WorldWideScience

Sample records for groundwater performance assessment

  1. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  2. The Groundwater Performance Assessment Project Quality Assurance Plan

    International Nuclear Information System (INIS)

    Luttrell, Stuart P.

    2006-01-01

    U.S. Department of Energy (DOE) has monitored groundwater on the Hanford Site since the 1940s to help determine what chemical and radiological contaminants have made their way into the groundwater. As regulatory requirements for monitoring increased in the 1980s, there began to be some overlap between various programs. DOE established the Groundwater Performance Assessment Project (groundwater project) in 1996 to ensure protection of the public and the environment while improving the efficiency of monitoring activities. The groundwater project is designed to support all groundwater monitoring needs at the site, eliminate redundant sampling and analysis, and establish a cost-effective hierarchy for groundwater monitoring activities. This document provides the quality assurance guidelines that will be followed by the groundwater project. This QA Plan is based on the QA requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--General Provisions/Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory's Standards-Based Management System. In addition, the groundwater project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The groundwater project has determined that the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan

  3. Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project

    International Nuclear Information System (INIS)

    Rieger, JoAnne T.; Hartman, Mary J.

    2005-01-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State

  4. Performance assessment of select covers and disposal cell compliance with EPA [Environmental Protection Agency] groundwater standards

    International Nuclear Information System (INIS)

    1989-06-01

    This document describes the technical approach to the assessment of the performance of a full component topslope cover, three sideslope covers, and hence the way in which a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell complies with the US Environmental Protection Agency (EPA) groundwater protection standards. 4 refs

  5. Viewpoint of defining the groundwater chemistry for the performance assessment on geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Sasamoto, Hiroshi; Yui, Mikazu

    2000-01-01

    This report presents the viewpoint of defining the groundwater chemistry for performance assessment of the second progress report for research and development on geological disposal. Based on the results of statistical analysis (binary scatter plots) of the measured data in addition to the consideration of the first progress report, we defined the five hypothetically modeled groundwaters considering the general geological conditions and importance for performance assessment. In order to evaluate the priority of groundwater chemistries, we have analyzed the above five hypothetical groundwaters by considering the results of multivariate statistical analyses, data reliability, evidence for geochemical controls on groundwater chemistry and exclusion criteria for potential repository sites in Japan. As a result, the fresh reducing high pH (FRHP) type groundwater has been selected for the Reference Case analysis, and the saline reducing high pH (SRHP) type groundwater has been selected for the Alternative Geological Environmental Case analysis, respectively. (author)

  6. Groundwater modeling of source terms and contaminant plumes for DOE low-level waste performance assessments

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.; Wilson, J.E.

    1994-01-01

    Under US Department of Energy (DOE) Order 5820.2A, all sites within the DOE complex must analyze the performance of planned radioactive waste disposal facilities before disposal takes place through the radiological performance assessment process. These assessments consider both exposures to the public from radionuclides potentially released from disposal facilities and protection of groundwater resources. Compliance with requirements for groundwater protection is often the most difficult to demonstrate as these requirements are generally more restrictive than those for other pathways. Modeling of subsurface unsaturated and saturated flow and transport was conducted for two such assessments for the Savannah River site. The computer code PORFLOW was used to evaluate release and transport of radionuclides from different types of disposal unit configurations: vault disposal and trench disposal. The effectiveness of engineered barriers was evaluated in terms of compliance with groundwater protection requirements. The findings suggest that, due to the limited lifetime of engineered barriers, overdesign of facilities for long-lived radionuclides is likely to occur if compliance must be realized for thousands of years

  7. Uncertainty characteristics of EPA's ground-water transport model for low-level waste performance assessment

    International Nuclear Information System (INIS)

    Yim, Man-Sung

    1995-01-01

    Performance assessment is an essential step either in design or in licensing processes to ensure the safety of any proposed radioactive waste disposal facilities. Since performance assessment requires the use of computer codes, understanding the characteristics of computer models used and the uncertainties of the estimated results is important. The PRESTO-EPA code, which was the basis of the Environmental Protection Agency's analysis for low-level-waste rulemaking, is widely used for various performance assessment activities in the country with no adequate information available for the uncertainty characteristics of the results. In this study, the groundwater transport model PRESTO-EPA was examined based on the analysis of 14 C transport along with the investigation of uncertainty characteristics

  8. Groundwater Assessment Platform

    OpenAIRE

    Podgorski, Joel; Berg, Michael

    2018-01-01

    The Groundwater Assessment Platform is a free, interactive online GIS platform for the mapping, sharing and statistical modeling of groundwater quality data. The modeling allows users to take advantage of publicly available global datasets of various environmental parameters to produce prediction maps of their contaminant of interest.

  9. A residence-time-based transport approach for the groundwater pathway in performance assessment models

    Science.gov (United States)

    Robinson, Bruce A.; Chu, Shaoping

    2013-03-01

    This paper presents the theoretical development and numerical implementation of a new modeling approach for representing the groundwater pathway in risk assessment or performance assessment model of a contaminant transport system. The model developed in the present study, called the Residence Time Distribution (RTD) Mixing Model (RTDMM), allows for an arbitrary distribution of fluid travel times to be represented, to capture the effects on the breakthrough curve of flow processes such as channelized flow and fast pathways and complex three-dimensional dispersion. Mathematical methods for constructing the model for a given RTD are derived directly from the theory of residence time distributions in flowing systems. A simple mixing model is presented, along with the basic equations required to enable an arbitrary RTD to be reproduced using the model. The practical advantages of the RTDMM include easy incorporation into a multi-realization probabilistic simulation; computational burden no more onerous than a one-dimensional model with the same number of grid cells; and straightforward implementation into available flow and transport modeling codes, enabling one to then utilize advanced transport features of that code. For example, in this study we incorporated diffusion into the stagnant fluid in the rock matrix away from the flowing fractures, using a generalized dual porosity model formulation. A suite of example calculations presented herein showed the utility of the RTDMM for the case of a radioactive decay chain, dual porosity transport and sorption.

  10. Use of Groundwater Lifetime Expectancy for the Performance Assessment of Deep Geologic Radioactive Waste Repositories.

    Science.gov (United States)

    Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.

    2005-12-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.

  11. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    Science.gov (United States)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  12. The international hydrocoin project - Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1991-01-01

    The international cooperation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organisations from ten countries and two international organisations have participated in the project which has been managed by the Swedish Nuclear Power Inspectorate, SKI. This report summarises the results from the third phase of HYDROCOIN, Level 3, which has addressed the issues of uncertainty and sensitivity analysis of groundwater flow problems and how uncertainties affect the modelling results. Seven test cases were selected for the project, representing a variety of flow situations in different media, as well as variety of temporal and spatial scales. These test cases were tackled by the participating organisations (Project Teams) using a number of different codes. An overview of the methodologies used in uncertainty and sensitivity analysis is given. Results from the various Teams attempting the Test Cases are presented and conclusions are drawn as to the applicability of the results obtained to the test cases being analysed as well as the general applicability of the results. The importance of making uncertainty and sensitivity analysis as part of a performance analysis of the safety of a nuclear waste repository is stressed. The conclusion is drawn that the HYDROCOIN Level 3 study has greatly contributed to the understanding of these issues. 42 refs., 159 figs., 61 tabs

  13. The international hydrocoin project. Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    The international co-operation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organizations from ten countries and two international organizations have participated in the project which has been managed by the Swedish Nuclear Power Inspectorate, SKI. This report summarizes the results from the second phase of HYDROCOIN, Level 2, which has addressed the issue of validation by testing the capabilities of groundwater flow models to describe five field and laboratory experiments: . Thermal convection and conduction around a field heat transfer experiment in a quarry, . A laboratory experiment with thermal convection as a model for variable density flow, . A small groundwater flow system in fractured monzonitic gneiss, . Three-dimensional regional groundwater flow in low permeability rocks, and . Soil water redistribution near the surface at a field site. The five test cases cover various media of interest for final disposal such as low permeability saturated rock, unsaturated rock, and salt formations. They also represent a variety of spatial and temporal scales. From model simulations on the five test cases conclusions are drawn regarding the applicability of the models to the experimental and field situations and the usefulness of the available data bases. The results are evaluated with regard to the steps in an ideal validation process. The data bases showed certain limitations for validation purposes with respect to independent data sets for calibration and validation. In spite of this, the HYDROCOIN Level 2 efforts have significantly contributed to an increased confidence in the applicability of groundwater flow models to different situations relevant to final disposal. Furthermore, the work has given much insight into the validation process and specific recommendations for further validation efforts are made

  14. The International hydrocoin project. Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal. Summary report

    International Nuclear Information System (INIS)

    1992-01-01

    In 1984 the Swedish Nuclear Power Inspectorate, SKI, initiated the international cooperation project HYDROCOIN for the study of groundwater flow modelling in the context of radioactive waste disposal. The objective of HYDROCOIN was to improve knowledge of the influence of various strategies for groundwater flow modelling for the safety assessment of final repositories for radioactive wastes. The study comprised: the impact on the groundwater flow calculations of different solution algorithms, the capabilities of different models to describe field tests and bench-scale experiments, and the impact on the groundwater flow calculations of incorporating various physical phenomena. The work was conducted at three levels addressing code verification (Level 1), model validation (Level 2), and sensitivity and uncertainty analysis of groundwater flow calculations (Level 3). This report gives an overview and summary of test cases of HYDROCOIN Level 1, the issue of validation groundwater flow models (HYDROCOIN Level 2), the methodologies used in uncertainty and sensitivity analysis (HYDROCOIN Level 3). 108 figs., 24 tabs., 2 appendices

  15. Changes in groundwater composition as a consequence of deglaciation. Implications for performance assessment

    International Nuclear Information System (INIS)

    Guimera, Jordi; Duro, Lara; Delos, Anne

    2007-11-01

    The objective of this report is to evaluate in a quantitative fashion some of the effects of the future climatic evolution on the hydrogeochemistry of the granitic environment of the planned SKB repository. Such effects are related to the advance and retreat of ice sheets in sub-polar areas such as the Fennoscandian shield and in particular, the effects of oxygen-rich water infiltration from the melting of ice through geologic media and the effects on the redox condition of the repository. This work is a further development from previous calculations and takes into consideration some of the recommendations by Gascoyne. In our previous work we found that oxic conditions - but not oxygen - could reach repository depths under certain circumstances, however, Gascoyne contended that the calculations were excessively conservative and that new data available from site characterization programmes should be used for the pertinent calculations. Hence, we have integrated the actual data arising from the on going site characterisation programmes in this work. The conceptual model envisages the system as a fast flowing fracture, were water moves by advection at a 'reference' groundwater velocity of 10 -7 m/s. Diluted and oxygen saturated water originated from the melting of ice infiltrates through this fracture and interacts with the main minerals present. These minerals exert control on the alkalinity (calcite), aluminium content (kaolinite) and silica (chalcedony). In addition, the oxidant front is buffered by the kinetic dissolution of ferro-magnesian biotite and the released Fe(III) may precipitate as ferric oxy-hydroxide. The model is solved by means of the PHREEQC code. The results of the reference case indicate that the oxygen front only progresses few metres along the fracture. The depletion of the mineral redox capacity in the fracture is able to buffer completely the advance of the oxidizing front. Oxygen does not reach repository depths, where the redox potentials

  16. Changes in groundwater composition as a consequence of deglaciation. Implications for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Guimera, Jordi; Duro, Lara; Delos, Anne [Enviros Consulting, Valldoreix, Bar celona (Spain)

    2007-11-15

    The objective of this report is to evaluate in a quantitative fashion some of the effects of the future climatic evolution on the hydrogeochemistry of the granitic environment of the planned SKB repository. Such effects are related to the advance and retreat of ice sheets in sub-polar areas such as the Fennoscandian shield and in particular, the effects of oxygen-rich water infiltration from the melting of ice through geologic media and the effects on the redox condition of the repository. This work is a further development from previous calculations and takes into consideration some of the recommendations by Gascoyne. In our previous work we found that oxic conditions - but not oxygen - could reach repository depths under certain circumstances, however, Gascoyne contended that the calculations were excessively conservative and that new data available from site characterization programmes should be used for the pertinent calculations. Hence, we have integrated the actual data arising from the on going site characterisation programmes in this work. The conceptual model envisages the system as a fast flowing fracture, were water moves by advection at a 'reference' groundwater velocity of 10{sup -7} m/s. Diluted and oxygen saturated water originated from the melting of ice infiltrates through this fracture and interacts with the main minerals present. These minerals exert control on the alkalinity (calcite), aluminium content (kaolinite) and silica (chalcedony). In addition, the oxidant front is buffered by the kinetic dissolution of ferro-magnesian biotite and the released Fe(III) may precipitate as ferric oxy-hydroxide. The model is solved by means of the PHREEQC code. The results of the reference case indicate that the oxygen front only progresses few metres along the fracture. The depletion of the mineral redox capacity in the fracture is able to buffer completely the advance of the oxidizing front. Oxygen does not reach repository depths, where the

  17. Modelling of Radionuclide Transport by Groundwater Motion in Fractured Bedrock for Performance Assessment Purposes

    International Nuclear Information System (INIS)

    Woerman, Anders; Shulan Xu

    2003-10-01

    Field data of physical properties in heterogeneous crystalline bedrock, like fracture zones, fracture connectivity, matrix porosity and fracture aperture, is associated with uncertainty that can have a significant impact on the analysis of solute transport in fractured rock. The purpose of this study is to develop a performance assessment (PA) model for analyses of radionuclide transport in the geosphere, in which the model takes into account both the effect of heterogeneities of hydrological and geochemical rock properties. By using a travel time description of radionuclide transport in rock fractures, we decompose the transport problem into a one-dimensional mass transfer problem along a distribution of transport pathways and a multi-dimensional flow problem in the fractured bedrock. The hydraulic/flow problem is solved based on a statistical discrete-fracture model (DFM) that represents the network of fractures around the repository and in the surrounding geosphere. A Monte Carlo technique reflects the fact that the representation of the fracture network is uncertain. If the flow residence time PDF exhibits multiple peaks or in another way shows a more erratic hydraulic response on the network scale, the three-dimensional travel time approach is superior to a one-dimensional transport modeling. Examples taken from SITE 94, a study performed by the Swedish Nuclear Power Inspectorate, showed that such cases can be found in safety assessments based on site data. The solute transport is formulated based on partial, differential equations and perturbations (random spatial variability in bedrock properties) are introduced in the coefficients to reflect an uncertainty of the exact appearance of the bedrock associated with the discrete data collection. The combined approach for water flow and solute transport, thereby, recognises an uncertainty in our knowledge in both 1) bedrock properties along individual pathways and 2) the distribution of pathways. Solutions to the

  18. Groundwater age and lifetime expectancy modelling approach for site characterization and performance assessment of radwaste repository in clay formation

    International Nuclear Information System (INIS)

    Cornaton, F.; Perrochet, P.; Benabderrahmane, H.

    2010-01-01

    variables that are combined and used to assess the repository performance regarding its emplacement in the transposition zone. Age and lifetime expectancy distributions are solved considering advection and dispersion/diffusion processes according to the approach proposed by Cornaton and Perrochet (2006). Advective-dispersive age solutions are compared to available age dates of pore water within the two main calcareous aquifers (Dogger and Oxfordian) that embed the Callovo-Oxfordian host formation. Such a comparison is helpful for the consolidation of the flow calibration, the estimation of the transport porosity field (since porosity is age generator) and for analyzing the internal water mixing processes and hydraulic behavior of major faults. Lifetime expectancy solutions are used to predict the response at the biosphere resulting from contaminant mass input occurring at a series of hypothetical repository locations. Lifetime expectancy solutions combined with age solutions provide the distribution of total residence times within the domain (i.e the total time required to travel from recharge to discharge). The latter is used to map in the 3-D space the low- and high-speed flow zones at the local scale. Finally, the behavior of age solutions is investigated when the hydraulic regime is rendered transient in response to the climatic evolution during the past Million years and to the climatic projection for the coming Million years. Transient age solutions at actual time are useful to analyze the effect of the temporal flow regime variations on the measured age dates and on ages simulated under steady-flow conditions. (authors)

  19. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  20. Hydrogeological characterization and assessment of groundwater ...

    Indian Academy of Sciences (India)

    In this perspective, assessment of groundwater quality in shallow aquifers in vicinity of the ... contributes about 60% of the total wastewater that gets discharged from ...... tern and effective groundwater management; Proc. Indian. Nat. Sci. Acad.

  1. Assessment and uncertainty analysis of groundwater risk.

    Science.gov (United States)

    Li, Fawen; Zhu, Jingzhao; Deng, Xiyuan; Zhao, Yong; Li, Shaofei

    2018-01-01

    Groundwater with relatively stable quantity and quality is commonly used by human being. However, as the over-mining of groundwater, problems such as groundwater funnel, land subsidence and salt water intrusion have emerged. In order to avoid further deterioration of hydrogeological problems in over-mining regions, it is necessary to conduct the assessment of groundwater risk. In this paper, risks of shallow and deep groundwater in the water intake area of the South-to-North Water Transfer Project in Tianjin, China, were evaluated. Firstly, two sets of four-level evaluation index system were constructed based on the different characteristics of shallow and deep groundwater. Secondly, based on the normalized factor values and the synthetic weights, the risk values of shallow and deep groundwater were calculated. Lastly, the uncertainty of groundwater risk assessment was analyzed by indicator kriging method. The results meet the decision maker's demand for risk information, and overcome previous risk assessment results expressed in the form of deterministic point estimations, which ignore the uncertainty of risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Assessment of emerging groundwater contaminants

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan; Manamsa, Katya; Crane, Emily; White, Debbie

    2016-01-01

    Emerging contaminants in groundwater are important. These have been studied at a range of scales. An increasing range of compounds is being detected Urban areas show impact of sewage and industrial wastewater. Some ECs are probably no threat to drinking water at such µg/L concentrations, e.g. caffeine Others may prove to be in the future. There is little information on their impact on other groundwater receptors in the environment. We are still far from understanding which of these comp...

  3. evaluation of models for assessing groundwater vulnerability

    African Journals Online (AJOL)

    DR. AMINU

    applied models for groundwater vulnerability assessment mapping. The appraoches .... The overall 'pollution potential' or DRASTIC index is established by applying the formula: DRASTIC Index: ... affected by the structure of the soil surface.

  4. Assessment of groundwater management at Hanford

    International Nuclear Information System (INIS)

    Deju, R.A.

    1975-01-01

    A comprehensive review of the groundwater management and environmental monitoring programs at the Hanford reservation was initiated in 1973. A large number of recommendations made as a result of this review are summarized. The purpose of the Hanford Hydrology Program is to maintain a groundwater surveillance network to assess contamination of the natural water system. Potential groundwater contamination is primarily a function of waste management decisions. The review revealed that although the hydrology program would greatly benefit from additional improvements, it is adequate to predict levels of contaminants present in the groundwater system. Studies are presently underway to refine advanced mathematical models to use results of the hydrologic investigation in forecasting the response of the system to different long-term management decisions. No information was found which indicates that a hazard through the groundwater pathway presently exists as a result of waste operations at Hanford. (CH)

  5. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 3; the groundwater pathway

    International Nuclear Information System (INIS)

    Baker, A.; Chambers, A.; Jackson, C.

    1997-01-01

    repository zone beneath Longlands Farm. In style, scope and presentation, Nirex 97 is primarily aimed at the scientific community, other radioactive waste disposal agencies and regulators. The report is published as part of Nirex's commitment to open publication of its scientific findings. The main value of the report currently is as a demonstration of the generic capability which has been developed to assess the radiological safety performance of candidate repository sites. The safety assessment reported as Nirex 97 was carried out between April 1996 and August 1997. It updates a preliminary assessment of the groundwater pathway for a repository at Sellafield, 'Nirex 95' published in July 1995. Nirex 97 takes account of further data obtained from the Nirex waste inventory, design, site characterisation and research programmes. In addition, Nirex 97 extends the Nirex 95 evaluation to include consideration of the potential radiological and flammability hazards in the biosphere arising from the effects of gas generation within the repository and the extent of pressurisation within the repository vaults. The assessment also takes account of the latest guidance from the Environment Agencies on requirements for authorisation of disposal facilities on land. Volume 3: The Groundwater Pathway, describes the groundwater flow models used to develop an analysis of risks from the groundwater pathway due to natural discharges and well abstraction. It describes the models of the repository source term and radionuclide transport through the geosphere and biosphere. The detailed understanding of repository performance is explored through the development of some simple 'insight' models

  6. Health risk assessment of groundwater arsenic pollution in southern Taiwan.

    Science.gov (United States)

    Liang, Ching-Ping; Wang, Sheng-Wei; Kao, Yu-Hsuan; Chen, Jui-Sheng

    2016-12-01

    Residents of the Pingtung Plain, Taiwan, use groundwater for drinking. However, monitoring results showed that a considerable portion of groundwater has an As concentration higher than the safe drinking water regulation of 10 μg/L. Considering residents of the Pingtung Plain continue to use groundwater for drinking, this study attempted to evaluate the exposure and health risk from drinking groundwater. The health risk from drinking groundwater was evaluated based on the hazard quotient (HQ) and target risk (TR) established by the US Environmental Protection Agency. The results showed that the 95th percentile of HQ exceeded 1 and TR was above the safe value of threshold value of 10 -6 . To illustrate significant variability of the drinking water consumption rate and body weight of each individual, health risk assessments were also performed using a spectrum of daily water intake rate and body weight to reasonably and conservatively assess the exposure and health risk for the specific subgroups of population of the Pingtung Plain. The assessment results showed that 0.01-7.50 % of the population's HQ levels are higher than 1 and as much as 77.7-93.3 % of the population being in high cancer risk category and having a TR value >10 -6 . The TR estimation results implied that groundwater use for drinking purpose places people at risk of As exposure. The government must make great efforts to provide safe drinking water for residents of the Pingtung Plain.

  7. 100-D Ponds groundwater quality assessment

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-01-01

    The 100-D Ponds facility is regulated under the Resource Conservation and Recovery Act of 1976. The pH of groundwater in a downgradient well is statistically different than local background, triggering an assessment of groundwater contamination under 40 CFR 265.93. Results of a similar assessment, conducted in 1993, show that the elevated pH is caused by the presence of alkaline ash sediments beneath the ponds, which are not part of the RCRA unit. The 100-D Ponds should remain in indicator evaluation monitoring

  8. Preliminary Groundwater Assessment using Electrical Method at Quaternary Deposits Area

    Science.gov (United States)

    Hazreek, Z. A. M.; Raqib, A. G. A.; Aziman, M.; Azhar, A. T. S.; Khaidir, A. T. M.; Fairus, Y. M.; Rosli, S.; Fakhrurrazi, I. M.; Izzaty, R. A.

    2017-08-01

    Alternative water sources using groundwater has increasingly demand in recent years. In the past, proper and systematic study of groundwater potential was varies due to several constraints. Conventionally, tube well point was drilled based on subjective judgment of several parties which may lead to the uncertainties of the project success. Hence, this study performed an electrical method to investigate the groundwater potential at quaternary deposits area particularly using resistivity and induced polarization technique. Electrical method was performed using ABEM SAS4000 equipment based on pole dipole array and 2.5 m electrode spacing. Resistivity raw data was analyzed using RES2DINV software. It was found that groundwater was able to be detected based on resistivity and chargeability values which varied at 10 - 100 Ωm and 0 - 1 ms respectively. Moreover, suitable location of tube well was able to be proposed which located at 80 m from the first survey electrode in west direction. Verification of both electrical results with established references has shown some good agreement thus able to convince the result reliability. Hence, the establishment of electrical method in preliminary groundwater assessment was able to assist several parties in term groundwater prospective at study area which efficient in term of cost, time, data coverage and sustainability.

  9. Assessment of Physicochemical Characteristics of Groundwater ...

    African Journals Online (AJOL)

    The aim of the present study is to assess the qualitative aspect of drinking water supply of Firozabad city (India) through index method and comparing it with existing standards for important parameters. The main components of the study include a field sampling analysis of groundwater collected from three different sites viz.

  10. Performance assessment

    International Nuclear Information System (INIS)

    Doe, T.

    1985-01-01

    The purpose of performance assessment is to show that the repository is expected to serve its stated function - disposing of radioactive waste safely both during operation and for the postclosure period. Performance assessment is a straightforward concept, but its application may be very complicated. The concept of performance assessment has been clarified by the Nuclear Regulatory Commission (NRC) in their Draft Generic Technical Position on Licensing Assessment Methodology for High-Level Waste Geologic Repositories (NRC, 1984). This document has gone a long way toward defining the criteria that the NRC will use to determine whether or not information from site characterization is adequate to meet the regulations of the Nuclear Regulatory Commission and the Environmental Protection Agency (EPA). A favorable determination is required for issuance of a construction authorization, which is the first major regulatory requirement for developing a working repository. It is, therefore, essential that a research program be developed that not only resolves the outstanding technical issues, but also does it in such a way that the results are clearly applicable to the formal performance assessment and licensing procedures. The definitions of performance assessment are reviewed and the current NRC thinking is summarized

  11. Comparative studies of groundwater vulnerability assessment

    Science.gov (United States)

    Maria, Rizka

    2018-02-01

    Pollution of groundwater is a primary issue because aquifers are susceptible to contamination from land use and anthropogenic impacts. Groundwater susceptibility is intrinsic and specific. Intrinsic vulnerability refers to an aquifer that is susceptible to pollution and to the geological and hydrogeological features. Vulnerability assessment is an essential step in assessing groundwater contamination. This approach provides a visual analysis for helping planners and decision makers to achieve the sustainable management of water resources. Comparative studies are applying different methodologies to result in the basic evaluation of the groundwater vulnerability. Based on the comparison of methods, there are several advantages and disadvantages. SI can be overlaid on DRASTIC and Pesticide DRASTIC to extract the divergence in sensitivity. DRASTIC identifies low susceptibility and underestimates the pollution risk while Pesticide DRASTIC and SI represents better risk and is recommended for the future. SINTACS method generates very high vulnerability zones with surface waters and aquifer interactions. GOD method could be adequate for vulnerability mapping in karstified carbonate aquifers at small-moderate scales, and EPIK method can be used for large scale. GOD method is suitable for designing large area such as land management while DRASTIC has good accuracy and more real use in geoenvironmental detailed studies.

  12. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  13. Public health risk assessment of groundwater contamination in Batman, Turkey.

    Science.gov (United States)

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems.

  14. Innovative technique for assessment of groundwater quality

    International Nuclear Information System (INIS)

    Ahmad, N.; Ahmad, M.; Sajjad, M.I.

    2001-07-01

    Groundwater quality of a part of Chaj Doab has been assessed with innovative techniques which are not reported in literature. The concept of triangular coordinates is modified by multi-rectangular ones for the classification of major cations and anions analysed in the ground water. A Multi-Rectangular Diagram (MRD) has been developed with the combination of rectangular coordinates by virtue of which milli-equivalent per liter percentages (meq/1%) of major cations and anions could be classified into different categories more efficiently as compared to classical trilinear diagrams. Both Piper diagram and MRD are used for the assessment of 259 data sets analysed from ground water of Chaj Doab area, Pakistan. The differentiated ground water types with MRD in the study area are calcium bicarbonate, magnesium bicarbonate, sodium bicarbonate and sodium sulfate. Sodium bicarbonate type emerges as the most abundant type of ground water in the study area. A map showing spatial variation of groundwater quality has been constructed with the help of MRD. This map shows that, in the vicinity of rivers Chenab and Jhelum, calcium bicarbonate type of waters occur while the central area is mainly covered by sodium bicarbonate dominant waters. Groundwaters near the upper Jhelum canal are dominant in sodium sulfate. An important relation between calcium and sodium is proposed which explains the movement history of groundwater in the aquifer. Hydrogeochemical processes have been evaluated with new methods. Ion exchange between calcium and sodium, precipitation of calcium bicarbonate and dissolution of rock forming minerals are the major delineated hydrogeochemical processes. (author)

  15. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

    2012-11-01

    This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

  16. A Preliminary Assessment of Groundwater Samples around a Filling ...

    African Journals Online (AJOL)

    This paper is a preliminary assessment of groundwater samples around a filling station in Diobu area of Port Harcourt for four years at intervals of two years with a view to determine the level of groundwater pollution. It examines the physiochemical, major ions and heavy metal aspect of groundwater quality around the study ...

  17. Assessment of groundwater vulnerability and sensitivity to pollution ...

    African Journals Online (AJOL)

    Groundwater pollution caused by human activity is a serious environmental problem in cities. Pollution vulnerability assessment of groundwater resources provides information on how to protect areas vulnerable to pollution. The present study is a detailed investigation of the potential for groundwater contamination through ...

  18. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  19. Attempts for an integrative (ecological) assessment of groundwater ecosystems status

    Science.gov (United States)

    Griebler, Christian; Kellermann, Claudia; Jürgen Hahn, Hans; Stein, Heide; Brielmann, Heike; Berkhoff, Sven; Fuchs, Andreas

    2014-05-01

    Today the assessment of the ecological status of surface waters is routine and made its way into national and international (e.g. European Water Framework Directive) regulations. For groundwater and aquifers a comparable approach, considering ecological aspects, is still missing. In contrast, groundwater monitoring and management schemes follow exclusively physical-chemical and quantitative criteria. However, groundwater systems are, although persistently neglected, ecosystems harboring diverse communities of microorganisms and invertebrates. Directly linked to the biological components, groundwater systems provide various ecosystem services of societal relevance (natural production of clean drinking water). In the recent past, we developed a first concept of an ecologically sound assessment scheme for groundwater systems. Work included (1) the selection of appropriate biological/ecological criteria, (2) set-up of a groundwater ecosystem typology, (3) deduction of natural biological groundwater background values and definition of reference conditions for selected sites, and (4) a first evaluation model. Groundwater has been analyzed repeatedly of more than 100 wells distributed over five investigation areas spread all over Germany. The investigated sites could be assigned to different natural regions, geological regions, hydrogeological units, and aquifer types. The mismatch of groundwater faunal communities with the established classification schemes led to the proposal of 'stygoregions' for Germany. The presentation introduces a number of microbial and faunistic assessment criteria, which have been tested and natural background values which have been deduced. Finally, a tiered framework for assessing groundwater ecosystem status which allows an easy and fast evaluation is introduced.

  20. Context for performance assessment

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1997-01-01

    In developing its recommendations on performance assessment for disposal of low-level radioactive waste, Scientific committee 87-3 of the National Council on Radiation Protection and Measurements (NCRP) has considered a number of topics that provide a context for the development of suitable approaches to performance assessment. This paper summarizes the Committee' discussions on these topics, including (1) the definition of low-level waste and its sources and properties, as they affect the variety of wastes that must be considered, (2) fundamental objectives and principles of radioactive waste disposal and their application to low-level waste, (3) current performance objectives for low-level waste disposal in the US, with particular emphasis on such unresolved issues of importance to performance assessment as the time frame for compliance, requirements for protection of groundwater and surface water, inclusion of doses from radon, demonstrating compliance with fixed performance objectives using highly uncertain model projections, and application of the principle that releases to the environment should be maintained as low as reasonably achievable (ALARA), (4) the role of active and passive institutional controls over disposal sites, (5) the role of the inadvertent human intruder in low-level waste disposal, (6) model validation and confidence in model outcomes, and (7) the concept of reasonable assurance of compliance

  1. Aquifer Characterization and Groundwater Potential Assessment

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Keywords: Aquifer Characterization, Groundwater Potential, Electrical Resistivity, Lithologic Logs ... State Water Corporation currently cannot meet the daily water ... METHOD OF STUDY ... sections which were constrained with the available.

  2. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and ...

  3. Texas' performance assessment work

    International Nuclear Information System (INIS)

    Charbeneau, R.J.; Hertel, N.E.; Pollard, C.G.

    1990-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority is completing two years of detailed on-site suitability studies of a potential low-level radioactive waste disposal site in Hudspeth County, Texas. The data from these studies have been used to estimate site specific parameters needed to do a performance assessment of the site. The radiological impacts of the site have been analyzed as required for a license application. The approach adopted for the performance assessment was to use simplified and yet conservative assumptions with regard to releases, radionuclide transport, and dose calculations. The methodologies employed in the performance assessment are reviewed in the paper. Rather than rely on a single computer code, a modular approach to the performance assessment was selected. The HELP code was used to calculate the infiltration rate through the trench covers and the amount of leachate released from this arid site. Individual pathway analyses used spreadsheet calculations. These calculations were compared with those from other computer models including CRRIS, INGDOS, PATHRAE, and MICROSHIELD copyright, and found to yield conservative estimates of the effective whole body dose. The greatest difficulty in performing the radiological assessment of the site was the selection of reasonable source terms for release into the environment. A surface water pathway is unreasonable for the site. Though also unlikely, the groundwater pathway with exposure through a site boundary well was found to yield the largest calculated dose. The more likely pathway including transport of leachate from the facility through the unsaturated zone and returning to the ground surface yields small doses. All calculated doses associated with normal releases of radioactivity are below the regulatory limits

  4. Quality assessment of groundwater from shallow aquifers in Hong ...

    African Journals Online (AJOL)

    Quality assessment of groundwater from shallow aquifers in Hong area, Adamawa state, northeastern Nigeria. ... The high content of fluoride and iron in the groundwater may have contributed to the high EC and TDS especially during the rainy season when the rate of leaching and infiltration is high. Keywords: Quality ...

  5. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  6. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    draft conditions and climate change effect using numerical simulation. The groundwater flow model ...... '98 Conference at the International Ground Water Model- ing Center, Colorado School of Mines, Golden, Colorado. Harbaugh A W, Banta ...

  7. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  8. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  9. All rights reserved Assessment of groundwater vulnerability and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-12

    Dec 12, 2017 ... Pollution vulnerability assessment of groundwater resources provides information on how to protect areas ... the application of DRASTIC model, the relationship ..... mathematical structure of consistent matrices and the.

  10. Assessment of Groundwater Quality in Zanzibar Municipality

    African Journals Online (AJOL)

    user

    Saltwater intrusion problems are widespread where there are over pumping of groundwater from coastal aquifers. Water samples were .... urbanized area. Although more than 70% of the municipality residents are connected to public water system, it does not meet the demand (Table 1) and as such there are many private ...

  11. Hydrogeochemical assessment of groundwater in Kashmir Valley ...

    Indian Academy of Sciences (India)

    Ravi, occupies an oval shaped depression between two major orogenic axis of ..... tion well network that showed water-level increase due to rapid groundwater ... Other issues such as ecological and social issues need to be taken into account ...

  12. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Floyd N.; Chou, Charissa J.

    2000-08-04

    As a result of the most recent recalculation one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41, triggering a change from detection monitoring to groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents (i.e., sodium, calcium, magnesium, chloride, sulfate, and bicarbonate). Nitrate, chromium, and technetium-99 are present and are increasing; however, they are significantly below their drinking waster standards. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the waste management area are a result of surface water infiltration in the southern portion of the facility. There is evidence for both upgradient and waste management area sources for observed nitrate concentrations. There is no indication of an upgradient source for the observed chromium and technetium-99.

  13. Scoping assessment of groundwater doses to biota at the Sellafield site, UK

    International Nuclear Information System (INIS)

    McDonald, P.; Gleizon, P.; Coleman, I.A.; Watts, S.J.; Batlle, L.V.; Smith, A.D.

    2008-01-01

    In the current climate of investigating the impact of discharges from the nuclear industry on non-human biota, much attention has been given to biota in marine and terrestrial environments in receipt of authorised discharges of liquid and gaseous effluent. Relatively little attention to date has been given to the exposure of biota to groundwater containing man-made radio-nuclides. This area of interest is growing especially in the field of nuclear waste repositories. A scoping assessment has been performed here to determine the impacts due to radiological contamination on organisms living within or coming into contact with groundwater at the Sellafield site, UK. The following potential exposure routes to biota were identified: 1) Organisms living within groundwater; 2) Groundwater discharges to the surface at beach springs (i.e. emerging above the low water line; 3) Groundwater discharges to nearby surface water bodies (e.g. rivers); 4) Groundwater discharges directly to the Irish Sea.. In order to evaluate impacts on organisms living within, contacting or ingesting groundwater, it was necessary to determine the activity concentration of radio-nuclides in the groundwater. For time periods up to 2120, modeling of contaminant release from in-ground inventories and transport in groundwater was carried out for this scoping study using a relatively simple assessment methodology with the MONDRIAN modeling suite. Screening assessments of radiological impacts upon wildlife have been performed for liquid discharges to groundwater from the Sellafield Ltd reprocessing plant at Sellafield, Cumbria. Impacts have been considered for biota at sites within reach of the groundwater flow network. Most calculated total weighted absorbed doses appear to be of no radiological significance whatsoever in relation to the new Environment Agency freshwater ecosystem trigger level (40 microGy h -1 ), thereby obviating the need to conduct further investigations. The one exception to this is

  14. Groundwater impact assessment report for the 284-WB Powerplant Ponds

    International Nuclear Information System (INIS)

    Alexander, D.J.; Johnson, V.G.; Lindsey, K.A.

    1993-09-01

    As required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement Milestone M-17-00A), this report assesses the impact of wastewater discharged to the 284-WB Powerplant Ponds on groundwater quality. The assessment reported herein expands upon the initial analysis conducted between 1989 and 1990 for the Liquid Effluent Study Final Project Plan

  15. Regional Assessment of Groundwater Recharge in the Lower Mekong Basin

    Directory of Open Access Journals (Sweden)

    Guillaume Lacombe

    2017-12-01

    Full Text Available Groundwater recharge remains almost totally unknown across the Mekong River Basin, hindering the evaluation of groundwater potential for irrigation. A regional regression model was developed to map groundwater recharge across the Lower Mekong Basin where agricultural water demand is increasing, especially during the dry season. The model was calibrated with baseflow computed with the local-minimum flow separation method applied to streamflow recorded in 65 unregulated sub-catchments since 1951. Our results, in agreement with previous local studies, indicate that spatial variations in groundwater recharge are predominantly controlled by the climate (rainfall and evapotranspiration while aquifer characteristics seem to play a secondary role at this regional scale. While this analysis suggests large scope for expanding agricultural groundwater use, the map derived from this study provides a simple way to assess the limits of groundwater-fed irrigation development. Further data measurements to capture local variations in hydrogeology will be required to refine the evaluation of recharge rates to support practical implementations.

  16. Organic migration forms of radionuclides and performance assessment

    International Nuclear Information System (INIS)

    Xu Gouqing

    2010-01-01

    Much attention is paid to inorganic migration forms of radionuclides in groundwater during performance assessment before and organic migration forms, are seldom noted. Therefore some question may come into confidence level in performance assessment. This paper mainly discusses the distribution of organic substances in groundwater and their potential effect on performance assessment. The results obtained in recent years show that clay rocks are generally impermeable to water, but in some cases the interstitial water may be observed in them and the concentration of DOC, HA and FA is rather higher than that in granitic groundwater. The concentration of DOC is relatively low in granitic groundwater, but up to now the effect of organic migration forms of radionuclides in granitic groundwater on performance assessment is not finally determined, it is necessary to make further investigations. (authors)

  17. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  18. Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India.

    Science.gov (United States)

    Singh, Vinod K; Bikundia, Devendra Singh; Sarswat, Ankur; Mohan, Dinesh

    2012-07-01

    The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority

  19. Groundwater Quality Assessment for Waste Management Area U: First Determination

    International Nuclear Information System (INIS)

    FN Hodges; CJ Chou

    2000-01-01

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  20. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    FN Hodges; CJ Chou

    2000-08-04

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  1. Assessment of groundwater quality around a petroleum tank farm, in ...

    African Journals Online (AJOL)

    Investigation of the physical and chemical properties of groundwater around a Petroleum Tank Farm was carried out between January and August, 2015 to assess the suitability of the borehole water for drinking and other domestic uses. The results show that pH of water was acidic with values ranging from 4.62 to 6.87, EC ...

  2. TURVA-2012: Performance assessment

    International Nuclear Information System (INIS)

    Hellae, Pirjo; Snellman, Margit; Marcos, Nuria; Pastina, Barbara; Smith, Paul; Koskinen, Kari

    2014-01-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR) and application for a construction licence for a repository for disposal of spent nuclear fuel at the Olkiluoto site in south-western Finland. Posiva's safety concept is based on long-term isolation and containment, which is achieved through a robust engineered barrier system (EBS) design and favourable geological conditions at the repository site. The reference design considered in the TURVA-2012 safety case is the KBS-3V design, with the EBS consisting of a copper-iron canister, a buffer of swelling clay material, a backfill in the deposition tunnels of low-permeability material and closure of the central tunnels and other underground openings. The host rock acts as a natural barrier. Each barrier contributes to safety through one or more safety function. The conditions needed for the barriers to fulfil their respective safety functions are expressed in terms of performance targets for the EBS and the target properties for the host rock. The performance assessment (Posiva, 2013), which is a key component of TURVA-2012, analyses the ability of the repository system to provide containment and isolation of the spent nuclear fuel during the long-term evolution of the system and the site. The conditions needed for the barriers to fulfil their respective safety functions are expressed in terms of performance targets for the engineered barriers and target properties for the host rock, for example properties related to the corrosion resistance and mechanical strength of the canister as well as groundwater flow and composition. The analyses take into account the uncertainties in the initial state, the subsequent thermal, hydraulic, mechanical and chemical evolution of the repository system and uncertainties in the evolution. The conclusions of the performance assessment are based mostly on the output of key modelling activities. Whenever modelling is not possible the conclusions

  3. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.

  4. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO 2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO 2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO 2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO 2 eq saving per GL of water produced by the plant.

  5. Assessment of Hydrochemistry for Use as Groundwater Age Proxy

    Science.gov (United States)

    Beyer, Monique; Daughney, Chris; Jackson, Bethanna; Morgenstern, Uwe

    2015-04-01

    Groundwater dating can aid groundwater management by providing information on groundwater flow, mixing and residence-, storage- and exposure-time of groundwater in the subsurface. Groundwater age can be inferred from environmental tracers, such as tritium, SF6 and CFCs (CFC-12, -11 and -113). These tracers often need to be applied complementarily, since they have a restricted application range and ambiguous age interpretations can be obtained. Some tracers, such as the CFCs, will become of limited use in near future, due their fading out atmospheric concentration. As a consequence of these limitations, there is a need for additional, complementary tracers to ensure groundwater dating in future. Hydrochemistry parameters, such as the concentrations and ratios of major ions, appear to be promising candidates. Hydro-chemistry data at various spatial and temporal scales are widely available through local, regional and national groundwater monitoring programmes. Promising relationships between hydrochemistry parameters and groundwater residence time or aquifer depth have been found in near piston flow environments. However, most groundwater samples contain proportions of different aged water, due to mixing of water emerging from different flow lines during sampling or discharge, which complicates the establishment of hydrochemistry-time relationships in these environments. In this study, we establish a framework to infer hydrochemistry - (residence) time relationships in non-piston flow environments by using age information inferred from environmental tracer data and lumped parameter models (LPMs). The approach involves the generation of major element concentrations by 'classic' Monte Carlo simulation and subsequent comparison of simulated and observed element concentrations by means of an objective function to establish hydrochemistry-time relationships. The framework also allows for assessment of the hydrochemistry-time relationships with regards to their potential to

  6. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.

    Science.gov (United States)

    Wang, Junjie; He, Jiangtao; Chen, Honghan

    2012-08-15

    Groundwater contamination risk assessment is an effective tool for groundwater management. Most existing risk assessment methods only consider the basic contamination process based upon evaluations of hazards and aquifer vulnerability. In view of groundwater exploitation potentiality, including the value of contamination-threatened groundwater could provide relatively objective and targeted results to aid in decision making. This study describes a groundwater contamination risk assessment method that integrates hazards, intrinsic vulnerability and groundwater value. The hazard harmfulness was evaluated by quantifying contaminant properties and infiltrating contaminant load, the intrinsic aquifer vulnerability was evaluated using a modified DRASTIC model and the groundwater value was evaluated based on groundwater quality and aquifer storage. Two groundwater contamination risk maps were produced by combining the above factors: a basic risk map and a value-weighted risk map. The basic risk map was produced by overlaying the hazard map and the intrinsic vulnerability map. The value-weighted risk map was produced by overlaying the basic risk map and the groundwater value map. Relevant validation was completed by contaminant distributions and site investigation. Using Beijing Plain, China, as an example, thematic maps of the three factors and the two risks were generated. The thematic maps suggested that landfills, gas stations and oil depots, and industrial areas were the most harmful potential contamination sources. The western and northern parts of the plain were the most vulnerable areas and had the highest groundwater value. Additionally, both the basic and value-weighted risk classes in the western and northern parts of the plain were the highest, indicating that these regions should deserve the priority of concern. Thematic maps should be updated regularly because of the dynamic characteristics of hazards. Subjectivity and validation means in assessing the

  7. Risk assessment of groundwater level variability using variable Kriging methods

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the

  8. A Realistic Human Exposure Assessment of Indoor Radon released from Groundwater

    International Nuclear Information System (INIS)

    Yu, Dong Han; Han, Moon Hee

    2002-01-01

    The work presents a realistic human exposure assessment of indoor radon released from groundwater in a house. At first, a two-compartment model is developed to describe the generation and transfer of radon in indoor air from groundwater. The model is used to estimate radon concentrations profile of indoor air in a house using by showering, washing clothes, and flushing toilets. Then, the study performs an uncertainty analysis of model input parameters to quantify the uncertainty in radon concentration profile. In order to estimate a daily internal dose of a specific tissue group in an adult through the inhalation of such indoor radon, a PBPK(Physiologically-Based Pharmaco-Kinetic) model is developed. Combining indoor radon profile and PBPK model is used to a realistic human assessment for such exposure. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor radon released from groundwater

  9. Health Risk Assessment of Groundwater Arsenic Pollution in Southern Taiwan

    Science.gov (United States)

    Liang, Ching-Ping

    2015-04-01

    This study investigates the risk of arsenic (As) exposure to the residents in Pingtung Plain of Taiwan, where more than 50% of people extracts groundwater to meet the drinking purpose and monitoring groundwater shows that a considerable portion of groundwater has an As concentration of more than safe drinking water guideline of 10μg/L-1. Exposure and risk assessment are carried out in accordance with the provisional daily intake (PTDI) recommended by the FAO/WHO as well as hazard quotient and cancer risk standards based on the US Environmental Protection Agency. The variability of body weights and drinking water consumption scenarios are considered in exposure and risk assessment. Results shows that daily intake exceeds 2.1μg day-1 kg-1 BW for 2% of population, HQ level above unity for 20% , and can risk greater than 10-6 for 80%. These results implies that drinking water directly from groundwater will place many people at the risk of exposure and any efforts to supply safe drinking water is imperial for governing in order to protect the human health of inhabitants in Pingtung Plain.

  10. Assessment of groundwater potential in Ankobra River Basin

    International Nuclear Information System (INIS)

    Nyarkoh, Charles Prince

    2011-08-01

    Ankobra river basin is endowed with many rich natural resources. The mining activities in the basin and the proposed hydropower generation on the Ankobra river as well as oil discovery in the Western Region would lead to the establishing of new industries in the basin. These would certainly lead to potential population growth. As a result of these developments, there would be stress on surface water resources and therefore there would be demand for ground water. A research was carried out to assess groundwater supply. Hydrogeological data was used to evaluate the ground water storage in the basement complex, regolith. The relevant aquifer characteristics/parameters (extent of the study area, thickness of the ground water zone in the regolith, the porosity and specific capacity of the aquifer zones) were used to compute total groundwater storage and recoverable storage. The groundwater contribution to stream flow was computed using mean monthly discharge data from the filled data and hydrograph drawn. The base flow was then determined from the hydrograph separation using the straight line method. The groundwater potential in the Ankobra basin is 45.82*10 9 m 3 while the recoverable groundwater storage is 29.39*10 9 m 3 . The base flow computed was 13.75m 3/ s. Investigations into groundwater chemistry with particular references to physico-chemical parameters (quality) was analysed. The constituents fall within the acceptable limits of the Ghana Standard Board (GSB) for drinking water standard and are satisfactory for human consumption. However, Tamso, Wantenem, Gyaman, Beyim communities exceeded the GSB'S recommended values of PH (6.5-8.5) and chloride ( 250 mg/I) respectively for drinking water standard.(author)

  11. Groundwater impact assessment report for the 100-D Ponds

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1993-07-01

    The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate

  12. Modelling saline intrusion for repository performance assessment

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1989-04-01

    UK Nirex Ltd are currently considering the possibility of disposal of radioactive waste by burial in deep underground repositories. The natural pathway for radionuclides from such a repository to return to Man's immediate environment (the biosphere) is via groundwater. Thus analyses of the groundwater flow in the neighbourhood of a possible repository, and consequent radionuclide transport form an important part of a performance assessment for a repository. Some of the areas in the UK that might be considered as possible locations for a repository are near the coast. If a repository is located in a coastal region seawater may intrude into the groundwater flow system. As seawater is denser than fresh water buoyancy forces acting on the intruding saline water may have significant effects on the groundwater flow system, and consequently on the time for radionuclides to return to the biosphere. Further, the chemistry of the repository near-field may be strongly influenced by the salinity of the groundwater. It is therefore important for Nirex to have a capability for reliably modelling saline intrusion to an appropriate degree of accuracy in order to make performance assessments for a repository in a coastal region. This report describes work undertaken in the Nirex Research programme to provide such a capability. (author)

  13. Groundwater impact assessment report for the 216-U-14 Ditch

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, K.M.; Lindsey, K.A.

    1994-01-01

    Groundwater impact assessments are conducted at liquid effluent receiving sites on the Hanford Site to determine hydrologic and contaminant impacts caused by discharging wastewater to the soil column. The assessments conducted are pursuant to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00A and M-17-00B, as agreed by the US Department of Energy (DOE), Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) (Ecology et al. 1992). This report assesses impacts on the groundwater and vadose zone from wastewater discharged to the 216-U-14 Ditch. Contemporary effluent waste streams of interest are 242-S Evaporator Steam Condensate and UO{sub 3}/U Plant wastewater.

  14. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  15. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    Science.gov (United States)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  16. Assessment of shrimp farming impact on groundwater quality using analytical hierarchy process

    Science.gov (United States)

    Anggie, Bernadietta; Subiyanto, Arief, Ulfah Mediaty; Djuniadi

    2018-03-01

    Improved shrimp farming affects the groundwater quality conditions. Assessment of shrimp farming impact on groundwater quality conventionally has less accuracy. This paper presents the implementation of Analytical Hierarchy Process (AHP) method for assessing shrimp farming impact on groundwater quality. The data used is the impact data of shrimp farming in one of the regions in Indonesia from 2006-2016. Criteria used in this study were 8 criteria and divided into 49 sub-criteria. The weighting by AHP performed to determine the importance level of criteria and sub-criteria. Final priority class of shrimp farming impact were obtained from the calculation of criteria's and sub-criteria's weights. The validation was done by comparing priority class of shrimp farming impact and water quality conditions. The result show that 50% of the total area was moderate priority class, 37% was low priority class and 13% was high priority class. From the validation result impact assessment for shrimp farming has been high accuracy to the groundwater quality conditions. This study shows that assessment based on AHP has a higher accuracy to shrimp farming impact and can be used as the basic fisheries planning to deal with impacts that have been generated.

  17. Groundwater Vulnerability Assessment to Pesticides and Their Ranking and Clustering

    Directory of Open Access Journals (Sweden)

    Ahmad Abrishamchi

    2012-10-01

    Full Text Available In this study, the different methods for groundwater vulnerability assessment to pesticides contamination and their uncertainties were introduced. Then, the groundwater vulnerability of agricultural regions of Pasha-Kolaa dam (Mazandaran province to 7 pesticides has been assessed by the mobility potential indices in the typical conditions of pesticide properties (t1/2 and KOC and the zonation maps of groundwater vulnerability in this region have been generated in the GIS environment.  According to the uncertainty of the pesticide properties and the lack of necessary data for uncertainty analysis in the region of study, the mobility potential indices in different scenarios of pesticide properties (worst and best conditions of pesticide properties (t1/2 and KOC have been calculated, mapped and zoned. The zonation maps in three scenarios (best, typical and worst conditions of pesticide properties were compared. Next, according to the regional values of mobility potential indices, generated for different scenarios, the pesticides are ranked using the composite programming method. Finally, the pesticides are clustered to three groups (suitable, transitional and unsuitable by the combination of the results of previous sections. The clustering results showed that among of studied pesticides, 2,4 D Acid, Dimethoate and Fenvalerate are suitable ,and Metsulfuron and Triclopyr are unsuitable pesticides for region of study. The other pesticides showed transitional condition.

  18. Process of performance assessment

    International Nuclear Information System (INIS)

    King, C.M.; Halford, D.K.

    1987-01-01

    Performance assessment is the process used to evaluate the environmental consequences of disposal of radioactive waste in the biosphere. An introductory review of the subject is presented. Emphasis is placed on the process of performance assessment from the standpoint of defining the process. Performance assessment, from evolving experience at DOE sites, has short-term and long-term subprograms, the components of which are discussed. The role of mathematical modeling in performance assessment is addressed including the pros and cons of current approaches. Finally, the system/site/technology issues as the focal point of this symposium are reviewed

  19. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  20. Performance assessment - risk assessment vive la differences

    International Nuclear Information System (INIS)

    Nitschke, R.L.

    1997-01-01

    In the sister worlds of radioactive waste management disposal and environmental restoration, there are two similar processes and computational approaches for determining the acceptability of the proposed activities. While similar, these two techniques can lead to confusion and misunderstanding if the differences are not recognized and appreciated. In the case of radioactive waste management, the performance assessment process is used to determine compliance with certain prescribed 'performance objectives'. These objectives are designed to ensure that the disposal of radioactive (high-level, low-level, and/or transuranic) waste will be protective of human health and the environment. The environmental link is primarily through assuring protection of the groundwater as a resource. In the case of environmental restoration, the risk assessment process is used to determine the proper remedial action response, if any, for a past hazardous waste release. The process compares the 'no action' or 'leave as is' option with both carcinogenic and noncarcinogenic values for human health to determine the need for any action and to help to help determine just what the appropriate action would need to be. The impacts to the ecological system are evaluated in a slightly, different but similar fashion. Now the common objectives between these two processes notwithstanding. There are some key and fundamental differences that need to be answered that make direct comparisons or a common approach inappropriate. Failure to recognize this can lead to confusion and misunderstanding. This can be particularly problematic when one is faced with an active disposal facility located within the boundaries of an environmental restoration site as is the case at the Idaho National Engineering Laboratory (INEL). Through a critical evaluation of the performance assessment and risk assessment processes, highlighting both similarities and differences, it is hoped that greater understanding and appreciation

  1. NRC performance assessment program

    International Nuclear Information System (INIS)

    Coplan, S.M.

    1986-01-01

    The U.S. Nuclear Regulatory Commission's (NRC) performance assessment program includes the development of guidance to the U.S. Department of Energy (DOE) on preparation of a license application and on conducting the studies to support a license application. The nature of the licensing requirements of 10 CFR Part 60 create a need for performance assessments by the DOE. The NRC and DOE staffs each have specific roles in assuring the adequacy of those assessments. Performance allocation is an approach for determining what testing and analysis will be needed during site characterization to assure that an adequate data base is available to support the necessary performance assessments. From the standpoint of establishing is implementable methodology, the most challenging performance assessment needed for licensing is the one that will be used to determine compliance with the U.S. Environmental Protection Agency's (EPA) containment requirement

  2. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  3. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  4. Toxic aluminium and heavy metals in groundwater of middle Russia: health risk assessment.

    Science.gov (United States)

    Momot, Olga; Synzynys, Boris

    2005-08-01

    Two approaches are distinguished in modern ecological monitoring. The first one is physicochemical analysis of environmental objects with respect to maximum allowable concentrations (MACs) of chemical substances, which is performed by standards methods in accordance with state regulations. The second approach (biological monitoring) is based on the methodology of biotesting and bio indication. The task of this work is to create biotests for estimation of Al and other metals toxicity in ground water and to compare these results with physicochemical analysis dates. Risk assessment for heavy metals contaminated groundwater was also performed. Risk assessment was performed accordingly EPA US recommendation and gave results about 90 per 100000 citizens for Al and 402 per 100000 for mixture of different heavy metals. For comparison: risk for earth background radiation for Middle Russia is (Individual dose 1 millisivert per year) consist 5 per 100000 people. It was shown that groundwater consist HCO3- ions (360 mg/l), sometimes Al compounds 0.21-0.65 mg/l (MAC for Al is 0.5 mg/l for Russia). Other groundwater contain Hg - 0.004 mg/l (MAC - 0.0005 mg/l); Cr - 0.072 mg/l (MAC - 0.05 mg/l); As - less than 0.03 mg/l (MAC - 0.05 mg/l). We developed plant biotest for estimation of groundwater quality with barley roots, tradescatia and others. Some biotests parameters correlate with HCO3-, Cl-, SO(4)2- and metal ions content positively, for another biotest this correlation is strongly negative. The quality of groundwater near Obninsk and in Kaluga Region is very different but hasnit been changed since the year 1998.

  5. Assessment of groundwater contamination risk in an agricultural area in north Italy

    Directory of Open Access Journals (Sweden)

    Georgios Bartzas

    2015-09-01

    Full Text Available In the present study a specific approach is followed, considering the Pesticide DRASTIC and Susceptibility index (SI methods and a GIS framework, to assess groundwater vulnerability in the agricultural area of Albenga, in north Italy. The results indicate “high” to “very high” vulnerability to groundwater contamination along the coastline and the middle part of the Albenga plain, for almost 49% and 56% of the total study area for Pesticide DRASTIC and SI methods, respectively. These sensitive regions depict characteristics such as shallow depth to groundwater, extensive deposits of alluvial silty clays, flat topography and intensive agricultural activities. The distribution of nitrates concentration in groundwater in the study area is slightly better correlated with the SI (0.728 compared to Pesticide DRASTIC (0.693, thus indicating that both methods are characterized by quite good accuracy. Sensitivity analysis was also performed to acknowledge statistical uncertainty in the estimation of each parameter used, assess its impact and thus identify the most critical parameters that require further investigation in the future. Depth to water is the parameter that exhibited the largest impact on the Pesticide DRASTIC vulnerability index followed by the impact of the vadose zone and topography. On the other hand, the SI method is more sensitive to the removal of the topography parameter followed by the aquifer media and the depth to water parameters.

  6. The assessment of the required groundwater quantity for the conservation of ecosystems and the achievement of a good ecological status of surface waters

    Directory of Open Access Journals (Sweden)

    Mitja Janža

    2016-12-01

    Full Text Available Assessment of the available quantity of groundwater is of essential importance for its sustainable use. Modern approaches for estimation of groundwater availability take into account all potential impacts of abstractions, including impacts on groundwater dependent ecosystems and impacts on surface waters ecological status. Groundwater body is in good quantitative status if groundwater abstractions do not cause signifiant damages to groundwater dependent ecosystems and signifiant diminution in the ecological status of surface water bodies. The methodology presented in this paper was developed as an integral part of the assessment of the quantitative status of groundwater bodies in Slovenia and is tailored to the characteristics of the groundwater dependent ecosystems as well as hydrological and hydrogeological conditions in the Slovenian territory. Two different approaches were implemented; for forest habitats on alluvial aquifers, and habitats of amphibians and molluscs in karst areas. Estimates of the required quantity of groundwater for groundwater dependent ecosystems conservation were performed at the level of groundwater bodies and annual averages of temporal variables of the water balance, calculated with the regional water balance model GROWA-SI. In the areas of groundwater bodies with groundwater dependent ecosystems estimated quantity present 0.1 % - 12.4 % of the groundwater recharge. The estimated share of annual renewable quantity of groundwater to maintain the ecological status of surface waters for the entire territory of Slovenia is 23.2 %. The largest share, 30 % is in north-eastern Slovenia and the lowest in the north-west part of Slovenia with a 16.6 % average annual renewable quantity.

  7. Assessing the relative bioavailability of DOC in regional groundwater systems

    Science.gov (United States)

    Chapelle, Francis H.; Bradley, Paul M.; Journey, Celeste A.; McMahon, Peter B.

    2013-01-01

    It has been hypothesized that the degree to which a hyperbolic relationship exists between concentrations of dissolved organic carbon (DOC) and dissolved oxygen (DO) in groundwater may indicate the relative bioavailability of DOC. This hypothesis was examined for 73 different regional aquifers of the United States using 7745 analyses of groundwater compiled by the National Water Assessment (NAWQA) program of the U.S. Geological Survey. The relative reaction quotient (RRQ), a measure of the curvature of DOC concentrations plotted versus DO concentrations and regressed to a decaying hyperbolic equation, was used to assess the relative bioavailability of DOC. For the basalt aquifer of Oahu, Hawaii, RRQ values were low (0.0013 mM−2), reflecting a nearly random relationship between DOC and DO concentrations. In contrast, on the island of Maui, treated sewage effluent injected into a portion of the basalt aquifer resulted in pronounced hyperbolic DOC-DO behavior and a higher RRQ (142 mM−2). RRQ values for the 73 aquifers correlated positively with mean concentrations of ammonia, dissolved iron, and manganese, and correlated negatively with mean pH. This indicates that greater RRQ values are associated with greater concentrations of the final products of microbial reduction reactions. RRQ values and DOC concentrations were negatively correlated with the thickness of the unsaturated zone (UNST) and depth to the top of the screened interval. Finally, RRQ values were positively correlated with mean annual precipitation (MAP), and the highest observed RRQ values were associated with aquifers receiving MAP rates ranging between 900 and 1300 mm/year. These results are uniformly consistent with the hypothesis that the hyperbolic behavior of DOC-DO plots, as quantified by the RRQ metric, can be an indicator of relative DOC bioavailability in groundwater systems.

  8. Assessing the relative bioavailability of DOC in regional groundwater systems.

    Science.gov (United States)

    Chapelle, Francis H; Bradley, Paul M; Journey, Celeste A; McMahon, Peter B

    2013-01-01

    It has been hypothesized that the degree to which a hyperbolic relationship exists between concentrations of dissolved organic carbon (DOC) and dissolved oxygen (DO) in groundwater may indicate the relative bioavailability of DOC. This hypothesis was examined for 73 different regional aquifers of the United States using 7745 analyses of groundwater compiled by the National Water Assessment (NAWQA) program of the U.S. Geological Survey. The relative reaction quotient (RRQ), a measure of the curvature of DOC concentrations plotted versus DO concentrations and regressed to a decaying hyperbolic equation, was used to assess the relative bioavailability of DOC. For the basalt aquifer of Oahu, Hawaii, RRQ values were low (0.0013 mM(-2)), reflecting a nearly random relationship between DOC and DO concentrations. In contrast, on the island of Maui, treated sewage effluent injected into a portion of the basalt aquifer resulted in pronounced hyperbolic DOC-DO behavior and a higher RRQ (142 mM(-2)). RRQ values for the 73 aquifers correlated positively with mean concentrations of ammonia, dissolved iron, and manganese, and correlated negatively with mean pH. This indicates that greater RRQ values are associated with greater concentrations of the final products of microbial reduction reactions. RRQ values and DOC concentrations were negatively correlated with the thickness of the unsaturated zone (UNST) and depth to the top of the screened interval. Finally, RRQ values were positively correlated with mean annual precipitation (MAP), and the highest observed RRQ values were associated with aquifers receiving MAP rates ranging between 900 and 1300 mm/year. These results are uniformly consistent with the hypothesis that the hyperbolic behavior of DOC-DO plots, as quantified by the RRQ metric, can be an indicator of relative DOC bioavailability in groundwater systems. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  9. Baseline risk assessment for groundwater contamination at the uranium mill tailings site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1990-11-01

    The Gunnison Baseline Risk Assessment for Groundwater Contamination at the Uranium Mill Tailings Site was performed to determine if long-term use of groundwater from domestic wells near the site has a potential for adverse health effects. The risk assessment was based on the results of sampling domestic wells during 1989--1990. A risk assessment evaluates health risks by comparing the amount of a contaminant taken in by a person with the amount of the contaminant that may be toxic. The Gunnison Risk Assessment used high intake values to estimate the maximum levels a person might be exposed to. The results of the risk assessment are divided into cancer (carcinogenic) risks and non-carcinogenic risks. Five key contaminants were evaluated for adverse health risks: uranium, manganese, lead antimony, and cadmium. Due to the potential health risks and the unavoidable uncertainties associated with limited groundwater and toxicity data, it is prudent public health policy to provide a permanent alternate water supply. Additionally, providing a permanent alternate water supply is cost-effective compared to long-term routine monitoring

  10. Groundwater assessment in water resources management at Nuclear and Energy Research Institute, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sabrina M.V.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Faustino, Mainara G.; Silva, Douglas B. da; Cotrim, Marycel E.B.; Pires, Maria Aparecida F., E-mail: sabrinamoura@usp.br, E-mail: joyce.marques@usp.br, E-mail: luciremo@uol.com.br, E-mail: thamistellato@gmail.com, E-mail: tatianebscs@live.com, E-mail: mainarag@usp.br, E-mail: douglas.sbatista@yahoo.com.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    To comply with the guidelines for environmental control and legal requirements, the Nuclear and Energy Research Institute (IPEN/ CNEN - Brazil/ SP) performs the Environmental Monitoring Program for Chemical Stable Compounds (PMA-Q) since 2007, in attendance to the Term for the Adjustment of Conduct (TAC) signed between IPEN and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). The PMA-Q program includes the assessment of the IPEN's wastewater released in water body, and the groundwater assessment, which is carried out in nine monitoring wells. In groundwater is analyzed, by ion chromatography, species regulated by CONAMA 396/08 [01] fluoride, chloride, nitrite-N, nitrate-N, sulfate, sodium, potassium, ammonium, magnesium and calcium, besides other parameters. Furthermore, based on legal requirements, each year the program is reviewed and improvement actions are planned and implemented. Therefore, the integrated monitoring of groundwater should provide information on the quality and dynamics of the aquifer compared to seasonal variations and anthropogenic effects. Thus, this study intends to evaluate the chemical features of the institute groundwater, evaluating the database of the monitoring program from 2011 to 2014, for the ions chloride, nitrate-N, sulfate, sodium, potassium, magnesium, calcium and bicarbonate, using these information diagrams will be developed for the characterization of the wells. This assessment will be essential to support the control actions of environmental pollution and the management of water resources. Making possible the establishment of groundwater Quality Reference Figures (QRF), according to the CONAMA 396/08 [01] rating, in order to demonstrate that the activities developed at IPEN are not affecting on the aquifer features. (author)

  11. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  12. Risk assessment guidance document for the UMTRA project groundwater remediation phase

    International Nuclear Information System (INIS)

    1992-05-01

    The purpose of the groundwater remedial activities at the Uranium Mill Tailings Remedial Action (UMTRA) sites is to reduce, control, or eliminate risks to human health and the environment. This is in accordance with Subpart B of 40 CFR 192. According to this regulation, the need for groundwater restoration is based upon US Environmental Protection Agency (EPA)-defined groundwater cleanup standards and must be consistent with the National Environmental Policy Act (NEPA) process. Risk assessments will be used in the UMTRA Groundwater Program to aid in the evaluation of sites. Risk assessments are conducted for four purposes: (1) Preliminary risk assessments are used to aid in prioritizing sites, scope data collection, end determine if a site presents immediate health risks. (2) Baseline risk assessments provide a comprehensive integration and interpretation of demographic, geographic, physical, chemical, and biological factors at a site to determine the extent of actual or potential harm. This information Is used to determine the need for remedial action. (3) Risk evaluation of remedial alternatives is performed to evaluate risks to humans or the environment associated with the various remedial strategies. (4) After remediation, an evaluation of residual risks is conducted. The information gathered for each of these risk evaluations is used to determine the need for subsequent evaluation. Several sites may be eliminated after a preliminary risk assessment if there is no current or future threat to humans or the environment. Likewise, much of the data from a baseline risk assessment can be used to support alternate concentration limits or supplemental standards demonstrations, or identify sensitive habitats or receptors that may be of concern in selecting a remedy

  13. [Physical process based risk assessment of groundwater pollution in the mining area].

    Science.gov (United States)

    Sun, Fa-Sheng; Cheng, Pin; Zhang, Bo

    2014-04-01

    Case studies of groundwater pollution risk assessment at home and abroad generally start from groundwater vulnerability, without considering the influence of characteristic pollutants on the consequences of pollution too much. Vulnerability is the natural sensitivity of the environment to pollutants. Risk assessment of groundwater pollution should reflect the movement and distribution of pollutants in groundwater. In order to improve the risk assessment theory and method of groundwater pollution, a physical process based risk assessment methodology for groundwater pollution was proposed in a mining area. According to the sensitivity of the economic and social conditions and the possible distribution of pollutants in the future, the spatial distribution of risk levels in aquifer was ranged before hand, and the pollutant source intensity corresponding to each risk level was deduced accordingly. By taking it as the criterion for the classification of groundwater pollution risk assessment, the groundwater pollution risk in the mining area was evaluated by simulating the migration of pollutants in the vadose zone and aquifer. The result show that the risk assessment method of groundwater pollution based on physical process can give the concentration distribution of pollutants and the risk level in the spatial and temporal. For single punctuate polluted area, it gives detailed risk characterization, which is better than the risk assessment method that based on aquifer intrinsic vulnerability index, and it is applicable to the risk assessment of existing polluted sites, optimizing the future sites and providing design parameters for the site construction.

  14. Assessing Contamination Potential of Nitrate-N in Groundwater of Lanyang Plain

    Science.gov (United States)

    Liang, Ching-Ping; Tu, Yu-Lin; Lin, Chien-Wen; Jang, Cheng-Shin

    2013-04-01

    Nitrate-N pollution is often relevant to agricultural activities such as the fertilization of crops. Significant increases in the nitrate-N pollution of groundwater are found in natural recharging zones of Taiwan. The increasing nitrate-N contamination seriously threatens public drinking water supply and human health. Constructing a correct map of aquifer contamination potential is an effective and feasible way to protect groundwater for quality assessment and management. Therefore, in this study, we use DRASTIC model with the help of geographic information system (GIS) to assess and predict the contamination potential of nitrate-N in the aquifer of Lanyang Plain, Taiwan. Seven factors of hydrogeology and hydrology, which includes seven parameters - Depth to groundwater, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, and hydraulic Conductivity, are considered to carry out this assessment. The validity of the presented model is established by comparing the results with the measured nitrate concentration in wells within the study area. Adjusting factor weightings via the discriminant analysis is performed to improve the assessment and prediction. The analyzed results can provide residents with suggestive strategies against nitrate-N pollution in agricultural regions and government administrators with explicit information of Nitrate-N pollution extents when plans of water resources are considered.

  15. Using Groundwater physiochemical properties for assessing potential earthquake precursor

    Science.gov (United States)

    Inbar, Nimrod; Reuveni, Yuval; Anker, Yaakov; Guttman, Joseph

    2017-04-01

    Worldwide studies reports pre-seismic, co-seismic and post-seismic reaction of groundwater to earthquakes. The unique hydrological and geological situation in Israel resulted in relatively deep water wells which are located close to seismically active tectonic plate boundary. Moreover, the Israeli experience show that anomalies may occurs 60-90 minutes prior to the seismic event (Guttman et al., 2005; Anker et al., 2016). Here, we try to assess the possible connection between changes in physiochemical parameters of groundwater and earthquakes along the Dead Sea Transform (DST) region. A designated network of monitoring stations was installed in MEKOROT abandoned deep water wells, continuously measuring water table, conductivity and temperature at a sampling rate of 1 minute. Preliminary analysis compares changes in the measured parameters with rain events, tidal effects and earthquake occurrences of all measured magnitudes (>2.5Md) at monitoring area surroundings. The acquired data set over one year recorded simultaneous abrupt changes in several wells which seems disconnected from standard hydrological occurrences such as precipitation, abstraction or tidal effects. At this stage, our research aims to determine and rationalize a baseline for "normal response" of the measured parameters to external occurrences while isolating those cases in which "deviations" from that base line is recorded. We apply several analysis techniques both in time and frequency domain with the measured signal as well as statistical analysis of several measured earthquake parameters, which indicate potential correlations between earthquakes occurrences and the measured signal. We show that at least in one seismic event (5.1 Md) a potential precursor may have been recorded. Reference: Anker, Y., N. Inbar, A. Y. Dror, Y. Reuveni, J. Guttman, A. Flexer, (2016). Groundwater response to ground movements, as a tool for earthquakes monitoring and a possible precursor. 8th International Conference

  16. Assessment of groundwater quality in the coastal area of Sindh province, Pakistan.

    Science.gov (United States)

    Alamgir, Aamir; Khan, Moazzam Ali; Schilling, Janpeter; Shaukat, S Shahid; Shahab, Shoaib

    2016-02-01

    Groundwater is a highly important resource, especially for human consumption and agricultural production. This study offers an assessment of groundwater quality in the coastal areas of Sindh province in Pakistan. Fifty-six samples of groundwater were taken at depths ranging from 30 to 50 m. Bacteriological and physico-chemical analyses were performed using the Standard Methods for the Examination of Water and Wastewater. These were supplemented with expert interviews and observations to identify the usage of water and potential sources of pollution. The quality of the groundwater was found to be unsuitable for human consumption, despite being used for this purpose. The concentrations of sulfate and phosphate were well within the tolerance limits. Most critical were the high levels of organic and fecal pollution followed by turbidity and salinity. Metal concentrations (As, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) were also determined, and Ni and Pb strongly exceeded health standards. The study stresses the need for significant improvements of the irrigation, sanitation, and sewage infrastructure.

  17. Baseline assessment of groundwater quality in Pike County, Pennsylvania, 2015

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, Charles A.

    2017-12-29

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, which have the potential for natural gas development, underlie Pike County and neighboring counties in northeastern Pennsylvania. In 2015, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, conducted a study that expanded on a previous more limited 2012 study to assess baseline shallow groundwater quality in bedrock aquifers in Pike County prior to possible extensive shale-gas development. Seventy-nine water wells ranging in depths from 80 to 610 feet were sampled during June through September 2015 to provide data on the presence of methane and other aspects of existing groundwater quality in the various bedrock geologic units throughout the county, including concentrations of inorganic constituents commonly present at low values in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. All groundwater samples collected in 2015 were analyzed for bacteria, dissolved and total major ions, nutrients, selected dissolved and total inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane. Additionally, samples from 20 wells distributed throughout the county were analyzed for selected man-made volatile organic compounds, and samples from 13 wells where waters had detectable gross alpha activity were analyzed for radium-226 on the basis of relatively elevated gross alpha-particle activity.Results of the 2015 study show that groundwater quality generally met most drinking-water standards for constituents and properties included in analyses, but groundwater samples from some wells had one or more constituents or properties, including arsenic, iron, manganese, pH, bacteria, sodium, chloride, sulfate

  18. Assessment of groundwater contamination by leachate near a ...

    African Journals Online (AJOL)

    The results show that the leachate from the landfill has a minimal impact on the groundwater resource and this can be attributed to the existing soil stratigraphy at the site consisting of clay which is deduced to have a significant influence on the natural attenuation of leachate into groundwater. Keywords: Groundwater ...

  19. Assessing and forecasting groundwater development costs in Sub ...

    African Journals Online (AJOL)

    Greater use of groundwater in Sub-Saharan Africa is a pre-requisite for improved human welfare; however, the costs associated with groundwater development are prohibitively high and poorly defined. This study identifies and disaggregates the costs of groundwater development in 11 Sub-Saharan African countries, while ...

  20. The Groundwater Assessment for the Young Seo Model by EPM Modeling

    International Nuclear Information System (INIS)

    Jeong, Mi-Seon; Hwang, Yong-Soo

    2007-01-01

    One of the options being considered by several countries for the long term disposal of radioactive waste material is deep burial in stable geological formations. In Korea it is intended that spent nuclear fuel(SNF) and long-lived low- and intermediate-level wastes will be disposed in a deep repository. In order to achieve long-term safety, the repository system is designed so as to ensure that several factors contribute to the overall performance. The part of the repository system concerned with the waste form, containers and the immediate physical and chemical environment of the repository is generally referred to as the near-field. The transport pathways and dilution and retardation mechanisms in the rocks between the repository and the biosphere, i.e. the far-field mechanisms of transport through the geosphere generally make a very important contribution to the overall performance of the repository. Finally, the distribution of radionuclides in the biosphere and the consequent exposure pathways also play an important role in an evaluation of overall performance. Analysis and understanding of the groundwater flow and radionuclide transport in and around a site for a radioactive waste repository will play important roles in a performance assessment. The radionuclides from the wastes will dissolve in the groundwater and may then be transported back to man's immediate environment by the groundwater flowing through the geological formation. Groundwater flows slowly, particularly in regions that are considered suitable for the location of a repository. Thus the timescales of interest are very long and the only method available for assessing the consequences of this groundwater pathway is mathematical modeling of the physical and chemical process involved. However, the models are often too complicated to solve analytically and so they must be incorporated into computer programs. It is very important to ensure that features of the site and processes occurring at the

  1. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  2. Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain

    Science.gov (United States)

    Raposo, Juan Ramón; Dafonte, Jorge; Molinero, Jorge

    2013-03-01

    Climate change can impact the hydrological processes of a watershed and may result in problems with future water supply for large sections of the population. Results from the FP5 PRUDENCE project suggest significant changes in temperature and precipitation over Europe. In this study, the Soil and Water Assessment Tool (SWAT) model was used to assess the potential impacts of climate change on groundwater recharge in the hydrological district of Galicia-Costa, Spain. Climate projections from two general circulation models and eight different regional climate models were used for the assessment and two climate-change scenarios were evaluated. Calibration and validation of the model were performed using a daily time-step in four representative catchments in the district. The effects on modeled mean annual groundwater recharge are small, partly due to the greater stomatal efficiency of plants in response to increased CO2 concentration. However, climate change strongly influences the temporal variability of modeled groundwater recharge. Recharge may concentrate in the winter season and dramatically decrease in the summer-autumn season. As a result, the dry-season duration may be increased on average by almost 30 % for the A2 emission scenario, exacerbating the current problems in water supply.

  3. Assessing Scientific Performance.

    Science.gov (United States)

    Weiner, John M.; And Others

    1984-01-01

    A method for assessing scientific performance based on relationships displayed numerically in published documents is proposed and illustrated using published documents in pediatric oncology for the period 1979-1982. Contributions of a major clinical investigations group, the Childrens Cancer Study Group, are analyzed. Twenty-nine references are…

  4. Groundwater impact assessment for the 216-U-17 Crib, 200 West Area

    International Nuclear Information System (INIS)

    Reidel, S.P.; Johnson, V.G.; Kline, N.W.

    1993-06-01

    As required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement milestone M-17-00A), this report assesses the impact to groundwater from discharge of process condensate to the ground at the 216-U-17 Crib. The assessment considers impacts associated with moisture movement through soil beneath the crib and the potential transport of contaminants to the groundwater

  5. Performance assessment calculational exercises

    International Nuclear Information System (INIS)

    Barnard, R.W.; Dockery, H.A.

    1990-01-01

    The Performance Assessment Calculational Exercises (PACE) are an ongoing effort coordinated by Yucca Mountain Project Office. The objectives of fiscal year 1990 work, termed PACE-90, as outlined in the Department of Energy Performance Assessment (PA) Implementation Plan were to develop PA capabilities among Yucca Mountain Project (YMP) participants by calculating performance of a Yucca Mountain (YM) repository under ''expected'' and also ''disturbed'' conditions, to identify critical elements and processes necessary to assess the performance of YM, and to perform sensitivity studies on key parameters. It was expected that the PACE problems would aid in development of conceptual models and eventual evaluation of site data. The PACE-90 participants calculated transport of a selected set of radionuclides through a portion of Yucca Mountain for a period of 100,000 years. Results include analyses of fluid-flow profiles, development of a source term for radionuclide release, and simulations of contaminant transport in the fluid-flow field. Later work included development of a problem definition for perturbations to the originally modeled conditions and for some parametric sensitivity studies. 3 refs

  6. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    Science.gov (United States)

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  7. Effect of Climate Change and Transaction Costs on Performance of a Groundwater Market

    Science.gov (United States)

    Khan, H. F.; Brown, C.

    2017-12-01

    With surface water resources becoming increasingly stressed, groundwater extraction, much of it unmanaged, has increased globally. Incentive-based policies, such as the cap-and-trade system, have been shown to be useful in the context of groundwater management. Previous research has shown that optimal groundwater markets (i.e. incentives-based policy) outperforms water quotas (command and control policy) with regards to both economic and environmental outcomes. In this work, we investigate whether these advantages of a water market over water quotas hold when assumptions of perfect information are violated due to climate change and hydrogeologic heterogeneity. We also assess whether the benefits of a cap-and-trade system outweigh the costs of implementing it, and how changes in future climate affect the performance a cap-and trade system. We use a sub-basin of the Republican River Basin, overlying the Ogallala aquifer in the High Plains of the United States, as a case study. We develop a multi-agent system model where individual benefits of each self-interested agent are maximized subject to bounds on irrigation requirements and water use permits. This economic model is coupled with a calibrated physically based groundwater model for the study region. Results show that permitting farmers to trade results in increased economic benefits and reduced environmental violations. However, the benefits of trading are dependent on the total allocations and the resulting level of water demand. We quantify third party impacts and environmental externalities for different water allocations, and highlight the unequal distributional effects of uniform water allocations resulting in `winners' and `losers'. The study reveals that high transaction costs can reduce the efficiency of the cap-and-trade system even below that of water quotas. Future changes in climate are shown to significantly influence the dynamics of the water market, and emphasize the need to address climate

  8. Integrating groundwater stress in life-cycle assessments – An evaluation of water abstraction

    DEFF Research Database (Denmark)

    Gejl, Ryle Nørskov; Bjerg, Poul Løgstrup; Henriksen, H. J.

    2018-01-01

    Understanding groundwater abstraction effects is vital for holistic impact assessments in areas depending on groundwater resources. The objective of our study was to modify the state-of-the-art AWaRe (available water remaining), freshwater impact assessment specifically for use in LCAs in areas...... and adjusts demarcations in order to improve the representation of the heterogeneity of groundwater catchments. The applicability of AGWaRe was demonstrated on three groundwater systems producing 5 million m3 water for the city of Copenhagen, namely Advanced Treatment of Groundwater, Simple Treatment...... of Groundwater and Infiltration of Reclaimed water. Results were normalised to compare with other effects of supplying water to an average Danish person. The normalised impacts for drinking water for one person ranged between 0.1 and 39 PE (person equivalent) for the three systems, which indicates that effects...

  9. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan, E-mail: lijuan@craes.org.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Yang, Yang [College of Environment, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Huan, Huan; Li, Mingxiao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Xi, Beidou, E-mail: xibd413@yeah.net [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Lanzhou Jiaotong University, Lanzhou 730070 (China); Lv, Ningqing [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Wu, Yi [Guizhou Academy of Environmental Science and Designing, Guizhou 550000 (China); Xie, Yiwen, E-mail: qin3201@126.com [School of Chemical and Environmental Engineering, Dongguan University of Technology, Dongguan, 523808 (China); Li, Xiang; Yang, Jinjin [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China)

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  10. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    International Nuclear Information System (INIS)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-01-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  11. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori; McCabe, Matthew; Evans, Jason P.; Stisen, Simon

    2014-01-01

    is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km

  12. Energy performance assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Platzer, W.J. [Fraunhofer Inst. for Solar Energy Systems, Freiburg (Germany)

    2006-01-15

    The energy performance of buildings are intimately connected to the energy performance of building envelopes. The better we understand the relation between the quality of the envelope and the energy consumption of the building, the better we can improve both. We have to consider not only heating but all service energies related to the human comfort in the building, such as cooling, ventilation, lighting as well. The complexity coming from this embracing approach is not to be underestimated. It is less and less possible to realted simple characteristic performance indicators of building envelopes (such as the U-value) to the overall energy performance. On the one hand much more paramters (e.g. light transmittance) come into the picture we have to assess the product quality in a multidimensional world. Secondly buildings more and more have to work on a narrow optimum: For an old, badly insulated building all solar gains are useful for a high-performance building with very good insulation and heat recovery systems in the ventilation overheating becomes more likely. Thus we have to control the solar gains, and sometimes we need high gains, sometimes low ones. And thirdly we see that the technology within the building and the user patterns and interactions as well influence the performance of a building envelope. The aim of this project within IEA Task27 was to improve our knowledge on the complex situation and also to give a principal approach how to assess the performance of the building envelope. The participants have contributed to this aim not pretending that we have reached the end. (au)

  13. A GIS/Remote Sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece

    Science.gov (United States)

    Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K.

    2015-06-01

    The aim of this paper is to assess the groundwater potentiality combining Geographic Information Systems and Remote Sensing with data obtained from the field, as an additional tool to the hydrogeological research. The present study was elaborated in the broader area of Tirnavos, covering 419.4 km2. The study area is located in Thessaly (central Greece) and is crossed by two rivers, Pinios and Titarisios. Agriculture is one of the main elements of Thessaly's economy resulting in intense agricultural activity and consequently increased exploitation of groundwater resources. Geographic Information Systems (GIS) and Remote Sensing (RS) were used in order to create a map that depicts the likelihood of existence of groundwater, consisting of five classes, showing the groundwater potentiality and ranging from very high to very low. The extraction of this map is based on the study of input data such as: rainfall, potential recharge, lithology, lineament density, slope, drainage density and depth to groundwater. Weights were assigned to all these factors according to their relevance to groundwater potential and eventually a map based on weighted spatial modeling system was created. Furthermore, a groundwater quality suitability map was illustrated by overlaying the groundwater potentiality map with the map showing the potential zones for drinking groundwater in the study area. The results provide significant information and the maps could be used from local authorities for groundwater exploitation and management.

  14. Toxic Aluminium and Heavy Metals in Groundwater of Middle Russia: Health Risk Assessment

    Directory of Open Access Journals (Sweden)

    Boris Synzynys

    2005-08-01

    Full Text Available Two approaches are distinguished in modern ecological monitoring. The first one is physicochemical analysis of environmental objects with respect to maximum allowable concentrations (MACs of chemical substances, which is performed by standards methods in accordance with state regulations. The second approach (biological monitoring is based on the methodology of biotesting and bio indication. The task of this work is to create biotests for estimation of Al and other metals toxicity in ground water and to compare these results with physicochemical analysis dates. Risk assessment for heavy metals contaminated groundwater was also performed. Risk assessment was performed accordingly EPA US recommendation and gave results about 90 per 100000 citizens for Al and 402 per 100000 for mixture of different heavy metals. For comparison: risk for earth background radiation for Middle Russia is (Individual dose 1 millisivert per year consist 5 per 100000 people. It was shown that groundwater consist HCO3- ions (360 mg/l, sometimes Al compounds 0.21-0.65 mg/l (MAC for Al is 0.5 mg/l for Russia. Other groundwater contain Hg – 0.004 mg/l (MAC – 0.0005 mg/l; Cr – 0.072 mg/l (MAC – 0.05 mg/l; As – less than 0.03 mg/l (MAC – 0.05 mg/l. We developed plant biotest for estimation of groundwater quality with barley roots, tradescatia and others. Some biotests parameters correlate with HCO3-, Cl-, SO42- and metal ions content positively, for another biotest this correlation is strongly negative. The quality of groundwater near Obninsk and in Kaluga Region is very different but hasn’t been changed since the year 1998.

  15. Waste package performance assessment

    International Nuclear Information System (INIS)

    Lester, D.H.

    1981-01-01

    This paper describes work undertaken to assess the life-expectancy and post-failure nuclide release behavior of high-level and waste packages in a geologic repository. The work involved integrating models of individual phenomena (such as heat transfer, corrosion, package deformation, and nuclide transport) and using existing data to make estimates of post-emplacement behavior of waste packages. A package performance assessment code was developed to predict time to package failure in a flooded repository and subsequent transport of nuclides out of the leaking package. The model has been used to evaluate preliminary package designs. The results indicate, that within the limitation of model assumptions and data base, packages lasting a few hundreds of years could be developed. Very long lived packages may be possible but more comprehensive data are needed to confirm this

  16. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  17. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals

    NARCIS (Netherlands)

    Grift, B. van der; Griffioen, J.

    2008-01-01

    Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic

  18. Assessment model validity document. NAMMU: A program for calculating groundwater flow and transport through porous media

    International Nuclear Information System (INIS)

    Cliffe, K.A.; Morris, S.T.; Porter, J.D.

    1998-05-01

    NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised

  19. How Sustainable is Groundwater Abstraction? A Global Assessment.

    Science.gov (United States)

    de Graaf, I.; Van Beek, R.; Gleeson, T. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2017-12-01

    Groundwater is the world's largest accessible freshwater resource and is of critical importance for irrigation, and thus for global food security. For regions with high demands, groundwater abstractions often exceed recharge and persistent groundwater depletion occurs. The direct effects of depletion are falling groundwater levels, increased pumping costs, land subsidence, and reduced baseflows to rivers. Water demands are expected to increase further due to growing population, economic development, and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable economic and environmental limits. In this study we estimated trends over 1960-2100 in groundwater levels, resulting from changes in demand and climate. We explored the limits of groundwater abstraction by predicting where and when groundwater levels drop that deep that groundwater gets unattainable for abstraction (economic limit) or, that groundwater baseflows to rivers drop below environmental requirements (environmental limit). We used a global hydrological model coupled to a groundwater model, meaning lateral groundwater flows, river infiltration and drainage, and infiltration and capillary-rise are simulated dynamically. Historical data and projections are used to prescribe water demands and climate forcing to the model. For the near future we used RCP8.5 and applied globally driest, average, and wettest GCM to test climate sensitivity. Results show that in general environmental limits are reached before economic limits, for example starting as early as the 1970s compared to the 1980s for economic limits in the upper Ganges basin. Economic limits are mostly related to regions with depletion, while environmental limits are reached also in regions were groundwater and surface water withdrawals are significant but depletion is not taking place (yet), for example in Spain and Portugal. In the near future

  20. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping

    Science.gov (United States)

    Naghibi, Seyed Amir; Moghaddam, Davood Davoodi; Kalantar, Bahareh; Pradhan, Biswajeet; Kisi, Ozgur

    2017-05-01

    In recent years, application of ensemble models has been increased tremendously in various types of natural hazard assessment such as landslides and floods. However, application of this kind of robust models in groundwater potential mapping is relatively new. This study applied four data mining algorithms including AdaBoost, Bagging, generalized additive model (GAM), and Naive Bayes (NB) models to map groundwater potential. Then, a novel frequency ratio data mining ensemble model (FREM) was introduced and evaluated. For this purpose, eleven groundwater conditioning factors (GCFs), including altitude, slope aspect, slope angle, plan curvature, stream power index (SPI), river density, distance from rivers, topographic wetness index (TWI), land use, normalized difference vegetation index (NDVI), and lithology were mapped. About 281 well locations with high potential were selected. Wells were randomly partitioned into two classes for training the models (70% or 197) and validating them (30% or 84). AdaBoost, Bagging, GAM, and NB algorithms were employed to get groundwater potential maps (GPMs). The GPMs were categorized into potential classes using natural break method of classification scheme. In the next stage, frequency ratio (FR) value was calculated for the output of the four aforementioned models and were summed, and finally a GPM was produced using FREM. For validating the models, area under receiver operating characteristics (ROC) curve was calculated. The ROC curve for prediction dataset was 94.8, 93.5, 92.6, 92.0, and 84.4% for FREM, Bagging, AdaBoost, GAM, and NB models, respectively. The results indicated that FREM had the best performance among all the models. The better performance of the FREM model could be related to reduction of over fitting and possible errors. Other models such as AdaBoost, Bagging, GAM, and NB also produced acceptable performance in groundwater modelling. The GPMs produced in the current study may facilitate groundwater exploitation

  1. Determining the extent of groundwater interference on the performance of infiltration trenches

    OpenAIRE

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Wong, Tony; Binning, Philip John

    2015-01-01

    Infiltration trenches are widely used in stormwater management, but their capacity decreases when installed in areas with shallow groundwater where infiltration is limited by groundwater drainage. Here the hydrological performance of single infiltration trenches in areas with shallow water tables is quantified in terms of their capability to reduce peak flow, peak volume and annual stormwater runoff volume. To simulate the long term hydrological performance of infiltration trenches two differ...

  2. Modelling tools for assessing bioremediation performance and risk of chlorinated solvents in clay tills

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia

    design are challenging. This thesis presents the development and application of analytical and numerical models to improve our understanding of transport and degradation processes in clay tills, which is crucial for assessing bioremediation performance and risk to groundwater. A set of modelling tools...... to groundwater and bioremediation performance in low-permeability media....

  3. Assessment of groundwater vulnerability by applying the modified DRASTIC model in Beihai City, China.

    Science.gov (United States)

    Wu, Xiaoyu; Li, Bin; Ma, Chuanming

    2018-05-01

    This study assesses vulnerability of groundwater to pollution in Beihai City, China, as a support of groundwater resource protection. The assessment result not only objectively reflects potential possibility of groundwater to contamination but also provides scientific basis for the planning and utilization of groundwater resources. This study optimizes the parameters consisting of natural factors and human factors upon the DRASTIC model and modifies the ratings of these parameters, based on the local environmental conditions for the study area. And a weight of each parameter is assigned by the analytic hierarchy process (AHP) to reduce the subjectivity of humans to vulnerability assessment. The resulting scientific ratings and weights of modified DRASTIC model (AHP-DRASTLE model) contribute to obtain the more realistic assessment of vulnerability of groundwater to contaminant. The comparison analysis validates the accuracy and rationality of the AHP-DRASTLE model and shows it suits the particularity of the study area. The new assessment method (AHP-DRASTLE model) can provide a guide for other scholars to assess the vulnerability of groundwater to contamination. The final vulnerability map for the AHP-DRASTLE model shows four classes: highest (2%), high (29%), low (55%), and lowest (14%). The vulnerability map serves as a guide for decision makers on groundwater resource protection and land use planning at the regional scale and that it is adapted to a specific area.

  4. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    Science.gov (United States)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  5. Isotopic assessment of long term groundwater exploitation. Proceedings of a final research coordination meeting

    International Nuclear Information System (INIS)

    2006-10-01

    The stress imposed on the available water resources due to man's impact (exploitation, release of pollutants and agricultural practices) has resulted in depletion of the available reserves as well as deterioration of water quality in many parts of the world. Over wide areas, abstractions are exceeding current natural recharge and it is apparent from scientific studies that these water resources are being mined, especially in arid and semi-arid areas. Sustainable development and management of those water resources needs long term monitoring records to understand the changes and dynamic responses due to the exploitation. These proceedings provide a synthesis of a series of hydrochemical, isotope and geohydrological data sets which will be used for quantitative assessment of the long term dynamic response of the groundwater system. The results show that both stable and radioactive isotopes are excellent tools for characterizing and understanding aquifer systems that are undergoing long term exploitation. Specific outcomes include establishment of methodologies for monitoring and predicting changes in water quality and quantity that will lead to improved water resources management. This publication is a summary of the results achieved during the coordinated research project (CRP) and the various studies performed by the participating institutions are presented as individual presentations. The overall achievements are presented as an executive summary, and the detailed findings are presented in each contribution. These results were presented in the final coordination meeting held in Vienna, 12-16 May 2003. The results obtained from this CRP will be used to improve the predictions of future behaviour of groundwater resources in response to exploitation. The scientific component of this CRP will be a valuable source of information for isotope hydrologists involved in isotope field applications and a useful guide for groundwater managers involved in groundwater resources

  6. Groundwater vulnerability assessment in karstic aquifers using COP method.

    Science.gov (United States)

    Bagherzadeh, Somayeh; Kalantari, Nasrollah; Nobandegani, Amir Fadaei; Derakhshan, Zahra; Conti, Gea Oliveri; Ferrante, Margherita; Malekahmadi, Roya

    2018-05-02

    Access to safe and reliable drinking water is amongst the important indicators of development in each society, and water scarcity is one of the challenges and limitations affecting development at national and regional levels and social life and economic activity areas. Generally, there are two types of drinking water sources: the first type is surface waters, including lakes, rivers, and streams and the second type is groundwaters existing in aquifers. Amongst aquifers, karst aquifers play an important role in supplying water sources of the world. Therefore, protecting these aquifers from pollution sources is of paramount importance. COP method is amongst the methods to investigate the intrinsic vulnerability of this type of aquifers, so that areas susceptible to contamination can be determined before being contaminated and these sources can be protected. In the present study, COP method was employed in order to spot the regions that are prone to contamination in the region. This method uses the properties of overlying geological layers above the water table (O factor), the concentration of flow (C factor), and precipitation (P factor) over the aquifer, as the parameters to assess the intrinsic vulnerability of groundwater resources. In this regard, geographical information system (GIS) and remote sensing (RS) were utilized to prepare the mentioned factors and the intrinsic vulnerability map was obtained. The results of COP method indicated that the northwest and the west of the region are highly and very vulnerable. This study indicated that regions with low vulnerability were observed in eastern areas, which accounted for 15.6% of the area. Moderate vulnerability was 40% and related to the northeast and southeast of the area. High vulnerability was 38.2% and related to western and southwestern regions. Very high vulnerability was 6.2% and related to the northwest of the area. By means of the analysis of sensitivity of the model, it was determined that the focus

  7. Emergy assessment of ecological compensation of groundwater overexploitation in Xuchang city

    Science.gov (United States)

    Lv, C.; Ling, M.; Cao, Q.; Guo, X.

    2017-12-01

    In recent 30 years, the amount of groundwater extraction in China is increasing at a rate of 2.5 billion m3 per year. And the growing amount led to form a predatory exploitation in many parts, and caused serious exploitation problems, such as land subsidence, sea water intrusion, surface runoff reduction, vegetation decline, groundwater pollution, and so on. Ecological compensation of overexploitation has become an important mean to adjust the environmental benefits distribution relationship related to the groundwater system and to alleviate the problem of groundwater overexploitation. Based on the ecological economics emergy value theory and analysis method, the emergy loss value calculation method of eco-environmental problems caused by groundwater overexploitation, such as environmental land subsidence (collapse), salt (sea) water intrusion, surface runoff reduction, vegetation deterioration and groundwater pollution, is established, and the assessment method, which takes emergy loss value as the quantity of ecological compensation of groundwater overexploitation, is put forward. This method can reflect the disaster loss degree of groundwater overexploitation more intuitively, and it helps to improve, manage and restore a series of problems caused by groundwater overexploitation, construct a scientific and reasonable groundwater ecological compensation mechanism, and provide good ecological security for the sustainable and healthy development of national economy in our country. Taking Xuchang city as an application example, the results showed that the ecological economic loss of groundwater overexploitation was 109 million in 2015, accounting for 0.3% of the total GDP. Among them, the ecological economic loss of land subsidence is the largest, which was 77 million, accounting for 70.3% of the total loss, the second one is surface runoff reducing loss, which was 27 million, accounting for 24.7% of the total loss, and underground water pollution loss is the

  8. hydrochemical assessment of groundwater quality in sagamu area ...

    African Journals Online (AJOL)

    ABDULRASHEED

    alkaline indices (CAI), were calculated for irrigation purposes. The results were presented as spatial distribution maps for interpretation and further inferences. Comparison of the groundwater quality in the area with local and international ...

  9. Assessment of groundwater salinity in Nellore district using multi ...

    Indian Academy of Sciences (India)

    water samples at six locations close to the electrical resistivity survey sites also suggest high ... Electrical resistivity imaging; Nellore district; groundwater salinity; geochemistry. ..... Sasaki Y 1992 Resolution of resistivity tomography inferred.

  10. Groundwater governance in South Africa: A status assessment

    African Journals Online (AJOL)

    to the project were conducted in India, Kenya, Peru, Morocco,. Philippines and Tanzania. ... the process of formulating a National Groundwater Strategy. (DWA, 2010). ..... solid-waste disposal when it is placed into or on any land, open surface ...

  11. a preliminary assessment of groundwater samples around a filling

    African Journals Online (AJOL)

    Home

    considerably degraded by physical, chemical and bacterial ... chemical and bacterial constituents of groundwater is ... Samples were collected in clean 1 liter plastic bottle from each borehole. ... bottles were kept on ice pack and the unstable.

  12. Spatial assessment of animal manure spreading and groundwater nitrate pollution

    Directory of Open Access Journals (Sweden)

    Roberta Infascelli

    2009-11-01

    Full Text Available Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed.

  13. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    International Nuclear Information System (INIS)

    Savage, David

    2005-08-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the external electrolyte solution enter the clay volume

  14. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Quintessa Ltd., Nottingham (United Kingdom)

    2005-07-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the

  15. Groundwater vulnerability assessment: from overlay methods to statistical methods in the Lombardy Plain area

    Directory of Open Access Journals (Sweden)

    Stefania Stevenazzi

    2017-06-01

    Full Text Available Groundwater is among the most important freshwater resources. Worldwide, aquifers are experiencing an increasing threat of pollution from urbanization, industrial development, agricultural activities and mining enterprise. Thus, practical actions, strategies and solutions to protect groundwater from these anthropogenic sources are widely required. The most efficient tool, which helps supporting land use planning, while protecting groundwater from contamination, is represented by groundwater vulnerability assessment. Over the years, several methods assessing groundwater vulnerability have been developed: overlay and index methods, statistical and process-based methods. All methods are means to synthesize complex hydrogeological information into a unique document, which is a groundwater vulnerability map, useable by planners, decision and policy makers, geoscientists and the public. Although it is not possible to identify an approach which could be the best one for all situations, the final product should always be scientific defensible, meaningful and reliable. Nevertheless, various methods may produce very different results at any given site. Thus, reasons for similarities and differences need to be deeply investigated. This study demonstrates the reliability and flexibility of a spatial statistical method to assess groundwater vulnerability to contamination at a regional scale. The Lombardy Plain case study is particularly interesting for its long history of groundwater monitoring (quality and quantity, availability of hydrogeological data, and combined presence of various anthropogenic sources of contamination. Recent updates of the regional water protection plan have raised the necessity of realizing more flexible, reliable and accurate groundwater vulnerability maps. A comparison of groundwater vulnerability maps obtained through different approaches and developed in a time span of several years has demonstrated the relevance of the

  16. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  17. Risk assessment of groundwater environmental contamination: a case study of a karst site for the construction of a fossil power plant.

    Science.gov (United States)

    Liu, Fuming; Yi, Shuping; Ma, Haiyi; Huang, Junyi; Tang, Yukun; Qin, Jianbo; Zhou, Wan-Huan

    2017-12-20

    This paper presents a demonstration of an integrated risk assessment and site investigation for groundwater contamination through a case study, in which the geologic and hydrogeological feature of the site and the blueprint of the fossil power plant (FPP) were closely analyzed. Predictions for groundwater contamination in case of accidents were performed by groundwater modeling system (GMS) and modular three-dimensional multispecies transport model (MT3DMS). Results indicate that the studied site area presents a semi-isolated hydrogeological unit with multiplicity in stratum lithology, the main aquifers at the site are consisted of the filled karst development layer with a thickness between 6.0 and 40.0 m. The poor permeability of the vadose zone at the FPP significantly restricted the infiltration of contaminants through the vadose zone to the subsurface. The limited influence of rarely isotropic porous karstified carbonate rocks on the groundwater flow system premised the simulate scenarios of plume migration. Analysis of the present groundwater chemistry manifested that that the groundwater at the site and the local area are of the HCO 3 -Ca, HCO 3 , and SO 4 -Ca types. A few of the water samples were contaminated by coliform bacteria and ammonia nitrogen as a result of the local cultivation. Prediction results indicate that the impact of normal construction and operation processes on the groundwater environment is negligible. However, groundwater may be partly contaminated within a certain period in the area of leakage from the diesel tanks, the industrial wastewater pool, and the cooling tower water tank in case of accidents. On a positive note, none of the plumes would reach the local sensitive areas for groundwater using. Finally, an anti-seepage scheme and a monitoring program are proposed to safeguard the groundwater protection. The integrated method of the site investigation and risk assessment used in this case study can facilitate the protection of

  18. A quantitative assessment of groundwater resources in the Middle East and North Africa region

    Science.gov (United States)

    Lezzaik, Khalil; Milewski, Adam

    2018-02-01

    The Middle East and North Africa (MENA) region is the world's most water-stressed region, with its countries constituting 12 of the 15 most water-stressed countries globally. Because of data paucity, comprehensive regional-scale assessments of groundwater resources in the MENA region have been lacking. The presented study addresses this issue by using a distributed ArcGIS model, parametrized with gridded data sets, to estimate groundwater storage reserves in the region based on generated aquifer saturated thickness and effective porosity estimates. Furthermore, monthly gravimetric datasets (GRACE) and land surface parameters (GLDAS) were used to quantify changes in groundwater storage between 2003 and 2014. Total groundwater reserves in the region were estimated at 1.28 × 106 cubic kilometers (km3) with an uncertainty range between 816,000 and 1.93 × 106 km3. Most of the reserves are located within large sedimentary basins in North Africa and the Arabian Peninsula, with Algeria, Libya, Egypt, and Saudi Arabia accounting for approximately 75% of the region's total freshwater reserves. Alternatively, small groundwater reserves were found in fractured Precambrian basement exposures. As for groundwater changes between 2003 and 2014, all MENA countries except for Morocco exhibited declines in groundwater storage. However, given the region's large groundwater reserves, groundwater changes between 2003 and 2014 are minimal and represent no immediate short-term threat to the MENA region, with some exceptions. Notwithstanding this, the study recommends the development of sustainable and efficient groundwater management policies to optimally utilize the region's groundwater resources, especially in the face of climate change, demographic expansion, and socio-economic development.

  19. Groundwater flow and radionuclide transport modelling using CONNECTFLOW in support of the SR Can assessment

    International Nuclear Information System (INIS)

    Hartley, Lee; Cox, Ian; Holton, David; Hunter, Fiona; Joyce, Steve; Gylling, Bjoern; Lindgren, Maria

    2004-09-01

    outputs from the modelling will be the groundwater flux, the definition of flow paths and values for parameters describing the transport of radionuclides along the paths. Ultimately, the results from the groundwater flow modelling will feed into biosphere calculations of radiological risks to man. SKB's methodology refers to three scales of modelling, these being Regional (∼10 km), local (∼1 km) and 'repository/block' (10-100 m). Using models at these scales it is necessary to simulate the transient, variable-density groundwater flow in sufficient detail to enable the groundwater flux and radionuclide transport paths to be determined. Research into ways of coupling the geosphere and biosphere through near-surface and surface hydrology models is ongoing within the SKB programme. The focus of the project reported here has been to illustrate and test the geosphere methodology for the post-closure phase of the safety assessment, that is, between the present and 10,000 years after present. In order to demonstrate the groundwater flow and transport methodology outlined by SKB in TR-03-08, a set of nested models has been constructed using Serco Assurance's CONNECTFLOW software in order to assess issues on various key scales. These nested models are: a regional-scale CPM model containing representations of deterministic large-scale fracture zones, with site-scale hydrogeological properties based on and consistent with an underlying DFN data description. The purpose of this model is to study transients and provide boundary conditions for models on smaller-scales; a local-scale DFN model nested within a regional-scale CPM model to assess far-field transport pathways, but also capture the detailed transport pathways through the DFN immediately around the repository tunnels; a CPM representation of the deposition holes, engineered damage zone (EDZ) and deposition tunnels nested within a canister-scale DFN model. This model is used to perform detailed calculations of groundwater

  20. Study on assessment scenarios of natural phenomena effected on groundwater flow system. Case study for the sea-level change (Contract research)

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Munakata, Masahiro; Kimura, Hideo

    2009-03-01

    It is important to evaluate effects on the groundwater flow system by the natural phenomena in the safety assessment of geological disposal of radioactive waste. Safety assessment is performed by using safety assessment methods, thus it is necessary to establish reasonable scenarios for safety assessment. In this report, we study change effecting on the groundwater flow system by literature reviews. The scenario of sea level change is expected to have a importance for a safety of disposal facility in coastal area. The recent information related to the groundwater flow condition in sedimentary rocks of sub-seabed coastal area shows that there are four groundwater domains as follows with depth; (1) modern meteoric water, (2) saline water in the transgression period, (3) paleo-fresh water which formed during the last glacial age when sea levels were lower than at present and (4) pre-glacial fossil saline water. This study suggests that the non-current (3) paleo-fresh water at present is possible to move to discharged area at sea floor in the next glacial period by denudation of marine-clay sediments and to become stagnant water again in the next interglacial period by deposition of marine-clay sediments in coastal region. Therefore it is important to predict the scenario considering the denudation and deposition correlated with transgression and regression that could affect the change of groundwater flow velocity, groundwater flow path and groundwater chemical characteristics during the glacial and interglacial period. (author)

  1. Probabilistic health risk assessment for arsenic intake through drinking groundwater in Taiwan's Pingtung Plain

    Science.gov (United States)

    Liang, C. P.; Chen, J. S.

    2017-12-01

    An abundant and inexpensive supply of groundwater is used to meet drinking, agriculture and aquaculture requirements of the residents in the Pingtung Plain. Long-term groundwater quality monitoring data indicate that the As content in groundwater in the Pingtung Plain exceeds the maximum level of 10 g/L recommended by the World Health Organization (WHO). The situation is further complicated by the fact that only 46.89% of population in the Pingtung Plain has been served with tap water, far below the national average of 92.93%. Considering there is a considerable variation in the measured concentrations, from below the detection limit (consumption rate and body weight of the individual, the conventional approach to conducting a human health risk assessment may be insufficient for health risk management. This study presents a probabilistic risk assessment for inorganic As intake through the consumption of the drinking groundwater by local residents in the Pingtung Plain. The probabilistic risk assessment for inorganic As intake through the consumption of the drinking groundwater is achieved using Monte Carlo simulation technique based on the hazard quotient (HQ) and target cancer risk (TR) established by the U.S. Environmental Protection Agency. This study demonstrates the importance of the individual variability of inorganic As intake through drinking groundwater consumption when evaluating a high exposure sub-group of the population who drink high As content groundwater.

  2. Comparison of selection methods to deduce natural background levels for groundwater units

    NARCIS (Netherlands)

    Griffioen, J.; Passier, H.F.; Klein, J.

    2008-01-01

    Establishment of natural background levels (NBL) for groundwater is commonly performed to serve as reference when assessing the contamination status of groundwater units. We compare various selection methods to establish NBLs using groundwater quality data forfour hydrogeologically different areas

  3. Regional Groundwater Flow Assessment in a Prospective High-Level Radioactive Waste Repository of China

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Cao

    2017-07-01

    Full Text Available The production of nuclear energy will result in high-level radioactive waste (HLRW, which brings potential environmental dangers. Selecting a proper disposal repository is a crucial step in the development of nuclear energy. This paper introduces firstly the hydrogeological conditions of the Beishan area in China. Next, a regional groundwater model is constructed using a multiphase flow simulator to analyze the groundwater flow pattern in the Beishan area. Model calibration shows that the simulated and observed hydraulic heads match well, and the simulated regional groundwater flow pattern is similar to the surface flow pattern from the channel network, indicating that the groundwater flow is mainly dependent on the topography. In addition, the simulated groundwater storage over the period from 2003 to 2014 is similar to the trend derived from the Gravity Recovery and Climate Experiment satellite-derived results. Last, the established model is used to evaluate the influences of the extreme climate and regional faults on the groundwater flow pattern. It shows that they do not have a significant influence on the regional groundwater flow patterns. This study will provide a preliminary reference for the regional groundwater flow assessment in the site of the HLRW in China.

  4. Groundwater quality assessment of one former industrial site in Belgium using a TRIAD-like approach

    International Nuclear Information System (INIS)

    Crevecoeur, Sophie; Debacker, Virginie; Joaquim-Justo, Celia; Gobert, Sylvie; Scippo, Marie-Louise; Dejonghe, Winnie; Martin, Patrick; Thome, Jean-Pierre

    2011-01-01

    Contaminated industrial sites are important sources of pollution and may result in ecotoxicological effects on terrestrial, aquatic and groundwater ecosystems. An effect-based approach to evaluate and assess pollution-induced degradation due to contaminated groundwater was carried out in this study. The new concept, referred to as 'Groundwater Quality TRIAD-like' (GwQT) approach, is adapted from classical TRIAD approaches. GwQT is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. These components are combined in the GwQT using qualitative and quantitative (using zero to one subindices) integration approaches. The TRIAD approach is applied for the first time on groundwater from one former industrial site located in Belgium. This approach will allow the classification of sites into categories according to the degree of contaminant-induced degradation. This new concept is a starting point for groundwater characterization and is open for improvement and adjustment. - Highlights: → This study presents the first application of the TRIAD approach on groundwater system. → Groundwater Quality TRIAD-like approach is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. → None of the three TRIAD components could reliably predict the other one. - This study presents the first application of the TRIAD approach on groundwater system. None of the TRIAD components (chemistry, physico-chemistry and ecotoxicity) could reliably predict the other one.

  5. Geostatistical modeling of groundwater properties and assessment of their uncertainties

    International Nuclear Information System (INIS)

    Honda, Makoto; Yamamoto, Shinya; Sakurai, Hideyuki; Suzuki, Makoto; Sanada, Hiroyuki; Matsui, Hiroya; Sugita, Yutaka

    2010-01-01

    The distribution of groundwater properties is important for understanding of the deep underground hydrogeological environments. This paper proposes a geostatistical system for modeling the groundwater properties which have a correlation with the ground resistivity data obtained from widespread and exhaustive survey. That is, the methodology for the integration of resistivity data measured by various methods and the methodology for modeling the groundwater properties using the integrated resistivity data has been developed. The proposed system has also been validated using the data obtained in the Horonobe Underground Research Laboratory project. Additionally, the quantification of uncertainties in the estimated model has been tried by numerical simulations based on the data. As a result, the uncertainties of the proposal model have been estimated lower than other traditional model's. (author)

  6. Georgia's Teacher Performance Assessment

    Science.gov (United States)

    Fenton, Anne Marie; Wetherington, Pamela

    2016-01-01

    Like most states, Georgia until recently depended on an assessment of content knowledge to award teaching licenses, along with a licensure recommendation from candidates' educator preparation programs. While the content assessment reflected candidates' grasp of subject matter, licensure decisions did not hinge on direct, statewide assessment of…

  7. Modelling Technique for the Assessment of the Sub-Soil Drain for Groundwater Seepage Remediation

    Directory of Open Access Journals (Sweden)

    Tajul Baharuddin Mohamad Faizal

    2017-01-01

    Full Text Available Groundwater simulation technique was carried out for examining the performance of sub-soil drain at problematic site area. Subsoil drain was proposed as one of solution for groundwater seepage occurred at the slope face by reducing groundwater table at Taman Botani Park Kuala Lumpur. The simulation technique used Modular Three-Dimensional Finite Difference Groundwater Flow (MODFLOW software. In transient conditions, the results of simulation showed that heads increases surpass 1 to 2 m from the elevation level of the slope area that caused groundwater seepage on slope face. This study attempt to decrease the heads increase surpass by using different sub-soil drain size in simulation technique. The sub-soil drain capable to decline the heads ranges of 1 to 2 m.

  8. Assessment model validity document - HYDRASTAR. A stochastic continuum program for groundwater flow

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Eriksson, Lars [Equa Simulation AB, Sundbyberg (Sweden)

    2001-12-01

    The prevailing document addresses validation of the stochastic continuum model HYDRASTAR designed for Monte Carlo simulations of groundwater flow in fractured rocks. Here, validation is defined as a process to demonstrate that a model concept is fit for its purpose. Preferably, the validation is carried out by comparison of model predictions with independent field observations and experimental measurements. In addition, other sources can also be used to confirm that the model concept gives acceptable results. One method is to compare results with the ones achieved using other model concepts for the same set of input data. Another method is to compare model results with analytical solutions. The model concept HYDRASTAR has been used in several studies including performance assessments of hypothetical repositories for spent nuclear fuel. In the performance assessments, the main tasks for HYDRASTAR have been to calculate groundwater travel time distributions, repository flux distributions, path lines and their exit locations. The results have then been used by other model concepts to calculate the near field release and far field transport. The aim and framework for the validation process includes describing the applicability of the model concept for its purpose in order to build confidence in the concept. Preferably, this is made by comparisons of simulation results with the corresponding field experiments or field measurements. Here, two comparisons with experimental results are reported. In both cases the agreement was reasonably fair. In the broader and more general context of the validation process, HYDRASTAR results have been compared with other models and analytical solutions. Commonly, the approximation calculations agree well with the medians of model ensemble results. Additional indications that HYDRASTAR is suitable for its purpose were obtained from the comparisons with results from other model concepts. Several verification studies have been made for

  9. Safety assessment for the proposed pilot-scale treatability tests for the 200-UP-1 and 200-ZP-1 groundwater operable units. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    This safety assessment provides an analysis of the proposed pilot-scale treatability test activities to be and conducted within the 200 Area groundwater operable units on the Hanford Site. The 200-UP-1 and 200-ZP-1 operable units are located in the 200 West Area of the Hanford Site. These tests will evaluate an ion exchange (IX) water purification treatment system and granular activated carbon (GAC). A detailed engineering analysis of (GAC) adsorption for remediation of groundwater contamination. A detailed engineering analysis of the IX treatment system. The principal source of information for this assessment, states that the performance objective of the treatment systems is to remove 90% of the uranium and technetium-99 ( 99 Tc) from the extracted groundwater at the 200-UP-1 site. The performance objective for 200-ZP-1 is to remove 90% of the carbon tetrachloride (CCl 4 ), chloroform, and trichloroethylene (TCE) from the extracted groundwater

  10. Assessment Methods of Groundwater Overdraft Area and Its Application

    Science.gov (United States)

    Dong, Yanan; Xing, Liting; Zhang, Xinhui; Cao, Qianqian; Lan, Xiaoxun

    2018-05-01

    Groundwater is an important source of water, and long-term large demand make groundwater over-exploited. Over-exploitation cause a lot of environmental and geological problems. This paper explores the concept of over-exploitation area, summarizes the natural and social attributes of over-exploitation area, as well as expounds its evaluation methods, including single factor evaluation, multi-factor system analysis and numerical method. At the same time, the different methods are compared and analyzed. And then taking Northern Weifang as an example, this paper introduces the practicality of appraisal method.

  11. Assessing the velocity of the groundwater flow in bedrock fractures

    International Nuclear Information System (INIS)

    Taivassalo, V.; Poteri, A.

    1994-10-01

    Teollisuuden Voima Oy (TVO) is studying the crystalline bedrock in Finland for the final disposal of the spent nuclear fuel from its two reactors in Olkiluoto. Preliminary site investigations for five areas were carried out during 1987-1992. One part of the investigation programme was three-dimensional groundwater flow modelling. The numerical site-specific flow simulations were based on the concept of an equivalent porous continuum. The results include hydraulic head distributions, average groundwater flow rate routes. In this study, a novel approach was developed to evaluate the velocities of the water particles flowing in the fractured bedrock. (17 refs., 15 figs., 5 tabs.)

  12. Assessing dissolved methane patterns in central New York groundwater

    Directory of Open Access Journals (Sweden)

    Lauren E. McPhillips

    2014-07-01

    New hydrological insights for this region: There was no significant difference between methane concentrations in valleys versus upslope locations, in water wells less than or greater than 1 km from a conventional gas well, and across different geohydrologic units. Methane concentrations were significantly higher in groundwater dominated by sodium chloride or sodium bicarbonate compared with groundwater dominated by calcium bicarbonate, indicating bedrock interactions and lengthy residence times as controls. A multivariate regression model of dissolved methane using only three variables (sodium, hardness, and barium explained 77% of methane variability, further emphasizing the dominance of geochemistry and hydrogeology as controls on baseline methane patterns.

  13. Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs: Rigorous vs. Simplified Models

    Directory of Open Access Journals (Sweden)

    Bruno Piga

    2017-09-01

    Full Text Available Groundwater Heat Pumps (GWHPs are increasingly adopted for air conditioning in urban areas, thus reducing CO2 emissions, and this growth needs to be managed to ensure the sustainability of the thermal alteration of aquifers. However, few studies have addressed the propagation of thermal plumes from open-loop geothermal systems from a long-term perspective. We provide a comprehensive sensitivity analysis, performed with numerical finite-element simulations, to assess how the size of the thermally affected zone is driven by hydrodynamic and thermal subsurface properties, the vadose zone and aquifer thickness, and plant setup. In particular, we focus the analysis on the length and width of thermal plumes, and on their time evolution. Numerical simulations are compared with two simplified methods, namely (i replacing the time-varying thermal load with its yearly average and (ii analytical formulae for advective heat transport in the aquifer. The former proves acceptable for the assessment of plume length, while the latter can be used to estimate the width of the thermally affected zone. The results highlight the strong influence of groundwater velocity on the plume size and, especially for its long-term evolution, of ground thermal properties and of subsurface geometrical parameters.

  14. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain

  15. Major ion chemistry and quality assessment of groundwater in Haripur area

    International Nuclear Information System (INIS)

    Akram, W.; Tariq, J.A.; Ahmad, M.

    2011-07-01

    Study was conducted for investigating chemical composition of groundwater, identifying the compositional types of groundwater, delineating the processes controlling the groundwater chemistry and assessing the groundwater quality for drinking / irrigation uses. Groundwater samples collected from shallow (hand pumps, open well, motor pumps) and deep (tube wells) aquifers were analyzed for major cations (Na/sup +/,K/sup +, Ca/sup 2+/, Mg/sup 2+/) and anions (HCO/sub 3/, Cl/sup '/, SO/sub 4/). The data indicated that Ca/sub 2/ is the dominant cation in most of the samples followed by Mg/sup 2+/ whereas HCO/sub 3/ is the most abundant anion in all samples. Hydrochemistry provides a clear indication of active recharge of shallow and deep aquifers by modern meteoric water. Carbonate dissolution was found to be the prevailing process controlling the groundwater chemistry. Chemical quality was assessed for drinking purpose by comparing with WHO, Indian and national standards, and for irrigation purpose using empirical indices such as SAR and RSC. The results show that groundwater meets the norms of good quality drinking water and can be safely used for irrigation. (author)

  16. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  17. Results of RCRA groundwater quality assessment at the 216-B-3 Pond Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Teel, S.S.

    1997-06-01

    This document describes a groundwater quality assessment of the 216-B-3 pond system, a Resources Conservation and Recovery act of 1976 (RCRA) waste facility. In 1990, sampling and chemical analysis of groundwater underlying the facility indicated that the contamination indicator parameters, total organic halogens (TOX), and total organic carbon (TOC) had exceeded established limits in two wells. This discovery placed the facility into RCRA groundwater assessment status and subsequently led to a more detailed hydrochemical analysis of groundwater underlying the facility. Comprehensive chemical analyses of groundwater samples from 1994 through 1996 revealed one compound, tris (2-chloroethyl) phosphate (TRIS2CH), that may have contributed to elevated TOX concentrations. No compound was identified as a contributor to TOC. Detailed evaluations of TOX, TOC, and TRIS2CH and comparison of occurrences of these parameters led to conclusions that (1) with few exceptions, these constituents occur at low concentrations below or near limits of quantitation; (2) it is problematic whether the low concentrations of TRIS2CH represent a contaminant originating from the facility or if it is a product of well construction; and (3) given the low and diminishing concentration of TOX, TOC, and TRIS2CH, no further investigation into the occurrent of these constituents is justified. Continued groundwater monitoring should include an immediate recalculation of background critical means of upgradient/downgradient comparisons and a return to seminannual groundwater monitoring under a RCRA indicator parameter evaluation program

  18. Integrating geophysics and hydrology for reducing the uncertainty of groundwater model predictions and improved prediction performance

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    the integration of geophysical data in the construction of a groundwater model increases the prediction performance. We suggest that modelers should perform a hydrogeophysical “test-bench” analysis of the likely value of geophysics data for improving groundwater model prediction performance before actually...... and the resulting predictions can be compared with predictions from the ‘true’ model. By performing this analysis we expect to give the modeler insight into how the uncertainty of model-based prediction can be reduced.......A major purpose of groundwater modeling is to help decision-makers in efforts to manage the natural environment. Increasingly, it is recognized that both the predictions of interest and their associated uncertainties should be quantified to support robust decision making. In particular, decision...

  19. Assessment of groundwater quality at the Nigerian Institute for ...

    African Journals Online (AJOL)

    This study was carried out to ascertain the suitability of the Nigerian Institute for Oceanography and Marine Research's groundwater resources for aquaculture purposes. The samples were subjected to physico-chemical analyses and the parameters analyzed are Iron, pH, Sulphide ion Total Ammonia, Dissolved Oxygen, ...

  20. Assessment of groundwater pollution by nitrates using intrinsic ...

    African Journals Online (AJOL)

    Scientists are deeply concerned with the state of vulnerability of groundwater reservoirs. It is a complex task because of the difficulties in determining the degree of pollution of the ground water. Many methods have been adopted like DRASTIC, GOD, SI, SINTACS, etc. The present article targets the determination of the ...

  1. Assessment of Groundwater Quality of Ilorin Metropolis using Water ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: Groundwater as a source of potable water is becoming more important in ... The parameters used for calculating the water quality index include the following: pH, total hardness, total ... Generally, water pollution not only affects water quality ..... regardless of the natural geology and human activities, it has.

  2. Assessment of groundwater quality of Benin City, Edo state, Nigeria ...

    African Journals Online (AJOL)

    The quality of groundwater of Benin City, Edo State, Nigeria was investigated between February and July 2008. Water samples were collected from functional bore holes from five locations (stations 1 – 5) and analyzed for physico-chemical parameters including heavy metals. Data obtained were compared with World ...

  3. groundwater quality assessment of wells in ifewara, osun state

    African Journals Online (AJOL)

    influences as a result of factors such as overpopulation and activities (including agriculture, indiscriminate refuse disposal and use of septic tanks, soak away and latrines) which are capable of producing run-offs and leachate which could infiltrate into and pollute groundwater formation. Many households depend on wells ...

  4. Assessment of shallow groundwater quality and its suitability for ...

    African Journals Online (AJOL)

    Furthermore, water for drinking should be treated mildly, due to low pH and high iron content. Polyvinyl chloride materials (PVC) and other non-corrosive materials should be used for the construction of boreholes within the area to reduce damage to plumbing materials. Groundwater monitoring, effective and holistic ...

  5. Groundwater Vulnerability Assessment of the Tarkwa Mining Area ...

    African Journals Online (AJOL)

    In view of the extensive mining in the Tarkwa area, quality of groundwater has become an important issue. This study estimates aquifer vulnerability by applying the SINTACS model which uses seven environmental parameters to evaluate aquifer vulnerability and geographical information system (GIS) in the Tarkwa mining ...

  6. Groundwater governance in South Africa: A status assessment ...

    African Journals Online (AJOL)

    Groundwater governance provisions and arrangements in South Africa were studied at national level and at local level for a highly productive aquifer, the Botleng Dolomite Aquifer. Technical, legal, institutional and operational governance provisions were found to be reasonable at the national level but weak with regards to ...

  7. Results of the groundwater quality assessment program at the 216-A-29 ditch RCRA facility

    International Nuclear Information System (INIS)

    Votava, J.M.

    1995-01-01

    This report presents the findings of the groundwater quality assessment program for the 216-A-29 Ditch. The information presented in this report Ditch have affected the quality of the groundwater in the unconfined aquifer beneath the facility. The results indicate that the 216-A-29 Ditch is the source of elevated specific conductance in well 299-E25-35 and that the source is nonhazardous. This report describes the current monitoring status of the 216-A-29 Ditch, groundwater chemical data interpretation, and recommends the reinstatement of an indicator-evaluation monitoring program in accordance with 40 CFR 265.93(d)(6)

  8. Quantification of leachate discharged to groundwater using the water balance method and the hydrologic evaluation of landfill performance (HELP) model.

    Science.gov (United States)

    Alslaibi, Tamer M; Abustan, Ismail; Mogheir, Yunes K; Afifi, Samir

    2013-01-01

    Landfills are a source of groundwater pollution in Gaza Strip. This study focused on Deir Al Balah landfill, which is a unique sanitary landfill site in Gaza Strip (i.e., it has a lining system and a leachate recirculation system). The objective of this article is to assess the generated leachate quantity and percolation to the groundwater aquifer at a specific site, using the approaches of (i) the hydrologic evaluation of landfill performance model (HELP) and (ii) the water balance method (WBM). The results show that when using the HELP model, the average volume of leachate discharged from Deir Al Balah landfill during the period 1997 to 2007 was around, 6800 m3/year. Meanwhile, the average volume of leachate percolated through the clay layer was 550 m3/year, which represents around 8% of the generated leachate. Meanwhile, the WBM indicated that the average volume of leachate discharged from Deir Al Balah landfill during the same period was around 7660 m3/year--about half of which comes from the moisture content of the waste, while the remainder comes from the infiltration of precipitation and re-circulated leachate. Therefore, the estimated quantity of leachate to groundwater by these two methods was very close. However, compared with the measured leachate quantity, these results were overestimated and indicated a dangerous threat to the groundwater aquifer, as there was no separation between municipal, hazardous and industrial wastes, in the area.

  9. Groundwater availability in the United States: the value of quantitative regional assessments

    Science.gov (United States)

    Dennehy, Kevin F.; Reilly, Thomas E.; Cunningham, William L.

    2015-01-01

    The sustainability of water resources is under continued threat from the challenges associated with a growing population, competing demands, and a changing climate. Freshwater scarcity has become a fact in many areas. Much of the United States surface-water supplies are fully apportioned for use; thus, in some areas the only potential alternative freshwater source that can provide needed quantities is groundwater. Although frequently overlooked, groundwater serves as the principal reserve of freshwater in the US and represents much of the potential supply during periods of drought. Some nations have requirements to monitor and characterize the availability of groundwater such as the European Union’s Water Framework Directive (EPCEU 2000). In the US there is no such national requirement. Quantitative regional groundwater availability assessments, however, are essential to document the status and trends of groundwater availability for the US and make informed water-resource decisions possible now and in the future. Barthel (2014) highlighted that the value of regional groundwater assessments goes well beyond just quantifying the resource so that it can be better managed. The tools and techniques required to evaluate these unique regional systems advance the science of hydrogeology and provide enhanced methods that can benefit local-scale groundwater investigations. In addition, a significant, yet under-utilized benefit is the digital spatial and temporal data sets routinely generated as part of these studies. Even though there is no legal or regulatory requirement for regional groundwater assessments in the US, there is a logical basis for their implementation. The purpose of this essay is to articulate the rationale for and reaffirm the value of regional groundwater assessments primarily in the US; however, the arguments hold for all nations. The importance of the data sets and the methods and model development that occur as part of these assessments is stressed

  10. An assessment of groundwater potential and vulnerability in the Upper Manyame Sub-Catchment of Zimbabwe

    Science.gov (United States)

    Misi, Alfred; Gumindoga, Webster; Hoko, Zvikomborero

    2018-06-01

    Severe depletion and pollution of groundwater resources are of rising concern in the Upper Manyame Sub-Catchment (UMSC); Zimbabwe's most urbanised sub-catchment. Despite groundwater playing a pivotal role in the provision of potable water in the sub-catchment, it is under serious threat from anthropogenic stressors which include sewage effluents and leachates from landfills, among others. Inadequate scientific knowledge pertaining to the spatio-temporal variability of groundwater storage and vulnerability in the UMSC is further compromising its sustainability. Therefore, comprehensive assessments of UMSC's Groundwater Potential (GP) and vulnerability are crucial for its effective management. This study assessed GP and vulnerability in the UMSC using Geographic Information Systems and Remote Sensing techniques. Groundwater conditioning factors: geology, slope, land-use, drainage density, topographic index, altitude, recharge and rainfall were used to develop GP zones. Validation of the GP map was done by correlating estimated GP with historical borehole yields. An assessment of groundwater vulnerability was done at micro-catchment level (Marimba) using the GOD model; a three parameter Index Overlay Model. Marimba is the most urbanised and has the second highest borehole density. It also exhibits similar landuse characteristics as the UMSC. Furthermore, groundwater quality in Marimba was assessed from 15 sampling sites. Fifteen drinking water parameters were analysed based on the standard methods for Water and Wastewater Examination. The potability of groundwater was then assessed by comparing the measured water quality parameters with the Standards Association of Zimbabwe (SAZ) drinking water standards and/or WHO guidelines for drinking water. Repeated Measures ANOVA and Principal Component Analysis (PCA) were used to assess the spatio-temporal variations in groundwater quality and to identify key parameters, respectively. About 72% (2725.9 km2) of the UMSC was

  11. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site

  12. A Sustainability Assessment Methodology for Prioritizing the Technologies of Groundwater Contamination Remediation

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Wang, Yue

    2016-01-01

    More and more groundwater has 23 been polluted recently, and technologies for groundwater contamination remediation are of vital importance; however, it is usually difficult for the users to select the most suitable technology among multiple alternatives. In order to address this, this study aims...... at developing a sustainability assessment framework for prioritizing the technologies for groundwater contamination remediation by combining the concept of sustainability and multi-criteria decision making (MCDM) method. A criterion system which consists of six criteria in three aspects has been proposed...... for sustainability assessment of technologies for groundwater contamination remediation, and a novel MCDM method by combining the logarithmic fuzzy preference programming based fuzzy analytic hierarchy process and the improved ELECTRE method has been developed for prioritizing the alternatives. In order...

  13. Groundwater impact assessment report for the 216-S-26 Crib, 200 West Area

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.W.; Evelo, S.D.; Alexander, D.J.

    1993-11-01

    This report assesses the impact of wastewater discharged to the 216-S-26 Crib on groundwater quality. The 216-S-26 Crib, located in the southern 200 West Area, has been in use since 1984 to dispose of liquid effluents from the 222-S Laboratory Complex. The 222-S Laboratory Complex effluent stream includes wastewater from four sources: the 222-S Laboratory, the 219-S Waste Storage Facility, the 222-SA Chemical Standards Laboratory, and the 291-S Exhaust Fan Control House and Stack. Based on assessment of groundwater chemistry and flow data, contaminant transport predictions, and groundwater chemistry data, the 216-S-26 Crib has minimal influence on groundwater contamination in the southern 200 West Area.

  14. Groundwater impact assessment report for the 216-S-26 Crib, 200 West Area

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Evelo, S.D.; Alexander, D.J.

    1993-11-01

    This report assesses the impact of wastewater discharged to the 216-S-26 Crib on groundwater quality. The 216-S-26 Crib, located in the southern 200 West Area, has been in use since 1984 to dispose of liquid effluents from the 222-S Laboratory Complex. The 222-S Laboratory Complex effluent stream includes wastewater from four sources: the 222-S Laboratory, the 219-S Waste Storage Facility, the 222-SA Chemical Standards Laboratory, and the 291-S Exhaust Fan Control House and Stack. Based on assessment of groundwater chemistry and flow data, contaminant transport predictions, and groundwater chemistry data, the 216-S-26 Crib has minimal influence on groundwater contamination in the southern 200 West Area

  15. Performance Assessment for Pump-and-Treat Closure or Transition

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Becker, Dave J. [U.S. Army Corps of Engineers Environmental and Munitions Center of Expertise, Huntsville, AL (United States); Lee, Michelle H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nimmons, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-29

    A structured performance assessment approach is useful to evaluate pump-and-treat (P&T) groundwater remediation, which has been applied at numerous sites. Consistent with the U.S. Environmental Protection Agency’s Groundwater Road Map, performance assessment during remedy implementation may be needed, and should consider remedy optimization, transition to alternative remedies, or remedy closure. In addition, a recent National Research Council study examined groundwater remediation at complex contaminated sites and concluded that it may be beneficial to evaluate remedy performance and the potential need for transition to alternative approaches at these sites. The intent of this document is to provide a structured approach for assessing P&T performance to support a decision to optimize, transition, or close a P&T remedy. The process presented in this document for gathering information and performing evaluations to support P&T remedy decisions includes use of decision elements to distinguish between potential outcomes of a remedy decision. Case studies are used to augment descriptions of decision elements and to illustrate each type of outcome identified in the performance assessment approach. The document provides references to resources for tools and other guidance relevant to conducting the P&T assessment.

  16. Determining the extent of groundwater interference on the performance of infiltration trenches

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    2015-01-01

    Infiltration trenches are widely used in stormwater management, but their capacity decreases when installed in areas with shallow groundwater where infiltration is limited by groundwater drainage. Here the hydrological performance of single infiltration trenches in areas with shallow water tables...... is quantified in terms of their capability to reduce peak flow, peak volume and annual stormwater runoff volume. To simulate the long term hydrological performance of infiltration trenches two different models are employed. The models continuously simulate infiltration rates from infiltration trenches using...... to quantify the impact of parameter variability for each scenario. Statistical analysis of the continuous long term model simulations was used to quantify the hydrological performance of infiltration trenches. Results show that infiltration trenches are affected by groundwater when there is an unsaturated...

  17. OLEM Performance Assessment Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes a variety of data sets that measure the performance of Office of Land and Emergency Management (OLEM) programs in support of the Office of the...

  18. Rapid assessment of soil and groundwater tritium by vegetation sampling

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1995-01-01

    A rapid and relatively inexpensive technique for defining the extent of groundwater contamination by tritium has been investigated. The technique uses existing vegetation to sample the groundwater. Water taken up by deep rooted trees is collected by enclosing tree branches in clear plastic bags. Water evaporated from the leaves condenses on the inner surface of the bag. The water is removed from the bag with a syringe. The bags can be sampled many times. Tritium in the water is detected by liquid scintillation counting. The water collected in the bags has no color and counts as well as distilled water reference samples. The technique was used in an area of known tritium contamination and proved to be useful in defining the extent of tritium contamination

  19. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong, E-mail: wangdong@nju.edu.cn; Zhu, Xiaobin

    2016-07-15

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl{sup −} concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM{sub (ZS)} is used as sampling algorithm. Then, the predictive distribution of Cl{sup -} concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl{sup -} concentration. The results of model calibration and verification demonstrate that the DREAM{sub (ZS)} based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl{sup −} concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl{sup −} concentration.

  20. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    International Nuclear Information System (INIS)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-01-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl − concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM (ZS) is used as sampling algorithm. Then, the predictive distribution of Cl - concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl - concentration. The results of model calibration and verification demonstrate that the DREAM (ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl − concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl − concentration

  1. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Fan Chihhao [Department of Safety, Health, and Environmental Engineering, Mingchi University of Technology, Taipei County, Taiwan (China); Wang, G.-S. [Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Y.-C. [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu County, Taiwan (China); Ko, C.-H. [School of Forest and Resources Conservation, National Taiwan University, Taipei, Taiwan (China)], E-mail: chunhank@ntu.edu.tw

    2009-03-15

    The purpose of this study is to assess the risks from exposure to 14 volatile organic compounds (VOCs) in selected groundwater sites in Taiwan. The study employs the multimedia environment pollutant assessment system (MEPAS) model to calculate the specific non-cancer and cancer risks at an exposure level of 1 {mu}g/L of each VOC for a variety of exposure pathways. The results show that the highest specific non-cancer risk is associated with water ingestion of vinyl chloride (VC) and that the highest specific cancer risk is associated with indoor breathing of VC. The three most important exposure pathways for risk assessment for both non-cancer and cancer risks are identified as water ingestion, dermal absorption when showering, and indoor breathing. Excess tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethylene (DCE), and VC are detected in the groundwater aquifers of one dump site and one factory. However, the study suggests that the pollutants in the contaminated groundwater aquifers do not travel extensively with groundwater flow and that the resulting VOC concentrations are below detectable levels for most of the sampled drinking-water treatment plants. Nevertheless, the non-cancer and cancer risks resulting from use of the contaminated groundwater are found to be hundred times higher than the general risk guidance values. To ensure safe groundwater utilisation, remediation initiatives for soil and groundwater are required. Finally, the study suggests that the current criteria for VOCs in drinking water might not be capable of ensuring public safety when groundwater is used as the primary water supply; more stringent quality criteria for drinking water are proposed for selected VOCs.

  2. Simply Performance Assessment

    Science.gov (United States)

    McLaughlin, Cheryl A.; McLaughlin, Felecia C.; Pringle, Rose M.

    2013-01-01

    This article presents the experiences of Miss Felecia McLaughlin, a fourth-grade teacher from the island of Jamaica who used the model proposed by Bass et al. (2009) to assess conceptual understanding of four of the six types of simple machines while encouraging collaboration through the creation of learning teams. Students had an opportunity to…

  3. Surface and groundwater quality assessment of Marikina river

    International Nuclear Information System (INIS)

    Dela Pena, Jowell P.; Pael, Limela G.

    2009-03-01

    The study used the physico-chemical characteristics to determine the degree of pollution in different surface and groundwater sources in Marikina. The hydrogen ion concentration in all the stations for surface water was generally basic ranging from 7.24 to 7.44, while conductivity was observed to be highest in Royal Ville station that has a value of 253 μ/cm. Among the four stations in groundwater which obtained an acidic pH, Brgy. Singkamas deep-well has a neutral value. The conductivity was observed to be highest in Brgy. Conception which has a value of 1026 μ/cm. The major ions result showed that the three stations from Marikina River have conformed to the water quality criteria for fresh waters set by the Department of Environment and Natural Resources, while results from different deep-well stations showed that among four stations, Brgy. Singkamas and Conception deep-well have exceeded the recommended value concentration for drinking water quality standards. The multi-element results were obtained from an Energy-Dispersive X-ray Fluorescence Spectroscopy. Results showed that significant concentrations of metals like Al, Cd, Cr, Fe, and Pb in both surface and groundwater stations have exceeded the maximum concentrations set by both DENR and PNSDW. The significant differences in the concentrations of physico-chemical components facilitate detection of contamination from domestic and industrial wastes. (author)

  4. ASSESSMENT OF GROUNDWATER QUALITY IN SUNAMGANJ OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    F. Raihan, J. B. Alam

    2008-07-01

    Full Text Available In this study, groundwater quality in Sunamganj of Bangladesh was studied based on different indices for irrigation and drinking uses. Samples were investigated for sodium absorption ratio, soluble sodium percentage, residual sodium carbonate, electrical conductance, magnesium adsorption ratio, Kelly's ratio, total hardness, permeability index, residual sodium bi-carbonate to investigate the ionic toxicity. From the analytical result, it was revealed that the values of Sodium Adsorption Ratio indicate that ground water of the area falls under the category of low sodium hazard. So, there was neither salinity nor toxicity problem of irrigation water, so that ground water can safely be used for long-term irrigation. Average Total Hardness of the samples in the study area was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. Average total hardness of the samples was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. It was shown based on GIS analysis that the groundwater quality in Zone-1 could be categorized of "excellent" class, supporting the high suitability for irrigation. In Zone-2 and Zone-3, the groundwater quality was categorized as "risky" and "poor" respectively. The study has also made clear that GIS-based methodology can be used effectively for ground water quality mapping even in small catchments.

  5. Current Conditions Risk Assessment for the 300-FF-5 Groundwater Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Miley, Terri B.; Bunn, Amoret L.; Napier, Bruce A.; Peterson, Robert E.; Becker, James M.

    2007-11-01

    This report updates a baseline risk assessment for the 300 Area prepared in 1994. The update includes consideration of changes in contaminants of interest and in the environment that have occurred during the period of interim remedial action, i.e., 1996 to the present, as well as the sub-regions, for which no initial risk assessments have been conducted. In 1996, a record of decision (ROD) stipulated interim remedial action for groundwater affected by releases from 300 Area sources, as follows: (a) continued monitoring of groundwater that is contaminated above health-based levels to ensure that concentrations continue to decrease, and (b) institutional controls to ensure that groundwater use is restricted to prevent unacceptable exposure to groundwater contamination. In 2000, the groundwater beneath the two outlying sub-regions was added to the operable unit. In 2001, the first 5-year review of the ROD found that the interim remedy and remedial action objectives were still appropriate, although the review called for additional characterization activities. This report includes a current conditions baseline ecological and human health risk assessment using maximum concentrations in the environmental media of the 300-FF-5 Operable Unit and downstream conditions at the City of Richland, Washington. The scope for this assessment includes only current measured environmental concentrations and current use scenarios. Future environmental concentrations and future land uses are not considered in this assessment.

  6. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy Y- 12 Plant. These sites are located south of the Y- 12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the CRHR. An overview of the hydrogeologic system in the CRHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater quality in the regime are presented

  7. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso

    2016-01-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  8. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  9. Groundwater Quality Assessment in the Upper East Region of Ghana

    Science.gov (United States)

    Apambire, W. B.

    2001-05-01

    In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high

  10. Performance assessment for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Cook, J.R.; Hsu, R.H.; Wilhite, E.L.; Yu, A.D.

    1996-01-01

    In October 1994 the Savannah River Site became the first US DOE complex to use concrete vaults to dispose of low-level radioactive solid waste and better prevent soil and groundwater contamination. This article describes the design and gives a performance assessment of the vaults. Topics include the following: Performance objectives; scope; the performance assessment process-assemble a multidisciplinary working group; collect available data; define credible pathways/scenarios; develop conceptual models; conduct screening and detailed model calculations; assess sensitivity/uncertainty; integrate and interpret results; report. 9 figs., 3 tabs

  11. Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-15

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the comprehensive

  12. Total System Performance Assessment

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-01

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the comprehensive

  13. Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-15

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the

  14. Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency.

    Science.gov (United States)

    Mermillod-Blondin, Florian; Simon, Laurent; Maazouzi, Chafik; Foulquier, Arnaud; Delolme, Cécile; Marmonier, Pierre

    2015-09-15

    Managed aquifer recharge (MAR) has been developed in many countries to limit the risk of urban flooding and compensate for reduced groundwater recharge in urban areas. The environmental performances of MAR systems like infiltration basins depend on the efficiency of soil and vadose zone to retain stormwater-derived contaminants. However, these performances need to be finely evaluated for stormwater-derived dissolved organic matter (DOM) that can affect groundwater quality. Therefore, this study examined the performance of MAR systems to process DOM during its transfer from infiltration basins to an urban aquifer. DOM characteristics (fluorescent spectroscopic properties, biodegradable and refractory fractions of dissolved organic carbon -DOC-, consumption by micro-organisms during incubation in slow filtration sediment columns) were measured in stormwater during its transfer through three infiltration basins during a stormwater event. DOC concentrations sharply decreased from surface to the aquifer for the three MAR sites. This pattern was largely due to the retention of biodegradable DOC which was more than 75% for the three MAR sites, whereas the retention of refractory DOC was more variable and globally less important (from 18% to 61% depending on MAR site). Slow filtration column experiments also showed that DOC retention during stormwater infiltration through soil and vadose zone was mainly due to aerobic microbial consumption of the biodegradable fraction of DOC. In parallel, measurements of DOM characteristics from groundwaters influenced or not by MAR demonstrated that stormwater infiltration increased DOC quantity without affecting its quality (% of biodegradable DOC and relative aromatic carbon content -estimated by SUVA254-). The present study demonstrated that processes occurring in soil and vadose zone of MAR sites were enough efficient to limit DOC fluxes to the aquifer. Nevertheless, the enrichments of DOC concentrations measured in groundwater below

  15. Integrated assessment of groundwater - surface water exchange in the hillslope - riparian interface of a montane catchment

    Science.gov (United States)

    Scheliga, Bernhard; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Soulsby, Chris

    2016-04-01

    Groundwater-surface water dynamics play an important role in runoff generation and the hydrologic connectivity between hillslopes and streams. Here, we present findings from a suite of integrated, empirical approaches to increase our understanding of groundwater-surface water interlinkages in a 3.2 km ^ 2 experimental catchment in the Scottish Highlands. The montane catchment is mainly underlain by granite and has extensive (70%) cover of glacial drift deposits which are up to 40 m deep and form the main aquifer in the catchment. Flat valley bottom areas fringe the stream channel and are characterised by peaty soils (0.5-4 m deep) which cover about 10% of the catchment and receive drainage from upslope areas. The transition between the hillslopes and riparian zone forms a critical interface for groundwater-surface water interactions that controls both the dynamics of riparian saturation and stream flow generation. We nested observations using wells to assess the groundwater - surface water transition, LiDAR surveys to explore the influence of micro-topography on shallow groundwater efflux and riparian wells to examine the magnitude and flux rates of deeper groundwater sources. We also used electrical resistivity surveys to assess the architecture and storage properties of drift aquifers. Finally, we used isotopic tracers to differentiate recharge sources and associated residence times as well as quantifying how groundwater dynamics affect stream flow. These new data have provided a novel conceptual framework for local groundwater - surface water exchange that is informing the development of new deterministic models for the site.

  16. Application of multivariate statistical technique for hydrogeochemical assessment of groundwater within the Lower Pra Basin, Ghana

    Science.gov (United States)

    Tay, C. K.; Hayford, E. K.; Hodgson, I. O. A.

    2017-06-01

    Multivariate statistical technique and hydrogeochemical approach were employed for groundwater assessment within the Lower Pra Basin. The main objective was to delineate the main processes that are responsible for the water chemistry and pollution of groundwater within the basin. Fifty-four (54) (No) boreholes were sampled in January 2012 for quality assessment. PCA using Varimax with Kaiser Normalization method of extraction for both rotated space and component matrix have been applied to the data. Results show that Spearman's correlation matrix of major ions revealed expected process-based relationships derived mainly from the geochemical processes, such as ion-exchange and silicate/aluminosilicate weathering within the aquifer. Three main principal components influence the water chemistry and pollution of groundwater within the basin. The three principal components have accounted for approximately 79% of the total variance in the hydrochemical data. Component 1 delineates the main natural processes (water-soil-rock interactions) through which groundwater within the basin acquires its chemical characteristics, Component 2 delineates the incongruent dissolution of silicate/aluminosilicates, while Component 3 delineates the prevalence of pollution principally from agricultural input as well as trace metal mobilization in groundwater within the basin. The loadings and score plots of the first two PCs show grouping pattern which indicates the strength of the mutual relation among the hydrochemical variables. In terms of proper management and development of groundwater within the basin, communities, where intense agriculture is taking place, should be monitored and protected from agricultural activities. especially where inorganic fertilizers are used by creating buffer zones. Monitoring of the water quality especially the water pH is recommended to ensure the acid neutralizing potential of groundwater within the basin thereby, curtailing further trace metal

  17. Introduction to radiological performance assessment

    International Nuclear Information System (INIS)

    Moss, G.

    1995-02-01

    A radiological performance assessment is conducted to provide reasonable assurance that performance objectives for low-level radioactive waste (LLW) disposal will be met. Beginning in the early stages of development, a radiological performance assessment continues through the operational phase, and is instrumental in the postclosure of the facility. Fundamental differences exist in the regulation of commercial and defense LLW, but the radiological performance assessment process is essentially the same for both. The purpose of this document is to describe that process in a concise and straightforward manner. This document focuses on radiological performance assessment as it pertains to commercial LLW disposal, but is applicable to US Department of Energy sites as well. Included are discussions on performance objectives, site characterization, and how a performance assessment is conducted. A case study is used to illustrate how the process works as a whole. A bibliography is provided to assist in locating additional information

  18. Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria - A GIS-based GODT approach

    Science.gov (United States)

    Mogaji, Kehinde Anthony; Omobude, Osayande Bright

    2017-12-01

    Modeling of groundwater potentiality zones is a vital scheme for effective management of groundwater resources. This study developed a new multi-criteria decision making algorithm for groundwater potentiality modeling through modifying the standard GOD model. The developed model christened as GODT model was applied to assess groundwater potential in a multi-faceted crystalline geologic terrain, southwestern, Nigeria using the derived four unify groundwater potential conditioning factors namely: Groundwater hydraulic confinement (G), aquifer Overlying strata resistivity (O), Depth to water table (D) and Thickness of aquifer (T) from the interpreted geophysical data acquired in the area. With the developed model algorithm, the GIS-based produced G, O, D and T maps were synthesized to estimate groundwater potential index (GWPI) values for the area. The estimated GWPI values were processed in GIS environment to produce groundwater potential prediction index (GPPI) map which demarcate the area into four potential zones. The produced GODT model-based GPPI map was validated through application of both correlation technique and spatial attribute comparative scheme (SACS). The performance of the GODT model was compared with that of the standard analytic hierarchy process (AHP) model. The correlation technique results established 89% regression coefficients for the GODT modeling algorithm compared with 84% for the AHP model. On the other hand, the SACS validation results for the GODT and AHP models are 72.5% and 65%, respectively. The overall results indicate that both models have good capability for predicting groundwater potential zones with the GIS-based GODT model as a good alternative. The GPPI maps produced in this study can form part of decision making model for environmental planning and groundwater management in the area.

  19. The process of performance assessment

    International Nuclear Information System (INIS)

    King, C.M.; Halford, D.K.

    1986-01-01

    An introductory review of the subject of ''Performance Assessment'' will be presented. Emphasis will be placed on the process of performance assessment from the standpoint of defining the process. Performance assessment, from evolving experience at DOE sites, has short-term and long-term subprograms, the components of which will be discussed. The role of mathematical modeling in performance assessment will be addressed including the pros and cons of current approaches. Finally, the ''system/site/technology'' issues as the focal point of this symposium will be reviewed

  20. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China

    International Nuclear Information System (INIS)

    Li Ying; Li Jinhui; Chen Shusheng; Diao Weihua

    2012-01-01

    Groundwater contamination by leachate is the most damaging environmental impact over the entire life of a hazardous waste landfill (HWL). With the number of HWL facilities in China rapidly increasing, and considering the poor status of environmental risk management, it is imperative that effective environmental risk management methods be implemented. A risk assessment indices system for HWL groundwater contamination is here proposed, which can simplify the risk assessment procedure and make it more user-friendly. The assessment framework and indices were drawn from five aspects: source term, underground media, leachate properties, risk receptors and landfill management quality, and a risk assessment indices system consisting of 38 cardinal indicators was established. Comparison with multimedia models revealed that the proposed indices system was integrated and quantitative, that input data for it could be easily collected, and that it could be widely used for environmental risk assessment (ERA) in China. - Highlights: ► No comprehensive environmental risk assessment method for hazardous waste management is proposed in China. ► An assessment indices system is established for groundwater contamination in the vicinity of hazardous waste landfill. ► All indicators are quantitative and applicable in China. - Capsule: This research identified critical indices and established a system for environmental risk assessment for groundwater contamination in the vicinity of HWLs in China.

  1. Assessment of Groundwater Chemical Quality, Using Inverse Distance Weighted Method

    Directory of Open Access Journals (Sweden)

    Sh. Ashraf

    2013-04-01

    Full Text Available An interpolation technique, ordinary Inverse Distance Weighted (IDW, was used to obtain the spatial distribution of groundwater quality parameters in Damghan plain of Iran. According to Scofield guidelines for TDS value, 60% of the water samples were harmful for irrigation purposes. Regarding to EC parameter, more than 60% of studied area was laid in bad range for irrigation purposes. The most dominant anion was Cl- and 10% of water samples showed a very hazardous class. According to Doneen guidelines for chloride value, 100% of collected water from the aquifer had slight to moderate problems for irrigation water purposes. The predominant cations in Damghan plain aquifer were according to Na+> Ca++> Mg++> K+. Sodium ion was the dominant cation and regarding to Na+ content guidelines, almost all groundwater samples had problem for foliar application. Calcium ion distribution was within usual range. The magnesium ion concentration is generally lower than sodium and calcium. The majority of the samples showed Mg++amount within usual range. Also K+ value ranged from 0.1 to 0.23 meq/L and all the water samples had potassium values within the permissible limit. Based on SAR criterion 80 % of collected water had slight to moderate problems. The SSP values were found from 2.87 to 6.87%. According to SAR value, thirty percent of ground water samples were doubtful class. The estimated amounts of RSC were ranged from 0.4-2 and based on RSC criterion, twenty percent of groundwater samples had slight to moderate problems.

  2. Technology Performance Level Assessment Methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Bull, Diana L; Malins, Robert Joseph; Costello, Ronan Patrick; Aurelien Babarit; Kim Nielsen; Claudio Bittencourt Ferreira; Ben Kennedy; Kathryn Dykes; Jochem Weber

    2017-04-01

    The technology performance level (TPL) assessments can be applied at all technology development stages and associated technology readiness levels (TRLs). Even, and particularly, at low TRLs the TPL assessment is very effective as it, holistically, considers a wide range of WEC attributes that determine the techno-economic performance potential of the WEC farm when fully developed for commercial operation. The TPL assessment also highlights potential showstoppers at the earliest possible stage of the WEC technology development. Hence, the TPL assessment identifies the technology independent “performance requirements.” In order to achieve a successful solution, the entirety of the performance requirements within the TPL must be considered because, in the end, all the stakeholder needs must be achieved. The basis for performing a TPL assessment comes from the information provided in a dedicated format, the Technical Submission Form (TSF). The TSF requests information from the WEC developer that is required to answer the questions posed in the TPL assessment document.

  3. The assessment of the required groundwater quantity for the conservation of ecosystems and the achievement of a good ecological status of surface waters

    OpenAIRE

    Mitja Janža; Dejan Šram; Kim Mezga; Mišo Andjelov; Jože Uhan

    2016-01-01

    Assessment of the available quantity of groundwater is of essential importance for its sustainable use. Modern approaches for estimation of groundwater availability take into account all potential impacts of abstractions, including impacts on groundwater dependent ecosystems and impacts on surface waters ecological status. Groundwater body is in good quantitative status if groundwater abstractions do not cause signifiant damages to groundwater dependent ecosystems and signifiant d...

  4. Methods for assessing the long term radiological consequences of radionuclide entry into groundwater

    International Nuclear Information System (INIS)

    Maul, P.R.

    1983-01-01

    The methods have been developed to model the transport of radionuclides in groundwater, based on an analytical approach to the governing transport equations, are sufficiently general to enable assessments to be made of the long term radiological significance of groundwater contamination for a range of possible problems. Although the methods are not as flexible as those based on numerical solutions of the transport equations, they have several advantages, including reduced computing time. The methods described can be used to identify critical parameters and assess the significance of data uncertainties in ground-water transport calculations. Such an analysis, combined with experimental measurements where necessary, can provide a sound basis for assessing potential radiation hazards. (U.K.)

  5. Assessing groundwater availability and the response of the groundwater system to intensive exploitation in the North China Plain by analysis of long-term isotopic tracer data

    Science.gov (United States)

    Su, Chen; Cheng, Zhongshuang; Wei, Wen; Chen, Zongyu

    2018-03-01

    The use of isotope tracers as a tool for assessing aquifer responses to intensive exploitation is demonstrated and used to attain a better understanding of the sustainability of intensively exploited aquifers in the North China Plain. Eleven well sites were selected that have long-term (years 1985-2014) analysis data of isotopic tracers. The stable isotopes δ18O and δ2H and hydrochemistry were used to understand the hydrodynamic responses of the aquifer system, including unconfined and confined aquifers, to groundwater abstraction. The time series data of 14C activity were also used to assess groundwater age, thereby contributing to an understanding of groundwater sustainability and aquifer depletion. Enrichment of the heavy oxygen isotope (18O) and elevated concentrations of chloride, sulfate, and nitrate were found in groundwater abstracted from the unconfined aquifer, which suggests that intensive exploitation might induce the potential for aquifer contamination. The time series data of 14C activity showed an increase of groundwater age with exploitation of the confined parts of the aquifer system, which indicates that a larger fraction of old water has been exploited over time, and that the groundwater from the deep aquifer has been mined. The current water demand exceeds the sustainable production capabilities of the aquifer system in the North China Plain. Some measures must be taken to ensure major cuts in groundwater withdrawals from the aquifers after a long period of depletion.

  6. Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China

    Directory of Open Access Journals (Sweden)

    Li Pei-Yue

    2010-01-01

    Full Text Available The aim of this work is to assess the groundwater quality in Pengyang County based on an improved water quality index. An information entropy method was introduced to assign weight to each parameter. For calculating WQI and assess the groundwater quality, total 74 groundwater samples were collected and all these samples subjected to comprehensive physicochemical analysis. Each of the groundwater samples was analyzed for 26 parameters and for computing WQI 14 parameters were chosen including chloride, sulphate, pH, chemical oxygen demand (COD, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia nitrogen, fluoride, total iron (Tfe, arsenic, iodine, aluminum, nitrite, metasilicic acid and free carbon dioxide. At last a zoning map of different water quality was drawn. Information entropy weight makes WQI perfect and makes the assessment results more reasonable. The WQI for 74 samples ranges from 12.40 to 205.24 and over 90% of the samples are below 100. The excellent quality water area covers nearly 90% of the whole region. The high value of WQI has been found to be closely related with the high values of TDS, fluoride, sulphate, nitrite and TH. In the medium quality water area and poor quality water area, groundwater needs some degree of pretreated before consumption. From the groundwater conservation view of point, the groundwater still need protection and long term monitoring in case of future rapid industrial development. At the same time, preventive actions on the agricultural non point pollution sources in the plain area are also need to be in consideration.

  7. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    Science.gov (United States)

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment - A case study in the Xiangjiang watershed, central-south China

    International Nuclear Information System (INIS)

    Chai, Liyuan; Wang, Zhenxing; Wang, Yunyan; Yang, Zhihui; Wang, Haiying; Wu, Xie

    2010-01-01

    Groundwater samples were collected in the Xiangjiang watershed in China from 2002 to 2008 to analyze concentrations of arsenic, cadmium, chromium, copper, iron, lead, mercury, manganese, and zinc. Spatial and seasonal trends of metal concentrations were then discussed. Combined with geostatistics, an ingestion risk assessment of metals in groundwater was performed using the dose-response assessment method and the triangulated irregular network (TIN) model. Arsenic concentration in groundwater had a larger variation from year to year, while the variations of other metal concentrations were minor. Meanwhile, As concentrations in groundwater over the period of 2002-2004 were significantly higher than that over the period of 2005-2007, indicating the improvement of groundwater quality within the later year. The hazard index (HI) in 2002 was also significantly higher than that in 2005, 2006, 2007 and 2008. Moreover, more than 80% of the study area recorded an HI of more than 1.0 for children, suggesting that some people will experience deleterious health effects from drinking groundwater in the Xiangjiang watershed. Arsenic and manganese were the largest contributors to human health risks (HHRs). This study highlights the value of long-term health risk evaluation and the importance of geographic information system (GIS) technologies in the assessment of watershed-scale human health risk.

  9. Assessment of Petroleum Leakage in Groundwater of the Abadan Refinery

    Directory of Open Access Journals (Sweden)

    Seyed Reza Shadizadeh

    2010-06-01

    Full Text Available Knowledge of petroleum leakage at oil refineries is vital for environmental study of water and soil pollution. Abadan Refinery is located between the Arvandrud and Bahmanshir rivers in the highly populated area of Abadan city. These rivers supply domestic, industrial, and agricultural water toAbadancity. During the war betweenIranandIraq, enormous volumes of oil and petroleum products leaked from storage tanks and pipelines at Abadan Refinery into the surrounding environment. The resulting pollution is a serious threat and a growing environmental concern for the region. In this work, twenty boreholes were dug to investigate petroleum leaks into the surrounding area both during and after the war. The thickness of petroleum floating on underground waters at the refinery was measured by sampling underground water over a period of one year along with measuring the piezometric heads of groundwater monitoring wells. Also, groundwater movement pattern at Abadan Refinery was determined by measuring the water table in each well over the same period. The results of sampling indicate that oil leaks were observed in just two wells; namely, wells No.3 and No.11. The results also show that the greatest portion of the oil spill in underground layers at Abadan Refinery was absorbed into clay soil.

  10. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    Science.gov (United States)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  11. Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India

    Science.gov (United States)

    Shanmugasundharam, A.; Kalpana, G.; Mahapatra, S. R.; Sudharson, E. R.; Jayaprakash, M.

    2017-07-01

    Groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural and industrial purposes. The suitability of groundwater for drinking and irrigation has been assessed in north and eastern part of Krishnagiri district, South-western part of Vellore district and contiguous with Andhra Pradesh states, India. A total of 31 groundwater samples were collected in the study area. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, {HCO}3^{ - }, Cl-, {SO}4^{2 - }, Ca2+, Mg2+, Na+ and K+. The dominant cations are in the order of Na+ > K+ > Ca2+ > Mg2+ while the dominant anions have the trends of Cl- > {HCO}3^{ - } > {SO}4^{2 - } > CO3. The quality of the water is evaluated using Wilcox diagram and the results reveals that most of the samples are found to be suitable for irrigation. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose.

  12. ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT STABILIZED BASIN 43 GROUNDWATER BRINE

    International Nuclear Information System (INIS)

    COOKE GA; DUNCAN JB; LOCKREM LL

    2008-01-01

    This report is an initial report on the laboratory effort executed under RPP-PLAN-33338, Test Plan for the Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This report delineates preliminary data obtained under subcontract 21065, release 30, from the RJ Lee Group, Inc., Center for Laboratory Sciences. The report is predicated on CLS RPT-816, Draft Report: Assessment of Technetium Leachability in Cement Stabilized Basin 43 Groundwater Brine. This document will be revised on receipt of the final RJ Lee Group, Inc., Center for Laboratory Sciences report, which will contain data subjected to quality control and quality assurance criteria

  13. Qualitative risk assessment for the 100-KR-4 groundwater operable unit

    Energy Technology Data Exchange (ETDEWEB)

    Biggerstaff, R.L.

    1994-06-30

    This report provides the qualitative risk assessment (QRA) for the 100-KR-4 groundwater operable unit at the US Department of Energy`s (DOE) Hanford Site in southeastern Washington State. The extent of the groundwater beneath the 100 K Area is defined in the Remedial Investigation/Feasibility Study Work Plan for the 100-KR-4 Operable Unit (DOE-RL 1992a). The QRA is an evaluation or risk using a limited amount of data and a predefined set of human and environmental exposure scenarios and is not intended to replace or be a substitute for a baseline risk assessment.

  14. Qualitative risk assessment for the 100-KR-4 groundwater operable unit

    International Nuclear Information System (INIS)

    Biggerstaff, R.L.

    1994-01-01

    This report provides the qualitative risk assessment (QRA) for the 100-KR-4 groundwater operable unit at the US Department of Energy's (DOE) Hanford Site in southeastern Washington State. The extent of the groundwater beneath the 100 K Area is defined in the Remedial Investigation/Feasibility Study Work Plan for the 100-KR-4 Operable Unit (DOE-RL 1992a). The QRA is an evaluation or risk using a limited amount of data and a predefined set of human and environmental exposure scenarios and is not intended to replace or be a substitute for a baseline risk assessment

  15. Assessment of Groundwater Chemical Quality, Using Inverse Distance Weighted Method

    Directory of Open Access Journals (Sweden)

    Sh. Ashraf

    2014-02-01

    Full Text Available An interpolation technique, ordinary Inverse Distance Weighted (IDW, was used to obtain the spatial distribution of groundwater quality parameters in Damghan plain of Iran. According to Scofield guidelines for TDS   value, 60% of the water samples were harmful for irrigation purposes. Regarding to EC parameter, more than 60% of studied area was laid in bad range for irrigation purposes. The most dominant anion was Cl- and 10% of water samples showed a very hazardous class. According to  Doneen  guidelines for  chloride value, 100%  of  collected  water  from the  aquifer  had  slight to moderate problems  for  irrigation water purposes. The predominant cations in Damghan plain aquifer were according to Na+> Ca++> Mg++> K+. Sodium ion was the dominant cation and regarding to Na+ content guidelines, almost all groundwater samples had problem for foliar application. Calcium ion distribution was within usual range. The magnesium ion concentration is generally lower than sodium and calcium. The majority of the samples showed   Mg++amount within usual range. Also K+ value ranged from 0.1 to 0.23 meq/L and all the water samples had potassium values within the permissible limit. Based on SAR criterion 80 % of collected water had slight to moderate problems. The SSP values were found from 2.87 to 6.87%. According to SAR value, thirty percent of ground water samples were doubtful class. The estimated amounts of RSC were ranged from 0.4-2 and based on RSC criterion, twenty percent of groundwater samples had slight to moderate problems Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font

  16. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion.

    Science.gov (United States)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-07-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl(-) concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM(ZS) is used as sampling algorithm. Then, the predictive distribution of Cl(-) concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl(-) concentration. The results of model calibration and verification demonstrate that the DREAM(ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015-2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl(-) concentration of groundwater source field always vary between 175mg/l and 200mg/l. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Environmental Groundwater Vulnerability Assessment in Urban Water Mines (Porto, NW Portugal

    Directory of Open Access Journals (Sweden)

    Maria José Afonso

    2016-11-01

    Full Text Available A multidisciplinary approach was developed to estimate urban groundwater vulnerability to contamination combining hydrogeology, hydrogeochemistry, subterranean hydrogeotechnics, groundwater ecotoxicology and isotope tracers. Paranhos and Salgueiros spring waters in Porto City were used as a case study. Historical and current vulnerability scenarios were compared using hydrogeological GIS-based modelling. Potential contamination sources were mapped around the spring galleries. Most of these were point sources and their potential contamination load was moderate. The ecotoxicological assessment indicated a low acute toxicity potential. Groundwater radionuclides appeared to be mainly controlled by geological factors and biomineralisation. Vulnerability maps suggest that most of the area has a moderate to low vulnerability to contamination. However, some surface sources such as sewage systems cause contamination and contribute to increased vulnerability. This integrated approach was demonstrated to be adequate for a better knowledge of urban hydrogeological processes and their dynamics, and highlighted the importance of a vulnerability assessment in urban areas.

  18. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    International Nuclear Information System (INIS)

    Baruffi, F.; Cisotto, A.; Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M.; Pretner, A.; Galli, A.; Scarinci, A.; Marsala, V.; Panelli, C.; Gualdi, S.; Bucchignani, E.; Torresan, S.; Pasini, S.; Critto, A.

    2012-01-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961–1990 and the projection period 2010–2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071–2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble

  19. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    Energy Technology Data Exchange (ETDEWEB)

    Baruffi, F. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cisotto, A., E-mail: segreteria@adbve.it [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Pretner, A.; Galli, A. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Scarinci, A., E-mail: andrea.scarinci@sgi-spa.it [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Marsala, V.; Panelli, C. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Gualdi, S., E-mail: silvio.gualdi@bo.ingv.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Bucchignani, E., E-mail: e.bucchignani@cira.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Torresan, S., E-mail: torresan@cmcc.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Pasini, S., E-mail: sara.pasini@stud.unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); Critto, A., E-mail: critto@unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); and others

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced

  20. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    KAUST Repository

    Alsalah, Dhafer

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  1. Proceedings of the fifth international groundwater conference on the assessment and management of groundwater resources in hard rock systems with special reference to basaltic terrain

    International Nuclear Information System (INIS)

    Thangarajan, M.; Mayilswami, C.; Kulkarni, P.S.; Singh, V.P.

    2012-01-01

    Groundwater resources in hard rock regions with limited renewable potential have to be managed judiciously to ensure adequate supplies of dependable quantity and quality. It is a natural resource with economic, strategic and environmental value, which is under stress both due to changing climatic and anthropogenic factors. Therefore the management strategies need to be aimed at sustenance of this limited resource. In India, and also elsewhere in the world major parts of the semi-arid regions are characterized by hard rocks and it is of vital importance to understand the nature of the aquifer systems and its current stress conditions. Though the achievements through scientific development in exploration and exploitation are commendable, it has adversely affected the hard rock aquifer system, both in terms of quantity and quality; which is of major concern today. In order to reverse the situation, better management strategy of groundwater resources needs to be devised for prevention of further degradation of quality and meeting out the future demand of quantity. This necessitates: understanding the flow mechanism, evaluating the potential and evolving optimal utilization schemes, and assessing and monitoring quality in the changing scenario of anthropogenically induced agricultural, urban, industrial and climatic change. The groundwater flow mechanism through fractures in hard rocks is yet to be fully understood in terms of fracture geometry and its relation to groundwater flow. The characterization of flow geometry in basaltic aquifer is yet to be fully explored. Groundwater pollution due to anthropogenic factors is very slow process with long-term impacts on carbon cycle and global climatic change on one hand and quality on the other. It is generally recognized that the prevention of groundwater pollution is cheaper than its remedial measures in the long run. Furthermore, because of the nature of groundwater flow and the complexity and management uncertainty of

  2. Hydrogeochemical and isotopic investigation and water quality assessment of groundwater in the Sisseb El Alem Nadhour Saouaf aquifer (SANS), northeastern Tunisia

    Science.gov (United States)

    Hamdi, Mohamed; Zagrarni, Mohamed Faouzi; Jerbi, Hamza; Tarhouni, Jamila

    2018-05-01

    In the Sisseb El Alem Nadhour Saouaf basin (SANS), as in all other arid regions, surface water is scarce and groundwater is the greatest most important source of water for all uses. This study aims to identify the processes governing groundwater mineralization in order to assess the suitability of the groundwater for drinking and agriculture purposes. This research used a geodatabase which includes information on hydrogeology, geochemistry, land cover, and geology. We identified the most important factors involved in the deterioration of water quality, including anhydrite and gypsum dissolution, silicate weathering, downward leakage between aquifers, evaporation, groundwater over-exploitation, and the overuse of fertilizers. Furthermore, the two following important factors were identified: the intrusion of Sebkhat El Kelbia and the vertical flow from the deep aquifer. Results were used to develop a conceptual geochemical model, wherein three geochemical regions were differentiated. Statistical techniques, such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were used to confirm the water affinities and the presence of three different geochemical regions. The water quality index (WQI), Wilcox and Richards's diagrams were performed to assess the suitability of groundwater to drinking and irrigation purposes. These indexes confirm the fact that the groundwater of this aquifer is not suitable for irrigation, neither for drinking. Furthermore, 18O and deuterium isotope data indicate the importance of evaporation in the basin, and the recharge with modern rainfall.

  3. Performance Assessment National Review Group

    International Nuclear Information System (INIS)

    Lieberman, J.A.; Davis, S.N.; Harleman, D.R.F.

    1985-02-01

    Performance assessment involves predicting the potential radiological impact of a nuclear waste disposal system, taking into account all of the natural and engineered components of the system. It includes the analysis and evaluation of predicted system and component performance to determine compliance with regulatory performance criteria. In the context of the nuclear waste management program, performance assessment has five major purposes: to assist in the evaluation and selection of repository sites; to guide the research, development, and testing programs; to assist in the evaluation of repository designs; to assist in the evaluation of the design and performance of engineered barriers; and to show regulatory compliance and support repository licensing. Current performance assessment methodologies are still in the developmental stage. Only the simplest of bounding calculations have produced quantitative predictions of radionuclide releases. The methodologies require considerable extension and validation before they can provide answers suitable for project decisions and licensing. 135 refs., 9 figs., 1 tab

  4. Environment tracers application to groundwater circulation assessment in an alluvial aquifer in Central Italy

    Science.gov (United States)

    Sappa, Giuseppe; Barbieri, Maurizio; Vitale, Stefania

    2017-04-01

    Groundwater vulnerability assessment is an important tool in order to plan any groundwater protection strategy. The aim of this study is to experiment a specific approach to give a conceptual model about groundwater circulation characterization. This approach has been applied to a suspected contaminated site in a large alluvial plan, made of sediments coming from weathered volcanic rocks, laying on marine sediments, where more than thirty years ago had been built a very important urban waste solid landfill. In referring to this case history it has been pointed out the importance of natural chemical interaction between ground water and rock mass, especially when pyroclastic origin sediments are involved. The landfill had been isolated from the surrounding environment, especially to protect aquifers, by a waterproof diaphragm This land is characterised by intensive agricultural and industrial activities (oil refineries, medical waste incinerators, concrete production, tar factory). The study will highlight the importance of environmental tracers which provide information about the flow and mixing processes of water coming from different sources. They are also useful to point out directions of groundwater flow and to determine origin Environmental tracers are natural chemical and isotopic substances that can be measured in groundwater and used to understand hydrologic properties of aquifers. They may be input into the hydrological system from the atmosphere at recharge and/or are added/lost/exchanged inherently as waters flow over and through materials. Variations in their chemical abundances and isotopic compositions can be used as tracers to determine sources (provenance), pathways (of reaction or interaction) and also timescales (dating) of environmental processes. In combination with these, the basic idea is to use. In this case enviromental tracers have been integrated by temperature and electric conductivity logs, to better investigate different levels of faster

  5. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China.

    Science.gov (United States)

    Li, Ying; Li, Jinhui; Chen, Shusheng; Diao, Weihua

    2012-06-01

    Groundwater contamination by leachate is the most damaging environmental impact over the entire life of a hazardous waste landfill (HWL). With the number of HWL facilities in China rapidly increasing, and considering the poor status of environmental risk management, it is imperative that effective environmental risk management methods be implemented. A risk assessment indices system for HWL groundwater contamination is here proposed, which can simplify the risk assessment procedure and make it more user-friendly. The assessment framework and indices were drawn from five aspects: source term, underground media, leachate properties, risk receptors and landfill management quality, and a risk assessment indices system consisting of 38 cardinal indicators was established. Comparison with multimedia models revealed that the proposed indices system was integrated and quantitative, that input data for it could be easily collected, and that it could be widely used for environmental risk assessment (ERA) in China. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Rodwell, William; Swift, Ben [Serco Assurance, Harwell (United Kingdom); Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-12-15

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period around 9,000 AD. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events. Additional calculations were performed to assess the impact of the effects of gas and heat generation in the repository on groundwater flow.

  7. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Rodwell, William; Swift, Ben; Marsic, Niko

    2006-12-01

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period around 9,000 AD. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events. Additional calculations were performed to assess the impact of the effects of gas and heat generation in the repository on groundwater flow

  8. Performance assessment of nuclear waste isolation systems

    International Nuclear Information System (INIS)

    Lee, W.L.

    1984-01-01

    A number of concepts have been proposed for the isolation of highly radioactive wastes, and it will be necessary to demonstrate the safety of such systems. In many countries including the U.S., the waste isolation system of choice is deep mined geologic repositories. Because of the complex nature of the multiple isolation barriers afforded by mined geologic disposal systems, and the long isolation periods involved, this demonstration can only be indirect. In recent years this indirect demonstration, mostly through mathematical modeling, is called performance assessment. Performance Assessment can be defined to mean the development, testing, and application of a series of mathematical models and computer codes which traces the movement of radionuclides from a waste isolation system to the biosphere and any resultant dose to man. In modeling such a repository system, it is often convenient to divide it into a number of subsystems, there may be several different processes that need to be modeled, individually and interactively. For instance, this waste package will probably consist of a waste form such as borosilicate glass containing the radioisotopes, a canister, an overpack material such as steel or copper, and a buffer material such as bentonite. The processes to be modeled at the waste package scale include radioisotope inventory and decay, thermal radiation, radiolysis effects, corrosion, leading and fluid flow. In tracing radionuclide transport through rock, the processes of importance are probably groundwater flow, and sorption and retardation of radionuclide movement

  9. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations, Title 10 CFR 60.113 (a). The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss the ambiguities associated with the regulatory specification of groundwater travel time, two different interpretations of groundwater travel time, and the effect of the two interpretations on estimates of the groundwater travel time

  10. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations. The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time, as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss (1) the ambiguities associated with the regulatory specification of groundwater travel time, (2) two different interpretations of groundwater travel time, and (3) the effect of the two interpretations on estimates of the groundwater travel time. 3 refs., 2 figs., 2 tabs

  11. Assessment of groundwater recharge and water fluxes of the Guarani Aquifer System, Brazil

    Science.gov (United States)

    Rabelo, Jorge Luiz; Wendland, Edson

    2009-11-01

    The groundwater recharge and water fluxes of the Guarani Aquifer System in the state of Sao Paulo in Brazil were assessed through a numeric model. The study area (6,748 km2) comprises Jacaré-Guaçú and Jacaré-Pepira River watersheds, tributaries of the Tietê River in the central region of the state. GIS based tools were used in the storage, processing and analysis of data. Main hydrologic phenomena were selected, leading to a groundwater conceptual model, taking into account the significant outcrops occurring in the study area. Six recharge zones were related to the geologic formation and structures of the semi-confined and phreatic aquifer. The model was calibrated against the baseflows and static water levels of the wells. The results emphasize the strong interaction of groundwater flows between watersheds and the groundwater inflow into the rivers. It has been concluded that lateral groundwater exchanges between basins, the deep discharges to the regional system, and well exploitation were not significant aquifer outflows when compared to the aquifer recharge. The results have shown that the inflows from the river into the aquifer are significant and have the utmost importance since the aquifer is potentially more vulnerable in these places.

  12. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of the groundwater and surface-water quality data obtained during the 1991 calendar year at several management facilities associated with the US Department of Energy Y-12 Plant. These sites are southwest of the Y-12 plant complex within the Bear Creek Hydrogeologic Regime (BCHR) which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the BCHR. An overview of the hydrogeologic system in the BCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater and surface-water quality in the regime are presented in Section 4.0. Findings of the 1991 monitoring program are summarized in Section 5.0. Proposed modifications to the groundwater and surface-water quality monitoring program in the BCHR are presented

  13. Hydrochemical assessment of groundwater used for irrigation in Rumphi and Karonga districts, Northern Malawi

    Science.gov (United States)

    Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Ambrose

    Irrigation water quality is an essential component of sustainable agriculture. Irrigation water quality concerns have often been neglected over concerns of quantity in most irrigation projects in Malawi. In this study, a hydrochemical assessment of groundwater was carried out to characterize, classify groundwater and evaluate its suitability for irrigation use in Karonga and Rumphi districts, Northern Malawi. Groundwater samples were collected during wet (January-April 2011) and dry (July-September 2011) seasons from 107 shallow wells and boreholes drilled for rural water supply using standard sampling procedures. The water samples were analysed for pH, major ions, total dissolved solids and electrical conductivity (EC), using standard methods. Multivariate chemometric (such as Kruskal Wallis test), hydrographical methods (i.e. Piper diagram) and PHREEQC geochemical modelling program were used to characterise the groundwater quality. Electrical conductivity, percentage sodium ion (% Na+), residual sodium carbonate (RSC), total dissolved solids (TDS), sodium adsorption ratio (SAR), Kelly’s ratio (KR) and permeability index (PI) were used to evaluate the suitability of water for irrigation. It was established that groundwater is neutral to alkaline and mostly freshwater (TDS management is suggested for sustainable development of the water resources for better plant growth, long-term as well as maintaining human health in the study area.

  14. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical......The practical implementation of the European Water Framework Directive has resulted in an increased focus on the groundwater-surface water interaction zone. A gap exists with respect to preliminary assessment methodologies that are capable of evaluating and prioritising point sources...... volatilisation model for the stream. The model is tested on a Danish case study involving a 750 m long TCE groundwater plume discharging into a stream. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk...

  15. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin.

    Science.gov (United States)

    Nixdorf, Erik; Sun, Yuanyuan; Lin, Mao; Kolditz, Olaf

    2017-12-15

    The main objective of this study is to quantify the groundwater contamination risk of Songhua River Basin by applying a novel approach of integrating public datasets, web services and numerical modelling techniques. To our knowledge, this study is the first to establish groundwater risk maps for the entire Songhua River Basin, one of the largest and most contamination-endangered river basins in China. Index-based groundwater risk maps were created with GIS tools at a spatial resolution of 30arc sec by combining the results of groundwater vulnerability and hazard assessment. Groundwater vulnerability was evaluated using the DRASTIC index method based on public datasets at the highest available resolution in combination with numerical groundwater modelling. As a novel approach to overcome data scarcity at large scales, a web mapping service based data query was applied to obtain an inventory for potential hazardous sites within the basin. The groundwater risk assessment demonstrated that contamination risk. These areas were mainly located in the vast plain areas with hotspots particularly in the Changchun metropolitan area. Moreover, groundwater levels and pollution point sources were found to play a significantly larger impact in assessing these areas than originally assumed by the index scheme. Moderate contamination risk was assigned to 27% of the aquifers, predominantly associated with less densely populated agricultural areas. However, the majority of aquifer area in the sparsely populated mountain ranges displayed low groundwater contamination risk. Sensitivity analysis demonstrated that this novel method is valid for regional assessments of groundwater contamination risk. Despite limitations in resolution and input data consistency, the obtained groundwater contamination risk maps will be beneficial for regional and local decision-making processes with regard to groundwater protection measures, particularly if other data availability is limited. Copyright

  16. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  17. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    Science.gov (United States)

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  18. Modelling the distribution of tritium in groundwater across South Africa to assess the vulnerability and sustainability of groundwater resources in response to climate change

    Science.gov (United States)

    van Rooyen, Jared; Miller, Jodie; Watson, Andrew; Butler, Mike

    2017-04-01

    Groundwater is critical for sustaining human populations, especially in semi-arid to arid areas, where surface water availability is low. Shallow groundwater is usually abstracted for this purpose because it is the easiest to access and assumed to be renewable and regularly recharged by precipitation. Renewable, regularly recharged groundwater is also called modern groundwater, ie groundwater that has recently been in contact with the atmosphere. Tritium can be used to determine whether or not a groundwater resource is modern because the half-life of tritium is only 12.36 years and tritium is dominantly produced in the upper atmosphere and not in the rock mass. For this reason, groundwater with detectable tritium activities likely has a residence age of less than 50 years. In this study, tritium activities in 277 boreholes distributed across South Africa were used to develop a national model for tritium activity in groundwater in order to establish the extent of modern groundwater across South Africa. The tritium model was combined with modelled depth to water using 3079 measured static water levels obtained from the National Groundwater Archive and validated against a separate set of 40 tritium activities along the west coast of South Africa. The model showed good agreement with the distribution of rainfall which has been previously documented across the globe (Gleeson et al., 2015), although the arid Karoo basin in south west South Africa shows higher than expected tritium levels given the very low regional precipitation levels. To assess the vulnerability of groundwater to degradation in quality and quantity, the tritium model was incorporated into a multi-criteria evaluation (MCE) model which incorporated other indicators of groundwater stress including mean annual precipitation, mean annual surface temperature, electrical conductivity (as a proxy for groundwater salinization), potential evaporation, population density and cultivated land usage. The MCE model

  19. Performance assessment: a peer review

    International Nuclear Information System (INIS)

    Lieberman, J.A.; Lee, W.W.L.

    1986-01-01

    This paper describes the rationale, membership, operation and major observations of the Performance Assessment National Review Group. The Group was assembled by Weston at the request of the US Department of Energy Office of Civilian Radioactive Waste Management to review performance assessment work in the US basalt, salt and tuff repository projects. The purposes were to evaluate the adequacy of the current methods, identify deficiencies, and suggest potential improvement on repository performance assessment. To perform the review, Weston retained a group of distinguished consultants who have had extensive experience in disciplines pertinent to management of radioactive wastes including mathematical modeling of fluid transport. Topics reviewed included flow and transport, source term and uncertainty analysis. While the emphasis was on methodologies, the Projects were specifically requested to show currently available results so that the way they utilized familiar methodologies could be evaluated. This paper will highlight some of the technical observations of the Group as well as some managerial and institutional issues

  20. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  1. A new four-step hierarchy method for combined assessment of groundwater quality and pollution.

    Science.gov (United States)

    Zhu, Henghua; Ren, Xiaohua; Liu, Zhizheng

    2017-12-28

    A new four-step hierarchy method was constructed and applied to evaluate the groundwater quality and pollution of the Dagujia River Basin. The assessment index system is divided into four types: field test indices, common inorganic chemical indices, inorganic toxicology indices, and trace organic indices. Background values of common inorganic chemical indices and inorganic toxicology indices were estimated with the cumulative-probability curve method, and the results showed that the background values of Mg 2+ (51.1 mg L -1 ), total hardness (TH) (509.4 mg L -1 ), and NO 3 - (182.4 mg L -1 ) are all higher than the corresponding grade III values of Quality Standard for Groundwater, indicating that they were poor indicators and therefore were not included in the groundwater quality assessment. The quality assessment results displayed that the field test indices were mainly classified as grade II, accounting for 60.87% of wells sampled. The indices of common inorganic chemical and inorganic toxicology were both mostly in the range of grade III, whereas the trace organic indices were predominantly classified as grade I. The variabilities and excess ratios of the indices were also calculated and evaluated. Spatial distributions showed that the groundwater with poor quality indices was mainly located in the northeast of the basin, which was well-connected with seawater intrusion. Additionally, the pollution assessment revealed that groundwater in well 44 was classified as "moderately polluted," wells 5 and 8 were "lightly polluted," and other wells were classified as "unpolluted."

  2. Integrating geochemical investigations and geospatial assessment to understand the evolutionary process of hydrochemistry and groundwater quality in arid areas.

    Science.gov (United States)

    El Alfy, Mohamed; Alharbi, Talal; Mansour, Basma

    2018-04-12

    Groundwater is the key for life in arid areas. Aquifer overexploitation and climatic conditions can significantly deteriorate groundwater quality. The Al-Qassim area in central Saudi Arabia is characterized by dense agricultural use and is irrigated mainly by fossil groundwater from the Saq Aquifer. Understanding the area's hydrochemistry, major factors governing groundwater quality, and alternative uses of the groundwater are the main goals of this study. Groundwater samples were collected and examined for major, minor, and trace elements. Ionic relationships, hydrochemical facies, geospatial distributions, and multivariate analyses were conducted to assess the hydrochemical processes at play. The salinity and nitrate concentrations of the Saq Aquifer's groundwater were found to increase in the outcrop areas more than the confined areas. The spatial distributions were fragmented by three main factors: (i) modern recharge by relatively brackish water, (ii) irrigation return flow in intensive farming areas, and (iii) overexploitation and draining of deep and relatively saline zones of the aquifer. Seven water types were found representing the alkaline water with a predominance of sulfate-chloride ions and earth alkaline water with a predominance of sulfate and chloride. Mixing between fresh and brackish water, dissolution of mineral phases, silicate weathering, and reverse ion exchange were recognized as the evolutionary processes, while evaporation played a minor role. Cluster analyses characterized the fresh groundwater zone, modern groundwater recharge zone, and anthropogenic influence zone. In the confined areas, nearly all the groundwater was appropriate for domestic use and irrigation. In the outcrop areas, some limitations were found due to unsuitable conditions.

  3. Biosolids recycling : a proposed methodology for the assessment of the impact on groundwater

    OpenAIRE

    Robins, N.S.

    2005-01-01

    A groundwater risk assessment protocol is needed for land restoration schemes using recycled biosolids. A hydrogeological risk assessment for the Darnconner site in East Ayrshire [NS5723 to NS5823] has been used as a case study to develop the protocol. The proposed outline for developing the protocol included the following components: 1. Gather available geological information for the site and environs from 1: 50 000 scale geological maps and more detailed information where ava...

  4. Quantitative and qualitative assessment of the groundwater system behavior to support Brownfield regeneration of Hunedoara (Romania) former steel production site

    Science.gov (United States)

    Gogu, R.; Gaitanaru, D.; Ciugulea, O.; Boukhemacha, M. A.; Bica, I.

    2012-04-01

    electrical conductivity tests. One important role in the spatial distribution of the contaminants is played by the hydro-stratigraphical features of the site. In situ testing of hydraulic conductivity has been performed by injecting water under a specified pressure (4-5 bar) into the aquifer. The interpretation provides in a preliminary stage a relative profile of hydraulic conductivity. By means of several slug tests, the results are translated into absolute values of hydraulic conductivity. The calibrated flow model represents the first step for the quantitative assessment of the groundwater parameters. Correlating the surface and soil distribution of the pollutants, a multi-component transport model is currently set-up in order to quantify the spatial distribution of the contaminated area.

  5. DOE site performance assessment activities

    International Nuclear Information System (INIS)

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions

  6. Implementation of computer codes for performance assessment of the Republic repository of LLW/ILW Mochovce

    International Nuclear Information System (INIS)

    Hanusik, V.; Kopcani, I.; Gedeon, M.

    2000-01-01

    This paper describes selection and adaptation of computer codes required to assess the effects of radionuclide release from Mochovce Radioactive Waste Disposal Facility. The paper also demonstrates how these codes can be integrated into performance assessment methodology. The considered codes include DUST-MS for source term release, MODFLOW for ground-water flow and BS for transport through biosphere and dose assessment. (author)

  7. Assessment of groundwater response to droughts in a complex runoff-dominated watershed by using an integrated hydrologic model

    Science.gov (United States)

    Woolfenden, L. R.; Hevesi, J. A.; Nishikawa, T.

    2014-12-01

    Groundwater is an important component of the water supply, especially during droughts, within the Santa Rosa Plain watershed (SRPW), California, USA. The SRPW is 680 km2 and includes a network of natural and engineered stream channels. Streamflow is strongly seasonal, with high winter flows, predominantly intermittent summer flows, and comparatively rapid response time to larger storms. Groundwater flow is influenced primarily by complex geology, spatial and temporal variation in recharge, and pumping for urban, agricultural, and rural demands. Results from an integrated hydrologic model (GSFLOW) for the SRPW were analyzed to assess the effect of droughts on groundwater resources during water years 1976-2010. Model results indicate that, in general, below-average precipitation during historical drought periods reduced groundwater recharge (focused within stream channels and diffuse outside of channels on alluvial plains), groundwater evapotranspiration (ET), and groundwater discharge to streams (baseflow). In addition, recharge during wet periods was not sufficient to replenish groundwater-storage losses caused by drought and groundwater pumping, resulting in an overall 150 gigaliter loss in groundwater storage for water years 1976-2010. During drought periods, lower groundwater levels from reduced recharge broadly increased the number and length of losing-stream reaches, and seepage losses in streams became a higher percentage of recharge relative to the diffuse recharge outside of stream channels (for example, seepage losses in streams were 36% of recharge in 2006 and 57% at the end of the 2007-09 drought). Reductions in groundwater storage during drought periods resulted in decreased groundwater ET (loss of riparian habitat) and baseflow, especially during the warmer and dryer months (May through September) when groundwater is the dominant component of streamflow.

  8. Groundwater vulnerability to climate change: A review of the assessment methodology.

    Science.gov (United States)

    Aslam, Rana Ammar; Shrestha, Sangam; Pandey, Vishnu Prasad

    2018-01-15

    Impacts of climate change on water resources, especially groundwater, can no longer be hidden. These impacts are further exacerbated under the integrated influence of climate variability, climate change and anthropogenic activities. The degree of impact varies according to geographical location and other factors leading systems and regions towards different levels of vulnerability. In the recent past, several attempts have been made in various regions across the globe to quantify the impacts and consequences of climate and non-climate factors in terms of vulnerability to groundwater resources. Firstly, this paper provides a structured review of the available literature, aiming to critically analyse and highlight the limitations and knowledge gaps involved in vulnerability (of groundwater to climate change) assessment methodologies. The effects of indicator choice and the importance of including composite indicators are then emphasised. A new integrated approach for the assessment of groundwater vulnerability to climate change is proposed to successfully address those limitations. This review concludes that the choice of indicator has a significant role in defining the reliability of computed results. The effect of an individual indicator is also apparent but the consideration of a combination (variety) of indicators may give more realistic results. Therefore, in future, depending upon the local conditions and scale of the study, indicators from various groups should be chosen. Furthermore, there are various assumptions involved in previous methodologies, which limit their scope by introducing uncertainty in the calculated results. These limitations can be overcome by implementing the proposed approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman

    Science.gov (United States)

    Al-Kalbani, Mohammed Saif; Price, Martin F.; Ahmed, Mushtaque; Abahussain, Asma; O'Higgins, Timothy

    2017-11-01

    The research was conducted to assess the quality of groundwater resources of Al Jabal Al Akhdar, Oman. 11 drinking water sources were sampled during summer and winter seasons during 2012-2013 to evaluate their physico-chemical quality indicators; and assess their suitability for drinking and other domestic purposes. Sample collection, handling and processing followed the standard methods recommended by APHA and analyzed in quality assured laboratories using appropriate analytical methods and instrumental techniques. The results show that the quality parameters in all drinking water resources are within the permissible limits set by Omani and WHO standards; and the drinking water quality index is good or medium in quality based on NFS-WQI classification criteria, indicating their suitability for human consumption. There is an indication of the presence of high nitrate concentrations in some groundwater wells, which require more investigations and monitoring program to be conducted on regular basis to ensure good quality water supply for the residents in the mountain. The trilinear Piper diagram shows that most of the drinking water resources of the study area fall in the field of calcium and bicarbonate type with some magnesium bicarbonate type indicating that most of the major ions are natural in origin due to the geology of the region. This study is a first step towards providing indicators on groundwater quality of this fragile mountain ecosystem, which will be the basis for future planning decisions on corrective demand management measures to protect groundwater resources of Al Jabal Al Akhdar.

  10. Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco).

    Science.gov (United States)

    Moyé, Julien; Picard-Lesteven, Tanguy; Zouhri, Lahcen; El Amari, Khalid; Hibti, Mohamed; Benkaddour, Abdelfattah

    2017-12-01

    Many questions about the soil pollution due to mining activities have been analyzed by numerous methods which help to evaluate the dispersion of the Metallic Trace Elements (MTE) in the soil and stream sediments of the abandoned mine of Kettara (Morocco). The transport of these MTE could have an important role in the degradation of groundwater and the health of people who are living in the vicinity. The present paper aims to evaluate the groundwater samples from 15 hydrogeological wells. This evaluation concerns the hydrogeological parameters, pH, Electrical conductivity, temperature and the groundwater level, and the geochemical assessment of Mg, Ca, Ti, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Se, Cd, Sb, Tl and Pb. Furthermore, the Metallic Trace Elements are transported in the saturated zone via the fractures network. The groundwater flow is from the north-east to south-west. The spatial distribution of As, Fe, Zn and Mn is very heterogeneous, with high values observed in the north, upstream, of the mine site. This distribution is maybe related to: i) the existence of hydrogeological structures (dividing and drainage axes); ii) the individualization of the fractures network that affects the shaly lithostratigraphical formation; iii) the transport of the contaminants from the soil towards groundwater; and iv) interaction water/rocks. Some MTE anomalies are linked to the lithology and the fracturation system of the area. Therefore, the groundwater contamination by Arsenic is detected in the hydrogeological wells (E1 and E2). This pollution which is higher than guideline standards of Moroccan drinking water could affect the public health. The hydrogeological and geochemical investigations favor the geological origin (mafic rocks) of this contamination rather than mining activities. Copyright © 2017. Published by Elsevier Ltd.

  11. Assessment of groundwater quality in Kashipur Block, Purulia district, West Bengal

    Science.gov (United States)

    Kundu, Anindita; Nag, S. K.

    2018-03-01

    Hydrogeochemical investigation of groundwater resources of Kashipur Block, Purulia district, West Bengal has been carried out to assess the water quality for domestic and irrigation uses. Twenty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (CO3 2-, HCO3 -, Cl-, SO4 2-, F-) and cations (Ca2+, Mg2+, Fe2+, Na+, K+). Study results reveal that the groundwater of the area is mostly acidic in nature. The trend amongst average ionic concentrations of cations and anions is Mg2+ > Ca2+ > Na+ > Fe2+ > K+ and Cl- > HCO3 - > CO3 2- > SO4 2- > F- respectively during the post monsoon whereas the trend for cations and anions are Mg2+ > Ca2+> Na+ > K+ > Fe and Cl- > HCO3 - > SO4 2- > F- > CO3 - in pre monsoon session, respectively. To explore the ionic toxicity of the study area, the derived parameters like sodium adsorption ratio, soluble sodium percentage, residual sodium carbonate, magnesium adsorption ratio, Kelly's ratio and permeability index were calculated. The hydro geochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Kashipur Block, Purulia District. According to piper diagram, water samples of most of the area of the block are fresh water and in some areas sulphate rich throughout the year. All samples are distributed to central rock dominance category. Groundwater chemistry of this block is mainly controlled by the interaction existing between the litho units and the percolating water into the subsurface domain. However, the groundwater quality and suitability of this study area can be termed as good to moderate with a few exceptions which have been encountered on a local scale.

  12. Application of Isotope Techniques in the Assessment of Groundwater Resource in Water Resources Region 10, Philippines

    International Nuclear Information System (INIS)

    Racadio, Charles Darwin T.; Mendoza, Norman DS.; Castañeda, Soledad S.; Abaño, Susan P.; Rongavilla, Luis S.; Castro, Joey

    2015-01-01

    Groundwater has been the primary source of drinking water of about 50% of the people in the Philippines and the numbers continue to rise. However, data and information on groundwater resources are generally spasmodic or sparse in the country. A specific remedy to address this gap is the use of isotope hydrological techniques. A pilot project utilizing this technique was done in Water Resources Region X with the aim of demonstrating the effectiveness and efficiency of these approach in groundwater resources assessment. When optimized, the technique will be replicated in other areas of the country. Groundwater samples from springs deep wells hand pumps and dug wells and river water were collected within the study area from September 2012 to June 2014. Monthly integrated precipitation samples were also collected at different points within the study area from October 2012 to March 2015. Samples were analyzed for stable isotope (δ”2H and δ”1”8O) using Laser Water Isotope Analyzer and tritium for groundwater dating. Results showed that aquifers in the study area are recharged by infiltrated rain during the heavy rainfall moths (May to November for Cagayan-Tagaloan Basin, and December to April for Agusan Basin). Water in Agusan Basin is isotopically enriched compared with the water in Cagayan-Tagaloan Basin. There appears to be interaction between shallow unconfined aquifer and deep semi-confined aquifer in Cagayan de Oro City. Shallow aquifers appear to be recharged by local precipitation. Groundwater in the study area is of Ca-Mg-HCO 3 type, which is characteristic of dynamic water with short residence time. Tritium-helium aging puts the water at ages between 18 to 72 years. Recharged rates of 422 to 625 mm/year were calculated for Cagayan de Oro City.(author)

  13. Assessing the groundwater recharge under various irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Lin, Zih-Ciao; Tsai, Cheng-Bin

    2014-05-01

    The flooded paddy fields can be considered as a major source of groundwater recharge in Central Taiwan. The risk of rice production has increased notably due to climate change in this area. To respond to agricultural water shortage caused by climate change without affecting rice yield in the future, the application of water-saving irrigation is the substantial resolution. The System of Rice Intensification (SRI) was developed as a set of insights and practices used in growing irrigated rice. Based on the water-saving irrigation practice of SRI, impacts of the new methodology on the reducing of groundwater recharge were assessed in central Taiwan. The three-dimensional finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge under different irrigation schemes. According to local climatic and environmental characteristics associated with SRI methodology, the change of infiltration rate was evaluated and compared with the traditional irrigation schemes, including continuous irrigation and rotational irrigation scheme. The simulation results showed that the average infiltration rate in the rice growing season decreased when applying the SRI methodology, and the total groundwater recharge amount of SRI with a 5-day irrigation interval reduced 12% and 9% compared with continuous irrigation (6cm constant ponding water depth) and rotational scheme (5-day irrigation interval with 6 cm initial ponding water depth), respectively. The results could be used as basis for planning long-term adaptive water resource management strategies to climate change in Central Taiwan. Keywords: SRI, Irrigation schemes, Groundwater recharge, Infiltration

  14. Rapid Analysis of Eukaryotic Bioluminescence to Assess Potential Groundwater Contamination Events

    Directory of Open Access Journals (Sweden)

    Zacariah L. Hildenbrand

    2015-01-01

    Full Text Available Here we present data using a bioluminescent dinoflagellate, Pyrocystis lunula, in a toxicological bioassay to rapidly assess potential instances of groundwater contamination associated with natural gas extraction. P. lunula bioluminescence can be quantified using spectrophotometry as a measurement of organismal viability, with normal bioluminescent output declining with increasing concentration(s of aqueous toxicants. Glutaraldehyde and hydrochloric acid (HCl, components used in hydraulic fracturing and shale acidization, triggered significant toxicological responses in as little as 4 h. Conversely, P. lunula was not affected by the presence of arsenic, selenium, barium, and strontium, naturally occurring heavy metal ions potentially associated with unconventional drilling activities. If exogenous compounds, such as glutaraldehyde and HCl, are thought to have been introduced into groundwater, quantification of P. lunula bioluminescence after exposure to water samples can serve as a cost-effective detection and risk assessment tool to rapidly assess the impact of putative contamination events attributed to unconventional drilling activity.

  15. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources

    DEFF Research Database (Denmark)

    Hybel, Anne-Marie; Godskesen, Berit; Rygaard, Martin

    2015-01-01

    used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2......) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial......Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were...

  16. A GIS-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet Pampa plain, Argentina.

    Science.gov (United States)

    Romanelli, Asunción; Lima, María Lourdes; Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Héctor Enrique

    2012-09-01

    The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3 % of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4 % of it has unsuitable waters. Approximately, 46 % of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.

  17. Risk Assessment of Mineral Groundwater Near Rogaška Slatina

    Science.gov (United States)

    Trcek, Branka; Leis, Albrecht

    2017-10-01

    Groundwater resources of mineral and thermo-mineral water are invaluable for planning a sustainable spatial and economic development of the Rogaška Slatina area, which requires a protection of this natural heritage. Numerous previous investigations of Rogaška groundwaters were subjects to balneology and to demands for larger exploitation quantities, that is why information are missing that are essential for definition of the Rogaška fractured aquifer system with mineral and thermo-mineral water and for its protection. The isotopic investigations of groundwaters stored in the Rogaška Slatina fractured aquifer system were performed aiming at answering open questions on the groundwater recharge and dynamics, on connections between different types of aquifers and on solute transport. Environmental isotopes 2H, 18O, 3H, 13C of dissolved inorganic carbon and 14C were analysed in mineral, thermo-mineral and spring waters. Results indicated the source and mechanism of groundwater recharge, its renewability, a transit time distribution, hydraulic interrelationships, the groundwater origin and its evolution due to effects of water-rock interaction. The mean residence time estimates of mineral and thermo- mineral water in the aquifer are between 3400 and 14000 years. On the other hand, the mixing processes between younger and older waters or mineral and spring waters are reflected as well as waters that infiltrated predominantly after the 1960s. These suggest the vulnerability of the research systems to man-made impacts. The presented results coupled with available information on a physical hydrogeology and water chemistry asses the optimal balance between the environmental protection and economic use of mineral water resources in the study area. They are essential for the protection strategy development of mineral and thermo-mineral water in the Rogaška Slatina area bringing together the state administration and local authorities and stakeholders.

  18. Assessment of the Groundwater Protection Program Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2005-01-01

    The following report contains an assessment of the Y-12 Groundwater Protection Program (GWPP) for the Y-12 National Security Complex at the Oak Ridge Reservation, Tennessee. The GWPP is administered by BWXT Y-12, L.L.C. for the purpose of groundwater surveillance monitoring. After over 20 years of extensive site characterization and delineation efforts, groundwater in the three hydrogeologic areas that comprise the Y-12 Complex requires a long-term monitoring network strategy that will efficiently satisfy surveillance monitoring objectives set forth in DOE Order 450.1. The GWPP assessment consisted of two phases, a qualitative review of the program and a quantitative evaluation of the groundwater monitoring network using the Monitoring and Remediation Optimization System (MAROS) software methodology. The specific objective of the qualitative section of the review of the GWPP was to evaluate the methods of data collection, management, and reporting and the function of the monitoring network for the Y-12 facility using guidance from regulatory and academic sources. The results of the qualitative review are used to suggest modifications to the overall program that would be consistent with achieving objectives for long-term groundwater monitoring. While cost minimization is a consideration in the development of the monitoring program, the primary goal is to provide a comprehensive strategy to provide quality data to support site decision making during facility operations, long-term resource restoration, and property redevelopment. The MAROS software is designed to recommend an improved groundwater monitoring network by applying statistical techniques to existing historic and current site analytical data. The MAROS methodology also considers hydrogeologic factors, regulatory framework, and the location of potential receptors. The software identifies trends and suggests components for an improved monitoring plan by analyzing individual monitoring wells in the current

  19. Power performance assessment. Final report

    International Nuclear Information System (INIS)

    Frandsen, S.

    1998-12-01

    In the increasingly commercialised wind power marketplace, the lack of precise assessment methods for the output of an investment is becoming a barrier for wider penetration of wind power. Thus, addressing this problem, the overall objectives of the project are to reduce the financial risk in investment in wind power projects by significantly improving the power performance assessment methods. Ultimately, if this objective is successfully met, the project may also result in improved tuning of the individual wind turbines and in optimisation methods for wind farm operation. The immediate, measurable objectives of the project are: To prepare a review of existing contractual aspects of power performance verification procedures of wind farms; to provide information on production sensitivity to specific terrain characteristics and wind turbine parameters by analyses of a larger number of wind farm power performance data available to the proposers; to improve the understanding of the physical parameters connected to power performance in complex environment by comparing real-life wind farm power performance data with 3D computational flow models and 3D-turbulence wind turbine models; to develop the statistical framework including uncertainty analysis for power performance assessment in complex environments; and to propose one or more procedures for power performance evaluation of wind power plants in complex environments to be applied in contractual agreements between purchasers and manufacturers on production warranties. Although the focus in this project is on power performance assessment the possible results will also be of benefit to energy yield forecasting, since the two tasks are strongly related. (au) JOULE III. 66 refs.; In Co-operation Renewable Energy System Ltd. (GB); Centre for Renewable Energy (GR); Aeronautic Research Centre (SE); National Engineering Lab. (GB); Public Power Cooperation (GR)

  20. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.

    Science.gov (United States)

    Pasini, S; Torresan, S; Rizzi, J; Zabeo, A; Critto, A; Marcomini, A

    2012-12-01

    Climate change impact assessment on water resources has received high international attention over the last two decades, due to the observed global warming and its consequences at the global to local scale. In particular, climate-related risks for groundwater and related ecosystems pose a great concern to scientists and water authorities involved in the protection of these valuable resources. The close link of global warming with water cycle alterations encourages research to deepen current knowledge on relationships between climate trends and status of water systems, and to develop predictive tools for their sustainable management, copying with key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution model simulations for the 2071-2100 period, according to IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant

  1. Groundwater quality assessment for domestic and agriculture purposes in Puducherry region

    Science.gov (United States)

    Sridharan, M.; Senthil Nathan, D.

    2017-11-01

    Totally about 174 groundwater samples have been collected during pre-monsoon and post-monsoon season to study the suitability for domestic and agriculture purposes along the coastal aquifers of Puducherry region. Parameters such as pH, total dissolved solids (TDS), electrical conductivity (EC), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), bicarbonate (HCO3), chloride (Cl) and sulfate (SO4) were analyzed to assess the suitability of groundwater for domestic purposes. Sodium adsorption ratio (SAR), magnesium adsorption ratio (MAR), residual sodium bicarbonate (RSC), soluble sodium percentage (Na%), permeability index (PI) and chlorinity index were assessed for irrigation purposes. The higher concentration of ions such as Na, Ca, Cl and So4 indicates seawater intrusion, mineral dissolution, intense agricultural practices and improper sewage disposal. The level of EC, TDS and hardness in the water samples indicates that maximum of them are suitable for drinking and domestic purposes. The parameters such as SAR, Na%, PI, MAR and Chlorinity index indicates that majority of water sample are very good to moderately suitable for agriculture. In pre-monsoon, RSC of about 5.7% of samples was higher which when used for a longer time alter the soil properties and reduce crop production. Wilcox diagram suggests that water samples are of medium saline to low sodium type indicating that groundwater is suitable for irrigation. Temporal variation of groundwater quality shows significant increasing trend in EC, TDS and ions like Mg, K and Cl in the last decade, mainly due to anthropogenic activities with little geogenic impact in the quality of groundwater.

  2. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction. Copyright © 2015 Elsevier

  3. Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge.

    Science.gov (United States)

    Masciopinto, Costantino; Liso, Isabella Serena

    2016-11-01

    An assessment of sea intrusion into coastal aquifers as a consequence of local sea-level rise (LSLR) due to climate change was carried out at Murgia and Salento in southern Italy. The interpolation of sea-level measurements at three tide-gauge stations was performed during the period of 2000 to 2014. The best fit of measurements shows an increasing rate of LSLR ranging from 4.4mm/y to 8.8mm/y, which will result in a maximum LSLR of approximately 2m during the 22nd century. The local rate of sea-level rise matches recent 21st and 22nd century projections of mean global sea-level rise determined by other researchers, which include increased melting rates of the Greenland and Antarctic ice sheets, the effect of ocean thermal expansion, the melting of glaciers and ice caps, and changes in the quantity of stored land water. Subsequently, Ghyben-Herzberg's equation for the freshwater/saltwater interface was rewritten in order to determine the decrease in groundwater discharge due to the maximum LSLR. Groundwater flow simulations and ArcGIS elaborations of digital elevation models of the coast provided input data for the Ghyben-Herzberg calculation under the assumption of head-controlled systems. The progression of seawater intrusion due to LSLR suggests an impressive depletion of available groundwater discharge during the 22nd century, perhaps as much as 16.1% of current groundwater pumping for potable water in Salento. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt - Case study

    Science.gov (United States)

    Helaly, Ahmad Sobhy

    2017-12-01

    Electrical resistivity surveying has been carried out for the determination of the thickness and resistivity of layered media in Wadi Allaqi, Eastern Desert, Egypt. That is widely used geophysical tool for the purpose of assessing the groundwater potential and siting the best locations for boreholes in the unconfined Nubian Sandstone aquifers within the study area. This has been done using thirteen 1D Vertical Electrical Sounding (VES) surveys. 1D-VES surveys provide only layered model structures for the subsurface and do not provide comprehensive information for interpreting the structure and extent of subsurface hydro-geological features. The integration of two-dimensional (2D) geophysical techniques for groundwater prospecting has been done to provide a more detailed identification for the subsurface hydro-geological features from which potential sites for successful borehole locations are recognized. In addition, five magnetic profiles were measured for basement depth determination, expected geological structures and thickness of sedimentary succession that could include some basins suitable for groundwater accumulation as groundwater aquifers.

  5. Risk assessment using ICP-MS of heavy metals in groundwater in Upper Egypt

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2015-09-01

    Full Text Available It is of great importance to assess the pollution of groundwater as it makes up about twenty percent of the world’s freshwater supply. Environmental laws in Egypt are correlated with protecting water resources from contamination and generally set the maximum limits for the concentration of different hazardous components in wastewater before it is discharged to sea water, rivers, groundwater and the public sewer system. Groundwater from Samalout, Al Minya governorate, Egypt, is studied by analysing its heavy metal content using Inductively Coupled Plasma Mass Spectrometry (ICP-MS. Furthermore, the obtained heavy metal concentrations are compared with permissible limits set by environmental organizations such as the World Health Organization (WHO and the United States Environmental Protection Agency (US-EPA. Comparing the heavy metal concentrations with the groundwater in question clearly demonstrated that the water in this resource should not be directly used for drinking and requires some degree of treatment before usage. For example, concentrations of chromium and lead are far above the maximum permissible limit. The consequent health risks due to the usage of contaminated water are identified in this study as well.

  6. Preliminary assessment of water chemistry related to groundwater flooding in Wawarsing, New York, 2009-11

    Science.gov (United States)

    Brown, Craig J.; Eckhardt, David A.; Stumm, Frederick; Chu, Anthony

    2012-01-01

    Water-quality samples collected in an area prone to groundwater flooding in Wawarsing, New York, were analyzed and assessed to better understand the hydrologic system and to aid in the assessment of contributing water sources. Above average rainfall over the past decade, and the presence of a pressurized water tunnel that passes about 700 feet beneath Wawarsing, could both contribute to groundwater flooding. Water samples were collected from surface-water bodies, springs, and wells and analyzed for major and trace inorganic constituents, dissolved gases, age tracers, and stable isotopes. Distinct differences in chemistry exist between tunnel water and groundwater in unconsolidated deposits and in bedrock, and among groundwater samples collected from some bedrock wells during high head pressure and low head pressure of the Rondout-West Branch Tunnel. Samples from bedrock wells generally had relatively higher concentrations of sulfate (SO42-), strontium (Sr), barium (Ba), and lower concentrations of calcium (Ca) and bicarbonate (HCO3-), as compared to unconsolidated wells. Differences in stable-isotope ratios among oxygen-18 to oxygen-16 (δ18O), hydrogen-2 to hydrogen-1 (δ2H), sulfur-34 to sulfur-32(δ34S) of SO42-, Sr-87 to Sr-86 (87Sr/86Sr), and C-13 to C-12 (δ13C) of dissolved inorganic carbon (DIC) indicate a potential for distinguishing water in the Delaware-West Branch Tunnel from native groundwater. For example, 87Sr/86Sr ratios were more depleted in groundwater samples from most bedrock wells, as compared to samples from surface-water sources, springs, and wells screened in unconsolidated deposits in the study area. Age-tracer data provided useful information on pathways of the groundwater-flow system, but were limited by inherent problems with dissolved gases in bedrock wells. The sulfur hexafluoride (SF6) and (or) chlorofluorocarbons (CFCs) apparent recharge years of most water samples from wells screened in unconsolidated deposits and springs ranged

  7. PERFORMANCE ASSESSMENT FOR FIELD SPORTS

    Directory of Open Access Journals (Sweden)

    Christopher Carling

    2009-03-01

    Full Text Available DESCRIPTION The book covers the various sport science assessment procedures for sports such as soccer, rugby, field hockey and lacrosse. It provides detailed and clear information about laboratory and field-based methods that can be used to assess and improve both individual and team performance. PURPOSE The book aims to provide a contemporary reference tool for selection of appropriate testing procedures for sports across a range of scientific disciplines. FEATURES The text begins with a chapter on the rationales for performance assessments, the use of technology and the necessity for procedures to conform to scientific rigor, explaining the importance of test criteria. This chapter ends by emphasizing the importance of the feedback process and vital considerations for the practitioner when interpreting the data, selecting which information is most important and how to deliver this back to the athlete or coach in order to deliver a positive performance outcome. The next two chapters focus on psychological assessments with respect to skill acquisition, retention and execution providing a variety of qualitative and quantitative options, underpinned with scientific theory and contextualized in order to improve the understanding of the application of these methods to improve anticipation and decision-making to enhance game intelligence.Chapter 4 provides coverage of match analysis techniques in order to make assessments of technical, tactical and physical performances. Readers learn about a series of methodologies ranging from simplistic pen and paper options through to sophisticated technological systems with some exemplar data also provided. Chapters 5 through 7 cover the physiological based assessments, including aerobic, anaerobic and anthropometric procedures. Each chapter delivers a theoretical opening section before progressing to various assessment options and the authors make great efforts to relate to sport-specific settings. The final

  8. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater

    International Nuclear Information System (INIS)

    Smyth, D.J.A.; Shikaze, S.G.; Cherry, J.A.

    1997-01-01

    The passive interception and in situ treatment of dissolved contaminants in groundwater by permeable reactive barriers has recently gained favor at an increasing number of sites as an alternative to conventional approaches to groundwater remediation such as the pump-and-treat method. Permeable reactive barriers have two essential functions. The first is that the barriers must be installed in a position such that all of the plume passes through the reactive system. The second function is to achieve acceptable treatment of the contamination by physical, chemical or biological means within or downgradient of the barrier. In this paper, issues associated with the hydraulic performance of permeable reaction barriers are evaluated using a three-dimensional groundwater flow model. The efficiency of plume capture by permeable wall and funnel-and-gate systems is examined for some generic and for site-specific hydrogeologic systems. The results have important implications to decisions pertaining to the selection, design and installation of permeable reactive barrier systems

  9. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  10. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    Science.gov (United States)

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox

  11. The Groundwater Assessment for the Youngdong Model by EPM Modeling

    International Nuclear Information System (INIS)

    Jeong, Mi-Seon; Hwang, Yong-Soo

    2007-01-01

    One of the options being considered by several countries for the long term disposal of radioactive waste material is deep burial in stable geological formations. In Korea it is intended that spent nuclear fuel(SNF) and long-lived low- and intermediate-level wastes will be disposed of a deep repository. In order to achieve long-term safety, the repository system is designed so as to ensure that several factors contribute to the overall performance. The part of the repository system concerned with the waste form, containers and the immediate physical and chemical environment of the repository is generally referred to as the near-field. The transport pathways and dilution and retardation mechanisms in the rocks between the repository and the biosphere, i.e. the far-field mechanisms of transport through the geosphere generally make a very important contribution to the overall performance of the repository. Finally, the distribution of radionuclides in the biosphere and the consequent exposure pathways also play an important role in an evaluation of overall performance

  12. Groundwater quality assessment of the quaternary unconsolidated sedimentary basin near the Pi river using fuzzy evaluation technique

    Science.gov (United States)

    Mohamed, Adam Khalifa; Liu, Dan; Mohamed, Mohamed A. A.; Song, Kai

    2018-05-01

    The present study was carried out to assess the groundwater quality for drinking purposes in the Quaternary Unconsolidated Sedimentary Basin of the North Chengdu Plain, China. Six groups of water samples (S1, S2, S3, S4, S5, and S6) are selected in the study area. These samples were analyzed for 19 different physicochemical water quality parameters to assess groundwater quality. The physicochemical parameters of groundwater were compared with China's Quality Standards for Groundwater (GB/T14848-93). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. Total hardness and total dissolved solid values show that the investigated water is classified as very hard and fresh water, respectively. The sustainability of groundwater for drinking purposes was assessed based on the fuzzy mathematics evaluation (FME) method. The results of the assessment were classified into five groups based on their relative suitability for portable use (grade I = most suitable to grade V = least suitable), according to (GB/T 14848-93). The assessment results reveal that the quality of groundwater in most of the wells was class I, II and III and suitable for drinking purposes, but well (S2) has been found to be in class V, which is classified as very poor and cannot be used for drinking. Also, the FME method was compared with the comprehensive evaluation method. The FME method was found to be more comprehensive and reasonable to assess groundwater quality. This study can provide an important frame of reference for decision making on improving groundwater quality in the study area and nearby surrounding.

  13. Assessing Changes in Precipitation and Impacts on Groundwater in Southeastern Brazil using Regional Hydroclimate Reconstruction

    Science.gov (United States)

    Nunes, A.; Fernandes, M.; Silva, G. C., Jr.

    2017-12-01

    Aquifers can be key players in regional water resources. Precipitation infiltration is the most relevant process in recharging the aquifers. In that regard, understanding precipitation changes and impacts on the hydrological cycle helps in the assessment of groundwater availability from the aquifers. Regional modeling systems can provide precipitation, near-surface air temperature, together with soil moisture at different ground levels from coupled land-surface schemes. More accurate those variables are better the evaluation of the precipitation impact on the groundwater. Downscaling of global reanalysis very often employs regional modeling systems, in order to give more detailed information for impact assessment studies at regional scales. In particular, the regional modeling system, Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), might improve the accuracy of hydrometeorological variables in regions with spatial and temporal scarcity of in-situ observations. SRDAS combines assimilation of precipitation estimates from gauge-corrected satellite-based products with spectral nudging technique. The SRDAS hourly outputs provide monthly means of atmospheric and land-surface variables, including precipitation, used in the calculations of the hydrological budget terms. Results show the impact of changes in precipitation on groundwater in the aquifer located near the southeastern coastline of Brazil, through the assessment of the water-cycle terms, using a hydrological model during dry and rainy periods found in the 15-year numerical integration of SRDAS.

  14. Regional scale groundwater resource assessment in the Australian outback - Geophysics is the only way.

    Science.gov (United States)

    Munday, T. J.; Davis, A. C.; Gilfedder, M.; Annetts, D.

    2015-12-01

    hydrogeological information, geophysical methods are demonstrably a cost and time effective approach to upscaling local hydrogeological information, thereby fast tracking groundwater resource assessments that would otherwise take decades to complete.

  15. Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes.

    Science.gov (United States)

    Zhang, Yong; Weissmann, Gary S; Fogg, Graham E; Lu, Bingqing; Sun, HongGuang; Zheng, Chunmiao

    2018-06-05

    Groundwater susceptibility to non-point source contamination is typically quantified by stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term process that may last for decades and exhibit strong temporal variations. This study proposes a three-dimensional (3- d ), transient index map built upon physical models to characterize the complete temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time probability density (BTTPD) approach is extended to assess the 3- d deep groundwater susceptibility to non-point source contamination within a sequence stratigraphic framework observed in the Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient measure of aquifer susceptibility. The resultant 3- d imaging of susceptibility using the simulated BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility. The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing rapid downward solute movement and displaying relatively narrow and young age distributions. In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits "protect" deep aquifers by slowing downward solute movement and displaying a relatively broad and old age distribution. Further comparison of the simulated susceptibility index maps to known contaminant distributions shows that these maps are generally consistent with the high concentration and quick evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since the 1970s'. This application demonstrates that the BTTPDs can be used as quantitative and transient measures of deep aquifer susceptibility to non-point source contamination.

  16. Assessment of groundwater vulnerability to acidification in the Krusne hory Mts. (Czech Republic)

    Science.gov (United States)

    Vostracka, B.

    2003-04-01

    Several decades of acid precipitation have substantially damaged natural ecosystems in some parts of the Czech Republic. Deterioration of forest quality in the Krusne hory Mts. (NW Bohemia, part of the so-called 'Black Triangle') began as a consequence of acidification at the end of 60's. The acid atmospheric deposition (wet and dry) has changed considerably the quality of groundwater. The groundwater vulnerability is analyzed in the maps using GIS. Various factors affecting acidification are depicted in the separate layers. These factors are geology, type of soils, vegetation cover, altitude, influence of morphology and prevailing direction of winds, and precipitation. Influence of each factor is represented by a corresponding weight coefficient expressing participation of the given factor in the total acidification with respect to the others. Assessment of these weight coefficients is based on the groundwater quality monitoring in the Krusne hory Mts. Chemical data provides evidence of the real spreading of acid groundwater. Acidification is characterized by a low concentration of bicarbonates that have locally almost disappeared in the apical parts of the mountain range. The pH value is very low too (about 4.5). The pH decrease is accompanied by a significant increase in the contents of Al. Concentrations of sulfates and nitrates increase substantially as well. These parameters are used for a determination of the weight coefficients of the above-mentioned individual factors. The proposed analysis of these six factors (characterizing behavior of the individual components separately) enables to derive the resulting map of the groundwater vulnerability to acidification respecting mutual interaction of the individual factors.

  17. Regional assessment of groundwater resources (hydrogeological map of Younggwang area, Korea vol.8)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S H; Kim, Y K; Hong, Y K; Cho, M J; Lee, D W; Bae, D J; Lee, C W; Kim, H C; Kim, S J; Park, S W; Lee, P K; Yum, B W; Moon, S H; Lee, S K; Lee, S R; Park, Y S; Lim, M T; Sung, K S; Park, I H; Ham, S Y; Kim, Y J; Woo, N C [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This study is objected to characterize groundwater resources, to assess groundwater contamination, and to produce hydrogeological and related thematic maps of the study area. The study area, Younggwang County, Chonnam Province, covers the area of 460 km{sup 2}. To accomplish the objectives various studies have been carried out including general and structural geology, GIS, hydrogeology, geophysics and hydrogeochemical analysis. Geophysical explorations, dipole-dipole resistivity, Schulumberger sounding and magnetic method, were executed for investigating geologic structure and determining test borehole sites. Some test boreholes such as, Honggok, Donggan, Weolsan and Seolmae hit aquifer structures. Geophysical logging, such as gamma ray, temperature, water conductivity, electrical resistivity, self-potential were also executed for petrological differentiation and in out flow of groundwater. The recharge rate of granitic region is more than the others, which derived by the analysis of 7 low-flow measurements in 10 small watersheds in the area. The recharge rate has been estimated at 7.2%(99.3 mm/year) in the vicinity. Well inventory of the area included 197 deep wells and 43 shallow wells. In addition, 10 stream samples and one spring were surveyed for water level, water temperature, pH, EC, TDS and the concentration of dissolved oxygen(DO). Regional groundwater pollution susceptibility was analyzed using GIS technique. A standard method, `DRASTIC` developed by US EPA, was applied to evaluate groundwater pollution potential and aquifer susceptibility. Resulting DRASTIC indices ranged from 52 to 141, and the Pesticide indices from 61 to 187. Seawater intrusion phenomena in Sangsari-Hasari are considered and evaluated by well inventory and the selected borehole`s electric conductivity(EC) logging. Seawater intrusion to the vulnerable coastal alluvium aquifers is generally depleted with time. The amount of potential groundwater resources in the study area is estimated

  18. Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy

    Science.gov (United States)

    Allocca, V.; De Vita, P.; Manna, F.; Nimmo, John R.

    2015-01-01

    Groundwater recharge assessment of karst aquifers, at various spatial and temporal scales, is a major scientific topic of current importance, since these aquifers play an essential role for both socio-economic development and fluvial ecosystems.

  19. Sanitary landfill groundwater quality assessment plan Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  20. Methodology for NDA performance assessment

    International Nuclear Information System (INIS)

    Cuypers, M.; Franklin, M.; Guardini, S.

    1986-01-01

    In the framework of the RandD programme of the Joint Research Centre of the Commission of the European Communities, a considerable effort is being dedicated to performance assessment of NDA techniques taking account of field conditions. By taking account of field conditions is meant measurement samples of the size encountered in practice and training which allows inspectors to design cost efficient verification plans for the real situations encountered in the field. Special laboratory facilities referred to as PERLA are being constructed for this purpose. These facilities will be used for measurement experiments and for training. In this paper, performance assessment is discussed under the headings of measurement capability and in-field effectiveness. Considerable emphasis is given to the role of method specific measurement error models. The authors outline the advantages of giving statistical error models a sounder basis in the physical phenomenology of the measurement method

  1. Risk assessment for pesticide contamination of groundwater with sparse available data

    Science.gov (United States)

    Bardowicks, K.; Heredia, O.; Billib, M.; Fernández Cirelli, A.; Boochs, P.

    2009-04-01

    The contamination of the water resources by agrochemicals is recognized in industrial countries as a very important environmental problem, nevertheless in most of developing and threshold countries the risks for health and environmental problems are not considered. In these countries agrochemicals, which are forbidden since several years in Europe (e.g. atrazine), are still in use. In some threshold countries monitoring systems are already installed for nutrients (N, P) and also a few for heavy metals, but so far the contamination by pesticides is hardly ever controlled, thus there is no data available about pesticide concentrations in soil and water. The aim of this research is to develop a methodology to show farmers and other water users (water agencies, drinking water supply companies) in basins of developing or threshold countries with sparse available data the risk of contamination of the groundwater resources by pesticides. A few data like pesticide application, precipitation, irrigation, potential evaporation and soil types are available in some regions. If these data is reliable it can be used together with some justified estimated parameters to perform simulations of the fate of pesticides to the groundwater. Therefore in two study cases in Argentina and Chile pesticide models (e.g. PESTAN, IPTM-CS) were used to evaluate the risk of contamination of the groundwater. The results were compared with contamination indicators, like one developed by O. Heredia, for checking their plausibility. Afterwards the results of the models were used as input data for simulations at the catchment scale, for instance for a groundwater simulation model (VISUAL MODFLOW). The results show a great risk for the contamination of the groundwater resources in the selected study areas, especially by atrazine. On this account the findings will be used by local researchers to improve the knowledge and the awareness of farmers and other stakeholders about the contamination of the

  2. Preliminary melter performance assessment report

    International Nuclear Information System (INIS)

    Elliott, M.L.; Eyler, L.L.; Mahoney, L.A.; Cooper, M.F.; Whitney, L.D.; Shafer, P.J.

    1994-08-01

    The Melter Performance Assessment activity, a component of the Pacific Northwest Laboratory's (PNL) Vitrification Technology Development (PVTD) effort, was designed to determine the impact of noble metals on the operational life of the reference Hanford Waste Vitrification Plant (HWVP) melter. The melter performance assessment consisted of several activities, including a literature review of all work done with noble metals in glass, gradient furnace testing to study the behavior of noble metals during the melting process, research-scale and engineering-scale melter testing to evaluate effects of noble metals on melter operation, and computer modeling that used the experimental data to predict effects of noble metals on the full-scale melter. Feed used in these tests simulated neutralized current acid waste (NCAW) feed. This report summarizes the results of the melter performance assessment and predicts the lifetime of the HWVP melter. It should be noted that this work was conducted before the recent Tri-Party Agreement changes, so the reference melter referred to here is the Defense Waste Processing Facility (DWPF) melter design

  3. Assessing soil and groundwater contamination from biofuel spills.

    Science.gov (United States)

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  4. Assessment of Long-Term Evolution of Groundwater Hydrochemical Characteristics Using Multiple Approaches: A Case Study in Cangzhou, Northern China

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-03-01

    Full Text Available Water shortage is severe in the North China Plain (NCP. In addition to a deficiency of water resources, deterioration of groundwater quality should be of great concern. In this study, hydrogeological analysis was conducted in combination with principal component analysis, correlation analysis and the co-kriging method to identify factors controlling the content of major ions and total dissolved solids (TDS in areal shallow and deep groundwater and to assess groundwater evolution in Cangzhou, China. The results suggested that groundwater quality degradation occurred and developed in the study area, as indicated by increasing concentrations of major ions, TDS and hardness in both shallow and deep groundwater. In shallow groundwater, whose hydrochemical water types changed from HCO3–Ca.Na.Mg and HCO3.Cl–Na in the west (Zone II to Cl.SO4–Na and Cl–Na in the east (Zone III. Areas with TDS concentrations between 1500 and 2000 mg/L occupied 79.76% of the total in the 1980s, while areas with a TDS concentration ranging from 2500 to 3000 mg/L comprised 59.11% of the total in the 2010s. In deep groundwater, the area with TDS over 1000 mg/L expanded from 5366.39 km2 in the 1960s to 7183.52 km2 in the 2010s. Natural processes (water-rock interactions and anthropogenic activities (groundwater exploitation were the dominant factors controlling the major ions’ content in local groundwater. Dissolution of dolomite, calcite, feldspar and gypsum were the primary sources of major ions in groundwater, and the ion exchange reaction had a strong effect on the cation content, especially for deep groundwater.

  5. The assessment of processes controlling the spatial distribution of hydrogeochemical groundwater types in Mali using multivariate statistics

    Science.gov (United States)

    Keita, Souleymane; Zhonghua, Tang

    2017-10-01

    Sustainable management of groundwater resources is a major issue for developing countries, especially in Mali. The multiple uses of groundwater led countries to promote sound management policies for sustainable use of the groundwater resources. For this reason, each country needs data enabling it to monitor and predict the changes of the resources. Also given the importance of groundwater quality changes often marked by the recurrence of droughts; the potential impacts of regional and geological setting of groundwater resources requires careful study. Unfortunately, recent decades have seen a considerable reduction of national capacities to ensure the hydrogeological monitoring and production of qualit data for decision making. The purpose of this work is to use the groundwater data and translate into useful information that can improve water resources management capacity in Mali. In this paper, we used groundwater analytical data from accredited, laboratories in Mali to carry out a national scale assessment of the groundwater types and their distribution. We, adapted multivariate statistical methods to classify 2035 groundwater samples into seven main groundwater types and built a national scale map from the results. We used a two-level K-mean clustering technique to examine the hydro-geochemical records as percentages of the total concentrations of major ions, namely sodium (Na), magnesium (Mg), calcium (Ca), chloride (Cl), bicarbonate (HCO3), and sulphate (SO4). The first step of clustering formed 20 groups, and these groups were then re-clustered to produce the final seven groundwater types. The results were verified and confirmed using Principal Component Analysis (PCA) and RockWare (Aq.QA) software. We found that HCO3 was the most dominant anion throughout the country and that Cl and SO4 were only important in some local zones. The dominant cations were Na and Mg. Also, major ion ratios changed with geographical location and geological, and climatic

  6. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of the groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTs) associated with the US Department of Energy Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surfacewater quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites and USTs located in the UEFPCHR. An overview of the hydrogeologic system in the UEFPCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data, and detailed descriptions of groundwater quality are presented in Section 4.0. Findings of the 1991 monitoring program are summarized in Section 5.0. Proposed modifications to the groundwater quality monitoring program in the UEFPCHR are presented

  7. Performance Assessment Institute-NV

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Joesph [Univ. of Nevada, Las Vegas, NV (United States)

    2012-12-31

    The National Supercomputing Center for Energy and the Environment’s intention is to purchase a multi-purpose computer cluster in support of the Performance Assessment Institute (PA Institute). The PA Institute will serve as a research consortium located in Las Vegas Nevada with membership that includes: national laboratories, universities, industry partners, and domestic and international governments. This center will provide a one-of-a-kind centralized facility for the accumulation of information for use by Institutions of Higher Learning, the U.S. Government, and Regulatory Agencies and approved users. This initiative will enhance and extend High Performance Computing (HPC) resources in Nevada to support critical national and international needs in "scientific confirmation". The PA Institute will be promoted as the leading Modeling, Learning and Research Center worldwide. The program proposes to utilize the existing supercomputing capabilities and alliances of the University of Nevada Las Vegas as a base, and to extend these resource and capabilities through a collaborative relationship with its membership. The PA Institute will provide an academic setting for interactive sharing, learning, mentoring and monitoring of multi-disciplinary performance assessment and performance confirmation information. The role of the PA Institute is to facilitate research, knowledge-increase, and knowledge-sharing among users.

  8. Assessing Groundwater Model Uncertainty for the Central Nevada Test Area

    International Nuclear Information System (INIS)

    Pohll, Greg; Pohlmann, Karl; Hassan, Ahmed; Chapman, Jenny; Mihevc, Todd

    2002-01-01

    The purpose of this study is to quantify the flow and transport model uncertainty for the Central Nevada Test Area (CNTA). Six parameters were identified as uncertain, including the specified head boundary conditions used in the flow model, the spatial distribution of the underlying welded tuff unit, effective porosity, sorption coefficients, matrix diffusion coefficient, and the geochemical release function which describes nuclear glass dissolution. The parameter uncertainty was described by assigning prior statistical distributions for each of these parameters. Standard Monte Carlo techniques were used to sample from the parameter distributions to determine the full prediction uncertainty. Additional analysis is performed to determine the most cost-beneficial characterization activities. The maximum radius of the tritium and strontium-90 contaminant boundary was used as the output metric for evaluation of prediction uncertainty. The results indicate that combining all of the uncertainty in the parameters listed above propagates to a prediction uncertainty in the maximum radius of the contaminant boundary of 234 to 308 m and 234 to 302 m, for tritium and strontium-90, respectively. Although the uncertainty in the input parameters is large, the prediction uncertainty in the contaminant boundary is relatively small. The relatively small prediction uncertainty is primarily due to the small transport velocities such that large changes in the uncertain input parameters causes small changes in the contaminant boundary. This suggests that the model is suitable in terms of predictive capability for the contaminant boundary delineation

  9. E-Area Performance Assessment Interim Measures Assessment FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, M

    2006-01-31

    After major changes to the limits for various disposal units of the E-Area Low Level Waste Facility (ELLWF) last year, no major changes have been made during FY2005. A Special Analysis was completed which removes the air pathway {sup 14}C limit from the Intermediate Level Vault (ILV). This analysis will allow the disposal of reactor moderator deionizers which previously had no pathway to disposal. Several studies have also been completed providing groundwater transport input for future special analyses. During the past year, since Slit Trenches No.1 and No.2 were nearing volumetric capacity, they were operationally closed under a preliminary closure analysis. This analysis was performed using as-disposed conditions and data and showed that concrete rubble from the demolition of 232-F was acceptable for disposal in the STs even though the latest special analysis for the STs had reduced the tritium limits so that the inventory in the rubble exceeded limits. A number of special studies are planned during the next years; perhaps the largest of these will be revision of the Performance Assessment (PA) for the ELLWF. The revision will be accomplished by incorporating special analyses performed since the last PA revision as well as revising analyses to include new data. Projected impacts on disposal limits of more recent studies have been estimated. No interim measures will be applied during this year. However, it is being recommended that tritium disposals to the Components-in-Grout (CIG) Trenches be suspended until a limited Special Analysis (SA) currently in progress is completed. This SA will give recommendations for optimum placement of tritiated D-Area tower waste. Further recommendations for tritiated waste placement in the CIG Trenches will be given in the upcoming PA revision.

  10. Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria

    Science.gov (United States)

    Oni, T. E.; Omosuyi, G. O.; Akinlalu, A. A.

    2017-12-01

    Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2) of 65 m in (41) different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness) were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement). The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer) and GLSI (geoelectric layer susceptibility indexing). The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1-0.19) area, while the northern and southern parts have poor protective capacity (septic tank, refuse dump should be cited far from groundwater development area.

  11. Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy

    International Nuclear Information System (INIS)

    Bhattacharyya, Jessica; Read, David; Amos, Sean; Dooley, Stephen; Killham, Kenneth; Paton, Graeme I.

    2005-01-01

    Shallow groundwater beneath a former airfield site in southern England has been heavily contaminated with a wide range of chlorinated solvents. The feasibility of using bacterial biosensors to complement chemical analysis and enable cost-effective, and focussed sampling has been assessed as part of a site evaluation programme. Five different biosensors, three metabolic (Vibrio fischeri, Pseudomonas fluorescens 10568 and Escherichia coli HB101) and two catabolic (Pseudomonas putida TVA8 and E. coli DH5α), were employed to identify areas where the availability and toxicity of pollutants is of most immediate environmental concern. The biosensors used showed different sensitivities to each other and to the groundwater samples tested. There was generally a good agreement with chemical analyses. The potential efficacy of remediation strategies was explored by coupling sample manipulation to biosensor tests. Manipulation involved sparging and charcoal treatment procedures to simulate remediative engineering solutions. Sparging was sufficient at most locations. - Luminescent bacteria complement chemical analysis and support remediation technology

  12. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    Science.gov (United States)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  13. Exposure assessment of groundwater transport of tritium from the Central Nevada Test Area

    International Nuclear Information System (INIS)

    Pohlmann, K.; Chapman, J.; Andricevic, R.

    1995-04-01

    This exposure assessment provides a range of possible human health risk at two locations due to groundwater transport from the Faultless underground nuclear test. These locations correspond to the boundary of the land under DOE control (where no wells currently exist) and the closest existing well (Six Mile Well). The range in excess risk is within the EPA goal for excess risk due to environmental contaminants (10 -6 ) at Six Mile Well. Calculations considering high spatial variability in hydraulic properties and/or high uncertainty in the mean groundwater velocity are also within the EPA goal. At the DOE boundary, the range in excess risk exceeds the EPA goal, regardless of the values of spatial variability and uncertainty. The range in values of excess risk can be reduced with additional field data from the site; however, incorporation of additional data, which would likely be obtained at great expense, is unlikely to result in significant refinement of the results

  14. Risk assessing heavy metals in the groundwater-surface water interface at a contaminated site

    DEFF Research Database (Denmark)

    Bigi, Giovanni; McKnight, Ursula S.; Bjerg, Poul Løgstrup

    such as surface water and groundwater (EC, 2017). The current study quantified and assessed the contamination of As, Cd, Cr, Cu, Ni, Pb and Zn in the shallow aquifer, hyporheic zone, stream water and streambed sediments at Rådvad site, a former metal manufacturing industrial area located in Denmark, investigating...... in the soil). Stream water was sampled in 12 points, while groundwater was sampled in 4 wells close to the stream where the interaction was suspected. Sediments and hyporheic zone were sampled in pair, where upward hydraulic heads have been detected. A drain discharging in the river was also sampled....... Sediments were divided in different layers and both heavy metal total concentration and chemical partitioning were analysed. Redox species and dissolved organic matter were also analysed in the water samples, while fraction of organic carbon was investigated in the extracted sediments. Results showed a high...

  15. Comparison of different methods to assess natural backgrond levels in groundwater bodies in southern Europe

    Science.gov (United States)

    Preziosi, Elisabetta; Parrone, Daniele; Ghergo, Stefano; Ducci, Daniela; Sellerino, Mariangela; Condesso de Melo, Maria Teresa; Oliveira, Juana; Ribeiro, Luis

    2014-05-01

    The assessment of the natural background levels (NBLs) of a substance or element is important to distinguish anthropogenic pollution from contamination of natural origin in groundwater bodies. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. Rainfall composition, water-rock interactions in both vadose and saturated zone, exchanges with other water bodies and residence time also contribute to determine the groundwater natural composition. Nowadays there are different methods to assess NBLs but the main concern is that they may provide different results. In the European legislative context, the Groundwater Directive (2006/118/EC) requests to EU Member States to derive appropriate threshold values (TV) for several potentially harmful substances, taking into account NBLs when necessary, in order to assess the chemical status of groundwater bodies. In the framework of a common project between Italy (CNR) and Portugal (FCT), several groundwater bodies were taken into account in different regions of Italy (Latium and Campania) and Portugal. The general objective is the definition of a sound comprehensive methodology for NBL assessment at groundwater body scale, suitable to different hydrogeological settings through comparing diverse case studies and different approaches. The Italian case studies are located in volcanic or volcano-sedimentary geological contexts, where high concentrations of substances such as As, F, Fe, Mn among others in groundwater are well known. The Portuguese case studies are located in carbonate and porous media aquifers. Several data sets were explored with the use of statistical as well as mathematical procedures in order to determine a threshold between natural and anthropogenic concentration. Today essentially two groups of methods are proposed, the first ascribed to the probability plots (PP method), the second based on the selection of the

  16. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    Science.gov (United States)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  17. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    underground testing areas on a regional scale. The groundwater flow model was used in conjunction with a particle-tracking code to define the pathlines followed by groundwater particles originating from 415 points associated with 253 nuclear test locations. Three of the most rapid pathlines were selected for transport simulations. These pathlines are associated with three nuclear test locations, each representing one of the three largest testing areas. These testing locations are: BOURBON on Yucca Flat, HOUSTON on Central Pahute Mesa, and TYBO on Western Pahute Mesa. One-dimensional stochastic tritium transport simulations were performed for the three pathlines using the Monte Carlo method with Latin hypercube sampling. For the BOURBON and TYBO pathlines, sources of tritium from other tests located along the same pathline were included in the simulations. Sensitivity analyses were also performed on the transport model to evaluate the uncertainties associated with the geologic model, the rates of groundwater flow, the tritium source, and the transport parameters. Tritium concentration predictions were found to be mostly sensitive to the regional geology in controlling the horizontal and vertical position of transport pathways. The simulated concentrations are also sensitive to matrix diffusion, an important mechanism governing the migration of tritium in fractured carbonate and volcanic rocks. Source term concentration uncertainty is most important near the test locations and decreases in importance as the travel distance increases. The uncertainty on groundwater flow rates is as important as that on matrix diffusion at downgradient locations. The risk assessment was performed to provide conservative and bounding estimates of the potential risks to human health and the environment from tritium in groundwater. Risk models were designed by coupling scenario-specific tritium intake with tritium dose models and cancer and genetic risk estimates using the Monte Carlo method

  18. Assessment of ground-water contamination from a leaking underground storage tank at a defense supply center near Richmond, Virginia

    International Nuclear Information System (INIS)

    Powell, J.D.; Wright, W.G.

    1990-01-01

    During 1988-89, 24 wells were installed in the vicinity of the post-exchange gasoline station on the Defense General Supply Center, near Richmond, Virginia, to collect and analyze groundwater samples for the presence of gasoline contamination from a leaking underground storage tank. Concentrations of total petroleum hydrocarbons and benzene were as high as 8.2 mg/L and 9,000 microg/L, respectively, in water from wells in the immediate vicinity of the former leaking tank, and benzene concentrations were as high as 2,300 microg/L in a well 600 ft down gradient from the gasoline station. Groundwater flow rate are estimated to be about 60 to 80 ft/yr; on the basis of these flow rates, the contaminants may have been introduced into the groundwater as long as 7-10 yrs ago. Groundwater might infiltrate a subsurface storm sewer, where the sewer is below the water table, and discharge into a nearby stream. Preliminary risk assessment for the site identified no potential human receptors to the groundwater contamination because there were no groundwater users identified in the area. Remediation might be appropriate if exposure of future potential users is concern. Alternatives discussed for remediation of groundwater contamination in the upper aquifer at the PX Service Station include no-action, soil vapor extraction, and groundwater pumping and treatment alternatives

  19. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-12-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  20. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  1. The performance assessment and the design of an intermediate level tritium disposal vault

    International Nuclear Information System (INIS)

    Yu, A.D.

    1991-01-01

    The topic of this report is the assessment of the performance and design of the tritium disposal vault for the Westinghouse River Company at the Savannah River Laboratory. This paper describes how the groundwater modeling has affected the design of a tritium disposal vault at the Savannah River Site and this new vault will meet the regulatory performance requirements. (MB)

  2. Technical and Economic Assessment of Solar Photovoltaic for Groundwater Extraction on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Mackley, Rob D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The overall goal of environmental remediation is to protect human health and the environment. Implementing renewable energy sources such as solar photovoltaic (PV) in groundwater extraction and pump-and-treat (P&T) systems may help minimize the environmental footprint of remediation efforts. The first step in considering solar PV for powering Hanford groundwater extraction is assessing the technical and economic feasibility and identifying potential target locations where implementation would be most successful. Accordingly, a techno-economic assessment of solar PV for Hanford groundwater extraction was completed in FY15. Multiple solar PV alternatives ranging in size from 1.2 to 22.4 kWp DC were evaluated and compared against traditional grid-powered systems. Results indicate that the degree to which solar PV alternatives are feasible is primarily a function of the distance of avoided power cable costs and the inclusion of an energy storage component. Standalone solar PV systems provide an energy source at the well and avoid the costs and logistics associated with running long lengths of expensive power cable to the well-head. When solar PV systems include a battery storage component, groundwater can be pumped continuously day and night in a year-round schedule. However, due to the high cost premium of the energy storage component, a fully solar-powered solution could not provide an economic direct replacement for line-powered pumping systems. As a result, the most ideal target locations for successful implementation of solar PV on the Hanford Site are remote or distant extraction wells where the primary remedial objective is contaminant mass removal (as opposed to hydraulic containment) and three-season (March through October) intermittent pumping is acceptable (e.g. remediation of hexavalent chromium in 200-UP-1).

  3. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging

    Science.gov (United States)

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D.

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers.

  4. Groundwater impact assessment report for the 216-Z-20 Crib, 200 West Area

    International Nuclear Information System (INIS)

    Johnson, V.G.

    1993-10-01

    As required by the Hanford Federal Facility Agreement and Consent Order ([Tri-Party Agreement] Milestone M-17-00A), this report assesses the impact of wastewater discharges to the 216-Z-20 Crib on groundwater quality. The assessment reported herein extends the initial analysis conducted from 1989 through 1990 for the Liquid Effluent Study Final Project Report. Three primary issues are addressed in response to regulator concerns with the initial analysis: The magnitude and status of the soil column transuranic inventory. Potential interactions of wastewater with carbon tetrachloride from adjacent facilities. Preferential pathways created by unsealed monitoring wells

  5. Groundwater impact assessment report for the 216-Z-20 Crib, 200 West Area

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, V.G.

    1993-10-01

    As required by the Hanford Federal Facility Agreement and Consent Order ([Tri-Party Agreement] Milestone M-17-00A), this report assesses the impact of wastewater discharges to the 216-Z-20 Crib on groundwater quality. The assessment reported herein extends the initial analysis conducted from 1989 through 1990 for the Liquid Effluent Study Final Project Report. Three primary issues are addressed in response to regulator concerns with the initial analysis: The magnitude and status of the soil column transuranic inventory. Potential interactions of wastewater with carbon tetrachloride from adjacent facilities. Preferential pathways created by unsealed monitoring wells.

  6. Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea

    Science.gov (United States)

    Hamm, S.-Y.; Ryu, S. M.; Cheong, J.-Y.; Woo, Y.-J.

    2003-04-01

    In Korea, the potential of groundwater contamination in urban areas is increasing by industrial and domestic waste waters, leakage from oil storage tanks and sewage drains, leachate from municipal landfill sites and so on. Nowadays, chlorinated organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE), which are driving residential area as well as industrial area, are recognized as major hazardous contaminants. As well known, TCE is wisely used industrial activities such as degreasing, metal stripping, chemical manufacturing, pesticide production, coal gasification plants, creosote operation, and also used in automobile service centers, photo shops and laundries as cleaning solvent. Thus, groundwater protection in urban areas is important issue in Korea This study is to understand groundwater quality and contamination characteristics and to estimate risk assessment in Sasang industrial complex, Busan Metropolitan City. Busan Metropolitan City is located on southeastern coast of the Korean peninsula and is the second largest city in South Korea with a population of 3.8 millions. The geology of the study area is composed of andesite, andesitic tuff, biotite granite and alluvium (Kim et al., 1998). However, geology cannot be identified on the surface due to pavement and buildings. According to drill logs in the study area, the geologic section consists in landfill, fine sand, clay, gravelly clay, and biotite granite from the surface. Biotite granite appears 5.5- 6 m depth. Groundwater samples were collected at twenty sites in Sasang industrial complex. The groundwater samples are plotted on Piper's trilinear diagram, which indicates Ca-Cl2 type. The groundwater may be influenced by salt water because Sasang industrial complex is located near the mouse of Nakdong river that flows to the South Sea. The Ca-Cl2 water type may be partly influenced by anthropogenic contamination in the study area, since water type in granite area generally belongs Ca

  7. Salt site performance assessment activities

    International Nuclear Information System (INIS)

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables

  8. The DECADE performance assessment program

    International Nuclear Information System (INIS)

    Weber, B.V.; Ottinger, P.F.; Commisso, R.J.; Thompson, J.; Rowley, J.E.; Filios, P.; Babineau, M.A.

    1996-01-01

    Previous analyses of DECADE Module 1 experiments indicated significant current loss between the plasma opening switch (POS) and an electron-beam load. A program was initiated to diagnose and improve the power flow to assess the performance of a multi-module DECADE system. Power flow measurements between the POS and load indicate high vacuum flow, distributed current loss and azimuthal asymmetries. A decreased load impedance reduces the fraction of the load current flowing in vacuum. Improved plasma source symmetry reduces losses near the load for long conduction times. Increased POS impedance is required to significantly improve the power coupling to the load. (author). 6 figs., 9 refs

  9. The DECADE performance assessment program

    Energy Technology Data Exchange (ETDEWEB)

    Weber, B V; Ottinger, P F; Commisso, R J [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.; Goyer, J R; Kortbawi, D [Physics International Co., Berkeley, CA (United States); Thompson, J [Maxwell Labs., San Diego, CA (United States); Rowley, J E; Filios, P [Defense Nuclear Agency, Alexandria, VA (United States); Babineau, M A [Sverdlup Technology, Tullahoma, TN (United States)

    1997-12-31

    Previous analyses of DECADE Module 1 experiments indicated significant current loss between the plasma opening switch (POS) and an electron-beam load. A program was initiated to diagnose and improve the power flow to assess the performance of a multi-module DECADE system. Power flow measurements between the POS and load indicate high vacuum flow, distributed current loss and azimuthal asymmetries. A decreased load impedance reduces the fraction of the load current flowing in vacuum. Improved plasma source symmetry reduces losses near the load for long conduction times. Increased POS impedance is required to significantly improve the power coupling to the load. (author). 6 figs., 9 refs.

  10. Performance assessment of coupled processes

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    The author considers all processes to be coupled. For example, a waste package heats the surrounding rock and its pore water, creating gradients in density and pressure that result in increased water flow. That process can be described as coupled, in that the flow is a consequence of heating. In a narrower sense, one speaks also of the more weakly coupled transport processes, expressed by the Onsager reciprocal relations, that state that a transport current, i.e., flux, of heat is accompanied by a small transport current of material, as evidenced in isotope separation by thermal diffusion, the Thompson effect in thermoelectricity, etc. This paper presents a performance assessment of coupled processes

  11. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  12. Risk assessment to groundwater of pit latrine rural sanitation policy in developing country settings.

    Science.gov (United States)

    Back, Jan O; Rivett, Michael O; Hinz, Laura B; Mackay, Nyree; Wanangwa, Gift J; Phiri, Owen L; Songola, Chrispine Emmanuel; Thomas, Mavuto A S; Kumwenda, Steve; Nhlema, Muthi; Miller, Alexandra V M; Kalin, Robert M

    2018-02-01

    Parallel global rise in pit-latrine sanitation and groundwater-supply provision is of concern due to the frequent spatial proximity of these activities. Study of such an area in Malawi has allowed understanding of risks posed to groundwater from the recent implementation of a typical developing-country pit-latrine sanitation policy to be gained. This has assisted the development of a risk-assessment framework approach pragmatic to regulatory-practitioner management of this issue. The framework involves water-supply and pit-latrine mapping, monitoring of key groundwater contamination indicators and surveys of possible environmental site-condition factors and culminates in an integrated statistical evaluation of these datasets to identify the significant factors controlling risks posed. Our approach usefully establishes groundwater-quality baseline conditions of a potentially emergent issue for the study area. Such baselines are foundational to future trend discernment and contaminant natural attenuation verification critical to policies globally. Attribution of borehole contamination to pit-latrine loading should involve, as illustrated, the use of the range of contamination (chemical, microbiological) tracers available recognising none are ideal and several radial and capture-zone metrics that together may provide a weight of evidence. Elevated, albeit low-concentration, nitrate correlated with some radial metrics and was tentatively suggestive of emerging latrine influences. Longer term monitoring is, however, necessary to verify that the commonly observed latrine-borehole separation distances (29-58m), alongside statutory guidelines, do not constitute significant risk. Borehole contamination was limited and correlation with various environmental-site condition factors also limited. This was potentially ascribed to effectiveness of attenuation to date, monitoring of an emergent problem yet to manifest, or else contamination from other sources. High borehole usage

  13. Application of Geospatial Techniques for Groundwater Quality and Availability Assessment: A Case Study in Jaffna Peninsula, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Kuddithamby Gunaalan

    2018-01-01

    Full Text Available Groundwater is one of the most important natural resources in the northern coastal belt of Sri Lanka, as there are no major water supply schemes or perennial rivers. Overexploitation, seawater intrusion and persistent pollution of this vital resource are threatening human health as well as ecosystems in the Jaffna Peninsula. Therefore, the main intent of the present paper is to apply geospatial techniques to assess the spatial variation of groundwater quality and availability for the sustainable management of groundwater in the coastal areas. The electrical conductivity (EC and depth to water (DTW of 41 wells were measured during the period from March to June 2014, which represents the dry period of the study area. Surface interpolation, gradient analysis, a local indicators of spatial autocorrelations (LISA and statistical analysis were used to assess the quality and availability of groundwater. The results revealed that the drinking and irrigation water quality in the study area were poor and further deteriorated with the progression of the dry season. Good quality and availability of groundwater were observed in the western zone compared to other zones of the study area. A negative correlation was identified between depth to water and electrical conductivity in the western zone. Hence, relatively deep wells in the western zone of the study area can be used to utilize the groundwater for drinking, domestic and agricultural purposes. The outcomes of this study can be used to formulate policy decisions for sustainable management of groundwater resources in Jaffna Peninsula.

  14. Assessment of On-site sanitation system on local groundwater regime in an alluvial aquifer

    Science.gov (United States)

    Quamar, Rafat; Jangam, C.; Veligeti, J.; Chintalapudi, P.; Janipella, R.

    2017-12-01

    The present study is an attempt to study the impact of the On-site sanitation system on the groundwater sources in its vicinity. The study has been undertaken in the Agra city of Yamuna sub-basin. In this context, sampling sites (3 nos) namely Pandav Nagar, Ayodhya Kunj and Laxmi Nagar were selected for sampling. The groundwater samples were analyzed for major cations, anions and faecal coliform. Critical parameters namely chloride, nitrate and Faecal coliform were considered to assess the impact of the On-site sanitation systems. The analytical results shown that except for chloride, most of the samples exceeded the Bureau of Indian Standard limits for drinking water for all the other analyzed parameters, i.e., nitrate and faecal coliform in the first two sites. In Laxmi Nagar, except for faecal coliform, all the samples are below the BIS limits. In all the three sites, faecal coliform was found in majority of the samples. A comparison of present study indicates that the contamination of groundwater in alluvial setting is less as compared to hard rock where On-site sanitation systems have been implemented.

  15. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment

    International Nuclear Information System (INIS)

    Posen, Paulette; Lovett, Andrew; Hiscock, Kevin; Evers, Sarah; Ward, Rob; Reid, Brian

    2006-01-01

    The catabolic activity of incumbent microorganisms in soil samples of eleven dissimilar soil series was investigated, with respect to the herbicide isoproturon. Soils were collected from a 30 x 37 km area of river catchment to the north-west of London, England. Catabolic activity in each soil type during a 500 h assay was determined by 14 C-radiorespirometry. Results showed four soils that exhibited high levels of catabolic activity (33-44% mineralisation) while the remaining seven soils showed lower levels of catabolic activity (12-16% mineralisation). There was evidence to suggest that soils exhibiting high catabolic activity had low ( 14 C-radiorespirometric results were used to produce a GIS layer representing levels of catabolic activity for the dissimilar soils across the study area. This layer was combined with other GIS layers relating to pesticide attenuation, including soil organic carbon content, depth to groundwater and hydrogeology, to produce a map showing risk of groundwater contamination by isoproturon. The output from this approach was compared with output from an attenuation-only approach and differences appraised. Inclusion of the catabolism layer resulted in a lowering of risk in the model in 15% of the study area. Although there appears to be limited benefit in including pesticide catabolic activity in this regional-scale groundwater risk model, this type of addition could be useful in a site-specific risk assessment

  16. Assessment of Groundwater Quality in the Western Aquifers of Mauritius Using Isotope Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dindyal, D.; Brizmohun, R.; Fanny, J. O.Y. [National Environmental Laboratory, Reduit (Mauritius); Sacchi, E. [Dipartimento di Scienze della Terra e dell' Ambiente, Universita di Pavia (Italy)

    2013-07-15

    This contribution reports the results obtained in the IAEA TC project Mar/8/007, initiated in 2007. Fourteen boreholes were sampled during three sampling campaigns (rainy season, winter and summer): analyses include major ions, trace elements, stable isotopes ({delta}{sup 2}H, {delta}{sup 18}O and {delta}{sup 13}C) and a microbiological assessment (TC and E. coli). Results indicate that groundwater quality is generally good. Recharge mostly occurs in the central plateau area, but the increase in nitrates along the groundwater flow and the common presence of E. coli indicate that a minor recharge occurs all over the aquifer's extension. Infiltration is rapid and favoured by the presence of vertical fractures in the basalts. Discharge occurs at a lower altitude and is marked by a different stable isotope content and lower nitrates. In addition to validating the general groundwater circulation model, these results show that aquifers are not adequately protected against a possible input of pollutants from the surface. (author)

  17. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  18. Groundwater contamination by chlorinated hydrocarbons in the soil vapour phase - risk assessment at a former dry cleaner site

    Energy Technology Data Exchange (ETDEWEB)

    Danzer, J. [Boden-und-Grundwasser GbR, Sonthofen (Germany)

    2002-07-01

    Chlorinated hydrocarbons, e.g. Perchloroethene (PCE) were commonly used for dry cleaning purposes among other ones. Since they have a significant toxic potential they impose a serious risk to groundwater quality. Due to their physico-chemical properties - particularly high volatility and medium to high water solubility - and their low biodegradation potential they are highly mobile within the unsaturated soil (vapour phase) as well as within the groundwater. This poster (paper) presents data and calculations of a consultant's ''virtual every day'' work in order to assess the risk of groundwater contamination at a former dry cleaner site. (orig.)

  19. H-Area Seepage Basin (H-HWMF): Fourth quarterly 1989, groundwater quality assessment report

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    During the fourth quarter of 1989 the wells which make up the H-Area Seepage Basins (H-HWMF){sup 1} monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, and total radium.

  20. Assessment of Groundwater Resources in Kirana Hills Region, Rabwah, District Chiniot, Pakistan

    Directory of Open Access Journals (Sweden)

    Mirza Naseer Ahmad

    2016-12-01

    Full Text Available This study was planned to assess the groundwater quality of the area adjacent to Precambrian Kirana Hills, Pakistan. The majority of the people in the area use groundwater from private wells for drinking and domestic use. Therefore, it is important to provide an overview of the groundwater quality. This information would be beneficial to local people and the administration for selecting suitable water treatment methods. Samples were collected from different wells of Rabwah town, close to the Kirana Hills. Parameters like EC, pH, alkalinity and total dissolved solids (TDS were determined for 142 samples. While 40 samples were analyzed for hardness, Ca, Mg, Cl, SO4, NO3, and F. standards set by the World Health Organization (WHO were considered to evaluate the quality of groundwater. Geographic Information System (GIS was used to interpolate analyzed physicochemical parameters. The results showed that EC, TDS, hardness, Cl, SO4, and Ca were very high in the water samples of the area. Fifty-two percent of samples had pH values lower than the permissible limits. Results suggest that the water quality is extremely adverse close to the hills. The poor water quality in the area near the hills may be due to the limited recharge of aquifers because of the hills and shallow basement, which may act as a barrier to subsurface water movement. Some physical and chemical parameters indicated that the quality of water at deeper levels (i.e. >150 ft is relatively better. This may be due to limited exploitation of water from deeper aquifers as compared to shallow aquifers. Hence, proper aquifer management is required to prevent water quality deterioration due to over exploiataion. NO3 was found within the acceptable limits and all water samples were found free of any significant contamination by human activities.

  1. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

  2. Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater.

    Directory of Open Access Journals (Sweden)

    William B Ludington

    Full Text Available Climate change produces extremes in both temperature and precipitation causing increased drought severity and increased reliance on groundwater resources. Agricultural practices, which rely on groundwater, are sensitive to but also sources of contaminants, including nitrate. How agricultural contamination drives groundwater geochemistry through microbial metabolism is poorly understood.On an active cow dairy in the Central Valley of California, we sampled groundwater from three wells at depths of 4.3 m (two wells and 100 m (one well below ground surface (bgs as well as an effluent surface water lagoon that fertilizes surrounding corn fields. We analyzed the samples for concentrations of solutes, heavy metals, and USDA pathogenic bacteria of the Escherichia coli and Enterococcus groups as part of a long term groundwater monitoring study. Whole metagenome shotgun sequencing and assembly revealed taxonomic composition and metabolic potential of the community.Elevated nitrate and dissolved organic carbon occurred at 4.3m but not at 100m bgs. Metagenomics confirmed chemical observations and revealed several Planctomycete genomes, including a new Brocadiaceae lineage and a likely Planctomycetes OM190, as well novel diversity and high abundance of nano-prokaryotes from the Candidate Phyla Radiation (CPR, the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea (DPANN and the Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota (TACK superphyla. Pathway analysis suggests community interactions based on complimentary primary metabolic pathways and abundant secondary metabolite operons encoding antimicrobials and quorum sensing systems.The metagenomes show strong resemblance to activated sludge communities from a nitrogen removal reactor at a wastewater treatment plant, suggesting that natural bioremediation occurs through microbial metabolism. Elevated nitrate and rich secondary metabolite biosynthetic capacity suggest

  3. Designing Second Language Performance Assessments. Technical Report.

    Science.gov (United States)

    Norris, John M.; Brown, James Dean; Hudson, Thom; Yoshioka, Jim

    This technical report focuses on the decision-making potential provided by second language performance assessments. First, performance assessment is situated within the broader discussion of alternatives in language assessment and in educational assessment in general. Next, issues in performance assessment design, implementation, reliability, and…

  4. Temporal comportment assessment of metals in groundwater on the campus at IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Faustino, Mainara G.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M.V.; Silva, Tatiane B.S.C.; Silva, Douglas B. da; Marques, Joyce R.; Pires, Maria A.F.; Cotrim, Marycel E.B., E-mail: mainarag@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Since 2006, Nuclear and Energy Research Institute (IPEN) performs yearly the Environmental Monitoring Program of Stable Chemical Compounds (PMA-Q).Among other parameters, metals and semi metals in groundwater, collected at IPEN’s facility, are evaluated. The monitoring is conducted in nine wells, in attendance to the current Brazilian environmental legislation, which requires the monitoring of metals and semi metals in groundwater, in accordance with CETESB and CONAMA’s resolutions. CETESB is the Sao Paulo State environmental regulatory agency and CONAMA is the Environmental National Council, both agencies that regulate environmental standards in Brazil and regulate IPEN’s environmental activities. Besides these two environmental regulators, IPEN have to follow the request of the Term for the Adjustment of Conduct (TAC) from (IBAMA), in order to support programs to prevent and control pollution resulting from activities of IPEN’s facilities. In the current PMA-Q, Aluminum (Al) Antimony (Sb), Silver (Ag), Arsenic (As), Lead (Pb), Chromium (Cr), Cobalt (Co), Zinc (Zn), Boron (B), Barium (Ba), Calcium (Ca), Iron (Fe), Manganese (Mn), Mercury (Hg) and Nickel (Ni) are analyzed by using sensitive analytical techniques as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). These elements results are in this paper evaluated. Both internal and external quality controls that uses data from interlaboratory programs are discussed here. It was possible to conclude that IPEN’s groundwater attends national standards and IPEN’s monitoring system operates under controlled quality conditions. (author)

  5. Temporal comportment assessment of metals in groundwater on the campus at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Faustino, Mainara G.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M.V.; Silva, Tatiane B.S.C.; Silva, Douglas B. da; Marques, Joyce R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2015-01-01

    Since 2006, Nuclear and Energy Research Institute (IPEN) performs yearly the Environmental Monitoring Program of Stable Chemical Compounds (PMA-Q).Among other parameters, metals and semi metals in groundwater, collected at IPEN’s facility, are evaluated. The monitoring is conducted in nine wells, in attendance to the current Brazilian environmental legislation, which requires the monitoring of metals and semi metals in groundwater, in accordance with CETESB and CONAMA’s resolutions. CETESB is the Sao Paulo State environmental regulatory agency and CONAMA is the Environmental National Council, both agencies that regulate environmental standards in Brazil and regulate IPEN’s environmental activities. Besides these two environmental regulators, IPEN have to follow the request of the Term for the Adjustment of Conduct (TAC) from (IBAMA), in order to support programs to prevent and control pollution resulting from activities of IPEN’s facilities. In the current PMA-Q, Aluminum (Al) Antimony (Sb), Silver (Ag), Arsenic (As), Lead (Pb), Chromium (Cr), Cobalt (Co), Zinc (Zn), Boron (B), Barium (Ba), Calcium (Ca), Iron (Fe), Manganese (Mn), Mercury (Hg) and Nickel (Ni) are analyzed by using sensitive analytical techniques as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). These elements results are in this paper evaluated. Both internal and external quality controls that uses data from interlaboratory programs are discussed here. It was possible to conclude that IPEN’s groundwater attends national standards and IPEN’s monitoring system operates under controlled quality conditions. (author)

  6. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    Science.gov (United States)

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit

  7. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    Science.gov (United States)

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  8. Quality assurance in performance assessments

    International Nuclear Information System (INIS)

    Maul, P.R.; Watkins, B.M.; Salter, P.; Mcleod, R

    1999-01-01

    Following publication of the Site-94 report, SKI wishes to review how Quality Assurance (QA) issues could be treated in future work both in undertaking their own Performance Assessment (PA) calculations and in scrutinising documents supplied by SKB (on planning a repository for spent fuels in Sweden). The aim of this report is to identify the key QA issues and to outline the nature and content of a QA plan which would be suitable for SKI, bearing in mind the requirements and recommendations of relevant standards. Emphasis is on issues which are specific to Performance Assessments for deep repositories for radioactive wastes, but consideration is also given to issues which need to be addressed in all large projects. Given the long time over which the performance of a deep repository system must be evaluated, the demonstration that a repository is likely to perform satisfactorily relies on the use of computer-generated model predictions of system performance. This raises particular QA issues which are generally not encountered in other technical areas (for instance, power station operations). The traceability of the arguments used is a key QA issue, as are conceptual model uncertainty, and code verification and validation; these were all included in the consideration of overall uncertainties in the Site-94 project. Additionally, issues which are particularly relevant to SKI include: How QA in a PA fits in with the general QA procedures of the organisation undertaking the work. The relationship between QA as applied by the regulator and the implementor of a repository development programme. Section 2 introduces the discussion of these issues by reviewing the standards and guidance which are available from national and international organisations. This is followed in Section 3 by a review of specific issues which arise from the Site-94 exercise. An outline procedure for managing QA issues in SKI is put forward as a basis for discussion in Section 4. It is hoped that

  9. Quality assurance in performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Maul, P.R.; Watkins, B.M.; Salter, P.; Mcleod, R [QuantiSci Ltd, Henley-on-Thames (United Kingdom)

    1999-01-01

    Following publication of the Site-94 report, SKI wishes to review how Quality Assurance (QA) issues could be treated in future work both in undertaking their own Performance Assessment (PA) calculations and in scrutinising documents supplied by SKB (on planning a repository for spent fuels in Sweden). The aim of this report is to identify the key QA issues and to outline the nature and content of a QA plan which would be suitable for SKI, bearing in mind the requirements and recommendations of relevant standards. Emphasis is on issues which are specific to Performance Assessments for deep repositories for radioactive wastes, but consideration is also given to issues which need to be addressed in all large projects. Given the long time over which the performance of a deep repository system must be evaluated, the demonstration that a repository is likely to perform satisfactorily relies on the use of computer-generated model predictions of system performance. This raises particular QA issues which are generally not encountered in other technical areas (for instance, power station operations). The traceability of the arguments used is a key QA issue, as are conceptual model uncertainty, and code verification and validation; these were all included in the consideration of overall uncertainties in the Site-94 project. Additionally, issues which are particularly relevant to SKI include: How QA in a PA fits in with the general QA procedures of the organisation undertaking the work. The relationship between QA as applied by the regulator and the implementor of a repository development programme. Section 2 introduces the discussion of these issues by reviewing the standards and guidance which are available from national and international organisations. This is followed in Section 3 by a review of specific issues which arise from the Site-94 exercise. An outline procedure for managing QA issues in SKI is put forward as a basis for discussion in Section 4. It is hoped that

  10. Communicating Performance Assessments Results - 13609

    International Nuclear Information System (INIS)

    Layton, Mark

    2013-01-01

    The F-Area Tank Farms (FTF) and H-Area Tank Farm (HTF) are owned by the U.S. Department of Energy (DOE) and operated by Savannah River Remediation LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF and HTF are active radioactive waste storage and treatment facilities consisting of 51 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. Performance Assessments (PAs) for each Tank Farm have been prepared to support the eventual closure of the underground radioactive waste tanks and ancillary equipment. PAs provide the technical bases and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of the Tank Farms. The Tank Farms are subject to a number of regulatory requirements. The State regulates Tank Farm operations through an industrial waste water permit and through a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Closure documentation will include State-approved Tank Farm Closure Plans and tank-specific closure modules utilizing information from the PAs. For this reason, the State of South Carolina and the EPA must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. PAs are performance-based, risk-informed analyses of the fate and transport of FTF and HTF residual wastes following final closure of the Tank Farms. Since the PAs serve as the primary risk assessment tools in evaluating readiness for closure, it is vital that PA conclusions be communicated effectively. In the course of developing the FTF and HTF PAs, several lessons learned have emerged regarding communicating PA results. When communicating PA results it is

  11. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin

  12. Assessment of groundwater level estimation uncertainty using sequential Gaussian simulation and Bayesian bootstrapping

    Science.gov (United States)

    Varouchakis, Emmanouil; Hristopulos, Dionissios

    2015-04-01

    Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs

  13. Assessing mixed trace elements in groundwater and their health risk of residents living in the Mekong River basin of Cambodia

    International Nuclear Information System (INIS)

    Phan, Kongkea; Phan, Samrach; Huoy, Laingshun; Suy, Bunseang; Wong, Ming Hung; Hashim, Jamal Hisham; Mohamed Yasin, Mohamed Salleh; Aljunid, Syed Mohamed; Sthiannopkao, Suthipong; Kim, Kyoung-Woong

    2013-01-01

    We investigated the potential contamination of trace elements in shallow Cambodian groundwater. Groundwater and hair samples were collected from three provinces in the Mekong River basin of Cambodia and analyzed by ICP-MS. Groundwater from Kandal (n = 46) and Kraite (n = 12) were enriched in As, Mn, Ba and Fe whereas none of tube wells in Kampong Cham (n = 18) had trace elements higher than Cambodian permissible limits. Risk computations indicated that 98.7% and 12.4% of residents in the study areas of Kandal (n = 297) and Kratie (n = 89) were at risk of non-carcinogenic effects from exposure to multiple elements, yet none were at risk in Kampong Cham (n = 184). Arsenic contributed 99.5%, 60.3% and 84.2% of the aggregate risk in Kandal, Kratie and Kampong Cham, respectively. Sustainable and appropriate treatment technologies must therefore be implemented in order for Cambodian groundwater to be used as potable water. -- Highlights: •We investigated the potential contamination of trace elements in Cambodian groundwater. •Residents of Kandal (98.7%) and Kratie (12.4%) were at risk of non-carcinogenic effects. •Significant positive correlation between As, Mn and Ba in groundwater and hair were found. -- Risk assessment indicated that 98.7% of residents in Kandal and 12.4% of Kratie study areas were at risk of non-carcinogenic effects of multiple elements in groundwater

  14. Improved power performance assessment methods

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, S; Antoniou, I; Dahlberg, J A [and others

    1999-03-01

    The uncertainty of presently-used methods for retrospective assessment of the productive capacity of wind farms is unacceptably large. The possibilities of improving the accuracy have been investigated and are reported. A method is presented that includes an extended power curve and site calibration. In addition, blockage effects with respect to reference wind speed measurements are analysed. It is found that significant accuracy improvements are possible by the introduction of more input variables such as turbulence and wind shear, in addition to mean wind speed and air density. Also, the testing of several or all machines in the wind farm - instead of only one or two - may provide a better estimate of the average performance. (au)

  15. Assessing the impact of iron ore mining to the groundwater in Goa, using stable isotopes

    International Nuclear Information System (INIS)

    Arzoo Ansari, Md.; Sinha, U.K.; Mohokar, H.V.; Deodhar, Archana; Mendhekar, G.N.; Jaryal, Ajay

    2017-01-01

    Goa contributes about 50% of the total iron ore exported from the country. Iron ore share is 95% of total mining and quarrying sector in Goa. It represents the second most important industry next to tourism. The iron ore is predominantly mined by opencast mining throughout Goa. The reduction of the forest cover, huge dumps, dust mineral particles, water contamination and health problems are some of the principal harmful effects of extensive mining which is of great concern to the environment. The objective of this study is to assess the impact of iron ore mining to groundwater in downstream side of the mine pits using isotope hydrological techniques

  16. Assessment of Groundwater Supply Impacts for a Mine Site in Western Turkey

    Science.gov (United States)

    Agartan, E.; Yazicigil, H.

    2010-12-01

    A nickel mine located in Turgutlu town in Western Turkey requires 135 L/s of water for the mining processes. The initial studies pointed out that part of the supply will be met by pumping water from the Turgutlu-Salihli aquifer system. The purpose of this study is to assess the impacts associated with meeting groundwater supply requirements for the mine. Scope of the study involved development of the groundwater flow model of the Turgutlu-Salihli aquifer system, determination of the alternative groundwater pumping scenarios, assessment of the impacts associated with each scenario and selection of the most feasible scenario in the aspect of environmental and technical factors. Turgutlu town is located in one of the most tectonically active areas in Turkey which is characterized by an E-W trending Gediz Graben formed as a result of N-S directed extension. Gediz River as a major surface water resource in the study area flows from east to west, passes through Gediz Graben and is connected to the Turgutlu-Salihli aquifer system. Quaternary deposits and Neogene rocks, showing better aquifer properties than the other formations of the Gediz Graben, form the Turgutlu-Salihli aquifer system. Quaternary deposits form the principal aquifer, and Neogene rocks form the secondary aquifer in the study area. Therefore, a two layered groundwater flow model of the Turgutlu-Salihli aquifer system was established using MODFLOW. The model was calibrated under steady state conditions assuming that the conditions in 1991 prior to the significant development represented a pseudo-steady state in the aquifer system. Calibration was carried out for hydraulic conductivity, recharge and boundary conditions. To get today’s groundwater levels, wells being drilled after 1991 were added to the model. In the scope of this study, two potential scenarios were considered, and their effects on the aquifer systems were evaluated. The locations of the scenario wells were determined so that they will

  17. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M. Lourdes, E-mail: mlima@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Romanelli, Asunción, E-mail: aromanel@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina); Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Massone, Héctor E., E-mail: hmassone@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina)

    2015-10-15

    This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+ 20%; high–very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high–very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status

  18. Impact Assessment of Phosphogypsum Leachate on Groundwater of Sfax-Agareb (Southeast of Tunisia): Using Geochemical and Isotopic Investigation

    OpenAIRE

    Melki, Samira; Gueddari, Moncef

    2018-01-01

    The production of phosphoric acid by the Tunisian Chemical Group, in Sfax, Tunisia, led to the degradation of the groundwater quality of the Sfax-Agareb aquifer mainly by the phosphogypsum leachates infiltration. Spatiotemporal monitoring of the quality of groundwater was carried out by performing bimonthly sampling between October 2013 and October 2014. Samples culled in the current study were subject to physicochemical parameters measurements and analysis of the major elements, orthophospha...

  19. Remediation of BTEX contaminated groundwater: best technology assessment between pump&treat and bioremediation by oxygen injection

    Directory of Open Access Journals (Sweden)

    Daniele Baldi

    2012-06-01

    Full Text Available The presence of benzene, toluene, ethylbenzene and xylene (BTEX dissolved in the groundwater and migrated from a light non-aqueous phase liquid (LNAPL source in an alluvial aquifer required a remedial action to be taken by the responsible party as established by the Italian regulation (Legislative Decree 152/06 and subsequent amendments. For such purpose, field investigations were conducted on site in order to define the site conceptual model and to identify the appropriate remediation technology to be applied. The remediation design was developed by means of a flow and reactive transport mathematical model, applied to saturated media, using the numerical codes MODFLOW and RT3D. Groundwater field observations showed evidence of occurring BTEX biodegradation processes by bacteria naturally present in the aquifer. Since such specific bacterial activity would be significantly enhanced by the injection of free oxygen in the aquifer, the performance of traditional pump and treat systems (P&T was assessed and compared with cost/efficiency of reactive oxygen bio-barrier technology (OD. The results showed a clear advantage in terms of cost/efficiency with the application of the OD. This presents an overall cost of about 30% of the P&T installation and maintenance, and it reaches remedial target in a shorter timeframe. Moreover, the system is also applicable as a bioremediation technology in case of Environmental Emergency Measures (MISE. The site examined is part of an industrial plant located in Central Italy.

  20. Role of groundwater oxidation potential and radiolysis on waste glass performance in crystalline repository environments

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.

    1985-01-01

    Laboratory experiments have shown that groundwater conditions in a Stripa granite repository will be as reducing as those in a basalt repository. The final oxidation potential (Eh) at 70 0 C for Stripa groundwater deaerated and equilibrated with crystalline granite was -0.45V. In contrast, the oxidation potential at 60 0 C for Grande Ronde groundwater equilibrated with basalt was -0.40V. The reducing groundwater conditions were found to slightly decrease the time-dependent release of soluble components from the waste glass. Spectrophotometric analysis of the equilibrated groundwaters indicated the presence of Fe 2+ confirming that the Fe 2+ /Fe 3+ couple is controlling the oxidation potential. It was also shown that in the alkaline pH regime of these groundwaters the iron species are primarily associated with x-ray amorphous precipitates in the groundwater. Gamma radiolysis in the absence of waste glass and in the absence of oxygen further reduces the oxidation potential of both granitic and basaltic groundwaters. The effect is more pronounced in the basaltic groundwater. The mechanism for this decrease is under investigation but appears related to the reactive amorphous precipitate. The results of these tests suggest that H 2 may not escape from the repository system as postulated and that radiolysis may not cause the groundwaters to become oxidizing in a crystalline repository when abundant Fe 2+ species are present. 23 refs., 3 figs., 3 tabs

  1. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events rates were estimated in the area underneath the floodplain clay layer rather than in the sandy area. A steady-state chloride method implied recharge rates of at least 200mm/year (>14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    T.E. Oni

    2017-12-01

    Full Text Available Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2 of 65 m in (41 different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement. The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer and GLSI (geoelectric layer susceptibility indexing. The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1–0.19 area, while the northern and southern parts have poor protective capacity (<0.1; this is in agreement with the GOD method which shows the northern part of the study area as less vulnerable (0–0.1 while the southern part has low/moderate (0.1–0.3 vulnerability to contamination. The longitudinal conductance exaggerates the degree of susceptibility to contamination than the GOD and GLSI models. From the models, vulnerability to contamination can be considered higher at the southern part than the northern part and therefore, sources of contamination like septic tank, refuse dump should be cited far from groundwater development area. Keywords: Aquifer vulnerability, Longitudinal conductance, GOD and GLSI

  3. Assessment of groundwater quality and contamination problems ascribed to an abandoned uranium mine (Cunha Baixa region, Central Portugal)

    Science.gov (United States)

    Neves, O.; Matias, M. J.

    2008-02-01

    The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.

  4. Communicating Performance Assessments Results - 13609

    Energy Technology Data Exchange (ETDEWEB)

    Layton, Mark [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

    2013-07-01

    The F-Area Tank Farms (FTF) and H-Area Tank Farm (HTF) are owned by the U.S. Department of Energy (DOE) and operated by Savannah River Remediation LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF and HTF are active radioactive waste storage and treatment facilities consisting of 51 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. Performance Assessments (PAs) for each Tank Farm have been prepared to support the eventual closure of the underground radioactive waste tanks and ancillary equipment. PAs provide the technical bases and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of the Tank Farms. The Tank Farms are subject to a number of regulatory requirements. The State regulates Tank Farm operations through an industrial waste water permit and through a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Closure documentation will include State-approved Tank Farm Closure Plans and tank-specific closure modules utilizing information from the PAs. For this reason, the State of South Carolina and the EPA must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. PAs are performance-based, risk-informed analyses of the fate and transport of FTF and HTF residual wastes following final closure of the Tank Farms. Since the PAs serve as the primary risk assessment tools in evaluating readiness for closure, it is vital that PA conclusions be communicated effectively. In the course of developing the FTF and HTF PAs, several lessons learned have emerged regarding communicating PA results. When communicating PA results it is

  5. Groundwater quality assessment in the Krachi West District of the Volta region of Ghana

    International Nuclear Information System (INIS)

    Sarfo, M. K.

    2012-01-01

    .6); δ 18 O (-3.1 to 4.7)], Lake Volta [δ 2 H (-13.2 to -873); δ 18 O (1.0 to 1.5)] and streams [δ 2 H (-10.6 to 13.3); δ 18 O (-1.4 to 3.3)], revealed that the stable isotopes (δ 2 H and δ 18 O) in groundwater samples from the Krachi West District clustered closely along the Global Meteoric Water Line (GMWL) suggesting an integrative and rapid recharge from meteoric origin. Consequently, groundwaters in the Krachi West district are mainly meteoric water with little or no isotopic variation. Piper trilinear plot indicated that waters from the Krachi West district corresponded to the Ca-Mg-HCO 3 - water type. The Piper plot showed HCO 3 - as the main anion. However, no particular cation dominated. All three methods [Wilcox diagram, the Sodium Absorption Ratio (SAR) and the United States Salinity Laboratory diagram (USSL)] used for assessment of the groundwater suitability for irrigation revealed that the groundwater from the Krachi West District are suitable for irrigation. This observation may be attributed to the low levels of Na [(11.2-43.7 mg/L; (WHO 200 mg/L)] in groundwater indicating that interaction of groundwater with Na-bearing minerals did not result in the dissolution of high amounts of Na. (au)

  6. Screening-level risk assessment for styrene-acrylonitrile (SAN) trimer detected in soil and groundwater.

    Science.gov (United States)

    Kirman, C R; Gargas, M L; Collins, J J; Rowlands, J C

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment.

  7. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2017-11-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  8. Assessment of MTBE biodegradation in contaminated groundwater using 13C and 14C analysis: Field and laboratory microcosm studies

    International Nuclear Information System (INIS)

    Thornton, Steven F.; Bottrell, Simon H.; Spence, Keith H.; Pickup, Roger; Spence, Michael J.; Shah, Nadeem; Mallinson, Helen E.H.; Richnow, Hans H.

    2011-01-01

    . Under low O 2 conditions, the lower fractionating species have been shown to govern overall MTBE C-isotope fractionation during biodegradation, confirming the results of previous laboratory experiments mixing pure cultures. This implies that significant aerobic MTBE biodegradation could occur under the low dissolved O 2 concentration that typifies the reactive fringe zone of MTBE plumes, without producing detectable changes in the MTBE δ 13 C composition. This observed insensitivity of C isotope enrichment to MTBE biodegradation could lead to significant underestimation of aerobic MTBE biodegradation at field scale, with an unnecessarily pessimistic performance assessment for natural attenuation. Site-specific C isotope enrichment factors are, therefore, required to reliably quantify MTBE biodegradation, which may limit CSIA as a tool for the in situ assessment of MTBE biodegradation in groundwater using only C isotopes.

  9. Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques

    International Nuclear Information System (INIS)

    El Alfy, Mohamed; Lashin, Aref; Abdalla, Fathy; Al-Bassam, Abdulaziz

    2017-01-01

    Rapid economic expansion poses serious problems for groundwater resources in arid areas, which typically have high rates of groundwater depletion. In this study, integration of hydrochemical investigations involving chemical and statistical analyses are conducted to assess the factors controlling hydrochemistry and potential pollution in an arid region. Fifty-four groundwater samples were collected from the Dhurma aquifer in Saudi Arabia, and twenty-one physicochemical variables were examined for each sample. Spatial patterns of salinity and nitrate were mapped using fitted variograms. The nitrate spatial distribution shows that nitrate pollution is a persistent problem affecting a wide area of the aquifer. The hydrochemical investigations and cluster analysis reveal four significant clusters of groundwater zones. Five main factors were extracted, which explain >77% of the total data variance. These factors indicated that the chemical characteristics of the groundwater were influenced by rock–water interactions and anthropogenic factors. The identified clusters and factors were validated with hydrochemical investigations. The geogenic factors include the dissolution of various minerals (calcite, aragonite, gypsum, anhydrite, halite and fluorite) and ion exchange processes. The anthropogenic factors include the impact of irrigation return flows and the application of potassium, nitrate, and phosphate fertilizers. Over time, these anthropogenic factors will most likely contribute to further declines in groundwater quality. - Highlights: • Hydrochemical investigations were carried out in Dhurma aquifer in Saudi Arabia. • The factors controlling potential groundwater pollution in an arid region were studied. • Chemical and statistical analyses are integrated to assess these factors. • Five main factors were extracted, which explain >77% of the total data variance. • The chemical characteristics of the groundwater were influenced by rock–water interactions

  10. Assessment of groundwater potential based on aquifer properties of hard rock terrain in the Chittar-Uppodai watershed, Tamil Nadu, India

    Science.gov (United States)

    Kumar, T. Jeyavel Raja; Balasubramanian, A.; Kumar, R. S.; Dushiyanthan, C.; Thiruneelakandan, B.; Suresh, R.; Karthikeyan, K.; Davidraju, D.

    2016-06-01

    Aquifer performance was tested in 24 locations to assess the groundwater potential of the hard rock terrain in the Chittar-Uppodai watershed of the Tambaraparani River basin. Geologically, the area consists of biotite gneiss, charnockite, and quartzite. The aquifer characteristics, such as transmissivity ( T), the storage coefficient, specific capacity, optimum yield, and the recovery rate were calculated. The drawdown transmissivity was determined using Jacob's straight-line method, while the recovery transmissivity was determined by the Theis method. The drawdown transmissivity was low in the western areas, particularly at Kadayanallur, and was higher in the other areas. The recovery transmissivity was high in the western area, and, with the exception of Gangaikondan, was low at other locations. The assessment indicates that there is groundwater potential in the western part of the study area because of favorable results for recovery drawdown, aquifer thickness, and specific capacity.

  11. Physicochemical Assessment of Surface and Groundwater Quality of the Greater Chittagong Region of Bangladesh

    Directory of Open Access Journals (Sweden)

    M. J. Ahmed

    2010-12-01

    Full Text Available The study was carried out to assess surface and groundwater quality of the greater Chittagong (Chittagong and Cox’s Bazar districts and Chittagong Hill Tracts (Rangamati, Khagrachhari and Bandarban districts of Bangladesh. To study the various physicochemical and microbiological parameters, surface water samples from the Karnafuli, Halda, Sangu, Matamuhuri, Bakkhali, Naf, Kasalong, Chingri and Mayani Rivers, Kaptai Lake and groundwater samples from almost every Upazilas, smaller administrative unit of Bangladesh, were collected and analyzed. The statistical methods of sampling were used for collecting samples. Samples were preserved using suitable preservation methods. Water samples from the freshwater resources were collected from different points and tide conditions and at different seasons for continuous monitoring during the hydrological years 2008-2009. The collected samples were analyzed for the following parameters: pH, electrical conductivity (EC, total dissolved solids (TDS, total suspended solids (TSS, total solids (TS, dissolved oxygen (DO, transparency, acidity, dissolved carbon dioxide, total alkalinity, total hardness, chloride, ammonia-N, hydrogen sulfide, sulphate-S, o-phosphate-P, biochemical oxygen demand (BOD, chemical oxygen demand (COD, nitrate-N, nitrite-N, total nitrite and nitrate-N, arsenic, iron, manganese, copper, nickel, chromium, cadmium, lead, calcium, magnesium, sodium and potassium using the procedure outlined in the standard methods. Average values of maximum physicochemical and microbiological parameters studied for the Karnafuli River were found higher than the World Health Organization (WHO guideline. The maximum water quality parameters of Kaptai Lake and other Rivers of Chittagong region were existed within the permissible limits of WHO guideline. The data showed the water quality slightly differs in pre-monsoon and post-monsoon than monsoon season. The concentration of different constituents of most of

  12. Behavior model for performance assessment

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S. A.

    1999-01-01

    Every individual channels information differently based on their preference of the sensory modality or representational system (visual auditory or kinesthetic) we tend to favor most (our primary representational system (PRS)). Therefore, some of us access and store our information primarily visually first, some auditorily, and others kinesthetically (through feel and touch); which in turn establishes our information processing patterns and strategies and external to internal (and subsequently vice versa) experiential language representation. Because of the different ways we channel our information, each of us will respond differently to a task--the way we gather and process the external information (input), our response time (process), and the outcome (behavior). Traditional human models of decision making and response time focus on perception, cognitive and motor systems stimulated and influenced by the three sensory modalities, visual, auditory and kinesthetic. For us, these are the building blocks to knowing how someone is thinking. Being aware of what is taking place and how to ask questions is essential in assessing performance toward reducing human errors. Existing models give predications based on time values or response times for a particular event, and may be summed and averaged for a generalization of behavior(s). However, by our not establishing a basic understanding of the foundation of how the behavior was predicated through a decision making strategy process, predicative models are overall inefficient in their analysis of the means by which behavior was generated. What is seen is the end result

  13. Behavior model for performance assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Borwn-VanHoozer, S. A.

    1999-07-23

    Every individual channels information differently based on their preference of the sensory modality or representational system (visual auditory or kinesthetic) we tend to favor most (our primary representational system (PRS)). Therefore, some of us access and store our information primarily visually first, some auditorily, and others kinesthetically (through feel and touch); which in turn establishes our information processing patterns and strategies and external to internal (and subsequently vice versa) experiential language representation. Because of the different ways we channel our information, each of us will respond differently to a task--the way we gather and process the external information (input), our response time (process), and the outcome (behavior). Traditional human models of decision making and response time focus on perception, cognitive and motor systems stimulated and influenced by the three sensory modalities, visual, auditory and kinesthetic. For us, these are the building blocks to knowing how someone is thinking. Being aware of what is taking place and how to ask questions is essential in assessing performance toward reducing human errors. Existing models give predications based on time values or response times for a particular event, and may be summed and averaged for a generalization of behavior(s). However, by our not establishing a basic understanding of the foundation of how the behavior was predicated through a decision making strategy process, predicative models are overall inefficient in their analysis of the means by which behavior was generated. What is seen is the end result.

  14. Assessment of groundwater recharge potential zone using GIS approach in Purworejo regency, Central Java province, Indonesia

    Science.gov (United States)

    Aryanto, Daniel Eko; Hardiman, Gagoek

    2018-02-01

    Floods and droughts in Purworejo regency are an indication of problems in groundwater management. The current development progress has led to land conversion which has an impact on the problem of water infiltration in Purworejo regency. This study aims to determine the distribution of groundwater recharge potential zones by using geographic information system as the basis for ground water management. The groundwater recharge potential zone is obtained by overlaying all the thematic maps that affect the groundwater infiltration. Each thematic map is weighted according to its effect on groundwater infiltration such as land-use - 25%, rainfall - 20%, litology - 20%, soil - 15%, slope - 10%, lineament - 5%, and river density - 5% to find groundwater recharge potential zones. The groundwater recharge potential zones thus obtained were divided into five categories, viz., very high, high, medium, low and very low zones. The results of this study may be useful for better groundwater planning and management.

  15. 24 CFR 115.206 - Performance assessments; Performance standards.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Performance assessments; Performance standards. 115.206 Section 115.206 Housing and Urban Development Regulations Relating to Housing... AGENCIES Certification of Substantially Equivalent Agencies § 115.206 Performance assessments; Performance...

  16. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI

  17. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  18. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Posen, Paulette [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom)]. E-mail: p.posen@uea.ac.uk; Lovett, Andrew [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom); Hiscock, Kevin [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom); Evers, Sarah [Environment Agency, Olton Court, 10 Warwick Road, Olton, Solihull, B92 7HX (United Kingdom); Ward, Rob [Environment Agency, Olton Court, 10 Warwick Road, Olton, Solihull, B92 7HX (United Kingdom); Reid, Brian [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom)

    2006-08-31

    The catabolic activity of incumbent microorganisms in soil samples of eleven dissimilar soil series was investigated, with respect to the herbicide isoproturon. Soils were collected from a 30 x 37 km area of river catchment to the north-west of London, England. Catabolic activity in each soil type during a 500 h assay was determined by {sup 14}C-radiorespirometry. Results showed four soils that exhibited high levels of catabolic activity (33-44% mineralisation) while the remaining seven soils showed lower levels of catabolic activity (12-16% mineralisation). There was evidence to suggest that soils exhibiting high catabolic activity had low (< 22%) clay content and tended towards lower organic carbon content (< 2.7%), but that these higher levels of catabolic activity were also related to pre-exposure to isoproturon. The {sup 14}C-radiorespirometric results were used to produce a GIS layer representing levels of catabolic activity for the dissimilar soils across the study area. This layer was combined with other GIS layers relating to pesticide attenuation, including soil organic carbon content, depth to groundwater and hydrogeology, to produce a map showing risk of groundwater contamination by isoproturon. The output from this approach was compared with output from an attenuation-only approach and differences appraised. Inclusion of the catabolism layer resulted in a lowering of risk in the model in 15% of the study area. Although there appears to be limited benefit in including pesticide catabolic activity in this regional-scale groundwater risk model, this type of addition could be useful in a site-specific risk assessment.

  19. Performance assessment for the class L-II disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

  20. Fuzzy model for determination and assessment of groundwater quality in the city of Zrenjanin, Serbia

    Directory of Open Access Journals (Sweden)

    Kiurski-Milosević Jelena Ž.

    2015-01-01

    Full Text Available The application of the fuzzy logic for determination and assessment of the chemical quality of groundwater for drinking purposes in the city of Zrenjanin is presented. The degree of certainty and uncertainties are one of the problems in the most commonly used methods for assessing the water quality. Fuzzy logic can successfully handle these problems. Evaluation of fuzzy model was carried out on the samples from two representative wells that are located at depths of two aquifers from which water is taken to supply the population as drinking water. The samples were analyzed on 8 different chemical water quality parameters. In the research arsenic concentration (As3+, As5+ is considered as the dominant parameter due to its suspecting carcinogenic effects on human health. This type of research is for the first time conducted in the city of Zrenjanin, middle Banat region. [Projekat Ministarstva nauke Republike Srbije, br. MNTR174009 i br. TR34014

  1. Groundwater quality assessment plan for the 1324-N/NA Site: Phase 1 (first determination)

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1998-05-01

    The 1324-N Surface Impoundment and 1324-NA Percolation Pond (1324-N/NA Site) are treatment/storage/disposal sites regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). They are located in the 100-N Area of the Hanford Site, and were used to treat and dispose of corrosive waste from a water treatment plant. Groundwater monitoring under an interim-status detection program compared indicator parameters from downgradient wells to background values established from an upgradient well. One of the indicator parameters, total organic carbon (TOC), exceeded its background value in one downgradient well, triggering an upgrade from a detection program to an assessment program. This plan presents the first phase of the assessment program

  2. Assessment of village-wise groundwater draft for irrigation: a field-based study in hard-rock aquifers of central India

    Science.gov (United States)

    Ray, R. K.; Syed, T. H.; Saha, Dipankar; Sarkar, B. C.; Patre, A. K.

    2017-12-01

    Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982-2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ˜44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.

  3. Removing arsenic from groundwater in Cambodia using high performance iron adsorbent.

    Science.gov (United States)

    Kang, Y; Takeda, R; Nada, A; Thavarith, L; Tang, S; Nuki, K; Sakurai, K

    2014-09-01

    In Cambodia, groundwater has been contaminated with arsenic, and purification of the water is an urgent issue. From 2010 to 2012, an international collaborative project between Japan and Cambodia for developing arsenic-removing technology from well water was conducted and supported by the foundation of New Energy and Industrial Technology Development Organization, Japan. Quality of well water was surveyed in Kandal, Prey Veng, and Kampong Cham Provinces, and a monitoring trial of the arsenic removal equipment using our patented amorphous iron (hydr)oxide adsorbent was performed. Of the 37 wells surveyed, arsenic concentration of 24 exceeded the Cambodian guideline value (50 μg L(-1)), and those of 27 exceeded the WHO guideline for drinking water (10 μg L(-1)). Levels of arsenic were extremely high in some wells (>1,000-6,000 μg L(-1)), suggesting that arsenic pollution of groundwater is serious in these areas. Based on the survey results, 16 arsenic removal equipments were installed in six schools, three temples, two health centers, four private houses, and one commune office. Over 10 months of monitoring, the average arsenic concentrations of the treated water were between 0 and 10 μg L(-1) at four locations, 10-50 μg L(-1) at eight locations, and >50 μg L(-1) at four locations. The arsenic removal rate ranged in 83.1-99.7%, with an average of 93.8%, indicating that the arsenic removal equipment greatly lower the risk of arsenic exposure to the residents. Results of the field trial showed that As concentration of the treated water could be reduced to condition. This is one of the succeeding As removal techniques that could reduce As concentration of water below the WHO guideline value for As in situ.

  4. Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques.

    Science.gov (United States)

    El Alfy, Mohamed; Lashin, Aref; Abdalla, Fathy; Al-Bassam, Abdulaziz

    2017-10-01

    Rapid economic expansion poses serious problems for groundwater resources in arid areas, which typically have high rates of groundwater depletion. In this study, integration of hydrochemical investigations involving chemical and statistical analyses are conducted to assess the factors controlling hydrochemistry and potential pollution in an arid region. Fifty-four groundwater samples were collected from the Dhurma aquifer in Saudi Arabia, and twenty-one physicochemical variables were examined for each sample. Spatial patterns of salinity and nitrate were mapped using fitted variograms. The nitrate spatial distribution shows that nitrate pollution is a persistent problem affecting a wide area of the aquifer. The hydrochemical investigations and cluster analysis reveal four significant clusters of groundwater zones. Five main factors were extracted, which explain >77% of the total data variance. These factors indicated that the chemical characteristics of the groundwater were influenced by rock-water interactions and anthropogenic factors. The identified clusters and factors were validated with hydrochemical investigations. The geogenic factors include the dissolution of various minerals (calcite, aragonite, gypsum, anhydrite, halite and fluorite) and ion exchange processes. The anthropogenic factors include the impact of irrigation return flows and the application of potassium, nitrate, and phosphate fertilizers. Over time, these anthropogenic factors will most likely contribute to further declines in groundwater quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessment of fluoride in groundwater and urine, and prevalence of fluorosis among school children in Haryana, India

    Science.gov (United States)

    Haritash, A. K.; Aggarwal, Ankur; Soni, Jigyasa; Sharma, Khyati; Sapra, Mohnish; Singh, Bhupinder

    2018-05-01

    Considering the health effects of fluoride, the present study was undertaken to assess the concentration of fluoride in groundwater, and urine of school children in Bass region of Haryana state. Fluoride in groundwater was observed to vary from 0.5 to 2.4 mg/l with an average concentration of 0.46 mg/l. On the other hand, F- in urine ranged from below the detection limit to 1.8 mg/l among girls and 0.17-1.2 mg/l among the boys. Higher average concentration of fluoride in urine (0.65 mg/l for boys and 0.34 mg/l for girls) may be ascribed to exposure to bioavailable fluoride through food, milk, tea, toothpaste, etc., in addition to intake through groundwater. Relatively more intake of water and food by the boys might be the reason for more cases of severe dental fluorosis (44%) among boys compared to girls (29% cases of moderate to severe dental fluorosis). The groundwater quality for drinking was compromised with respect to dissolved solids, hardness, magnesium ions, and dissolved iron. Hydro-geochemical investigation revealed that rock-water interaction, in terms of direct cation exchange, dominantly regulates groundwater chemistry, and groundwater is of Ca-Na-HCO3 type.

  6. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    Science.gov (United States)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. Copyright © 2015

  7. Long-term performance and fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic groundwater

    NARCIS (Netherlands)

    Beyer, F.; Rietman, B.M.; Zwijnenburg, A.; Brink, van den P.; Vrouwenvelder, J.S.; Jarzembowska, M.; Laurinonyte, J.; Stams, A.J.M.; Plugge, C.M.

    2014-01-01

    Long-term performance and fouling behavior of four full-scale nanofiltration (NF) plants, treating anoxic groundwater at 80% recovery for drinking water production, were characterized and compared with oxic NF and reverse osmosis systems. Plant operating times varied between 6 and 10 years and

  8. Groundwater quality assessment plan for single-shell tank waste management Area U at the Hanford Site

    International Nuclear Information System (INIS)

    FN Hodges; CJ Chou

    2000-01-01

    Waste Management Area U (WMA U) includes the U Tank Farm, is currently regulated under RCRA interim-status regulations, and is scheduled for closure probably post-2030. Groundwater monitoring has been under an evaluation program that compared general contaminant indicator parameters from downgradient wells to background values established from upgradient wells. One of the indicator parameters, specific conductance, exceeded its background value in one downgradient well triggering a change from detection monitoring to a groundwater quality assessment program. The objective of the first phase of this assessment program is to determine whether the increased concentrations of nitrate and chromium in groundwater are from WMA U or from an upgradient source. Based on the results of the first determination, if WMA U is not the source of contamination, then the site will revert to detection monitoring. If WMA U is the source, then a second part of the groundwater quality assessment plan will be prepared to define the rate and extent of migration of contaminants in the groundwater and their concentrations

  9. Local assessment of the risk on groundwater resources related to unconventional hydrocarbon development

    Science.gov (United States)

    Raynauld, Melanie; Peel, Morgan; Lefebvre, Rene; Crow, Heather; Gloaguen, Erwan; Molson, John; Ahad, Jason; Aquilina, Luc

    2014-05-01

    A study was carried out in the Haldimand sector of Gaspé, Québec, Canada, to assess the potential link between a tight sandstone petroleum reservoir, whose potential is being evaluated, and the shallow fractured rock aquifer system. Petroleum exploration operations are taking place in the forested core of a hilly 40 km2 peninsula by the sea (up to 200 m amsl). Houses located on the periphery of the peninsula use wells for their water supply. This study served as a test case for a new framework proposed specifically to regulate oil and gas exploration and production activities. Significant concerns have been voiced in Quebec about such relatively new activities in the past few years. The study thus also aimed to provide a sound scientific perspective on the actual risk to groundwater resources related to oil and gas industry upstream activities. The study was based on the compilation of existing hydrogeological, geological and petroleum exploration data and on a field characterization. The field work involved 1) the installation of 17 observation wells and their hydraulic testing, including two fully-cored wells, 2) groundwater and surface water sampling in observation wells and more than 70 residential wells within a 2 km radius of a proposed new drill pad, and 3) geophysical logging of the open-hole observation wells. On all samples, chemical analyses involved major and minor inorganics, a wide range of organics, dissolved light hydrocarbon gases and CH4 isotopes, where present. More specialized analyses were done on observation wells (stable isotopes, tritium, 13C and 14C, noble gases, CFCs and SF6, organic acids). The hydrogeological conditions were then defined on the basis of existing and newly acquired data. Fracturing was found to control groundwater flow which is more intense in the upper 15 m of the rock aquifer. Recharge occurs on topographic highs where the rock is not covered by a low permeability glacial till, as found almost everywhere

  10. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality.

  11. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality

  12. Making Performance Assessments a Part of Accountability

    Science.gov (United States)

    Haun, Billy

    2018-01-01

    The purpose of this commentary is to describe recent efforts in Virginia to develop and use performance assessments, including the challenges that emerged during this process and key considerations for states that integrate performance assessment into their systems. Performance assessments can play an important role in preparing students for…

  13. Assessment of check-dam groundwater recharge with water-balance calculations

    Science.gov (United States)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without

  14. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland

    International Nuclear Information System (INIS)

    Braeckevelt, Mareike; Rokadia, Hemal; Imfeld, Gwenael; Stelzer, Nicole; Paschke, Heidrun; Kuschk, Peter; Kaestner, Matthias; Richnow, Hans-H.; Weber, Stefanie

    2007-01-01

    The degradation of monochlorobenzene (MCB) was assessed in a constructed wetland treating MCB contaminated groundwater using a detailed geochemical characterisation, stable isotope composition analysis and in situ microcosm experiments. A correlation between ferrous iron mobilisation, decreasing MCB concentration and enrichment in carbon isotope composition was visible at increasing distance from the inflow point, indicating biodegradation of MCB in the wetland. Additionally, in situ microcosm systems loaded with 13 C-labelled MCB were deployed for the first time in sediments to investigate the biotransformation of MCB. Incorporation of 13 C-labelled carbon derived from the MCB into bacterial fatty acids substantiated in situ degradation of MCB. The detection of 13 C-labelled benzene indicated reductive dehalogenation of MCB. This integrated approach indicated the natural attenuation of the MCB in a wetland system. Further investigations are required to document and optimise the in situ biodegradation of MCB in constructed and natural wetland systems treating contaminated groundwater. - An integrated approach including isotope composition analysis and in situ microcosm experiments provided evidences for in situ biodegradation of MCB in a wetland system

  15. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Braeckevelt, Mareike [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Rokadia, Hemal [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Imfeld, Gwenael [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany)]. E-mail: gwenael.imfeld@ufz.de; Stelzer, Nicole [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Paschke, Heidrun [Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Kuschk, Peter [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Kaestner, Matthias [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Richnow, Hans-H. [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Weber, Stefanie [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany)

    2007-07-15

    The degradation of monochlorobenzene (MCB) was assessed in a constructed wetland treating MCB contaminated groundwater using a detailed geochemical characterisation, stable isotope composition analysis and in situ microcosm experiments. A correlation between ferrous iron mobilisation, decreasing MCB concentration and enrichment in carbon isotope composition was visible at increasing distance from the inflow point, indicating biodegradation of MCB in the wetland. Additionally, in situ microcosm systems loaded with {sup 13}C-labelled MCB were deployed for the first time in sediments to investigate the biotransformation of MCB. Incorporation of {sup 13}C-labelled carbon derived from the MCB into bacterial fatty acids substantiated in situ degradation of MCB. The detection of {sup 13}C-labelled benzene indicated reductive dehalogenation of MCB. This integrated approach indicated the natural attenuation of the MCB in a wetland system. Further investigations are required to document and optimise the in situ biodegradation of MCB in constructed and natural wetland systems treating contaminated groundwater. - An integrated approach including isotope composition analysis and in situ microcosm experiments provided evidences for in situ biodegradation of MCB in a wetland system.

  16. Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor

    Directory of Open Access Journals (Sweden)

    P. Schneider

    2011-08-01

    Full Text Available River restoration projects have been launched over the last two decades to improve the ecological status and water quality of regulated rivers. As most restored rivers are not monitored at all, it is difficult to predict consequences of restoration projects or analyze why restorations fail or are successful. It is thus necessary to implement efficient field assessment strategies, for example by employing sensor networks that continuously measure physical parameters at high spatial and temporal resolution. This paper focuses on the design and implementation of an instrumentation strategy for monitoring changes in bank filtration, hydrological connectivity, groundwater travel time and quality due to river restoration. We specifically designed and instrumented a network of monitoring wells at the Thur River (NE Switzerland, which is partly restored and has been mainly channelized for more than 100 years. Our results show that bank filtration – especially in a restored section with alternating riverbed morphology – is variable in time and space. Consequently, our monitoring network has been adapted in response to that variability. Although not available at our test site, we consider long-term measurements – ideally initiated before and continued after restoration – as a fundamental step towards predicting consequences of river restoration for groundwater quality. As a result, process-based models could be adapted and evaluated using these types of high-resolution data sets.

  17. Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh

    Directory of Open Access Journals (Sweden)

    Amal K. Mitra

    2005-08-01

    Full Text Available Excessive amounts of arsenic (As in the groundwater in Bangladesh and neighboring states in India are a major public health problem. About 30% of the private wells in Bangladesh exhibit high concentrations of arsenic. Over half the country, 269 out of 464 administrative units, is affected. Similar problems exist in many other parts of the world, including the Unites States. This paper presents an assessment of the health hazards caused by arsenic contamination in the drinking water in Bangladesh. Four competing hypotheses, each addressing the sources, reaction mechanisms, pathways, and sinks of arsenic in groundwater, were analyzed in the context of the geologic history and land-use practices in the Bengal Basin. None of the hypotheses alone can explain the observed variability in arsenic concentration in time and space; each appears to have some validity on a local scale. Thus, it is likely that several bio-geochemical processes are active among the region’s various geologic environments, and that each contributes to the mobilization and release of arsenic. Additional research efforts will be needed to understand the relationships between underlying biogeochemical factors and the mechanisms for arsenic release in various geologic settings.

  18. Comparison of groundwater residence time using isotope techniques and numerical groundwater flow model in Gneissic Terrain, Korea

    International Nuclear Information System (INIS)

    Bae, D.S.; Kim, C.S.; Koh, Y.K.; Kim, K.S.; Song, M.Y.

    1997-01-01

    The prediction of groundwater flow affecting the migration of radionuclides is an important component of the performance assessment of radioactive waste disposal. Groundwater flow in fractured rock mass is controlled by fracture networks, transmissivity and hydraulic gradient. Furthermore the scale-dependent and anisotropic properties of hydraulic parameters are resulted mainly from irregular patterns of fracture system, which are very complex to evaluate properly with the current techniques available. For the purpose of characterizing a groundwater flow in fractured rock mass, the discrete fracture network (DFN) concept is available on the basis of assumptions of groundwater flowing only along fractures and flowpaths in rock mass formed by interconnected fractures. To increase the reliability of assessment in groundwater flow phenomena, numerical groundwater flow model and isotopic techniques were applied. Fracture mapping, borehole acoustic scanning were performed to identify conductive fractures in gneissic terrane. Tracer techniques, using deuterium, oxygen-18 and tritium were applied to evaluate the recharge area and groundwater residence time

  19. Assessment of agricultural groundwater users in Iran: a cultural environmental bias

    Science.gov (United States)

    Salehi, Saeid; Chizari, Mohammad; Sadighi, Hassan; Bijani, Masoud

    2018-02-01

    Many environmental problems are rooted in human behavior. This study aimed to explore the causal effect of cultural environmental bias on `sustainable behavior' among agricultural groundwater users in Fars province, Iran, according to Klockner's comprehensive model. A survey-based research project was conducted to gathering data on the paradigm of environmental psychology. The sample included agricultural groundwater users ( n = 296) who were selected at random within a structured sampling regime involving study areas that represent three (higher, medium and lower) bounds of the agricultural-groundwater-vulnerability spectrum. Results showed that the "environment as ductile (EnAD)" variable was a strong determinant of sustainable behavior as it related to groundwater use, and that EnAE had the highest causal effect on the behavior of agricultural groundwater users. The adjusted model explained 41% variance of "groundwater sustainable behavior". Based on the results, the groundwater sustainable behaviors of agricultural groundwater users were found to be affected by personal and subjective norm variables and that they are influenced by casual effects of the "environment as ductile (EnAD)" variable. The conclusions reflect the Fars agricultural groundwater users' attitude or worldview on groundwater as an unrecoverable resource; thus, it is necessary that scientific disciplines like hydrogeology and psycho-sociology be considered together in a comprehensive approach for every groundwater study.

  20. Spatially explicit groundwater vulnerability assessment to support the implementation of the Water Framework Directive – a practical approach with stakeholders

    Directory of Open Access Journals (Sweden)

    K. Berkhoff

    2008-01-01

    Full Text Available The main objective of the study presented in this paper was to develop an evaluation scheme which is suitable for spatially explicit groundwater vulnerability assessment according to the Water Framework Directive (WFD. Study area was the Hase river catchment, an area of about 3 000 km2 in north-west Germany which is dominated by livestock farming, in particular pig and poultry production. For the Hase river catchment, the first inventory of the WFD led to the conclusion that 98% of the catchment area is "unclear/unlikely" to reach a good groundwater status due to diffuse nitrogen emissions from agriculture. The groundwater vulnerability assessment was embedded in the PartizipA project ("Participative modelling, Actor and Ecosystem Analysis in Regions with Intensive Agriculture", www.partizipa.net, within which a so-called actors' platform was established in the study area. The objective of the participatory process was to investigate the effects of the WFD on agriculture as well as to discuss groundwater protection measures which are suitable for an integration in the programme of measures. The study was conducted according to the vulnerability assessment concept of the Intergovernmental Panel on Climate Change, considering sensitivity, exposure and adaptive capacity. Sensitivity was computed using the DRASTIC index of natural groundwater pollution potential. Exposure (for a reference scenario was computed using the STOFFBILANZ nutrient model. Several regional studies were analysed to evaluate the adaptive capacity. From these studies it was concluded that the adaptive capacity in the Hase river catchment is very low due to the economic importance of the agricultural sector which will be significantly affected by groundwater protection measures. As a consequence, the adaptive capacity was not considered any more in the vulnerability assessment. A groundwater vulnerability evaluation scheme is presented which enjoys the advantage that both

  1. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    Science.gov (United States)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  2. PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment

    International Nuclear Information System (INIS)

    Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

    2012-01-01

    Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator

  3. PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

    2012-08-31

    Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.

  4. Assessing intrinsic and specific vulnerability models ability to indicate groundwater vulnerability to groups of similar pesticides: A comparative study

    Science.gov (United States)

    Douglas, Steven; Dixon, Barnali; Griffin, Dale W.

    2018-01-01

    With continued population growth and increasing use of fresh groundwater resources, protection of this valuable resource is critical. A cost effective means to assess risk of groundwater contamination potential will provide a useful tool to protect these resources. Integrating geospatial methods offers a means to quantify the risk of contaminant potential in cost effective and spatially explicit ways. This research was designed to compare the ability of intrinsic (DRASTIC) and specific (Attenuation Factor; AF) vulnerability models to indicate groundwater vulnerability areas by comparing model results to the presence of pesticides from groundwater sample datasets. A logistic regression was used to assess the relationship between the environmental variables and the presence or absence of pesticides within regions of varying vulnerability. According to the DRASTIC model, more than 20% of the study area is very highly vulnerable. Approximately 30% is very highly vulnerable according to the AF model. When groundwater concentrations of individual pesticides were compared to model predictions, the results were mixed. Model predictability improved when concentrations of the group of similar pesticides were compared to model results. Compared to the DRASTIC model, the AF model more accurately predicts the distribution of the number of contaminated wells within each vulnerability class.

  5. Design and testing of a process-based groundwater vulnerability assessment (P-GWAVA) system for predicting concentrations of agrichemicals in groundwater across the United States

    Science.gov (United States)

    Barbash, Jack E; Voss, Frank D.

    2016-03-29

    Efforts to assess the likelihood of groundwater contamination from surface-derived compounds have spanned more than three decades. Relatively few of these assessments, however, have involved the use of process-based simulations of contaminant transport and fate in the subsurface, or compared the predictions from such models with measured data—especially over regional to national scales. To address this need, a process-based groundwater vulnerability assessment (P-GWAVA) system was constructed to use transport-and-fate simulations to predict the concentration of any surface-derived compound at a specified depth in the vadose zone anywhere in the conterminous United States. The system was then used to simulate the concentrations of selected agrichemicals in the vadose zone beneath agricultural areas in multiple locations across the conterminous United States. The simulated concentrations were compared with measured concentrations of the compounds detected in shallow groundwater (that is, groundwater drawn from within a depth of 6.3 ± 0.5 meters [mean ± 95 percent confidence interval] below the water table) in more than 1,400 locations across the United States. The results from these comparisons were used to select the simulation approaches that led to the closest agreement between the simulated and the measured concentrations.The P-GWAVA system uses computer simulations that account for a broader range of the hydrologic, physical, biological and chemical phenomena known to control the transport and fate of solutes in the subsurface than has been accounted for by any other vulnerability assessment over regional to national scales. Such phenomena include preferential transport and the influences of temperature, soil properties, and depth on the partitioning, transport, and transformation of pesticides in the subsurface. Published methods and detailed soil property data are used to estimate a wide range of model input parameters for each site, including surface

  6. Role of groundwater oxidation potential and radiolysis on waste glass performance in crystalline repository environments

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.

    1986-01-01

    Laboratory experiments have shown that groundwater conditions in a granite repository will be as reducing as those in a basalt repository. Chemical analysis of the reduced groundwaters confirmed that the Fe 2+ /Fe 3+ couple controls the oxidation potential (Eh). The reducing groundwater conditions were found to decrease the time-dependent release of soluble elements (Li and B) from the waste glass. However, due to the lower solubility of multivalent elements released from the glass when the groundwaters are reducing, these elements have significantly lower concentrations in the leachates. Gamma radiolysis reduced the oxidation potential of both granitic and basaltic groundwater in the absence of both waste glass and oxygen. This occurred in tests at atmospheric pressure where H 2 could have escaped from the solution. The mechanism for this decrease in Eh is under investigation but appears related to the reactive amorphous precipitate in both groundwaters. The results of these tests suggest that radiolysis may not cause the groundwaters to become oxidizing in a crystalline repository when abundant Fe 2+ species are present

  7. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS

    Science.gov (United States)

    Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Abbaspour, Karim

    2018-02-01

    Considering the unstable condition of water resources in Iran and many other countries in arid and semi-arid regions, groundwater studies are very important. Therefore, the aim of this study is to model groundwater potential by qanat locations as indicators and ten advanced and soft computing models applied to the Beheshtabad Watershed, Iran. Qanat is a man-made underground construction which gathers groundwater from higher altitudes and transmits it to low land areas where it can be used for different purposes. For this purpose, at first, the location of the qanats was detected using extensive field surveys. These qanats were classified into two datasets including training (70%) and validation (30%). Then, 14 influence factors depicting the region's physical, morphological, lithological, and hydrological features were identified to model groundwater potential. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), flexible discriminant analysis (FDA), penalized discriminant analysis (PDA), boosted regression tree (BRT), random forest (RF), artificial neural network (ANN), K-nearest neighbor (KNN), multivariate adaptive regression splines (MARS), and support vector machine (SVM) models were applied in R scripts to produce groundwater potential maps. For evaluation of the performance accuracies of the developed models, ROC curve and kappa index were implemented. According to the results, RF had the best performance, followed by SVM and BRT models. Our results showed that qanat locations could be used as a good indicator for groundwater potential. Furthermore, altitude, slope, plan curvature, and profile curvature were found to be the most important influence factors. On the other hand, lithology, land use, and slope aspect were the least significant factors. The methodology in the current study could be used by land use and terrestrial planners and water resource managers to reduce the costs of groundwater resource discovery.

  8. Radon contents in groundwater and the uncertainty related to risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masami [Kyoto Univ. (Japan)

    1997-02-01

    The United States has proposed 11 Bq/l (300 pCi/l) as the maximum contaminant levels (MCLs) of radon. Japan has not set up the standards for drinking water. The problems about evaluation of effects of radon on organism and MCLs of radon in groundwater and drinking water in 12 countries were reported. The local area content the high concentrations of radon, but generally it`s low levels were observed in Nigeria, China and Mexico. The countries which content high concentration of radon were Greek, Slovakia, Bornholm Island and Scotland. There are high and low concentration area in US and Japan. I proposed an uncertainty scheme on risk assessment for the exposure by radon. (S.Y.)

  9. The development of high performance numerical simulation code for transient groundwater flow and reactive solute transport problems based on local discontinuous Galerkin method

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji

    2009-01-01

    The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)

  10. A simplified model for assessing the impact to groundwater of swine farms at regional level

    Science.gov (United States)

    Massabo, Marco; Viterbo, Angelo

    2013-04-01

    Swine manure can be an excellent source of nutrients for crop production. Several swine farms are present in the territory of Regione Umbria and more than 200.000 of swine heads are present yearly in the whole territory while some municipalities host more than 30.000 heads over a relatively limited land. Municipality with elevated number of swine heads has registered particularly higher Nitrate concentration in groundwater that requires a management plan and intervention in order to determine the maximum allowed N loads in the specific region. Use of manure and fertilizers in agricultural field produce diffuse nitrogen (N) losses that are a major cause of excessive nitrate concentrations in ground and surface waters and have been of concern since decades. Excessive nitrate concentrations in groundwater can have toxic effects when used as drinking water and cause eutrophication in surface waters. For management and environmental planning purposes, it is necessary to assess the magnitude of diffuse N losses from agricultural fields and how they are influenced by factors such as management practices, type of fertilizers -organic or inorganic - climate and soil etc. There are several methods for assessing N leaching, they span from methods based on field test to complex models that require many input data. We use a simple index method that accounts for the type of fertilizer used - inorganic, swine or cattle manure- and hydrological and hydrogeological conditions. Hydrological conditions such as infiltration rates are estimated by a fully distributed hydrological model. Data on inorganic and organic fertilization are estimated at municipal level by using the nutrient crops needs and the statistics of swine and cattle heads within the municipality. The index method has been calibrated by using groundwater concentration as a proxy of N losses from agriculture. A time series of three years of data has been analyzed. The application of the simple index method allowed to

  11. Groundwater quality assessment using geospatial and statistical tools in Salem District, Tamil Nadu, India

    Science.gov (United States)

    Arulbalaji, P.; Gurugnanam, B.

    2017-10-01

    The water quality study of Salem district, Tamil Nadu has been carried out to assess the water quality for domestic and irrigation purposes. For this purpose, 59 groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), major anions (HCO3 -, CO3 -, F-, Cl-, NO2 - + NO3 -, and SO4 2-), major cations (Ca2+ Mg2+, Na+, and K+), alkalinity (ALK), and hardness (HAR). To assess the water quality, the following chemical parameters were calculated based on the analytical results, such as Piper plot, water quality index (WQI), sodium adsorption ratio (SAR), magnesium hazard (MH), Kelly index (KI), and residual sodium carbonate (RSC). Wilcox diagram represents that 23% of the samples are excellent to good, 40% of the samples are good to permissible, 10% of the samples are permissible to doubtful, 24% of the samples are doubtful unsuitable, and only 3% of the samples are unsuitable for irrigation. SAR values shows that 52% of the samples indicate high-to-very high and low-to-medium alkali water. KI values indicate good quality (30%) and not suitable (70%) for irrigation purposes. RSC values indicate that 89% of samples are suitable for irrigation purposes. MH reveals that 17% suitable and 83% samples are not suitable for irrigation purposes and for domestic purposes the excellent (8%), good (48%), and poor (44%). The agricultural waste, fertilizer used, soil leaching, urban runoff, livestock waste, and sewages are the sources of poor water quality. Some samples are not suitable for irrigation purposes due to high salinity, hardness, and magnesium concentration. In general, the groundwater of the Salem district was polluted by agricultural activities, anthropogenic activities, ion exchange, and weathering.

  12. Contractor Performance Assessment Reporting System

    Data.gov (United States)

    US Agency for International Development — CPARS is a web-based system used to input data on contractor performance. Reports from the system are used as an aid in awarding contracts to contractors that...

  13. Screening-Level Risk Assessment for Styrene-Acrylonitrile (SAN) Trimer Detected in Soil and Groundwater

    Science.gov (United States)

    Kirman, C. R.; Gargas, M. L.; Collins, J. J.; Rowlands, J. C.

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment. PMID:23030654

  14. Using tracer-derived groundwater transit times to assess storage within a high-elevation watershed of the upper Colorado River Basin, USA

    Science.gov (United States)

    Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.

    2018-03-01

    Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.

  15. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS.

    Science.gov (United States)

    Aghapour, Saba; Bina, Bijan; Tarrahi, Mohammad Javad; Amiri, Fahimeh; Ebrahimi, Afshin

    2018-02-13

    Fluoride (F) contamination in groundwater can be problematic to human health. This study evaluated the concentration of fluoride in groundwater resources of Isfahan Province, the central plateau of Iran, and its related health issues to the inhabitant populations. For this purpose, 573 drinking groundwater samples were analyzed in 2016 by using the spectrophotometric method. Non-carcinogenic health risks due to F exposure through consumption of drinking water were assessed using the US EPA method. In addition, the associated zoning maps of the obtained results were presented using geographic information system (GIS). The results indicated that F content in drinking water ranged from 0.02 to 2.8 mg/L. The F contents were less than 0.50 mg/L in 63% of the drinking groundwater samples, 0.51-1.5 mg/L in 33.15%, and higher than 1.5 mg/L in 3.85% (Iran and World Health Organization guidelines) of the drinking groundwater samples. The F levels in the west and the south groundwater resources of the study areas were lower than 0.5 mg/L, which is within the recommended values for controlling dental caries (0.50-1.0 mg/L). Therefore, these places require more attention and more research is needed to increase F intake for health benefit. The HQ index for children, teens and male and female adults had health hazards (HQ > 1) in 51, 17, 28, and 18 of samples, respectively. Groundwater resources having a risk of more than one were located in the counties of Nayin, Natanz, and Ardestan. So, in these areas, there are potential risks of dental fluorosis. The most vulnerable groups were children. The F levels must be reduced in this region to decrease endemic fluorosis.

  16. Thermal conductive heating in fractured bedrock: Screening calculations to assess the effect of groundwater influx

    Science.gov (United States)

    Baston, Daniel P.; Kueper, Bernard H.

    2009-02-01

    A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green's function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx ( q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.

  17. Cost and Performance Report - Use of Cometabolic Air Sparging to Remediate Chloroethene-Contaminated Groundwater Aquifers

    National Research Council Canada - National Science Library

    Magar, Victor

    2001-01-01

    ...) process at the McClellan National Test Site, California. The purpose of the demonstration was to evaluate the effectiveness of and costs associated with CAS for removal of chlorinated aromatic hydrocarbons (CAHs) from groundwater...

  18. Multi-modeling assessment of recent changes in groundwater resource: application to the semi-arid Haouz plain (Central Morocco)

    Science.gov (United States)

    Fakir, Younes; Brahim, Berjamy; Page Michel, Le; Fathallah, Sghrer; Houda, Nassah; Lionel, Jarlan; Raki Salah, Er; Vincent, Simonneaux; Said, Khabba

    2015-04-01

    The Haouz plain (6000 km2) is a part of the Tensift basin located in the Central Morocco. The plain has a semi-arid climate (250 mm/y of rainfall) and is bordered in the south by the High-Atlas mountains. Because the plain is highly anthropized, the water resources face heavy demands from various competing sectors, including agriculture (over than 273000 ha of irrigated areas), water supply for more than 2 million inhabitants and about 2 millions of tourists annually. Consequently the groundwater is being depleted on a large area of the plain, with problems of water scarcity which pose serious threats to water supplies and to sustainable development. The groundwater in the Haouz plain was modeled previously by MODFLOW (USGS groundwater numerical modeling) with annual time steps. In the present study a multi-modeling approach is applied. The aim is to enhance the evaluation of the groundwater pumping for irrigation, one of the most difficult data to estimate, and to improve the water balance assessment. In this purpose, two other models were added: SAMIR (Satellite Estimation of Agricultural Water Demand) and WEAP (integrated water resources planning). The three models are implemented at a monthly time step and calibrated over the 2001-2011 period, corresponding to 120 time steps. This multi-modeling allows assessing the evolution of water resources both in time and space. The results show deep changes during the last years which affect generally the water resources and groundwater particularly. These changes are induced by a remarkable urbanism development, succession of droughts, intensive agriculture activities and weak management of irrigation and water resources. Some indicators of these changes are as follow: (i) the groundwater table decrease varies between 1 to 3m/year, (ii) the groundwater depletion during the last ten year is equivalent to 50% of the lost reserves during 40 years, (iii) the annual groundwater deficit is about 100 hm3, (iv) the renewable

  19. Assessment on seasonal variation of groundwater quality of phreatic aquifers - A river basin system

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.

    suspended solids (TDS), fluoride and total iron content will help to identify the quality of ground water. Groundwater contamination can often have serious ill ef- fects on human health. Groundwater with low pH values can cause gastrointestinal disorders... is considered as an important parameter for irrigation and industrial purposes. Total dissolved solids help to identify the potability of groundwater. Total iron content may not have direct effects on human health but is of importance due to aesthetic reasons...

  20. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  1. Performance Assessment in Courts - The Swiss Case

    Directory of Open Access Journals (Sweden)

    Andreas Lienhard

    2014-12-01

    Full Text Available Abstract Performance assessments have become commonplace in management, even in the public sector. With the increasing pressure on courts to perform while making efficient use of resources, performance assessments in the justice system are also gaining in importance. However, the need for judicial independence poses special challenges for performance assessments in courts. Against this background, this article conducts a constitutional appraisal, and contrasts the need for judicial independence with the principles governing effectiveness and efficiency, self-government and supervision, and appointment and re-appointment. A duty to guarantee justice can be derived from this that does not in principle exclude the performance assessment of judges, but even renders it essential, subject to compliance with certain requirements. In these circumstances, it seems hardly surprising that numerous countries conduct performance assessments of judges and also that various international institutions have developed principles for this purpose, a summary of which is presented – in Switzerland’s case based on a recently conducted survey. In the field of conflict between the guaranteeing justice and protecting the judiciary, the following key questions arise in particular: What is the purpose of performance assessments and what are the consequences?What is subjected to a performance assessment and what are the assessment criteria?How is performance recorded as the basis for the performance assessment?Who is subjected to a performance assessment, and must a distinction be made between judges in higher and lower courts?Who carries out the performance assessment and what methods of protecting one’s rights are available?Who should receive the results of the performance assessment?The contribution sketches out possible answers to these key questions and aims to encourage academics and practitioners to give further consideration to this subject.

  2. Assessment of hydrogeochemistry and environmental isotopes of surface and groundwaters in the Kütahya Plain, Turkey

    Science.gov (United States)

    Abadi Berhe, Berihu; Erdem Dokuz, Uğur; Çelik, Mehmet

    2017-10-01

    The aim of the present work is to determine the geochemical processes that control the nature of the groundwater and assess the quality of water for drinking and public health purposes. Surface and groundwater samples of Kütahya plain were analyzed for their physio-chemical and environmental isotope properties. The relative concentrations of the water ions were found to occur in the order of Ca2+>Mg2+>(K+ + Na+) and HCO3->SO42->Cl-. Piper diagram shows that Ca-Mg/Mg-Ca-HCO3 was the dominant water types. Waters in the area were super-saturated with respect to carbonates. However, they were under-saturated with respect to sulphate minerals. The groundwaters had a mean isotopic composition of -67.32 δ2H and -9.72 δ18O and were comparatively lower than surface waters -64.64 δ2H and -9.25 δ18O. Tritium activities in groundwater from the wells ranged from 1.00 to 8.38 TU with a mean value of 4.37 TU. The impact of agricultural practices and poor sanitation conditions is indicated by the positive correlation between K+ - NO3-, K+- NO2- and HCO3- - Cl- ions as well as Na+ and Mg2+ ions with SO42-ion. The groundwater quality of Kütahya plain is influenced by various natural and anthropogenic factors.

  3. Using Landsat 5 imagery in the assessment of groundwater resources in the crystalline rocks around Dutsin-Ma, northwestern Nigeria

    International Nuclear Information System (INIS)

    Bala, A. E.; Batelaan, O.; De Smedt, F.

    2000-01-01

    Landsat's TM imagery of January 1986 covering Dustin - Ma and the surrounding areas in northwestern Nigeria was used for the assessment of groundwater resources in the crystalline rocks (Basement Complex) terrain. Employing ER Mapper (5.2), surface indicator for the occurrence of groundwater such as thriving vegetation in non - irrigated lands, and fracture were identified. These were interpreted vis - a - vis the tectonic development of the are. Lineaments interpreted as fractures show two prominent strike maxima that lie between 0000 and 0300, with the more common lying between 0000 and 0100. These strike maxima correspond to the stress axis of the Pan African orogeny. The lushness of vegetation along these strikes is higher than in the neighbouring areas and indicate the presence of groundwater. On the basis of lineament density and relative lushness of the vegetal cover, the area was divided into three main hydrogeological zones namely, the zones with the highest, intermediate, and least groundwater potential, for which ground truthing is recommended for their confirmation. Geophysical surveys for the siting of boreholes are also recommended parallel to strikes between 270 o and 300 o . It is judged that the groundwater resource for this area is low because of the general lack of moist or seepage areas, the low threshold value. (0.12) of Normalized Difference Vegetation Index (NDVI), and the generally dispersed nature of the vegetation

  4. Geochemical Assessment of Groundwater in the Peri-urban Environment of Buenos Aires, Argentina

    Science.gov (United States)

    Gallardo, A.

    2014-12-01

    Groundwater pollution is a major concern in peri-urban environments. Thus, water quality is being investigated at several domestic wells in Brandsen, 70 km south of Buenos Aires, Argentina. To present, about 20 water sources were sampled in orchards and small farms of the area. There is limited data about the wells construction, although collected information suggests that groundwater is derived from the superficial sandy loams of the Pampean Aquifer. Samples were analysed for major inorganic elements using ion chromatography and ICP-MS. Titration was used to estimate alkalinity. Physical characteristics (EC, pH, temperature) were measured on site. Results show that groundwater pH ranges from 6.5 to 7.8, with a specific conductance of 180 to 255 mS/m. A peak of 360 mS/m in one horticultural parcel is associated to local NO3- concentrations up to 140 mg/L. This value exceeds the maximum recommendations set by the WHO (50 mg/L). Considering that fertilizer inputs in that property are negligible, the high levels of NO3- might be attributed to effluents from a neighbour septic tank. An increase in NO3- (>150mg/L) was also detected in two conventional farms. This increase correlates to elevated SO42- concentrations (>300 mg/L) suggesting thus, fertilizers percolation into the saturated zone. The leaching of these fluids might be exacerbated by irrigation during new planting, and accumulations of fertilizer-solids in the root zones from previous seasons. Chloride concentrations average ~90 mg/L and would not pose a threat to health at the moment. Its main origin would be related to connate waters in the loam matrix, although some anthropogenic inputs might occur in the previously described farms. In general, the rest of the analysed elements fall within acceptable levels for drinking purposes as well. Nevertheless, further work is still necessary to better define the fate of the potential harmful elements and assess seasonal variations in water quality.

  5. Evaluating the performance of water purification in a vegetated groundwater recharge basin maintained by short-term pulsed infiltration events.

    Science.gov (United States)

    Mindl, Birgit; Hofer, Julia; Kellermann, Claudia; Stichler, Willibald; Teichmann, Günter; Psenner, Roland; Danielopol, Dan L; Neudorfer, Wolfgang; Griebler, Christian

    2015-01-01

    Infiltration of surface water constitutes an important pillar in artificial groundwater recharge. However, insufficient transformation of organic carbon and nutrients, as well as clogging of sediments often cause major problems. The attenuation efficiency of dissolved organic carbon (DOC), nutrients and pathogens versus the risk of bioclogging for intermittent recharge were studied in an infiltration basin covered with different kinds of macrovegetation. The quality and concentration of organic carbon, major nutrients, as well as bacterial biomass, activity and diversity in the surface water, the porewater, and the sediment matrix were monitored over one recharge period. Additionally, the numbers of viral particles and Escherichia coli were assessed. Our study showed a fast establishment of high microbial activity. DOC and nutrients have sustainably been reduced within 1.2 m of sediment passage. Numbers of E. coli, which were high in the topmost centimetres of sediment porewater, dropped below the detection limit. Reed cover was found to be advantageous over bushes and trees, since it supported higher microbial activities along with a good infiltration and purification performance. Short-term infiltration periods of several days followed by a break of similar time were found suitable for providing high recharge rates, and good water purification without the risk of bioclogging.

  6. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John J. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  7. Numerical simulation and impact assessment of a groundwater pollution based on MODFLOW

    International Nuclear Information System (INIS)

    Liu Dongxu; Si Gaohua; Zheng Junfang; Yu Jing; Liu Yong; Chen Jianjie; Ma Jinzhu

    2013-01-01

    Based on MODFLOW, SRTM3 DEM data and GIS tool, a saturated-zone groundwater flow and radionuclide transport numerical model in a research area had been developed to evaluate the migration trend and environmental impact. The results showed that 3 H transporting with the groundwater had a fast velocity and a pulse concentration which can not reduce to acceptable level within short times. that may cause groundwater pollution in downstream region. However, 90 Sr was transported slowly with the groundwater, and may only cause a pollution area of about 200 m around the source. (authors)

  8. VISUAL ART TEACHERS AND PERFORMANCE ASSESSMENT ...

    African Journals Online (AJOL)

    Charles

    qualitative research design; an aspect of descriptive survey research aiming at ... the competence and use of assessment strategies is determined by the type of ... Visual Art Teachers and Performance Assessment Methods in Nigerian Senior ...

  9. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in Mancha Oriental (Spain)

    Science.gov (United States)

    Pulido-Velazquez, M.; Peña-Haro, S.; Garcia-Prats, A.; Mocholi-Almudever, A. F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A.

    2014-09-01

    -aquifer interaction. SWAT and MODFLOW outputs (nitrate loads from SWAT, groundwater velocity field from MODFLOW) are used as MT3D inputs for assessing the fate and transport of nitrate leached from the topsoil. Results on river discharge, crop yields, groundwater levels and groundwater nitrate concentrations obtained from simulation fit well to the observed values. Three climate change scenarios have been considered, corresponding to 3 different GCMs for emission scenario A1B, covering the control period, and short, medium and long-term future periods. A multi-temporal analysis of LULC change was carried out, helped by the study of historical trends by remote sensing images and key driving forces to explain LULC transitions. Markov chains and European scenarios and projections have been used to quantify trends in the future. The cellular automata technique was applied for stochastic modeling future LULC maps. The results show the sensitivity of groundwater quantity and quality (nitrate pollution) to climate and land use changes, and the need to implement adaptation measures in order to prevent further groundwater level declines and increasing nitrate concentrations. The sequential modelling chain has been proved to be a valuable assessment and management tool for supporting the development of sustainable management strategies.

  10. Expert judgement in performance assessment

    International Nuclear Information System (INIS)

    Wilmot, R.D.; Galson, D.A.

    2000-01-01

    This report is a pilot study that systematically describes the various types of expert judgement that are made throughout the development of a PA, and summarizes existing tools and practices for dealing with expert judgements. The report also includes recommendations for further work in the area of expert judgement. Expert judgements can be classified in a number of ways, including classification according to why the judgements are made and according to how the judgements are made. In terms of why judgements are made, there is a broad distinction between: Judgements concerning data that are made because alternatives are not feasible; and Judgements about the conduct of a PA that are made because there are no alternative approaches for making the decision. In the case of how judgements are made, the report distinguishes between non-elicited judgements made by individuals, non-elicited judgements made by groups, and elicited judgements made by individuals or groups. These types of judgement can generally be distinguished by the extent of the associated documentation, and hence their traceability. Tools for assessing judgements vary depending on the type of judgements being examined. Key tools are peer review, an appropriate QA regime, documentation, and elicitation. Dialogue with stake holders is also identified as important in establishing whether judgements are justified in the context in which they are used. The PA process comprises a number of stages, from establishing the assessment context, through site selection and repository design, to scenario and model development and parametrisation. The report discusses how judgements are used in each of these stages, and identifies which of the tools and procedures for assessing judgements are most appropriate at each stage. Recommendations for further work include the conduct of a trial expert elicitation to gain experience in the advantages and disadvantages of this technique, the development of guidance for peer

  11. Expert judgement in performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wilmot, R.D.; Galson, D.A. [Galson Sciences Ltd, Oakham (United Kingdom)

    2000-01-01

    This report is a pilot study that systematically describes the various types of expert judgement that are made throughout the development of a PA, and summarizes existing tools and practices for dealing with expert judgements. The report also includes recommendations for further work in the area of expert judgement. Expert judgements can be classified in a number of ways, including classification according to why the judgements are made and according to how the judgements are made. In terms of why judgements are made, there is a broad distinction between: Judgements concerning data that are made because alternatives are not feasible; and Judgements about the conduct of a PA that are made because there are no alternative approaches for making the decision. In the case of how judgements are made, the report distinguishes between non-elicited judgements made by individuals, non-elicited judgements made by groups, and elicited judgements made by individuals or groups. These types of judgement can generally be distinguished by the extent of the associated documentation, and hence their traceability. Tools for assessing judgements vary depending on the type of judgements being examined. Key tools are peer review, an appropriate QA regime, documentation, and elicitation. Dialogue with stake holders is also identified as important in establishing whether judgements are justified in the context in which they are used. The PA process comprises a number of stages, from establishing the assessment context, through site selection and repository design, to scenario and model development and parametrisation. The report discusses how judgements are used in each of these stages, and identifies which of the tools and procedures for assessing judgements are most appropriate at each stage. Recommendations for further work include the conduct of a trial expert elicitation to gain experience in the advantages and disadvantages of this technique, the development of guidance for peer

  12. Assessing school performance and motivation

    OpenAIRE

    Pavelková, Isabella; Kubíková, Katerina

    2016-01-01

    We verify the theoretical hypothesis that individual reference norm helps the development of positive achievement motivation and lowers the performance fear of pupils. The research was carried out with pupils aged 9 to 12 years. The article presents the results of the research in using reference norms with 61 teachers in connection with achievement motivation of their 1144 pupils. The research also mapped the real school situations for the teachers involved, based partly on observation during...

  13. Documentation of a groundwater flow model developed to assess groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    The U.S. Geological Survey developed a groundwater flow model for the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina as part of a detailed assessment of the groundwater availability of the area and included an evaluation of how these resources have changed over time from stresses related to human uses and climate trends. The assessment was necessary because of the substantial dependency on groundwater for agricultural, industrial, and municipal needs in this area.The three-dimensional, groundwater flow model developed for this investigation used the numerical code MODFLOW–NWT to represent changes in groundwater pumping and aquifer recharge from predevelopment (before 1900) to future conditions, from 1900 to 2058. The model was constructed using existing hydrogeologic and geospatial information to represent the aquifer system geometry, boundaries, and hydraulic properties of the 19 separate regional aquifers and confining units within the Northern Atlantic Coastal Plain aquifer system and was calibrated using an inverse modeling parameter-estimation (PEST) technique.The parameter estimation process was achieved through history matching, using observations of heads and flows for both steady-state and transient conditions. A total of 8,868 annual water-level observations from 644 wells from 1986 to 2008 were combined into 29 water-level observation groups that were chosen to focus the history matching on specific hydrogeologic units in geographic areas in which distinct geologic and hydrologic conditions were observed. In addition to absolute water-level elevations, the water-level differences between individual measurements were also included in the parameter estimation process to remove the systematic bias caused by missing hydrologic stresses prior to 1986. The total average residual of –1.7 feet was normally distributed for all head groups, indicating minimal bias. The average absolute residual value

  14. Assessing the relationship between groundwater nitrate and animal feeding operations in Iowa (USA)

    Science.gov (United States)

    Zirkle, Keith W.; Nolan, Bernard T.; Jones, Rena R.; Weyer, Peter J.; Ward, Mary H.; Wheeler, David C.

    2016-01-01

    Nitrate-nitrogen is a common contaminant of drinking water in many agricultural areas of the United States of America (USA). Ingested nitrate from contaminated drinking water has been linked to an increased risk of several cancers, specific birth defects, and other diseases. In this research, we assessed the relationship between animal feeding operations (AFOs) and groundwater nitrate in private wells in Iowa. We characterized AFOs by swine and total animal units and type (open, confined, or mixed), and we evaluated the number and spatial intensities of AFOs in proximity to private wells. The types of AFO indicate the extent to which a facility is enclosed by a roof. Using linear regression models, we found significant positive associations between the total number of AFOs within 2 km of a well (p trend nitrate concentration. Additionally, we found significant increases in log nitrate in the top quartiles for AFO spatial intensity, open AFO spatial intensity, and mixed AFO spatial intensity compared to the bottom quartile (0.171 log(mg/L), 0.319 log(mg/L), and 0.541 log(mg/L), respectively; all p nitrate-nitrogen in drinking wells and found significant spatial clustering of high-nitrate wells (> 5 mg/L) compared with low-nitrate (≤ 5 mg/L) wells (p = 0.001). A generalized additive model for high-nitrate status identified statistically significant areas of risk for high levels of nitrate. Adjustment for some AFO predictor variables explained a portion of the elevated nitrate risk. These results support a relationship between animal feeding operations and groundwater nitrate concentrations and differences in nitrate loss from confined AFOs vs. open or mixed types.

  15. Soil and groundwater VOCs contamination: How can electrical geophysical measurements help assess post-bioremediation state?

    Science.gov (United States)

    Kessouri, P.; Johnson, T. C.; Day-Lewis, F. D.; Slater, L. D.; Ntarlagiannis, D.; Johnson, C. D.

    2016-12-01

    The former Brandywine MD (Maryland, USA) Defense Reutilization and Marketing Office (DRMO) was designated a hazardous waste Superfund site in 1999. The site was used as a storage area for waste and excess government equipment generated by several U.S. Navy and U.S. Air Force installations, leading to soil and groundwater contamination by volatile organic compounds (VOCs). Active bioremediation through anaerobic reductive dehalogenation was used to treat the groundwater and the aquifer unconsolidated materials in 2008, with electrical geophysical measurements employed to track amendment injections. Eight years later, we used spectral induced polarization (SIP) and time domain induced polarization (TDIP) on 2D surface lines and borehole electrical arrays to assess the long term impact of active remediation on physicochemical properties of the subsurface. Within the aquifer, the treated zone is more electrically conductive, and the phase shift describing the polarization effects is higher than in the untreated zone. Bulk conductivity and phase shift are also locally elevated close to the treatment injection well, possibly due to biogeochemical transformations associated with prolonged bacterial activity. Observed SIP variations could be explained by the presence of biofilms coating the pore space and/or by-products of the chemical reactions catalyzed by the bacterial activity (e.g. iron sulfide precipitation). To investigate these possibilities, we conducted complementary well logging measurements (magnetic susceptibility [MS], nuclear magnetic resonance [NMR], gamma-ray) using 5 boreholes installed at both treated and untreated locations of the site. We also collected water and soil samples on which we conducted microbiological and chemical analyses, along with geophysical observations (SIP, MS and NMR), in the laboratory. These measurements provide further insights into the physicochemical transformations in the subsurface resulting from the treatment and highlight

  16. Water Quality Assessment of Groundwater Resources in Qaleeh Shahin Plain Based on Cd and HEI

    Directory of Open Access Journals (Sweden)

    Yari A.R.

    2016-09-01

    Full Text Available Abstract Aims: The chemical elements in water resources, especially groundwater, can affect the water consumption purposes. The aim of this study was to evaluate the status of the overall pollution level of ground water of Qaleeh Shahin plain with respect to heavy metals by Cd and HEI methods. Instrument & Methods: This cross-sectional semi-experimental study was conducted in Sarpol-e Zahab township in Kermanshah Province, west of Iran. For this purpose, 20 groundwater wells were chosen randomly. The samples were filtered (0.45μm, stored in polyethylene bottles and were acidified at a pH lower than 2 by adding concentrated HNO3 in order to avoid metal adsorption onto the inner bottle walls. Element concentrations were determined using ICP-OES. The correlation between the metals in the different seasons, between the indices values and concentration of metals and between different indices values was assessed by Pearson’s correlation coefficient. Findings: There were no significant correlations between the concentrations of the elements in 2 seasons except between As and Cd in winter (r=0.544; p<0.05. Only the concentration of Pb had significant correlations with Cd (r=0.937; p=0.0001 and HEI (r=0.997; p=0.0001 values in winter and with Cd (r=0.997; p=0.0001 and HEI (r=0.810; p=0.0001 values in summer, which indicated Pb as the main contributory pollutant. The correlation between Cd and HEI was significant in winter (r=0.943; p=0.0001 and was significant in summer (r=0.818; p=0.0001. Conclusion: The water resources of Qaleeh Shahin plain, Kermanshah Province, Iran, are not polluted by heavy metals and are suitable for drinking.

  17. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    Science.gov (United States)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  18. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  19. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  20. Performance assessment in algebra learning process

    Science.gov (United States)

    Lestariani, Ida; Sujadi, Imam; Pramudya, Ikrar

    2017-12-01

    The purpose of research to describe the implementation of performance assessment on algebra learning process. The subject in this research is math educator of SMAN 1 Ngawi class X. This research includes descriptive qualitative research type. Techniques of data collecting are done by observation method, interview, and documentation. Data analysis technique is done by data reduction, data presentation, and conclusion. The results showed any indication that the steps taken by the educator in applying the performance assessment are 1) preparing individual worksheets and group worksheets, 2) preparing rubric assessments for independent worksheets and groups and 3) making performance assessments rubric to learners’ performance results with individual or groups task.

  1. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    Science.gov (United States)

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  2. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  3. Operational human performance reliability assessment (OHPRA)

    International Nuclear Information System (INIS)

    Haas, P.M.; Swanson, P.J.; Connelly, E.M.

    1993-01-01

    Operational Human Performance Reliability Assessment (OHPRA) is an approach for assessing human performance that is being developed in response to demands from modern process industries for practical and effective tools to assess and improve human performance, and therefore overall system performance and safety. The single most distinguishing feature of the approach is that is defines human performance in open-quotes operationalclose quotes terms. OHPRA is focused not on generation of human error probabilities, but on practical analysis of human performance to aid management in (1) identifying open-quotes fixableclose quotes problems and (2) providing input on the importance and nature of potential improvements. Development of the model in progress uses a unique approach for eliciting expert strategies for assessing performance. A PC-based model incorporating this expertise is planned. A preliminary version of the approach has already been used successfully to identify practical human performance problems in reactor and chemical process plant operations

  4. Performance assessment of a microsprinkler

    Directory of Open Access Journals (Sweden)

    Edivaldo Lopes Thomaz

    2014-04-01

    Full Text Available Surface hydrological processes are essential to the understanding and prediction of soil erosion. Several equipments are used to measure infiltration rate, runoff and soil loss. However, researchers build their own equipment due to the specific sites where the measurements are performed. This study evaluated the performance of a microsprinkler developed to measure the hydrological processes on unpaved rural roads. The microsprinkler is portable, lightweight, easy to operate, and also low cost. The measured parameters refer to different physical aspects of the rainfall produced as: intensity, drop size, kinetic energy and the simulation area. The microsprinkler was tested at different heights and pressures. The main results obtained: the intensity of simulated rainfall was 71.4 - 148.3 mmh-1, the drop size ranged from 0.3 to 1.2 mm (mean 0.7 mm, the kinetic energy of rainfall varied between 51 and 77% compared with a natural rainfall of similar intensity, and the simulation area had 0.28 - 0.56 m2 (mean 0.40 m2. The parameters obtained in this study are within the limit of others simulators reported in the literature.

  5. Assessment of hydrochemical trends in the highly anthropised Guadalhorce River basin (southern Spain) in terms of compliance with the European groundwater directive for 2015.

    Science.gov (United States)

    Urresti-Estala, Begoña; Gavilán, Pablo Jiménez; Pérez, Iñaki Vadillo; Cantos, Francisco Carrasco

    2016-08-01

    One of the key aspects introduced by the European Water Framework Directive 2000/60/EC (WFD) and developed by Groundwater Directive 2006/118/EC was the need to analyse pollution trends in groundwater bodies in order to meet the environmental objectives set in Article 4 WFD. According to this Directive, the main goal of "good status" should be achieved by the year 2015, and having reached this horizon, now is a suitable time to assess the changes that have taken place with the progressive implementation of the WFD. An extensive database is available for the Guadalhorce River basin, and this was used not only to identify in groundwater but also to draw real conclusions with respect to the degree of success in meeting the targets established for this main deadline (2015) The geographic and climate context of the Guadalhorce basin has facilitated the development of a variety of economic activities, but the one affecting the largest surface area is agriculture (which is practised on over 50 % of the river basin). The main environmental impacts identified in the basin aquifers arise from the widespread use of fertilisers and manures, together with the input of sewage from population centres. In consequence, some of the groundwater bodies located in the basin have historically had very high nitrate concentrations, often exceeding 200 mg/L. In addition, return flows, the use of fertilisers and other pressures promote the entry of other pollutants into the groundwater, as well as the salinisation of the main aquifers in the basin. In order to assess the hydrochemical changes that have taken place since the entry into force of the WFD, we performed a detailed trends analysis, based on data from the official sampling networks. In some cases, over 35 years of water quality data are available, but these statistics also present significant limitations, due to some deficiencies in the design or management; thus, data are missing for many years, the results are subject to

  6. Competency Assessment Using Key Performance Indicators

    OpenAIRE

    Elena Alexandra Toader; Laura Brad

    2015-01-01

    The paper proposes a method for computing the scores of the key performance indicators resulted in the competency assessment process. The key performance indicators are estimated considering four performance levels that an IT professional can obtain at the end of the assessment process. We suggest as the best approach for estimating the performance key indicators an online questionnaire filled by 60 employees that work in IT Romanian companies. The results provide evidence that the difference...

  7. Health Risk Assessment for Uranium in Groundwater - An Integrated Case Study Based on Hydrogeological Characterization and Dose Calculation

    Science.gov (United States)

    Franklin, M. R.; Veiga, L. H.; Py, D. A., Jr.; Fernandes, H. M.

    2010-12-01

    The uranium mining and milling facilities of Caetité (URA) is the only active uranium production center in Brazil. Operations take place at a very sensitive semi-arid region in the country where water resources are very scarce. Therefore, any contamination of the existing water bodies may trigger critical consequences to local communities because their sustainability is closely related to the availability of the groundwater resources. Due to the existence of several uranium anomalies in the region, groundwater can present radionuclide concentrations above the world average. The radiological risk associated to the ingestion of these waters have been questioned by members of the local communities, NGO’s and even regulatory bodies that suspected that the observed levels of radionuclide concentrations (specially Unat) could be related to the uranium mining and milling operations. Regardless the origin of these concentrations the fear that undesired health effects were taking place (e.g. increase in cancer incidence) remain despite the fact that no evidence - based on epidemiological studies - is available. This paper intends to present the connections between the local hydrogeology and the radiological characterization of groundwater in the neighboring areas of the uranium production center to understand the implications to the human health risk due to the ingestion of groundwater. The risk assessment was performed, taking into account the radiological and the toxicological risks. Samples from 12 wells have been collected and determinations of Unat, Thnat, 226Ra, 228Ra and 210Pb were performed. The radiation-related risks were estimated for adults and children by the calculation of the annual effective doses. The potential non-carcinogenic effects due to the ingestion of uranium were evaluated by the estimation of the hazard index (HI). Monte Carlo simulations were used to calculate the uncertainty associated with these estimates, i.e. the 95% confidence interval

  8. Characterisation of radionuclide migration and plant uptake for performance assessment

    International Nuclear Information System (INIS)

    Mathias, S. A.; Ireson, A. M.; Butler, A. P.; Jackson, B. M.; Wheater, H. S.

    2008-01-01

    Unsaturated vegetated soils are an important component in performance assessment models used to quantify risks associated with deep engineered repositories for underground radioactive waste disposal. Therefore, experimental studies, funded by Nirex over nearly 20 years, have been undertaken at Imperial College to study the transfer of radionuclides (Cl-36, I-129, Tc-99) from contaminated groundwater into crops. In parallel to this has been a modelling programme to aid interpretation of the experimental data, obtain parameter values characterising transport in soil and plant uptake and provide new representations of near-surface processes for performance assessment. A particular challenge in achieving these objectives is that the scale of the experimental work (typically ≤1 m) is much smaller than that required in performance assessment. In this paper, a new methodology is developed for up-scaling model results obtained at the experimental scale for use in catchment scale models. The method is based on characterising soil heterogeneity using soil texture. This has the advantage of allowing hydrological and radionuclide transport parameters to be correlated in a consistent manner. An initial investigation into the calculation of effective (i.e. up-scaled) hydrological and transport parameters has been undertaken and shows the results to be potentially highly (and non-linearly) sensitive to soil properties. Consequently, they have important implications for future site characterisation programmes supporting a proposed underground waste repository. (authors)

  9. Model-based assessment of the potential of seasonal aquifer thermal energy storage and recovery as a groundwater ecosystem service for the Brussels-Capital Region

    Science.gov (United States)

    Anibas, Christian; Huysmans, Marijke

    2015-04-01

    Urban areas are characterized by their concentrated demand of energy, applying a high pressure on urban ecosystems including atmosphere, soils and groundwater. In the light of global warming, urbanization and an evolving energy system, it is important to know how urbanized areas can contribute to their own energy demands. One option is to use the possibilities aquifers offer as an ecosystem service (BONTE et al., 2011). If used effectively an improvement in air and groundwater quality is achieved. Additionally, the more efficient distribution of the used energy may also lead to a decrease in primary energy consumption (ZUURBIER, 2013). Therefore, investigations of the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is being conducted. The potential of ATES systems are of special interest for energy demands in high density urban areas because of such infrastructure as office buildings, schools, hospitals and shopping malls. In an open water circuit ATES systems consist of two or more groundwater wells, where in seasonal cycles one subtracts and the other recharges water to the aquifer. Heat pumps use the heat capacity of water for heating or cooling a building. An important limitation of the methodology is the quality of the groundwater used (i.e. precipitation of Fe- or Mn-oxides can decrease the yield). However, ATES systems on the other hand can also improve groundwater quality and groundwater ecosystems. The current knowledge of the potential for ATES systems in the Brussels-Capital Region is based on geological assessments from VITO (2007). The Brussels-Capital Region is divided into a western and eastern section with respect to geology. While the western part has less favorable conditions for ATES, the eastern is composed of the Brussels Sand formation, which is a 20-40 m thick aquifer layer that has the highest potential for ATES systems in the region. By applying groundwater flow and heat

  10. Probabilistic assessments of fuel performance

    International Nuclear Information System (INIS)

    Kelppe, S.; Ranta-Puska, K.

    1998-01-01

    The probabilistic Monte Carlo Method, coupled with quasi-random sampling, is applied for the fuel performance analyses. By using known distributions of fabrication parameters and real power histories with their randomly selected combinations, and by making a large number of ENIGMA code calculations, one expects to find out the state of the whole reactor fuel. Good statistics requires thousands of runs. A sample case representing VVER-440 reactor fuel indicates relatively low fuel temperatures and mainly athermal fission gas release if any. The rod internal pressure remains typically below 2.5 MPa, which leaves a large margin to the system pressure of 12 MPa Gap conductance, an essential parameter in the accident evaluations, shows no decrease from its start-of-life value. (orig.)

  11. Integrated Assessment Of Groundwater Recharge In The North Kelantan River Basin Using Environmental Water Stable Isotopes, Tritium And Chloride Data

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir; Nur Hayati Hussin; Ismail Yusof; Kamaruzaman Mamat; Johari Abdul Latif; Rohaimah Demanah

    2014-01-01

    occurring after 1953. Groundwater age data together with other additional information related to the wells bore could then be applied to translate into semi-qualitative estimation of long term average groundwater recharge rate within the aquifer system (mm/y). Environmental isotopic data suggest recharge rate in a range 11 mm/y to 1270 mm/y with an average of 261.5 mm/y that corresponds to 10.5 % of the total annual rainfall. Recharge estimation obtained by isotopic approach was found smaller than the amount of recharge rates calculated based on CMB methodology in the unsaturated zone ranged between 155 mm/y to 966 mm/year. These data correspond to the average of 484.3 mm/y or 19.4 % of the total effective annual rainfall. Spatial variation of the predicted groundwater recharge map from tritium dating method is established in this preliminary study. Accurate estimation of groundwater recharge and further assessment of its source are useful and recommended for proper sustainable management and utilization of groundwater resources in this basin. (author)

  12. Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India

    Science.gov (United States)

    Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.

    2017-06-01

    The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - }. The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.

  13. Investigation and assessment of natural radionuclides in groundwater and geothermal fluid of Tianjin city

    International Nuclear Information System (INIS)

    Wang Xiao; Duan Xigui; Gao Liang; Yang Yuxin

    2012-01-01

    Investigation on the specific activities of natural radionuclides in the groundwater and geothermal fluids of Tianjin city were conducted. Based on the investigation, internal dose level posed by drinking the water and fluid to local public was evaluated. Results show the specific activities of natural radionuclides in the groundwater and geothermal fluid of Tianjin city is under control, no abnormal radioactivity discovered. (authors)

  14. Assessing the suitability of extreme learning machines (ELM for groundwater level prediction

    Directory of Open Access Journals (Sweden)

    Yadav Basant

    2017-03-01

    Full Text Available Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater resources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and complex nature of groundwater systems, the development of soft computing techniques (data-driven models in the field of hydrology has significant potential. This study employs two soft computing techniques, namely, extreme learning machine (ELM and support vector machine (SVM to forecast groundwater levels at two observation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydrological and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level was used for the comparative study of the models. These variables were used in various combinations for univariate and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better forecasting ability compared to the SVM model for monthly groundwater level forecasting.

  15. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  16. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  17. Hydrologic assessment and numerical simulation of groundwater flow, San Juan Mine, San Juan County, New Mexico, 2010–13

    Science.gov (United States)

    Stewart, Anne M.

    2018-04-03

    Coal combustion byproducts (CCBs), which are composed of fly ash, bottom ash, and flue gas desulfurization material, produced at the coal-fired San Juan Generating Station (SJGS), located in San Juan County, New Mexico, have been buried in former surface-mine pits at the San Juan Mine, also referred to as the San Juan Coal Mine, since operations began in the early 1970s. This report, prepared by the U.S. Geological Survey in cooperation with the Mining and Minerals Division of the New Mexico Energy, Minerals and Natural Resources Department, describes results of a hydrogeologic assessment, including numerical groundwater modeling, to identify the timing of groundwater recovery and potential pathways for groundwater transport of metals that may be leached from stored CCBs and reach hydrologic receptors after operations cease. Data collected for the hydrologic assessment indicate that groundwater in at least one centrally located reclaimed surface-mining pit has already begun to recover.The U.S. Geological Survey numerical modeling package MODFLOW–NWT was used with MODPATH particle-tracking software to identify advective flow paths from CCB storage areas toward potential hydrologic receptors. Results indicate that groundwater at CCB storage areas will recover to the former steady state, or in some locations, groundwater may recover to a new steady state in 6,600 to 10,600 years at variable rates depending on the proximity to a residual cone-of-groundwater depression caused by mine dewatering and regional oil and gas pumping as well as on actual, rather than estimated, groundwater recharge and evapotranspirational losses. Advective particle-track modeling indicates that the number of particles and rates of advective transport will vary depending on hydraulic properties of the mine spoil, particularly hydraulic conductivity and porosity. Modeling results from the most conservative scenario indicate that particles can migrate from CCB repositories to either the

  18. Assessing the effects of urbanization and climate change on groundwater management in China

    Science.gov (United States)

    Hua, S.; Zheng, C.

    2017-12-01

    Groundwater is expected to be more vulnerable in the future due to climate change coupled with rapid urbanization. Thus, protecting future groundwater resources under the impact of urbanization and climate change is necessary towards more sustainable groundwater resource development. This study is intended to shed lights on how water managers may plan for the adverse effects of urbanization and climate change on groundwater quality. A new approach is presented in which the groundwater vulnerability under future climate change scenarios is employed as a constraint to urban expansion. An original form of the Land Transformation Model (LTM) and a revised LTM simulation are applied to model the urbanization. The results indicated that there would be a notable and uneven urban growth between 2010 and 2050. Future groundwater vulnerability is expected to shift significantly under future climate change scenarios. The results of the revised LTM project more urban expansion in the central regions of China, while those of the original LTM project urban expansion in throughout China, although the two projections have the same areas of expansion. The urban expansion simulated by the original LTM follows the historical trend under the drivers of socioeconomic, political and geographic factors. However, the revised LTM drives the urban expansion to the regions with relatively lower groundwater vulnerability, in contrast to the historical trend. This study demonstrates that the integration of LTM and future groundwater vulnerability in the urban planning can better protect the groundwater resource and promote more sustainable socioeconomic development. The methodology developed in this study provides water managers and city planners a useful groundwater management tool for mitigating the risks associated with rapid urbanization and climate change.

  19. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation

    Science.gov (United States)

    Lee, Kun Sang

    2014-01-01

    Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.

  20. Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source.

    Science.gov (United States)

    Tabassum, Riaz Ahmad; Shahid, Muhammad; Dumat, Camille; Niazi, Nabeel Khan; Khalid, Sana; Shah, Noor Samad; Imran, Muhammad; Khalid, Samina

    2018-02-10

    Currently, several news channels and research publications have highlighted the dilemma of arsenic (As)-contaminated groundwater in Pakistan. However, there is lack of data regarding groundwater As content of various areas in Pakistan. The present study evaluated As contamination and associated health risks in previously unexplored groundwater of Hasilpur-Pakistan. Total of 61 groundwater samples were collected from different areas (rural and urban), sources (electric pump, hand pump, and tubewell) and depths (35-430 ft or 11-131 m). The water samples were analyzed for As level and other parameters such as pH, electrical conductivity, total dissolved solids, cations, and anions. It was found that 41% (25 out of 61) water samples contained As (≥ 5 μg/L). Out of 25 As-contaminated water samples, 13 water samples exceeded the permissible level of WHO (10 μg/L). High As contents have been found in tubewell samples and at high sampling depths (> 300 ft). The major As-contaminated groundwater in Hasilpur is found in urban areas. Furthermore, health risk and cancer risk due to As contamination were also assessed with respect to average daily dose (ADD), hazard quotient (HQ), and carcinogenic risk (CR). The values of HQ and CR of As in Hasilpur were up to 58 and 0.00231, respectively. Multivariate analysis revealed a positive correlation between groundwater As contents, pH, and depth in Hasilpur. The current study proposed the proper monitoring and management of well water in Hasilpur to minimize the As-associated health hazards.

  1. A practical assessment of aquifer discharge for regional groundwater demand by characterizing leaky confined aquifer overlain on a Mesozoic granitic gneiss basement

    Science.gov (United States)

    Shih, David Ching-Fang

    2018-04-01

    Due to increasing population worldwide, there is an urgent need to manage these important but diminishing groundwater resources efficiently to ensure their continued availability. The major innovative design of this study is to provide a practical assessment process for groundwater discharge under a regional demand by characterizing the nature of leaky confined aquifers overlain on a Mesozoic granitic gneiss basement which involves the important groundwater system in the Kinmen region (Taiwan, ROC) and the assessment of adoptable groundwater discharge in aquifer is needed. The storage coefficient presents an order of one in a thousand and hydraulic conductivity is approximately at the order of 1-8 m/d and 0.4-0.9 m/d for aquifer and aquitard respectively. Groundwater discharge and admissible number of pumping well is suggested considering scheduled maximum groundwater volume and head decline change for eastern and western studied area respectively. The safety subjected to the conservative issue is then addressed by the use of scheduled maximum groundwater volume. It reveals that the safety can be ensured using the indicator as scheduled maximum groundwater volume with predefined scenarios. The result can be utilized practically for developing management strategy of groundwater resources due to the applicability and novel of method.

  2. Performance Assessment of Mergers and Acquisitions

    DEFF Research Database (Denmark)

    Wang, Daojuan; Moini, Hamid

    2012-01-01

    on the performance measures and benchmarks adopted in M&A research field and the relevant empirical results. We find that the definitions of performance varied in terms of accounting, financial, operational and perceptual metrics. And performance assessment is sensitive to the definition of performance, methodology......Corporate mergers and acquisitions (M&As) have been increasing popular during these decades. However, a majority of research show failure rate (40% - 80%) has not significantly changed. This “success paradox” triggers us to reflect on performance assessment of M&As: how the performance of M...

  3. Identifying the role of human-induced land-use change while assessing drought effects on groundwater recharge

    Science.gov (United States)

    Verbeiren, Boud; Weerasinghe, Imeshi; Vanderhaegen, Sven; Canters, Frank; Uljee, Inge; Engelen, Guy; Jacquemin, Ingrid; Tychon, Bernard; Vangelis, Harris; Tsakiris, George; Batelaan, Okke; Huysmans, Marijke

    2015-04-01

    Drought is mainly regarded as a purely natural phenomenon, driven by the natural variation in precipitation or rather the lack of precipitation. Nowadays many river catchments are, however, altered by human activities having direct effects on the catchment landscape and hydrological response. In case of the occurrence of drought events in those catchments it becomes more complex to determine the effects of drought. To what extent is the hydrological response a direct result of the natural phenomenon and what is the role of the human factor? In this study we focus on the effects of droughts on groundwater recharge. Reliable estimation of groundwater recharge in space and time is of utmost importance for sustainable management of groundwater resources. Groundwater recharge forms the main source for replenishing aquifers. The main factors influencing groundwater recharge are the soil and topographic characteristics, land use and climate. While the first two influencing factors are relatively static, the latter two are (highly) dynamic. Differentiating between the contributions of each of these influencing factors to groundwater recharge is a challenging but important task. On the one hand, the occurrence of meteorological drought events is likely to cause direct, potentially deteriorating, effects on groundwater recharge. On the other hand, this is also the case for on-going land-use dynamics such as extensive urbanisation. The presented methodology aims at distinguishing in space and time between climate (drought-related) and land-use (human-induced) effects, enabling to assess the effects of drought on groundwater recharge. The physically-based water balance model WetSpass is used to calculate groundwater recharge in a distributed way (space and time) for the Dijle-Demer catchments in Belgium. The key issue is to determine land-use dynamics in a consistent way. A land-use timeseries is build based on four base maps. Via a change trajectory analysis the consistency

  4. The Effects of Performance-Based Assessment Criteria on Student Performance and Self-Assessment Skills

    Science.gov (United States)

    Fastre, Greet Mia Jos; van der Klink, Marcel R.; van Merrienboer, Jeroen J. G.

    2010-01-01

    This study investigated the effect of performance-based versus competence-based assessment criteria on task performance and self-assessment skills among 39 novice secondary vocational education students in the domain of nursing and care. In a performance-based assessment group students are provided with a preset list of performance-based…

  5. Technical Basis for Assessing Uranium Bioremediation Performance

    International Nuclear Information System (INIS)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N'Guessan

    2008-01-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation

  6. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  7. Spatiotemporal Assessment of Groundwater Resources in the South Platte Basin, Colorado

    Science.gov (United States)

    Ruybal, C. J.; McCray, J. E.; Hogue, T. S.

    2015-12-01

    The South Platte Basin is one of the most economically diverse and fastest growing basins in Colorado. Strong competition for water resources in an over-appropriated system brings challenges to meeting futu