Section 3402.12 Agriculture... FELLOWSHIP GRANTS PROGRAM Preparation of an Application § 3402.12 Project summary. Using the Project Summary.... The summary should not include any reference to the specific number of fellowships requested. The...

  9. National water summary 1986; Hydrologic events and ground-water quality

    Science.gov (United States)

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  10. F-Area Seepage Basins groundwater monitoring report, fourth quarter 1991 and 1991 summary

    International Nuclear Information System (INIS)

    1992-03-01

    This progress report for fourth quarter 1991 and 1991 summary fro the Savannah River Plant includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  11. Advanced Fusion Concepts project summaries. FY 1983

    International Nuclear Information System (INIS)

    1983-06-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate studients, graduates, other professional staff, and recent publications. The individual project summaries are prepared by the principle investigators in collaboration with the Advanced Fusion Concepts (AFC) Branch. In addition to the project summaries, statements of branch objectives, and budget summaries are also provided

  12. Experimental Plasma Research project summaries

    International Nuclear Information System (INIS)

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report

  13. Experimental Plasma Research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  14. MIV Project: Executive Summary

    DEFF Research Database (Denmark)

    Ravazzotti, Mariolina T.; Jørgensen, John Leif; Neefs, Marc

    1997-01-01

    Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a reference mission scenario was defined. This report gives an executive summary of the achievements and results from the project.......Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a reference mission scenario was defined. This report gives an executive summary of the achievements and results from the project....

  15. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1978-08-01

    This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report

  16. Planning risk communication for UMTRA project groundwater restoration

    Energy Technology Data Exchange (ETDEWEB)

    Hundertmark, Charles [Jacobs Engineering Group Inc. and University of Phoenix (United States); Hoopes, Jack [Jacobs Engineering Group Inc. (United States); Flowers, Len [Roy F. Weston Company (United States); Jackson, David G [U.S. Department of Energy (United States)

    1992-07-01

    The U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is entering a new phase in which groundwater contamination will become a growing focus as surface remedial action draws toward completion. Planning for risk communication associated with the groundwater project will be a major factor in the successful initiation of the program. (author)

  17. Planning risk communication for UMTRA project groundwater restoration

    International Nuclear Information System (INIS)

    Hundertmark, Charles; Hoopes, Jack; Flowers, Len; Jackson, David G.

    1992-01-01

    The U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is entering a new phase in which groundwater contamination will become a growing focus as surface remedial action draws toward completion. Planning for risk communication associated with the groundwater project will be a major factor in the successful initiation of the program. (author)

  18. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  19. DOE`s approach to groundwater compliance on the UMTRA project

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, D. [Dept. of Energy, Washington, DC (United States); Gibb, J.P. [Geraghty and Miller, Inc. (United States); Glover, W.A. [Roy F. Weston, Inc. (United States)

    1993-03-01

    Compliance with the mandate of the Uranium Mill Tailings Radiation Control Act (UMTRCA) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites requires implementation of a groundwater remedial action plan that meets the requirements of Subpart B of the US Environmental Protection Agency`s proposed groundwater protection standards (40 CFR 192). The UMTRA Groundwater Project will ensure that unacceptable current risk or potential risk to the public health, safety and the environment resulting from the groundwater contamination attributable to the UMTRA sites, is mitigated in a timely and cost-efficient manner. For each UMTRA processing site and vicinity property where contamination exists, a groundwater remedial action plan must be developed that identifies hazardous constituents and establishes acceptable concentration limits for the hazardous constituents as either (a) alternate concentration limits (ACL), (b) maximum concentration limits (MCLs), (c) supplemental standards, or (d) background groundwater quality levels. Project optimization is a strategy that will aggressively work within the current regulatory framework using all available options to meet regulatory requirements. This strategy is outlined within.

  20. A project on groundwater research inventory and classification to make groundwater visible

    Science.gov (United States)

    Cseko, Adrienn; Petitta, Marco; van der Keur, Peter; Fernandez, Isabel; Garcia Alibrandi, Clint; Hinsby, Klaus; Hartai, Eva; Garcia Padilla, Mercedes; Szucs, Peter; Mikita, Viktoria; Bisevac, Vanja; Bodo, Balazs

    2017-04-01

    Hydrogeology related research activities cover a wide spectrum of research areas at EU and national levels. The European knowledge base on this important topic is widespread and fragmented into broader programs generally related to waterresources, environment or ecology. In order to achieve a comprehensive understanding on the groundwater theme, the KINDRA project (Knowledge Inventory for Hydrogeology Research - www.kindraproject.eu) seeks to carry out an accurate assessment of the state of the art in hydrogeology research and to create a critical mass for scientific knowledge exchange of hydrogeology research, to ensure wide accessibility and applicability of research results, including support of innovation and development, and to reduce unnecessary duplication of efforts. The first two years of the project have focused its efforts in developing the concept of a Harmonized Terminology and Methodology for Classification and Reporting Hydrogeology related Research in Europe (HRCSYS) as well as its implementation in the European Inventory of Groundwater Research (EIGR). For developing the common terminology, keywords characterizing research on groundwater have been identified from two main sources: the most important EU directives and policy documents and from groundwater related scientific literature. To assess the importance and pertinence of the keywords, these have been ranked by performing searches via the Web of Science, Scopus and Google Scholar search engines. The complete merged list of keywords consisting of more than 200 terms has been organized in a tree hierarchy, identifying three main categories: Societal Challenges (SC), Operational Actions (OA) and Research Topics (RT). The relationships among these main categories expressed by a 3D approach, identifying single intersections among 5 main overarching groups for each category. The EIGR itself contains metadata (about 1800 records at the moment) of research efforts and topic related knowledge

  1. Burn site groundwater interim measures work plan.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  2. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  3. 100-N pilot project: Proposed consolidated groundwater monitoring program

    International Nuclear Information System (INIS)

    Borghese, J.V.; Hartman, M.J.; Lutrell, S.P.; Perkins, C.J.; Zoric, J.P.; Tindall, S.C.

    1996-11-01

    This report presents a proposed consolidated groundwater monitoring program for the 100-N Pilot Project. This program is the result of a cooperative effort between the Hanford Site contractors who monitor the groundwater beneath the 100-N Area. The consolidation of the groundwater monitoring programs is being proposed to minimize the cost, time, and effort necessary for groundwater monitoring in the 100-N Area, and to coordinate regulatory compliance activities. The integrity of the subprograms requirements remained intact during the consolidation effort. The purpose of this report is to present the proposed consolidated groundwater monitoring program and to summarize the process by which it was determined

  4. Policy and procedures for classification of Class III groundwater at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The US Environmental Protection Agency (EPA) has recently proposed groundwater regulations for the US Department of Energy's )DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. These regulations allow the application of supplemental standards at UMTRA Project sites in specific situations. The designation of groundwater as Class III permits the application of supplemental standards. This document discusses a final UMTRA Project policy and procedures for identifying Class III groundwater, including identification of a review area, definition of water quality, quantification of aquifer yield, and identification of methods reasonably employed for public water supply systems. These items, either individually or collectively, need to be investigated in order to determine if groundwaters at UMTRA Project sites are Class III. This document provides a framework for the DOE to determine Class III groundwaters

  5. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    1988-04-01

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  6. Application of isotopes to the assessment of pollutant behaviour in the unsaturated zone for groundwater protection. Final report of a coordinated research project 2004-2005

    International Nuclear Information System (INIS)

    2009-05-01

    A coordinated research project (CRP) was conducted by the IAEA with the purpose of studying what isotopic and other ancillary data are required to help understand migration of potential contaminants through the unsaturated zone (UZ) into the underlying groundwater. To this end, research projects were conducted in ten countries to study recharge and infiltration processes, as well as contaminant migration in a wide variety of UZ environments. This publication contains the reports of these ten projects and a summary of the accomplishments of the individual projects. The IAEA-TECDOC reviews the usefulness and current status of application of the combined use of isotope and other hydrogeochemical tools for the assessment of flow and transport processes in the UZ. A number of isotope and hydrochemical tools have been used to simultaneously study groundwater recharge and transport of pollutants in the UZ. This information is relevant for assessing the vulnerability of groundwater to contamination. The ten projects covered climates ranging from humid to arid, and water table depths from the near surface to over 600 m. The studies included measuring movement of water, solutes, and gases through the UZ using an assortment of isotope and geochemical tracers and approaches. Contaminant issues have been studied at most of the ten sites and the UZ was found to be very effective in protecting groundwater from most heavy metal contaminants. The publication is expected to be of interest to hydrologists, hydrogeologists and soil scientists dealing with pollution aspects and protection of groundwater resources, as well as counterparts of TC projects in Member States

  7. Evaluation of alternative groundwater-management strategies for the Bureau of Reclamation Klamath Project, Oregon and California

    Science.gov (United States)

    Wagner, Brian J.; Gannett, Marshall W.

    2014-01-01

    The water resources of the upper Klamath Basin, in southern Oregon and northern California, are managed to achieve various complex and interconnected purposes. Since 2001, irrigators in the Bureau of Reclamation Klamath Irrigation Project (Project) have been required to limit surface-water diversions to protect habitat for endangered freshwater and anadromous fishes. The reductions in irrigation diversions have led to an increased demand for groundwater by Project irrigators, particularly in drought years. The potential effects of sustained pumping on groundwater and surface-water resources have caused concern among Federal and state agencies, Indian tribes, wildlife groups, and groundwater users. To aid in the development of a viable groundwater-management strategy for the Project, the U.S. Geological Survey, in collaboration with the Klamath Water and Power Agency and the Oregon Water Resources Department, developed a groundwater-management model that links groundwater simulation with techniques of constrained optimization. The overall goal of the groundwater-management model is to determine the patterns of groundwater pumping that, to the extent possible, meet the supplemental groundwater demands of the Project. To ensure that groundwater development does not adversely affect groundwater and surface-water resources, the groundwater-management model includes constraints to (1) limit the effects of groundwater withdrawal on groundwater discharge to streams and lakes that support critical habitat for fish listed under the Endangered Species Act, (2) ensure that drawdowns do not exceed limits allowed by Oregon water law, and (3) ensure that groundwater withdrawal does not adversely affect agricultural drain flows that supply a substantial portion of water for irrigators and wildlife refuges in downslope areas of the Project. Groundwater-management alternatives were tested and designed within the framework of the Klamath Basin Restoration Agreement (currently [2013

  8. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.

    Science.gov (United States)

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-07-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. Advanced fusion concepts project summaries: 1981

    International Nuclear Information System (INIS)

    1982-03-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  10. A synoptic summary approach to better understanding groundwater contamination problems and evaluating long-term environmental consequences

    International Nuclear Information System (INIS)

    Nelson, R.W.

    1990-09-01

    A summary approach has been developed within groundwater hydrology to communicate with a broad audience and more completely evaluate the long-term impacts of subsurface contamination problems. This synoptic approach both highlights the dominant features occurring in subsurface contamination problems and emphasizes the information required to determine the long-term environmental impacts. The special merit of a summary approach is in providing a better understanding of subsurface contamination problems to adjoining technical disciplines, public decision makers, and private citizens. 14 refs

  11. Advanced fusion concepts: project summaries

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac

  12. Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project

    International Nuclear Information System (INIS)

    Rieger, JoAnne T.; Hartman, Mary J.

    2005-01-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State

  13. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  14. Continuum of eLearning: 2012 Project Summary Report

    Science.gov (United States)

    2012-10-01

    multimedia, and Continuum of eLearning | Purpose and Vision 19 << UNCLASSIFIED>> (limited) situated learning. Future versions of the CoL self-paced...Continuum of eLearning : 2012 Project Summary Report Continuum of eLearning The Next Evolution of Joint Training on JKO October 2012 Joint...Technical Report November 2011 – August 2012 Continuum of eLearning : 2012 Project Summary Report N00140-06-D-0060 David T. Fautua, Sae Schatz, Andrea

  15. The Palmottu natural analogue project. The behaviour of natural radionuclides in and around uranium deposits. Summary report 1992-1994

    International Nuclear Information System (INIS)

    Blomqvist, R.; Ruskeeniemi, T.; Ahonen, L.; Suksi, J.; Jakobsson, K.

    1995-06-01

    The Palmottu U-Th mineralization at Nummi-Pusula, southwestern Finland, has been studied as a natural analogue to deep disposal of radioactive wastes since 1988. The report gives a summary of the results of investigations carried out during the years 1992-1994. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes structural interpretations based in part on geophysical measurements, hydrological studies including hydraulic downhole measurements, flow modelling, hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, mineralogical studies, geochemical interpretation and modelling, including paleohydrogeological aspects, and studies of radionuclide mobilization and migration processes including numerical simulations. The project has produced a large amount of data related to natural analogue aspects. The data obtained have already been utilized in developing logical conceptual ideas of the time frames and processes operating in the bedrock of the site. (61 refs., 24 figs., 8 tabs.)

  16. The Palmottu natural analogue project. The behaviour of natural radionuclides in and around uranium deposits. Summary report 1992-1994

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, R; Ruskeeniemi, T; Ahonen, L [Geological Survey of Finland, Espoo (Finland); Suksi, J [Helsinki Univ. (Finland). Lab. of Radiochemistry; Niini, H [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Engineering Geology and Geophysics; Vuorinen, U [VTT Chemical Technology, Espoo (Finland); Jakobsson, K [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-06-01

    The Palmottu U-Th mineralization at Nummi-Pusula, southwestern Finland, has been studied as a natural analogue to deep disposal of radioactive wastes since 1988. The report gives a summary of the results of investigations carried out during the years 1992-1994. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes structural interpretations based in part on geophysical measurements, hydrological studies including hydraulic downhole measurements, flow modelling, hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, mineralogical studies, geochemical interpretation and modelling, including paleohydrogeological aspects, and studies of radionuclide mobilization and migration processes including numerical simulations. The project has produced a large amount of data related to natural analogue aspects. The data obtained have already been utilized in developing logical conceptual ideas of the time frames and processes operating in the bedrock of the site. (61 refs., 24 figs., 8 tabs.).

  17. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  18. A comprehensive summary of the ORNL Groundwater Compliance and Surveillance Sampling Results Software System

    International Nuclear Information System (INIS)

    Loffman, R.S.

    1995-01-01

    Groundwater compliance and surveillance activities are conducted at ORNL to fulfill federal and state requirements for environmental monitoring. Information management is an important aspect of this and encompasses many activities which usually have spcific time frames and schedules. In addition to fulfilling these immediate requirements, the results for the monitoring activities are also used to determine the need for environmental remediation. ORNL performs this groundwater results data management and reporting utilizing a group of SAS reg-sign applications and tools which provide the ability to track samples, capture field measurements, verify and validate result data, manage data, and report results in a variety of ways and in a timely manner. This paper provides a comprehensive summary of these applications and tools

  19. Summary report on groundwater chemistry

    International Nuclear Information System (INIS)

    Lampen, P.; Snellman, M.

    1993-07-01

    The preliminary site investigations for radioactive waste disposal (in Finland) carried out by Teollisuuden Voima Oy (TVO) during the period 1987 to 1992 yielded data on hydrogeochemistry from a total 337 water samples. The main objective of the groundwater chemistry studies was to characterize groundwaters at the investigation sites and, specifically, to create a concept for the mean residence times and evolution of groundwater by means of isotopic analyses. Moreover, the studies yielded input data for geochemical modelling and the performance assessment. Samples were taken from deep boreholes (with a depth of 500 to 1000 m), percussion-drilled boreholes (depth approx. 200 m), flushing-water wells (approx. 100 m) and multi-level pietzometers (approx. 100 m) used in the hydrological tests. The water used for drilling the deep boreholes was taken from local flushing-water wells, whose water was also analyzed in detail. The flushing water used in drilling was marked with two tracers, iodine and uranine, analyzed with two different methods. For reference purposes, samples were also taken from surficial and groundwaters over a large area surrounding the investigation site. Precipitation over a period of at least one year was collected at all the five investigation sites and the samples were analyzed in great detail, particularly with regard to isotopes. Similarly, snow profile samples representing precipitation during the entire winter was taken from each site at least once

  20. Advanced Fusion Concepts project summaries, FY 1982

    International Nuclear Information System (INIS)

    1982-10-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, U.S. Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  1. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  2. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  3. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1982-10-01

    The experimental plasma Research Branch has responsibility for developing a broad range of experimental data and new experimental techniques that are required for operating and interpreting present large-scale confinement experiments, and for designing future deuterium-tritium burining facilities. The Branch pursued these objectives by supporting research in DOE laboratories, other Federal laboratories, other Federal laboratories, universities, and private industry. Initiation and renewal of research projects are primarily through submission of unsolicited proposals by these institutions to DOE. Summaries of these projects are given

  4. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  5. Fusion plasma theory project summaries

    Science.gov (United States)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.

  6. Fusion Plasma Theory project summaries

    International Nuclear Information System (INIS)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program

  7. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  8. U1/U2 crib groundwater biological treatment demonstration project

    International Nuclear Information System (INIS)

    Koegler, S.S.; Brouns, T.M.; Heath, W.O.

    1989-11-01

    The primary objective of the biological treatment project is to develop and demonstrate a process for Hanford groundwater remediation. Biodenitrification using facultative anaerobic microorganisms is a promising technology for the simultaneous removal of nitrates and organics from contaminated aqueous streams. During FY 1988, a consortium of Hanford groundwater microorganisms was shown to degrade both nitrates and carbon tetrachloride (CC1 4 ). A pilot-scale treatment system was designed and constructed based on the results of laboratory-and-bench-scale testing. This report summarizes the results of biological groundwater treatment studies performed during FY 1989 at the pilot-scale. These tests were conducted using a simulated Hanford groundwater with a continuous stirred-tank bioreactor, and a fluidized-bed bioreactor that was added to the pilot-scale treatment system in FY 1989. The pilot-scale system demonstrated continuous degradation of nitrates and CC1 4 in a simulated groundwater. 4 refs., 7 figs., 1 tab

  9. Hydrodynamic analysis of the interaction of two operating groundwater sources, case study: Groundwater supply of Bečej

    Directory of Open Access Journals (Sweden)

    Polomčić Dušan M.

    2014-01-01

    Full Text Available The existing groundwater source 'Vodokanal' for the public water supply of Bečej city in Serbia tapping groundwater from three water-bearing horizons over 15 wells with summary capacity of 100 l/s. Near the public water source of Bečej exists groundwater source 'Soja Protein' for industry with current capacity of 12 l/s which tapped same horizons. In the coming period is planned to increase summary capacity of this groundwater source up to 57 l/s. Also, the increase of summary city's source capacity is planned for 50 l/s in the next few years. That is means an increase of groundwater abstraction for an additional 84 % from the same water-bearing horizons. Application of hydrodynamic modeling, based on numerical method of finite difference will show the impact of increasing the total capacity of the source 'Soja Protein' on the groundwater level in groundwater source 'Vodokanal' and effects of additional decrease in groundwater levels, in all three water-bearing horizons, on the wells of the 'Vodokanala' groundwater source due to operation of industrial source. It was done 7 variant solutions of the extensions of groundwater sources and are their effects for a period of 10 years with the aim of the sustainable management of groundwater.

  10. Consensus implementation of a groundwater remediation project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hastings, K.R.; Carlson, D.S.

    1996-01-01

    Because of significant characterization uncertainties existing when the Record of Decision was signed and the unfavorable national reputation of groundwater pump and treat remediation projects, the Test Area North (TAN) groundwater ROD includes the evaluation of five emerging technologies that show potential for treating the organic contamination in situ or reducing the toxicity of contaminants above ground. Treatability studies will be conducted to ascertain whether any may be suitable for implementation at TAN to yield more timely or cost effective restoration of the aquifer. The implementation approach established for the TAN groundwater project is a consensus approach, maximizing a partnership relation with stakeholders in constant, iterative implementation decision making

  11. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  12. Separations innovative concepts: Project summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. (ed.)

    1988-05-01

    This project summary includes the results of 10 innovations that were funded under the US Department's Innovative Concept Programs. The concepts address innovations that can substantially reduce the energy used in industrial separations. Each paper describes the proposed concept, and discusses the concept's potential energy savings, market applications, technical feasibility, prior work and state of the art, and future development needs.

  13. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    International Nuclear Information System (INIS)

    Christensen, E.J.; Gordon, D.E.

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines

  14. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  15. Data validation summary report for the 100-BC-5 Operable Unit Round 8 Groundwater Sampling

    International Nuclear Information System (INIS)

    Kearney, A.T.

    1996-03-01

    The information provided in this validation summary report includes data from the chemical analyses of samples from the 100-BC-5 Operable Unit Round 8 Groundwater Sampling Investigation. All of the data from this sampling event and their related quality assurance samples were reviewed and validated to verify that the reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. Sample analyses included metals, general chemistry and radiochemistry

  16. 76 FR 3655 - Bunker Hill Groundwater Basin, Riverside-Corona Feeder Project, San Bernardino and Riverside...

    Science.gov (United States)

    2011-01-20

    ... proposed aquifer storage and recovery project, including new groundwater wells and a 28- mile water... reliability of Western's water supply through managed storage, extraction and distribution of local and... groundwater wells in the Bunker Hill Groundwater Basin, San Bernardino County, California. Existing recharge...

  17. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  18. Summaries of the Idaho National Engineering Laboratory Radioecology and Ecology Program research projects

    International Nuclear Information System (INIS)

    Markham, O.D.

    1987-06-01

    This report provides summaries of individual research projects conducted by the Idaho National Engineering Laboratory Radioecology and Ecology Program. Summaries include projects in various stages, from those that are just beginning, to projects that are in the final publication stage

  19. Summaries of special research project on nuclear fusion 1980

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1981-09-01

    This is a report of the research project entitled ''Nuclear fusion'', supported by the grant in aid for fusion research from the Ministry of Education in the fiscal year 1980. The research project was started in April, 1980, and comprises the following seventeen subjects of nuclear fusion research. 1) Heavy irradiation effects, 2) plasma-wall interaction, 3) neutronics, 4) welding engineering, 5) science and technology of tritium, 6) biological effects of tritium, 7) diagnostics of high temperature plasma, 8) new lasers, 9) fundamentals of plasma heating, 10) high efficiency energy conversion, 11) theory and computer simulation, 12) superconducting materials, 13) fundamental phenomena of superconductivity, 14) magnet technology, 15) heat transfer and structural engineering, 16) system design, and 17) resources and assessment of fusion energy. 43 summaries concerning reactor materials and plasma-wall interaction, 29 summaries concerning the science, technology and biological effects of tritium, 41 summaries concerning the fundamentals of reactor plasma control, 15 summaries concerning the technology of superconducting magnets, and 14 summaries concerning the design of fusion reactors and its evaluation are collected in this report, and their results and progress can be known. (Kako, I.)

  20. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    Science.gov (United States)

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  1. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Hartman, Mary J.; Dresel, P. Evan; Lindberg, Jon W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  2. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  3. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1992-06-01

    This is the latest in a series of Project Summary books going back to 1976 and is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma and innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into these three categories of plasma physics, diagnostic development and atomic physics

  4. Geothermal Energy Research and Development Program; Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  5. 1981 Magnetic-fusion theory program project summaries

    International Nuclear Information System (INIS)

    1982-02-01

    The theory program supports research projects at three different types of sites: DOE and other government laboratories, universities, and industrial contractors. This report is organized into three sections corresponding to the three types of sites and within each section is organized alphabetically by site name. Summaries of each program are given

  6. Project W-030 safety class upgrade summary report

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    This document presents a summary of safety class criteria for the 241-AY/AZ Tank Farm primary ventilation system upgrade under Project W-030, and recommends acceptance of the system as constructed, based on a review of supporting documentation

  7. The STRIPA project. Annual report 1986

    International Nuclear Information System (INIS)

    1987-08-01

    A summary of the Stripa Project phase 2 is given. The detailed informations describe crosshole techniques for the detection and characterization of fracture zones, the hydrological characterization of the Stripa site Part II, a three-dimensional migration experiment, borehole, shaft and tunnel sealing, the hydrogeochemical characterization of the Stripa groundwater and question of economy. A decision was taken in principale for an extension of the project into a third phase. (DG)

  8. Summary : Cooperative whooping crane tracking project : Fall 1975 to spring 1989

    Data.gov (United States)

    Department of the Interior — Summary of the whooping crane tracking project for fall 1975 to spring 1989. The Project involves the following activities: (a) distribution of Pre­Migration Notices...

  9. CY2003 RCRA GROUNDWATER MONITORING WELL SUMMARY REPORT

    International Nuclear Information System (INIS)

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year (CY) 2003 field activities associated with the installation of two new groundwater monitoring wells in the A-AX Waste Management Area (WMA) and four groundwater monitoring wells in WMA C in the 200 East Area of the Hanford Nuclear Reservation. All six wells were installed by Fluor Hanford Inc. (FH) for CH2M Hill Hanford Group, Inc. (CHG) in support of Draft Hanford Facility Agreement and Consent Order (Tri-Party Agreement) M-24-00 milestones and ''Resource Conservation and Recovery Act of 1976'' (RCRA) groundwater monitoring requirements. Drilling data for the six wells are summarized in Table 1

  10. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  11. The Palmottu analogue project

    International Nuclear Information System (INIS)

    Ahonen, L.; Blomqvist, R.; Suksi, J.

    1993-01-01

    The report gives a summary of the results of investigations carried out in 1992 at the Palmottu natural analogue study site, which is a small U-Th mineralization in Nummi-Pusula, southwestern Finland. Additionally, the report includes several separate articles dealing with various aspects of the Palmottu Analogue Project: (1) deep groundwater flow, (2) interpretation of hydraulic connections, (3) characterization of groundwater colloids, (4) uranium mineral-groundwater equilibrium, (5) water-rock interaction and (6) modelling of in situ matrix diffusion. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes (1) structural interpretations partly based on geophysical measurements, (2) hydrological studies including hydraulic drill-hole measurements, (3) flow modelling, (4) hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, (5) mineralogical studies, (6) geochemical interpretation and modelling, (7) studies of radionuclide mobilization and retardation including matrix diffusion, and (8) modelling of uranium series data. Palaeohydrogeological aspects, due to the anticipated future glaciation of the Fennoscandian Shield, are of special interest. Quaternary sediments are studied to gain information on post-glacial migration in the overburden. (orig.)

  12. Budget Period 1 Summary Report: Hywind Maine Project

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Meagan [Statoil, Stavanger (Norway)

    2014-02-28

    In accordance with the Statement of Project Objectives (SOPO) agreed to between the Department of Energy (“DOE”) and Statoil for the Hywind Maine project, Statoil hereby submits a Budget Period 1 Summary Report which includes accomplishments for the project. The report includes summaries of the other submitted reports (see Section 1.2-2) and progress regarding innovations leading to potential reductions in the Cost of Energy (see Section 3). The Hywind Demo project, the world’s first full-scale 2.3 megawatts (MW) floating wind turbine, installed at a water depth of 200 meter (m), 10 kilometer (km) off the coast of Norway, has proven that the Hywind floating substructure is a suitable platform for conventional multi- MW turbines. A principal goal of the Hywind Maine Project was to leverage that experience, both to demonstrate the commercial feasibility of the technology and to further develop and optimize the technology all in order to bring the costs down in a larger scale development. With the Hywind Maine Project, Statoil planned to deploy four turbines of 3 MW in approximately 140 meters water depth. Although the project in Maine will not move forward, much value was gained through the BP1 work package. Advanced modeling related to the design basis, which will have applicability beyond the Maine project, was completed. In addition, initial supply chain analyses were conducted, which will help assist with development of updated cost of energy models. Geophysical and various environmental surveys were also conducted, the results of which Statoil has committed to share publicly, and which will help build a database of information that future developers may be able to access. Finally, Statoil gained a greater understanding of the US offshore wind industry and related markets, which will assist the company as it looks for full-scale, commercial opportunities.

  13. A Groundwater project for K-12 schools: Bringing research into the classroom

    Science.gov (United States)

    Rodak, C. M.; Walsh, M.; Gensic, J.

    2011-12-01

    Simple water quality test kits were used in a series of K-12 classrooms to demonstrate scientific processes and to motivate learning in K-12 students. While focused on student learning, this project also allowed collection of regional data on groundwater quality (primarily nitrate) in the study area. The project consisted of development and administration of a weeklong groundwater quality unit introduced to K-12 schools in northern Indiana and taught by a graduate student in an engineering discipline. The structure of the week started with an introduction to basic groundwater concepts modified for the specific grade level; for this project the students ranged from grades 4-12. In addition to groundwater basics, the purpose of the collection of the water quality data, as well as relevance to the research of the graduate student, were outlined. The students were then: (i) introduced to two simple water quality testing methods for nitrates, (ii) required to hypothesize as to which method will likely be "better" in application, and (iii) asked to practice using these two methods under laboratory conditions. Following practice, the students were asked to discuss their hypotheses relative to what was observed during the practice focusing on which testing method was more accurate and/or precise. The students were then encouraged to bring water samples from their home water system (many of which are on private wells) to analyze within groups. At the end of the week, the students shared their experience in this educational effort, as well as the resulting nitrate data from numerous groundwater wells (as collected by the students). Following these discussions the data were added to an online database housed on a wiki sponsored by the Notre Dame Extended Research Community (http://wellhead.michianastem.org/home). These data were plotted using the free service MapAList to visually demonstrate to the students the spatial distribution of the data and how their results have

  14. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  15. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 1. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    1985-12-30

    A summary of the Solar Controlled Environment Agriculture Project is presented. The design of the greenhouses include transparent double pane glass roof with channels for fluid between the panes, inner pane tinted and double pane extruded acrylic aluminized mylar shade and diffuser. Solar energy technologies provide power for water desalination, for pumping irrigation water, and for cooling and heating the controlled environment space so that crops can grow in arid lands. The project is a joint effort between the United States and Saudi Arabia. (BCS)

  16. Midwest Forensics Resource Center Project Summary June 2005

    Energy Technology Data Exchange (ETDEWEB)

    David Baldwin

    2005-06-01

    procedures, (3) capabilities, teaming, and leveraging, and (4) implementation plan. A successful proposal demonstrates knowledge of the background for the research and related work in the field and includes a research plan with a defined plan to implement the technology to benefit our partners at the crime laboratories. The project summaries are meant to demonstrate the range of research funded by the MFRC including chemistry, DNA, and patterned evidence. The project summaries describe the forensic need the projects serve as well as the benefits derived from the technology. The summaries provide a brief description of the technology and the accomplishments to date. In addition, the collaboration with regional partners and the status of the implementation of the technology are highlighted. These technical summaries represent the development and implementation of practical and useful technology for crime laboratories that the MFRC hopes to accomplish.

  17. Recommendations for computer modeling codes to support the UMTRA groundwater restoration project

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States); Khan, M.A. [IT Corp., Albuquerque, NM (United States)

    1996-04-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Project is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the US. The surface restoration phase, which includes containment and stabilization of the abandoned uranium mill tailings piles, has a specific termination date and is nearing completion. Therefore, attention has now turned to the groundwater restoration phase, which began in 1991. Regulated constituents in groundwater whose concentrations or activities exceed maximum contaminant levels (MCLs) or background levels at one or more sites include, but are not limited to, uranium, selenium, arsenic, molybdenum, nitrate, gross alpha, radium-226 and radium-228. The purpose of this report is to recommend computer codes that can be used to assist the UMTRA groundwater restoration effort. The report includes a survey of applicable codes in each of the following areas: (1) groundwater flow and contaminant transport modeling codes, (2) hydrogeochemical modeling codes, (3) pump and treat optimization codes, and (4) decision support tools. Following the survey of the applicable codes, specific codes that can best meet the needs of the UMTRA groundwater restoration program in each of the four areas are recommended.

  18. Recommendations for computer modeling codes to support the UMTRA groundwater restoration project

    International Nuclear Information System (INIS)

    Tucker, M.D.; Khan, M.A.

    1996-04-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Project is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the US. The surface restoration phase, which includes containment and stabilization of the abandoned uranium mill tailings piles, has a specific termination date and is nearing completion. Therefore, attention has now turned to the groundwater restoration phase, which began in 1991. Regulated constituents in groundwater whose concentrations or activities exceed maximum contaminant levels (MCLs) or background levels at one or more sites include, but are not limited to, uranium, selenium, arsenic, molybdenum, nitrate, gross alpha, radium-226 and radium-228. The purpose of this report is to recommend computer codes that can be used to assist the UMTRA groundwater restoration effort. The report includes a survey of applicable codes in each of the following areas: (1) groundwater flow and contaminant transport modeling codes, (2) hydrogeochemical modeling codes, (3) pump and treat optimization codes, and (4) decision support tools. Following the survey of the applicable codes, specific codes that can best meet the needs of the UMTRA groundwater restoration program in each of the four areas are recommended

  19. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  20. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    International Nuclear Information System (INIS)

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997

  1. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

    2007-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  2. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    For some parts of the Nation, large-scale development of groundwater has caused decreases in the amount of groundwater that is present in aquifer storage and that discharges to surface-water bodies. Water supply in some areas, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought is affecting large parts of the United States. Future water demand is projected to heighten the current stress on groundwater resources. This combination of factors has led to concerns about the availability of freshwater to meet domestic, agricultural, industrial, mining, and environmental needs. To ensure the water security of the Nation, currently [2016] untapped water sources may need to be developed.Brackish groundwater is an unconventional water source that may offer a partial solution to current and future water demands. In support of the national census of water resources, the U.S. Geological Survey completed the national brackish groundwater assessment to better understand the occurrence and characteristics of brackish groundwater in the United States as a potential water resource. Analyses completed as part of this assessment relied on previously collected data from multiple sources; no new data were collected. Compiled data included readily available information about groundwater chemistry, horizontal and vertical extents and hydrogeologic characteristics of principal aquifers (regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water), and groundwater use. Although these data were obtained from a wide variety of sources, the compiled data are biased toward shallow and fresh groundwater resources; data representing groundwater that is at great depths and is saline were not as readily available.One of the most important contributions of this assessment is the creation of a database containing chemical characteristics and aquifer information for the known areas with brackish groundwater

  3. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL. USEPA DEMONSTRATION PROJECT AT CLIMAX, MN. PROJECT SUMMARY

    Science.gov (United States)

    This document is an eight page summary of the final report on arsenic demonstration project at Climax, MN (EPA/600/R-06/152). The objectives of the project are to evaluate the effectiveness of the Kinetico iron removal system in removing arsenic to meet the new arsenic maximum co...

  4. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations

    Science.gov (United States)

    Brooks, Lynette E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Southern Utah Valley Municipal Water Association, updated an existing USGS model of southern Utah and Goshen Valleys for hydrologic and climatic conditions from 1991 to 2011 and used the model for projection and groundwater management simulations. All model files used in the transient model were updated to be compatible with MODFLOW-2005 and with the additional stress periods. The well and recharge files had the most extensive changes. Discharge to pumping wells in southern Utah and Goshen Valleys was estimated and simulated on an annual basis from 1991 to 2011. Recharge estimates for 1991 to 2011 were included in the updated model by using precipitation, streamflow, canal diversions, and irrigation groundwater withdrawals for each year. The model was evaluated to determine how well it simulates groundwater conditions during recent increased withdrawals and drought, and to determine if the model is adequate for use in future planning. In southern Utah Valley, the magnitude and direction of annual water-level fluctuation simulated by the updated model reasonably match measured water-level changes, but they do not simulate as much decline as was measured in some locations from 2000 to 2002. Both the rapid increase in groundwater withdrawals and the total groundwater withdrawals in southern Utah Valley during this period exceed the variations and magnitudes simulated during the 1949 to 1990 calibration period. It is possible that hydraulic properties may be locally incorrect or that changes, such as land use or irrigation diversions, occurred that are not simulated. In the northern part of Goshen Valley, simulated water-level changes reasonably match measured changes. Farther south, however, simulated declines are much less than measured declines. Land-use changes indicate that groundwater withdrawals in Goshen Valley are possibly greater than estimated and simulated. It is also possible that irrigation

  5. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    International Nuclear Information System (INIS)

    Johansen, R.

    2011-01-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  6. Development of a Groundwater Management Model for the Project Shoal Area

    Energy Technology Data Exchange (ETDEWEB)

    G. Lamorey; S. Bassett; R. Schumer; D. Boyle; G. Pohll; J. Chapman

    2006-09-01

    This document describes the development of a user-friendly and efficient groundwater management model of the Project Shoal Area (PSA and surrounding area that will allow the U.S. Department of Energy and State of Nevada personnel to evaluate the impact of proposed water-use scenarios. The management model consists of a simple hydrologic model within an interactive groundwater management framework. This framework is based on an object user interface that was developed by the U.S. Geological Survey and has been used by the Desert Research Institute researchers and others to couple disparate environmental resource models, manage temporal and spatial data, and evaluate model results for management decision making. This framework was modified and applied to the PSA and surrounding Fairview Basin. The utility of the management model was demonstrated through the application of hypothetical future scenarios including mineral mining, regional expansion of agriculture, and export of water to large urban areas outside the region. While the results from some of the scenarios indicated potential impacts to groundwater levels near the PSA and others did not, together they demonstrate the utility of the management tool for the evaluation of proposed changes in groundwater use in or near the PSA.

  7. AVST Morphing Project Research Summaries in Fiscal Year 2001

    Science.gov (United States)

    McGowan, Anna-Maria R.

    2002-01-01

    The Morphing project at the National Aeronautics and Space Agency's Langley Research Center is part of the Aerospace Vehicle Systems Program Office that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing project are to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles. In the context of the project, the word "morphing" is defined as "efficient, multi-point adaptability" and may include micro or macro, structural or fluidic approaches. The current document on the Morphing project is a compilation of research summaries and other information on the project from fiscal year 2001. The focus of this document is to provide a brief overview of the project content, technical results and lessons learned from fiscal year 2001.

  8. Summaries of studies carried out in the NKS/BOK-2 project. Technical report

    International Nuclear Information System (INIS)

    Palsson, S.E.

    2002-12-01

    Summaries of studies carried out in the NKSBOK-2 project, Radiological and Environmental Consequences. The structure of the project as such is described in NKS-64, Radiological and Environmental Consequences - Final Report of the Nordic Nuclear Safety Research Project BOK-2. That report also includes compilations based on the summaries presented in this report. The project was carried out 1998-2001 with participants from all the Nordic countries. Representatives from the Baltic States were also invited to some of the meetings and seminars. The project consisted of work on terrestrial and marine radioecology and had a broad scope in order to enable participation of research groups with various fields of interest. The topics included improving assessment of old and recent fallout, use of radionuclides as tracers in Nordic marine areas, improving assessment of internal doses and use of mass spectrometry in radioecology. This report is a compilation of summaries from each research group, 32 papers in all, and gives references to papers published in scientific journals. Some of the studies have been described previously, at least to some degree, in NKS-70, Proceedings of the 8 th Nordic Seminar on Radioecology, 25-28 February 2001, Rovaniemi, Finland. (au)

  9. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  10. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    Science.gov (United States)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  11. Summary of groundwater-recharge estimates for Pennsylvania

    Science.gov (United States)

    Stuart O. Reese,; Risser, Dennis W.

    2010-01-01

    Groundwater recharge is water that infiltrates through the subsurface to the zone of saturation beneath the water table. Because recharge is a difficult parameter to quantify, it is typically estimated from measurements of other parameters like streamflow and precipitation. This report provides a general overview of processes affecting recharge in Pennsylvania and presents estimates of recharge rates from studies at various scales.The most common method for estimating recharge in Pennsylvania has been to estimate base flow from measurements of streamflow and assume that base flow (expressed in inches over the basin) approximates recharge. Statewide estimates of mean annual groundwater recharge were developed by relating base flow to basin characteristics of HUC10 watersheds (a fifth-level classification that uses 10 digits to define unique hydrologic units) using a regression equation. The regression analysis indicated that mean annual precipitation, average daily maximum temperature, percent of sand in soil, percent of carbonate rock in the watershed, and average stream-channel slope were significant factors in the explaining the variability of groundwater recharge across the Commonwealth.Several maps are included in this report to illustrate the principal factors affecting recharge and provide additional information about the spatial distribution of recharge in Pennsylvania. The maps portray the patterns of precipitation, temperature, prevailing winds across Pennsylvania’s varied physiography; illustrate the error associated with recharge estimates; and show the spatial variability of recharge as a percent of precipitation. National, statewide, regional, and local values of recharge, based on numerous studies, are compiled to allow comparison of estimates from various sources. Together these plates provide a synopsis of groundwater-recharge estimations and factors in Pennsylvania.Areas that receive the most recharge are typically those that get the most

  12. Simulation and Prediction of Groundwater Pollution from Planned Feed Additive Project in Nanning City Based on GMS Model

    Science.gov (United States)

    Liang, Yimin; Lan, Junkang; Wen, Zhixiong

    2018-01-01

    In order to predict the pollution of underground aquifers and rivers by the proposed project, Specialized hydrogeological investigation was carried out. After hydrogeological surveying and mapping, drilling, and groundwater level monitoring, the scope of the hydrogeological unit and the regional hydrogeological condition were found out. The permeability coefficients of the aquifers were also obtained by borehole water injection tests. In order to predict the impact on groundwater environment by the project, a GMS software was used in numerical simulation. The simulation results show that when unexpected sewage leakage accident happened, the pollutants will be gradually diluted by groundwater, and the diluted contaminants will slowly spread to southeast with groundwater flow, eventually they are discharged into Gantang River. However, the process of the pollutants discharging into the river is very long, the long-term dilution of the river water will keep Gantang River from being polluted.

  13. Effects of the proposed EPA groundwater standards on the Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Titus, F.B.

    1988-01-01

    Potential groundwater contamination beneath the 24 tailings piles that are to be stabilized under the UMTRA Project was intended in early project plans to be minimized by placing disposal piles over thick stratigraphic sequences of tight (minimally permeable) formations, and by designing covers that contained low permeability soil/clay infiltration barriers. The court-ordered revision of the UMTRA groundwater standards by EPA (proposed standards of September 1987) include very low Maximum Concentration Limits (MCLs), which are based mostly on Primary Drinking Water Standards. EPA also mandates that the designs should control radioactivity and hazardous constituents...for up to one thousand years, to the extends reasonably achievable, and, in any case, for at least two hundred years.... In order to accommodate this stipulation, transport modeling of water and contaminants in both the vadose and saturated zones beneath the piles is run until steady state conditions are reached. The early decision to locate stabilized piles over tight formations now exacerbates the problem of complying with the standards, since the contaminants percolate to groundwater that moves only slowly through strata having low permeabilities. Innovative solutions have been evaluated that are aimed at further minimizing long-term infiltration, geochemically fixing contaminants in place before they reach groundwater, or otherwise minimizing contaminant flux

  14. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  15. 1995 annual 100-NR-2 groundwater summary report

    International Nuclear Information System (INIS)

    Borghese, J.V.; Johnson, V.M.; Walker, L.D.

    1996-09-01

    The 100-NR-2 Operable Unit (OU) is located in the north-central part of the Hanford Site along the southern shoreline of the Columbia River in Richland, Washington. The 100-N Area is bordered by the Columbia River and the 600 Area (the portion of the Hanford Site that surrounds the primary operations areas). The purpose of this document is to provide the 1995 groundwater sampling data for the 100-NR-2 groundwater OU. Also included are the analytical results for sampling rounds 7 and 8 that were conducted during March and September 1995 for 100-NR-2

  16. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    International Nuclear Information System (INIS)

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening

  17. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening.

  18. Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110

    Science.gov (United States)

    Peak groundwater depletion from overtapping aquifers beyond recharge rates occurs as the depletion rate increases until a peak occurs followed by a decreasing trend as pumping equilibrates towards available recharge. The logistic equation of Hubbert’s study of peak oil is used to project measurement...

  19. Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

    1980-05-01

    Executive summaries have been written for 61 reports and compilations of data which, in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

  20. Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

    1980-05-01

    Executive summaries have been written for 61 reports and compilations of data which in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

  1. Tank farm restoration and safe operation, Project W-314, upgrade scope summary report (USSR)

    International Nuclear Information System (INIS)

    Gilbert, J.L.

    1998-01-01

    The revision to the Project W-314 Upgrade Scope Summary Report (USSR), incorporates changes to the project scope from customer guidance. Included are incorporation of the recommendations from HNF-2500, agreements regarding interfaces with Project W-211, and assumption of scope previously assigned to Project W-454

  2. Restoration of groundwater after solution mining at the Highland Uranium Project, Wyoming, USA

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, J. [Waste Technology Group, British Nuclear Fuels PLC, Risley, Warrington (United Kingdom); Huffman, L. [Power Resources Inc., Highland Uranium Mine, Glenrock, Wyoming (United States)

    2000-07-01

    The Highland Project, located in Converse County, Wyoming, has had a successful 11 year history of in-situ leach mining of Tertiary roll-front uranium deposits. The uranium ore is oxidized and solubilized by circulating native groundwater, containing additional dissolved O{sub 2} and CO{sub 2}, within confined fluvial aquifers at depths of 200 - 250 m. The changing chemistry of this groundwater during leaching is discussed, as are the various treatment techniques that have been used to restore this fluid at the end of mining. Examples are provided which demonstrate the varying effectiveness of each technique for the reduction of elevated concentrations of different groundwater parameters. The complications arising from the proximity of the earliest wellfields to abandoned, conventional mine workings, as well as unexpected side effects from each restoration method, have combined to make an interesting case history from this long established mining operation. (author)

  3. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. U.S. EPA DEMONSTRATION PROJECT AT SPRINGFIELD, OH. PROJECT SUMMARY

    Science.gov (United States)

    This document is a eight page summary of the final report on arsenic demonstration project at the Chateau Estates Mobile Home Park in Springfield, OH. The objectives of the project are to evaluate the effectiveness of AdEdge Technologies’ AD-33 media in removing arsenic to meet t...

  4. Mechanistic-Empirical (M-E) Design Implementation & Monitoring for Flexible Pavements : 2018 PROJECT SUMMARY

    Science.gov (United States)

    2018-06-01

    This document is a summary of the tasks performed for Project ICT-R27-149-1. Mechanistic-empirical (M-E)based flexible pavement design concepts and procedures were previously developed in Illinois Cooperative Highway Research Program projects IHR-...

  5. NASA's Morphing Project Research Summaries in Fiscal Year 2002

    Science.gov (United States)

    McGowan, Anna-Maria R.; Waszak, Martin R.

    2005-01-01

    The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.

  6. The international INTRAVAL project. Phase 2, Summary report

    International Nuclear Information System (INIS)

    Larsson, A.; Pers, K.; Skagius, K.; Dverstorp, B.

    1997-01-01

    The international project INTRAVAL addresses the validation of models of transport of radionuclides through groundwater in the geosphere. Such models are used in the assessment of the long-term safety of radioactive waste disposal systems. The second phase of INTRAVAL, which started in 1990, was concluded at the end of 1993. The objective of Phase 2 was to increase the understanding how various geophysical, geohydrological and geochemical phenomena of importance for radionuclide transport from a repository to the biosphere could be described by mathematical models and to study the model validation process. Summarized results from Phase 2 of the INTRAVAL study are presented in this report. (K.A.)

  7. Savanna ecosystem project: phase I summary and phase II progress

    CSIR Research Space (South Africa)

    Huntely, BJ

    1978-07-01

    Full Text Available A summary of the results of the first phase (mid 1974 to mid 1976) of the South African Savanna Ecosystem Project being undertaken at Nylsvley in the northern Transvaal is presented. Phase I of this ten year study of the structure and functioning...

  8. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors

  9. Development of the UMTRA Project Groundwater Environmental Impact Statement

    International Nuclear Information System (INIS)

    Burt, C.; Ulland, L.; Metzler, D.

    1993-01-01

    This paper discusses the development and preparation of the Programmatic Environmental Impact Statement (PEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Groundwater Restoration Project. The initiation of the scoping process and preparation of the PEIS began when the Notice of Intent (NOI) to prepare the PEIS was published in the Federal Register on November 18, 1992. However, planning for the PEIS began well before the publication of the NOI, with various aspects of the PEIS, such as the initial formulation of the alternatives and the format of the scoping process, being developed early on. During this preliminary planning phase, it became clear that the preparation of this PEIS posed some significant challenges while at the same time provided for significant opportunities. This paper will briefly summarize the UMTRA Project, discuss the major sections in the PEIS, and describe the challenges and opportunities that developed during the preparation of the PEIS

  10. 2015 Groundwater Monitoring Report Project Shoal Area: Subsurface Correction Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-04-01

    The Project Shoal Area in Nevada was the site of a 12-kiloton-yield underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. The corrective action strategy is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. Although water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized to the agreement of both the U.S. Department of Energy Office of Legacy Management and the Nevada Division of Environmental Protection.

  11. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  12. Concurrent increases in wet and dry extremes projected in Texas and combined effects on groundwater

    Science.gov (United States)

    Yoon, Jin-Ho; Wang, S.-Y. Simon; Lo, Min-Hui; Wu, Wen-Ying

    2018-05-01

    The US state of Texas has experienced consecutive flooding events since spring 2015 with devastating consequences, yet these happened only a few years after the record drought of 2011. Identifying the effect of climate variability on regional water cycle extremes, such as the predicted occurrence of La Niña in winter 2017–2018 and its association with drought in Texas, remains a challenge. The present analyses use large-ensemble simulations to project the future of water cycle extremes in Texas and assess their connection with the changing El Niño–Southern Oscillation (ENSO) teleconnection under global warming. Large-ensemble simulations indicate that both intense drought and excessive precipitation are projected to increase towards the middle of the 21st century, associated with a strengthened effect from ENSO. Despite the precipitation increase projected for the southern Great Plains, groundwater storage is likely to decrease in the long run with diminishing groundwater recharge; this is due to the concurrent increases and strengthening in drought offsetting the effect of added rains. This projection provides implications to short-term climate anomaly in the face of the La Niña and to long-term water resources planning.

  13. The international Stripa Project, executive summary of phase 2

    International Nuclear Information System (INIS)

    1989-12-01

    The Second Phase of the Stripa Project included the continued development of methods and techniques for repository site investigations. The crosshole investigations demonstrated that it is possible to characterize fractures in crystalline rock with a reliability and realism not obtained before. At the investigated site at Stripa, it was shown that groundwater flow is concentrated within a few major fractures. The main features were considered to be broadly planar, containing patches of high and low hydraulic conductivity. The migration experiment demonstrated that the groundwater flow could be very unevenly distributed in the rock. Together with the tritium measurements it also gave strong support to the notion that a non-negligible portion of the flow takes place in channels which have little contact with other main channels. It is indicated that a new type of solute source must be considered - fluid inclusions in the host rock. At Stripa, the age of the solutes is likely to be hundreds of millions of years older than the groundwaters. Furthermore, this source contributes the largest portion of the total porosity. Although fluid inclusions are considered to be a residual or non-flow porosity, it could become part of the flow porosity through microfracturing brought about by changing stress fields. Sealing and redirection of the groundwater flow away from man made openings in the rock was tested at Stripa and found to be feasible as shown in the various plugging and sealing experiments. The use of Na bentonite in the form of suitably shaped blocks of highly compacted powder has been found to be very practical for sealing off boreholes, shafts and tunnels in repositories. The clay forms a tight, integrated contact with the rock, so that water flow along the rock contact is hindered. The compressibility and expandability of the clay means that this tight contact is preserved even if slight rock displacements occur. (J.P.N.)

  14. The international hydrocoin project. Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    The international co-operation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organizations from ten countries and two international organizations have participated in the project which has been managed by the Swedish Nuclear Power Inspectorate, SKI. This report summarizes the results from the second phase of HYDROCOIN, Level 2, which has addressed the issue of validation by testing the capabilities of groundwater flow models to describe five field and laboratory experiments: . Thermal convection and conduction around a field heat transfer experiment in a quarry, . A laboratory experiment with thermal convection as a model for variable density flow, . A small groundwater flow system in fractured monzonitic gneiss, . Three-dimensional regional groundwater flow in low permeability rocks, and . Soil water redistribution near the surface at a field site. The five test cases cover various media of interest for final disposal such as low permeability saturated rock, unsaturated rock, and salt formations. They also represent a variety of spatial and temporal scales. From model simulations on the five test cases conclusions are drawn regarding the applicability of the models to the experimental and field situations and the usefulness of the available data bases. The results are evaluated with regard to the steps in an ideal validation process. The data bases showed certain limitations for validation purposes with respect to independent data sets for calibration and validation. In spite of this, the HYDROCOIN Level 2 efforts have significantly contributed to an increased confidence in the applicability of groundwater flow models to different situations relevant to final disposal. Furthermore, the work has given much insight into the validation process and specific recommendations for further validation efforts are made

  15. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  16. Comparison of the availability of groundwater information sources in Poland with other European countries. Knowledge inventory for hydrogeology research - project KINDRA

    Science.gov (United States)

    Tomaszewska, Barbara; Dendys, Marta; Tyszer, Magdalena

    2017-11-01

    Regulations of the Water Framework Directive 200/60/EC (WFD) had been applied by European Union countries into their legislation system. However, it does not guarantee that the groundwater research has the same standard and quality in EU countries. KINDRA international research project was launched to assessment of existing groundwater-related practical and scientific knowledge based on a new Hydrogeological Research Classification System (HRC-SYS). This classification is supported by a web-service - the European Inventory of Groundwater Research (EIGR). The main goal of the project is implementation policy of optimization in groundwater research in EU. The preliminary result of survey about groundwater management shows that in Poland is a good state of implementation WFD. Good level of implementation is especially related with groundwater monitoring. It is because a lot of institutions and municipal entities carry out their tasks referring to quality or quantity assessment. Results of their works are published as reports, newsletters, maps, bulletins etc. These materials are potential source of information which can be a valuable contribution to EIGR. However, a lot of information are published only in polish language, so it is impossible to spread this knowledge in Europe.

  17. MIT LMFBR blanket research project. Final summary report

    International Nuclear Information System (INIS)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  18. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC). Summary of research conducted during year 1

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Eilers, J.M. [E and S Environmental Chemistry, Inc., Corvallis, OR (United States); Cosby, B.J. [Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences; Driscoll, C.T. [Syracuse Univ., NY (United States). Dept. of Civil Engineering; Hemond, H.F. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering; Charles, D.F. [Academy of Natural Sciences of Philadelphia, PA (United States). Patrick Center for Environmental Research; Norton, S.A. [Maine Univ., Orono, ME (United States). Dept. of Geological Sciences

    1993-03-05

    A project for the US Department of Energy, entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources`` was initiated by E&S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

  19. Project analysis and integration economic analyses summary

    Science.gov (United States)

    Macomber, H. L.

    1986-01-01

    An economic-analysis summary was presented for the manufacture of crystalline-silicon modules involving silicon ingot/sheet, growth, slicing, cell manufacture, and module assembly. Economic analyses provided: useful quantitative aspects for complex decision-making to the Flat-plate Solar Array (FSA) Project; yardsticks for design and performance to industry; and demonstration of how to evaluate and understand the worth of research and development both to JPL and other government agencies and programs. It was concluded that future research and development funds for photovoltaics must be provided by the Federal Government because the solar industry today does not reap enough profits from its present-day sales of photovoltaic equipment.

  20. The Sellafield contaminated land and groundwater management project: Characterisation of a complex nuclear facility

    International Nuclear Information System (INIS)

    Cruickshak, Julian

    2012-01-01

    The Sellafield site in North West England is one of the oldest and largest nuclear sites in the world, with a 70 year industrial history of processing and power generation. At certain points in time this industrial activity has affected the quality of land on parts of the site and one of the main tasks for Sellafield Ltd is to understand and control the legacy of ground contamination to ensure protection of the workforce, the public and the environment. Sellafield Ltd has recently completed a multi-million Pound investigation of the most complex part of the site in order to understand the impact of the various known and potential sources of contamination. The constraints of working in a challenging operational environment required both the use of tried and tested approaches and experimentation with innovative techniques. As experience was gained during implementation of the project, the characterisation plan was evolved and adapted to ensure a successful outcome. The presentation will outline the role and importance of characterising land and groundwater at Sellafield, explain how the site investigation strategy and techniques were designed to meet the challenge and describe the performance of the investigation in practice. It will conclude with a summary of how the results will be used to better support ongoing safety and environmental management and to aid the development of strategy and planning for the future. (author)

  1. A Summary of NORA Project Results Related to Reactivity Measurements

    International Nuclear Information System (INIS)

    Berg, J.O.; Døderlein, J-M-; Haugset, K

    1969-01-01

    The NORA Project has been an international undertaking within the field of reactor physics, resulting from an agreement signed by the International Atomic Energy Agency and the Norwegian Government in April 1961, and subsequently renewed for three years in 1964 and one year in 1967. A summary of the research performed in the period 1961-1964 has been published in IAEA Technical Report Series no. 67. The Project work carried out through the years 1964-1968 will be covered in a forthcoming IAEA Technical Report. The main experimental facility used in the Project has been the zero-power reactor NORA Reactor kinetics, both experimental end theoretical, has been a major item of research in the NORA Project. The present report will briefly summarize results and conclusions considered relevant to the topic discussed by this Panel. Extensive referencing will be made to the final NORA Project Report

  2. Status and understanding of groundwater quality in the Sierra Nevada Regional study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Sierra Nevada Regional (SNR) study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment Program Priority Basin Project. The study was designed to provide statistically unbiased assessments of the quality of untreated groundwater within the primary aquifer system of the Sierra Nevada. The primary aquifer system for the SNR study unit was delineated by the depth intervals over which wells in the State of California’s database of public drinking-water supply wells are open or screened. Two types of assessments were made: (1) a status assessment that described the current quality of the groundwater resource, and (2) an evaluation of relations between groundwater quality and potential explanatory factors that represent characteristics of the primary aquifer system. The assessments characterize untreated groundwater quality, rather than the quality of treated drinking water delivered to consumers by water distributors.

  3. Groundwater Model Validation for the Project Shoal Area, Corrective Action Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ahmed [Desert Research Inst. (DRI), Las Vegas, NV (United States). Division of Hydrologic Sciences; Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States). Division of Hydrologic Sciences; Lyles, Brad [Desert Research Inst. (DRI), Las Vegas, NV (United States). Division of Hydrologic Sciences

    2008-05-19

    Stoller has examined newly collected water level data in multiple wells at the Shoal site. On the basis of these data and information presented in the report, we are currently unable to confirm that the model is successfully validated. Most of our concerns regarding the model stem from two findings: (1) measured water level data do not provide clear evidence of a prevailing lateral flow direction; and (2) the groundwater flow system has been and continues to be in a transient state, which contrasts with assumed steady-state conditions in the model. The results of DRI's model validation efforts and observations made regarding water level behavior are discussed in the following sections. A summary of our conclusions and recommendations for a path forward are also provided in this letter report.

  4. Alligator Rivers analogue project

    International Nuclear Information System (INIS)

    Duerden, P.

    1990-01-01

    Australian Nuclear Science and Technology Organization has extensively evaluated uranium ore bodies in the Alligator Rivers Uranium Province in Australia as analogues of radioactive waste repositories. The work was extended for a three-year program as an international project based on the Koongarra uranium deposit and sponsored by the OECD Nuclear Energy Agency. The technical program comprises six major sub-projects involving modelling and experimental work: modelling of radionuclide migration; hydrogeology of the Koongarra uranium deposit; uranium/thorium series disequilibria studies; groundwater and colloid studies; fission product studies; transuranic nuclide studies; an outline of the technical programs and a summary of progress in the technical sub-projects is given. This is followed by a series of technical reports which briefly describe current research tasks, and which have been separately indexed

  5. Tank farm restoration and safe operation, project W-314, upgrade scope summary report (USSR)

    International Nuclear Information System (INIS)

    Jacobson, R.W.

    1997-01-01

    This revision to the Project W-314 Upgrade Scope Summary Report (USSR), incorporates changes to the project scope from Alternative Generation Analysis (AGA), customer guidance, and changing requirements. It defines the actual upgrades currently in scope, and provides traceability to the requirements and/or drivers

  6. Impacts of Groundwater on the Atmospheric Convection in Amazon using Multi-GCM Simulations from I-GEM project

    Science.gov (United States)

    Lo, M. H.; Chien, R. Y.; Ducharne, A.; Decharme, B.; Lan, C. W.; Wang, F.; Cheruy, F.; Colin, J.

    2017-12-01

    Previous research indicated that groundwater plays an important role in hydrological cycle and is a major source of water vapor in climate models, which may result in modifications of atmospheric convection. For instance, our previous study showed that when considering the groundwater dynamics in a GCM, the wet soil induced surface cooling effect can further reduce the Amazon dry season convection and precipitation. However, the main mechanisms of the interaction among groundwater, soil moisture, and precipitation are still unclear, and they need to be examined in several climate models. In this study, we further examine the influence of the surface cooling effects due to the groundwater on the convection over the Amazon. To this end, we use idealized simulations of the IGEM (Impact of Groundwater in Earth system Models) project, with 3 GCMs (CESM, CNRM, and IPSL): in each of them, we prescribed a water table at a constant depth throughout all land areas, to create globally wet conditions. Preliminary analysis shows a contradict result of the tendency of precipitation in the three models with wet condition which indicates a great uncertainty of the groundwater's impacts in coupled GCMs.

  7. Data validation summary report for the 100-BC-5 Operable Unit Round 9 Groundwater Sampling. Revision 0

    International Nuclear Information System (INIS)

    Kearney, A.T.

    1996-03-01

    The information provided in this validation summary report includes chemical analyses of samples from 100-BC-5 Operable Unit Round 9 Groundwater sampling data. Data from this sampling event and their related quality assurance (QA) samples were reviewed and validated in accordance with Westinghouse Hanford Company (WHC) guidelines at the requested level. Sample analyses included metals, general chemistry, and radiochemistry. Sixty metals samples were analyzed by Quanterra Environmental Services (QES) and Lockheed Analytical Services (LAS). The metals samples were validated using WHC protocols specified in Data Validation Procedures for Chemical Analyses. All qualifiers assigned to the metals data were based on this guidance. The Table 1.1 lists the metals sample delivery group (SDG) that were validated for this sampling event

  8. Effects of Projected Future Climate Change on Groundwater Recharge and Storage for Two Coastal Aquifers in Guanacaste Province, Costa Rica

    Science.gov (United States)

    Kolb, C.

    2017-12-01

    Climate change is expected to pose a significant threat to water resources in the future. Guanacaste Province, located in northwestern Costa Rica, has a unique climate that is influenced by the Pacific Ocean and Caribbean Sea, as well as the Central Cordillera mountain range. Although the region experiences a marked rainy season between May and November, the hot, dry summers often stress water resources. Climate change projections suggest increased temperatures and reduced precipitation for the region, which will further stress water supplies. This study focuses on the effects of climate change on groundwater resources for two coastal aquifers, Potrero and Brasilito. The UZF model package coupled with the finite difference groundwater flow model MODFLOW were used to evaluate the effect of climate change on groundwater recharge and storage. A potential evapotranspiration model was used to estimate groundwater infiltration rates used in the MODFLOW model. Climate change projections for temperature, precipitation, and sea level rise were used to develop climate scenarios, which were compared to historical data. Preliminary results indicate that climate change could reduce future recharge, especially during the dry season. Additionally, the coastal aquifers are at increased risk of reduced storage and increased salinization due to the reductions in groundwater recharge and sea level rise. Climate change could also affect groundwater quality in the region, disrupting the ecosystem and impairing a primary source of drinking water.

  9. Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

  10. Flat-plate solar array project. Volume 1: Executive summary

    Science.gov (United States)

    Callaghan, W.; Mcdonald, R.

    1986-01-01

    In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.

  11. Comparison of the availability of groundwater information sources in Poland with other European countries. Knowledge inventory for hydrogeology research – project KINDRA

    Directory of Open Access Journals (Sweden)

    Tomaszewska Barbara

    2017-01-01

    Full Text Available Regulations of the Water Framework Directive 200/60/EC (WFD had been applied by European Union countries into their legislation system. However, it does not guarantee that the groundwater research has the same standard and quality in EU countries. KINDRA international research project was launched to assessment of existing groundwater-related practical and scientific knowledge based on a new Hydrogeological Research Classification System (HRC-SYS. This classification is supported by a web-service – the European Inventory of Groundwater Research (EIGR. The main goal of the project is implementation policy of optimization in groundwater research in EU. The preliminary result of survey about groundwater management shows that in Poland is a good state of implementation WFD. Good level of implementation is especially related with groundwater monitoring. It is because a lot of institutions and municipal entities carry out their tasks referring to quality or quantity assessment. Results of their works are published as reports, newsletters, maps, bulletins etc. These materials are potential source of information which can be a valuable contribution to EIGR. However, a lot of information are published only in polish language, so it is impossible to spread this knowledge in Europe.

  12. Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

  13. Technical approach to groundwater restoration

    International Nuclear Information System (INIS)

    1993-01-01

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures

  14. Preliminary simulation of degassing of natural gases dissolved in groundwater during shaft excavation in Horonobe underground research project

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Shimo, Michito; Kunimaru, Takanori; Kurikami, Hiroshi

    2007-01-01

    In Neogene-Quaternary sedimentary basins, natural gases such as methane are often dissolved in groundwater significantly. In this paper, two-phase flow simulations incorporating the degassing of methane, and carbon dioxide, were performed for the shaft excavation in Horonobe underground research project. The results drawn from the simulations are summarized as follows. 1) As depth increases, degassing and gas inflow occurs significantly. 2) Degassing increases the compressibility of pore fluids, resulting in slow changes in groundwater pressures. 3) Although the occurrence of gas phase decreases water mobility, the influence of the dissolved gas on the groundwater inflow rate to the shaft was small. (author)

  15. Halifax Lateral Pipeline Project : comprehensive study report

    International Nuclear Information System (INIS)

    1998-12-01

    The National Energy Board has requested the preparation of a comprehensive study report (CSR) for the proposed Halifax Lateral Pipeline Project in support of Maritimes and Northeast Pipeline Company's proposal to construct the lateral pipeline to transport natural gas produced in offshore Nova Scotia to the Tufts Cove electric generating station in the Halifax Regional Municipality. The project will also enhance the access of natural gas to potential markets located along the pipeline route. This CSR was prepared according to guidelines of the Canadian Environmental Assessment Agency. The report presents: (1) an overview of the project, (2) a summary of the regulatory requirements for assessment, (3) a description of the environmental assessment and regulatory process to date, (4) a summary of the predicted residual environmental and socio-economic effects associated with the project, and (5) a summary of the public consultation process. The environmental and socio-economic assessment focused on these eleven issues: groundwater resources, surface water resources, wetlands, soils, air quality, fish habitat, rare herpetiles, mammals, avifauna, rare plants and archaeological heritage resources. The report identified potential interactions between the project and valued socio-economic and environmental components. These were addressed in combination with recommended mitigative measures to reduce potential adverse effects. It was concluded that the overall environmental effects from the proposed project are likely to be minimal and can be effectively managed with good environmental management methods. 14 refs., 5 tabs., 5 figs., 2 appendices

  16. A summary of lessons learned activities conducted at the OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    Hallbert, B.P.

    1997-01-01

    A series of lessons learned studies have been conducted at the OECD Halden Reactor Project. The purpose of these lessons learned reports are to summarize knowledge and experience gained across a number of research project. This paper presents a summary of main issues addressed in four of these lessons learned projects. These are concerned with software development and quality assurance, software reliability, methods for test and evaluation of developed systems, and the evaluation of system design features

  17. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  18. Groundwater well services site safety and health plan

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1996-08-01

    This Site Specific Health and Safety Plan covers well servicing in support of the Environmental Restoration Contractor Groundwater Project. Well servicing is an important part of environmental restoration activities supporting several pump and treat facilities and assisting in evaluation and servicing of various groundwater wells throughout the Hanford Site. Remediation of contaminated groundwater is a major part of the ERC project. Well services tasks help enhance groundwater extraction/injection as well as maintain groundwater wells for sampling and other hydrologic testing and information gathering

  19. The international hydrocoin project - Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1991-01-01

    The international cooperation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organisations from ten countries and two international organisations have participated in the project which has been managed by the Swedish Nuclear Power Inspectorate, SKI. This report summarises the results from the third phase of HYDROCOIN, Level 3, which has addressed the issues of uncertainty and sensitivity analysis of groundwater flow problems and how uncertainties affect the modelling results. Seven test cases were selected for the project, representing a variety of flow situations in different media, as well as variety of temporal and spatial scales. These test cases were tackled by the participating organisations (Project Teams) using a number of different codes. An overview of the methodologies used in uncertainty and sensitivity analysis is given. Results from the various Teams attempting the Test Cases are presented and conclusions are drawn as to the applicability of the results obtained to the test cases being analysed as well as the general applicability of the results. The importance of making uncertainty and sensitivity analysis as part of a performance analysis of the safety of a nuclear waste repository is stressed. The conclusion is drawn that the HYDROCOIN Level 3 study has greatly contributed to the understanding of these issues. 42 refs., 159 figs., 61 tabs

  20. Savannah River Site Environmental Report for 1995 Summary Pamphlet (U)

    International Nuclear Information System (INIS)

    Arnett, M.W.; Mamatey, A.

    1995-01-01

    Welcome to the Savannah River Site Environmental Report for 1995 Summary Pamphlet.Ibis pamphlet is written so you can better understand what goes on at the Savannah River Site and how it affects the environment and you personally. We hope this document also will help answer your questions on radiation and its effects. In this pamphlet we will discuss the operations at SRS, the potential impact of operations on the environment and the public, and special programs that SRS supports. This pamphlet is a summary of a detailed re- port entitled Savannah River Site Environmental Report for 1995 The report contains a summary of environmental Monitoring activities for the calendar year 1995. Additional data on groundwater are found in quarterly groundwater reports

  1. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  2. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater monitoring data obtained during calendar year (CY) 1995 from monitoring wells and springs located at or near several hazardous and non-hazardous waste management facilities associated with the Y-12 Plant. These sites are within the boundaries of the Chestnut Ridge Hydrogeologic Regime, which is one of three hydrogeologic regimes defined for the purposes of the Y-12 Plant Groundwater Protection Program (GWPP). The objectives of the GWPP are to provide the monitoring data necessary for compliance with applicable federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. corporate policy. The following evaluation of the data is organized into background regulatory information and site descriptions, an overview of the hydrogeologic framework, a summary of the CY 1995 groundwater monitoring programs and associated sampling and analysis activities, analysis and interpretation of the data for inorganic, organic, and radiological analytes, a summary of conclusions and recommendations, and a list of cited references. Appendix A contains supporting maps, cross sections, diagrams, and graphs; data tables and summaries are in Appendix B. Detailed descriptions of the data screening and evaluation criteria are included in Appendix C

  3. Summaries of studies carried out in the NKS/BOK-2 project. Technical report[Radiological and environmental consequences

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S E [Icelandic Radiation Protection Inst., Reykjavik (Iceland)

    2002-12-01

    Summaries of studies carried out in the NKSBOK-2 project, Radiological and Environmental Consequences. The structure of the project as such is described in NKS-64, Radiological and Environmental Consequences - Final Report of the Nordic Nuclear Safety Research Project BOK-2. That report also includes compilations based on the summaries presented in this report. The project was carried out 1998-2001 with participants from all the Nordic countries. Representatives from the Baltic States were also invited to some of the meetings and seminars. The project consisted of work on terrestrial and marine radioecology and had a broad scope in order to enable participation of research groups with various fields of interest. The topics included improving assessment of old and recent fallout, use of radionuclides as tracers in Nordic marine areas, improving assessment of internal doses and use of mass spectrometry in radioecology. This report is a compilation of summaries from each research group, 32 papers in all, and gives references to papers published in scientific journals. Some of the studies have been described previously, at least to some degree, in NKS-70, Proceedings of the 8{sup th} Nordic Seminar on Radioecology, 25-28 February 2001, Rovaniemi, Finland. (au)

  4. Summary and conclusions of the faults-in-clay project

    International Nuclear Information System (INIS)

    Hallam, J.R.; Brightman, M.A.; Jackson, P.D.; Sen, M.A.

    1992-01-01

    This report summarises a research project carried out by the British Geological Survey, in cooperation with ISMES of Italy, into the geophysical detection of faults in clay formations and the determination of the hydrogeological effects of such faults on the groundwater flow regime. Following evaluation of potential research sites, an extensive programme of investigations was conducted at Down Ampney, Gloucester, where the Oxford Clay formation is underlain by the aquifers of the Great Oolite Limestone group. A previously unknown fault of 50 m throw was identified and delineated by electrical resistivity profiling; the subsequent development of a technique utilising measurements of total resistance improved the resolution of the fault 'location' to an accuracy of better than one metre. Marked anisotropy of the clay resistivities complicates conventional geophysical interpretation, but gives rise to a characteristic anomaly across the steeply inclined strata in the fault zone. After exploratory core drilling, an array of 13 boreholes was designed and completed for cross-hole seismic tomography and hydrogeological measurement and testing. The groundwater heads in the clays were found to be in disequilibrium with those in the aquifers, as a result of water supply abstraction. The indication is that the hydraulic conductivity of the fault zone is higher than that of the surrounding clay by between one and two orders of magnitude. Methodologies for the general investigation of faults in clay are discussed. (Author)

  5. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    Science.gov (United States)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  6. Groundwater in a future climate : The CLIWAT Handbook

    NARCIS (Netherlands)

    Auken, Esben A.; Bosch, Aleid; Courtens, Carolien; Elderhorst, Wilbert; Euwe, Marieke; Gunnink, Jan; Hinsby, Klaus; Jansen, Joca; Johnsen, Rolf; Kok, Arjen; Lebbe, Luc; De Louw, Perry G.B.; Noorlandt, Rik; Oude Essink, Gualbert; Pedersen, Jes; Rasmussen, Per; Scheer, Wolfgang; Siemon, Bernhard; Sonnenborg, Torben; Sulzbacher, Hans; Ullmann, Angelika; Vandenbohede, Alex; Wiederhold, Helga

    2011-01-01

    This handbook is a product of the CLIWAT project (CLImate change and groundWATer) highlighting the main results and recommendations of the project for planners and practitioners at local, regional and national levels. CLIWAT is a transnational project in the North Sea region dealing with groundwater

  7. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    Energy Technology Data Exchange (ETDEWEB)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  8. Groundwater protection for the NuMI project

    International Nuclear Information System (INIS)

    Wehmann, A.; Smart, W.; Menary, S.; Hylen, J.; Childress, S.

    1997-01-01

    The physics requirements for the long base line neutrino oscillation experiment MINOS dictate that the NuMI beamline be located in the aquifer at Fermilab. A methodology is described for calculating the level of radioactivation of groundwater caused by operation of this beamline. A conceptual shielding design for the 750 meter long decay pipe is investigated which would reduce radioactivation of the groundwater to below government standards. More economical shielding designs to meet these requirements are being explored. Also, information on local geology, hydrogeology, government standards, and a glossary have been included

  9. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    International Nuclear Information System (INIS)

    GERBER MS

    2007-01-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site

  10. Summary of New Los Alamos National Laboratory Groundwater Data Loaded in July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Steven M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-07

    This report provides information concerning groundwater monitoring data obtained by the Los Alamos National Laboratory under its interim monitoring plan and contains results for chemical constituents that meet seven screening criteria laid out in the Compliance Order on Consent. Tables are included in the report to organize the findings from the samples. The report covers groundwater samples taken from wells or springs that provide surveillance of the groundwater zones indicated in the table.

  11. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  12. Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary

    International Nuclear Information System (INIS)

    1995-02-01

    Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994

  13. SKI SITE-94. Deep Repository Performance Assessment Project. Summary

    International Nuclear Information System (INIS)

    1997-02-01

    The function of SITE-94 is to provide the Swedish Nuclear Power Inspectorate (SKI) with the capacity and supporting knowledge needed for reviewing the Swedish nuclear industry's R and D programs and for reviewing license applications, as stipulated in Swedish legislation. The report is structured as a Performance Assessment exercise needed for input to decisions regarding repository safety, but the SITE-94 is neither a safety assessment nor a model for future assessments to be undertaken by the prospective licensee. The specific project objectives of SITE-94 comprise site evaluation, performance assessment methodology, canister integrity and radionuclide release and transport calculations. The main report (SKI-R--96-36) gives a detailed description of the many inter-related studies undertaken as part of the research project, while the present report presents a condensed summary of the main report. 46 refs

  14. Status and understanding of groundwater quality in the Cascade Range and Modoc Plateau study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2015-01-01

    Groundwater quality in the Cascade Range and Modoc Plateau study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The study was designed to provide a statistically unbiased assessment of untreated groundwater quality in the primary aquifer system. The depth of the primary aquifer system for the Cascade Range and Modoc Plateau study unit was delineated by the depths of the screened or open intervals of wells in the State of California’s database of public-supply wells. Two types of assessments were made: a status assessment that described the current quality of the groundwater resource, and an understanding assessment that made evaluations of relations between groundwater quality and potential explanatory factors representing characteristics of the primary aquifer system. The assessments characterize the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.

  15. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  16. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  17. Risk level project. Summary report, Norwegian Shelf, Phase 7; Risikonivaaprosjektet. Sammendragsrapport Norsk Sokkel, fase 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The project 'developments in risk level - Norwegian shelf', also known as the risk level project, was initiated by the Norwegian Petroleum Directorate in 2000. From 2004 the project has been continued by Petroleum Safety Authority Norway. The project's main objectives are to measure the effect of the health, security and environment (HSE) work in the industry, and contribute to identify the areas critical to HSE, where efforts must be made to prevent unwanted events or accidents. A summary report with results from phase 7 in the project (ml)

  18. Isotopic assessment of long term groundwater exploitation. Proceedings of a final research coordination meeting

    International Nuclear Information System (INIS)

    2006-10-01

    The stress imposed on the available water resources due to man's impact (exploitation, release of pollutants and agricultural practices) has resulted in depletion of the available reserves as well as deterioration of water quality in many parts of the world. Over wide areas, abstractions are exceeding current natural recharge and it is apparent from scientific studies that these water resources are being mined, especially in arid and semi-arid areas. Sustainable development and management of those water resources needs long term monitoring records to understand the changes and dynamic responses due to the exploitation. These proceedings provide a synthesis of a series of hydrochemical, isotope and geohydrological data sets which will be used for quantitative assessment of the long term dynamic response of the groundwater system. The results show that both stable and radioactive isotopes are excellent tools for characterizing and understanding aquifer systems that are undergoing long term exploitation. Specific outcomes include establishment of methodologies for monitoring and predicting changes in water quality and quantity that will lead to improved water resources management. This publication is a summary of the results achieved during the coordinated research project (CRP) and the various studies performed by the participating institutions are presented as individual presentations. The overall achievements are presented as an executive summary, and the detailed findings are presented in each contribution. These results were presented in the final coordination meeting held in Vienna, 12-16 May 2003. The results obtained from this CRP will be used to improve the predictions of future behaviour of groundwater resources in response to exploitation. The scientific component of this CRP will be a valuable source of information for isotope hydrologists involved in isotope field applications and a useful guide for groundwater managers involved in groundwater resources

  19. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    International Nuclear Information System (INIS)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-01-01

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money

  20. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  1. The summary of national environmental restoration needs

    International Nuclear Information System (INIS)

    1993-07-01

    The Office of Technology Development of the US Department of Energy (DOE) has directed the Savannah River Technology Center to implement an Integrated Demonstration Program at Savannah River Site to assess new environmental remediation systems and technologies and transfer them to other DOE sites and private industry for use in full-scale remediation efforts. The first phase of the Integrated Demonstration Program is coming to a successful conclusion and the Savannah River Technology Center has asked a panel of environmental experts to prioritize national, DOE, and Savannah River Site environmental problems and make programmatic recommendations for future technology research and demonstrations. This document is a summary of national and DOE environmental problems that are common to Savannah River Site and was created as a decision making tool for the expert panel. There are many diverse environmental problems, therefore the summary has been limited to environmental problems that are significant to the Savannah River Site. National environmental problems identified in the summary are soil and water contaminated with organic compounds. Specifically, groundwater contaminated with dense non-aqueous phase liquid hydrocarbons was found to be a significant national environmental problem. The DOE environmental problems identified in the summary are soil and water contaminated with fuel and chlorinated hydrocarbon compounds, metal compounds, and radioactive elements. Savannah River Site environmental problems identified in the summary are soil and groundwater contaminated with chlorinated hydrocarbons, metal compounds, tritiated water, and other radioactive elements. Technology deficiencies that were identified in the summary were deficiencies in in situ remediation technologies, in situ characterization technologies, and in situ isolation and containment technologies

  2. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  3. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    International Nuclear Information System (INIS)

    Lee, T.A.

    2005-01-01

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  4. EUGRIS: ''European Substainable Land and Groundwater Management Information System''

    Energy Technology Data Exchange (ETDEWEB)

    Frauenstein, J. [Federal Environmental Agency (UBA), Berlin (Germany)

    2003-07-01

    The presentation outlines and Accompanying Measure with the FP 5 to develop an web based EUropean Sustainable Land and GRoundwater Management Information System information system (EUGRIS). The management of contaminated land and groundwater requires an interdisciplinary approach and a considerable amount of supporting technical information and knowledge. EUGRIS will provide a generally available comprehensive and overarching information and innovation resource, to support both research and practical contaminated land and groundwater management. EUGRI is a gateway to provide a 'one stop shop' for information provided by research projects, legislation, standards, best practice and other technical guidance and policy/regulatory publications from the EC, participating Member and Accession States and from various international networks dealing with groundwater and land management issues. Different types of user can access information through different windows according to their needs. EUGRIS will provide its visitors with summary information (digests) and links to sources of more detailed and/or original information in a scaleable holistic and contexturally meaningful way. EUGRIS is being built in three stages: the design of the information system, the development of its software implementation, and the population of the system with information. The presentation is focussed on the concept of the development of the information system with the individual work packages. In the second part of the lecture in particular the work procedures are presented for the content wise replenishment by EUGRIS. The data collation for the proven pilot countries and the production of a European research data base, which opens contents and results of European-wide locked and current projects, form the emphasis thereby. (orig.)

  5. Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412

    Energy Technology Data Exchange (ETDEWEB)

    Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

    2012-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using

  6. The Palouse Basin Participatory Model Pilot Project: A Participatory Approach to Bi-state Groundwater Management

    Science.gov (United States)

    Beall, A.; Fiedler, F.; Boll, J.; Cosens, B.; Harris, C.

    2008-12-01

    In March 2008, The University of Idaho Waters of the West, the Palouse Basin Aquifer Committee and its Citizen Advisory Group undertook a pilot project to explore the use of participatory modeling to assist with water resource management decisions. The Palouse basin supplies Moscow, Idaho, Pullman, Washington, and surrounding communities with high quality groundwater. However, water levels in the major aquifer systems have been declining since records have been kept. Solutions are complicated by jurisdictional considerations and limited alternatives for supply. We hope that by using a participatory approach major conflicts will be avoided. Group system dynamics modeling has been used for various environmental concerns such as air quality, biological management, water quality and quantity. These models create a nexus of science, policy, and economic and social concerns, which enhances discussion of issues surrounding the use of natural resources. Models may be developed into educational and or decision support tools which can be used to assist with planning processes. The long-term goal of the Palouse basin project is to develop such a model. The pilot project participants include hydrologists, facility operators, policy makers and local citizens. The model they have developed integrates issues such as scientific uncertainty, groundwater volumes, and potential conservation measures and costs. Preliminary results indicate that participants are satisfied with the approach and are looking to use the model for education and to help direct potential research. We will present the results of the pilot project, including the developed model and insights from the process.

  7. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  8. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999

  9. Technical assistance to Ohio closure sites; Recommendations toaddress contaminated soils, concrete, and corrective action managementunit/groundwater contamination at Ashtabula, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Charoglu, Emily; Eddy-Dilek, Carol; Gombert, Dirk; Hazen, Terry; Johnson, Bob; Looney, Brian; Krstich, Michael A.; Rautman, Chris; Tripp,Julia; Whitmill, Larry

    2002-08-26

    The Ashtabula Environmental Management Project (AEMP) at Department of Energy-Ohio (DOE-OH) requested technical assistance from the EM-50 Lead Lab to aid in defining new cost and time effective approaches in the following problem areas: soils, concrete, and groundwater/Corrective Action Management Unit (CAMU) at RMIES in Ashtabula, Ohio. Attachment 1 provides the site request for assistance. The technical assistance team assembled for this request is provided in Attachment 2. These individuals reviewed key site information prior to convening with DOE and contractor personnel (RMIES and Earthline) for a three-and-a-half-day meeting to better understand baseline technologies, limitations, and site-specific issues. After listening to presentations about the nature and extent of known contamination, the team broke out into several groups to brainstorm ideas and develop viable solutions. This executive summary details unresolved issues requiring management attention as well as recommendations to address soils, concrete, and groundwater/CAMU. It also provides a summary of additional technical assistance that could be provided to the site. More details are presented in the body of this report.

  10. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    Groundwater is not being perceived as an important water resource and therefore has been given limited attention in South. Africa. This is reflected in general ... Research Commission (WRC) has commissioned a project to develop a Groundwater Management Framework that incorpo- rates all aspects of groundwater ...

  11. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report, July 1--September 30, 1989

    International Nuclear Information System (INIS)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality

  12. The Stripa project annual report 1984

    International Nuclear Information System (INIS)

    1985-07-01

    This is an autonomous OECD/NEA project relating to the final disposal of highly radioactive waste. Research is being performed in a granite formation 350 m below the ground surface. The first phase consists of three parts, namely hydrogeological and hydrogeochemical investigations in boreholes, tracer migration tests and large-scale tests of the behaviour of backfill material. The second phase includes the following investigations: detection and characterization of fracture zones, sealing of boreholes and shafts, hydrogoelogical characterization of the Stripa site and isotopic characterization of its groundwaters. The estimated cost of both phases is 111 MSEK and they are scheduled for completion in 1986. A summary of the progress of the project phase I and phase II is given in this report. (G.B.)

  13. Status and understanding of groundwater quality in the San Francisco Bay groundwater basins, 2007—California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the approximately 620-square-mile (1,600-square-kilometer) San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Ranges of California, in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Francisco Bay study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater within the primary aquifer system, as well as a statistically consistent basis for comparing water quality throughout the State. The assessment is based on water-quality and ancillary data collected by the USGS from 79 wells in 2007 and is supplemented with water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system is defined by the depth interval of the wells listed in the CDPH database for the San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. Water- quality data from the CDPH database also were incorporated for this assessment. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the San Francisco Bay study unit, not the treated drinking water delivered to consumers by water

  14. Groundwater quality in the Klamath Mountains, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  15. The Impact of Climate Change on Groundwater Resources and Groundwater Quality in the Patcham Catchment, England.

    Science.gov (United States)

    Phillips, R. J.; Smith, M.; Pope, D. J.; Gumm, L.

    2012-04-01

    The CLIMAWAT project is an EU-Regional Development Fund Interreg IV funded research programme to study the impacts of climate change on groundwater resources and groundwater quality from the Chalk aquifer of SE England. The use of partially treated wastewater for artificial recharge will also be extensively studied in both the field and laboratory. The Chalk is a major aquifer and regionally supplies 70% of potable water supplies. The long term sustainable use of this resource is of paramount importance and the outcomes of this project will better inform and enhance long term management strategies for this. Project partners include water companies, regulatory bodies and industry consultancies. The four main objectives of the CLIMAWAT project are: i) better improve the prediction of the impact of climate change on this groundwater resource; ii) better understand and quantify how recharge mechanisms will vary due to the uncertainty associated with climate change; iii) better understand the storage mechanisms and fate of contaminants (e.g. nitrates and pesticides) in this aquifer and iv) investigate the impact of using partially treated wastewater for artificial recharge. An extensive field monitoring and data collection programme is underway in the Patcham Catchment (SE of England). Simultaneous monitoring of climatic, unsaturated zone potentiometric, groundwater level and chemistry data will allow for a better understanding of how changes in recharge patterns will effect groundwater quality and quantity. Isoptopic analysis of sampled groundwaters has allowed for interpretations and a better understanding of the storage and movement of water through this aquifer. The laboratory experimental programme is also underway and the results from this will compliment the field based studies to further enhance the understanding of contaminant behaviour in the both unsaturated and saturated zones. Core experiments are being used to investigate how nutrient and other

  16. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations, Title 10 CFR 60.113 (a). The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss the ambiguities associated with the regulatory specification of groundwater travel time, two different interpretations of groundwater travel time, and the effect of the two interpretations on estimates of the groundwater travel time

  17. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    A proposed groundwater management framework for municipalities in South Africa. ... Hence, the Water Research Commission (WRC) has commissioned a project ... and available tools to achieve sustainable groundwater management reflect ...

  18. Groundwater quality in the Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.

  19. The Lavia testborehole - a summary of the groundwater investigations in 1984-1985

    International Nuclear Information System (INIS)

    Wickstroem, P.; Lampen, P.

    1986-06-01

    In the spring of 1984, a 1001 m deep test borehole with a diameter of 56 mm was core-drilled in a granitic intrusion in Lavia in southwestern Finland. The drilling fluid which was taken from the borehole well was labelled with a stable tracer, i.e. an iodine. Gas-lift pumping by nitrogen gas was carried out after the drilling 1984 and in the spring 1985. The groundwater samples were taken with the equipment developed for deep boreholes. The equipment comprises straddle paker system with a membrane pump and a flow-through-cell system with electrodes. Specific conductivity, amount of dissolved oxygen, pS, pH, temperature and redox-potential of the groundwater samples were measured in this system. Sampling prosedure and data acquisition will be controlled by a microcomputer. The groundwater samples were taken four times at different depths during 1984 - 1985. Sampling was made from 5.4 metre packer-isolated zones from the depths 94 - 99 m, 119 - 124 m, 422 - 427 m, 547 - 552 m, 905 - 910 m and 965 - 970 m. At the depth of 9971 - 1001 m only a single packer was used. The consentration of iodine was frequently controlled during the sampling. Groundwater samples were taken for different physico-chemical analyses. Also samples for isotope and noble gas analyses were taken. The iodine analyses gave the evidence that varying amounts of drilling fluid remain in the bedrock. The analyses manifest that the groundwater of the test borehole has quite a low ionic strength. The measurements of the redox-potential and the amount of dissolved oxygen indicate that reducing conditions seem to exist at the depths of 422 - 427 m and 905 - 910 m. A percussion borehole was drilled near the test borehole without using any drilling fluid. Water samples that had not been contaminated by drilling fluid were taken once. (author)

  20. Summaries of fiscal year 1994 projects in medical applications and biophysical research

    International Nuclear Information System (INIS)

    1995-04-01

    This report provides information on the research supported in Fiscal Year 1994 by the Medical Applications and Biophysical Research Division of the Office of Health and Environmental Research. A brief statement of the scope of the following areas is presented: dosimetry; measurement science; radiological and chemical physics; structural biology; human genome; and medical applications. Summaries of the research projects in these categories are presented

  1. Overview of soil and groundwater research activities of the American Petroleum Institute (API)

    International Nuclear Information System (INIS)

    Bauman, B.

    1992-01-01

    The American Petroleum Institute (API) is a trade association for the domestic petroleum industry in the USA, with over 2000 corporate and 5000 individual members. Subsurface research activities are managed by the API soil/groundwater technical task force, a committee made up of over 25 member company engineers, hydrologists, soil scientists, and chemists representing both the research and operations sectors of the petroleum industry. The research areas of the group have been divided into five principle areas: biodegradation processes, fate and transport, remediation, decision making tools for remediation, and detection/analytical methods. A summary of each of the current projects in these subject areas is presented

  2. Research in progress: FY 1984. Summaries of projects sponsored by the Office of Health and Environmental Research

    International Nuclear Information System (INIS)

    1983-12-01

    This report provides a compilation of summaries of the research projects supported by the Office of Health and Environmental Research (OHER) during Fiscal Year 1984. OHER is a component of the Office of Energy Research within the US Department of Energy, responsible for developing a comprehensive understanding of the health and environmental effects of energy technology development and use as well as other Departmental operations. The OHER program is broad in scope and diverse in character with substantial commitments to both applied and basic research. The research projects have been organized to reflect the major themes and focus of the OHER program. Each research category is preceeded by a short narrative to provide some perspective of the scope of activities which follow. Within each research category, the summaries are organized by efforts performed in DOE laboratories (onsite laboratories) and those performed elsewhere (offsite contractors) to help characterize their respective role in the program. The compilation of project titles and summaries, despite its volume, is still a relatively superficial source of information. It does not provide a sound basis for considering program quality or even relevance

  3. Ground-Water Hydrology and Projected Effects of Ground-Water Withdrawals in the Sevier Desert, Utah

    OpenAIRE

    United States Geological Survey

    1983-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mount...

  4. Groundwater flow analysis on local scale. Setting boundary conditions for groundwater flow analysis on site scale model in step 1

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)

  5. Summary of field operations Technical Area I well PGS-1. Site-Wide Hydrogeologic Characterization Project

    International Nuclear Information System (INIS)

    Fritts, J.E.; McCord, J.P.

    1995-02-01

    The Environmental Restoration (ER) Project at Sandia National Laboratories, New Mexico is managing the project to assess and, when necessary, to remediate sites contaminated by the lab operations. Within the ER project, the site-wide hydrogeologic characterization task is responsible for the area-wide hydrogeologic investigation. The purpose of this task is to reduce the uncertainty about the rate and direction of groundwater flow beneath the area and across its boundaries. This specific report deals with the installation of PGS-1 monitoring well which provides information on the lithology and hydrology of the aquifer in the northern area of the Kirtland Air Force Base. The report provides information on the well design; surface geology; stratigraphy; structure; drilling, completion, and development techniques; and borehole geophysics information

  6. Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory project. 2011-2010

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yuki; Yamamoto, Yoichi; Nanjyo, Isao; Murakami, Hiroaki; Yokota, Hideharu; Yamazaki, Masanori; Iwatsuki, Teruki [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Horonobe, Hokkaido (Japan); Kunimaru, Takanori [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Mizunami, Gifu (Japan); Oyama, Takahiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2012-02-15

    In the Horonobe Underground Research Laboratory (URL) Project, groundwater from boreholes, river water and precipitation have been analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2010. (author)

  7. Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory project. 2011-2010

    International Nuclear Information System (INIS)

    Amano, Yuki; Yamamoto, Yoichi; Nanjyo, Isao; Murakami, Hiroaki; Yokota, Hideharu; Yamazaki, Masanori; Iwatsuki, Teruki; Kunimaru, Takanori; Oyama, Takahiro

    2012-02-01

    In the Horonobe Underground Research Laboratory (URL) Project, groundwater from boreholes, river water and precipitation have been analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2010. (author)

  8. Recharge Net Metering to Incentivize Sustainable Groundwater Management

    Science.gov (United States)

    Fisher, A. T.; Coburn, C.; Kiparsky, M.; Lockwood, B. S.; Bannister, M.; Camara, K.; Lozano, S.

    2016-12-01

    Stormwater runoff has often been viewed as a nuisance rather than a resource, but with passage of the Sustainable Groundwater Management Act (2014), many basins in California are taking a fresh look at options to enhance groundwater supplies with excess winter flows. In some basins, stormwater can be used for managed aquifer recharge (MAR), routing surface water to enhance groundwater resources. As with many public infrastructure programs, financing for stormwater-MAR projects can be a challenge, and there is a need for incentives that will engage stakeholders and offset operation and maintenance costs. The Pajaro Valley Water Management Agency (PVWMA), in central costal California, recently launched California's first Recharge Net Metering (ReNeM) program. MAR projects that are part of the ReNeM program are intended to generate ≥100 ac-ft/yr of infiltration benefit during a normal water year. A team of university and Resource Conservation District partners will collaborate to identify and assess potential project sites, screening for hydrologic conditions, expected runoff, ease and cost of project construction, and ability to measure benefits to water supply and quality. The team will also collect data and samples to measure the performance of each operating project. Groundwater wells within the PVWMA's service area are metered, and agency customers pay an augmentation fee for each unit of groundwater pumped. ReNeM projects will earn rebates of augmentation fees based on the amount of water infiltrated, with rebates calculated using a formula that accounts for uncertainties in the fate of infiltrated water, and inefficiencies in recovery. The pilot ReNeM program seeks to contribute 1000 ac-ft/yr of infiltration benefit by the end of the initial five-year operating period. ReNeM offers incentives that are distinct from those derived from traditional groundwater banking, and thus offers the potential for an innovative addition to the portfolio of options for

  9. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations. The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time, as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss (1) the ambiguities associated with the regulatory specification of groundwater travel time, (2) two different interpretations of groundwater travel time, and (3) the effect of the two interpretations on estimates of the groundwater travel time. 3 refs., 2 figs., 2 tabs

  10. Summaries and future projections

    International Nuclear Information System (INIS)

    Egelstaff, P.A.

    1989-01-01

    In this paper the author gives a brief summary of this meeting. He discusses the status at the current neutron sources and future sources. The current problems with targets, moderators, performance of storage rings and shields are briefly mentioned. Finally, he speculates on the prospects of neutron sources for the future and gives his version of the ultimate source

  11. Summary of operations and performance of the Murdock site restoration project in 2008.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2009-06-04

    This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the third full year of system operation, from January 1 through December 31, 2008. Performance in June 2005 through December 2007 was reported previously (Argonne 2007, 2008). In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. The annual performance reports for the Murdock project assemble information that will become part of the five-year review and evaluation of the remediation effort. This review will occur in 2010. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the current period of operation. A gallery of photographs of the Murdock project is in Appendix A.

  12. Power control for wind turbines in weak grids: Project summary

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    . The two case studies (Madeira, Portugal and Co. Donegal, Ireland) revealed that sometimes theleast cost and most attractive option is change in the operating strategy of the power system. This allowed that further wind energy can be integrated at competitive cost in the Madeira power system. In Co....... Donegal the options for pumped storage are goodcombined with good wind resources. Unfortunately the grid is weak. The least cost option for the feeder studied is either grid reinforcement or a power control system based on pumped storage if rather large amounts of wind energy are to be absorbed...... by thepower system. The cost estimates for the two options are in the same range. The current report is a summary of the work done in the project 'Power Control for Wind Turbines in Weak Grids'. The project has been partly funded by EU under contractJOR3-CT95-0067....

  13. Groundwater quality in the Southern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  14. Groundwater quality in the Northern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  15. Revised model of regional groundwater flow of the Whiteshell Research Area: Summary

    International Nuclear Information System (INIS)

    Ophori, D.U.; Stevenson, D.R.; Gascoyne, M.; Brown, A.; Davison, C.C.; Chan, T.; Stanchell, F.W.

    1995-10-01

    Regional groundwater flow of the Whiteshell Research Area (WRA) is simulated in order to evaluate alternative locations for a hypothetical nuclear fuel waste disposal vault that maximizes retention of vault contaminants in the geosphere, and to define boundary conditions for a smaller local model around the vault. A revised conceptual model of the hydrogeologic conditions was constructed using all the information obtained from field investigations at the WRA between 1977 and 1994. All the simulations were performed using AECL's three-dimensional finite-element code, MOTIF. Average values of hydraulic parameters obtained from the field data were used for a base-case simulation, in which freshwater was assumed to occur in the entire flow region. The simulated average groundwater recharge rate for this base case did not compare favourably with the recharge rate that was estimated from the field data. Model calibration was ultimately achieved by modifying the hydraulic parameters and total dissolved solids (TDS) distribution of the fluid in a series of consecutive simulations. The simulated recharge rate for the final calibrated model was 4.8 mm/a which compares well with the rate of 5 mm/a, that was estimated from independent field experiments. The simulated freshwater heads also compared reasonably well with measured heads in the network of boreholes at the WRA. Most of the groundwater flow occurred in local systems between the ground surface and the depth of 2000 m. The travel times, pathways and exit locations of particles released from different depth horizons in the groundwater velocity field of the calibrated model were determined using a particle tracking code, TRACK3D. These results were used to select a location for a hypothetical nuclear fuel waste disposal vault that maximizes the retention of vault contaminants in a long, slow groundwater flow pathways. The selected location is about 5 km northeast of the location of Underground Research Laboratory (URL

  16. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    International Nuclear Information System (INIS)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  17. Groundwater protection plan for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Jaeger, G.K.; McMahon, W.J.; Ford, B.H.

    1996-01-01

    This document is the groundwater protection plan for the Environmental Restoration Disposal Facility (ERDF) Project. This plan is prepared based on the assumption that the ERDF will receive waste containing hazardous/dangerous constituents, radioactive constituents, and combinations of both. The purpose of this plan is to establish a groundwater monitoring program that (1) meets the intent of the applicable or relevant and appropriate requirements, (2) documents baseline groundwater conditions, (3) monitors those conditions for change, and (4) allows for modifications to groundwater sampling if required by the leachate management program. Groundwater samples indicate the occurrence of preexisting groundwater contamination in the uppermost unconfined aquifer below the ERDF Project site, as a result of past waste-water discharges in the 200 West Area. Therefore, it is necessary for the ERDF to establish baseline groundwater quality conditions and to monitor changes in the baseline over time. The groundwater monitoring program presented in this plan will provide the means to assess onsite and offsite impacts to the groundwater. In addition, a separate leachate management program will provide an indication of whether the liners are performing within design standards

  18. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  19. Human Genome Diversity Project. Summary of planning workshop 3(B): Ethical and human-rights implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The third planning workshop of the Human Genome Diversity Project was held on the campus of the US National Institutes of Health in Bethesda, Maryland, from February 16 through February 18, 1993. The second day of the workshop was devoted to an exploration of the ethical and human-rights implications of the Project. This open meeting centered on three roundtables, involving 12 invited participants, and the resulting discussions among all those present. Attendees and their affiliations are listed in the attached Appendix A. The discussion was guided by a schedule and list of possible issues, distributed to all present and attached as Appendix B. This is a relatively complete, and thus lengthy, summary of the comments at the meeting. The beginning of the summary sets out as conclusions some issues on which there appeared to be widespread agreement, but those conclusions are not intended to serve as a set of detailed recommendations. The meeting organizer is distributing his recommendations in a separate memorandum; recommendations from others who attended the meeting are welcome and will be distributed by the meeting organizer to the participants and to the Project committee.

  20. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    Science.gov (United States)

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  1. Resource impact evaluation of in-situ uranium groundwater restoration

    International Nuclear Information System (INIS)

    Charbeneau, R.J.; Rohlich, G.A.

    1981-11-01

    The purpose of this study was to determine the impact of restoration on the groundwater following in-situ uranium solution mining in South Texas. Restoration is necessary in order to reduce the amounts of undesired chemical constituents left in solution after mining operations have ceased, and thus return the groundwater to a quality consistent with pre-mining use and potential use. Various restoration strategies have been proposed and are discussed. Of interest are the hydrologic, environmental, social, and economic impacts of these restoration alternatives. Much of the discussion concerning groundwater restoration is based on the use of an ammonium carbonate-bicarbonate leach solution in the mining process. This has been the principal leach solution used during the early period of mining in South Texas. Recently, because of apparent difficulties in restoring ammonium to proposed or required levels, many of the companies have changed to the use of other leach solutions. Because little is known about restoration with these other leach solutions they have not been specifically addressed in this report. Likewise, we have not addressed the question of the fate of heavy metals. Following a summary of the development of South Texas in-situ mining in Chapter Two, Chapter Three describes the surface and groundwater resources of the uranium mining district. Chapter Four addresses the economics of water use, and Chapter Five is concerned with regulation of the in-situ uranium industry in Texas. A discussion of groundwater restoration alternatives and impacts is presented in Chapter Six. Chapter Seven contains a summary and a discussion, and conclusions derived from this study. Two case histories are presented in Appendices A and B

  2. Status and understanding of groundwater quality in the Northern Coast Ranges study unit, 2009: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    Groundwater quality in the 633-square-mile (1,639-square-kilometer) Northern Coast Ranges (NOCO) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program and the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The study unit is composed of two study areas (Interior Basins and Coastal Basins) and is located in northern California in Napa, Sonoma, Lake, Colusa, Mendocino, Glenn, Humboldt, and Del Norte Counties. The GAMA-PBP is being conducted by the California State Water Resources Control Board in collaboration with the USGS and the Lawrence Livermore National Laboratory.

  3. Groundwater monitoring plan: 200 Areas treated effluent disposal facility (Project W-049H)

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-04-01

    This groundwater monitoring plan provides information that supports the US Department of Energy's application (DOE-RL 1994) for waste water discharge permit No. WA-ST-4502 from the State of Washington, under the auspices of Washington Administrative Code 173-216. The monitoring plan has two functions: (1) to summarize the results of a 3-yr characterization of the current hydrogeology and groundwater quality of the discharge site and (2) to provide plans for evaluating the effects of the facility's operation on groundwater quality and document compliance with applicable groundwater quality standards. Three wells were drilled to define the stratigraphy, evaluate sediment characteristics, and establish a groundwater monitoring net work for the discharge facility. These wells monitor groundwater quality upgradient and downgradient in the uppermost aquifer. This report proposes plans for continuing the monitoring of groundwater quality and aquifer characteristics after waste water discharges begin

  4. Evaluation and prediction of groundwater storage changes in Beijing under the impacts of the South to North Water Diversion Project and climate change using ground observations, remote sensing and modeling

    Science.gov (United States)

    Long, D.; Wada, Y.; Zhao, J.; Hong, Y.; Liu, D.; You, L.

    2017-12-01

    As China's Capital, Beijing currently has a population of 22 million people with per capital water resources of less than 100 m3, one twentieth of the national average and one eightieth of the global. Groundwater withdrawals (2.3 billion m3/year) account for approximately two thirds of total water use (3.5 billion m3/year) in Beijing, resulting in significant groundwater depletion and associated environmental issues, such as land subsidence. Increases in human and ecological water demand would add further pressure on Beijing's groundwater resources. Unsustainable groundwater use threatens societal and economic development of Beijing and poses a large uncertainty in future water supply. To partly alleviate the water shortage issue in the more arid and industrialized North China, the Chinese government has launched the largest water diversion project in the world, i.e., the South to North Water Diversion Project (SNWD), which is a multi-decadal mega-infrastructure project, with the aim to transfer 44.8 billion m3 of fresh water annually from the Yangtze River in the more humid south through three canal and pipeline systems (east, central, and west routes). Its central route flows from the upper reaches of the Han River, a tributary of the Yangtze River to Beijing, Tianjin and other major cities in Hebei and Henan Provinces. Since Dec 2014 when the water transferred by the central route reached Beijing to Feb 2017, totally 2 billion m3 of water has been transferred. This has profoundly altered the structure of water supply in Beijing. This study quantifies how the SNWD project impacts groundwater storage of Beijing and projects how groundwater storage changes in the future under different climate and policy scenarios.

  5. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986

    International Nuclear Information System (INIS)

    Heffner, J.D.

    1991-01-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy's (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon's 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined

  6. IAEA KEN 7005 project: Evaluation of Surface and Groundwater Interaction of the Kilimanjaro Aquifer applying Isotope Techniques

    International Nuclear Information System (INIS)

    Opiyo, A.N.E.

    2017-01-01

    Mombasa City is the second largest city in Kenya, has inadequate water supply and experiences a chronic water shortage. Mombasa City and the other areas to its north are supplied with water from the Mzima springs and other systems. Mzima Springs is location in relation to Chyulu Hills and Mt. Kilimanjaro. This study therefore attempts to examine the relationship between Mzima Springs on one hand and Kilimanjaro Aquifer and Chyulu Hills aquifer/springs on the other. The overall objective of this project is to conduct water resources assessment to quantify water in the project area and establish the relationship between surface and groundwater resources in the Mt. Kilimanjaro, Lakes Jipe/Challa, Mzima and Chyulu Hills ecosystem. The Kilimanjaro aquifer includes the volcanic pyroclastic and volcanic alluvium deposits found at the base of Mount Kilimanjaro and extending across the Kenyan-Tanzanian border. Occurrence of groundwater in the surrounding basement plains is limited to faults, fractures and small parts of weathered zones and also to the bottom layers of wide alluvial valleys which are recharged by natural flood spreading. One of the achievement include establishment and equipping of the National Isotope Hydrology Laboratory

  7. A summary of the environmental restoration program retrieval demonstration project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McQuary, J.

    1991-02-01

    This report provides a summary of the Environmental Restoration Program's Retrieval Demonstration Project at the Idaho National Engineering Laboratory. This project developed concepts for demonstrating facilities and equipment for the retrieval of buried transuranic mixed waste at the INEL. Included is a brief assessment of the viability, cost effectiveness, and safety of retrieval based on the developed concept. Changes made in Revision 1 reflect editorial changes only. 31 refs., 1 fig

  8. Groundwater quality in the Southern Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.

  9. Groundwater quality in the Central Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.

  10. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    Science.gov (United States)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network

  11. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  12. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  13. Groundwater-quality data from the National Water-Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014

    Science.gov (United States)

    Arnold, Terri L.; Bexfield, Laura M.; Musgrove, MaryLynn; Lindsey, Bruce D.; Stackelberg, Paul E.; Barlow, Jeannie R.; Desimone, Leslie A.; Kulongoski, Justin T.; Kingsbury, James A.; Ayotte, Joseph D.; Fleming, Brandon J.; Belitz, Kenneth

    2017-10-05

    Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality; major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply; and enhanced trends networks, which are used to evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, radionuclides, and some constituents of special interest (arsenic speciation, chromium [VI] and perchlorate). These groundwater-quality data, along with data from quality-control samples, are tabulated in this report and in an associated data release.

  14. Influence of basalt/groundwater interactions on radionuclide migration

    International Nuclear Information System (INIS)

    Vandegrift, G.F.

    1984-01-01

    The work presented here is a partial summary of the experimental results obtained in the Laboratory Analog Program. Two aspects of this effort are (1) the interaction between simulated basaltic groundwater and basalt fissures that were either freshly cleaved or laboratory altered by hydrothermal treatment with the simulated groundwater and (2) the effect of this interaction on radionuclide migration through these basalt fissures. The following conclusions of this study bear heavily on the predicted safety of a basalt repository: Sorption properties of freshly fissured basalt and naturally aged basalt are quite different for different chemical species. Analog experiments predict that aged basalt would be an effective retarder of cesium, but would be much less so for actinide elements. Distribution ratios measured from batch experiments with finely ground rock samples (presenting unaltered rock surfaces) are not a reliable means of predicting radionuclide migration in geological repositories. As the near-repository area is resaturated by groundwater, its ability to retard actinide migration will be degraded with time. Disturbing the natural flow of groundwater through the repository area by constructing and backfilling the repository will modify the composition of groundwater. This modified groundwater is likely to interact with and to modify naturally aged basalt surfaces downstream from the repository

  15. SKI SITE-94, deep repository performance assessment project, summary

    International Nuclear Information System (INIS)

    1999-01-01

    SITE-94 is a comprehensive performance assessment exercise for a hypothetical repository for spent nuclear fuel at a real site in Sweden. SITE-94 was carried out to develop the capability and tools to enable Swedish Nuclear Power Inspectorate (SKI) to review fully the proposals for a deep repository which are expected to be made by the Swedish Nuclear Fuel and Waste Management Company, SKB (the implementor). Sweden is one of the leading countries in the research and development of geological disposal of radioactive waste. The developed methodology for performance assessment has attracted interests from other countries. The Summary of the main report of the SITE-94 project is translated here into Japanese to allow to make the information on the methodology and the related issues available among Japanese concerned. (author)

  16. Ground-water conditions in the vicinity of Enid, Oklahoma

    Science.gov (United States)

    Schoff, Stuart L.

    1948-01-01

    This memorandum summaries matter discussed at a meeting of the City Commission of Enid, Oklahoma, on Thursday, January 15, 1948, at which the write presented a brief analysis of the ground-water resources available to the City of Enid and answered questions brought up by the commissioners.

  17. Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations

    International Nuclear Information System (INIS)

    Closas, Alvar; Rap, Edwin

    2017-01-01

    The increasing demand for solar-powered irrigation systems in agriculture has spurred a race for projects as it potentially offers a cost-effective and sustainable energy solution to off-grid farmers while helping food production and sustaining livelihoods. As a result, countries such as Morocco and Yemen have been promoting this technology for farmers and national plans with variable finance and subsidy schemes like in India have been put forward. By focusing on the application of solar photovoltaic (PV) pumping systems in groundwater-fed agriculture, this paper highlights the need to further study the impacts, opportunities and limitations of this technology within the Water-Energy-Food (WEF) nexus. It shows how most policies and projects promoting solar-based groundwater pumping for irrigation through subsidies and other incentives overlook the real financial and economic costs of this solution as well as the availability of water resources and the potential negative impacts on the environment caused by groundwater over-abstraction. There is a need to monitor groundwater abstraction, targeting subsidies and improving the knowledge and monitoring of resource use. Failing to address these issues could lead to further groundwater depletion, which could threaten the sustainability of this technology and dependent livelihoods in the future. - Highlights: • Solar pumping projects require assessing environmental and financial sustainability. • Subsidies for solar pumping need to be tied to groundwater pumping regulations. • Solar irrigation projects need to consider groundwater availability and depletion. • Data and monitoring are needed to improve water resource impact assessments.

  18. Summary of operations and performance of the Murdock site restoration project in 2007.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-06-03

    This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the second full year of system operation, from January 1 through December 31, 2007. Performance in June 2005 through December 2006 was reported previously (Argonne 2007). In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. The annual performance reports for the Murdock project assemble information that will become part of the five-year review and evaluation of the remediation effort. This review will occur in 2010. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the current period of operation. A gallery of photographs of the Murdock project is in Appendix A. A brief

  19. Groundwater quality in the Tahoe and Martis Basins, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.

  20. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  1. The UMTRA PEIS: A strategy for groundwater remediation

    International Nuclear Information System (INIS)

    Burt, C.; Ulland, L.; Weston, R.F.; Metzler, D.

    1993-01-01

    A programmatic environmental impact statement (PEIS) was initiated in 1992 for the uranium mill tailings remedial action (UMTRA) program. The PEIS kicked off the groundwater restoration phase of UMTRA, a project involving remediation of 24 sites in ten states and tribal lands contaminated with tailings from uranium mining and milling operations. The U.S. Department of Energy (DOE) agreed, in early 1992, that a PEIS was an appropriate strategy to comply with the National Environmental Policy Act (NEPA) for this second, groundwater phase of the project. This decision recognized that although a parallel effort was being undertaken in preparing a PEIS for DOE's Environmental Restoration/Waste Management (ER/WM) program, characteristics and the maturity of the UMTRA project made it more appropriate to prepare a separate PEIS. The ER/WM PEIS is intended to examine environmental restoration and waste management issues from a very broad perspective. For UMTRA, with surface remediation completed or well under way at 18 of the 24 sites, a more focused programmatic approach for groundwater restoration is more effective than including the UMTRA project within the ER/WM environmental impact statements. A separate document allows a more focused and detailed analysis necessary to efficiently tier site-specific environmental assessments for groundwater restoration at each of the 24 UMTRA former processing sites

  2. Summary of the technical guidelines used in the project: The economics of greenhouse gas limitations

    International Nuclear Information System (INIS)

    Halsnaes, Kirsten

    1998-01-01

    This document is a summary version of the technical guidelines for climate change mitigation assessment developed as a part of the Global Environment Facility (GEF) project The Economics of Greenhouse Gas Limitations; Technical guidelines (UNEP 1998). The objectives of this project have been to support the development of a methodology, an implementing framework and a reporting system which countries can use in the construction of national climate change policies and in meeting their future reporting obligations under the FCCC. The methodological framework developed in the guidelines covers key economic concepts, scenario building, modelling tools and common assumptions. It was used by several country studies included in the project. (au)

  3. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1993-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  4. Compliance status summaries for federal and state statutory directives that apply to the Salt Repository Project at the Deaf Smith County Site, Texas

    International Nuclear Information System (INIS)

    1986-07-01

    This document contains statutory summaries, checklists of compliance requirements, status summaries, and lists of information needs for the environmental and health and safety statutory directives at Federal and State levels that apply to the Salt Repository Project at the Deaf Smith County Site, Texas. Statutes that apply in general to any repository project but not specifically to the Deaf Smith are not included. The information herein supplements the Salt Repository Project Statutory Compliance Plan and the Salt Repository Project Permitting Management Plan by providing lengthy details on statutory directives, compliance requirements, information needs, and the overall status of the environmental and health and safety compliance program for the Salt Repository Project at the Deaf Smith County Site, Texas

  5. Status and understanding of groundwater quality in the Klamath Mountains study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George Luther; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations

  6. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  7. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  8. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  9. Simulated effects of projected ground-water withdrawals in the Floridan aquifer system, greater Orlando metropolitan area, east-central Florida

    Science.gov (United States)

    Murray, Louis C.; Halford, Keith J.

    1999-01-01

    Ground-water levels in the Floridan aquifer system within the greater Orlando metropolitan area are expected to decline because of a projected increase in the average pumpage rate from 410 million gallons per day in 1995 to 576 million gallons per day in 2020. The potential decline in ground-water levels and spring discharge within the area was investigated with a calibrated, steady-state, ground-water flow model. A wetter-than-average condition scenario and a drought-condition scenario were simulated to bracket the range of water-levels and springflow that may occur in 2020 under average rainfall conditions. Pumpage used to represent the drought-condition scenario totaled 865 million gallons per day, about 50 percent greater than the projected average pumpage rate in 2020. Relative to average 1995 steady-state conditions, drawdowns simulated in the Upper Floridan aquifer exceeded 10 and 25 feet for wet and dry conditions, respectively, in parts of central and southwest Orange County and in north Osceola County. In Seminole County, drawdowns of up to 20 feet were simulated for dry conditions, compared with 5 to 10 feet simulated for wet conditions. Computed springflow was reduced by 10 percent for wet conditions and by 38 percent for dry conditions, with the largest reductions (28 and 76 percent) occurring at the Sanlando Springs group. In the Lower Floridan aquifer, drawdowns simulated in southwest Orange County exceeded 20 and 40 feet for wet and dry conditions, respectively.

  10. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI

  11. National Land Imaging Requirements (NLIR) Pilot Project summary report: summary of moderate resolution imaging user requirements

    Science.gov (United States)

    Vadnais, Carolyn; Stensaas, Gregory

    2014-01-01

    Under the National Land Imaging Requirements (NLIR) Project, the U.S. Geological Survey (USGS) is developing a functional capability to obtain, characterize, manage, maintain and prioritize all Earth observing (EO) land remote sensing user requirements. The goal is a better understanding of community needs that can be supported with land remote sensing resources, and a means to match needs with appropriate solutions in an effective and efficient way. The NLIR Project is composed of two components. The first component is focused on the development of the Earth Observation Requirements Evaluation System (EORES) to capture, store and analyze user requirements, whereas, the second component is the mechanism and processes to elicit and document the user requirements that will populate the EORES. To develop the second component, the requirements elicitation methodology was exercised and refined through a pilot project conducted from June to September 2013. The pilot project focused specifically on applications and user requirements for moderate resolution imagery (5–120 meter resolution) as the test case for requirements development. The purpose of this summary report is to provide a high-level overview of the requirements elicitation process that was exercised through the pilot project and an early analysis of the moderate resolution imaging user requirements acquired to date to support ongoing USGS sustainable land imaging study needs. The pilot project engaged a limited set of Federal Government users from the operational and research communities and therefore the information captured represents only a subset of all land imaging user requirements. However, based on a comparison of results, trends, and analysis, the pilot captured a strong baseline of typical applications areas and user needs for moderate resolution imagery. Because these results are preliminary and represent only a sample of users and application areas, the information from this report should only

  12. Task force on modelling of groundwater flow and transport of solutes. Task 5 Summary report

    International Nuclear Information System (INIS)

    Rhen, Ingvar; Smellie, John

    2003-02-01

    The Aespoe Hard Rock Laboratory is located in the Simpevarp area, southeast Sweden, some 35 km north of Oskarshamn. Construction of the underground laboratory commenced in 1990 and was completed in 1995, consisting of a 3.6 km. long tunnel excavated in crystalline rock to a depth of approximately 460 m. Prior to, during and subsequent to completion, research concerning the deep geological disposal of nuclear waste in fractured crystalline rock has been carried out. Central to this research has been the characterisation of the groundwater flow system and the chemistry of the groundwaters at Aespoe prior to excavation (Pre-investigation Phase) and subsequently to monitor changes in these parameters during the evolution of laboratory construction (Construction Phase). The principle aim of the Aespoe Task 5 modelling exercise has been to compare and ultimately integrate hydrogeochemistry and hydrogeology using the input data from the pre-investigation and construction phases. The main objectives were: to assess the consistency of groundwater-flow models and hydrogeochemical mixing-reaction models through integration and comparison of hydraulic and hydrogeochemical data obtained before and during tunnel construction, and to develop a procedure for integration of hydrological and hydrogeochemical information which could be used for disposal site assessments. Task 5 commenced in 1998 and was finalised in 2002. Participating modelling teams in the project represented ANDRA (France; three modelling teams - ANTEA, ITASCA, CEA), BMWi/BGR (Germany), ENRESA (Spain), JNC (Japan), CRIEPI (Japan), Posiva (Finland) and SKB (Sweden; two modelling teams - CFE and Intera (now GeoPoint)). Experience from Task 5 has highlighted several important aspects for site investigations facilitating the possibilities for mathematically integrated modelling and consistency checks that should be taken into account for future repository performance assessments. Equally important is that Task 5 has

  13. Task force on modelling of groundwater flow and transport of solutes. Task 5 Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden)

    2003-02-01

    The Aespoe Hard Rock Laboratory is located in the Simpevarp area, southeast Sweden, some 35 km north of Oskarshamn. Construction of the underground laboratory commenced in 1990 and was completed in 1995, consisting of a 3.6 km. long tunnel excavated in crystalline rock to a depth of approximately 460 m. Prior to, during and subsequent to completion, research concerning the deep geological disposal of nuclear waste in fractured crystalline rock has been carried out. Central to this research has been the characterisation of the groundwater flow system and the chemistry of the groundwaters at Aespoe prior to excavation (Pre-investigation Phase) and subsequently to monitor changes in these parameters during the evolution of laboratory construction (Construction Phase). The principle aim of the Aespoe Task 5 modelling exercise has been to compare and ultimately integrate hydrogeochemistry and hydrogeology using the input data from the pre-investigation and construction phases. The main objectives were: to assess the consistency of groundwater-flow models and hydrogeochemical mixing-reaction models through integration and comparison of hydraulic and hydrogeochemical data obtained before and during tunnel construction, and to develop a procedure for integration of hydrological and hydrogeochemical information which could be used for disposal site assessments. Task 5 commenced in 1998 and was finalised in 2002. Participating modelling teams in the project represented ANDRA (France; three modelling teams - ANTEA, ITASCA, CEA), BMWi/BGR (Germany), ENRESA (Spain), JNC (Japan), CRIEPI (Japan), Posiva (Finland) and SKB (Sweden; two modelling teams - CFE and Intera (now GeoPoint)). Experience from Task 5 has highlighted several important aspects for site investigations facilitating the possibilities for mathematically integrated modelling and consistency checks that should be taken into account for future repository performance assessments. Equally important is that Task 5 has

  14. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  15. Ground-water monitoring compliance projects for Hanford Site Facilities: Progress report for the period April 1--June 30, 1988: Volume 1, Text

    International Nuclear Information System (INIS)

    1988-09-01

    This is Volume 1 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses the projects; Volume 2 provides as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area and near the 216-A-36B Crib

  16. Summaries of FY 1997 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1997, it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The individual project summaries follow the program overview. The summaries are ordered alphabetically by name of institution; the table of contents lists all the institutions at which projects were sponsored in fiscal year 1997. Each project entry begins with an institutional-departmental heading. The names of investigators are listed immediately below the title. The funding level for fiscal year 1997 appears to the right of address. The summary description of the project completes the entry. A separate index of Principal Investigators includes phone number, fax number and e-main address, where available.

  17. Simulant composition for the Mixed Waste Management Facility (MWMF) groundwater remediation project

    International Nuclear Information System (INIS)

    Siler, J.L.

    1992-01-01

    A project has been initiated at the request of ER to study and remediate the groundwater contamination at the Mixed Waste Management Facility (MWMF). This water contains a wide variety of both inorganics (e.g., sodium) and organics (e.g., benzene, trichloroethylene). Most compounds are present in the ppB range, and certain components (e.g., trichloroethylene, silver) are present at concentrations that exceed the primary drinking water standards (PDWS). These compounds must be reduced to acceptable levels as per RCRA and CERCLA orders. This report gives a listing of the important constituents which are to be included in a simulant to model the MWMF aquifer. This simulant will be used to evaluate the feasibility of various state of the art separation/destruction processes for remediating the aquifer

  18. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    International Nuclear Information System (INIS)

    1995-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and open-quotes Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilitiesclose quotes (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported

  19. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  20. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  1. Annual report for RCRA groundwater monitoring projects at Hanford site facilities for 1994

    International Nuclear Information System (INIS)

    1995-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the U.S. Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1993 and September 1994. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  2. The Palmottu Analogue Project, Progress Report 1993. The behaviour of natural radionuclides in and around uranium deposits, Nr. 7

    International Nuclear Information System (INIS)

    Ruskeeniemi, T.; Blomqvist, R.; Suksi, J.; Niini, H.

    1994-01-01

    The report gives a summary of the results of investigations carried out in 1993 at the Palmottu natural analogue study site, which comprises a small U-Th mineralization in Nummi-Pusula, southwestern Finland. Additionally, the report includes several separate articles dealing with various aspects of the Palmottu Analogue Project: (1) 3-dimensional model of fracture zones, (2) redox chemistry of uranium in groundwater, (3) humic substances in groundwater, (4) uranium mineralogy, (5) importance of selective extractions in uranium migration studies, (6) modelling of matrix diffusion, and (7) uranium in surficial deposits. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes (1) structural interpretations partly based on geophysical measurements, (2) hydrological studies including hydraulic drill-hole measurements, (3) flow modelling, (4) hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, (5) mineralogical studies, (6) geochemical interpretation and modelling, (7) studies on mobilization and retardation of uranium, and (8) modelling of uranium series data. Paleohydrogeological aspects are of special interest, due to the anticipated future glaciation of the Fennoscandian Shield. Surficial sediments and waters are studied to gain information on postglacial migration in the overburden. (orig.)

  3. Groundwater quality in the Cascade Range and Modoc Plateau, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2015-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Cascade Range and Modoc Plateau area constitutes one of the study units being evaluated.

  4. California’s Groundwater Regime: The Cadiz Case

    Directory of Open Access Journals (Sweden)

    Julia Sizek

    2018-01-01

    Full Text Available Recent California legislation has promised solutions to longstanding problems in groundwater management through an emphasis on management of groundwater itself, rather than on the rights of overlying property owners. In this short communication, I argue that the promises of scientific management relies on property law and jurisdiction and therefore that scientific claims about the water itself are less important than private property claims in the case of a Cadiz Inc.’s proposed groundwater extraction project in Southeastern California. While private property in land insulates Cadiz Inc. (Los Angeles, CA, USA from political contestation, opposition to the project has increasingly focused on the right to transport and transfer water through lands not held by Cadiz Inc. This legal strategy points to how California groundwater law is still fundamentally ruled by private property in land, which shifts the grounds of environmental politics from extraction itself to the transport of extracted materials. This case serves as a good example of the intersection of political ecology and legal geography.

  5. Environmental isotope study of a groundwater supply project in the Kalahari of Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.T.

    1984-01-01

    A feasibility study for a central fresh groundwater supply scheme in the Kalahari of the Gordonia district, South Africa, provided the opportunity to study fresh and saline water occurrences in detail with environmental isotopes. The isotopic and chemical signals show a clear contrast among groundwaters below a river bed, an extended fresh groundwater body and saline groundwaters in close proximity to the river. Carbon-14, tritium and stable-isotope data lead to a vertical rain recharge model rather than a regional flow mechanism for an understanding of the various water occurrences, their interrelationships and varied hydrochemistry. (author)

  6. Assessment and uncertainty analysis of groundwater risk.

    Science.gov (United States)

    Li, Fawen; Zhu, Jingzhao; Deng, Xiyuan; Zhao, Yong; Li, Shaofei

    2018-01-01

    Groundwater with relatively stable quantity and quality is commonly used by human being. However, as the over-mining of groundwater, problems such as groundwater funnel, land subsidence and salt water intrusion have emerged. In order to avoid further deterioration of hydrogeological problems in over-mining regions, it is necessary to conduct the assessment of groundwater risk. In this paper, risks of shallow and deep groundwater in the water intake area of the South-to-North Water Transfer Project in Tianjin, China, were evaluated. Firstly, two sets of four-level evaluation index system were constructed based on the different characteristics of shallow and deep groundwater. Secondly, based on the normalized factor values and the synthetic weights, the risk values of shallow and deep groundwater were calculated. Lastly, the uncertainty of groundwater risk assessment was analyzed by indicator kriging method. The results meet the decision maker's demand for risk information, and overcome previous risk assessment results expressed in the form of deterministic point estimations, which ignore the uncertainty of risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Groundwater flow simulation on local scale. Setting boundary conditions of groundwater flow simulation on site scale model in the step 4

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Ohyama, Takuya

    2007-03-01

    Japan Atomic Energy Agency has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological at several spatial scales. The RHS project is a Local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The Surface-based Investigation Phase of the MIU project is a Site scale study for understanding the deep geological environment immediately surrounding the MIU construction site using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow simulation on Local scale were carried out in order to set boundary conditions of the Site scale model based on the data obtained from surface-based investigations in the Step4 in Site scale of the MIU project. As a result of the study, boundary conditions for groundwater flow simulation on the Site scale model of the Step4 could be obtained. (author)

  8. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  9. Massachusetts Institute of Technology School of Chemical Engineering Practice, Brookhaven station: Summary of projects, 1983-1986

    International Nuclear Information System (INIS)

    1987-11-01

    The MIT Graduate School of Chemical Engineering Practice stresses engineering problem solving. The Practice School program, as it is commonly called, develops in a unique and particularly effective way the student's ability to apply fundamentals to problems in the chemical industry and thus accelerates one's professional development. The themes of atomization, emthanol production and utilization, hydrogen production and compression, localized electrochemical corrosion and biochemical engineering reflect some of the major programs at the Laboratory. The titles of all the projects are listed in chronological order in the index at the end of this document. Brief summaries are presented for each project with related projects grouped together

  10. RIBA Project - Risk-Informed approach for In-Service Inspection of Nuclear Power Plant Components. Project summary

    International Nuclear Information System (INIS)

    Lidbury, D.; Smith, G.

    2001-12-01

    The need for a European review of a Risk-Informed Approach for In-Service Inspection of Nuclear Power Plant Components (RIBA) was identified in 1998. This was as a priority item in the programme of activities conducted in the framework of the Council Resolutions of 22 July 1975 and of 18 June 1992 on the Technological Problems of Nuclear Safety. The RIBA Project was established in November 1999 as a 24-month Study Contract funded by the European Commission within the frame of the former DG XI WGCS (Working Group on Codes and Standards). The Study Contract was subsequently managed for the EC by DG TREN. The participants in RIBA were Serco Assurance (project coordinator), Ringhals AB, EDF, Tecnatom SA and Westinghouse Electric Europe. The work is presented in a summary report with the detailed results contained in three companion reports as follows: main conclusions and recommendations, Review of Existing Risk-Informed Methodologies, A Comparative Study of Risk-Informed In-Service Inspection Applications, Conclusions and Recommendations for Risk-Informed in-service inspection methodology applied to Nuclear Power Plants in Europe. (author)

  11. International collaborative fire modeling project (ICFMP). Summary of benchmark

    International Nuclear Information System (INIS)

    Roewekamp, Marina; Klein-Hessling, Walter; Dreisbach, Jason; McGrattan, Kevin; Miles, Stewart; Plys, Martin; Riese, Olaf

    2008-09-01

    This document was developed in the frame of the 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' (ICFMP). The objective of this collaborative project is to share the knowledge and resources of various organizations to evaluate and improve the state of the art of fire models for use in nuclear power plant fire safety, fire hazard analysis and fire risk assessment. The project is divided into two phases. The objective of the first phase is to evaluate the capabilities of current fire models for fire safety analysis in nuclear power plants. The second phase will extend the validation database of those models and implement beneficial improvements to the models that are identified in the first phase of ICFMP. In the first phase, more than 20 expert institutions from six countries were represented in the collaborative project. This Summary Report gives an overview on the results of the first phase of the international collaborative project. The main objective of the project was to evaluate the capability of fire models to analyze a variety of fire scenarios typical for nuclear power plants (NPP). The evaluation of the capability of fire models to analyze these scenarios was conducted through a series of in total five international Benchmark Exercises. Different types of models were used by the participating expert institutions from five countries. The technical information that will be useful for fire model users, developers and further experts is summarized in this document. More detailed information is provided in the corresponding technical reference documents for the ICFMP Benchmark Exercises No. 1 to 5. The objective of these exercises was not to compare the capabilities and strengths of specific models, address issues specific to a model, nor to recommend specific models over others. This document is not intended to provide guidance to users of fire models. Guidance on the use of fire models is currently being

  12. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  13. Summary and report on four national environmental workshops

    Energy Technology Data Exchange (ETDEWEB)

    House, Peter W.

    1980-07-01

    Individual abstracts were prepared for the summaries of four workshops held during the last two years: (1) Integrated Assessment for Energy Related Environmental Standards Workshop - Berkeley, California, November 1978; (2) National Ecological Assessment Workshop - Savannah, Georgia, January 1979; (3) National/Regional Modelling Workshop - Reston, Virginia, May 1979; (4) Groundwater Workshop - Albuquerque, New Mexico, January 1980. (JGB)

  14. Summary report of the TC regional project on 'QA/QC of nuclear analytical techniques' RER-2-004 (1999-2001)

    International Nuclear Information System (INIS)

    Akgun, A. Fadil

    2002-01-01

    This report provides a summary of the Cekmece Nuclear Research and Training Centre participation in the Project. The Project helped in setting up quality assurance system in the Centre and resulted in a progress in analytical proficiency as shown in the proficiency test results. The main accomplishments are listed along with the tasks to be done

  15. Summaries of FY 1995 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The individual engineering project summaries follow the program overview. The summaries are ordered alphabetically by name of institution and so the table of contents lists all the institutions at which projects were sponsored in fiscal year 1995. Each project entry begins with an institutional-departmental heading. The names of investigators are listed immediately below the title. The funding level for fiscal year 1995 appears to the right of title; it is followed by the budget activity number. These numbers categorize the projects for budgetary purposes and the categories are described in the budget number index. A separate index of Principal Investigators includes phone number, fax number and e-mail address, where available. The fiscal year in which either the project began or was renewed and the anticipated duration in years are indicated respectively by the first two and last digits of the sequence directly below the budget activity number. The summary description of the project completes the entry.

  16. Environmental monitoring six month report for the Tumulus Disposal Demonstration Project

    International Nuclear Information System (INIS)

    Yager, R.E.; Furnari, J.A.; Craig, P.M.

    1989-05-01

    The Fiscal Year 1989 Six Month Report is the fourth in a series of semi-annual Tumulus Disposal Demonstration Project (TDDP) data summary reports. This data summary spans the time from start of operations in June 1987 through the end of March 1989 with particular emphasis on the last six months: October 1988 through March 1989. The environmental data collected include run-off water quality and quantity, groundwater quality and levels, soil sampling and hydrometeorological data. These data are being used and analyzed here to demonstrate the environmental performance objectives for the TDDP as part of the overall performance assessment. Comparisons are made between pre- and post-operational data and data collected during size month period ending March 31, 1989. No significant environmental impacts have been found since operations have begun. 13 refs., 28 figs., 12 tabs

  17. Design of groundwater pollution expert system: forward chaining and interfacing

    International Nuclear Information System (INIS)

    Mongkon Ta-oun; Mohamed Daud; Mohd Zohadie Bardaie; Shamshuddin Jusop

    2000-01-01

    The groundwater pollution expert system (GWPES was developed by C Language Integrate Production System (CLEPS). The control techniques of this system consider some conclusion and then attempts to prove it by searching for supportive information from the database. The inference process goes in forward chaining of this system such as predicting groundwater pollution vulnerability, predicting the effect of nitrogen fertiliser, agricultural impact and project development on groundwater pollution potential. In GWPES, forward chaining system begins with a matching of inputs with the existing database of groundwater environment and activities impact of the project development. While, interaction between an expert system and user is conducted in simple English language. The interaction is highly interactive. A basis design with simple Graphic User Interface (GUI) to input data and by asking simple questions. (author)

  18. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    International Nuclear Information System (INIS)

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters

  19. Status and understanding of groundwater quality in the Madera, Chowchilla Study Unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2013-01-01

    Groundwater quality in the approximately 860-square-mile Madera and Chowchilla Subbasins (Madera-Chowchilla study unit) of the San Joaquin Valley Basin was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in California's Central Valley region in parts of Madera, Merced, and Fresno Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The Project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in California. The primary aquifer system within each study unit is defined by the depth of the perforated or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Madera-Chowchilla study unit were based on water-quality and ancillary data collected by the USGS from 35 wells during April-May 2008 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of natural factors and human activities affecting groundwater quality. The primary aquifer system is represented by the grid wells, of which 90 percent (%) had depths that ranged from about 200 to 800 feet (ft) below land surface and had depths to the top of perforations that ranged from about 140 to 400 ft below land surface. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for

  20. Transfer of European Approach to Groundwater Monitoring in China

    Science.gov (United States)

    Zhou, Y.

    2007-12-01

    Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies

  1. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  2. In situ treatment of mixed contaminants in groundwater: Application of zero-valence iron and palladized iron for treatment of groundwater contaminated with trichloroethene and technetium-99

    International Nuclear Information System (INIS)

    Korte, N.E.; Muck, M.T.; Zutman, J.L.; Schlosser, R.M.; Liang, L.; Gu, B.; Houk, T.C.; Fernando, Q.

    1997-04-01

    The overall goal of this portion of the project was to package one or more unit processes, as modular components in vertical and/or horizontal recirculation wells, for treatment of volatile organic compounds (VOCs) [e.g., trichloroethene (TCE)] and radionuclides [e.g., technetium (Tc) 99 ] in groundwater. The project was conceived, in part, because the coexistence of chlorinated hydrocarbons and radionuclides has been identified as the predominant combination of groundwater contamination in the US Department of Energy (DOE) complex. Thus, a major component of the project was the development of modules that provide simultaneous treatment of hydrocarbons and radionuclides. The project objectives included: (1) evaluation of horizontal wells for inducing groundwater recirculation, (2) development of below-ground treatment modules for simultaneous removal of VOCs and radionuclides, and (3) demonstration of a coupled system (treatment module with recirculation well) at a DOE field site where both VOCs and radionuclides are present in the groundwater. This report is limited to the innovative treatment aspects of the program. A report on pilot testing of the horizontal recirculation system was the first report of the series (Muck et al. 1996). A comprehensive report that focuses on the engineering, cost and hydrodynamic aspects of the project has also been prepared (Korte et al. 1997a)

  3. In situ treatment of mixed contaminants in groundwater: Application of zero-valence iron and palladized iron for treatment of groundwater contaminated with trichloroethene and technetium-99

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Muck, M.T.; Zutman, J.L.; Schlosser, R.M. [Oak Ridge National Lab., Grand Junction, CO (United States); Liang, L.; Gu, B. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Siegrist, R.L. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.]|[Colorado School of Mines, Golden, CO (United States); Houk, T.C. [Portsmouth Gaseous Diffusion Plant, Piketon, OH (United States); Fernando, Q. [Univ. of Arizona, Tucson, AZ (United States)

    1997-04-01

    The overall goal of this portion of the project was to package one or more unit processes, as modular components in vertical and/or horizontal recirculation wells, for treatment of volatile organic compounds (VOCs) [e.g., trichloroethene (TCE)] and radionuclides [e.g., technetium (Tc){sup 99}] in groundwater. The project was conceived, in part, because the coexistence of chlorinated hydrocarbons and radionuclides has been identified as the predominant combination of groundwater contamination in the US Department of Energy (DOE) complex. Thus, a major component of the project was the development of modules that provide simultaneous treatment of hydrocarbons and radionuclides. The project objectives included: (1) evaluation of horizontal wells for inducing groundwater recirculation, (2) development of below-ground treatment modules for simultaneous removal of VOCs and radionuclides, and (3) demonstration of a coupled system (treatment module with recirculation well) at a DOE field site where both VOCs and radionuclides are present in the groundwater. This report is limited to the innovative treatment aspects of the program. A report on pilot testing of the horizontal recirculation system was the first report of the series (Muck et al. 1996). A comprehensive report that focuses on the engineering, cost and hydrodynamic aspects of the project has also been prepared (Korte et al. 1997a).

  4. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  5. Dissolution rate of alpha-doped UO2 in natural groundwater

    International Nuclear Information System (INIS)

    Ollila, Kaija; Myllykylä, Emmi; Tanhua-Tyrkkö, Merja; Lavonen, Tiina

    2013-01-01

    The objective of this work is to determine whether the presence of trace elements in natural groundwaters affects the dissolution rate of uranium dioxide in the presence of alpha radiation that causes radiolysis of water. The study is a part of the project Reducing Uncertainty in Performance Prediction (REDUPP) under the Seventh Framework Programme of the European Atomic Energy Community (EURATOM). The project aims to reduce uncertainties related to the extrapolation of the results of laboratory experiments to the conditions expected under geologic disposal. Thus far, synthetic groundwater has been normally used in the experiments. The synthetic groundwaters used do not contain all of the chemical elements that occur in natural groundwaters. Three natural groundwaters were chosen for the dissolution experiments with 0%, 5%, and 10% 233 U-doped UO 2 samples. These include a brackish groundwater, a saline groundwater and a low ionic strength groundwater. At the time of writing this paper, the dissolution experiments have been finished in the first groundwater, which was a moderately saline, brackish groundwater. The groundwater samples for the experiments were taken from a borehole in the Olkiluoto site in Finland. The measurements for dissolution rates were conducted under reducing conditions established using metallic iron in solution and an argon atmosphere in the glove box. The isotope dilution method was used to decrease uncertainties due to precipitation and sorption effects. The resulting dissolution rates in OL-KR6 natural groundwater were generally somewhat higher than the rates measured previously in synthetic groundwaters under similar redox conditions. No clear effect of alpha radiolysis could be seen for tests with lower SA/V, while those for higher SA/V indicated that the dissolution rate was higher for the 10% 233 U-doped UO 2 , suggesting the effect of alpha radiolysis under these conditions

  6. Environmental monitoring annual report for the Tumulus Disposal Demonstration Project

    International Nuclear Information System (INIS)

    Yager, R.E.; Craig, P.M.

    1989-01-01

    The Fiscal Year 1988 Annual Report is the third in a series of semi-annual Tumulus Development Disposal Project data summary reports. The reporting schedule has been modified to correspond to the fiscal years and the subcontractor contract periods. This data summary spans the time from start of operations in June 1987 through the end of September 1988. The environmental data collected include run-off water quality and quantity, groundwater quality and levels, soil sampling and hydrometeorological data. This data is being used and analyzed here to demonstrate the environmental performance objectives for the TDDP as part of the overall performance assessment for the TDDP. Approximately one year of pre-operational data were collected prior to operations beginning on April 11, 1988. Comparisons are made between pre- and post-operational data. No significant environmental impacts have been found since operations have begun. 10 refs., 21 figs., 22 tabs

  7. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  8. Groundwater quality in the North San Francisco Bay shallow aquifer, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2018-02-23

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The North San Francisco Bay Shallow Aquifer constitutes one of the study units being evaluated.

  9. Pre-feasibility workbook for bioenergy projects in eastern Ontario : executive summary

    International Nuclear Information System (INIS)

    Rees, C.; Bradley, D.; DeYoe, D.

    2007-03-01

    This summary provided details of a pre-feasibility workbook designed to assist communities and developers in better understanding bioenergy challenges and opportunities in Ontario. The workbook examined issues related to the conversion of biomass through thermal conversion technologies and focused on combined heat and power projects that used forest and agricultural biomass in order to produce up to 10 MW of electricity under the Ontario Renewable Standard Offer Program. As part of the program, new generators of no more than 10 MW are paid a base rate of 11 cents per kWh and an additional 3.52 cents per kWh for on-peak production. The workbook was comprised of a review of biomass supply in the eastern Ontario region and included both forested and abandoned farm lands. A base-line financial analysis was included to assess the feasibility of projects using combustion, pyrolysis, and gasification technologies. Biomass sources in the region included mill residue, harvest waste, biomass mortality from natural events, stand management, and standing timber. Key elements required for parties interested in considering a bioenergy business initiative were also included

  10. Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand.

    Science.gov (United States)

    Pholkern, Kewaree; Saraphirom, Phayom; Srisuk, Kriengsak

    2018-08-15

    The Central Huai Luang Basin is one of the important rice producing areas of Udon Thani Province in Northeastern Thailand. The basin is underlain by the rock salt layers of the Maha Sarakham Formation and is the source of saline groundwater and soil salinity. The regional and local groundwater flow systems are the major mechanisms responsible for spreading saline groundwater and saline soils in this basin. Climate change may have an impact on groundwater recharge, on water table depth and the consequences of waterlogging, and on the distribution of soil salinity in this basin. Six future climate conditions from the SEACAM and CanESM2 models were downscaled to investigate the potential impact of future climate conditions on groundwater quantity and quality in this basin. The potential impact was investigated by using a set of numerical models, namely HELP3 and SEAWAT, to estimate the groundwater recharge and flow and the salt transport of groundwater simulation, respectively. The results revealed that within next 30years (2045), the future average annual temperature is projected to increase by 3.1°C and 2.2°C under SEACAM and CanESM2 models, respectively, while the future precipitation is projected to decrease by 20.85% under SEACAM and increase by 18.35% under the CanESM2. Groundwater recharge is projected to increase under the CanESM2 model and to slightly decrease under the SEACAM model. Moreover, for all future climate conditions, the depths of the groundwater water table are projected to continuously increase. The results showed the impact of climate change on salinity distribution for both the deep and shallow groundwater systems. The salinity distribution areas are projected to increase by about 8.08% and 56.92% in the deep and shallow groundwater systems, respectively. The waterlogging areas are also projected to expand by about 63.65% from the baseline period. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Hydrogeological framework, numerical simulation of groundwater flow, and effects of projected water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Correll, Jessica S.

    2016-01-14

    This report describes a study of the hydrology, hydrogeological framework, numerical groundwater-flow models, and results of simulations of the effects of water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma. The purpose of the study was to provide analyses, including estimating equal-proportionate-share (EPS) groundwater-pumping rates and the effects of projected water use and droughts, pertinent to water management of the Beaver-North Canadian River alluvial aquifer for the Oklahoma Water Resources Board.

  12. Mixed waste management facility groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    International Nuclear Information System (INIS)

    1997-03-01

    During fourth quarter 1996, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroethene, chloroform, 1,1-dichloroethylene, dichloromethane, gross alpha, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone llB2 (Water Table) and Aquifer Zone llB1 (Barnwell/McBean) wells and in six Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters

  13. Groundwater Annual Status Report for Fiscal Year 1998

    International Nuclear Information System (INIS)

    A. K. Stoker; A. S. Johnson; B. D. Newman; B. M. Gallaher; C. L. Nylander; D. B. Rogers; D. E. Broxton; D. Katzman; E. H. Keating; G. L. Cole; K. A. Bitner; K. I. Mullen; P. Longmire; S. G. McLin; W. J. Stone

    1999-01-01

    Groundwater protection activities and hydrogeologic characterization studies are conducted at LANL annually. A summary of fiscal year 1998 results and findings shows increased understanding of the hydrogeologic environment beneath the Pajarito Plateau and significant refinement to elements of the LANL Hydrogeologic Conceptual Model pertaining to areas and sources of recharge to the regional aquifer. Modeling, drilling, monitoring, and data collection activities are proposed for fiscal year 1999

  14. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed

  15. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle Ann

    2016-01-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10–20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using

  16. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  17. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  18. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  19. Demonstration of Autonomous Rendezvous Technology (DART) Project Summary

    Science.gov (United States)

    Rumford, TImothy E.

    2003-01-01

    Since the 1960's, NASA has performed numerous rendezvous and docking missions. The common element of all US rendezvous and docking is that the spacecraft has always been piloted by astronauts. Only the Russian Space Program has developed and demonstrated an autonomous capability. The Demonstration of Autonomous Rendezvous Technology (DART) project currently funded under NASA's Space Launch Initiative (SLI) Cycle I, provides a key step in establishing an autonomous rendezvous capability for the United States. DART's objective is to demonstrate, in space, the hardware and software necessary for autonomous rendezvous. Orbital Sciences Corporation intends to integrate an Advanced Video Guidance Sensor and Autonomous Rendezvous and Proximity Operations algorithms into a Pegasus upper stage in order to demonstrate the capability to autonomously rendezvous with a target currently in orbit. The DART mission will occur in April 2004. The launch site will be Vandenburg AFB and the launch vehicle will be a Pegasus XL equipped with a Hydrazine Auxiliary Propulsion System 4th stage. All mission objectives will be completed within a 24 hour period. The paper provides a summary of mission objectives, mission overview and a discussion on the design features of the chase and target vehicles.

  20. Status of groundwater quality in the Coastal Los Angeles Basin, 2006-California GAMA Priority Basin Project

    Science.gov (United States)

    Goldrath, Dara; Fram, Miranda S.; Land, Michael; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 860-square-mile (2,227-square-kilometer) Coastal Los Angeles Basin study unit (CLAB) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is located in southern California in Los Angeles and Orange Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA CLAB study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2006 by the USGS from 69 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth interval of the wells listed in the CDPH database for the CLAB study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the CLAB study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or non-regulatory benchmarks for drinking-water quality. A relative

  1. Modeling the Effects of Sea-Level Rise on Groundwater Levels in Coastal New Hampshire

    Science.gov (United States)

    Jacobs, J. M.; Knott, J. F.; Daniel, J.; Kirshen, P. H.

    2017-12-01

    Coastal communities with high population density and low topography are vulnerable from sea-level rise (SLR) caused by climate change. Groundwater in coastal communities will rise with sea level impacting water quality, the structural integrity of infrastructure, and natural ecosystem health. SLR-induced groundwater rise has been studied in areas of high aquifer transmissivity and in low-lying areas immediately along the coast. In this regional study, we investigate SLR-induced groundwater rise in a coastal area characterized by shallow unconsolidated deposits overlying fractured bedrock, typical of the glaciated northeast United States. MODFLOW, a numerical groundwater-flow model, is used with groundwater observations, lidar topography, surface-water hydrology, and groundwater withdrawals to investigate SLR-induced changes in groundwater levels and vadose-zone thickness in New Hampshire's Seacoast. The SLR groundwater signal is detected up to 5 km from the coast, more than 3 times farther inland than projected surface-water flooding associated with SLR. Relative groundwater rise ranges from 38 to 98% of SLR within 1 km of the shoreline and drops below 4% between 4 and 5 km from the coast. The largest magnitude of SLR-induced groundwater rise occurs in the marine and estuarine deposits and land areas with tidal water bodies on three sides. In contrast, groundwater rise is dampened near streams. Groundwater inundation caused by 2 m of SLR is projected to contribute 48% of the total land inundation area in the City of Portsmouth with consequences for built and natural resources. Freshwater wetlands are projected to expand 3% by year 2030 increasing to 25% by year 2100 coupled with water-depth increases. These results imply that underground infrastructure and natural resources in coastal communities will be impacted by rising groundwater much farther inland than previously thought when considering only surface-water flooding from SLR.

  2. The Savannah River Site's Groundwater Monitoring Program 1991 well installation report

    International Nuclear Information System (INIS)

    1992-06-01

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1991. It includes discussion of environmental soil borings, surveying, well installations, abandonments, maintenance, and stabilization

  3. Assessing the effects of urbanization and climate change on groundwater management in China

    Science.gov (United States)

    Hua, S.; Zheng, C.

    2017-12-01

    Groundwater is expected to be more vulnerable in the future due to climate change coupled with rapid urbanization. Thus, protecting future groundwater resources under the impact of urbanization and climate change is necessary towards more sustainable groundwater resource development. This study is intended to shed lights on how water managers may plan for the adverse effects of urbanization and climate change on groundwater quality. A new approach is presented in which the groundwater vulnerability under future climate change scenarios is employed as a constraint to urban expansion. An original form of the Land Transformation Model (LTM) and a revised LTM simulation are applied to model the urbanization. The results indicated that there would be a notable and uneven urban growth between 2010 and 2050. Future groundwater vulnerability is expected to shift significantly under future climate change scenarios. The results of the revised LTM project more urban expansion in the central regions of China, while those of the original LTM project urban expansion in throughout China, although the two projections have the same areas of expansion. The urban expansion simulated by the original LTM follows the historical trend under the drivers of socioeconomic, political and geographic factors. However, the revised LTM drives the urban expansion to the regions with relatively lower groundwater vulnerability, in contrast to the historical trend. This study demonstrates that the integration of LTM and future groundwater vulnerability in the urban planning can better protect the groundwater resource and promote more sustainable socioeconomic development. The methodology developed in this study provides water managers and city planners a useful groundwater management tool for mitigating the risks associated with rapid urbanization and climate change.

  4. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  5. Groundwater flow modeling in construction phase of the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Takeuchi, Ryuji

    2016-01-01

    This paper comprehensively describes the result of groundwater flow modeling using data of hydraulic responses due to construction of Mizunami Underground Research Laboratory (MIU) in Mizunami, Gifu, in order to update hydrogeological model based on stepwise approach for crystalline fractured rock in Japan. The results showed that large scale hydraulic compartment structures which has significant influence on change of groundwater flow characteristics are distributed around MIU. Furthermore, it is concluded that hydrogeological monitoring data and groundwater flow modeling during construction of deep underground facilities are effective for hydrogeological characterization of heterogeneous fractured rock. (author)

  6. Groundwater Annual Status Report for Fiscal Year 1999

    International Nuclear Information System (INIS)

    Nylander, C.L.; Bitner, K.A.; Henning, K.; Johnson, A.S.; Keating, E.H.; Longmire, P.; Newman, B.D.; Robinson, B.; Rogers, D.B.; Stone, W.J.; Vaniman, D.

    2000-01-01

    Groundwater protection activities and hydrogeologic characterization studies are conducted at Los Alamos National Laboratory annually. A summary of fiscal year 1999 results and findings shows increased understanding of the hydrogeologic environment beneath the Pajarito Plateau and significant refinement to elements of the LANL. Hydrogeologic Conceptual Model pertaining to areas and sources of recharge to the regional aquifer. Modeling, drilling, monitoring, and data collection activities are proposed for fiscal year 2000

  7. Independent technical reviews for groundwater and soil remediation projects at US Department Of Energy sites - 59188

    International Nuclear Information System (INIS)

    Kaback, Dawn S.; Chamberlain, Grover; Morse, John G.; Petersen, Scott W.

    2012-01-01

    The US Department of Energy Office of Environmental Management has supported independent technical reviews of soil and groundwater projects at multiple DOE sites over the last 10 years. These reviews have resulted in significant design improvements to remedial plans that have accelerated cleanup and site closure. Many have also resulted in improved understanding of complex subsurface conditions, promoting better approaches to design and implementation of new technologies. Independent technical reviews add value, because they provide another perspective to problem solving and act as a check for especially challenging problems. By bringing in a team of independent experts with a broad experience base, alternative solutions are recommended for consideration and evaluation. In addition, the independence of the panel is significant, because it is able to address politically sensitive issues. The expert panel members typically bring lessons learned from other sites to help solve the DOE problems. In addition, their recommendations at a particular site can often be applied at other sites, making the review even more valuable. The review process can vary, but some common lessons ensure a successful review: - Use a multi-disciplinary broadly experienced team; - Engage the panel early and throughout the project; - Involve regulators and stakeholders in the workshop, if appropriate. - Provide sufficient background information; - Close the workshop with a debriefing followed by a written report. Many groundwater remediation challenges remain at DOE sites. Independent technical reviews have and will ensure that the best capabilities and experience are applied to reduce risks and uncertainties. Even though the groundwater remediation industry has developed significantly over the last twenty years, advancements are needed to address the complexities of the subsurface at the DOE sites. These advancements have tremendous potential to save millions of dollars and to accelerate the

  8. FY 1994 annual summary report of the surveillance and maintenance activities for the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-11-01

    The Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Surveillance and Maintenance (S and M) Program was initiated to manage former waste management and environmental research sites contaminated with radioactive materials and/or hazardous chemicals. The S and M Program is responsible for managing designated sites/facilities from the end of their operating lives until final disposition or site stabilization. To effectively manage and perform the various S and M Program responsibilities, five summary-level work breakdown structure (WBS) elements have been established: S and M Preliminary Investigations, Special Projects, Routine S and M, Inactive Groundwater Wells, and Project Management. Routine S and M activities were conducted as scheduled throughout fiscal years (FY) 1994 at applicable inactive waste management (WM) and other contaminated areas. Overall, the ER S and M Program maintains 47 facilities, performs vegetation maintenance on approximately 230 acres, maintains 54 inactive tanks, and provides overall site management on over 700 acres. In addition to the routine S and M activities, detailed site inspections were conducted at established frequencies on appropriate sites in the ER S and M Program. This document provides a summary of the FY 1994 ORNL ER S and M Program accomplishments

  9. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water

  10. Summary of Carbon Storage Incentives and Potential Legislation: East Sub-Basin Project Task 3.1 Business and Financial Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Trabucchi, Chiara [Industrial Economics, Incorporated

    2018-05-16

    The CarbonSAFE Illinois – East Sub-Basin project is conducting a pre-feasibility assessment for commercial-scale CO2 geological storage complexes. The project aims to identify sites capable of storing more than 50 million tons of industrially-sourced CO2. To support the business development assessment of the economic viability of potential sites in the East Sub-Basin and explore conditions under which a carbon capture and storage (CCS) project therein might be revenue positive, this document provides a summary of carbon storage incentives and legislation of potential relevance to the project.

  11. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells

  12. The International Intraval project: to study validation of geosphere transport models for performance assessment of nuclear waste disposal. Phase 1, summary report

    International Nuclear Information System (INIS)

    1993-12-01

    Intraval is an international project that addresses the validation of models of transport of radionuclides through groundwater in the geosphere. Such models are used in assessment of the long-term safety of nuclear waste disposal systems. The present report summarises the results for the test cases and presents some additional remarks

  13. Update on the National Groundwater and Soil Remediation Program (GASReP)

    International Nuclear Information System (INIS)

    Lye, A.

    1992-01-01

    The national Groundwater and Soil Remediation Program (GASReP), supported jointly by government and the petroleum industry, targets research on innovative ways to clean up groundwater and soil contaminated with petroleum hydrocarbons, and conducts technology transfer sessions. Within its broad context as an initiative for research, development and demonstration of innovative cleanup technologies, GASReP now targets basic applied research and/or technology development only. Industry partners and other government programs will be encouraged to extend GASReP research findings to the final stage of technology demonstration. During 1991-92 GASReP shifted its attention from starting new projects to evaluating the program, setting a new direction, and establishing a better way to seek ideas for projects. Unlike previous years, only three projects began during this period. Two technology development projects are iron and manganese pre-treatment for pump and treat clean-up systems, and surface bioreactor to clean soil/waste contaminated with petroleum hydrocarbons. The one technology assessment project dealt with a review of six technologies for in-situ bioremediation of BTEX (benzene, toluene, ethylbenzene, xylene) in groundwater. Current program direction, interests, and research needs are summarized, and candidate proposals for project selection in 1992-93 are listed

  14. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  15. Danubian lowland - ground water model. Final Report. Vol. 1. Summary Report

    International Nuclear Information System (INIS)

    1995-12-01

    The summary report contains the next parts: (0) Executive summary; (1) Introduction; (2) Project staffing; (3) Project management issues; (4) Establishment of the integrated modelling system; (5) Summary of model application; (6) Conclusions and recommendations; and List of references

  16. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  17. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  18. 2020 Vision Project Summary

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, K.W.; Scott, K.P.

    2000-11-01

    Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

  19. Groundwater and climate change in Africa : review of recharge studies

    OpenAIRE

    Bonsor, H.C.; MacDonald, A.M.

    2010-01-01

    The review of recharge studies was conducted as part of a one year DFID-funded research programme, aimed at improving understanding of the impacts of climate change on groundwater resources and local livelihoods – see http://www.bgs.ac.uk/GWResilience/. The review is one of a series of components within the project. The overall outputs of the project are: Two hydrogeological case studies in West and East Africa – which assess the storage and availability of groundwater in different aquifers a...

  20. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  1. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS: Executive summary

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level

  2. A Summary of chemical data from the EPORA project

    Energy Technology Data Exchange (ETDEWEB)

    Thorring, H.; Steinnes, E. [Norwegian University of Science and Technology (Norway); Nikonov, V. [Institute of North Industrial Ecology Problems (Russian Federation); Rahola, T.; Rissanen, K. [Radiation and Nuclear Safety Authority, Helsinki (Finland)

    1999-08-01

    EPORA (Effects of Industrial Pollution on Distribution Dynamics of Radionuclides in Boreal Understorey Ecosystems) is part of the EU Nuclear Fission Safety Programme 1994-1998, and is co-ordinated by STUK. The main purpose of the project is to study the influence of strong chemical pollution on the turnover of long-lived artificial radionuclides in a northern boreal ecosystem, and its implication on the radiation exposure to local population. The study area is located in the Kola peninsula, Russia in the vicinity of the Monchegorsk copper-nickel smelter. The smelter has operated since 30's and has since then discharged large amounts of sulphur and heavy metals into its surroundings.The present report is a documentation of the chemical analyses of soils and vegetation performed in EPORA in order to characterize the ecological impact of the emissions from Monchegorsk at different distances from the smelter. It also contains a brief description of the methods used and a summary of the most prominent trends apparent from the data presented. (orig.)

  3. Groundwater-Quality Data in the Madera-Chowchilla Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 860-square-mile Madera-Chowchilla study unit (MADCHOW) was investigated in April and May 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within MADCHOW, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 35 wells in Madera, Merced, and Fresno Counties. Thirty of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and five more were selected to provide additional sampling density to aid in understanding processes affecting groundwater quality (flow-path wells). Detection summaries in the text and tables are given for grid wells only, to avoid over-representation of the water quality in areas adjacent to flow-path wells. Groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], low-level 1,2-dibromo-3-chloropropane [DBCP] and 1,2-dibromoethane [EDB], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA], perchlorate, and low-level 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (uranium isotopes, and gross alpha and gross beta particle activities). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen

  4. Program GWPROB: Calculation of inflow to groundwater measuring points during sampling

    International Nuclear Information System (INIS)

    Kaleris, V.

    1990-01-01

    The program GWPROB was developed by the DFG task group for modelling of large-area heat and pollutant transport in groundwater at the Institute of Hydrological Engineering, Hydraulics and Groundwater Department. The project was funded by the Deutsche Forschungsgemeinschaft. (BBR) [de

  5. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    Science.gov (United States)

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  6. Brackish groundwater and its potential to augment freshwater supplies

    Science.gov (United States)

    Stanton, Jennifer S.; Dennehy, Kevin F.

    2017-07-18

    Secure, reliable, and sustainable water resources are fundamental to the Nation’s food production, energy independence, and ecological and human health and well-being. Indications are that at any given time, water resources are under stress in selected parts of the country. The large-scale development of groundwater resources has caused declines in the amount of groundwater in storage and declines in discharges to surface water bodies (Reilly and others, 2008). Water supply in some regions, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought intensifies the stresses affecting water resources (National Drought Mitigation Center, the U.S. Department of Agriculture, and the National Oceanic and Atmospheric Association, 2015). If these drought conditions continue, water shortages could adversely affect the human condition and threaten environmental flows necessary to maintain ecosystem health.In support of the national census of water resources, the U.S. Geological Survey (USGS) completed the national brackish groundwater assessment to provide updated information about brackish groundwater as a potential resource to augment or replace freshwater supplies (Stanton and others, 2017). Study objectives were to consolidate available data into a comprehensive database of brackish groundwater resources in the United States and to produce a summary report highlighting the distribution, physical and chemical characteristics, and use of brackish groundwater resources. This assessment was authorized by section 9507 of the Omnibus Public Land Management Act of 2009 (42 U.S.C. 10367), passed by Congress in March 2009. Before this assessment, the last national brackish groundwater compilation was completed in the mid-1960s (Feth, 1965). Since that time, substantially more hydrologic and geochemical data have been collected and now can be used to improve the understanding of the Nation’s brackish groundwater resources.

  7. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    Science.gov (United States)

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    The geochemical conditions, occurrence of selected trace elements, and processes controlling the occurrence of selected trace elements in groundwater were investigated in groundwater basins of the Desert and Basin and Range (DBR) hydrogeologic provinces in southeastern California as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP is designed to provide an assessment of the quality of untreated (raw) groundwater in the aquifer systems that are used for public drinking-water supply. The GAMA PBP is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.

  8. Quarterly report of RCRA groundwater monitoring data for period April 1 through June 30, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and ''Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities,'' as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company manages RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. This quarterly report contains data received between May 20 and August 19, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter but also data from earlier sampling events that were not previously reported

  9. Application of Modflow in Groundwater Management and Evaluation of Artificial Recharge Project of Ab-barik Aquifer (Bam

    Directory of Open Access Journals (Sweden)

    Homayoun Katibeh

    2005-08-01

    Full Text Available This study is an attempt in groundwater modeling of Ab-barik aquifer (Bam, Iran, in order to asses the artificial recharge project and the future situation of the aquifer. Studies show that the discharge of the aquifer has exceeded the recharge, especially during the 1980-1990. The water table in March 1985 has dropped about 10m as compared with March 1973. Studies indicate that the drawdown of the free surface will continue in the future so that in March 2004, the drawdown will be about 18m as compared with the March 1973. Also it was found that despite the artificial recharge of the aquifer (started in 1996, the drawdown has been continuing. Modeling has showed that artificial recharge project has caused 12.6 mm3 recharge into the aquifer annually, during 1996-1999.

  10. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  11. Comprehensive Summary and Analysis of Oral and Written Scoping Comments on the Hawaii Geothermal Project EIS (DOE Review Draft)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-18

    This report contains summaries of the oral and written comments received during the scoping process for the Hawaii Geothermal Project (HGP) Environmental Impact Statement (EIS). Oral comments were presented during public scoping meetings; written comments were solicited at the public scoping meetings and in the ''Advance Notice of Intent'' and ''Notice of Intent'' (published in the ''Federal Register'') to prepare the HGP EIS. This comprehensive summary of scoping inputs provides an overview of the issues that have been suggested for inclusion in the HGP EIS.

  12. Ultrasonic process for detoxification of groundwater

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, H.S.; Livengood, C.D.

    1991-01-01

    In this paper, we present the results of an investigation of the ultrasonic irradiation of carbon tetrachloride at various pH values, temperatures, and power intensities. Kinetic data and selected chemical mechanism are discussed and proposed. To study oxidant efficiency, chemical oxidants, such as hydrogen peroxide, are also considered. This work is part of a project entitled ''Ultrasonic Process for Detoxification of Groundwater and Soil,'' sponsored by the US Department of Energy, Office of Technology Development, to develop an innovative process for the effective destruction of chlorinated organics in soil and groundwater

  13. Summary of the data which is used for radionuclide transport analysis in the groundwater

    International Nuclear Information System (INIS)

    Koga, Osamu; Nagara, Shuichi; Matsumura, Toshihiro; Takeuchi, Akira; Takeda, Shinji; Sato, Kazuhiko; Tokizawa, Takayuki

    2004-03-01

    To analyze high precision in groundwater flow and radionuclide transport around Yotsugi open-pit mining place site and around Yotsugi mill tailing yard, besides the topic in past analysis is extracted, following it did examination of the corresponding method and arrangement of physical properties value. It investigated concerning the 3-dimensional flow and transport analysis code which can handle the chain-radionuclide selected. The range of the analytical area examined that become the object of groundwater flow and transport analysis, the wide area, Yotsugi open-pit mining place site and Yotsugi mill tailing yard selected the analytical model area, concerning the range which is surrounded with the divide. Receiving the influence of the alteration zone and the crush zone concerning the coefficient of permeability of the granite, it re-appraised excluding the value which is supposed that water permeability is high. The weathered granite from the lithofacies divided in the high weathered granite and the low weathered granite. As for the geometrical mean of coefficient of permeability of the former 10 -6 m/s order, the later 10 -8 m/s order, there is a difference of 2 orders in both. In addition, the data which is obtained to this year concerning physical properties value for analysis, groundwater level, precipitation and radionuclide density etc. rearranged and data set drew up. (author)

  14. Summary of the results and interpretation of tritium and noble gas measurements on groundwater samples from the Perch Lake Basin Area

    International Nuclear Information System (INIS)

    Kotzer, T.G.

    1999-02-01

    Along the west-central margin of the Lower Perch Lake Basin, a limited number of groundwaters have been sampled from piezometers at depths of between 8 and 17 m and distances of between 100 and 900 m downgradient from their recharge location near Area A. Concentrations of tritium in these groundwaters varied between approximately 100 and 2800 TU. Measurements of dissolved gases in these groundwaters indicate concentrations of 4 He and neon approximating those in recently recharged groundwaters; however, the concentrations of 3 He are as much as 100 times higher, indicating the waters have accumulated tritiogenic 3 He. Using the 3 H/ 3 He dating technique, groundwater residence times on the order of 29 ± 8 years and groundwater velocities on the order of 0.1 m/day have been calculated for the flow system in the middle sand unit between Area A recharge and Perch Lake. These results, although based on a very small number of groundwater analyses, are comparable to earlier estimates of groundwater residence times and velocities obtained using Darcy calculations, borehole dilution experiments and tracer-test results from previous hydrogeologic studies in the area. (author)

  15. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Directory of Open Access Journals (Sweden)

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  16. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Science.gov (United States)

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  17. Danubian lowland - ground water model. Final Report. Vol. 1. Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danish Hydraulic Inst. (DK); BV, DHV Consultants [NL; TNO, Inst. of Applied Geoscience (NL); Water Quality Institute (DK); Krueger, I [DK; The Royal Veterinary and Agricultural Univ. (DK); Water Resources Research Institute (SK); Research Institute of Irrigation (SK); Consulting Ltd, Ground Water [SK; Faculty of Natural Sciences, Comenius Univ. (SK)

    1995-12-01

    The summary report contains the next parts: (0) Executive summary; (1) Introduction; (2) Project staffing; (3) Project management issues; (4) Establishment of the integrated modelling system; (5) Summary of model application; (6) Conclusions and recommendations; and List of references. Contains several maps in the parts. figs, tabs, 146 refs.

  18. Uranium in groundwater from Western Haryana, India

    International Nuclear Information System (INIS)

    Balvinder Singh; Nawal Kishore; Vandana Pulhani

    2014-01-01

    This study was undertaken to assess uranium in groundwater and radiological and chemical risks associated with its ingestion in rural habitats in the vicinity of proposed nuclear power project in Western Haryana, India. Uranium concentration in the groundwater of the study area varied from 0.3 to 256.4 μg L -1 . Radiological risk calculated in the form of average life time dose was found 5.1 × 10 -2 mSv to the residents of the area from the ingestion of groundwater. The average cancer mortality and average cancer morbidity risk were calculated to be 4.9 × 10 -6 and 7.7 × 10 -6 respectively indicating the absence of carcinogenic risks. Chemical risk was in the range of 0.02-18.8 μg kg -1 day -1 . Hazard quotient for 72 % samples was greater than unity which indicates health risk due to chemical toxicity of uranium in groundwater. The results indicate that uranium concentrations in the groundwater of the study area are important due to chemical risk than radiological risk. (author)

  19. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  20. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  1. Risk assessment guidance document for the UMTRA project groundwater remediation phase

    International Nuclear Information System (INIS)

    1992-05-01

    The purpose of the groundwater remedial activities at the Uranium Mill Tailings Remedial Action (UMTRA) sites is to reduce, control, or eliminate risks to human health and the environment. This is in accordance with Subpart B of 40 CFR 192. According to this regulation, the need for groundwater restoration is based upon US Environmental Protection Agency (EPA)-defined groundwater cleanup standards and must be consistent with the National Environmental Policy Act (NEPA) process. Risk assessments will be used in the UMTRA Groundwater Program to aid in the evaluation of sites. Risk assessments are conducted for four purposes: (1) Preliminary risk assessments are used to aid in prioritizing sites, scope data collection, end determine if a site presents immediate health risks. (2) Baseline risk assessments provide a comprehensive integration and interpretation of demographic, geographic, physical, chemical, and biological factors at a site to determine the extent of actual or potential harm. This information Is used to determine the need for remedial action. (3) Risk evaluation of remedial alternatives is performed to evaluate risks to humans or the environment associated with the various remedial strategies. (4) After remediation, an evaluation of residual risks is conducted. The information gathered for each of these risk evaluations is used to determine the need for subsequent evaluation. Several sites may be eliminated after a preliminary risk assessment if there is no current or future threat to humans or the environment. Likewise, much of the data from a baseline risk assessment can be used to support alternate concentration limits or supplemental standards demonstrations, or identify sensitive habitats or receptors that may be of concern in selecting a remedy

  2. Summary appraisals of the Nation's ground-water resources; California region

    Science.gov (United States)

    Thomas, H.E.; Phoenix, D.A.

    1976-01-01

    Most people in the California Region live in a semiarid or arid climate, with precipitation less than the potential evapotranspiration- environments of perennial water deficiency. The deficiency becomes most onerous during the characteristically rainless summers and during recurrent droughts that may continue for 10--20 years. However, water from winter rain and snow can be stored for use during the dry summer months, and water stored during a wet climatic period can be used in a succeeding dry period; moreover, perennial deficiency can be overcome by bringing water from areas of perennial surplus. Ground-water reservoirs have especial significance in arid and semiarid regions as repositories where water is stored or can be stored with minimum loss by evaporation.

  3. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental, LLC

    2011-09-01

    the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

  4. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  5. Soil and groundwater remediation using dual-phase extraction technology

    International Nuclear Information System (INIS)

    Miller, A.W.; Gan, D.R.

    1995-01-01

    A gasoline underground storage tank (UST) was formerly used to fuel vehicles for a hospital in Madison, Wisconsin. Elevated concentrations of gasoline range organics (GRO) were observed in soils and groundwater at the site during the tank removal and a subsequent site investigation. Based on the extent of soil and groundwater contamination, a dual-phase extraction technology was selected as the most cost effective alternative to remediate the site. The dual-phase extraction system includes one extraction well functioning both as a soil vapor extraction (SVE) and groundwater recovery well. After six months of operation, samples collected from the groundwater monitoring wells indicated that the groundwater has been cleaned up to levels below the Wisconsin preventative action limits. The dual-phase extraction system effectively remediated the site in a short period of time, saving both operation and maintenance costs and overall project cost

  6. Summaries of FY 1996 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1996; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report the principal investigators were asked to submit summaries for their projects that were specifically applicable to fiscal year 1996. The summaries received have been edited if necessary, but the press for timely publication made it impractical to have the investigators review and approve the revised summaries prior to publication. For more information about a given project, it is suggested that the investigators be contacted directly.

  7. Geographic, geologic, and hydrologic summaries of intermontane basins of the northern Rocky Mountains, Montana

    Science.gov (United States)

    Kendy, Eloise; Tresch, R.E.

    1996-01-01

    This report combines a literature review with new information to provide summaries of the geography, geology, and hydrology of each of 32 intermontane basins in western Montana. The summary of each intermontane basin includes concise descriptions of topography, areal extent, altitude, climate, 1990 population, land and water use, geology, surface water, aquifer hydraulic characteristics, ground-water flow, and ground-water quality. If present, geothermal features are described. Average annual and monthly temperature and precipitation are reported from one National Weather Service station in each basin. Streamflow data, including the drainage area, period of record, and average, minimum, and maximum historical streamflow, are reported for all active and discontinued USGS streamflow-gaging stations in each basin. Monitoring-well data, including the well depth, aquifer, period of record, and minimum and maximum historical water levels, are reported for all long-term USGS monitoring wells in each basin. Brief descriptions of geologic, geophysical, and potentiometric- surface maps available for each basin also are included. The summary for each basin also includes a bibliography of hydrogeologic literature. When used alone or in conjunction with regional RASA reports, this report provides a practical starting point for site-specific hydrogeologic investigations.

  8. Application of the Drilling Impact Study (DIS) to Forsmark groundwaters

    International Nuclear Information System (INIS)

    Gascoyne, Mel; Gurban, Ioana

    2008-01-01

    Characterisation of a geological formation as a repository for nuclear fuel waste requires deep drilling into the bedrock to gain an understanding of the geological structure, rock types, groundwater flow and the chemical composition of groundwater and the adjacent rock. The methods of characterisation from a hydrogeochemical point of view, might be affected by the various drilling activities and techniques for determining groundwater composition have been employed so that the composition can be corrected for these activities. SKB has developed and supported the Drilling Impact Study (DIS) project in which a tracer is used as an indicator of contamination to attempt to correct the groundwater composition for dilution or contamination by surface waters. The project began about five years ago with the intention of developing a routine method for determining the extent of contamination of borehole groundwater by drilling water. The main objectives of this work were: 1. Determine the extent of drilling water contamination in permeable zones in a test borehole on the Forsmark site. 2. Correct measured chemical compositions of the groundwaters based on contamination results. 3. Provide a workable methodology for routine correction of groundwater composition. 4. Apply the modified DIS model to suitable borehole zones at the Forsmark site in a systematic fashion 5. Determine uncertainties in DIS modelling. A memorandum was prepared by describing the characteristics of borehole KFM06 and its drilling history. Estimates were made of the amount of drilling water in permeable zones in the borehole and the various approaches to applying results of DIS were described and recommendations made, with an example calculation

  9. Status and understanding of groundwater quality in the Monterey Bay and Salinas Valley Basins, 2005-California GAMA Priority Basin Project

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 1,000 square mile (2,590 km2) Monterey Bay and Salinas Valley Basins (MS) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in central California in Monterey, Santa Cruz, and San Luis Obispo Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA MS study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers). The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 97 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth intervals of the wells listed in the CDPH database for the MS study unit. The quality of groundwater in the primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the MS study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or

  10. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Science.gov (United States)

    Nawalany, Marek; Sinicyn, Grzegorz

    2015-09-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  11. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Directory of Open Access Journals (Sweden)

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  12. Status and understanding of groundwater quality in the South Coast Range-Coastal study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the South Coast Range–Coastal (SCRC) study unit was investigated from May through November 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Range hydrologic province and includes parts of Santa Barbara and San Luis Obispo Counties. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifer system. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The assessments for the SCRC study unit were based on water-quality and ancillary data collected in 2008 by the USGS from 55 wells on a spatially distributed grid, and water-quality data from the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. Water-quality and ancillary data were collected from an additional 15 wells for the understanding assessment. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. The first component of this study, the status assessment of groundwater quality, used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. Although the status assessment applies to untreated

  13. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer in Southeastern Arkansas, 1918, with simulations of hydraulic heads caused by projected ground-water withdrawals through 2049

    Science.gov (United States)

    Stanton, Gregory P.; Clark, Brian R.

    2003-01-01

    The Mississippi River Valley alluvial aquifer, encompassing parts of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee supplies an average of 5 billion gallons of water per day. However, withdrawals from the aquifer in recent years have caused considerable drawdown in the hydraulic heads in southeastern Arkansas and other areas. The effects of current ground-water withdrawals and potential future withdrawals on water availability are major concerns of water managers and users as well as the general public. A full understanding of the behavior of the aquifer under various water-use scenarios is critical for the development of viable water-management and alternative source plans. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Vicksburg District, and the Arkansas Soil and Water Conservation Commission developed and calibrated a ground-water flow model for the Mississippi River valley alluvial aquifer in southeastern Arkansas to simulate hydraulic heads caused by projected ground-water withdrawals. A previously published ground-water flow model for the alluvial aquifer in southeastern Arkansas was updated and recalibrated to reflect more current pumping stresses with additional stress periods added to bring the model forward from 1982 to 1998. The updated model was developed and calibrated with MODFLOW-2000 finite difference numerical modeling and parameter estimation software. The model was calibrated using hydraulic-head data collected during 1972 and 1982 and hydraulic-head measurements made during spring (February to April) of 1992 and 1998. The residuals for 1992 and 1998 have a mean absolute value of 4.74 and 5.45 feet, respectively, and a root mean square error of 5.9 and 6.72 feet, respectively. The effects of projected ground-water withdrawals were simulated through 2049 in three predictive scenarios by adding five additional stress periods of 10 years each. In the three scenarios

  14. Groundwater quality in the Mokelumne, Cosumnes, and American River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-03-23

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Mokelumne, Cosumnes, and American River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking-water supplies.

  15. Trace elements in groundwater used for water supply in Latvia

    Science.gov (United States)

    Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads

    2014-05-01

    Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name

  16. Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS)

    Science.gov (United States)

    Jing, Miao; Heße, Falk; Kumar, Rohini; Wang, Wenqing; Fischer, Thomas; Walther, Marc; Zink, Matthias; Zech, Alraune; Samaniego, Luis; Kolditz, Olaf; Attinger, Sabine

    2018-06-01

    Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river-groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM-OGS v1.0) is evaluated by a case study in the central European mesoscale river basin - Nägelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash-Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems.

  17. Puget Sound Reinforcement Project : Planning for Peak Power Needs : Scoping Report, Part A, Summary of Public Comments.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1990-07-01

    This report summarizes public participation in the environmental scoping process for the Puget Sound Reinforcement Project, a Bonneville Power Administration (BPA) and Puget Sound area utilities study of voltage stability in northwestern Washington state. The environmental scoping phase of the Puget Sound project consisted of a series of public meetings and a public comment period. The content of these meetings is summarized in 2.0, Public Involvement. In 3.0, Comment Summary, the report summarizes comments received via meetings, mail and phone. The report ends with a description of the next steps in the project. Chapter 4.0, describes the decision process to be used by BPA and area utilities. Chapter 5.0 describes opportunities for public participation in decisions to be made about the future reliability of Puget Sound's electricity supply.

  18. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.; Van Halem, Doris; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  19. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  20. Developing A National Groundwater-Monitoring Network In Korea

    Science.gov (United States)

    Kim, N. J.; Cho, M. J.; Woo, N. C.

    1995-04-01

    Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.

  1. Radiocarbon dating of groundwater in tertiary sediments of the eastern Murray Basin

    International Nuclear Information System (INIS)

    Drury, L.W.; Calf, G.E.

    1984-01-01

    The Tertiary sediments located in the eastern part of the Murray Basin contain one of the most important low salinity groundwater resources in New South Wales. It is imperative that the hydrogeological environment in which the groundwater occurs be thoroughly understood to allow adequate management of the resource. A radiocarbon dating project was carried out on 37 groundwater samples from bores screened in these unconsolidated sediments. The results indicate water ages in the range 'modern' to 15 800 years. Groundwater recharge areas are indicated and rates of groundwater recharge and movement determined. The latter shows close correlation with velocity values quantitatively determined by Darcy's law

  2. Radiocarbon dating of groundwater in Tertiary sediments of the eastern Murray Basin

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.W. (Water Resources Commission of New South Wales, Sydney (Australia)); Calf, G.E. (Australian Atomic Energy Commission Research Establishment, Lucas Heights. Isotope Div.); Dharmasiri, J.K. (Colombo Univ. (Sri Lanka))

    1984-01-01

    The Tertiary sediments located in the eastern part of the Murray Basin contain one of the most important low salinity groundwater resources in New South Wales. It is imperative that the hydrogeological environment in which the groundwater occurs be thoroughly understood to allow adequate management of the resource. A radiocarbon dating project was carried out on 37 groundwater samples from bores screened in these unconsolidated sediments. The results indicate water ages in the range 'modern' to 15 800 years. Groundwater recharge areas are indicated and rates of groundwater recharge and movement determined. The latter shows close correlation with velocity values quantitatively determined by Darcy's law.

  3. The impact of GPX1 on the association of groundwater selenium and depression: a project FRONTIER study

    Directory of Open Access Journals (Sweden)

    Johnson Leigh A

    2013-01-01

    Full Text Available Abstract Background Prior animal model and human-based studies have linked selenium concentrations to decreased risk for depression; however, this work has not focused on household groundwater levels or specific depressive symptoms. The current study evaluated the link between groundwater selenium levels and depression. We also sought to determine if a functional polymorphism in the glutathione peroxidase 1 (GPX1 gene impacted this link. Methods We used a cross-sectional design to analyze data from 585 participants (183 men and 402 women from Project FRONTIER, a study of rural health in West Texas. Residential selenium concentrations were estimated using Geospatial Information System (GIS analyses. Linear regression models were created using Geriatric Depression Scale (GDS-30 total and subfactor scores as outcome variables and selenium concentrations as predictor variables. Analyses were re-run after stratification of the sample on GPX1 Pro198Leu genotype (rs1050454. Results Selenium levels were significantly and negatively related to all GDS and subfactor scores accounting for up to 17% of the variance beyond covariates. Selenium was most strongly protective against depression among homozygous carriers of the C allele at the Pro198Leu polymorphism of the GPX1 gene. Analyses also point towards a gene-environmental interaction between selenium exposure and GPX1 polymorphism. Conclusion Our results support the link between groundwater selenium levels and decreased depression symptoms. These findings also highlight the need to consider the genetics of the glutathione peroxidase system when examining this relationship, as variation in the GPX1 gene is related to depression risk and significantly influences the protective impact of selenium, which is indicative of a gene-environment interaction.

  4. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    Science.gov (United States)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  5. Zeolite-based catalysts for hydrodehalogenation and hydration of pollutants in groundwater; Zeolith-gestuetzte Katalysatoren zur Hydrodehalogenierung und Hydrierung von Schadstoffen im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schueth, C.; Kummer, N.A. [Eberhard-Karls-Univ. Tuebingen, Inst. fuer Angewandte Geologie, Tuebingen (Germany)

    2004-07-01

    The present report contains a summary of the results of SAFIRA part-project B 3.2, ''zeolite-based catalysts for hydrodehalogenation and hydration of pollutants in groundwater'' (funding code: 02WT9941/1) which was promoted by the German Federal Ministry for Education and Research (BMBF) and which ran from 1 July 1999 to 31 June 2003. The task and goal of this part-project was to determine the potential of and limits to the reductive catalytic dehalogenation and hydration of aqueous-phase halogenated aromatic and aliphatic hydrocarbon mixtures. A further goal was to investigate the long-time stability of the noble metal catalysts developed in the project when used in the pilot plant set up in Bitterfeld under conditions of atmospheric pressure and groundwater temperatures. [German] Der vorliegende Bericht enthaelt eine Zusammenfassung der Ergebnisse des vom Bundesministerium fuer Bildung und Forschung (BMBF) gefoerderten SAFIRA-Teilprojekts B 3.2: ''Zeolith-gestuetzte Katalysatoren zur Hydrodehalogenierung und Hydrierung von Schadstoffen im Grundwasser'' (Foerderkennzeichen: 02WT9941/1) ueber die Projektlaufzeit vom 01.07.1999 bis zum 31.06.2003. Aufgabenstellung und Ziel dieses Teilprojekts war es, in Laborversuchen das Potenzial sowie die Limitierungen einer reduktiven katalytischen Dehalogenierung und Hydrierung halogenierter aromatischer und aliphatischer Kohlenwasserstoffgemische in waessriger Phase zu ermitteln. Darueber hinaus sollte die Langzeitstabilitaet der entwickelten Edelmetallkatalysatoren beim Einsatz in der in Bitterfeld errichteten Pilotanlage unter Atmosphaerendruck und Grundwassertemperaturen ueberprueft werden. (orig.)

  6. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  7. Nuclear and isotopic techniques for the characterization of submarine groundwater discharge in coastal zones. Results of a coordinated research project 2001-2006

    International Nuclear Information System (INIS)

    2007-07-01

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of nearshore waters. These discharges typically display significant spatial and temporal variability, making direct assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. An initiative on SGD characterization was developed by the IAEA and UNESCO in 2000 as a 5-year plan to assess methodologies and importance of SGD for coastal zone management. The IAEA component included a Coordinated Research Project (CRP) on Nuclear and Isotopic Techniques for the Characterization of Submarine Groundwater Discharge (SGD) in Coastal Zones, carried out jointly by the IAEA's Isotope Hydrology Section in Vienna and the Marine Environment Laboratory in Monaco, together with 9 laboratories from 8 countries. In addition to the IAEA, the Intergovernmental Oceanographic Commission (IOC) and the International Hydrological Programme (IHP) have provided support. This overall effort originally grew from a project sponsored by the Scientific Committee on Ocean Research (SCOR) who established a Working Group (112) on SGD. The activities included joint meetings (Vienna 2000, 2002, and 2005; Syracuse, Italy, 2001; and Monaco 2004), sampling expeditions (Australia 2000; Sicily 2001 and 2002; New York 2002; Brazil 2003; and Mauritius 2005), joint analytical work, data evaluation, and preparation of joint publications. The objectives of the CRP included the improvement of capabilities for water resources and environmental management of coastal zones; application of recently developed nuclear and isotopic techniques suitable for quantitative estimation of various components of SGD; understanding of the influence of SGD on coastal processes and on groundwater

  8. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  9. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    The U.S. Atomic Energy Commission, through the Office of Test Operations, Albuquerque Operations Office, plans to detonate a nuclear device in a massive salt bed 1,200 feet beneath the land surface. The project, known as Project Gnome, is an element of the Plowshare program--a study of peacetime applications of nuclear fission. The location of the proposed underground shot is in a sparsely-populated area in southeastern Eddy County, N. Mex., east of the Pecos River and about 25 miles southeast of the city of Carlsbad. The area is arid to Semiarid and ground water is a vital factor in the economic utilization of the land, which is primarily used for stock raising. An investigation of the Project Gnome site and surrounding area for the purposes of evaluating the ground-water resources and the possible effect upon them from the detonation of the nuclear shot was desired by the Commission. This report describes work done by the U.S. Geological Survey on behalf of the Commission and presents results of the investigation of the ground-water resources and geology of the area. The most intensive investigations were made within a 15-mile radius of the site of Project Gnome and mainly on the east side of the Pecos River. The total area of study of over 1,200 square miles includes parts of Eddy and Lea Counties, N. Mex. The Project Gnome site is in the sedimentary Delaware Basin. It is underlain by about 18,000 feet of sedimentary rocks ranging in age from Ordovician to Recent. Upper Permian evaporitic rocks, which contain the principal source of potash available in the United States, are worked in nearby mines. The potash minerals are found in a massive salt bed about 1,400 feet thick in the Salado Formation of Permian age. The land surface of the area is covered mostly by a wind-blown sand and caliche; however, rocks of the Rustler Formation of Permian age and younger rocks of Permian, Triassic, Pleistocene(?) and Recent age crop out at several localities. Solution by

  10. Summary guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Painuly, J.P.; Turkson, J.; Meyer, H.J.; Markandya, A.

    1999-09-01

    This document is a summary version of the methodological guidelines for climate change mitigation assessment developed as part of the Global Environment Facility (GEF) project Economics of Greenhouse Gas Limitations; Methodological Guidelines. The objectives of this project have been to develop a methodology, an implementing framework and a reporting system which countries can use in the construction of national climate change mitigation policies and in meeting their future reporting obligations under the FCCC. The methodological framework developed in the Methodological Guidelines covers key economic concepts, scenario building, modelling tools and common assumptions. It was used by several country studies included in the project. (au) 13 refs.

  11. Quantifying Urban Groundwater in Environmental Field Observatories

    Science.gov (United States)

    Welty, C.; Miller, A. J.; Belt, K.; Smith, J. A.; Band, L. E.; Groffman, P.; Scanlon, T.; Warner, J.; Ryan, R. J.; Yeskis, D.; McGuire, M. P.

    2006-12-01

    Despite the growing footprint of urban landscapes and their impacts on hydrologic and biogeochemical cycles, comprehensive field studies of urban water budgets are few. The cumulative effects of urban infrastructure (buildings, roads, culverts, storm drains, detention ponds, leaking water supply and wastewater pipe networks) on temporal and spatial patterns of groundwater stores, fluxes, and flowpaths are poorly understood. The goal of this project is to develop expertise and analytical tools for urban groundwater systems that will inform future environmental observatory planning and that can be shared with research teams working in urban environments elsewhere. The work plan for this project draws on a robust set of information resources in Maryland provided by ongoing monitoring efforts of the Baltimore Ecosystem Study (BES), USGS, and the U.S. Forest Service working together with university scientists and engineers from multiple institutions. A key concern is to bridge the gap between small-scale intensive field studies and larger-scale and longer-term hydrologic patterns using synoptic field surveys, remote sensing, numerical modeling, data mining and visualization tools. Using the urban water budget as a unifying theme, we are working toward estimating the various elements of the budget in order to quantify the influence of urban infrastructure on groundwater. Efforts include: (1) comparison of base flow behavior from stream gauges in a nested set of watersheds at four different spatial scales from 0.8 to 171 km2, with diverse patterns of impervious cover and urban infrastructure; (2) synoptic survey of well water levels to characterize the regional water table; (3) use of airborne thermal infrared imagery to identify locations of groundwater seepage into streams across a range of urban development patterns; (4) use of seepage transects and tracer tests to quantify the spatial pattern of groundwater fluxes to the drainage network in selected subwatersheds; (5

  12. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  13. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L.; Stephansson, O. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Tsang, C.F. [Lawrence Berkely National Laboratory, Berkeley, CA (United States). Earth Science Div.; Mayor, J.C. [ENRESA, Madrid (Spain); Kautzky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2005-02-15

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project

  14. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    International Nuclear Information System (INIS)

    Jing, L.; Stephansson, O.; Kautzky, F.

    2005-02-01

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project. The

  15. Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Flach, G.P.

    1999-01-01

    A regional groundwater flow model encompassing approximately 100 mi 2 surrounding the C, K. L. and P reactor areas has been developed. The Reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department

  16. Mobility of radioactive colloidal particles in groundwater

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Long, R.L.

    1993-01-01

    Radiocolloids are a major factor in the rapid migration of radioactive waste in groundwater. For at least two Los Alamos National Laboratory (LANL) sites, researchers have shown that groundwater colloidal particles were responsible for the rapid transport of radioactive waste material in groundwater. On an international scale, a review of reported field observations, laboratory column studies, and carefully collected field samples provides compelling evidence that colloidal particles enhance both radioactive and toxic waste migration. The objective of this project is to understand and predict colloid-contaminant migration through fundamental mathematical models, water sampling, and laboratory experiments and use this information to develop an effective and scientifically based colloid immobilization strategy. The article focuses on solving the suspected radiocolloid transport problems at LANL's Mortandad Canyon site. (author) 6 figs., 5 tabs., 18 refs

  17. The international hydrocoin project

    International Nuclear Information System (INIS)

    1988-01-01

    The international co-operation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organizations from ten countries and two international organizations participate in the project which is managed by the Swedish Nuclear Power Inspectorate SKI. This report summarizes the results from the first phase of HYDROCOIN. Level 1, which has been devoted to verification of 29 computer programs for groundwater hydrology. This has been done by applying the codes to seven hypothetical test cases representing different physical situations. For linear test cases, the agreement between results calculated with different codes has been satisfactory for primarily calculated entities (groundwater pressure, salt concentration and temperatures). Results for properties derived from gradients of the primary field (groundwater velocity and trajectories) show agreement to a lesser extent. Furthermore, HYDROCOIN Level 1 illustrates problems related to solving strongly non-linear cases, such as coupled flow and brine transport. HYDROCOIN Level 1 has provided an efficient means for testing strengths and weaknesses of various strategies for groundwater flow modelling and post processing. As a result of the Level 1 effort, several code enhancements have been made

  18. Geothermal policy project. Quarterly report, March 1-May 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Connor, T.D.

    1980-06-01

    Efforts continued to initiate geothermal and groundwater heat pump study activities in newly selected project states and to carry forward policy development in existing project states. Minnesota and South Carolina have agreed to a groundwater heat pump study, and Maryland and Virginia have agreed to a follow-up geothermal study in 1980. Follow-up contacts were made with several other existing project states and state meetings and workshops were held in eleven project states. Two generic documents were prepared, the Geothermal Guidebook and the Guidebook to Groundwater Heat Pumps, in addition to several state-specific documents.

  19. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D A [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1993-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  20. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D. A. [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1992-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  1. Assessment of agricultural groundwater users in Iran: a cultural environmental bias

    Science.gov (United States)

    Salehi, Saeid; Chizari, Mohammad; Sadighi, Hassan; Bijani, Masoud

    2018-02-01

    Many environmental problems are rooted in human behavior. This study aimed to explore the causal effect of cultural environmental bias on `sustainable behavior' among agricultural groundwater users in Fars province, Iran, according to Klockner's comprehensive model. A survey-based research project was conducted to gathering data on the paradigm of environmental psychology. The sample included agricultural groundwater users ( n = 296) who were selected at random within a structured sampling regime involving study areas that represent three (higher, medium and lower) bounds of the agricultural-groundwater-vulnerability spectrum. Results showed that the "environment as ductile (EnAD)" variable was a strong determinant of sustainable behavior as it related to groundwater use, and that EnAE had the highest causal effect on the behavior of agricultural groundwater users. The adjusted model explained 41% variance of "groundwater sustainable behavior". Based on the results, the groundwater sustainable behaviors of agricultural groundwater users were found to be affected by personal and subjective norm variables and that they are influenced by casual effects of the "environment as ductile (EnAD)" variable. The conclusions reflect the Fars agricultural groundwater users' attitude or worldview on groundwater as an unrecoverable resource; thus, it is necessary that scientific disciplines like hydrogeology and psycho-sociology be considered together in a comprehensive approach for every groundwater study.

  2. Summary report of the NAAL participation in the regional TC project RER/2/004

    International Nuclear Information System (INIS)

    2002-01-01

    At the end of 1995, the Agency's Laboratories Seibersdorf, together with their counterparts in the Programmatic Divisions in Vienna, agreed to introduce a comprehensive quality assurance system for all their measurements, products and services. The ISO 9000:1994 series of standards was selected as the quality system model for products and services provided, while ISO Guide 25 was selected as the standard for measurements and calibrations. A dedicated effort was initiated in 1997 to establish a quality system in the Chemistry Unit and a Quality Co-ordinator was appointed. This report provides a summary of the NAAL participation in the Project, main achievements and future plans

  3. Continuous Groundwater Monitoring Collocated at USGS Streamgages

    Science.gov (United States)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.

    2012-12-01

    USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June

  4. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  5. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  6. Groundwater heat pump performance improvement with pre-coolers and pump modification: Final report for the 1985-86 SOMED (School of Mines and Energy Development) project year

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S.

    1986-09-30

    Improved performance of groundwater heat pumps can be realized with a more effective and efficient utilization of the thermal properties of shallow groundwater. These systems circulate water from aquifers through water source heat pumps to achieved high efficiencies and capacities. This project concludes that a 10 to 15 percent cooling performance improvement can be realized by pre-cooling the room air with the 55/sup 0/ to 67/sup 0/F groundwater available in large portions of the Southeast. Proper design of these pre-coolers eliminates unnecessary auxiliary energy requirements. The efficiency of the overall system can be further improved with modifications to current methods of water circulation system design. Pressure requirements are minimized by maintaining a low unit inlet pressure (8 psig maximum), removing unnecessary loop restrictions and injection below the water table. Standard submersible water pumps exceed the resulting required size for residential groundwater heat pumps. Simple modifications can be made by the manufacturer to correct this problem. The result is an overall 15 to 40 percent performance improvement over high efficiency air source heat pumps with a simple payback of between 0 to 10 years in most cases.

  7. Status and understanding of groundwater quality in the North San Francisco Bay Shallow Aquifer study unit, 2012; California GAMA Priority Basin Project (ver. 1.1, February 2018)

    Science.gov (United States)

    Bennett, George L.

    2017-07-20

    Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic

  8. How Sustainable is Groundwater Abstraction? A Global Assessment.

    Science.gov (United States)

    de Graaf, I.; Van Beek, R.; Gleeson, T. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2017-12-01

    Groundwater is the world's largest accessible freshwater resource and is of critical importance for irrigation, and thus for global food security. For regions with high demands, groundwater abstractions often exceed recharge and persistent groundwater depletion occurs. The direct effects of depletion are falling groundwater levels, increased pumping costs, land subsidence, and reduced baseflows to rivers. Water demands are expected to increase further due to growing population, economic development, and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable economic and environmental limits. In this study we estimated trends over 1960-2100 in groundwater levels, resulting from changes in demand and climate. We explored the limits of groundwater abstraction by predicting where and when groundwater levels drop that deep that groundwater gets unattainable for abstraction (economic limit) or, that groundwater baseflows to rivers drop below environmental requirements (environmental limit). We used a global hydrological model coupled to a groundwater model, meaning lateral groundwater flows, river infiltration and drainage, and infiltration and capillary-rise are simulated dynamically. Historical data and projections are used to prescribe water demands and climate forcing to the model. For the near future we used RCP8.5 and applied globally driest, average, and wettest GCM to test climate sensitivity. Results show that in general environmental limits are reached before economic limits, for example starting as early as the 1970s compared to the 1980s for economic limits in the upper Ganges basin. Economic limits are mostly related to regions with depletion, while environmental limits are reached also in regions were groundwater and surface water withdrawals are significant but depletion is not taking place (yet), for example in Spain and Portugal. In the near future

  9. Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    1999-02-24

    A regional groundwater flow model encompassing approximately 100 mi{sup 2} surrounding the C, K. L. and P reactor areas has been developed. The Reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department.

  10. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  11. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  12. Workshop on methods for siting groundwater monitoring wells: Proceedings

    International Nuclear Information System (INIS)

    Jacobson, E.

    1992-02-01

    The primary purpose of this workshop was to identify methods for the optimum siting of groundwater monitoring wells to minimize the number required that will provide statistically and physically representative samples. In addition, the workshop served to identify information and data gaps, stimulated discussion and provided an opportunity for exchange of ideas between regulators and scientists interested in siting groundwater monitoring wells. These proceedings should serve these objectives and provide a source of relevant information which may be used to evaluate the current state of development of methods for siting groundwater monitoring wells and the additional research needs. The proceedings contain the agenda and list of attendees in the first section. The abstract and viewgraphs for each presentation are given in the second section. For several presentations, abstracts and viewgraphs were not received. After the presentations, four working groups were organized and met for approximately a day. The working group leaders then gave a verbal summary of their sessions. This material was transcribed and is included in the next section of these proceedings. The appendices contain forms describing various methods discussed in the working groups

  13. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at Hanford, WA

    International Nuclear Information System (INIS)

    Thompson, K.M.; Petersen, Scott W.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Vermeul, Vince R.; Wellman, Dawn M.; Szecsody, Jim E.; Truex, Michael J.; Amonette, James E.; Long, Philip E.

    2007-01-01

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phytoremediation may be a possible way to treat this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium-phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage.

  14. Groundwater flow analysis on local scale. Setting boundary conditions of groundwater flow analysis on site scale model in the former part of the step 3

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu

    2005-07-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The Surface-based Investigation Phase of the MIU project is a mainly site scale study for understanding the deep geological environment immediately surrounding the MIU construction site using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis on the Local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in the former part of the Step 3 in site scale of the MIU project. As a result of the study, the uncertainty of hydrogeological model of the local scale and boundary conditions for the site scale model is decreased as stepwise investigation, and boundary conditions for groundwater flow analysis on the site scale model for the former part of the Step 3 could be obtained. (author)

  15. South Fence Road -- Phase 1 field operations summary

    Energy Technology Data Exchange (ETDEWEB)

    McCord, J.P. [INTERA, Inc., Albuquerque, NM (United States); Neel, D. [GRAM, Inc., Albuquerque, NM (United States)

    1996-03-01

    The South Fence Road (SFR) project is part of the Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) task. The SWHC task has as its objective the reduction of uncertainty about the rate and direction of groundwater flow in the SNL/NM/Kirtland Air Force Base (KAFB) area. The SFR project area is located along the southern boundary of SNL/KAFB. This project area was selected to provide site-specific information related to geology and groundwater hydrology within the Hubbell Spring/Tijeras/Sandia fault complex. Specific objectives included determining the depth to the Santa Fe Group/bedrock contact, the depth to the water table, and the hydrogeologic complexities related to faulting. This report is a basic data report from the first phase of field operations associated with the drilling, logging, completion, and development of South Fence Road Wells SFR-1D and SFR-1S, SFR-2, SFR-3D and SFR-3S, and SFR-4. These test/monitoring wells were installed as part of Sandia National Laboratories, New Mexico, Environmental Restoration Project.

  16. South Fence Road -- Phase 1 field operations summary

    International Nuclear Information System (INIS)

    McCord, J.P.; Neel, D.

    1996-03-01

    The South Fence Road (SFR) project is part of the Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) task. The SWHC task has as its objective the reduction of uncertainty about the rate and direction of groundwater flow in the SNL/NM/Kirtland Air Force Base (KAFB) area. The SFR project area is located along the southern boundary of SNL/KAFB. This project area was selected to provide site-specific information related to geology and groundwater hydrology within the Hubbell Spring/Tijeras/Sandia fault complex. Specific objectives included determining the depth to the Santa Fe Group/bedrock contact, the depth to the water table, and the hydrogeologic complexities related to faulting. This report is a basic data report from the first phase of field operations associated with the drilling, logging, completion, and development of South Fence Road Wells SFR-1D and SFR-1S, SFR-2, SFR-3D and SFR-3S, and SFR-4. These test/monitoring wells were installed as part of Sandia National Laboratories, New Mexico, Environmental Restoration Project

  17. Conference summaries

    International Nuclear Information System (INIS)

    1987-01-01

    This volume contains summaries of 28 papers presented at the 27. conference of the Canadian Nuclear Association. These papers discuss the general situation of the Canadian nuclear industry and the CANDU reactor; dialogue with the public; the International Atomic Energy Agency; and economic goals and operating lessons. It also contains summaries of 70 papers presented at the 8. conference of the Canadian Nuclear Society, which discuss plant life extension; safety and the environment; reactor physics; thermalhydraulics; risk assessment; the CANDU spacer location and repositioning project; CANDU operations; safety research after Chernobyl; fuel channels; and nuclear technology developments. The individual papers are also available in INIS-mf--13673 (CNA), and INIS-mf--12909 (CNS). (L.L.)

  18. Predicting salt advection in groundwater from saline aquaculture ponds

    Science.gov (United States)

    Verrall, D. P.; Read, W. W.; Narayan, K. A.

    2009-01-01

    SummaryThis paper predicts saltwater advection in groundwater from leaky aquaculture ponds. A closed form solution for the potential function, stream function and velocity field is derived via the series solutions method. Numerically integrating along different streamlines gives the location (or advection front) of saltwater throughout the domain for any predefined upper time limit. Extending this process produces a function which predicts advection front location against time. The models considered in this paper are easily modified given knowledge of the required physical parameters.

  19. Application of isotope techniques to investigate groundwater pollution

    International Nuclear Information System (INIS)

    1998-10-01

    This publication is a compilation of scientific results from the Co-ordinated Research Project (CRP) on the Application of Isotope Techniques to Investigate Groundwater Pollution which was implemented from 1995 to 1997. The conclusions of the CRP were presented by scientists from the following participating Member States: Austria, Brazil, China, Czech Republic, France, Hungary, India, Israel, Italy, New Zealand, Pakistan, Poland, Senegal and the United Kingdom. The CRP was implemented in recognition of the importance of protecting groundwater resources, and promoting the role of isotope techniques when integrated to classical hydrological methods to identify the sources and mechanisms of by which pollution takes place. The results of the CRP are expected to find practical applications in tackling hydrological problems encountered in technical co-operation projects of the IAEA. This publication could also provide a contribution toward the continuing efforts of various sectors to investigate, mitigate and control the threat of groundwater pollution. This publication includes the results of 16 investigations dealing with isotopes of hydrogen, carbon, nitrogen, oxygen and sulfur integrated to some extent with the classical hydrological tools of investigation. Each document in this compilation is provided with abstract and index

  20. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site

  1. Alligator rivers analogue project. Final report; volume 1; summary of findings

    International Nuclear Information System (INIS)

    Duerden, P.; Lever, D.A.; Sverjensky, D.A.; Townley, L.R.

    1992-01-01

    The Koongarra uranium ore deposit is located in the Alligator Rivers Region of the Northern Territory of Australia. Many of the processes that have controlled the development of this natural system are relevant to the performance assessment of radioactive waste repositories. An agreement was reached in 1987 by a number of agencies concerned with radioactive waste disposal to set up the International Alligator Rivers Analogue Project (ARAP) to study relevant aspects of the hydrological and geochemical evolution of the site. The Project ran for five years. The aims of the study were: to contribute to the production of reliable and realistic models for radionuclide migration within geological environments relevant to the assessment of the safety of radioactive waste repositories; to develop methods of validation of models using a combination of laboratory and field data associated with the Koongarra uranium deposit; and to encourage maximum interaction between modellers and experimentalists in achieving these objectives. It was anticipated that the substantial databases generated in the field and laboratory studies would then be used to develop and test geochemical and radionuclide transport models. The findings from the technical studies are discussed in the context of assessments of the long-term performance of geological repositories for radioactive wastes, which are being undertaken in many countries. They are also considered in an integrated 'Scenario Development' approach, aimed to understand the formation of the ore deposit. Despite their inherent uncertainties, the findings provide a basis for assessing the way in which radionuclides will migrate in environments with a variety of geologic settings and over a range of different geologic timescales. This summary report, which highlights the work and findings of the Alligator Rivers Analogue Project is one of a series of 16 volumes

  2. Spatial and temporal variations in shallow wetland groundwater quality

    Science.gov (United States)

    Schot, Paul P.; Pieber, Simone M.

    2012-02-01

    SummaryWetlands worldwide are threatened by environmental change. Differences in groundwater composition is one of the factors affecting wetland terrestrial floristic biodiversity. However, few studies discuss variations in wetland groundwater composition. This study presents an analysis of local-scale spatial and short-term temporal variations in 15 groundwater composition parameters of the 7 km2 Naardermeer wetland nature reserve in The Netherlands. Data is available from a network of 35 groundwater wells with 2-4 filters each, at depths between 50 and 800 cm, which were sampled about monthly over a 1-year period, totalling 1042 chemical analysis from 103 filter screens. Relative standard deviations indicate large differences in variation between parameters. Largest spatial and temporal variations were found for nutrients (NO3-, PO43-, NH4+) and redox sensitive parameters (Fe, Mn), and lowest variations for macroions and SiO2. A horizontal zonation in groundwater concentrations has been found related to soil type and soil wetness, with largest horizontal decrease in NO3- and SO42-, and largest increase in Fe and SiO2, going in the groundwater flow direction from dry sandy soils to wet peat/clay soils. No clear horizontal patterns have been found for the macroions. Spatial zonations in the north-south direction and with depth are absent for all parameters. Spatial and temporal variations were found to be related. 3D-maps indicate highest temporal fluctuations at filter screens with lowest median concentrations for NO3-, SO42- and Fe, but the reverse pattern for SiO2. High temporal variations of nutrients and redox sensitive parameters could not be traced back to a seasonal trend. The spatial and temporal variability of groundwater quality parameters as presented in this study, together with their reported effects on different vegetation types, may be used to design efficient monitoring schemes by nature managers having set specific vegetation development targets

  3. The Advanced Rapid Imaging and Analysis (ARIA) Project: Status of SAR products for Earthquakes, Floods, Volcanoes and Groundwater-related Subsidence

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Sacco, G. F.; Manipon, G.; Linick, J. P.; Fielding, E. J.; Lundgren, P.; Farr, T. G.; Webb, F.; Rosen, P. A.; Simons, M.

    2017-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating high-level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques including Interferometric Synthetic Aperture Radar (InSAR), differential Global Positioning System, and SAR-based change detection have become critical additions to our toolset for understanding and mapping the damage and deformation caused by earthquakes, volcanic eruptions, floods, landslides, and groundwater extraction. Up until recently, processing of these data sets has been handcrafted for each study or event and has not generated products rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by the California Institute of Technology and by NASA through the Jet Propulsion Laboratory, has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition to supporting the growing science and hazard response communities, the ARIA project has developed the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the influx of raw SAR data from geodetic imaging missions such as ESA's Sentinel-1A/B, now operating with repeat intervals as short as 6 days, and the upcoming NASA NISAR mission. We will present the progress and results we have made on automating the analysis of Sentinel-1A/B SAR data for hazard monitoring and response, with emphasis on recent developments and end user engagement in flood extent mapping and deformation time series for both volcano

  4. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  5. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    Science.gov (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  6. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain

  7. Understanding surface-water availability in the Central Valley as a means to projecting future groundwater storage with climate variability

    Science.gov (United States)

    Goodrich, J. P.; Cayan, D. R.

    2017-12-01

    surface water data are compiled. We can then develop groundwater pumping and storage predictions in real time, and make them available to water managers. In addition, we are working toward future projections by coupling the regional CVHM to downscaled GCM output to assess future scenarios of water availability in this critical region.

  8. Lockheed Martin Energy Systems, Inc., Groundwater Program Office. Annual report for fiscal year 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This edition of the Lockheed Martin Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems Groundwater Program Office (GWPO) for fiscal year (FY) 1994. The GWPO is responsible for coordination and oversight for all components of the groundwater programs at the three Oak Ridge facilities [Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants (PGDP and PORTS, respectively.) This report describes the administrative framework of the GWPO including staffing, organization, and funding sources. In addition, summaries are provided of activities involving the Technical Support staff at the five facilities. Finally, the results of basic investigations designed to improve our understanding of the major processes governing groundwater flow and contaminant migration on the Oak Ridge Reservation (ORR) are reported. These investigations are conducted as part of the Oak Ridge Reservation Hydrology and Geology Studies (ORRHAGS) program. The relevance of these studies to the overall remediation responsibilities of Energy Systems is discussed

  9. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  10. Groundwater Availability Within the Salton Sea Basin Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    in the Salton Sea Basin is the subject of the project described in this report. Much of the project work was done in cooperation with the US Bureau of Reclamation, Lower Colorado Region Office ('Reclamation'), which manages the Salton Sea Restoration project for the US Department of the Interior, and complements other recent assessment efforts (e.g., Imperial County, 1995). In this context, the notion of groundwater availability is defined by four separate, but interrelated concepts or components: (1) Volume and Capacity--This refers to the volume of groundwater available in storage in (or the related storage capacity of) the sediments and geologic media that comprise a groundwater basin. The volume of groundwater in a basin will vary in time as a function of recharge, well production, and land subsidence. (2) Producibility--This refers to the ease or difficulty of extracting groundwater in a basin from wells. Groundwater producibility will be affected by well depth and the formation permeability surrounding the open intervals in wells. (3) Quality--This refers to the extent that water produced from wells is potable or otherwise suitable for domestic or other uses. It may also refer to the chemical compositions of groundwater that are unrelated to potability or suitability issues. Groundwater quality will be affected by its residence time and flow pathway in the formation and will also be influenced by the quality of its original source before entering the groundwater regime. (4) Renewability and Recharge--This refers to the extent that groundwater is recharged to the basin as part of the natural hydrologic cycle or other artificial means. Groundwater renewability is normally a function of recharge derived from precipitation (and thus a function of regional climate), but may also be affected in local areas by irrigation, leaking canals, aquifer storage and recovery operations, and so forth. Along with the other factors, renewability will strongly affect how

  11. An initial examination of tungsten geochemistry along groundwater flow paths

    Science.gov (United States)

    Dave, H. B.; Johannesson, K. H.

    2008-12-01

    elevated W in sulfidic waters of the Carrizo aquifer. We propose that the substantially lower W concentrations in Aquia groundwaters reflect the fact that these waters are suboxic and have not undergone sulfate reduction. Hence, the evolution of W concentrations in the Aquia aquifer is consistent with conservative behavior in these generally oxic to suboxic groundwaters. In summary, our data indicate that pH related adsorption/desorption reactions are the key factors controlling W concentrations in oxic and sub-oxic waters, whereas formation of thiotungstate complexes may be important in sulfidic/anoxic waters.

  12. Groundwater governance in South Africa: A status assessment

    African Journals Online (AJOL)

    to the project were conducted in India, Kenya, Peru, Morocco,. Philippines and Tanzania. ... the process of formulating a National Groundwater Strategy. (DWA, 2010). ..... solid-waste disposal when it is placed into or on any land, open surface ...

  13. Methodology of determining soil structure in important groundwater areas: case studies in Kauvonkangas, Finnish Lapland

    Science.gov (United States)

    Kupila, Juho

    2016-04-01

    Finland is fully self-sufficient in clean groundwater and even has a capacity of exportation. There are approx. 6000 groundwater areas with a total yield of 5.4 million m3/day. Currently only 10% of this groundwater resource is in use. For the efficient and safe exploitation of these areas in the future, detailed modeling of soil structure is an important method in groundwater surveys. 3D -models improve the general knowledge of linkage between land use planning and groundwater protection. Results can be used as a base information in water supply service development and when performing the measures needed in case of environmental accidents. Also, when creating the groundwater flow models the collected information is utilized and is usually the main data source. Geological Survey of Finland has carried out soil structure studies in co-operation with authorities, municipalities and the local water suppliers. The main objectives of these projects are to determine the geological structure of groundwater area for estimating the validity of the present exclusion area, the quantity of ground water volume and recharge capability and possible risks to the groundwater. Research areas are usually under an active water supply service. Kauvonkangas groundwater area is located in the municipality of Tervola, in Southern part of Finnish Lapland. Extent of the area is 7.9 km2 and it is an important water source for the local and nearby population centers. There are two active water supply companies in the area. Field studies in the project will include general geological and hydrological mapping, soil drilling with observation pipe installation, test pumping and water sampling. Geophysical measures will play a key-role, including ground penetrating radar (GPR) and gravimetric measurements. Studies will be carried out in spring and summer 2016. The main results will be the models of the bedrock and groundwater level and main characteristics of the soil layers in the area. Results

  14. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, California

    Science.gov (United States)

    Burton, Carmen

    2018-05-30

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.

  15. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...

  16. Using SDP to optimize conjunctive use of surface and groundwater in China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Mo, X; Liu, S.

    2014-01-01

    A hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from allocations of surface water, head-dependent groundwater......, which includes surface water droughts and groundwater over-pumping. The head-dependent groundwater pumping costs will enable assessment of the long-term effects of increased electricity prices on the groundwater pumping. The optimization framework is used to assess realistic alternative development...... pumping costs, water allocations from the South-North Water Transfer Project and water curtailments of the users. Each water user group (agriculture, industry, domestic) is characterized by fixed demands and fixed water allocation and water supply curtailment costs. The non-linear one step-ahead sub...

  17. Proposed Plan for Interim Remedial Actions at the 100-NR-1 Source Sites Operable Unit and the 100-NR-2 Groundwater Operable Unit

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1998-02-01

    This Proposed Plan summary includes brief descriptions of the key issues for the 100-N Area contaminated soil and groundwater. This summary is intended as a simplified introduction to readers who might not be familiar with the contaminated site cleanup process or Hanford Site issues. The detailed Proposed Plan is attached to this summary. Some of the buildings and surrounding soils in the 100 Area of the Hanford Site were contaminated during operation of the nuclear reactors. The contamination poses a potential threat to public health and/or the environment. The potential threat to the public is exposure to people on or near the site to radiation and chemicals. The potential threat to the environment is contamination in the soil that has migrated to the groundwater and could eventually harm the Columbia River. Because of these potential threats, the Federal Government decided that the 100 Area was a high priority for cleanup and placed it on the National Priorities List

  18. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss

  19. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss interdepartmental platform for

  20. Summary of Research 1997

    OpenAIRE

    Maier, William B.; Cleary, David D.

    1997-01-01

    This report contains summaries of research projects in the Department of Physics. A list of recent publications in also included which consists of conference presentations and publications, books, contributions to books, published jounal papers, technical reports, and thesis abstracts.

  1. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    None

    1999-01-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1998. The East Fork Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality at the Y-12 Plant. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively

  2. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1998. The East Fork Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality at the Y-12 Plant. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  3. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

  4. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  5. Numerical groundwater flow calculations at the Finnsjoen site

    International Nuclear Information System (INIS)

    Lindbom, B.; Boghammar, A.; Lindberg, H.; Bjelkaas, J.

    1991-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has initiated a research project called SKB 91, which is related to performance assessment of repositories for high level waste from nuclear power plants. Specifically the Finnsjoen site is of concern. As part of this research project, the report describes groundwater flow calculations at the Finnsjoen site, located in northern Uppland, approximately 150 km north of Stockholm. The calculations have been performed with the finite element method applying the porous media approach. The project comprises three steps, the first of which is concerned with the presence of salt below a hydraulically significant structure. This step was modelled in two dimensions in a semi-generic fashion, while the two following steps comprised three-dimensional modelling of the site at a semi-regional and a local scale. The semi-regional model covered approximately 43 square km while the area of the local model was roughly 6.6 square km. The semi-regional model included well expressed regional fracture zones that were explicitly modelled in deterministic manner. The modelling was performed with the finite element code NAMMU, used together with the program-package HYPAC. The latter was used for pre- and postprocessing purposes. The modelling was performed with 8-noded brick elements for the three-dimensional calculations, and the two-dimensional model involved the use of 8-noded rectangular elements. The present report is a revised version of a report previously published as a working report. The difference between the present report and the previous one, is that the present report describes the conclusions more site-specifically, the presentation of a number of the cases tackled has been pruned down, some editorial effort has been put into having the volume of the report reduced, and finally the summary has been edited and cut down. (authors)

  6. Evaluation and status report on HYDROCOIN at midway (HYDROCOIN: An international project for studying groundwater hydrology modelling strategies)

    International Nuclear Information System (INIS)

    Cole, C.R.

    1986-12-01

    The US Department of Energy (DOE) is participating in the international hydrologic code intercomparison (HYDROCOIN) project organized by the Swedish Nuclear Power Inspectorate (SKI) for the purpose of improving our knowledge about the influence of various strategies for ground-water flow modeling for the safety assessment of final repositories for nuclear waste. The HYDROCOIN project consists of three levels of effort: Level One is concerned with verifying the numerical accuracy of codes, Level Two is involved with validation of models using field experiments, and Level Three is concerned with sensitivity and uncertainty analysis. The need for the HYDROCOIN project emerged from an earlier international study for the intercomparison of computer codes for radionuclide transport (INTRACOIN). The HYDROCOIN project began in May 1984 with a group of fourteen organizations from eleven countries participating; currently twenty organizations are involved. Five teams from DOE's Office of Civilian Radioactive Waste Management (OCRWM) are participating in the HYDROCOIN project, and this document presents the results of a review of this participation and an analysis of the benefits of OCRWM participation in the first 2 years (i.e., through May 1986) of the 3-year HYDROCOIN project. Efforts on the seven Level One cases are nearly complete. Level Two problems have been formulated and are in final draft form, and Level Three problems have been identified and are in first draft form. This report details the motivation, need, and benefits from HYDROCOIN through a chronological synopsis of the project's progress to date, brief description and intercomparison of preliminary Level One results prepared by OCRWM participants, and discussion of OCRWM contributions and plans for HYDROCOIN Level Two and Three efforts

  7. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed

  8. Groundwater hydrology study of the Ames Chemical Disposal Site

    International Nuclear Information System (INIS)

    Stickel, T.

    1996-01-01

    The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine

  9. Addressing the Sustainability of Groundwater Extraction in California Using Hydrochronology

    Science.gov (United States)

    Moran, J. E.; Visser, A.; Singleton, M. J.; Esser, B. K.

    2017-12-01

    In urban and agricultural settings in California, intense pressure on water supplies has led to extensive managed aquifer recharge and extensive overdraft in these areas, respectively. The California Sustainable Groundwater Management Act (SGMA) includes criteria for pumping that maintains groundwater levels and basin storage, and avoids stream depletion and degradation of water quality. Most sustainability plans will likely use water level monitoring and water budget balancing based on integrated flow models as evidence of compliance. However, hydrochronology data are applicable to several of the criteria, and provide an independent method of addressing questions related to basin turnover time, recharge rate, surface water-groundwater interaction, and the age distribution at pumping wells. We have applied hydrochronology (mainly tritium-helium groundwater age dating and extrinsic tracers) in urban areas to delineate flowpaths of artificially recharged water, to identify stagnant zones bypassed by the engineered flow system, and to predict vulnerability of drinking water sources to contamination. In agricultural areas, we have applied multi-tracer hydrochronology to delineate groundwater stratigraphy, to identify paleowater, and to project future nitrate concentrations in long-screened wells. This presentation will describe examples in which groundwater dating and other tracer methods can be applied to directly address the SGMA criteria for sustainable groundwater pumping.

  10. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    Science.gov (United States)

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  11. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  12. Summary of operations and performance of the Murdock site restoration project in June 2005-December 2006.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-05-31

    This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the initial period of systems operation, from June 2005 through December 2006. In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the initial period of operation.

  13. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  14. Functional design criteria for FY 1993-2000 groundwater monitoring wells

    International Nuclear Information System (INIS)

    Williams, B.A.

    1996-01-01

    The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement

  15. Groundwater Energy Designer - Review of basic data and modification; Grundlagendatenueberpruefung und Anpassungen des Groundwater Energy Designer (Teilprojekt Programmoptimierung) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Poppei, J.; Mayer, G.; Schwarz, R.

    2009-12-15

    This report for the Swiss Federal Office of Energy (SFOE) reports on the extension and improvement of the Groundwater Energy Designer programme. A survey of selected existing small and medium sized ground-water heat pump systems formed the basis of the review. In this first phase of the project, a concept for measurement technologies to be used and the software changes necessary are discussed. The changes to the existing programme library to enable operation under Windows Vista, Windows 7 and Mac OSX are discussed. Also user dialogues were revised. New features and changes are presented and discussed, as are the functionality and user interface of the new version.

  16. LLNL/YMP Waste Container Fabrication and Closure Project; GFY technical activity summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-10-01

    The Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM) Program is studying Yucca Mountain, Nevada as a suitable site for the first US high-level nuclear waste repository. Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing and developing the waste package for the permanent storage of high-level nuclear waste. This report is a summary of the technical activities for the LLNL/YMP Nuclear Waste Disposal Container Fabrication and Closure Development Project. Candidate welding closure processes were identified in the Phase 1 report. This report discusses Phase 2. Phase 2 of this effort involved laboratory studies to determine the optimum fabrication and closure processes. Because of budget limitations, LLNL narrowed the materials for evaluation in Phase 2 from the original six to four: Alloy 825, CDA 715, CDA 102 (or CDA 122) and CDA 952. Phase 2 studies focused on evaluation of candidate material in conjunction with fabrication and closure processes.

  17. Hydrochemical Characteristics of Groundwater in an Agricultural Area in South Korea

    Science.gov (United States)

    Kim, N.; Hamm, S.; An, J.; Lee, J.; Jang, S.

    2008-12-01

    exhibited - 7.35‰ and -49.40‰. The δ18O in function of δD was plotted parallel with and slightly lower than the meteoric water line (Dansgaard, 1964). In general, deep groundwater displays higher δ18O ratios than shallow groundwater does (Freeze and Cherry, 1979), since deep groundwater reacts with bedrock which commonly emits more 18O than 16O. However, δ18O ratios in the bedrock groundwater in this area opposed to general trend, indicating not enough time to react with bedrock and diffusion effect probably (Hoefs, 1997). Keywords: alluvial groundwater, bedrock groundwater, nitrogen isotope, hydrogen isotope, agricultural area Acknowledgement This work was financially supported by the 21st Century Frontier R&D Program (project no. 3~4~3 of the Sustainable Water Resources Research Center), and also supported by the agricultural groundwater management project, Korea Rural Community & Agriculture Corporation and Ministry of agriculture & Forestry, Republic of Korea.

  18. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year.

  19. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  20. Groundwater sapping channels: Summary of effects of experiments with varied stratigraphy

    Science.gov (United States)

    Kochel, R. Craig; Simmons, David W.

    1987-01-01

    Experiments in the recirculating flume sapping box have modeled valley formation by groundwater sapping processes in a number of settings. The effects of the following parameters on sapping channel morphology were examined: surface slope; stratigraphic variations in permeability cohesion and dip; and structure of joints and dikes. These kinds of modeling experiments are particularly good for: testing concepts; developing a suite of distinctive morphologies and morphometries indicative of sapping; helping to relate process to morphology; and providing data necessary to assess the relative importance of runoff, sapping, and mass wasting processes on channel development. The observations from the flume systems can be used to help interpret features observed in terrestrial and Martian settings where sapping processes are thought to have played an important role in the development of valley networks.

  1. "Know Your Well" A Groundwater Quality Project to Inform Students and Well-Owners

    Science.gov (United States)

    Olson, C.; Snow, D.; Samal, A.; Ray, C.; Kreifels, M.

    2017-12-01

    Over 15 million U.S. households rely on private, household wells for drinking water, and these sources are not protected under the Safe Drinking Water Act. Data on private well water quality is slowly being collected and evaluated from a number of different agencies, sources and projects. A new project is designed both for training high school students and to help assess the quality of water from rural domestic wells in Nebraska. This "crowd sourced" program engaging high school agricultural education programs, FFA chapters, and science classes with students sampling and testing water sampling from rural domestic wells from 12 districts across the state. Students and teachers from selected school were trained through multiple school visits, both in the classroom and in the field. Classroom visits were used to introduce topics such as water quality and groundwater, and testing methods for specific analytes. During the field visit, students were exposed to field techniques, the importance of accuracy in data collection, and what factors might influence the water in sampled wells. High school students learn to sample and test water independently. Leadership and initiative is developed through the program, and many experience the enlightenment that comes with citizen science. A customized mobile app was developed for ease of data entry and visualization, and data uploaded to a secure website where information was stored and compared to laboratory tests of the same measurements. General water quality parameters, including pH, electrical conductivity, major anions are tested in the field and laboratory, as well as environmental contaminants such as arsenic, uranium, pesticides, bacteria. Test kits provided to each class were used by the students to measure selected parameters, and then duplicate water samples were analyzed at a university laboratory. Five high schools are involved in the project during its first year. Nitrate, bacteria and pesticides represent major

  2. Status and understanding of groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units, 2006-2007--California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The three study units are located in the Sierra Nevada region of California in parts of Nevada, Placer, El Dorado, Madera, Tulare, and Kern Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board, in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems used for drinking water. The primary aquifer systems (hereinafter, primary aquifers) for each study unit are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Tahoe-Martis, Central Sierra, and Southern Sierra study units were based on water-quality and ancillary data collected by the USGS from 132 wells in the three study units during 2006 and 2007 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those

  3. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Vermeul, V.R.

    1994-09-01

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10 0 to 10 2 m 2 /d, with 65% of the calculated estimate values occurring between 10 1 to 10 2 m 2 d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt

  4. An overview of groundwater chemistry studies in Malaysia.

    Science.gov (United States)

    Kura, Nura Umar; Ramli, Mohammad Firuz; Sulaiman, Wan Nor Azmin; Ibrahim, Shaharin; Aris, Ahmad Zaharin

    2018-03-01

    In this paper, numerous studies on groundwater in Malaysia were reviewed with the aim of evaluating past trends and the current status for discerning the sustainability of the water resources in the country. It was found that most of the previous groundwater studies (44 %) focused on the islands and mostly concentrated on qualitative assessment with more emphasis being placed on seawater intrusion studies. This was then followed by inland-based studies, with Selangor state leading the studies which reflected the current water challenges facing the state. From a methodological perspective, geophysics, graphical methods, and statistical analysis are the dominant techniques (38, 25, and 25 %) respectively. The geophysical methods especially the 2D resistivity method cut across many subjects such as seawater intrusion studies, quantitative assessment, and hydraulic parameters estimation. The statistical techniques used include multivariate statistical analysis techniques and ANOVA among others, most of which are quality related studies using major ions, in situ parameters, and heavy metals. Conversely, numerical techniques like MODFLOW were somewhat less admired which is likely due to their complexity in nature and high data demand. This work will facilitate researchers in identifying the specific areas which need improvement and focus, while, at the same time, provide policymakers and managers with an executive summary and knowledge of the current situation in groundwater studies and where more work needs to be done for sustainable development.

  5. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  6. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    Science.gov (United States)

    Schwartz, Michael O.

    2018-02-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  7. The international hydrocoin project

    International Nuclear Information System (INIS)

    1987-01-01

    The International HYDROCOIN (Hydrologic Code Intercomparison) Project was started in May 1984. Fourteen organizations participate in the Project, with the Swedish Nuclear Power Inspectorate (SKI) as managing participant and the OECD Nuclear Energy Agency (NEA) taking part as a member of the Project secretariat. HYDROCOIN is concerned with the assessment of groundwater movements at potential nuclear waste disposal sites with the help of mathematical models and computer codes. The Project is divided into three levels. The objective of HYDROCOIN Level 1 is to verify the accuracy of groundwater flow codes. HYDROCOIN Level 2 and Level 3 are concerned with validation of hydrological models and uncertainty/sensitivity analysis, respectively. This report, which has been prepared by the NEA Secretariat and SKI in consultation with the co-ordinating group of the HYDROCOIN Project summarizes the background and objectives of the Project and presents the results of the work performed up to the middle of 1987. It is intended to provide general information on HYDROCOIN to interested parties beyond the group of directly involved specialists

  8. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 1: Project summary

    Science.gov (United States)

    Mckee, James W.

    1990-01-01

    This volume (1 of 4) gives a summary of the original AMPS software system configuration, points out some of the problem areas in the original software design that this project is to address, and in the appendix collects all the bimonthly status reports. The purpose of AMPS is to provide a self reliant system to control the generation and distribution of power in the space station. The software in the AMPS breadboard can be divided into three levels: the operating environment software, the protocol software, and the station specific software. This project deals only with the operating environment software and the protocol software. The present station specific software will not change except as necessary to conform to new data formats.

  9. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  10. Characterizing Normal Groundwater Chemistry in Hawaii

    Science.gov (United States)

    Tachera, D.; Lautze, N. C.; Thomas, D. M.; Whittier, R. B.; Frazer, L. N.

    2017-12-01

    Hawaii is dependent on groundwater resources, yet how water moves through the subsurface is not well understood in many locations across the state. As marine air moves across the islands water evaporates from the ocean, along with trace amounts of sea-salt ions, and interacts with the anthropogenic and volcanic aerosols (e.g. sulfuric acid, ammonium sulfate, HCl), creating a slightly more acidic rain. When this rain falls, it has a chemical signature distinctive of past processes. As this precipitation infiltrates through soil it may pick up another distinctive chemical signature associated with land use and degree of soil development, and as it flows through the underlying geology, its chemistry is influenced by the host rock. We are currently conducting an investigation of groundwater chemistry in selected aquifer areas of Hawaii, having diverse land use, land cover, and soil development conditions, in an effort to investigate and document what may be considered a "normal" water chemistry for an area. Through this effort, we believe we better assess anomalies due to contamination events, hydrothermal alteration, and other processes; and we can use this information to better understand groundwater flow direction. The project has compiled a large amount of precipitation, soil, and groundwater chemistry data in the three focus areas distributed across in the State of Hawaii. Statistical analyses of these data sets will be performed in an effort to determine what is "normal" and what is anomalous chemistry for a given area. Where possible, results will be used to trace groundwater flow paths. Methods and preliminary results will be presented.

  11. Evaluation of the ground-water resources of coastal Georgia: preliminary report of the data available as of July 1983

    Science.gov (United States)

    Krause, Richard E.

    1984-01-01

    A compilation of ground-water data that have been collected for nearly 100 years in the coastal area of Georgia is presented in this report. The compilation of pertinent data indicates what information is available for use in the evaluation of the ground-water resources of the 13 counties of coastal Georgia. Also included in this report is a fairly complete discussion of previous and ongoing investigations and monitoring networks, and an extensive list of references. Maps at 1:24,000 and 1:1,000,000 scales contain well locations and identifiers for all wells in the Ground Water Site Inventory (GWSI) data base of the National Water Data Storage and retrieval System (WATSTORE). Tabular summaries of selected site information from GWSI, including well identifiers and names, latitude-longitude location, depth of well, altitude of land surface, and use of water are presented. Water-use data from the National Water Use Data System, and water use for irrigation from the University of Georgia, Department of Agriculture survey, also are tabulated. Also included are pertinent information on geophysical surveys and data obtained, and proposed project activities, particularly test-monitor well drilling. The data in this report were collected and compiled as part of the cooperative activities between the U.S. Geological Survey and other agencies.

  12. Evaluation of the ground-water resources of coastal Georgia; preliminary report on the data available as of July 1983

    Science.gov (United States)

    Krause, Richard E.; Matthews, Sharon E.; Gill, Harold E.

    1984-01-01

    A compilation of ground-water data that have been collected for nearly 100 years in the coastal area of Georgia as part of cooperative activities between the U.S. Geological Survey and other agencies is presented in this report. The compilation of pertinent data indicates that information is available for use in the evaluation of the ground-water resources of the 13 counties of coastal Georgia. Included in this report is a fairly complete discussion of previous and ongoing investigations and monitoring networks, and an extensive list of references. Maps at 1:24,000, 1:100,000; and 1:1000,000 scales contain well locations and identifers for all wells in the Ground Water Site Inventory (GWSI) data base of the National Water Data Storage and Retrieval System (WATSTORE). Tabular summaries of selected site information from GWSI, including well identifiers and names , latitude-longitude location, depth of well, altitude of land surface, and use of water are presented. Water-use data from the National Water Use Data System, and water use for irrigation from the University of Georgia, Department of Agriculture survey , are tabulated. Also included are pertinent information on geophysical surveys and data obtained, and proposed project activities, particularly test-monitor well drilling.

  13. Program summary report

    International Nuclear Information System (INIS)

    1978-01-01

    The report provides summary information on all phases of nuclear regulation, and is intended as an information and decision-making tool for mid and upper level management of the Nuclear Regulatory Commission. The report is divided functionally into ten sections: (1) nuclear power plants in the United States; (2) operating nuclear power plants; (3) reactors under construction; (4) operating license applications under NRC review; (5) construction permit applications and special projects under NRC review; (6) ACRS and ASLBP; (7) nuclear materials; (8) standards and regulations; (9) research projects; and (10) foreign reactors

  14. Groundwater quota versus tiered groundwater pricing : two cases of groundwater management in north-west China

    NARCIS (Netherlands)

    Aarnoudse, Eefje; Qu, Wei; Bluemling, B.; Herzfeld, Thomas

    2017-01-01

    Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are

  15. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  16. Stripa Project - Summary of defined programs

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.; Pusch, R.

    1980-11-01

    An international cooperation project, the Stripa Project, in the field of nuclear waste management has been established as an autonomous OECH/NEA project. The management of the project has been entrusted to the Divsion Nuclear Fuel Safety (KBS) of the Swedish Nuclear Fuel Supply Company (SKBF). Technical input and contribution of funds are given by the following countries: Canada, Finland, Japan, Sweden, Switzerland and the United States. The report summarizes the programs for investigations funded at this stage. A number of investigations of a geophysical, geochemical and hydraulic nature will be carried out in the boreholes and the drill cores will be mapped and analysed. Another experiment is with various tracers which represent all important types of radionuclides and will be introduced in the naturally flowing water in a single fissure in granite. The experiment will show how well sorption data from the laboratory can be used to predict radionuclide migration in the field with real surfaces and waters. The third project aims at the verification of the suitability of the buffer materials at real conditions on site. Highly compacted bentonite and mixtures of bentonite and quartz sand are proposed as buffer materials in final repositories for high-level radioactive wastes. (GB)

  17. Hydrological challenges to groundwater trading: Lessons from south-west Western Australia

    Science.gov (United States)

    Skurray, James H.; Roberts, E. J.; Pannell, David J.

    2012-01-01

    SummaryPerth, Western Australia (pop. 1.6 m) derives 60% of its public water supply from the Gnangara groundwater system (GGS). Horticulture, domestic self-supply, and municipal parks are other major consumers of GGS groundwater. The system supports important wetlands and groundwater-dependent ecosystems. Underlying approximately 2200 km 2 of the Swan Coastal Plain, the GGS comprises several aquifer levels with partial interconnectivity. Supplies of GGS groundwater are under unprecedented stress, due to reduced recharge and increases in extraction. Stored reserves in the superficial aquifer fell by 700 GL between 1979 and 2008. Over a similar period, annual extraction for public supply increased by more than 350% from the system overall. Some management areas are over-allocated by as much as 69%. One potential policy response is a trading scheme for groundwater use. There has been only limited trading between GGS irrigators. Design and implementation of a robust groundwater trading scheme faces hydrological and/or hydro-economic challenges, among others. Groundwater trading involves transfers of the right to extract water. The resulting potential for spatial (and temporal) redistribution of the impacts of extraction requires management. Impacts at the respective selling and buying locations may differ in scale and nature. Negative externalities from groundwater trading may be uncertain as well as not monetarily compensable. An ideal groundwater trading scheme would ensure that marginal costs from trades do not exceed marginal benefits, incorporating future effects and impacts on third-parties. If this condition could be met, all transactions would result in constant or improved overall welfare. This paper examines issues that could reduce public welfare if groundwater trading is not subject to well-designed governance arrangements that are appropriate to meeting the above condition. It also outlines some opportunities to address key risks within the design of a

  18. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  19. In-situ restauration of groundwater. Experiences with a hydro-airlift-well

    International Nuclear Information System (INIS)

    Bruehl, H.; Naumann, J.; Verleger, H.

    1995-01-01

    The Hydro-Airlift-well is a groundwater circulation well designed for the treatment of groundwater polluted by volatile contaminants. Decontamination is performed by a stripping process inside of the well. A pilot project was run in Berlin-Kreuzberg in order to show the method's capability under the hydrogeological conditions of the Spree-valley. Two wells were run successivily for a period of 1 1/2 years, and performance was monitored with regard to decontamination and size of influenced area. The system yielded a good degree of decontamination. If the well design is fit for the prevailing geological conditions, groundwater circulation will occur as desired. (orig.) [de

  20. Final summary report of the Nordic Nuclear Safety Research Program 1994 - 1997

    International Nuclear Information System (INIS)

    Bennerstedt, T.; Lemmens, A.

    1999-11-01

    This is a summary report of the NKS research program carried out 1994 - 1997. It is basically a compilation of the executive summaries of the final reports on the nine scientific projects carried out during that period. It highlights the conclusions, recommendations and other results of the projects. (au)

  1. Groundwater Recharge Assessment in a Remote Region of Colombia Through Citizen Science

    Science.gov (United States)

    Gomez, A. M.; Wise, E.; Riveros-Iregui, D.

    2017-12-01

    Understanding water dynamic and storage is essential for decision making in hydrology issues. In remote groundwater-dependent regions affected by population displacement and land over exploitation, especially in developing economies, limited data hinders the production of information necessary to formulate and implement effective water management plans. The community science research approach, which seeks to solve scientific questions with the participation of the community at various levels, represents an opportunity in these regions. We present results of a citizen science project developed to improve the conceptualization of groundwater flow path and to estimate the monthly direct recharge to the shallow aquifer in a remote rural region, the Man River watershed, located in one of the last foothills between the Western and Central Andes cordillera in Colombia. This project was conducted by: i) implementing a water level monitoring network aided by the community to collect weekly data from 2007 to 2010; ii) comparing the precipitation data and water table time series to identify the response of the shallow aquifer to the wet season; iii) conceptualizing specific groundwater-surface interactions through water table spatial analysis; and iv) estimating direct groundwater recharge using the Water Table Fluctuation method. Water quality test results were shared with the local community. Results show that groundwater interacts with the main tributaries to the Man River. Two scenarios were identified related to water table temporal behavior: (1) the water table rises during the transition from the dry to the wet season (between March and April), and (2) it increases one month after this transition. In general, groundwater levels descend in November, which is the end of the wet season. The work with the community provided useful insights for interpreting the collected data and allowed for information exchange concerning the groundwater quality and methods for improving

  2. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  3. Simulation of Groundwater Flow, Denpasar-Tabanan Groundwater Basin, Bali Province

    Directory of Open Access Journals (Sweden)

    Heryadi Tirtomihardjo

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.123Due to the complex structure of the aquifer systems and its hydrogeological units related with the space in which groundwater occurs, groundwater flows were calculated in three-dimensional method (3D Calculation. The geometrical descritization and iteration procedures were based on an integrated finite difference method. In this paper, all figures and graphs represent the results of the calibrated model. Hence, the model results were simulated by using the actual input data which were calibrated during the simulation runs. Groundwater flow simulation of the model area of the Denpasar-Tabanan Groundwater Basin (Denpasar-Tabanan GB comprises steady state run, transient runs using groundwater abstraction in the period of 1989 (Qabs-1989 and period of 2009 (Qabs-2009, and prognosis run as well. Simulation results show, in general, the differences of calculated groundwater heads and observed groundwater heads at steady and transient states (Qabs-1989 and Qabs-2009 are relatively small. So, the groundwater heads situation simulated by the prognosis run (scenario Qabs-2012 are considerably valid and can properly be used for controlling the plan of groundwater utilization in Denpasar-Tabanan GB.

  4. Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters

    International Nuclear Information System (INIS)

    Saunders, J.A.; Lee, M.-K.; Shamsudduha, M.; Dhakal, P.; Uddin, A.; Chowdury, M.T.; Ahmed, K.M.

    2008-01-01

    Here new data from field bioremediation experiments and geochemical modeling are reported to illustrate the principal geochemical behavior of As in anaerobic groundwaters. In the field bioremediation experiments, groundwater in Holocene alluvial aquifers in Bangladesh was amended with labile water-soluble organic C (molasses) and MgSO 4 to stimulate metabolism of indigenous SO 4 -reducing bacteria (SRB). In the USA, the groundwater was contaminated by Zn, Cd and SO 4 , and contained 1000 μg/L) under geochemical conditions consistent with bacterial Fe-reducing conditions. With time, groundwater became more reducing and biogenic SO 4 reduction began, and Cd and Zn were virtually completely removed due to precipitation of sphalerite (ZnS) and other metal sulfide mineral(s). Following precipitation of chalcophile elements Zn and Cd, the concentrations of Fe and As both began to decrease in groundwater, presumably due to formation of As-bearing FeS/FeS 2 . By the end of the six-month experiment, dissolved As had returned to below background levels. In the initial Bangladesh experiment, As decreased to virtually zero once biogenic SO 4 reduction commenced but increased to pre-experiment level once SO 4 reduction ended. In the ongoing experiment, both SO 4 and Fe(II) were amended to groundwater to evaluate if FeS/FeS 2 formation causes longer-lived As removal. Because As-bearing pyrite is the common product of SRB metabolism in Holocene alluvial aquifers in both the USA and Southeast Asia, it was endeavored to derive thermodynamic data for arsenian pyrite to better predict geochemical processes in naturally reducing groundwaters. Including the new data for arsenian pyrite into Geochemist's Workbench, its stability field completely dominates in reducing Eh-pH space and 'displaces' other As-sulfides (orpiment, realgar) that have been implied to be important in previous modeling exercises and reported in rare field conditions. In summary, when anaerobic bacterial metabolism

  5. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Science.gov (United States)

    Gabrielli, C. P.; McDonnell, J. J.; Jarvis, W. T.

    2012-07-01

    SummaryBedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at quantifying bedrock groundwater contributions to hillslope flow and catchment runoff. We present results from the Maimai M8 research catchment in New Zealand and Watershed 10 (WS10) at the H.J. Andrews Experimental Forest in Oregon, USA. Analysis of bedrock groundwater at Maimai, through a range of flow conditions, revealed that the bedrock water table remained below the soil-bedrock interface, indicating that the bedrock aquifer has minimal direct contributions to event-based hillslope runoff. However, the bedrock water table did respond significantly to storm events indicating that there is a direct connection between hillslope processes and the underlying bedrock aquifer. WS10 groundwater dynamics were dominated by fracture flow. A highly fractured and transmissive zone within the upper one meter of bedrock conducted rapid lateral subsurface stormflow and lateral discharge. The interaction of subsurface stormflow with bedrock storage directly influenced the measured hillslope response, solute transport and computed mean residence time. This research reveals bedrock groundwater to be an extremely dynamic component of the hillslope hydrological system and our comparative analysis illustrates the potential range of hydrological and geological controls on runoff generation in headwater catchments.

  6. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    Science.gov (United States)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  7. Feasibility of phytoremediation of common soil and groundwater pollutants

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rein, Arno; Clause, Lauge

    2014-01-01

    This report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose was appl......This report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose...... was applied to the two Timbre sites : Hunedoara (Romania) and Szprotawa (Poland). Phytoremediation is the technique to clean up (remediate) contaminated sites using plants, typically trees. The principles of the data were deta iled, with focus on obstacles (phytotoxicity) and factors stimulating success...

  8. Overview of groundwater and surface water standards pertinent to the Idaho National Engineering Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Lundahl, A.L.; Williams, S.; Grizzle, B.J.

    1995-09-01

    This document presents an overview of groundwater- and surface water-related laws, regulations, agreements, guidance documents, Executive Orders, and DOE orders pertinent to the Idaho National Engineering Laboratory. This document is a summary and is intended to help readers understand which regulatory requirements may apply to their particular circumstances. However, the document is not intended to be used in lieu of applicable regulations. Unless otherwise noted, the information in this report reflects a summary and evaluation completed July 1, 1995. This document is considered a Living Document, and updates on changing laws and regulations will be provided.

  9. Groundwater quality in the shallow aquifers of the Madera–Chowchilla and Kings subbasins, San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-01-08

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.

  10. Summary of NREL's FY13-FY15 Photovoltaic Subprogram

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-31

    In this report, you will find summaries of the completed FY13-FY15 Photovoltaic projects that were funded within NREL. The summaries describe the initial motivation for the project; significant achievements, including publications, intellectual property, and collaborations; and remaining challenges. Among the NREL projects, you will find research of almost every major PV technology - from the next generation of silicon PV to relatively new organic PVs - as well as projects advancing PV module durability and characterization. Each of these projects was designed to support SunShot's goals, putting the United States one step closer to widespread use of low-cost, clean electricity.

  11. Executive summary of phase 2

    International Nuclear Information System (INIS)

    1989-02-01

    The second phase of the Stripa project included the continued development of methods and techniques for repository site investigations. The crosshole investigations demonstrated that it is possible to characterize fractures in crystralline rock with a reliability and realism not obtained before. At the investigated site at Stripa, it was shown that groundwater flow is concentrated within a few major fractures that were idenfified by geophysical methods. The work at Stripa has shown that it is possible to collect and analyze data that enable one to determine the type of distribution and its parameters for each of the essential geometrical and hydraulic properties of the fracture system, and hence compare one site with another as part of experience builing in safety assessment studies. The migration experiment demonstrated that the groundwater flow could be very unevenly distributed in the rock. The hydrogeochemical investigations at Stripa also indicated that a new type of solute source must be considered - fluid inclusions in the host rock. The age of the solutes may be entirely different from the age of the groundwater. Sealing and redirection of the groundwater flow away from man made openings in the rock was tested at Stripa and found to be feasible as shown in the various plugging and sealing experiments. The use of Na bentonite in the form of suitably shaped blocks of highly compacted powder has been found to be very practical for sealing off boreholes, shafts and tunnels in repositories

  12. Groundwater Recharge and Flow Regime revealed by multi-tracers approach in a headwater, North China Plain

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2014-05-01

    Groundwater recharge is a crucial hydrological process for effective water management especially in arid/ semi-arid regions. However, the insufficient number of specific research regarding groundwater recharge process has been reported previously. Intensive field surveys were conducted during rainy season, mid dry season, and end of dry season, in order to clarify comprehensive groundwater recharge and flow regime of Wangkuai watershed in a headwater, which is a main recharge zone of North China Plain. The groundwater, spring, stream water and lake water were sampled, and inorganic solute constituents and stable isotopes of oxygen 18 and deuterium were determined on all water samples. Also the stream flow rate was observed. The solute ion concentrations and stable isotopic compositions show that the most water of this region can be characterized by Ca-HCO3 type and the main water source is precipitation which is affected by altitude effect of stable isotopes. In addition, the river and reservoir of the area seem to recharge the groundwater during rainy season, whereas interaction between surface water and groundwater does not become dominant gradually after the rainy season. The inversion analysis applied in Wangkuai watershed using simple mixing model represents an existing multi-flow systems which shows a distinctive tracer signal and flow rate. In summary, the groundwater recharged at different locations in the upper stream of Wangkuai reservoir flows downward to alluvial fan with a certain amount of mixing together, also the surface water recharges certainly the groundwater in alluvial plain in the rainy season.

  13. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, Robert A [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, Walter P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliance & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.

  14. Variable infiltration and river flooding resulting in changing groundwater quality - A case study from Central Europe

    Science.gov (United States)

    Miotliński, Konrad; Postma, Dieke; Kowalczyk, Andrzej

    2012-01-01

    SummaryThe changes in groundwater quality occurring in a buried valley aquifer following a reduction in groundwater exploitation and enhanced infiltration due to extensive flooding of the Odra River in 1997 were investigated. Long-time series data for the chemical composition of groundwater in a large well field for drinking water supply indicated the deterioration of groundwater quality in the wells capturing water from the flooded area, which had been intensively cultivated since the 1960s. Infiltration of flooded river water into the aquifer is suggested by an elevated chloride concentration, although salt flushing from the rewatered unsaturated zone due to the enhanced recharge event is much more feasible. Concomitantly with chloride increases in the concentrations of sulphate, ferrous iron, manganese, and nickel imply the oxidation of pyrite (FeS 2) which is abundant in the aquifer. The proton production resulting from pyrite oxidation is buffered by the dissolution of calcite, while the Ca:SO 4 stoichiometry of the groundwater indicates that pyrite oxidation coupled with nitrate reduction is the dominant process occurring in the aquifer. The pyritic origin of SO42- is confirmed by the sulphur isotopic composition. The resultant Fe 2+ increase induces Mn-oxide dissolution and the mobilisation of Ni 2+ previously adsorbed to Mn-oxide surfaces. The study has a major implication for groundwater quality prediction studies where there are considerable variations in water level associated with groundwater management and climate change issues.

  15. Institutions and economic growth : summary and synthesis

    NARCIS (Netherlands)

    Szirmai, A.

    2013-01-01

    This paper provides a summary, overview and synthesis of the findings of the second phase of the AFD/Maastricht Graduate School of Governance research project on institutions and economic growth. The point of departure for this research project is that the diversity of longrun patterns of economic

  16. Study of groundwater recharge in Rechna Doab using isotope techniques

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Tasneem, M.A.; Ahmed, M.; Hussain, S.D.; Khan, I.H.; Akram, W.

    1992-04-01

    Isotopic studies were performed in the Rechna Doab area to understand the recharge mechanism, investigate the relative contributions from various sources such as rainfall, rivers and canal system and to estimate the turn over times and replenishment rate of groundwater. The isotopic data suggest that the groundwater in the project area can be divided into different zones each having its own characteristic isotopic composition. The enriched isotopic values show rain recharge and depleted isotopic values are associated with river/canal system while the intermediate isotopic values show a mixing of two or more sources of water. The major contribution, however, comes from canal system. The isotopic data suggest that there is no quick movement of groundwater in the area. 18 figs. (author)

  17. Geostatistical modeling of groundwater properties and assessment of their uncertainties

    International Nuclear Information System (INIS)

    Honda, Makoto; Yamamoto, Shinya; Sakurai, Hideyuki; Suzuki, Makoto; Sanada, Hiroyuki; Matsui, Hiroya; Sugita, Yutaka

    2010-01-01

    The distribution of groundwater properties is important for understanding of the deep underground hydrogeological environments. This paper proposes a geostatistical system for modeling the groundwater properties which have a correlation with the ground resistivity data obtained from widespread and exhaustive survey. That is, the methodology for the integration of resistivity data measured by various methods and the methodology for modeling the groundwater properties using the integrated resistivity data has been developed. The proposed system has also been validated using the data obtained in the Horonobe Underground Research Laboratory project. Additionally, the quantification of uncertainties in the estimated model has been tried by numerical simulations based on the data. As a result, the uncertainties of the proposal model have been estimated lower than other traditional model's. (author)

  18. Preliminary Groundwater Assessment using Electrical Method at Quaternary Deposits Area

    Science.gov (United States)

    Hazreek, Z. A. M.; Raqib, A. G. A.; Aziman, M.; Azhar, A. T. S.; Khaidir, A. T. M.; Fairus, Y. M.; Rosli, S.; Fakhrurrazi, I. M.; Izzaty, R. A.

    2017-08-01

    Alternative water sources using groundwater has increasingly demand in recent years. In the past, proper and systematic study of groundwater potential was varies due to several constraints. Conventionally, tube well point was drilled based on subjective judgment of several parties which may lead to the uncertainties of the project success. Hence, this study performed an electrical method to investigate the groundwater potential at quaternary deposits area particularly using resistivity and induced polarization technique. Electrical method was performed using ABEM SAS4000 equipment based on pole dipole array and 2.5 m electrode spacing. Resistivity raw data was analyzed using RES2DINV software. It was found that groundwater was able to be detected based on resistivity and chargeability values which varied at 10 - 100 Ωm and 0 - 1 ms respectively. Moreover, suitable location of tube well was able to be proposed which located at 80 m from the first survey electrode in west direction. Verification of both electrical results with established references has shown some good agreement thus able to convince the result reliability. Hence, the establishment of electrical method in preliminary groundwater assessment was able to assist several parties in term groundwater prospective at study area which efficient in term of cost, time, data coverage and sustainability.

  19. Summary of the Skookumchuck Creek bull trout enumeration project 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Baxter, James S.; Baxter, Jeremy

    2002-01-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing

  20. Savage Island Project borehole completion report

    International Nuclear Information System (INIS)

    Chamness, M.A.; Gilmore, T.J.; Teel, S.S.

    1993-02-01

    This report discusses three wells which were drilled in 1990 and 1991 in support of Pacific Northwest Laboratory's Ground-Water surveillance Project. These wells were intended to monitor the Rattlesnake Ridge interbed aquifer and the deeper portion of the unconfined aquifer to determine whether ground-water contamination emanating from the Hanford Site was migrating offsite through these aquifers. This report discusses well construction, lithologies encountered, and other data collected during drilling. At least three reports have been or are being prepared to discuss the results of this well monitoring project

  1. Aquifers of Arkansas: protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.

    2014-01-01

    Sixteen aquifers in Arkansas that currently serve or have served as sources of water supply are described with respect to existing groundwater protection and management programs, geology, hydrologic characteristics, water use, water levels, deductive analysis, projections of hydrologic conditions, and water quality. State and Federal protection and management programs are described according to regulatory oversight, management strategies, and ambient groundwater-monitoring programs that currently (2013) are in place for assessing and protecting groundwater resources throughout the State.

  2. Internet Portal For A Distributed Management of Groundwater

    Science.gov (United States)

    Meissner, U. F.; Rueppel, U.; Gutzke, T.; Seewald, G.; Petersen, M.

    The management of groundwater resources for the supply of German cities and sub- urban areas has become a matter of public interest during the last years. Negative headlines in the Rhein-Main-Area dealt with cracks in buildings as well as damaged woodlands and inundated agriculture areas as an effect of varying groundwater levels. Usually a holistic management of groundwater resources is not existent because of the complexity of the geological system, the large number of involved groups and their divergent interests and a lack of essential information. The development of a network- based information system for an efficient groundwater management was the target of the project: ?Grundwasser-Online?[1]. The management of groundwater resources has to take into account various hydro- geological, climatic, water-economical, chemical and biological interrelations [2]. Thus, the traditional approaches in information retrieval, which are characterised by a high personnel and time expenditure, are not sufficient. Furthermore, the efficient control of the groundwater cultivation requires a direct communication between the different water supply companies, the consultant engineers, the scientists, the govern- mental agencies and the public, by using computer networks. The presented groundwater information system consists of different components, especially for the collection, storage, evaluation and visualisation of groundwater- relevant information. Network-based technologies are used [3]. For the collection of time-dependant groundwater-relevant information, modern technologies of Mobile Computing have been analysed in order to provide an integrated approach in the man- agement of large groundwater systems. The aggregated information is stored within a distributed geo-scientific database system which enables a direct integration of simu- lation programs for the evaluation of interactions in groundwater systems. Thus, even a prognosis for the evolution of groundwater states

  3. Estimating natural background groundwater chemistry, Questa molybdenum mine, New Mexico

    Science.gov (United States)

    Verplanck, Phillip L.; Nordstrom, D. Kirk; Plumlee, Geoffrey S.; Walker, Bruce M.; Morgan, Lisa A.; Quane, Steven L.

    2010-01-01

    This 2 1/2 day field trip will present an overview of a U.S. Geological Survey (USGS) project whose objective was to estimate pre-mining groundwater chemistry at the Questa molybdenum mine, New Mexico. Because of intense debate among stakeholders regarding pre-mining groundwater chemistry standards, the New Mexico Environment Department and Chevron Mining Inc. (formerly Molycorp) agreed that the USGS should determine pre-mining groundwater quality at the site. In 2001, the USGS began a 5-year, multidisciplinary investigation to estimate pre-mining groundwater chemistry utilizing a detailed assessment of a proximal natural analog site and applied an interdisciplinary approach to infer pre-mining conditions. The trip will include a surface tour of the Questa mine and key locations in the erosion scar areas and along the Red River. The trip will provide participants with a detailed understanding of geochemical processes that influence pre-mining environmental baselines in mineralized areas and estimation techniques for determining pre-mining baseline conditions.

  4. Project Deep Drilling KLX02 - Phase 2. Methods, scope of activities and results. Summary report

    International Nuclear Information System (INIS)

    Ekman, L.

    2001-04-01

    Geoscientific investigations performed by SKB, including those at the Aespoe Hard Rock Laboratory, have so far comprised the bedrock horizon down to about 1000 m. The primary purposes with the c. 1700 m deep, φ76 mm, sub vertical core borehole KLX02, drilled during the autumn 1992 at Laxemar, Oskarshamn, was to test core drilling technique at large depths and with a relatively large diameter and to enable geoscientific investigations beyond 1000 m. Drilling of borehole KLX02 was fulfilled very successfully. Results of the drilling commission and the borehole investigations conducted in conjunction with drilling have been reported earlier. The present report provides a summary of the investigations made during a five year period after completion of drilling. Results as well as methods applied are described. A variety of geoscientific investigations to depths exceeding 1600 m were successfully performed. However, the investigations were not entirely problem-free. For example, borehole equipment got stuck in the borehole at several occasions. Special investigations, among them a fracture study, were initiated in order to reveal the mechanisms behind this problem. Different explanations seem possible, e.g. breakouts from the borehole wall, which may be a specific problem related to the stress situation in deep boreholes. The investigation approach for borehole KLX02 followed, in general outline, the SKB model for site investigations, where a number of key issues for site characterization are studied. For each of those, a number of geoscientific parameters are investigated and determined. One important aim is to erect a lithological-structural model of the site, which constitutes the basic requirement for modelling mechanical stability, thermal properties, groundwater flow, groundwater chemistry and transport of solutes. The investigations in borehole KLX02 resulted in a thorough lithological-structural characterization of the rock volume near the borehole. In order to

  5. Project Deep Drilling KLX02 - Phase 2. Methods, scope of activities and results. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, L. [GEOSIGMA AB/LE Geokonsult AB, Uppsala (Sweden)

    2001-04-01

    Geoscientific investigations performed by SKB, including those at the Aespoe Hard Rock Laboratory, have so far comprised the bedrock horizon down to about 1000 m. The primary purposes with the c. 1700 m deep, {phi}76 mm, sub vertical core borehole KLX02, drilled during the autumn 1992 at Laxemar, Oskarshamn, was to test core drilling technique at large depths and with a relatively large diameter and to enable geoscientific investigations beyond 1000 m. Drilling of borehole KLX02 was fulfilled very successfully. Results of the drilling commission and the borehole investigations conducted in conjunction with drilling have been reported earlier. The present report provides a summary of the investigations made during a five year period after completion of drilling. Results as well as methods applied are described. A variety of geoscientific investigations to depths exceeding 1600 m were successfully performed. However, the investigations were not entirely problem-free. For example, borehole equipment got stuck in the borehole at several occasions. Special investigations, among them a fracture study, were initiated in order to reveal the mechanisms behind this problem. Different explanations seem possible, e.g. breakouts from the borehole wall, which may be a specific problem related to the stress situation in deep boreholes. The investigation approach for borehole KLX02 followed, in general outline, the SKB model for site investigations, where a number of key issues for site characterization are studied. For each of those, a number of geoscientific parameters are investigated and determined. One important aim is to erect a lithological-structural model of the site, which constitutes the basic requirement for modelling mechanical stability, thermal properties, groundwater flow, groundwater chemistry and transport of solutes. The investigations in borehole KLX02 resulted in a thorough lithological-structural characterization of the rock volume near the borehole. In order

  6. Assessment of village-wise groundwater draft for irrigation: a field-based study in hard-rock aquifers of central India

    Science.gov (United States)

    Ray, R. K.; Syed, T. H.; Saha, Dipankar; Sarkar, B. C.; Patre, A. K.

    2017-12-01

    Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982-2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ˜44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.

  7. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110

    Science.gov (United States)

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market val...

  8. Numerical Study of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow based on in-situ Measurement

    Science.gov (United States)

    Hu, R.; Liu, Q.

    2016-12-01

    For civil engineering projects, especially in the subsurface with groundwater, the artificial ground freezing (AGF) method has been widely used. Commonly, a refrigerant is circulated through a pre-buried pipe network to form a freezing wall to support the construction. In many cases, the temperature change is merely considered as a result of simple heat conduction. However, the influence of the water-ice phase change on the flow properties should not be neglected, if large amount of groundwater with high flow velocities is present. In this work, we perform a 2D modelling (software: Comsol Multiphysics) of an AFG project of a metro tunnel in Southern China, taking groundwater flow into account. The model is validated based on in-situ measurement of groundwater flow and temperature. We choose a cross section of this horizontal AGF project and set up a model with horizontal groundwater flow normal to the axial of the tunnel. The Darcy velocity is a coupling variable and related to the temperature field. During the phase change of the pore water and the decrement of permeability in freezing zone, we introduce a variable of effective hydraulic conductivity which is described by a function of temperature change. The energy conservation problem is solved by apparent heat capacity method and the related parameter change is described by a step function (McKenzie, et. al. 2007). The results of temperature contour maps combined with groundwater flow velocity at different times indicate that the freezing wall appears in an asymmetrical shape along the groundwater flow direction. It forms slowly and on the upstream side the thickness of the freezing wall is thinner than that on the downstream side. The closure time of the freezing wall increases at the middle of the both up and downstream sides. The average thickness of the freezing wall on the upstream side is mostly affected by the groundwater flow velocity. With the successful validation of this model, this numerical

  9. Using an autonomous Wave Glider to detect seawater anomalies related to submarine groundwater discharge - engineering challenge

    Science.gov (United States)

    Leibold, P.; Brueckmann, W.; Schmidt, M.; Balushi, H. A.; Abri, O. A.

    2017-12-01

    Coastal aquifer systems are amongst the most precious and vulnerable water resources worldwide. While differing in lateral and vertical extent they commonly show a complex interaction with the marine realm. Excessive groundwater extraction can cause saltwater intrusion from the sea into the aquifers, having a strongly negative impact on the groundwater quality. While the reverse pathway, the discharge of groundwater into the sea is well understood in principle, it's mechanisms and quantities not well constrained. We will present a project that combines onshore monitoring and modeling of groundwater in the coastal plain of Salalah, Oman with an offshore autonomous robotic monitoring system, the Liquid Robotics Wave Glider. Eventually, fluxes detected by the Wave Glider system and the onshore monitoring of groundwater will be combined into a 3-D flow model of the coastal and deeper aquifers. The main tool for offshore SGD investigation project is a Wave Glider, an autonomous vehicle based on a new propulsion technology. The Wave Glider is a low-cost satellite-connected marine craft, consisting of a combination of a sea-surface and an underwater component which is propelled by the conversion of ocean wave energy into forward thrust. While the wave energy propulsion system is purely mechanical, electrical energy for onboard computers, communication and sensors is provided by photovoltaic cells. For the project the SGD Wave Glider is being equipped with dedicated sensors to measure temperature, conductivity, Radon isotope (222Rn, 220Rn) activity concentration as well as other tracers of groundwater discharge. Dedicated software using this data input will eventually allow the Wave Glider to autonomously collect information and actively adapt its search pattern to hunt for spatial and temporal anomalies. Our presentation will focus on the engineering and operational challenges ofdetecting submarine groundwater discharges with the Wave Glider system in the Bay of Salalah

  10. Cone Penetration Test and Soil Boring at the Bayside Groundwater Project Site in San Lorenzo, Alameda County, California

    Science.gov (United States)

    Bennett, Michael J.; Sneed, Michelle; Noce, Thomas E.; Tinsley, John C.

    2009-01-01

    Aquifer-system deformation associated with ground-water-level changes is being investigated cooperatively by the U.S. Geological Survey (USGS) and the East Bay Municipal Utility District (EBMUD) at the Bayside Groundwater Project (BGP) near the modern San Francisco Bay shore in San Lorenzo, California. As a part of this project, EBMUD has proposed an aquifer storage and recovery (ASR) program to store and recover as much as 3.78x104 m3/d of water. Water will be stored in a 30-m sequence of coarse-grained sediment (the 'Deep Aquifer') underlying the east bay alluvium and the adjacent ground-water basin. Storing and recovering water could cause subsidence and uplift at the ASR site and adjacent areas because the land surface will deform as aquifers and confining units elastically expand and contract with ASR cycles. The Deep Aquifer is overlain by more than 150 m of clayey fine-grained sediments and underlain by comparable units. These sediments are similar to the clayey sediments found in the nearby Santa Clara Valley, where inelastic compaction resulted in about 4.3 m of subsidence near San Jose from 1910 to 1995 due to overdraft of the aquifer. The Deep Aquifer is an important regional resource, and EBMUD is required to demonstrate that ASR activities will not affect nearby ground-water management, salinity levels, or cause permanent land subsidence. Subsidence in the east bay area could induce coastal flooding and create difficulty conveying winter storm runoff from urbanized areas. The objective of the cooperative investigation is to monitor and analyze aquifer-system compaction and expansion, as well as consequent land subsidence and uplift resulting from natural causes and any anthropogenic causes related to ground-water development and ASR activities at the BGP. Therefore, soil properties related to compressibility (and the potential for deformation associated with ground-water-level changes) are of the most concern. To achieve this objective, 3 boreholes

  11. Least-cost groundwater remediation design using uncertain hydrogeological information. 1998 annual progress report

    International Nuclear Information System (INIS)

    Pinder, G.F.

    1998-01-01

    'The objective of the project is to formulate, test, and evaluate a new approach to the least-cost design of groundwater contamination containment and decontamination systems. The proposed methodology employs robust optimization, the outer-approximation method of non-linear programming, and groundwater flow and transport modeling to find the most cost-effective pump-and-treat design possible given the physical parameters describing the groundwater reservoir are known with uncertainty. The result is a methodology that will provide the least-cost groundwater remediation design possible given a specified set of design objectives and physical and sociological constraints. As of the end of the first year of this 3-year project the author has developed and tested the concept of robust optimization within the framework of least-cost groundwater-contamination-containment design. The outer-approximation method has been employed in this context for the relatively simple linear-constraint case associated with the containment problem. In an effort to enhance the efficiency and applicability of this methodology, a new strategy for selecting the various realizations arising out of the Monte-Carlo underpinnings of the robust-optimization technique has been developed and tested. Based upon observations arising out of this work a yet more promising approach has been discovered. The theoretical foundation for this most recent approach has been, and continues to be, the primary focus of the research.'

  12. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  13. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  14. Action COST 621 »Groundwater management of coastal karstic aquifers«

    Directory of Open Access Journals (Sweden)

    Metka Petrič

    2002-12-01

    Full Text Available COST 621 »Groundwater management of coastal karstic aquifers” is an international project in the frame of the European Union in which 12 European countries, including Slovenia, took an active part in the years 1997-2002. The main objective of the Action is to increase the knowledge necessary to establish criteria for improving groundwaterresource utilisation in karstic coastal aquifers and for recovering groundwater resource in aquifers over-exploited and salinised due to sea water intrusion. Based on gathered results “Guidelines for the groundwater management of coastal karstic aquifers” were compiled and will be published as a special booklet. In this way the dissemination of the results will be provided.

  15. Southern Appalachian assessment. Summary report, Report 1 of 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This final report for the Southern Appalachian Man and the Biosphere Program is comprised of two documents: (1) a brief summary of programs and projects, and (2) a more extensive summary report included as an attachment. The purpose of the program is to promote a sustainable balance between the conservation of biological diversity, compatible economic uses, and cultural values across the Southern Appalachians. Program and project areas addressing regional issues include environmental monitoring and assessment, sustainable development/sustainable technologies, conservation biology, ecosystem management, environmental education and training, cultural and historical resources, and public information and education. The attached summary report is one of five that documents the results of the Southern Appalachian Assessment; it includes atmospheric, social/cultural/economic, terrestrial, and aquatic reports.

  16. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  17. Shale gas impacts on groundwater resources: insights from monitoring a fracking site in Poland

    Science.gov (United States)

    Montcoudiol, Nelly; Isherwood, Catherine; Gunning, Andrew; Kelly, Thomas; Younger, Paul

    2017-04-01

    Exploitation of shale gas by hydraulic fracturing (fracking) is highly controversial and concerns have been raised regarding induced risks from this technique. The SHEER project, an EU Horizon 2020-funded project, is looking into developing best practice to understand, prevent and mitigate the potential short- and long-term environmental impacts and risks from shale gas exploration and exploitation. Three major potential impacts were identified: groundwater contamination, air pollution and induced seismicity. This presentation will deal with the hydrogeological aspect. As part of the SHEER project, four monitoring wells were installed at a shale gas exploration site in Northern Poland. They intercept the main drinking water aquifer located in Quaternary sediments. Baseline monitoring was carried out from mid-December 2015 to beginning of June 2016. Fracking operations occurred in two horizontal wells, in two stages, in June and July 2016. The monitoring has continued after fracking was completed, with site visits every 4-6 weeks. Collected data include measurements of groundwater level, conductivity and temperature at 15-minute intervals, frequent sampling for laboratory analyses and field measurements of groundwater physico-chemical parameters. Groundwater samples are analysed for a range of constituents including dissolved gases and isotopes. The presentation will focus on the interpretation of baseline monitoring data. The insights gained into the behaviour of the Quaternary aquifer will allow a greater perspective to be place on the initial project understanding draw from previous studies. Short-term impacts will also be discussed in comparison with the baseline monitoring results. The presentation will conclude with discussion of challenges regarding monitoring of shale gas fracking sites.

  18. Assessing the Groundwater Concentrations and Geographical Distribution of Arsenic in Nepal

    Science.gov (United States)

    Ma, J.; Liu, F.

    2015-12-01

    Arsenic 33As, one of the major groundwater contaminants, occurs in both natural and anthropogenic forms. Arsenic inhibits cellular respiration and the production of ATP in human body. Prolonged intake of non-lethal quantities of arsenic can cause cancer and diseases in vital organs such as the heart, liver, skin, and kidney. Each year, millions of people in the rural areas of Bangladesh, India, and other developing countries in South Asia are exposed to arsenic-poisoned groundwater. According to the World Health Organization, arsenic levels in drinking water should not exceed 10 parts per billion; however, the levels of arsenic found in groundwater in the heavily contaminated regions are often more than ten times of the recommended limit. Nepal is one of these regions. In most of the rural areas in Nepal, there is no infrastructure to produce clean filtered water, and wells thus became the major source. However, most of these wells were dug without testing for groundwater safety, because the test commands resources that the rural communities do not have access to. This is also limited data published on Nepal's groundwater contaminant levels. The scarcity of information prohibits the international community from recognizing the severity of arsenic poisoning in Nepal and coming up with the most efficient measures to help. With this project, we will present a method to determine groundwater safety by analyzing geologic data and using remote sensing. The original source of arsenic is the arsenic-bearing minerals in the sediments. Some geological formations have higher arsenic levels than others due to their depositional environments. Therefore, by using existing geologic data from Nepal and countries with similar types of arsenic contamination, we hope to determine correlations between areas where there are reports of high concentrations of arsenic in groundwater to the environmental factors that may cause a particular concentration of arsenic. Furthermore, with deeper

  19. A containment and disposition strategy for tritium contaminated groundwater at the Savannah River Site, South Carolina, United States

    International Nuclear Information System (INIS)

    Hitchcock, Daniel; Barton, Christopher D.; Rebel, Karin T.; Singer, Julian; Seaman, John C.; Strawbridge, Dan; Riha, Susan J.; Blake, John I.

    2005-01-01

    A containment and disposition water management strategy has been implemented at the Savannah River Site to minimize the discharge of tritiated groundwater from the Old Radioactive Waste Burial Ground to Four Mile Branch, a tributary of the Savannah River. This paper presents a general overview of the water management strategy, which includes a two-component (pond and irrigation) system, and a summary of operations and effectiveness for the first 3 yr of operations. Tritiated groundwater seep discharge was impounded by a dam and distributed via irrigation to a 22-ac (8.9-ha) upland forested area comprised of mixed pines (loblolly and slash) and hardwoods(primarily sweetgum and laurel oak). As of March 2004, the system has irrigated approximately 133.2 million L (35.2 million gal) and prevented approximately 1880 Ci of tritium from entering Four Mile Branch via forest evapotranspiration, as well as via pond storage and evaporation. Prior to installation of the containment and disposition strategy, tritium activity in Four Mile Branch downstream of the seep averaged approximately 500 pCi mL -1 . Six months after installation, tritium activity averaged approximately 200 pCi mL -1 in Fourmile Branch. After 1 yr of operations, tritium activity averaged below 100 pCi mL -1 in Fourmile Branch, and a range of 100-200 pCi mL -1 tritium activity has been maintained as of March 2004. Complex hydrological factors and operational strategies influence remediation system success. Analyses may assist in developing groundwater management and remediation strategies for future projects at the Savannah River Site and other facilities located on similar landscapes.

  20. Halon-1301, a new Groundwater Age Tracer

    Science.gov (United States)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    concentration of Halon-1301, which indicates absence of local anthropogenic or geologic sources (contamination), despite some samples showing CFC contamination. We found agreement of 71% of mean age estimates with ages inferred from tritium and SF6 within +/- 2 years, for samples where direct age comparison could be made. The remaining sites showed reduced concentrations of Halon-1301 along with reduced concentrations of CFCs. The reasons for this need to be further assessed, but are likely caused by sorption or degradation of Halon-1301. Further Halon-1301 studies are planned covering various hydrogeologic situations, land use practises, and redox conditions to evaluate the potential of Halon-1301 as groundwater tracer, and to elucidate the causes for reduced Halon-1301 concentrations. Acknowledgements Greater Wellington Regional Council, especially S. Tidswell, is thanked for support and organisation of the sampling of the groundwater wells. This study is part of a PhD supported by GNS Science as part of the Smart Aquifer Characterization program funded by the New Zealand Ministry for Science and Innovation (http://www.smart-project.info/). References Beyer, M., van der Raaij, R., Morgenstern, U., Jackson, B. (2014) Potential groundwater age tracer found: Halon-1301 (CF3Br), as previously identified as CFC-13 (CF3Cl), Water Resources Research. Busenberg, E. and Plummer, L.N. (2008) Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfurhexafluoride (SF6), CF3Cl (CFC-13) & CF2CL2 (CFC-12), Water Resources Research 44

  1. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

    1991-11-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  2. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    Science.gov (United States)

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  3. Quality Assurance Project Plan Development Tool

    Science.gov (United States)

    This tool contains information designed to assist in developing a Quality Assurance (QA) Project Plan that meets EPA requirements for projects that involve surface or groundwater monitoring and/or the collection and analysis of water samples.

  4. Delineating fresh water and brackish water aquifers by GIS and groundwater quality data

    International Nuclear Information System (INIS)

    Yasin, M.; Latif, M.

    2007-01-01

    This study was conducted in the Mona project area, Bhalwal, district Sargodha to delineate fresh water and brackish water aquifers by GIS (Geographic Information System) and historic groundwater quality data of 138 deep tube wells installed in the study area. The groundwater quality zonations were made by overlapping maps of TDS (Total Dissolved Solids), SAR (Sodium Adsorption Ratio) and RSC (Residual Sodium Carbonate). Seven zones of groundwater quality consisting of good, marginal, hazardous and their combinations were identified. The results indicated redistribution of salts in the aquifer and rise in water table in some parts of the study area from 1965-1997. (author)

  5. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  6. Data summary report: Southern sector monitoring well installations

    International Nuclear Information System (INIS)

    Jones, W.E.

    2000-01-01

    This report provides construction documentation for four double-screen monitoring wells installed as part of the groundwater monitoring strategy identified in the Groundwater Effectiveness Monitoring Strategy for the Proposed Southern Sector Phase I Groundwater Corrective Action (WSRC-RP-99-4114, Rev. 0, July 1999). The proposed corrective action includes In-Well Vapor Stripping Wells SSR-001 through SSR-012, designed to intercept and ameliorate the TCE and PCE plumes at the 500 parts per billion isoconcentration contour. The four monitoring wells (SSM-10, -15A, -16-, and -17) constructed during this project are designed to monitor the effectiveness of the In-Well Vapor Stripping Well system. One monitoring well (SSM-10) is located hydraulically upgradient of vapor stripping wells. The other three wells are located hydraulically downgradient of the vapor stripping wells. Four monitoring wells additional to those describe in this report will be installed for effectiveness monitoring in the future

  7. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  8. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  9. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC)

    International Nuclear Information System (INIS)

    Sullivan, T.J.; Eilers, J.M.; Cosby, B.J.; Driscoll, C.T.; Hemond, H.F.; Charles, D.F.; Norton, S.A.

    1993-01-01

    A project for the US Department of Energy, entitled ''Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources'' was initiated by E ampersand S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed

  10. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Eilers, J.M. (E and S Environmental Chemistry, Inc., Corvallis, OR (United States)); Cosby, B.J. (Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences); Driscoll, C.T. (Syracuse Univ., NY (United States). Dept. of Civil Engineering); Hemond, H.F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering); Charles, D.F.

    1993-03-05

    A project for the US Department of Energy, entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources'' was initiated by E S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

  11. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    Science.gov (United States)

    Lin, Z.; Lin, W.; Pengfei, L.

    2015-05-01

    When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  12. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry`s New and Renewable Energy Programme. Vol. 4: anaerobic digestion for biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry`s New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  13. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    International Nuclear Information System (INIS)

    Kalin, R.M.

    1996-01-01

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs

  14. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, R M [The Queen` s University, Belfast, Northern Ireland (United Kingdom). Dept. of Civil Engineering

    1996-10-01

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs.

  15. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  16. Groundwater remediation of hexavalent chromium along the Columbia River at the Hanford site in Washington state, USA - 59030

    International Nuclear Information System (INIS)

    Foss, Dyan L.; Charboneau, Briant L.

    2012-01-01

    The U.S. Department of Energy Hanford Site, formerly used for nuclear weapons production, encompasses 1500 square kilometers in southeast Washington State along the Columbia River. A principle threat to the river are the groundwater plumes of hexavalent chromium (Cr(VI)), which affect approximately 9.8 square kilometers, and 4.1 kilometers of shoreline. Cleanup goals are to stop Cr(VI) from entering the river by the end of 2012 and remediate the groundwater plumes to the drinking water standards by the end of 2020. Five groundwater pump-and-treat systems are currently in operation for the remediation of Cr(VI). Since the 1990's, over 13.6 billion L of groundwater have been treated; over 1, 435 kg of Cr(VI) have been removed. This paper describes the unique aspects of the site, its environmental setting, hydrogeology, groundwater-river interface, riverine hydraulic effects, remediation activities completed to date, a summary of the current and proposed pump-and-treat operations, the in situ redox manipulation barrier, and the effectiveness of passive barriers, resins, and treatability testing results of calcium polysulfide, bio-stimulation, and electrocoagulation, currently under evaluation. (authors)

  17. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    International Nuclear Information System (INIS)

    La Camera, R.J.; Westenburg, C.L.

    1994-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992

  18. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  19. Assessments of aquifer sensitivity on Navajo Nation and adjacent lands and ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project, Arizona, New Mexico, and Utah

    Science.gov (United States)

    Blanchard, Paul J.

    2002-01-01

    The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential

  20. Groundwater quality in the Piedmont and Blue Ridge crystalline-rock aquifers, eastern United States

    Science.gov (United States)

    Lindsey, Bruce

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Piedmont and Blue Ridge crystalline-rock aquifers constitute one of the important areas being evaluated.