WorldWideScience

Sample records for groundwater nutrient concentrations

  1. Groundwater – The disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients

    Science.gov (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Nützmann, Gunnar; Rosenberry, Donald O.

    2015-01-01

    Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer-lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater-borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer-lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater-borne P loads vary from 0.74 to 2900 mg PO4-P m−2 year−1; for N, these loads vary from 0.001 to 640 g m−2 year−1. Even small amounts of seepage can carry large nutrient loads due to often high

  2. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    Science.gov (United States)

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future

  3. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  4. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  5. Is nutrient contamination of groundwater causing eutrophication of groundwater-fed meadows?

    NARCIS (Netherlands)

    Pieterse, N.M.; Olde Venterink, H.; Schot, P.P.; Verkroost, A.W.M.

    2005-01-01

    There is an ongoing debate as to whether nutrient contamination of groundwater under agricultural fields may cause nutrient-enrichment and subsequent eutrophication in discharge areas. Often, there is only circumstantial evidence to support this supposition (proximity of agricultural fields,

  6. Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

    Science.gov (United States)

    Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.

    2008-01-01

    Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these

  7. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  8. Groundwater age and chemistry, and future nutrient loads for selected Rotorua Lakes catchments

    International Nuclear Information System (INIS)

    Morgenstern, U.; Reevers, R.R.; Daugney, C.J.; Cameron, S.; Gordon, D.

    2005-01-01

    Hydrochemical analysis and age dating of groundwater and groundwater-fed streams were carried out in the Lake Rotorua and Okareka catchments to assess the past and current states, and future trends in groundwater chemistry. The study was undertaken because of declining lake water quality due to observed increases in nutrient loads entering these lakes. THe hydrogeology of the Rotorua Lakes area can be described as a permeable pumiceous surface tephra layer that allows easy penetration of rainwater recharge to deeper rhyolite and ignimbrite aquifers. These aquifers are essentially unconfined and yield high volumes of groundwater that discharges to spring-fed streams or directly to the lake. The hydrochemistry of groundwaters is characterised by much lower concentrations of Ca, Mg and SO 4 and much higher concentrations of PO 4 -P and SiO 2 than other groundwaters in New Zealand. This chemical signature reflects the volcanic origin of the aquifer lithology. Because the aquifers in the Rotorua area have large water storage capacity there is a long residence time for nutrient-laden groundwater. It takes decades for the water after being recharged to reach the spring-fed streams and the lakes. The large groundwater bodies have therefore 'silently' been contaminated over decades, with the old pristine groundwater being progressively replaced by younger nutrient-laden water that will discharge to the spring-fed streams and finally to the lakes. This study involved age dating of springs, wells, and groundwater-fed streams to assess how long it takes for nutrient-enriched groundwater to travel from pastoral land to springs and streams, and to the lakes. Most of the springs and wells in the Lake Rotorua and Okareka catchments contained relatively old groundwaters, with mean residence times between 40 and >170 years (only two wells have younger water of 26 and 31 years mean residence time). This corresponds to young water fractions (water recharged within the last 55 years

  9. Urban trees reduce nutrient leaching to groundwater.

    Science.gov (United States)

    Nidzgorski, Daniel A; Hobbie, Sarah E

    2016-07-01

    Many urban waterways suffer from excess nitrogen (N) and phosphorus (P), feeding algal blooms, which cause lower water clarity and oxygen levels, bad odor and taste, and the loss of desirable species. Nutrient movement from land to water is likely to be influenced by urban vegetation, but there are few empirical studies addressing this. In this study, we examined whether or not urban trees can reduce nutrient leaching to groundwater, an important nutrient export pathway that has received less attention than stormwater. We characterized leaching beneath 33 trees of 14 species, and seven open turfgrass areas, across three city parks in Saint Paul, Minnesota, USA. We installed lysimeters at 60 cm depth to collect soil water approximately biweekly from July 2011 through October 2013, except during winter and drought periods, measured dissolved organic carbon (C), N, and P in soil water, and modeled water fluxes using the BROOK90 hydrologic model. We also measured soil nutrient pools (bulk C and N, KCl-extractable inorganic N, Brays-P), tree tissue nutrient concentrations (C, N, and P of green leaves, leaf litter, and roots), and canopy size parameters (leaf biomass, leaf area index) to explore correlations with nutrient leaching. Trees had similar or lower N leaching than turfgrass in 2012 but higher N leaching in 2013; trees reduced P leaching compared with turfgrass in both 2012 and 2013, with lower leaching under deciduous than evergreen trees. Scaling up our measurements to an urban subwatershed of the Mississippi River (~17 400 ha, containing ~1.5 million trees), we estimated that trees reduced P leaching to groundwater by 533 kg in 2012 (0.031 kg/ha or 3.1 kg/km 2 ) and 1201 kg in 2013 (0.069 kg/ha or 6.9 kg/km 2 ). Removing these same amounts of P using stormwater infrastructure would cost $2.2 million and $5.0 million per year (2012 and 2013 removal amounts, respectively). © 2016 by the Ecological Society of America.

  10. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    International Nuclear Information System (INIS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Maher, Damien T.

    2016-01-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO_3, PO_4, NH_4, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and saline GW the

  11. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  12. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Noori, Mahmood, E-mail: mahmood.sadat-noori@scu.edu.au [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Santos, Isaac R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); Tait, Douglas R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Maher, Damien T. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia)

    2016-10-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO{sub 3}, PO{sub 4}, NH{sub 4}, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and

  13. Groundwater flux and nutrient loading in the northeast section of Bear Lake, Muskegon County, Michigan, 2015

    Science.gov (United States)

    Totten, Alexander R.; Maurer, Jessica A.; Duris, Joseph W.

    2017-11-30

    first determine a flux of shallow groundwater, then nutrient concentrations to determine a load. It was determined that Willbrandt Pond East and Willbrandt Pond West contributed between 2 to 4 percent of the total annual phosphorus load to Bear Lake by way of shallow groundwater flow. Annual loads calculated for other constituents include orthophosphate (40–100 pounds per year [lb P/yr]), total nitrogen (200–830 lb/yr), chloride (12,700–32,100 lb/yr), and ammonia (130–670 lb N/yr). Study results indicated that mean groundwater and surface-water nutrient concentrations calculated in this study were higher than reported Michigan statewide values. The data collected in this study allow understanding of groundwater nutrient loading into Bear Lake in an effort to help inform future restoration and management decisions.

  14. Tidal variability of nutrients in a coastal coral reef system influenced by groundwater

    Science.gov (United States)

    Wang, Guizhi; Wang, Shuling; Wang, Zhangyong; Jing, Wenping; Xu, Yi; Zhang, Zhouling; Tan, Ehui; Dai, Minhan

    2018-02-01

    To investigate variation in nitrite, nitrate, phosphate, and silicate in a spring-neap tide in a coral reef system influenced by groundwater discharge, we carried out a time-series observation of these nutrients and 228Ra, a tracer of groundwater discharge, in the Luhuitou fringing reef at Sanya Bay in the South China Sea. The maximum 228Ra, 45.3 dpm 100 L-1, appeared at low tide and the minimum, 14.0 dpm 100 L-1, appeared during a flood tide in the spring tide. The activity of 228Ra was significantly correlated with water depth and salinity in the spring-neap tide, reflecting the tidal-pumping feature of groundwater discharge. Concentrations of all nutrients exhibited strong diurnal variation, with a maximum in the amplitude of the diel change for nitrite, nitrate, phosphate, and silicate in the spring tide of 0.46, 1.54, 0.12, and 2.68 µM, respectively. Nitrate and phosphate were negatively correlated with water depth during the spring tide but showed no correlation during the neap tide. Nitrite was positively correlated with water depth in the spring and neap tide due to mixing of nitrite-depleted groundwater and nitrite-rich offshore seawater. They were also significantly correlated with salinity (R2 ≥ 0.9 and P reef system was closely related with biological processes during both tidal periods, but the biological influence appeared to be less dominant, as inferred from the less significant correlations (R2 = 0.16) during the spring tide when groundwater discharge was more prominent. Thus, the variability of nutrients in the coral reef system was regulated mainly by biological uptake and release in a spring-neap tide and impacted by mixing of tidally driven groundwater and offshore seawater during spring tide.

  15. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  16. Groundwater biofilm dynamics grown in situ along a nutrient gradient.

    Science.gov (United States)

    Williamson, Wendy M; Close, Murray E; Leonard, Margaret M; Webber, Judith B; Lin, Susan

    2012-01-01

    This paper describes the in situ response of groundwater biofilms in an alluvial gravel aquifer system on the Canterbury Plains, New Zealand. Biofilms were developed on aquifer gravel, encased in fine mesh bags and suspended in protective columns in monitoring wells for at least 20 weeks. Four sites were selected in the same groundwater system where previous analyses indicated a gradient of increasing nitrate down the hydraulic gradient from Sites 1 to 4. Measurements during the current study classified the groundwater as oligotrophic. Biofilm responses to the nutrient gradients were assessed using bioassays, with biomass determined using protein and cellular and nucleic acid staining and biofilm activity using enzyme assays for lipid, carbohydrate, phosphate metabolism, and cell viability. In general, biofilm activity decreased as nitrate levels increased from Sites 1 to 4, with the opposite relationship for carbon and phosphorus concentrations. These results showed that the groundwater system supported biofilm growth and that the upper catchment supported efficient and productive biofilms (high ratio of activity per unit biomass). © 2012, Institute of Environmental Science & Research Ltd (ESR). Ground Water © 2012, National Ground Water Association.

  17. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Yang, Jinzhong; Zheng, Chunmiao; Zhang, Yan; An, An; Zhang, Meng; Xiao, Kai

    2017-08-01

    Daya Bay, a semi-closed bay of the South China Sea, is famous for its aquaculture, agriculture and tourism. Although routine environmental investigations in the bay have been conducted since the early 1980s, evaluations of submarine groundwater discharge (SGD), an important process in exchange between groundwater and coastal seawater, and its environmental impacts have never been reported. In this study, naturally occurring radon isotope (222Rn) was measured continuously at two sites (north-west and middle-east sites) and used as a tracer to estimate SGD and associated nutrient inputs into the bay. The SGD rates estimated based on the 222Rn mass balance model were, on average, 28.2 cm/d at north-west site and 30.9 cm/d at middle-east site. The large SGD rate at middle-east site may be due to the large tidal amplitude and the sandy component with high permeability in sediments. The SGD-driven nutrient fluxes, which were calculated as the product of SGD flux and the difference of nutrient concentrations between coastal groundwater and seawater, were 3.28 × 105 mol/d for dissolved nitrates (NO3-N), 5.84 × 103 mol/d for dissolved inorganic phosphorous (DIP), and 8.97 × 105 mol/d for reactive silicate (Si). These nutrient inputs are comparable to or even higher than those supplied by local rivers. In addition, these SGD-driven nutrients have a nitrogen-phosphorous ratio as high as ∼43, which may significantly affect the ecology of coastal waters and lead to frequent occurrence of harmful algal blooms.

  18. Tidal variability of nutrients in a coastal coral reef system influenced by groundwater

    Directory of Open Access Journals (Sweden)

    G. Wang

    2018-02-01

    Full Text Available To investigate variation in nitrite, nitrate, phosphate, and silicate in a spring–neap tide in a coral reef system influenced by groundwater discharge, we carried out a time-series observation of these nutrients and 228Ra, a tracer of groundwater discharge, in the Luhuitou fringing reef at Sanya Bay in the South China Sea. The maximum 228Ra, 45.3 dpm 100 L−1, appeared at low tide and the minimum, 14.0 dpm 100 L−1, appeared during a flood tide in the spring tide. The activity of 228Ra was significantly correlated with water depth and salinity in the spring–neap tide, reflecting the tidal-pumping feature of groundwater discharge. Concentrations of all nutrients exhibited strong diurnal variation, with a maximum in the amplitude of the diel change for nitrite, nitrate, phosphate, and silicate in the spring tide of 0.46, 1.54, 0.12, and 2.68 µM, respectively. Nitrate and phosphate were negatively correlated with water depth during the spring tide but showed no correlation during the neap tide. Nitrite was positively correlated with water depth in the spring and neap tide due to mixing of nitrite-depleted groundwater and nitrite-rich offshore seawater. They were also significantly correlated with salinity (R2  ≥  0.9 and P < 0.05 at the ebb flow of the spring tide, negative for nitrate and phosphate and positive for nitrite, indicating the mixing of nitrite-depleted, nitrate- and phosphate-rich less saline groundwater and nitrite-rich, nitrate- and phosphate-depleted saline offshore seawater. We quantified variation in oxidized nitrogen (NOx and phosphate contributed by biological processes based on deviations from mixing lines of these nutrients. During both the spring and neap tide biologically contributed NOx and phosphate were significantly correlated with regression slopes of 4.60 (R2  =  0.16 in the spring tide and 13.4 (R2  =  0.75 in the neap tide, similar to the composition of these

  19. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    Science.gov (United States)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest

  20. The short-term effects of management changes on watertable position and nutrients in shallow groundwater in a harvested peatland forest.

    Science.gov (United States)

    Finnegan, J; Regan, J T; Fenton, O; Lanigan, G J; Brennan, R B; Healy, M G

    2014-09-01

    Management changes such as drainage, fertilisation, afforestation and harvesting (clearfelling) of forested peatlands influence watertable (WT) position and groundwater concentrations of nutrients. This study investigated the impact of clearfelling of a peatland forest on WT and nutrient concentrations. Three areas were examined: (1) a regenerated riparian peatland buffer (RB) clearfelled four years prior to the present study (2) a recently clearfelled coniferous forest (CF) and (3) a standing, mature coniferous forest (SF), on which no harvesting took place. The WT remained consistently below 0.3 m during the pre-clearfelling period. Results showed there was an almost immediate rise in the WT after clearfelling and a rise to 0.15 m below ground level (bgl) within 10 months of clearfelling. Clearfelling of the forest increased dissolved reactive phosphorus concentrations (from an average of 28-230 μg L(-1)) in the shallow groundwater, likely caused by leaching from degrading brash mats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    Science.gov (United States)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  2. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China

    Science.gov (United States)

    Qu, Wenjing; Li, Hailong; Huang, Hao; Zheng, Chunmiao; Wang, Chaoyue; Wang, Xuejing; Zhang, Yan

    2017-12-01

    In Jiaozhou Bay, there are four wetland types, including sandy beaches, mud flats, tidal marshes, and estuarine intertidal zones. Four typical transects representing each of the wetland types were selected to investigate the flow dynamics, seawater-groundwater exchange and nutrients carried by submarine groundwater discharge (SGD). Based on field measurements of groundwater heads and salinity along each transect, the SGD averaged over the observation period was estimated using generalized Darcy's law. The SGD along the four transects ranges from 3.6 × 10-3 to 7.6 cm/d with the maximum occurring at the sandy beach. The SGD rate has a good correlation with the hydraulic conductivities of the wetland sediments. There is a positive correlation between the ratio of NO3-N/DIN and SGD rates. The SGD-associated nutrient output rate ranges from 3.3 × 10-2 to 9.5 mmol/m2/d for DIN (dissolved inorganic nitrogen), and from 6.2 × 10-5 to 1.8 × 10-2 mmol/m2/d for DIP (dissolved inorganic phosphorus). Compared to the nutrients delivered by the river, nutrients carried by SGD provide a more important source for the phosphate-limited environment to plankton in Jiaozhou Bay.

  3. Trends in nutrients

    Science.gov (United States)

    Heathwaite, A.L.; Johnes, P.J.; Peters, N.E.

    1996-01-01

    The roles of nitrogen (N) and phosphorus (P) as key nutrients determining the trophic status of water bodies are examined, and evidence reviewed for trends in concentrations of N and P species which occur in freshwaters, primarily in northern temperate environments. Data are reported for water bodies undergoing eutrophication and acidification, especially water bodies receiving increased nitrogen inputs through the atmospheric deposition of nitrogen oxides (NOx). Nutrient loading on groundwaters and surface freshwaters is assessed with respect to causes and rates of (change, relative rates of change for N and P, and implications of change for the future management of lakes, rivers and groundwaters. In particular, the nature and emphasis of studies for N species and P fractions in lakes versus rivers and groundwaters are contrasted. This review paper primarily focuses on results from North America and Europe, particularly for the UK where a wide range of data sets exists. Few nutrient loading data have been published on water bodies in less developed countries; however, some of the available data are presented to provide a global perspective. In general, N and P concentrations have increased dramatically (>20 times background concentrations) in many areas and causes vary considerably, ranging from urbanization to changes in agricultural practices.

  4. Uranium concentrations in groundwater, northeastern Washington

    Science.gov (United States)

    Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.

    2018-04-18

    A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to

  5. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    Science.gov (United States)

    Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.

    2012-12-01

    applied a novel geostatistical technique, which allocates reactivity parameters to the grid cells by sampling from these parameters' cumulative frequency distribution (CDF) functions. These CDF functions are derived for each relevant geohydrological unit present in the model domain, from datasets of groundwater and sediment analyses. The nutrient loads on the surface water system and the nutrient concentrations in groundwater, simulated by the transport model, are in fair agreement with field measurements. The experience with the test model constitutes a proof-of-concept, justifying further developments towards application of ANIMO-MT3DMS in actual regional decision-making processes.

  6. Medical Hydrogeology of Asian Deltas: Status of Groundwater Toxicants and Nutrients, and Implications for Human Health

    Directory of Open Access Journals (Sweden)

    Mohammad A. Hoque

    2015-12-01

    Full Text Available Drinking water, a fluid primarily for human hydration, is also a source of mineral nutrients. Groundwater, a drinking water source for more than 70% of inhabitants living in Asian deltas, has received much attention because of its naturally occurring arsenic, but the linkage of arsenic toxicity with other water constituents has not been studied. In addition, although nutrients are generally provided by food, in under developed rural settings, where people subsist on low nutrient diets, drinking-water-nutrients may supply quantities critical to human health thereby preventing diseases. Here, we show, using augmented datasets from three Asian deltas (Bengal, Mekong, and Red River, that the chemical content of groundwater is so substantial that in some areas individuals obtain up to 50% or more of the recommended daily intake (RDI of some nutrients (e.g., calcium, magnesium, iron from just two litres of drinking water. We also show some indications of a spatial association of groundwater nutrients and health outcome using demographic health data from Bangladesh. We therefore suggest that an understanding of the association of non-communicable disease and poor nutrition cannot be developed, particularly in areas with high levels of dissolved solids in water sources, without considering the contribution of drinking water to nutrient and mineral supply.

  7. Medical Hydrogeology of Asian Deltas: Status of Groundwater Toxicants and Nutrients, and Implications for Human Health.

    Science.gov (United States)

    Hoque, Mohammad A; Butler, Adrian P

    2015-12-26

    Drinking water, a fluid primarily for human hydration, is also a source of mineral nutrients. Groundwater, a drinking water source for more than 70% of inhabitants living in Asian deltas, has received much attention because of its naturally occurring arsenic, but the linkage of arsenic toxicity with other water constituents has not been studied. In addition, although nutrients are generally provided by food, in under developed rural settings, where people subsist on low nutrient diets, drinking-water-nutrients may supply quantities critical to human health thereby preventing diseases. Here, we show, using augmented datasets from three Asian deltas (Bengal, Mekong, and Red River), that the chemical content of groundwater is so substantial that in some areas individuals obtain up to 50% or more of the recommended daily intake (RDI) of some nutrients (e.g., calcium, magnesium, iron) from just two litres of drinking water. We also show some indications of a spatial association of groundwater nutrients and health outcome using demographic health data from Bangladesh. We therefore suggest that an understanding of the association of non-communicable disease and poor nutrition cannot be developed, particularly in areas with high levels of dissolved solids in water sources, without considering the contribution of drinking water to nutrient and mineral supply.

  8. Groundwater Depth Affects Phosphorus But Not Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Northwest China.

    Science.gov (United States)

    Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang

    2018-01-01

    Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N 2 , respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem.

  9. Stochastic analysis to assess the spatial distribution of groundwater nitrate concentrations in the Po catchment (Italy)

    International Nuclear Information System (INIS)

    Cinnirella, Sergio; Buttafuoco, Gabriele; Pirrone, Nicola

    2005-01-01

    A large database including temporal trends of physical, ecological and socio-economic data was developed within the EUROCAT project. The aim was to estimate the nutrient fluxes for different socio-economic scenarios at catchment and coastal zone level of the Po catchment (Northern Italy) with reference to the Water Quality Objectives reported in the Water Framework Directive (WFD 2000/60/CE) and also in Italian legislation. Emission data derived from different sources at national, regional and local levels are referred to point and non-point sources. While non-point (diffuse) sources are simply integrated into the nutrient flux model, point sources are irregularly distributed. Intensive farming activity in the Po valley is one of the main Pressure factors Driving groundwater pollution in the catchment, therefore understanding the spatial variability of groundwater nitrate concentrations is a critical issue to be considered in developing a Water Quality Management Plan. In order to use the scattered point source data as input in our biogeochemical and transport models, it was necessary to predict their values and associated uncertainty at unsampled locations. This study reports the spatial distribution and uncertainty of groundwater nitrate concentration at a test site of the Po watershed using a probabilistic approach. Our approach was based on geostatistical sequential Gaussian simulation used to yield a series of stochastic images characterized by equally probable spatial distributions of the nitrate concentration across the area. Post-processing of many simulations allowed the mapping of contaminated and uncontaminated areas and provided a model for the uncertainty in the spatial distribution of nitrate concentrations. - The stochastic simulation should be preferred to kriging in environmental studies, whenever it is critical to preserve the variation of a variable

  10. Cultivation of Nannochloropsis sp. in brackish groundwater supplemented with municipal wastewater as a nutrient source

    Directory of Open Access Journals (Sweden)

    Louise Lins de Sousa

    2014-04-01

    Full Text Available The aim of this work was to study growth potential of the green microalgae Nannochloropsis sp. using brackish groundwater from a well in the semi-arid northeast region of Brazil as culture medium. The medium was supplemented with (% 19.4, 22.0, 44.0 and 50.0% of municipal wastewater after UASB treatment as a low-cost nutrient source. The results showed that the culture tested was capable of growing in the brackish groundwater even at salinity levels as low as 2 ppt. Furthermore it was shown that municipal wastewater could be used as a sole nutrient source for Nannochloropsis sp.

  11. Concentration and size distribution of particles in abstracted groundwater.

    Science.gov (United States)

    van Beek, C G E M; de Zwart, A H; Balemans, M; Kooiman, J W; van Rosmalen, C; Timmer, H; Vandersluys, J; Stuyfzand, P J

    2010-02-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of larger particles. However, the particle concentration in groundwater derived from abstraction wells, with high groundwater flow velocities, is much lower than in groundwater from monitor wells, with minimal flow velocities. This inconsistency points to exhaustion of the particle supply in the aquifer around wells due to groundwater abstraction for many years. The particle size distribution can be described with the help of a power law or Pareto distribution. Comparing the measured particle size distribution with the Pareto distribution shows that particles with a diameter >7 microm are under-represented. As the particle size distribution is dependent on the flow velocity, so is the value of the "Pareto" slope beta. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Swift recovery of Sphagnum nutrient concentrations after excess supply.

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique M P D

    2008-08-01

    Although numerous studies have addressed the effects of increased N deposition on nutrient-poor environments such as raised bogs, few studies have dealt with to what extent, and on what time-scale, reductions in atmospheric N supply would lead to recovery of the ecosystems in question. Since a considerable part of the negative effects of elevated N deposition on raised bogs can be related to an imbalance in tissue nutrient concentrations of the dominant peat-former Sphagnum, changes in Sphagnum nutrient concentration after excess N supply may be used as an early indicator of ecosystem response. This study focuses on the N and P concentrations of Sphagnum magellanicum and Sphagnum fallax before, during and after a factorial fertilization experiment with N and P in two small peatlands subject to a background bulk deposition of 2 g N m(-2) year(-1). Three years of adding N (4.0 g N m(-2) year(-1)) increased the N concentration, and adding P (0.3 g P m(-2) year(-1)) increased the P concentration in Sphagnum relative to the control treatment at both sites. Fifteen months after the nutrient additions had ceased, N concentrations were similar to the control whereas P concentrations, although strongly reduced, were still slightly elevated. The changes in the N and P concentrations were accompanied by changes in the distribution of nutrients over the capitulum and the stem and were congruent with changes in translocation. Adding N reduced the stem P concentration, whereas adding P reduced the stem N concentration in favor of the capitulum. Sphagnum nutrient concentrations quickly respond to reductions in excess nutrient supply, indicating that a management policy aimed at reducing atmospheric nutrient input to bogs can yield results within a few years.

  13. Comparison of tritium concentrations in rainwater, simulated infiltrating water, and groundwater

    International Nuclear Information System (INIS)

    Ishii, Yoshiyuki; Saito, Masaaki; Imaizumi, Hiroshi; Kato, Norio; Kitaoka, Koichi

    2014-01-01

    The tritium concentration in initial groundwater(i.e., freshly infiltrating rainwater) is necessary for groundwater dating. We collected simulated infiltrating water as the initial groundwater and examined its characteristics for tritium concentration. First, in Tokyo, the tritium concentration of simulated infiltrating water was compared with that of rainwater, atmospheric moisture, groundwater, spring water, and sap water. While rainwater, atmospheric moisture, and simulated infiltrating water remarkably changed month-to-month or with every rainfall event, groundwater and spring water were nearly constant throughout the year. Second, we collected the simulated infiltrating water monthly at four sampling sites widely dispersed across Japan(i.e., Sapporo, Niigata, Tokyo, and Matsuyama) from 2004 to 2010. Sapporo and Niigata showed high tritium concentrations as compared with the relatively low concentrations in Tokyo and Matsuyama. These results indicate that we can obtain annual maximum and minimum concentrations at each site, and that we can estimate the tritium concentration in initial groundwater at each site by using a mixing model composed of these maximum and minimum concentrations. (author)

  14. Spatial and temporal variation of nutrients in groundwater and associated processes in the coastal zone of the Pearl River Delta, China

    Science.gov (United States)

    Chen, J.

    2017-12-01

    Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.

  15. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  16. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms

    Science.gov (United States)

    Smith, Christopher G.; Swarzenski, Peter W.

    2012-01-01

    A cross-shelf, water-column mass balance of radon-222 (222Rn) provided estimates of submarine groundwater discharge (SGD), which were then used to quantify benthic nutrient fluxes. Surface water and groundwater were collected along a shore-normal transect that extended from Tampa Bay, Florida, across the Pinellas County peninsula, to the 10-m isobath in the Gulf of Mexico. Samples were analyzed for 222Rn and radium-223,224,226 (223,224,226Ra) activities as well as inorganic and organic nutrients. Cross-shore gradients of 222Rn and 223,224,226Ra activities indicate a nearshore source for these isotopes, which mixes with water characterized by low activities offshore. Radon-based SGD rates vary between 2.5 and 15 cm d-1 proximal to the shoreline and decrease offshore. The source of SGD is largely shallow exchange between surface and pore waters, although deeper groundwater cycling may also be important. Enrichment of total dissolved nitrogen and soluble reactive phosphorus in pore water combined with SGD rates results in specific nutrient fluxes comparable to or greater than estuarine fluxes from Tampa Bay. The significance of these fluxes to nearshore blooms of Karenia brevis is highlighted by comparison with prescribed nutrient demands for bloom maintenance and growth. Whereas our flux estimates do not indicate SGD and benthic fluxes as the dominant nutrient source to the harmful algal blooms, SGD-derived loads do narrow the deficit between documented nutrient supplies and bloom demands.

  17. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    Science.gov (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  18. A study of radon-222 concentrations in North Carolina groundwater

    International Nuclear Information System (INIS)

    Evans, J.P.

    1992-01-01

    The groundwater of 400 North Carolina homes was sampled to ascertain the distribution and extent of 222 Rn in North Carolina groundwater. Arithmetic mean (AM) and geometric mean (GM) concentrations of 1,816 pCi L -1 and 656 pCi L -1 were found for the state. These results indicate that two-thirds of 114 degree C. homes served by groundwater exceed the EPA proposed 300 pCi L -1 maximum contaminant level (MCL). Only 2% of NC homes exceeded 10,000 pCi L-1. The Eastern region had the lowest radon concentrations by far, with a GM of 2-)0 pCi L -1 . The Central region and Western region had GM's of 794 pCi L -1 and 1,032 pCi L -1 respectively. The groundwater data approached a log normal distribution. No consistent trends were noted in the relationship between indoor radon concentrations and groundwater radon concentrations. A correlation coefficient of 0.00921 revealed a very weak linear relationship

  19. Determination of Rn concentration in groundwater

    International Nuclear Information System (INIS)

    Takada, Shigeru; Handa, Madoka; Okano, Yasuhiro; Saito, Masaaki; Suzuki, Takashi

    1984-01-01

    The method of prediction of earthquakes by the change of concentration of Rn in groundwater was developed by U.S.S.R. and People's Republic of China, and was not known clearly. Since 1975, the research works on this subject were commenced by University of Tokyo, Geological Survey of Agency of Industrial Science and Technology and Tokyo Metropolitan Isotopic Research Center. Along with the development of an automatic continuous measuring apparatus with high reliability, the systems for the measurement of the Rn concentration in groundwater were established. At the time of the earthquake off Izu-Oshima on January 14, 1978, clear precursor was found in an artesian flowing well in Nakaizu 0f Izu Peninsula, and the unusual phenomena which seemed be the precursor of an earthquake were recognized in other districts of Izu and Tokai. On August 8, 1983, an earthquake of magnitude 6 occurred in the boundary region of Yamanashi and Kanagawa Prefectures. Preceding the earthquake, the unusual change of the concentration of Rn was recognized at several observation wells in Tokyo, and the unusual change was observed after the earthquake also. The possibility that the unusual change of the Rn concentration in groundwater is the precursor of earthquakes is high, and this phenomenon is expected to make contribution for the prediction of earthquakes, though there remain many problems to be solved. Further works are scheduled to establish the practical method of predicting earthquakes. (Isimitsu, A.)

  20. Nutrients fluxes from groundwater discharge into Mangueira Lagoon (Rio Grande do Sul, Brazil); Fluxos de nutrientes associados as descargas de agua subterranea para a Lagoa Mangueira (Rio Grande do Sul, Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Carlos F.F.; Niencheski, Luis F.H.; Attisano, Karina K.; Milani, Marcio R., E-mail: pgofcfa@furg.br [Instituto de Oceanografia, Universidade Federal do Rio Grande, Campus Carreiros, Rio Grande, RS (Brazil); Santos, Isaac R. [Department of Oceanography, Florida State University, Tallahassee, FL (United States); Milani, Idel C. [Departamento de Engenharia Hidrica, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Campus Porto, Pelotas, RS (Brazil)

    2012-07-01

    This study assesses the importance of groundwater discharge to dissolved nutrient levels in Mangueira Lagoon. A transect of an irrigation canal in the margin of Lagoon demonstrated a strong geochemical gradient due to high groundwater inputs in this area. Using {sup 222}Rn as a quantitative groundwater tracer, we observed that the flux of dissolved inorganic nitrogen (DIN), silicate and phosphate (1178 and 1977; 26190 and 35652; 167 and 188 mol d{sup -1} for winter and summer, respectively) can continually supply/sustain primary production. The irrigation canals act as an artificial underground tributary and represent a new source of nutrients to coastal lagoons. (author)

  1. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients.

    Science.gov (United States)

    Hatzinger, Paul B; Streger, Sheryl H; Begley, James F

    2015-01-01

    1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was previously used as both a soil fumigant and a scavenger in leaded gasoline. EDB has been observed to persist in soils and groundwater, particularly under oxic conditions. The objective of this study was to evaluate options to enhance the aerobic degradation of EDB in groundwater, with a particular focus on possible in situ remediation strategies. Propane gas and ethane gas were observed to significantly stimulate the biodegradation of EDB in microcosms constructed with aquifer solids and groundwater from the FS-12 EDB plume at Joint Base Cape Cod (Cape Cod, MA), but only after inorganic nutrients were added. Ethene gas was also effective, but rates were appreciably slower than for ethane and propane. EDB was reduced to ethane gas and inorganic nutrients. An enrichment culture (BE-3R) that grew on ethane or propane gas but not EDB was obtained from the site materials. The degradation of EDB by this culture was inhibited by acetylene gas, suggesting that degradation is catalyzed by a monooxygenase enzyme. The BE-3R culture was also observed to biodegrade 1,2-dichloroethane (DCA), a compound commonly used in conjunction with EDB as a lead scavenger in gasoline. The data suggest that addition of ethane or propane gas with inorganic nutrients may be a viable option to enhance degradation of EDB in groundwater aquifers to below current state or federal MCL values. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    Science.gov (United States)

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Zheng, Chunmiao; Yang, Jinzhong; Zhang, Yan; Zhang, Meng; Qi, Zhanhui; Xiao, Kai; Zhang, Xiaolang

    2018-03-01

    As an important nutrient source for coastal waters, submarine groundwater discharge (SGD) has long been largely ignored in Daya Bay, China. In this study, we estimate the fluxes of SGD and associated nutrients into this region using a 224Ra mass balance model and assess the contribution/importance of nutrients by SGD, benthic sediments, local rivers, and atmospheric deposition. The results of 224Ra mass balance show that the estimated SGD ranges from (2.76 ± 1.43) × 106 m3/d to (1.03 ± 0.53) × 107 m3/d with an average of (6.32 ± 2.42) × 106 m3/d, about 16 times the total discharge rate of local rivers. The nutrient loading from SGD is estimated to be (1.05-1.99) × 105 mol/d for NO3-N, (4.04-12.16) × 103 mol/d for DIP, and (3.54-11.35) × 105 mol/d for Si. Among these considered nutrient sources, we find that SGD is the primary source for Si and NO3-N, contributing 68% and 42% of all considered sources, respectively. The atmospheric NO3-N flux is comparable to that from SGD. The local rivers are the most important source for DIP, contributing 75% of all considered sources. SGD with high N:P ratio (NO3-N/DIP) of 37.0 delivers not only a large quantity of nutrients, but also changes nutrient structure in coastal water. Based on a DIP budget, primary productivity is evaluated to be 54-73 mg C/m2 d, in which SGD accounts for approximately 30% of total production. This study indicates that SGD is a key source of nutrients to coastal waters and may cause an obvious change of primary production and nutrient structure in Daya Bay.

  4. Particle tracking for selected groundwater wells in the lower Yakima River Basin, Washington

    Science.gov (United States)

    Bachmann, Matthew P.

    2015-10-21

    The Yakima River Basin in south-central Washington has a long history of irrigated agriculture and a more recent history of large-scale livestock operations, both of which may contribute nutrients to the groundwater system. Nitrate concentrations in water samples from shallow groundwater wells in the lower Yakima River Basin exceeded the U.S. Environmental Protection Agency drinking-water standard, generating concerns that current applications of fertilizer and animal waste may be exceeding the rate at which plants can uptake nutrients, and thus contributing to groundwater contamination.

  5. Reeds as indicators of nutrient enrichment in a small temporarily ...

    African Journals Online (AJOL)

    Nutrient (NH4 and SRP) concentrations decreased from the bank towards the main estuary channel, suggesting that nutrients introduced into the estuary in groundwater and surface runoff were taken up by the fringe of reeds. The roots, rhizomes, stems and leaves of Phragmites at the site with the greatest Phragmites ...

  6. In Situ Groundwater Denitrification in the Riparian Zone of a Short-Rotation Woody Crop Experimental Watershed

    Science.gov (United States)

    Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.

    2017-12-01

    The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing

  7. Measurement of Radon concentration in groundwater by technique of nuclear track detector

    International Nuclear Information System (INIS)

    Trinh Van Giap; Nguyen Manh Hung; Dang Duc Nhan

    2000-01-01

    A method for measuring radon concentration in groundwater using nuclear track detector LR-115 stripping is reported. The radon-monitoring device in groundwater is a small box with two pieces of nuclear track detector and all these materials is placed in a plastic bag made by polyethylene. It is very suitable to measure radon concentration in groundwater well in long term. Alpha tracks produced by radon and it daughter on nuclear track detector is counted automatically by spark counting method. The paper also presents some results of radon concentration in some groundwater well and mineral water sources. (author)

  8. Complex relationship between groundwater velocity and concentration of radioactive contaminants

    International Nuclear Information System (INIS)

    Kaszeta, F.E.; Bond, F.W.

    1980-01-01

    This paper uses the results from the Multi-component Mass Transport model to examine the complex interrelationship between groundwater velocity and contaminant dispersion, decay, and retardation with regard to their influence on the contaminant concentration distribution as it travels through the geosphere to the biosphere. The rate of transport of contaminants through the geosphere is governed by groundwater velocity, leach rate, and contaminant retardation. The dominant characteristics of the contaminant concentration distribution are inherited during leaching and modified during transport by dilution, dispersion and decay. For a hypothetical non-decaying, non-dispersing contaminant with no retardation properties, the shape of the source term distribution is governed by the groundwater velocity (dilution) and leach rate. This distribution remains unchanged throughout transport. Under actual conditions, however, dispersion, decay and retardation modify the concentration distribution during both leaching and transport. The amount of dispersion is determined by the distance traveled, but it does have a greater peak-reducing influence on spiked distributions than square-shaped distributions. Decay acts as an overall scaling factor on the concentration distribution. Retardation alters the contaminant travel time and therefore indirectly influences the amount of dilution, dispersion and decay. Simple relationships between individual parameters and groundwater velocity as they influence peak concentration do not exist. For those cases where the source term is not solubility-limited and flow past the waste is independent of regional hydrologic conditions, a threshold concentration occurs at a specific groundwater velocity where the effects of dilution balance those of dispersion and decay

  9. Ground-Water Nutrient Flux to Coastal Waters and Numerical Simulation of Wastewater Injection at Kihei, Maui, Hawaii

    Science.gov (United States)

    Hunt, Charles D.

    2007-01-01

    Water sampling and numerical modeling were used to estimate ground-water nutrient fluxes in the Kihei area of Maui, where growth of macroalgae (seaweed) on coral reefs raises ecologic concerns and accumulation on beaches has caused odor and removal problems. Fluxes and model results are highly approximate, first-order estimates because very few wells were sampled and there are few field data to constrain model calibration. Ground-water recharge was estimated to be 22.6 Mgal/d (million gallons per day) within a 73-square-mile area having a coastline length of 8 miles or 13 km (kilometers). Nearly all of the recharge discharges at the coast because ground-water withdrawals are small. Another 3.0 Mgal/d of tertiary-treated wastewater effluent is injected into the regional aquifer at a County treatment plant midway along the coast and about a mile from shore. The injection plume is 0.93 miles wide (1.5 km) at the shore, as estimated from a three-dimensional numerical ground-water model. Wastewater injected beneath the brackish ground-water lens rises buoyantly and spreads out at the top of the lens, diverting and mixing with ambient ground water. Ground water discharging from the core of the injection plume is less than 5 years old and is about 60 percent effluent at the shore, according to the model. Dissolved nitrogen and phosphorus concentrations in treated effluent were 7.33 and 1.72 milligrams per liter, roughly 6 and 26 times background concentrations at an upgradient well. Background nitrogen and phosphorus fluxes carried by ground water are 7.7 and 0.44 kg/d-km (kilograms per day per kilometer of coast). Injected wastewater fluxes distributed across the plume width are 55 and 13 kg/d-km nitrogen and phosphorus, roughly 7 and 30 times background flux. However, not all of the injected load reaches coastal waters because nutrients are naturally attenuated in the oxygen-depleted effluent plume. Water from a downgradient well reflects this attenuation and provides a

  10. Report Assesses Nutrient Pollution in U.S. Streams and Aquifers

    Science.gov (United States)

    Showstack, Randy

    2010-10-01

    Concentrations of nutrients in many U.S. streams and aquifers have remained the same or have increased since the early 1990s, according to a new decadal assessment entitled “Nutrients in the nation's streams and groundwater, 1992-2004,” released by the U.S. Geological Survey (USGS) on 24 September. “Despite improvements in water quality made by reducing point sources of nutrients, our data show that nonpoint sources of nutrients have resulted in concentrations of both nitrogen and phosphorus far above criteria recommended by [the U.S. Environmental Protection Agency] for the protection of aquatic life,” Neil Dubrovsky, project chief for USGS's National Water-Quality Assessment (NAWQA) Program, said at a briefing when the report was released. While USGS continues to sample for nutrient concentrations, the report assessment period concluded in 2004.

  11. Submarine Ground Water Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Hawai'i:Part 2, Spatial and Temporal Variations in Salinity, Radium-Isotope Activity, and Nutrient Concentrations in Coastal Waters, December 2003-April 2006

    Science.gov (United States)

    Knee, Karen; Street, Joseph; Grossman, Eric E.; Paytan, Adina

    2008-01-01

    The aquatic resources of Kaloko-Honokohau National Historical Park, including rocky shoreline, fishponds, and anchialine pools, provide habitat to numerous plant and animal species and offer recreational opportunities to local residents and tourists. A considerable amount of submarine groundwater discharge was known to occur in the park, and this discharge was suspected to influence the park's water quality. Thus, the goal of this study was to characterize spatial and temporal variations in the quality and quantity of groundwater discharge in the park. Samples were collected in December 2003, November 2005, and April 2006 from the coastal ocean, beach pits, three park observation wells, anchialine pools, fishponds, and Honokohau Harbor. The activities of two Ra isotopes commonly used as natural ground-water tracers (223Ra and 224Ra), salinity, and nutrient concentrations were measured. Fresh ground water composed a significant proportion (8-47 volume percent) of coastal-ocean water. This percentage varied widely between study sites, indicating significant spatial variation in submarine groundwater discharge at small (meter to kilometer) scales. Nitrate + nitrite, phosphate, and silica concentrations were significantly higher in nearshore coastal-ocean samples relative to samples collected 1 km or more offshore, and linear regression showed that most of this difference was due to fresh ground-water discharge. High-Ra-isotope-activity, higher-salinity springs were a secondary source of nutrients, particularly phosphate, at Honokohau Harbor and Aiopio Fishtrap. Salinity, Ra-isotope activity, and nutrient concentrations appeared to vary in response to the daily tidal cycle, although little seasonal variation was observed, indicating that submarine ground-water discharge may buffer the park's water quality against the severe seasonal changes that would occur in a system where freshwater inputs were dominated by rivers and runoff. Ra-isotope-activity ratios indicated

  12. Nutrient concentration in leaves, a tool for nutritional diagnosis in cocoa.

    Directory of Open Access Journals (Sweden)

    Yina Jazbleidi Puentes-Páramo

    2016-06-01

    Full Text Available The aim of this study was to estimate the foliar concentrations in cocoa farming (Theobroma cacao L as a diagnostic tool of their nutritional status. At the Research Center of the National Federation of Cocoa Producers (Fedecacao located in Miranda-Cauca, Colombia, the study assessed the effect of five doses of NPK fertilization in nutrient concentration in leaves of four cocoa clones CCN-51, TSH-565, ICS-39, and ICS-95 from 20102012. Experimental design was randomized complete block design with five treatments: TR(control, T1(25% NPK, T2(50% NPK, T3(75% NPK, T4(100% NPK and four replicates. The concentration of 11 nutrients (N, P, K+, Ca2+, S, Mg2+, B, Zn2+, Cu2+, Fe2+, Mn2+ and their relation with yield was evaluated for three years. Results showed differences in the foliar concentration of nutrients assessed by effect of treatments, by clone, and by clone*treatment interaction. The foliar concentration used was derived from higher yield-related treatment, whereby, a proposal for nutritional diagnosis in cocoa based on nutrient monitoring was created to evaluate nutrient concentration in leaves.

  13. Nutrient uptake dynamics across a gradient of nutrient concentrations and ratios at the landscape scale

    Science.gov (United States)

    Gibson, Catherine A.; O'Reilly, Catherine M.; Conine, Andrea L.; Lipshutz, Sondra M.

    2015-02-01

    Understanding interactions between nutrient cycles is essential for recognizing and remediating human impacts on water quality, yet multielemental approaches to studying nutrient cycling in streams are currently rare. Here we utilized a relatively new approach (tracer additions for spiraling curve characterization) to examine uptake dynamics for three essential nutrients across a landscape that varied in absolute and relative nutrient availability. We measured nutrient uptake for soluble reactive phosphorous, ammonium-nitrogen, and nitrate-nitrogen in 16 headwater streams in the Catskill Mountains, New York. Across the landscape, ammonium-nitrogen and soluble reactive phosphorus had shorter uptake lengths and higher uptake velocities than nitrate-nitrogen. Ammonium-nitrogen and soluble reactive phosphorus uptake velocities were tightly correlated, and the slope of the relationship did not differ from one, suggesting strong demand for both nutrients despite the high ambient water column dissolved inorganic nitrogen: soluble reactive phosphorus ratios. Ammonium-nitrogen appeared to be the preferred form of nitrogen despite much higher nitrate-nitrogen concentrations. The uptake rate of nitrate-nitrogen was positively correlated with ambient soluble reactive phosphorus concentration and soluble reactive phosphorus areal uptake rate, suggesting that higher soluble reactive phosphorus concentrations alleviate phosphorus limitation and facilitate nitrate-nitrogen uptake. In addition, these streams retained a large proportion of soluble reactive phosphorus, ammonium-nitrogen, and nitrate-nitrogen supplied by the watershed, demonstrating that these streams are important landscape filters for nutrients. Together, these results (1) indicated phosphorus limitation across the landscape but similarly high demand for ammonium-nitrogen and (2) suggested that nitrate-nitrogen uptake was influenced by variability in soluble reactive phosphorus availability and preference for

  14. Concentration and size distribution of particles in abstracted groundwater

    NARCIS (Netherlands)

    Van Beek, C.G.E.M.; de Zwart, A.H.; Balemans, M.; Kooiman, J.W.; van Rosmalen, C.; Timmer, H.; Vandersluys, J.; Stuijfzand, P.J.

    2010-01-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of

  15. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    Science.gov (United States)

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    Land application of municipal wastewater biosolids is the most common method of biosolids management used in North Carolina and the United States. Biosolids have characteristics that may be beneficial to soil and plants. Land application can take advantage of these beneficial qualities, whereas disposal in landfills or incineration poses no beneficial use of the waste. Some independent studies and laboratory analysis, however, have shown that land-applied biosolids can pose a threat to human health and surface-water and groundwater quality. The effect of municipal biosolids applied to agriculture fields is largely unknown in relation to the delivery of nutrients, bacteria, metals, and contaminants of emerging concern to surface-water and groundwater resources. Therefore, the North Carolina Department of Environment and Natural Resources (NCDENR) collaborated with the U.S. Geological Survey (USGS) through the 319 Nonpoint Source Program to better understand the transport of nutrients and bacteria from biosolids application fields to groundwater and surface water and to provide a scientific basis for evaluating the effectiveness of the current regulations.

  16. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.

    Science.gov (United States)

    Voisin, Jérémy; Cournoyer, Benoit; Vienney, Antonin; Mermillod-Blondin, Florian

    2018-05-16

    Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO 4 3- , NO 3 - , NH 4 + ), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting). Copyright © 2018 Elsevier B

  17. Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification

    Science.gov (United States)

    Tesoriero, Anthony J.; Gronberg, Jo Ann; Juckem, Paul F.; Miller, Matthew P.; Austin, Brian P.

    2017-08-01

    Machine learning techniques were applied to a large (n > 10,000) compliance monitoring database to predict the occurrence of several redox-active constituents in groundwater across a large watershed. Specifically, random forest classification was used to determine the probabilities of detecting elevated concentrations of nitrate, iron, and arsenic in the Fox, Wolf, Peshtigo, and surrounding watersheds in northeastern Wisconsin. Random forest classification is well suited to describe the nonlinear relationships observed among several explanatory variables and the predicted probabilities of elevated concentrations of nitrate, iron, and arsenic. Maps of the probability of elevated nitrate, iron, and arsenic can be used to assess groundwater vulnerability and the vulnerability of streams to contaminants derived from groundwater. Processes responsible for elevated concentrations are elucidated using partial dependence plots. For example, an increase in the probability of elevated iron and arsenic occurred when well depths coincided with the glacial/bedrock interface, suggesting a bedrock source for these constituents. Furthermore, groundwater in contact with Ordovician bedrock has a higher likelihood of elevated iron concentrations, which supports the hypothesis that groundwater liberates iron from a sulfide-bearing secondary cement horizon of Ordovician age. Application of machine learning techniques to existing compliance monitoring data offers an opportunity to broadly assess aquifer and stream vulnerability at regional and national scales and to better understand geochemical processes responsible for observed conditions.

  18. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  19. Ra Tracer-Based Study of Submarine Groundwater Discharge and Associated Nutrient Fluxes into the Bohai Sea, China: A Highly Human-Affected Marginal Sea

    Science.gov (United States)

    Liu, Jianan; Du, Jinzhou; Yi, Lixin

    2017-11-01

    Nutrient concentrations in coastal bays and estuaries are strongly influenced by not only riverine input but also submarine groundwater discharge (SGD). Here we estimate the SGD and the fluxes of the associated dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicon (DSi) into the Bohai Sea based on a 226Ra and 228Ra mass balance model. This procedure shows that in the Bohai Sea the average radium activities (dpm 100 L-1) are 42.8 ± 6.3 (226Ra) and 212 ± 41.7 (228Ra) for the surface water and 43.0 ± 6.1 (226Ra) and 216 ± 38.4 (228Ra) for the near-bottom water. According to the 228Ra/226Ra age model, the residence time in the Bohai Sea is calculated to be 1.7 ± 0.8 yrs. The mass balance of 226Ra and 228Ra suggests that the yearly SGD flux into the whole Bohai Sea is (2.0 ± 1.3) × 1011 m3 yr-1, of which the percentage of submarine fresh groundwater discharge (SFGD) to the total SGD is approximately (5.1 ± 4.1)%. However, the DIN and DSi fluxes from SFGD constitute 29% and 10%, respectively, of the total fluxes from the SGD. Moreover, nutrient loads, which exhibit high DIN/DIP from SGD, especially the SFGD, may substantially contribute to the nutrient supplies, resulting in the occurrence of red tide in the Bohai Sea.

  20. The effect of Littorella uniflora on nutrients in a groundwater fed lake

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila

    into the lake; and a smaller recharge zone where water from the lake flows back into the aquifer. This variable groundwater pattern combined with only minor surface inlets and outlets provides good conditions for studying the interactions between groundwater and Littorella uniflora. Preliminary results from......Lake Hampen is a Lobelia lake situated high up in the Jutland ridge and which lies close to the groundwater boundary. This means that the groundwater flow between the aquifer and the lake is not constant. Lake Hampen has a large discharge zone where the groundwater flows from the aquifer......,49 to 0,88mg NO3-N L-1 in the recharge zone. There are also indications that the plants have the capability to effectively reduce high nitrate concentrations within the rhizosphere (reduction of 30 to 0,1mg NO3-N L-1 was observed)....

  1. Lithological and seasonal variations in radon concentrations in Cypriot groundwaters

    International Nuclear Information System (INIS)

    Tasoula Kiliari; Anastasia Tsiaili; Ioannis Pashalidis

    2010-01-01

    The paper presents and discusses radon activity concentrations in Cypriot groundwater systems as a function of the background lithology and seasonal/meteorological conditions using an airborne radon monitoring system (ARM) after separation of radon by out-gassing. Radiometric analysis of groundwater samples obtained from non-contaminated systems showed that radon concentration in groundwaters varies strongly (0.1-10 Bq L -1 ) depending mainly on the hosting geological matrix but also to lesser degree on atmospheric/meteorological conditions. The associated excess annual dose has been estimated to range between 10 -6 and 10 -4 mSv y -1 , which is an insignificant contribution to the radiation exposure of the Cypriot population caused by airborne radon (0.5 ± 0.4 mSv y -1 ). (author)

  2. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability

    Science.gov (United States)

    Debernardi, Laura; de Luca, Domenico Antonio; Lasagna, Manuela

    2008-08-01

    This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 - concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 - concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually

  3. Effects of groundwater-flow paths on nitrate concentrations across two riparian forest corridors

    Science.gov (United States)

    Speiran, Gary K.

    2010-01-01

    Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/L beneath fields to 2 mg/L beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/L to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.

  4. Increased concentrations of potassium in heartwood of trees in response to groundwater contamination

    Science.gov (United States)

    Vroblesky, Don A.; Yanosky, Thomas M.; Siegel, Frederic R.

    1992-03-01

    The wood of tuliptrees ( Liriodendron tulipifera L.) growing above groundwater contamination from a hazardous-waste landfill in Maryland contained elevated concentrations of potassium (K). The groundwater contamination also contained elevated concentrations of dissolved K, as well as arsenic (As), cadmium (Cd), chloride (Cl), iron (Fe), manganese (Mn), zinc (Zn), and organic solvents. The dissolved K is derived from disposed smoke munitions. The excess K in the tuliptrees is concentrated in the heartwood, the part of the xylem most depleted in K in trees growing outside of the contamination. These data show that the uptake and translocation of K by tuliptrees can be strongly influenced by the availability of K in groundwater contamination and suggest the utility of this species as an areal indicator of groundwater contamination.

  5. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change

    International Nuclear Information System (INIS)

    Kellner, Elliott; Hubbart, Jason A.; Ikem, Abua

    2015-01-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p < 0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p < 0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p < 0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p < 0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p < 0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories. - Highlights: • Shallow groundwater chemical composition was compared at floodplain sites.

  6. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Elliott, E-mail: rekfh3@mail.missouri.edu [School of Natural Resources, University of Missouri, Columbia, MO 65211 (United States); Hubbart, Jason A. [Water Resources Program, School of Natural Resources, Department of Forestry, University of Missouri, Columbia, MO 65211 (United States); Ikem, Abua, E-mail: Ikema@lincolnu.edu [Lincoln University, Department of Agriculture and Environmental Sciences, 204 Foster Hall, 904 Chestnut Street, Jefferson City, MO 65101 (United States)

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p < 0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p < 0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p < 0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p < 0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p < 0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories. - Highlights: • Shallow groundwater chemical composition was compared at floodplain sites.

  7. Understanding the fate of sanitation-related nutrients in a shallow sandy aquifer below an urban slum area

    Science.gov (United States)

    Nyenje, P. M.; Havik, J. C. N.; Foppen, J. W.; Muwanga, A.; Kulabako, R.

    2014-08-01

    We hypothesized that wastewater leaching from on-site sanitation systems to alluvial aquifers underlying informal settlements (or slums) may end up contributing to high nutrient loads to surface water upon groundwater exfiltration. Hence, we conducted a hydro-geochemical study in a shallow sandy aquifer in Bwaise III parish, an urban slum area in Kampala, Uganda, to assess the geochemical processes controlling the transport and fate of dissolved nutrients (NO3, NH4 and PO4) released from on-site sanitation systems to groundwater. Groundwater was collected from 26 observation wells. The samples were analyzed for major ions (Ca, Mg, Na, Mg, Fe, Mn, Cl and SO4) and nutrients (o-PO4, NO3 and NH4). Data was also collected on soil characteristics, aquifer conductivity and hydraulic heads. Geochemical modeling using PHREEQC was used to determine the level of o-PO4 control by mineral solubility and sorption. Groundwater below the slum area was anoxic and had near neutral pH values, high values of EC (average of 1619 μS/cm) and high concentrations of Cl (3.2 mmol/L), HCO3 (11 mmol/L) and nutrients indicating the influence from wastewater leachates especially from pit latrines. Nutrients were predominantly present as NH4 (1-3 mmol/L; average of 2.23 mmol/L). The concentrations of NO3 and o-PO4 were, however, low: average of 0.2 mmol/L and 6 μmol/L respectively. We observed a contaminant plume along the direction of groundwater flow (NE-SW) characterized by decreasing values of EC and Cl, and distinct redox zones. The redox zones transited from NO3-reducing in upper flow areas to Fe-reducing in the lower flow areas. Consequently, the concentrations of NO3 decreased downgradient of the flow path due to denitrification. Ammonium leached directly into the alluvial aquifer was also partially removed because the measured concentrations were less than the potential input from pit latrines (3.2 mmol/L). We attributed this removal (about 30%) to anaerobic ammonium oxidation

  8. Increased concentrations of potassium in heartwood of trees in response to groundwater contamination

    Science.gov (United States)

    Vroblesky, D.A.; Yanosky, T.M.; Siegel, F.R.

    1992-01-01

    The wood of tuliptrees (Liriodendron tulipifera L.) growing above groundwater contamination from a hazardous-waste landfill in Maryland contained elevated concentrations of potassium (K). The groundwater contamination also contained elevated concentrations of dissolved K, as well as arsenic (As), cadmium (Cd), chloride (Cl), iron (Fe), manganese (Mn), zinc (Zn), and organic solvents. The dissolved K is derived from disposed smoke munitions. The excess K in the tuliptrees is concentrated in the heartwood, the part of the xylem most depleted in K in trees growing outside of the contamination. These data show that the uptake and translocation of K by tuliptrees can be strongly influenced by the availability of K in groundwater contamination and suggest the utility of this species as an areal indicator of groundwater contamination. ?? 1992 Springer-Verlag New York Inc.

  9. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5,900 years...

  10. Dissolved Nutrients from Submarine Groundwater in Flic en Flac ...

    African Journals Online (AJOL)

    through a thin blanket of unconsolidated sediment through a fracture system and is concentrated along the ... The lagoon is subjected to diffuse SGD flows which may contribute to its high dissolved nutrient values. ... coastal zone management and similar tropical volcanic lagoonal systems. INTRODUCTION. Lagoons and ...

  11. Radionuclide concentrations and dose assessment of cistern water and groundwater at the Marshall Islands

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Eagle, R.J.; Wong, K.M.; Jokela, T.A.; Robison, W.L.

    1981-01-01

    A radiological survey was conducted from September through November of 1978 to determine the concentrations of radionuclides in the terrestrial and marine environments of 11 atolls and 2 islands in the Northern Marshall Islands. More than 70 cistern and groundwater samples were collected at the atolls; the volume of each sample was between 55 and 100 l. The concentration of 90 Sr in cistern water at most atolls is that expected from world-wide fallout in wet deposition. Except for Bikini and Rongelap, 137 Cs concentrations in cistern water are in agreement with the average predicted concentrations from wet deposition. The 239+240 Pu concentrations are everywhere less than the predicted fallout concentrations except at Rongelap, Ailinginae, and Bikini where the measured and predicted concentrations are in general agreement. During the period sampled, most groundwater concentrations of 90 Sr and 137 Cs were everywhere higher than the concentrations in cistern water. Concentrations of the transurancies in filtered groundwater solution were everywhere comparable to or less than the concentrations in cistern water. It is concluded that the concentrations of radionuclides detected during any single period may not necessarily reflect the long-term average concentrations or the concentrations that might be observed if a lined well were extended above the surface. In any case, at all atolls the 90 Sr and 137 Cs concentrations in groundwater are below the concentration guidelines for drinking water recommended by the Environmental Protection Agency. The maximum annual dose rates and the 30- and 50-y integral doses are calculated for the intake of both cistern water and groundwater for each of the atolls

  12. Understanding shallow groundwater contamination in Bwaise slum, Kampala, Uganda

    Science.gov (United States)

    Nyenje, P. M.; Havik, J.; Foppen, J. W.; Uhlenbrook, S.

    2012-04-01

    Groundwater in unsewered urban areas is heavily contaminated by onsite sanitation activities and is believed to be an important source of nutrients ex-filtrating into streams and thus contributing to eutrophication of Lakes in urban areas. Currently the fate of nutrients and especially phosphorus leached into groundwater in such areas is not well known. In this study, we undertook an extensive investigation of groundwater in Bwaise slum, Kampala Uganda to understand the distribution and fate of sanitation-related nutrients N and P that are leached into groundwater. Transects of monitoring wells were installed in Bwaise slum and downstream of the slum. From these wells, water levels were measured and water quality analyses done to understand the distribution and composition of the nutrients, how they evolve downstream and the possible subsurface processes affecting their fate during transport. These findings are necessary to evaluate the risk of eutrophication posed by unsewered areas in urban cities and to design/implement sanitation systems that will effectively reduce the enrichment of these nutrients in groundwater. Key words: fate, groundwater, nutrients, processes, slums

  13. Limiting nutrient emission from a cut rose closed system by high-flux irrigation and low nutrient concentrations?

    NARCIS (Netherlands)

    Baas, R.; Berg, van der D.

    2004-01-01

    A two-year project was aimed at decreasing nutrient emission from closed nutrient systems by using high irrigation rates in order to allow lower EC levels in the presence of accumulated Na and Cl. Experimental variables were growing media, irrigation frequencies, EC and NaCl concentrations for cut

  14. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    African Journals Online (AJOL)

    Effect of organic and inorganic fertilizers on nutrient concentrations in plantain ( Musa spp.) ... Fruit parameters measured were fruit weight, edible proportion and pulp dry matter content; also, the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) in fruits were determined.

  15. Fate and consequence of nutrients at an abandoned feedlot, Glacial Ridge National Wildlife Refuge, Minnesota, USA

    Directory of Open Access Journals (Sweden)

    Philip J. Gerla

    2018-01-01

    Full Text Available Old, abandoned feedlots may serve as a source of nutrients that can degrade groundwater and downstream water quality. We characterized the distribution and concentration of nutrients at the Crookston Cattle Company feedlot (northwest Minnesota, USA, 15 years after it ended operations in 1999. Groundwater nitrate concentration decreased from 55 mg/L (as nitrogen in 2003 to less than 5 mg/L since 2007. Results from stable isotope analysis, with δ15N and δ18O in groundwater nitrate ranging up to +44 and +30‰, respectively, suggest denitrification as the cause, rather than either nitrate transport from the site or dilution. Phosphorus, with soil B-horizon concentrations as much as 112 and averaging 24 mg/kg, is sequestered by carbonate-rich glacial sediments and, serendipitously, an iron-rich sand deposit formed millennia ago by wave action along the shore of glacial Lake Agassiz. Map analysis indicates roughly 20,000 kg of P in excess of background concentration remains in soil at the 15 ha site. Evidence suggests that the former feedlot has not affected water quality significantly in an agricultural ditch that drains the feedlot and its vicinity. Rather than originating from the feedlot, small increases of total phosphorus observed in the downstream ditch likely result from release of phosphorus from nearby recently restored wetlands. More consequential than elevated nutrient concentrations to the future reclamation of this and similar sites is the persistence of robust non-native species. Our results suggest that before development, feedlot sites should be evaluated for their phosphorus sequestration and denitrification potential, thus mitigating the potential for later off-site transport of nutrients.

  16. Impact of Coastal Development and Marsh Width Variability on Groundwater Quality in Estuarine Tidal Creeks

    Science.gov (United States)

    Shanahan, M.; Wilson, A. M.; Smith, E. M.

    2017-12-01

    Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.

  17. Human skin condition and its associations with nutrient concentrations in serum and diet

    NARCIS (Netherlands)

    Boelsma, E.; Vijver, L.P.L. van de; Goldbohm, R.A.; Klöpping-Ketelaars, I.A.A.; Hendriks, H.F.J.; Roza, L.

    2003-01-01

    Background: Nutritional factors exert promising actions on the skin, but only scant information is available on the modulating effects of physiologic concentrations of nutrients on the skin condition of humans. Objective: The objective was to evaluate whether nutrient concentrations in serum and

  18. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    Science.gov (United States)

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. The Concentration of Nutrients in Tissues of Plantation-Grown Eastern Cottonwood (Populus deltoides Bart.)

    Science.gov (United States)

    M. G. Shelton; L. E. Nelson; G. L. Switzer; B. G. Blackmon

    1981-01-01

    Nutrient concentrations were determined for 10 tissues from each of 24 cottonwood trees that ranged in age from four to 16 years. Highest concentrations occurred in the most physiologically active tissues; i.e., stemtips, current branches and foliage. Tree age had little influence on the variation in nutrient concentration of tissues. Some differences in concentrations...

  20. Radon Concentration in Groundwater in the Central Region of Gyeongju, Korea - 13130

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Min; Lee, A. Rim; Park, Chan Hee; Moon, Joo Hyun [Dongguk University, Seokjangdong, Gyeongju, Gyeongbuk, 780-714 (Korea, Republic of)

    2013-07-01

    Radon is a naturally occurring radioactive gas that is a well known cause of lung cancer through inhalation. Nevertheless, stomach cancer can also occur if radon-containing water is ingested. This study measured the radon concentration in groundwater for drinking or other domestic uses in the central region of Gyeongju, Korea. The groundwater samples were taken from 11 points chosen from the 11 administrative districts in the central region of Gyeongju by selecting a point per district considering the demographic distribution including the number of tourists who visit the ancient ruins and archaeological sites. The mean radon concentrations in the groundwater samples ranged from 14.38 to 9050.73 Bq.m{sup -3}, which were below the recommendations by the U.S. EPA and WHO. (authors)

  1. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    Directory of Open Access Journals (Sweden)

    S. Sobhan Ardakani

    2015-01-01

    Full Text Available Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were filtered (0.45 ?m and maintained cool in polyethyl-ene bottles. The samples were taken for the analysis of cations, the former was acidified with HNO3 to pH lower than 2. Minor elements were determined using ICP-OES. All statistical analyses were performed using the SPSS statistical package. Also, Kriging Method was used to prepare spatial distribution maps of elements in groundwater samples. Results: The results showed that the mean concentrations of Pb, Cd, Cu and Mg in the groundwater samples during the spring were 5.60±0.66, 0.21±0.04, 32.10±2.21 and 6990.0±302.10 ppb, respectively, and the mean concentrations of these elements in the groundwater samples in the summer were 4.86±0.46, 0.30±0.08, 25.55±3.63 and 3654.05±215.65 ppb, respectively. Comparing the mean concentrations of the evaluated metals with WHO permissible limits showed a significant difference (p<0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusion: Although the groundwater resources of Razan Plain are not currently polluted with heavy metals, long-term excessive use of agricultural inputs and establishment of pollut-ing industries, can pose a threat to groundwater resources of this area. (Sci J Hamadan Univ Med Sci 2015; 21(4:319-329

  2. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  3. Nutrient Infiltrate Concentrations from Three Permeable Pavement Types

    Science.gov (United States)

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha...

  4. Activity concentration of uranium in groundwater from uranium mineralized areas and its neighborhood

    International Nuclear Information System (INIS)

    Arabi, S.A.; Funtua, I.I.; Dewu, B.B.M.; Alagbe, S.A.; Garba, M.L.; Kwaya, M.Y.; Baloga, A.D.

    2013-01-01

    Uranium mineralization in parts of northeastern Nigeria necessitated its exploration during early eighties by the Nigeria Uranium Mining Company (NUMCO) which was later abandoned. During their course of decay, uranium isotopes pass through radioactive decay stage and eventually into stable isotope of lead. The course of concern for soluble uranium in groundwater especially from the mineralized areas include ionizing radiation, chemical toxicity and reproductive defects for which ingested uranium has been implicated to have caused. This study is aimed at assessing the levels of concentration of uranium in groundwater to ascertain its compliance with the World Health Organization's (WHO) and the United State Environmental Protection Agency's (EPA) guideline for uranium in drinking water. Thirty five groundwater samples were collected using EPA's groundwater sampling protocol and analyzed at the Department of Geology, University of Cape Town using an Inductively Coupled Plasma Mass Spectrometric (ICP-MS) technique. Significant finding of this work was that there is radiological contamination of groundwater in the area. There is also an indication that the extent of radiological contamination is not much within the mineralized zones, therefore, there is likelihood that groundwater has acted as a medium of transporting and enhancing uranium in groundwater in an environment away from that of origin. About 5.7 % of the samples studied had uranium concentration above WHO and EPA's maximum contaminant level of 30 μg/L which is a major concern for inhabitants of the area. It was also apparent that radiological contamination at the southwestern part of the study area extends into the adjacent sheet (sheet 152). Uranium concentration above set standards in those areas might have originated from rocks around established mineralized zones but was transported to those contaminated areas by groundwater that leaches across the host rock and subsequently mobilizing soluble uranium

  5. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  6. Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico.

    Science.gov (United States)

    Ortega-Guerrero, Adrián

    2017-10-01

    High arsenic concentrations in groundwater have been documented in La Laguna Region (LLR) in arid northern Mexico, where arsenic poisoning is both chronic and endemic. A heated debate has continued for decades on its origin. LLR consisted of a series of ancient connected lakes that developed at the end of a topographic depression under closed basin conditions. This study addresses the isotopic, chemical composition of the groundwater and geochemical modeling in the southeasternmost part of the LLR to determine the origin of arsenic. Groundwater samples were obtained from a carbonate and granular aquifers and from a clayey aquitard at terminal Viesca Lake. Results show that groundwater originated as meteoric water that reached the lakes mainly via abundant springs in the carbonate aquifer and perennial flooding of the Nazas-Aguanaval Rivers. Paleo-lake water underwent progressive evaporation as demonstrated by the enrichment of δ 18 O, δ 2 H and characteristic geochemical patterns in the granular aquifer and aquitard that resulted in highly saline (>90,000 mS/cm), arsenic-rich (up to 5000 μg/L) paleo-groundwater (>30,000 years BP). However, adsorption or co-precipitation on iron oxides, clay-mineral surfaces and organic carbon limited arsenic concentration in the groundwater. Arsenic-rich groundwater and other solutes are advancing progressively from the lacustrine margins toward the main granular aquifer, due to reversal of hydraulic gradients caused by intensive groundwater exploitation and the reduction in freshwater runoff provoked by dam construction on the main rivers. Desorption of arsenic will incorporate additional concentrations of arsenic into the groundwater and continue to have significant negative effects on human health and the environment.

  7. Comparison of predicted pesticide concentrations in groundwater from SCI-GROW and PRZM-GW models with historical monitoring data.

    Science.gov (United States)

    Estes, Tammara L; Pai, Naresh; Winchell, Michael F

    2016-06-01

    A key factor in the human health risk assessment process for the registration of pesticides by the US Environmental Protection Agency (EPA) is an estimate of pesticide concentrations in groundwater used for drinking water. From 1997 to 2011, these estimates were obtained from the EPA empirical model SCI-GROW. Since 2012, these estimates have been obtained from the EPA deterministic model PRZM-GW, which has resulted in a significant increase in estimated groundwater concentrations for many pesticides. Historical groundwater monitoring data from the National Ambient Water Quality Assessment (NAWQA) Program (1991-2014) were compared with predicted groundwater concentrations from both SCI-GROW (v.2.3) and PRZM-GW (v.1.07) for 66 different pesticides of varying environmental fate properties. The pesticide environmental fate parameters associated with over- and underprediction of groundwater concentrations by the two models were evaluated. In general, SCI-GROW2.3 predicted groundwater concentrations were close to maximum historically observed groundwater concentrations. However, for pesticides with soil organic carbon content values below 1000 L kg(-1) and no simulated hydrolysis, PRZM-GW overpredicted, often by greater than 100 ppb. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Nutrient concentration age dynamics of teak (Tectona grandis L.f.) plantations in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Moya, J.; Murillo, R.; Portuguez, E.; Fallas, J. L.; Rios, V.; Kottman, F.; Verjans, J. M.; Mata, R.; Alvarado, A.

    2013-05-01

    Aim of study. Appropriate knowledge regarding teak (Tectona grandis L.f.) nutrition is required for a better management of the plantations to attain high productivity and sustainability. This study aims to answer the following questions: How can it be determined if a teak tree suffers a nutrient deficiency before it shows symptoms? Are nutrient concentration decreases in older trees associated with age-related declines in forest productivity? Area of study. Costa Rica and Panama. Material and Methods. Nutrient concentration in different tree tissues (bole, bark, branches and foliage) were measured at different ages using false-time-series in 28 teak plantations Research highlights. Foliar N concentration decreases from 2.28 in year 1 to 1.76% in year 19. Foliar Mg concentration increases from 0.23 in year 1 to 0.34% in year 19. The foliar concentrations of the other nutrients are assumed to be constant with tree age: 1.33% Ca, 0.88% K, 0.16% P, 0.12% S, 130 mg kg{sup -}1 Fe, 43 mg kg{sup -}1 Mn, 11 mg kg{sup -}1 Cu, 32 mg kg{sup -}1 Zn and 20 mg kg{sup -}1 B. The nutrient concentration values showed can be taken as a reference to evaluate the nutritional status of similar teak plantations in the region. The concentrations of K, Mg and N could be associated with declines in teak plantation productivity as the plantation becomes older. Whether age-related changes in nutrient concentrations are a cause or a consequence of age-related declines in productivity is an issue for future research with the aim of achieving higher growth rates throughout the rotation period. (Author) 35 refs.

  9. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  10. Fate of nutrients in shallow groundwater receiving treated septage, Malibu, CA

    Science.gov (United States)

    Izbicki, John

    2014-01-01

    Treated wastewater discharged from more than 400 onsite wastewater treatment systems (OWTS) near the Civic Center area of Malibu, California, 40 km west of downtown Los Angeles, composes 28% of the recharge to a 3.4 km2 alluvial aquifer. On the basis of δ18O and δD data, the fraction of wastewater in some samples was >70%. Ammonium and nitrate concentrations in water from 15 water-table wells sampled in July 2009 and April 2010 ranged from groundwater was reducing, sorption of ammonium resulted in 30 to 50% nitrogen removal. Where groundwater was initially oxic, nitrification with subsequent denitrification as reducing conditions developed, resulted in up to 60% nitrogen removal. Nitrogen removal through sorption dominated during the cooler April sample period, and denitrification dominated during the warmer July sample period. The combination of mixing and nitrogen removal due to denitrification, sorption, and volatilization produces a δ15N apparent fractionation factor (εapp= -5), that can be explained using laboratory-derived fractionation factors (ε) for the individual processes. Phosphate concentrations ranged from 7.3).

  11. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    International Nuclear Information System (INIS)

    Daus, Birgit; Hempel, Michael; Wennrich, Rainer; Weiss, Holger

    2010-01-01

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L -1 and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 μg L -1 ) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  12. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Daus, Birgit, E-mail: birgit.daus@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany); Hempel, Michael [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany); Wennrich, Rainer [Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig (Germany); Weiss, Holger [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany)

    2010-11-15

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L{sup -1} and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 {mu}g L{sup -1}) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  13. Comparative Analysis of Fluoride Concentrations in Groundwaters in Northern and Southern Ghana: Implications for the Contaminant Sources

    Science.gov (United States)

    Sunkari, Emmanuel Daanoba; Zango, Musah Saeed; Korboe, Harriet Mateko

    2018-04-01

    Bongo and Sekyere South districts, both in the northern and southern parts of Ghana, respectively, have high populations living in rural areas and most of them use groundwater for drinking purposes. The groundwater in these areas is prone to contamination from natural and/or artificial sources. Therefore this study aims; (1) to present a comparative analysis of the fluoride concentration in groundwater samples from Bongo and Sekyere South districts and the associated groundwater-rock interaction that may be the cause for the varied fluoride concentrations, (2) to determine the leaching potential of fluoride from the host rocks as the possible mechanism for groundwater contamination. Sixty (60) groundwater samples from active pumping wells and twelve (12) rock samples from outcrops were collected from various communities in the two districts for fluoride concentration and mineralogical analysis. Based on the variations in fluoride concentration, fluoride spatial distribution maps were prepared using empirical Bayesian kriging interpolation method and analysed by means of hierarchical cluster analysis. The fluoride concentration in Bongo district varies between 1.71 and 4.0 mg/L, whereas that in Sekyere South district changes from 0.3 to 0.8 mg/L. From the mineralogical studies, biotite has the highest percentage in the Bongo district and has positive correlation with fluoride concentration in the analysed water samples than in the Sekyere South district. The elevated fluoride concentration in the Bongo district relative to the Sekyere South district is due to the dissolution of biotite in the groundwater and the sufficient groundwater-rock interaction since the water samples are mainly sourced from deeper boreholes. This high fluoride concentration has resulted in a plethora of reported cases of dental fluorosis and other health-related issues in Bongo.

  14. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Rapid nutrient leaching to groundwater and surface water in clay soil areas

    NARCIS (Netherlands)

    Bronswijk, J.J.B.; Hamminga, W.; Oostindie, K.

    1995-01-01

    The mechanism and magnitude of nitrate leaching from grassland on a heavy clay soil were investigated by measuring nitrogen input, and nitrate concentrations in groundwater and drain discharge for two years. A bromide tracer was applied to study solute transport mechanisms. Nitrate transport in the

  16. Is it working? A look at the changing nutrient practices in Oregon's Southern Willamette Valley Groundwater Management Area

    Science.gov (United States)

    Pearlstein, S.; Compton, J.; Eldridge, A.; Henning, A.; Selker, J. S.; Brooks, J. R.; Schmitz, D.

    2016-12-01

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. Previous work in the 1990s in the Willamette Valley by researchers at Oregon State University determined the importance of cover crops and irrigation practices and made recommendations to the local farm community for reducing nitrogen (N) leaching. We are currently re-sampling many of the same fields studied by OSU to examine the influence of current crops and nutrient management practices on nitrate leaching below the rooting zone. This study represents important crops currently grown in the GWMA and includes four grass fields, three vegetable row-crop fields, two peppermint and wheat fields, and one each of hazelnuts and blueberries. New nutrient management practices include slow release fertilizers and precision agriculture approaches in some of the fields. Results from the first two years of sampling show nitrate leaching is lower in some crops like row crops grown for seed and higher in others like perennial rye grass seed when compared to the 1990s data. We will use field-level N input-output balances in order to determine the N use efficiency and compare this across crops and over time. The goal of this project is to provide information and tools that will help farmers, managers and conservation groups quantify the water quality benefits of management practices they are conducting or funding.

  17. Nitrogen and phosphorus budgets for the Yucatán littoral: An approach for groundwater management.

    Science.gov (United States)

    Arandacirerol, Nancy; Comín, Francisco; Herrera-Silveira, Jorge

    2011-01-01

    Human activities have altered the balance of ecosystems to the detriment of natural environments. Eutrophication is a serious risk in Yucatán, a state in the eastern peninsula of México where groundwater supplies the only freshwater to a karst shelf environment. While economic development in Yucatán is increasing, environmental awareness is lagging, and efficient waste treatment systems are lacking. To assess potential nitrogen and phosphorus inputs into the coastal zone of Yucatán, we analyzed government reports and the chemical composition of groundwater and aquaculture wastewater. Swine, poultry, and tourism are revealed as the main continental nutrient sources, while groundwater with high nitrate concentrations is the principal coastal nutrient source, a pattern similar to other river discharges around the world. This study demonstrates that environmental risk management practices must be implemented in the Yucatán region to protect groundwater quality.

  18. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  19. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    Science.gov (United States)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  20. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.

    Science.gov (United States)

    Correia, Carlos M; Coutinho, João F; Bacelar, Eunice A; Gonçalves, Berta M; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  1. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Directory of Open Access Journals (Sweden)

    Carlos M. Correia

    2012-01-01

    Full Text Available UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  2. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  3. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai, Tamil Nadu, India

    Science.gov (United States)

    Sridhar, S. G. D.; Sakthivel, A. M.; Sangunathan, U.; Balasubramanian, M.; Jenefer, S.; Mohamed Rafik, M.; Kanagaraj, G.

    2017-12-01

    The assessment of groundwater quality is an obligatory pre-requisite to developing countries like India with rural-based economy. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai was analyzed to assess the acquisition process. The study area has rapid urbanization since few decades, which deteriorated the condition of the aquifer of the area. Totally 30 groundwater samples were collected during pre-monsoon (June 2014) and post-monsoon (January 2015) from the same aquifer to assess the heavy metal concentration in groundwater. Groundwater samples were analyzed for heavy metals such as Fe, Pb, Zn, Cu, Ni, Cr, Co and Mn using atomic absorption spectrophotometry (AAS). Correlation matrix revealed that there is no significant correlation between heavy metals and other parameters during pre-monsoon except EC with Cr but Fe and Zn have good positive correlation during post-monsoon.

  4. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    Science.gov (United States)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  5. Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater.

    Science.gov (United States)

    Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien

    2017-12-15

    Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Assessing the Groundwater Concentrations and Geographical Distribution of Arsenic in Nepal

    Science.gov (United States)

    Ma, J.; Liu, F.

    2015-12-01

    Arsenic 33As, one of the major groundwater contaminants, occurs in both natural and anthropogenic forms. Arsenic inhibits cellular respiration and the production of ATP in human body. Prolonged intake of non-lethal quantities of arsenic can cause cancer and diseases in vital organs such as the heart, liver, skin, and kidney. Each year, millions of people in the rural areas of Bangladesh, India, and other developing countries in South Asia are exposed to arsenic-poisoned groundwater. According to the World Health Organization, arsenic levels in drinking water should not exceed 10 parts per billion; however, the levels of arsenic found in groundwater in the heavily contaminated regions are often more than ten times of the recommended limit. Nepal is one of these regions. In most of the rural areas in Nepal, there is no infrastructure to produce clean filtered water, and wells thus became the major source. However, most of these wells were dug without testing for groundwater safety, because the test commands resources that the rural communities do not have access to. This is also limited data published on Nepal's groundwater contaminant levels. The scarcity of information prohibits the international community from recognizing the severity of arsenic poisoning in Nepal and coming up with the most efficient measures to help. With this project, we will present a method to determine groundwater safety by analyzing geologic data and using remote sensing. The original source of arsenic is the arsenic-bearing minerals in the sediments. Some geological formations have higher arsenic levels than others due to their depositional environments. Therefore, by using existing geologic data from Nepal and countries with similar types of arsenic contamination, we hope to determine correlations between areas where there are reports of high concentrations of arsenic in groundwater to the environmental factors that may cause a particular concentration of arsenic. Furthermore, with deeper

  7. Spatial and temporal variations in shallow wetland groundwater quality

    Science.gov (United States)

    Schot, Paul P.; Pieber, Simone M.

    2012-02-01

    SummaryWetlands worldwide are threatened by environmental change. Differences in groundwater composition is one of the factors affecting wetland terrestrial floristic biodiversity. However, few studies discuss variations in wetland groundwater composition. This study presents an analysis of local-scale spatial and short-term temporal variations in 15 groundwater composition parameters of the 7 km2 Naardermeer wetland nature reserve in The Netherlands. Data is available from a network of 35 groundwater wells with 2-4 filters each, at depths between 50 and 800 cm, which were sampled about monthly over a 1-year period, totalling 1042 chemical analysis from 103 filter screens. Relative standard deviations indicate large differences in variation between parameters. Largest spatial and temporal variations were found for nutrients (NO3-, PO43-, NH4+) and redox sensitive parameters (Fe, Mn), and lowest variations for macroions and SiO2. A horizontal zonation in groundwater concentrations has been found related to soil type and soil wetness, with largest horizontal decrease in NO3- and SO42-, and largest increase in Fe and SiO2, going in the groundwater flow direction from dry sandy soils to wet peat/clay soils. No clear horizontal patterns have been found for the macroions. Spatial zonations in the north-south direction and with depth are absent for all parameters. Spatial and temporal variations were found to be related. 3D-maps indicate highest temporal fluctuations at filter screens with lowest median concentrations for NO3-, SO42- and Fe, but the reverse pattern for SiO2. High temporal variations of nutrients and redox sensitive parameters could not be traced back to a seasonal trend. The spatial and temporal variability of groundwater quality parameters as presented in this study, together with their reported effects on different vegetation types, may be used to design efficient monitoring schemes by nature managers having set specific vegetation development targets

  8. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization

    Directory of Open Access Journals (Sweden)

    Rebecca eOstertag

    2016-03-01

    Full Text Available Examining foliar nutrient concentrations after fertilization provides an alternative method for detecting nutrient limitation of ecosystems, which is logistically simpler to measure than biomass change. We present a meta-analysis of response ratios of foliar nitrogen and phosphorus (RRN, RRP after addition of fertilizer of nitrogen (N, phosphorus (P, or the two elements in combination, in relation to climate, ecosystem type, life form, family, and methodological factors. Results support other meta-analyses using biomass, and demonstrate there is strong evidence for nutrient limitation in natural communities. However, because N fertilization experiments greatly outnumber P fertilization trials, it is difficult to discern the absolute importance of N vs. P vs. co-limitation across ecosystems. Despite these caveats, it is striking that results did not follow conventional wisdom that temperate ecosystems are N-limited and tropical ones are P-limited. In addition, the use of ratios of N-to-P rather than response ratios also are a useful index of nutrient limitation, but due to large overlap in values, there are unlikely to be universal cutoff values for delimiting N vs. P limitation. Differences in RRN and RRP were most significant across ecosystem types, plant families, life forms, and between competitive environments, but not across climatic variables.

  9. Spatial and temporal variations of radon concentrations in groundwater of hard rock aquifers in Madurai district, India

    International Nuclear Information System (INIS)

    Thivya, C.; Chidambaram, S.; Thilagavathi, R.; Nepolian, M.; Tirumalesh, K.; Prasanna, M.V.

    2017-01-01

    Radon ("2"2"2Rn) and other radionuclides in groundwater can lead to health problems if present in higher concentrations. A study was carried out in Madurai district of Tamilnadu by collecting groundwater samples for four different seasons and aims to identify the regions with higher "2"2"2Rn concentration along with their spatial and seasonal variations. "2"2"2Rn has been compared with field parameters, log pCO_2, major ions and uranium to detect the factors responsible for the higher concentration in groundwater. The weathering process induces the release of higher uranium ions from the granitic terrain from the rock matrix which enhances the "2"2"2Rn levels in groundwater. (author)

  10. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  11. On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba

    International Nuclear Information System (INIS)

    Desbarats, Alexandre J.

    2009-01-01

    Hydrogeological investigations conducted by the Geological Survey of Canada in the Lake Saint-Martin region of Manitoba have confirmed earlier reports of naturally elevated F - and B concentrations in local groundwaters. Fluoride and B concentrations are highly correlated (r 2 = 0.905) and reach 15.1 mg/L and 8.5 mg/L, respectively. Virtually all groundwaters with F - concentrations greater than the drinking water limit of 1.5 mg/L are from wells within the Lake Saint-Martin impact structure, a 208 Ma complex crater 23 km in diameter underlying a large part of the study area. The high-F - groundwaters can be classified into two groups according to their anionic and isotopic compositions. Group I samples consist of Na-mixed anion groundwaters, with Cl greater than 100 mg/L and highly depleted 18 O compositions indicative of recharge under much cooler climatic conditions than at present. Samples belonging to this group exhibit a striking relationship to crater morphology, and are found in an arcuate belt within the southern rim of the impact structure. Group II high-F - samples consist of Na-HCO 3 -SO 4 groundwaters, with little Cl, and less depleted 18 O compositions. Samples belonging to this group are associated with groundwaters recharged locally, on a low ridge within the impact structure. This paper traces the probable source of high-F - groundwaters to phosphatic pellets in shales of the Winnipeg Formation, a regional basal clastic unit which sub-crops at shallow depth beneath the crater rim as a result of more than 200 m of structural uplift associated with the impact event. This extensive aquifer is known elsewhere in southern Manitoba for its naturally-softened groundwaters and locally elevated F - concentrations. Group I groundwaters are interpreted as discharge from the Winnipeg Formation where it abuts against crater-fill deposits. Group II high-F - groundwaters are interpreted as modern recharge from within the impact structure, displacing Group I

  12. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary

    Science.gov (United States)

    Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey

    2009-03-01

    We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.

  13. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus.

    Science.gov (United States)

    Ruiz, J; Arbib, Z; Alvarez-Díaz, P D; Garrido-Pérez, C; Barragán, J; Perales, J A

    2014-05-20

    This work was aimed at studying the effect of light-darkness and high-low biomass concentrations in the feasibility of removing nitrogen and phosphorus from urban treated wastewater by the microalga Scenedesmus obliquus. Laboratory experiments were conducted in batch, where microalgae were cultured under different initial biomass concentrations (150 and 1500mgSSl(-1)) and light conditions (dark or illuminated). Nutrient uptake was more dependent on internal nutrient content of the biomass than on light presence or biomass concentration. When a maximum nitrogen or phosphorus content in the biomass was reached (around 8% and 2%, respectively), the removal of that nutrient was almost stopped. Biomass concentration affected more than light presence on the nutrient removal rate, increasing significantly with its increase. Light was only required to remove nutrients when the maximum nutrient storage capacity of the cells was reached and further growth was therefore needed. Residence times to maintain a stable biomass concentration, avoiding the washout of the reactor, were much higher than those needed to remove the nutrients from the wastewater. This ability to remove nutrients in the absence of light could lead to new configurations of reactors aimed to wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Monitoring of carbamazepine concentrations in wastewater and groundwater to quantify sewer leakage.

    Science.gov (United States)

    Fenz, R; Blaschke, A P; Clara, M; Kroiss, H; Mascher, D; Zessner, M

    2005-01-01

    Monitoring of carbamazepine concentrations in wastewater and groundwater enables us to identify and quantify sewer exfiltration. The antiepileptic drug carbamazepine is hardly removed in wastewater treatment plants and not or just slightly attenuated during bank infiltration and subsoil flow. Concentrations in wastewater are generally 1000 times higher than the limit of quantification. In contrast to . many other wastewater tracers carbamazepine is discharged to the environment only via domestic wastewater. The results from this study carried out in Linz, Austria indicate an average exfiltration rate of 1%, expressed as percentage of the dry weather flow that is lost to the groundwater on the city-wide scale. This rate is lower than sewage losses reported in most other studies which attempted to quantify exfiltration on the basis of groundwater pollution. However, it was also possible to identify one area with significantly higher sewage losses. This method seems to be very suitable for the verification of leakage models used to assess sewer exfiltration on a regional scale.

  15. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  16. Response of selenium concentrations in groundwater to seasonal canal leakage, lower Gunnison River Basin, Colorado, 2013

    Science.gov (United States)

    Linard, J.I.; McMahon, P.B.; Arnold, L.R.; Thomas, J.C.

    2016-05-23

    Selenium is a water-quality concern in the lower Gunnison River Basin because irrigation water interacting with seleniferous soils derived from the Mancos Shale Formation has mobilized selenium and increased its concentrations in surface water. Understanding the occurrence of elevated selenium concentrations in groundwater is necessary because groundwater discharge is an important source of selenium in surface water in the basin. In 2013, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and the Colorado Water Conservation Board, began a study to understand how changes in groundwater levels attributed to canal leakage affected the concentrations and speciation of dissolved selenium in groundwater. The purpose of this report is to characterize the groundwater adjacent to an unlined leaky canal. Two locations, near the East Canal (W-N1 and W-N2) and farther from the East Canal (W-M1 and W-M2), were selected for nested monitoring well installations. The pressure exerted by changes in canal stage was more readily transferred to the deep groundwater measured in the W-N1 near the canal than the shallow groundwater at the W-N2 well. No definitive relation could be made between canal water-level elevation and water-level elevations in monitoring wells farther from the canal (W-M1 and W-M2). 

  17. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California

    Energy Technology Data Exchange (ETDEWEB)

    Fram, Miranda S., E-mail: mfram@usgs.gov [U.S. Geological Survey California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819-6129 (United States); Belitz, Kenneth, E-mail: kbelitz@usgs.gov [U.S. Geological Survey California Water Science Center, 4165 Spruance Road, Suite 200, San Diego, CA 95101-0812 (United States)

    2011-08-15

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 {mu}g/L), caffeine (stimulant, 0.24%, 0.29 {mu}g/L), carbamazepine (mood stabilizer, 1.5%, 0.42 {mu}g/L), codeine (opioid analgesic, 0.16%, 0.214 {mu}g/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 {mu}g/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 {mu}g/L), and trimethoprim (antibiotic, 0.08%, 0.018 {mu}g/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of State with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. - Highlights: {yields

  18. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California

    International Nuclear Information System (INIS)

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of State with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. - Highlights: → Pharmaceuticals analyzed in

  19. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: A case study in Shenzhen, China

    International Nuclear Information System (INIS)

    Chen Kouping; Jiao, Jiu J.

    2008-01-01

    The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system. - Metals in coastal groundwater and marine sediment are affected by land reclamation

  20. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    Science.gov (United States)

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  1. Nutrient concentrations in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities

    DEFF Research Database (Denmark)

    Andersen, T.; Pedersen, O.; Andersen, F. Ø.

    2005-01-01

    laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic...... nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light...... intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field...

  2. The variation of calcium, magnesium, sodium, potassium and bicarbonate concentration, pH and conductivity in groundwater of Karachi region

    International Nuclear Information System (INIS)

    Zubair, A.; Ali, S.I.

    2002-01-01

    Groundwater in Karachi is influenced mainly by the evaporation / crystallization process as expressed by the Na/(Na+Ca) weight concentration ratio. The high coefficient of determined between conductivity and total dissolved ions concentration in meq/sup -1/ revealed that major ions affect the conductivity of groundwater. It was also found that groundwater quality with respect to cations is not significantly influenced by geology, particularly in the Urban are of the city, where the 90% of the population resides. The relationship between conductivity and bicarbonate concentration shows that supersaturation of groundwater with carbon dioxide is responsible for general depression of pH. (author)

  3. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California.

    Science.gov (United States)

    Fram, Miranda S; Belitz, Kenneth

    2011-08-15

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells=61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity>0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. Published by Elsevier B.V.

  4. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    Science.gov (United States)

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-05-15

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody. Published by Elsevier Ltd.

  5. Influence of harvest managements on biomass nutrient concentrations and removal rates of festulolium and tall fescue from a poorly drained nutrient-rich fen peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Lærke, Poul Erik

    2017-01-01

    This study was designed to show the effects of harvest time and frequency on biomass nutrient concentrations (total ash, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn) as well as total nutrient removal potential by festulolium and tall fescue cultivated on a nutrient-rich fen peatland. The harvest managemen...

  6. NUTRIENTS CONCENTRATION AND RETRANSLOCATION IN THE Pinus taeda L. NEEDLES

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2010-03-01

    Full Text Available Aiming at evaluating nutrients concentration and retranslocation in the Pinus taeda L. needles, this study was developed in two stands, in native grass area and in second rotation area, with same species and same age (7.5 years old in Cambará do Sul, RS. The needles were collected in plants in four orthogonal points (South, North, East and West, sampled new needles, mature needles and old needles. The material was dried in a stove, milled and chemically analyzed (macro and micronutrients. The concentrations of N, P, K, B, Cu and Zn had decreased, of Ca, Fe and Mn increased, and the Mg and S have remained constant with the age of the needles. The retranslocation rate (old-new needles was more than 50% for most nutrients, except for Mn and Fe, showed that cumulative effect and the Ca reference element.

  7. Deciphering relationships between in-stream travel times, nutrient concentrations, and uptake through analysis of hysteretic and non-hysteretic kinetic behavior

    Science.gov (United States)

    Covino, T. P.; Bowden, W. B.; Gooseff, M. N.; Wollheim, W. M.; McGlynn, B. L.; Whittinghill, K. A.; Wlostowski, A. N.; Herstand, M. R.

    2012-12-01

    Understanding the relationship between solute travel time, concentration, and nutrient uptake remains a central question in watershed hydrology and biogeochemistry. Theoretical understanding predicts that nutrient uptake should increase as in-stream solute travel time lengthens and/or as concentration increases; however, results from field-based studies have been contradictory. We used a newly developed approach, Tracer Additions for Spiraling Curve Characterization (TASCC), to investigate relationships between solute travel time, nutrient concentration, and nutrient uptake across a range of stream types. This approach allows us to quantify in-stream nutrient uptake across a range of travel times and nutrient concentrations using single instantaneous injections (slugs) of conservative and non-conservative tracers. In some systems we observed counter-clockwise hysteresis loops in the relationship between nutrient uptake and concentration. Greater nutrient uptake on the falling limb of tracer breakthrough curves indicates stronger uptake for a given concentration at longer travel times. However, in other systems we did not observe hysteresis in these relationships. Lack of hysteresis indicates that nutrient uptake kinetics were not influenced by travel time travel time. Here we investigate the potential roles of travel time and in-stream flowpaths that could be responsible for hysteretic behavior.

  8. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  9. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    Science.gov (United States)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  10. Tritium activity concentrations and residence times of groundwater collected in Rokkasho, Japan

    International Nuclear Information System (INIS)

    Hasegawa, Hidenao; Ueda, Shinji; Kakiuchi, Hideki; Hisamatsu, Shun'ichi; Akata, Naofumi

    2015-01-01

    Tritium ( 3 H) concentrations were measured in groundwater samples from four surface wells (4-10 m deep), four shallow wells (24-26.5 m deep) and a 150-m-deep well in the Futamata River catchment area, which is adjacent to the large-scale commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan. The 3 H concentrations in most of the surface- and shallow-well samples (<0.03-0.57 Bq l -1 ) were similar to those in precipitation (annual mean: 0.31-0.79 Bq l -1 ), suggesting that the residence time of the water in those wells was 0-15 y. The 3 H concentrations in the samples from a 26-m-deep well and the 150-m-deep well were lower than those in the other wells, indicating that groundwater with a long residence time exists in deep aquifers and the estuary area of the catchment. It is not clear whether 3 H released during test operation of the plant with actual spent nuclear fuel affected the 3 H concentrations observed in this study. (authors)

  11. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.

    Science.gov (United States)

    Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V

    2007-11-15

    Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).

  12. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    Science.gov (United States)

    Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.

    2016-01-01

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P

  13. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  14. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    Directory of Open Access Journals (Sweden)

    Daniel W Amato

    Full Text Available Generally unseen and infrequently measured, submarine groundwater discharge (SGD can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N parameters (δ15N, N %, and C:N were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF; this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  15. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    Science.gov (United States)

    Amato, Daniel W; Bishop, James M; Glenn, Craig R; Dulai, Henrietta; Smith, Celia M

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  16. Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment.

    Science.gov (United States)

    James, Katherine A; Meliker, Jaymie R; Buttenfield, Barbara E; Byers, Tim; Zerbe, Gary O; Hokanson, John E; Marshall, Julie A

    2014-08-01

    Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83-0.92 for samples collected from the same well 15-25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.

  17. Estimation of Tile Drainage Contribution to Streamflow and Nutrient Export Loads

    Science.gov (United States)

    Schilling, K. E.; Arenas Amado, A.; Jones, C. S.; Weber, L. J.

    2015-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  18. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.

    Science.gov (United States)

    Tromboni, F; Dodds, W K

    2017-07-01

    Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.

  19. Effects of thermal discharges on the seasonal patterns of nutrient concentrations in brackish water

    International Nuclear Information System (INIS)

    Nitchals, D.

    1985-05-01

    Massiv quantities of water are used in power plant cooling systems, especially nuclear power plants, and are often returned to the donor ecosystem at significantly elevated temperatures. Few studies of the environmental effects of such a situation have looked extensively at the effects on nutrients in the water. The present study examined the effects of cooling water discharges from a nuclear power plant on the seasonal nutrient patterns within and outside a brackish water, research artificial lake, the 0.9 km 2 Biotest Basin on Sweden's east coast. The lack of ice cover in winter is the most apparent effect. In a portion of the lake with a relatively long water residence time, on the order of a few days, the vernal nutrient depletion of phosphate, nitrate, and nitrite apparently began sooner than outside the lake. Benthic influence on nutrient concentrations in the free water mass may be very significant in coastal areas receiving heat inputs. This study's data apparently support the conclusion by other researchers that phosphorus may be the nutrient limiting algal growth in the spring in this area of the central Baltic Sea. Determination of a nutrient budget for the Basin was unachievable because inlet and outlet nutrient concentrations were insufficiently different to override experimental variation. Implications for management of heat inputs to coastal ecosystems include avoidance of areas with high nutrient content, rich organic sediment, or poor flushing. (author)

  20. Evaluation of Background Mercury Concentrations in the SRS Groundwater System

    International Nuclear Information System (INIS)

    Looney, B.B.

    1999-01-01

    Mercury analyses associated with the A-01 Outfall have highlighted the importance of developing an understanding of mercury in the Savannah River Site groundwater system and associated surface water streams. This activity is critical based upon the fact that the EPA Ambient Water Quality Criteria (AWQC) for this constituent is 0.012mg/L, a level that is well below conventional detection limits of 0.1 to 0.2 mg/L. A first step in this process is obtained by utilizing the existing investment in groundwater mercury concentrations (20,242 records) maintained in the SRS geographical information management system (GIMS) database. Careful use of these data provides a technically defensible initial estimate for total recoverable mercury in background and contaminated SRS wells

  1. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    Science.gov (United States)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  2. The spatial variability of nitrogen and phosphorus concentration in a sand aquifer influenced by onsite sewage treatment and disposal systems: a case study on St. George Island, Florida.

    Science.gov (United States)

    Corbet, D Reide; Dillon, Kevin; Burnett, William; Schaefer, Geoff

    2002-01-01

    Groundwater from a shallow freshwater lens on St. George Island, a barrier island located in the Panhandle of Florida, eventually discharges into Apalachicola Bay or the Gulf of Mexico. Nutrient concentrations in groundwaters were monitored downfield from three onsite sewage treatment and disposal systems (OSTDS) on the island. Estimates of natural groundwater nutrient concentrations were obtained from an adjacent uninhabited island. Silicate, which was significantly higher in the imported drinking water relative to the surficial aquifer on St. George Island (12.2+/-1.9 mg Si l(-1) and 2.9+/-0.2 mg Si l(-1), respectively), was used as a natural conservative tracer. Our observations showed that nitrogen concentrations were attenuated to a greater extent than that of phosphorus relative to the conservative tracer. At the current setback distance (23 m), both nitrogen and phosphate concentrations are still elevated above natural levels by as much as 2 and 7 times, respectively. Increasing the setback distance to 50 m and raising the drainfields 1 m above the ground surface could reduce nutrient levels to natural concentrations (1.1+/-0.1 mg N l(-1), 0.20+/-0.02 mg P l(-1)).

  3. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Science.gov (United States)

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L.

  4. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    Science.gov (United States)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the groundwater of marine origin are, in contrast, explained by relatively fast cation exchange reactions. As indicated by the field data and predicted by 1D solute transport modeling, alkali cations with low-energy hydration carried by intruding marine water are capable of (NH4+ in particular and K+ to some extent) replacing Cs+ on frayed edge (FES) sites on illite in the fracture coatings. The result is a rapid and persistent (at least in the order of decades) buildup of dissolved Cs concentrations in fractures where marine water flows downward. The identification of high Cs concentrations in young groundwater of marine origin and the predicted capacity of NH4+ to displace Cs from fracture solids are of particular relevance in the disposal of radioactive nuclear waste deep underground in crystalline rock.

  5. Occurrence and concentrations of pharmaceutical compounds in deep groundwater used for public drinking-water supply in California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping.

  6. Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world's largest antimony mine, Central China

    Science.gov (United States)

    Wen, Bing; Zhou, Aiguo; Zhou, Jianwei; Liu, Cunfu; Huang, Yuliu; Li, Ligang

    2018-02-01

    The Xikuangshan(XKS) mine, the world's largest antimony mine, was chosen for a detailed arsenic hydrogeochemical study because of the elevated arsenic in bedrock aquifers used by local residents. Hydrochemical data, δ34S values of dissolved SO42- and 87Sr/86Sr ratios have been analyzed to identify the predominant geochemical processes that control the arsenic mobilization within the aquifers. Groundwater samples can be divided into three major types: low arsenic groundwater (0-50 μg/L), high arsenic groundwater (50-1000 μg/L) and anomalous high arsenic groundwater (>1000 μg/L). Arsenic occurs under oxidizing conditions at the XKS Sb mine as the HAsO42- anion. The Ca/Na ratio correlates significantly with HCO3-/Na and Sr/Na ratios, indicating that carbonate dissolution and silicate weathering are the dominant processes controlling groundwater hydrochemistry. The δ34S values of the groundwater indicate that dissolved SO42- in groundwater is mainly sourced from the oxidation of sulfide minerals, and elevated As concentrations in groundwater are influenced by the mixing of mine water and surface water. Furthermore, the δ34S values are not correlated with dissolved As concentrations and Fe concentrations, suggesting that the reduction dissolution of Fe(III) hydroxides is not the dominant process controlling As mobilization. The 87Sr/86Sr ratios imply that elevated As concentrations in groundwater are primarily derived from the interaction with the stibnite and silicified limestone. More specifically, the excess-Na ion, the feature of Ca/Na ratio, and the spatial association of elevated As concentrations in groundwater collectively suggest that high and anomalous high arsenic groundwater are associated with smelting slags and, in particular, the arsenic alkali residue. In general, the hydrochemistry analysis, especially the S and Sr isotope evidences elucidate that elevated As concentrations and As mobilization are influenced by several geochemical processes

  7. Tritium activity concentrations and residence times of groundwater collected in Rokkasho, Japan.

    Science.gov (United States)

    Hasegawa, Hidenao; Ueda, Shinji; Akata, Naofumi; Kakiuchi, Hideki; Hisamatsu, Shun'ichi

    2015-11-01

    Tritium ((3)H) concentrations were measured in groundwater samples from four surface wells (4-10 m deep), four shallow wells (24-26.5 m deep) and a 150-m-deep well in the Futamata River catchment area, which is adjacent to the large-scale commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan. The (3)H concentrations in most of the surface- and shallow-well samples (<0.03-0.57 Bq l(-1)) were similar to those in precipitation (annual mean: 0.31-0.79 Bq l(-1)), suggesting that the residence time of the water in those wells was 0-15 y. The (3)H concentrations in the samples from a 26-m-deep well and the 150-m-deep well were lower than those in the other wells, indicating that groundwater with a long residence time exists in deep aquifers and the estuary area of the catchment. It is not clear whether (3)H released during test operation of the plant with actual spent nuclear fuel affected the (3)H concentrations observed in this study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    Science.gov (United States)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally

  9. Technical Note: A comparison of two empirical approaches to estimate in-stream net nutrient uptake

    Science.gov (United States)

    von Schiller, D.; Bernal, S.; Martí, E.

    2011-04-01

    To establish the relevance of in-stream processes on nutrient export at catchment scale it is important to accurately estimate whole-reach net nutrient uptake rates that consider both uptake and release processes. Two empirical approaches have been used in the literature to estimate these rates: (a) the mass balance approach, which considers changes in ambient nutrient loads corrected by groundwater inputs between two stream locations separated by a certain distance, and (b) the spiralling approach, which is based on the patterns of longitudinal variation in ambient nutrient concentrations along a reach following the nutrient spiralling concept. In this study, we compared the estimates of in-stream net nutrient uptake rates of nitrate (NO3) and ammonium (NH4) and the associated uncertainty obtained with these two approaches at different ambient conditions using a data set of monthly samplings in two contrasting stream reaches during two hydrological years. Overall, the rates calculated with the mass balance approach tended to be higher than those calculated with the spiralling approach only at high ambient nitrogen (N) concentrations. Uncertainty associated with these estimates also differed between both approaches, especially for NH4 due to the general lack of significant longitudinal patterns in concentration. The advantages and disadvantages of each of the approaches are discussed.

  10. Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field

    Science.gov (United States)

    Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.

    2017-12-01

    Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.

  11. Effects of macro nutrient concentration on biological N2 fixation by Azotobacter vinelandii ATCC 12837

    International Nuclear Information System (INIS)

    Liew Pauline Woan Ying; Nazalan Najimudin; Jong Bor Chyan; Latiffah Noordin; Khairuddin Abdul Rahim; Amir Hamzah Ahmad Ghazali

    2010-01-01

    The dynamic changes of biological N 2 fixation by Azotobacter vinelandii ATCC 12837 under the influence of various macro nutrients, specifically phosphorus (P) and potassium (K), was investigated. In this attempt, Oryza sativa L. var. MR 219 was used as the model plant. Results obtained showed changes in the biological N 2 fixation activities with different macro nutrient(s) manipulations. The research activity enables optimisation of macro nutrients concentration for optimal/ enhanced biological N 2 fixation by A. vinelandii ATCC 12837. (author)

  12. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Science.gov (United States)

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  13. Generating false negatives and false positives for As and Mo concentrations in groundwater due to well installation.

    Science.gov (United States)

    Wallis, Ilka; Pichler, Thomas

    2018-08-01

    Groundwater monitoring relies on the acquisition of 'representative' groundwater samples, which should reflect the ambient water quality at a given location. However, drilling of a monitoring well for sample acquisition has the potential to perturb groundwater conditions to a point that may prove to be detrimental to the monitoring objective. Following installation of 20 monitoring wells in close geographic proximity in central Florida, opposing concentration trends for As and Mo were observed. In the first year after well installation As and Mo concentrations increased in some wells by a factor of 2, while in others As and Mo concentrations decreased by a factor of up to 100. Given this relatively short period of time, a natural change in groundwater composition of such magnitude is not expected, leaving well installation itself as the likely cause for the observed concentration changes. Hence, initial concentrations were identified as 'false negatives' if concentrations increased with time or as 'false positives' if concentrations decreased. False negatives were observed if concentrations were already high, i.e., the As or Mo were present at the time of drilling. False positives were observed if concentrations were relatively lower, i.e., As or Mo were present at low concentrations of approximately 1 to 2μg/L before drilling, but then released from the aquifer matrix as a result of drilling. Generally, As and Mo were present in the aquifer matrix in either pyrite or organic matter, both of which are susceptible to dissolution if redox conditions change due to the addition of oxygen. Thus, introduction of an oxidant into an anoxic aquifer through use of an oxygen saturated drilling fluid served as the conceptual model for the trends where concentrations decreased with time. Mixing between drilling fluid and groundwater (i.e., dilution) was used as the conceptual model for scenarios where increasing trends were observed. Conceptual models were successfully tested

  14. Impact of stormwater infiltration basins on groundwater quality, Perth metropolitan region, Western Australia

    Science.gov (United States)

    Appleyard, S. J.

    1993-08-01

    Twelve bores were sunk adjacent to three stormwater infiltration basins in the Perth metropolitan area to examine the impact of runoff from a light industrial area, a medium-density residential area, and a major arterial road on groundwater quality, and to examine the hydrological response of the aquifer to runoff recharge. Automatic and manual water level monitoring between April and November 1990 indicated that groundwater levels responded within minutes to recharge from the infiltration basins. Peak water levels of up to 2.5 m above rest levels occurred 6 24 h after the commencement of ponding in the infiltration basins. There was a marked reduction in salinity and increase in dissolved oxygen concentrations in the upper part of the aquifer downgradient of the infiltration basins. Concentrations of toxic metals, nutrients, pesticides, and phenolic compounds in groundwater near the infiltration basins were low and generally well within Australian drinking water guidelines. However, sediment in the base of an infiltration basin draining a major road contained in excess of 3500 ppm of lead. Phthalates, which are US EPA priority pollutants, were detected in all but one bore near the infiltration basins. Their detection may be a sampling artifact, but they may also be derived from the plastic litter that accumulates in the infiltration basins. The concentration of iron in groundwater near the infiltration basins appears to be controlled by dissolved oxygen concentrations, with high iron concentrations occurring where dissolved oxygen concentrations are low. Pumping bores located near infiltration basins may suffer from iron encrustation problems caused by the mixing of shallow, oxygenated groundwater with water containing higher concentrations of iron from deeper in the aquifer.

  15. Enhancement of Saharan groundwater quality by reducing its fluoride concentration using different materials

    KAUST Repository

    Ramdani, Amina; Taleb, Safia; Benghalem, Abderazzak; Deratani, André ; Ghaffour, NorEddine

    2014-01-01

    According to the environmental protection regulations, fluoride concentration is considered as a substance of priority for assessment of drinking water quality to determine their impacts on the environment and public health. Saharan groundwater

  16. Can groundwater sampling techniques used in monitoring wells influence methane concentrations and isotopes?

    Science.gov (United States)

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-06

    Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.

  17. Monitoring Stream Nutrient Concentration Trends in a Mixed-Land-Use Watershed

    Science.gov (United States)

    Zeiger, S. J.; Hubbart, J. A.

    2014-12-01

    Mixed-land use watersheds are often a complex patchwork of forested, agricultural, and urban land-uses where differential land-use mediated non-point source pollution can significantly impact water quality. Stream nitrogen and phosphorus concentrations serve as important variables for quantifying land use effects on non-point source pollution in receiving waters and relative impacts on aquatic biota. The Hinkson Creek Watershed (HCW) is a representative mixed land use urbanizing catchment (231 km2) located in central Missouri, USA. A nested-scale experimental watershed study including five permanent hydroclimate stations was established in 2009 to provide quantitative understanding of multiple land use impacts on nutrient loading. Spectrophotometric analysis was used to quantify total inorganic nitrogen (TIN) and total phosphorus (TP as PO4) regimes. Results (2010 - 2013) indicate average nitrate (NO3-) concentration (mg/l) range of 0.28 to 0.46 mg/l, nitrite (NO2-) range of 0.02 to 0.03 mg/l, ammonia (NH3) ranged from 0.04 to 0.08 mg/l, and TP range of 0.26 to 0.39 mg/l. With n=858, NO3-, NO2-, NH3, and TP concentrations were significantly (CI=95%, p=0.00) higher in the subbasin with the greatest percent cumulative agricultural land use (57%). NH3 and TP concentrations were significantly (CI=95%, p=0.00) higher (with the exception of the agricultural subbasin) in the subbasin with the greatest percent cumulative urban land use (26%). Results from multiple regression analyses showed percent cumulative agricultural and urban land uses accounted for 85% and 96% of the explained variance in TIN loading (CI=95%, p=0.08) and TP loading (CI=95%, p=0.02), respectively, between gauging sites. These results improve understanding of agricultural and urban land use impacts on nutrient concentrations in mixed use watersheds of the Midwest and have implications for nutrient reduction programs in the Mississippi River Basin and hypoxia reductions in the Gulf of Mexico, USA.

  18. Modeling of Groundwater Resources Heavy Metals Concentration Using Soft Computing Methods: Application of Different Types of Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Meysam Alizamir

    2017-09-01

    Full Text Available Nowadays, groundwater resources play a vital role as a source of drinking water in arid and semiarid regions and forecasting of pollutants content in these resources is very important. Therefore, this study aimed to compare two soft computing methods for modeling Cd, Pb and Zn concentration in groundwater resources of Asadabad Plain, Western Iran. The relative accuracy of several soft computing models, namely multi-layer perceptron (MLP and radial basis function (RBF for forecasting of heavy metals concentration have been investigated. In addition, Levenberg-Marquardt, gradient descent and conjugate gradient training algorithms were utilized for the MLP models. The ANN models for this study were developed using MATLAB R 2014 Software program. The MLP performs better than the other models for heavy metals concentration estimation. The simulation results revealed that MLP model was able to model heavy metals concentration in groundwater resources favorably. It generally is effectively utilized in environmental applications and in the water quality estimations. In addition, out of three algorithms, Levenberg-Marquardt was better than the others were. This study proposed soft computing modeling techniques for the prediction and estimation of heavy metals concentration in groundwater resources of Asadabad Plain. Based on collected data from the plain, MLP and RBF models were developed for each heavy metal. MLP can be utilized effectively in applications of prediction of heavy metals concentration in groundwater resources of Asadabad Plain.

  19. Administrative limits for tritium concentrations found in non-potable groundwater at nuclear power facilities

    International Nuclear Information System (INIS)

    Parker, R.; Hart, D.; WIllert, C.

    2012-01-01

    Currently, there is a regulatory limit available for tritium in drinking water, but no such limit for non-potable groundwater. Voluntary administrative limits for site groundwater may be established at nuclear power facilities to ensure minimal risk to human health and the environment, and provide guidance for investigation or other actions intended to prevent exceedances of future regulatory or guideline limits. This work presents a streamlined approach for nuclear power facilities to develop three tiers of administrative limits for tritium in groundwater so that facilities can identify abnormal/uncontrolled releases of tritium at an early stage, and take appropriate actions to investigate, control, and protect groundwater. Tier 1 represents an upper limit of background, Tier 2 represents a level between background and Tier 3, and Tier 3 represents a risk-based concentration protective of down-gradient receptors. (author)

  20. High arsenic and boron concentrations in groundwaters related to mining activity in the Bigadic borate deposits (Western Turkey)

    International Nuclear Information System (INIS)

    Gemici, Unsal; Tarcan, Gueltekin; Helvaci, Cahit; Somay, A. Melis

    2008-01-01

    This study documents the environmental impacts of borate mines in Bigadic district, which are the largest colemanite and ulexite deposits in the world. Borate-bearing formations have affected the concentrations of some contaminants in groundwater. Groundwater quality is directly related to the borate zones in the mines as a result of water-rock interaction processes. Calcium is the dominant cation and waters are Ca-SO 4 and HCO 3 type in the mine (Tuelue borate mine) from which colemanite is produced. However in the Simav and Acep Borate Mines, ulexite and colemanite minerals are produced and waters from these open pit mines are Na-HCO 3 -SO 4 types. High SO 4 concentrations (reaching 519 mg/L) might be explained by the existence of anhydrite, gypsum and celestite minerals in the borate zone. Groundwater from tuff and borate strata showed relatively low pH values (7-8) compared to surface and mine waters (>8). EC values ranged from 270 to 2850 μS/cm. Boron and As were the two important contaminants determined in the groundwaters around the Bigadic borate mines. Arsenic is the major pollutant and it ranged from 33 to 911 μg/L in the groundwater samples. The concentrations of B in the study area ranged from 0.05 to 391 mg/L. The highest B concentrations were detected at the mine areas. The extension of the borate zones in the aquifer systems is the essential factor in the enrichment of B and As, and some major and trace elements in groundwaters are directly related to the leaching of the host rock which are mainly composed of tuffs and limestones. According to drinking water standards, all of the samples exceed the tolerance limit for As. Copper, Mn, Zn and Li values are enriched but do not exceed the drinking water standards. Sulfate, Al and Fe concentrations are above the drinking water standard for the groundwater samples

  1. Origin of methane and sources of high concentrations in Los Angeles groundwater

    Science.gov (United States)

    Kulongoski, Justin; McMahon, Peter B.; Land, Michael; Wright, Michael; Johnson, Theodore; Landon, Matthew K.

    2018-01-01

    In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from −80.8 to −45.5 per mil (‰) and −249.8 to −134.9‰, respectively, and, along with oxidation‐reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.

  2. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and

  3. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  4. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction

    Science.gov (United States)

    Wu, Ya; Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    Understanding uranium (U) mobility is vital to minimizing its concentrations in potential drinking water sources. In this study, we report spatial-seasonal variations in U speciation and concentrations in a multi-aquifer system under the impact of Sanggan River in Datong basin, northern China. Hydrochemical and H, O, Sr isotopic data, thermodynamic calculations, and geochemical modeling are used to investigate the mechanisms of surface water-groundwater mixing-induced mobilization and natural attenuation of U. In the study site, groundwater U concentrations are up to 30.2 μg/L, and exhibit strong spatial-seasonal variations that are related to pH and Eh values, as well as dissolved Ca2+, HCO3-, and Fe(III) concentrations. For the alkaline aquifers of this site (pH 7.02-8.44), U mobilization is due to the formation and desorption of Ca2UO2(CO3)30 and CaUO2(CO3)32- caused by groundwater Ca2+ elevation via mineral weathering and Na-Ca exchange, incorporated U(VI) release from calcite, and U(IV) oxidation by Fe(OH)3. U immobilization is linked to the adsorption of CaUO2(CO3)32- and UO2(CO3)34- shifted from Ca2UO2(CO3)30 because of HCO3- elevation and Ca2+ depletion, U(VI) co-precipitation with calcite, and U(VI) reduction by adsorbed Fe2+ and FeS. Those results are of great significance for the groundwater resource management of this and similar other surface water-groundwater interaction zones.

  5. Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence

    DEFF Research Database (Denmark)

    Hansen, B.; Dalgaard, Tommy; Thorling, L.

    2012-01-01

    The act of balancing between an intensive agriculture with a high potential for nitrate pollution and a drinking water supply almost entirely based on groundwater is a challenge faced by Denmark and similar regions around the globe. Since the 1980s, regulations implemented by Danish farmers have...... succeeded in optimizing the N (nitrogen) management at farm level. As a result, the upward agricultural N surplus trend has been reversed, and the N surplus has reduced by 30–55% from 1980 to 2007 depending on region. The reduction in the N surplus served to reduce the losses of N from agriculture......, approximately 48% of the oxic monitored groundwater has nitrate concentrations above the groundwater and drinking water standards of 50 mg l−1. Furthermore, trend analyses show that 33% of all the monitored groundwater has upward nitrate trends, while only 18% of the youngest groundwater has upward nitrate...

  6. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    in the United States. Previously published digital data relating to brackish groundwater resources were limited to a small number of State- and regional-level studies. Data sources for this assessment ranged from single publications to large datasets and from local studies to national assessments. Geochemical data included concentrations of dissolved solids, major ions, trace elements, nutrients, and radionuclides as well as physical properties of the water (pH, temperature, and specific conductance). Additionally, the database provides selected well information (location, yield, depth, and contributing aquifer) necessary for evaluating the water resource.The assessment was divided into national-, regional-, and aquifer-scale analyses. National-scale analyses included evaluation of the three-dimensional distribution of observed dissolved-solids concentrations in groundwater, the three-dimensional probability of brackish groundwater occurrence, and the geochemical characteristics of saline (greater than or equal to 1,000 mg/L of dissolved solids) groundwater resources. Regional-scale analyses included a summary of the percentage of observed grid cell volume in the region that was occupied by brackish groundwater within the mixture of air, water, and rock for multiple depth intervals. Aquifer-scale analyses focused primarily on four regions that contained the largest amounts of observed brackish groundwater and included a generalized description of hydrogeologic characteristics from previously published work; the distribution of dissolved-solids concentrations; considerations for developing brackish groundwater resources, including a summary of other chemical characteristics that may limit the use of brackish groundwater and the ability of sampled wells producing brackish groundwater to yield useful amounts of water; and the amount of saline groundwater being used in 2010.

  7. Temporal variations of methane concentration and isotopic composition in groundwater of the St. Lawrence Lowlands, eastern Canada

    Science.gov (United States)

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-01

    Dissolved methane concentrations in shallow groundwater are known to vary both spatially and temporally. The extent of these variations is poorly documented although this knowledge is critical for distinguishing natural fluctuations from anthropogenic impacts stemming from oil and gas activities. This issue was addressed as part of a groundwater research project aiming to assess the risk of shale gas development for groundwater quality over a 500-km2 area in the St. Lawrence Lowlands (Quebec, Canada). A specific study was carried out to define the natural variability of methane concentrations and carbon and hydrogen isotope ratios in groundwater, as dissolved methane is naturally ubiquitous in aquifers of this area. Monitoring was carried out over a period of up to 2.5 years in seven monitoring wells. Results showed that for a given well, using the same sampling depth and technique, methane concentrations can vary over time from 2.5 to 6 times relative to the lowest recorded value. Methane isotopic composition, which is a useful tool to distinguish gas origin, was found to be stable for most wells, but varied significantly over time in the two wells where methane concentrations are the lowest. The use of concentration ratios, as well as isotopic composition of methane and dissolved inorganic carbon (DIC), helped unravel the processes responsible for these variations. This study indicates that both methane concentrations and isotopic composition, as well as DIC isotopes, should be regularly monitored over at least 1 year to establish their potential natural variations prior to hydrocarbon development.

  8. Plants as bio-indicators of subsurface conditions: impact of groundwater level on BTEX concentrations in trees.

    Science.gov (United States)

    Wilson, Jordan; Bartz, Rachel; Limmer, Matt; Burken, Joel

    2013-01-01

    Numerous studies have demonstrated trees' ability to extract and translocate moderately hydrophobic contaminants, and sampling trees for compounds such as BTEX can help delineate plumes in the field. However, when BTEX is detected in the groundwater, detection in nearby trees is not as reliable an indicator of subsurface contamination as other compounds such as chlorinated solvents. Aerobic rhizospheric and bulk soil degradation is a potential explanation for the observed variability of BTEX in trees as compared to groundwater concentrations. The goal of this study was to determine the effect of groundwater level on BTEX concentrations in tree tissue. The central hypothesis was increased vadose zone thickness promotes biodegradation of BTEX leading to lower BTEX concentrations in overlying trees. Storage methods for tree core samples were also investigated as a possible reason for tree cores revealing lower than expected BTEX levels in some sampling efforts. The water level hypothesis was supported in a greenhouse study, where water table level was found to significantly affect tree BTEX concentrations, indicating that the influx of oxygen coupled with the presence of the tree facilitates aerobic biodegradation of BTEX in the vadose zone.

  9. Median nitrate concentrations in groundwater in the New Jersey Highlands Region estimated using regression models and land-surface characteristics

    Science.gov (United States)

    Baker, Ronald J.; Chepiga, Mary M.; Cauller, Stephen J.

    2015-01-01

    Nitrate-concentration data are used in conjunction with land-use and land-cover data to estimate median nitrate concentrations in groundwater underlying the New Jersey (NJ) Highlands Region. Sources of data on nitrate in 19,670 groundwater samples are from the U.S. Geological Survey (USGS) National Water Information System (NWIS) and the NJ Private Well Testing Act (PWTA).

  10. Radioelement (U,Th,Rn) concentrations in Norwegian bedrock groundwaters

    International Nuclear Information System (INIS)

    Banks, D.; Roeyset, O.; Strand, T.; Skarphagen, H.

    1993-12-01

    Samples of groundwater from bedrock boreholes in three Norwegian geological provinces have been analysed for content of 222 Rn, U and Th. Median values of 290 Bq/l, 7.6 μg/l and 0.02 μg/l were obtained for Rn, U and Th, respectively, while maximum values were 8500 Bq/l, 170 μg/l and 2.2 μg/l. Commonly suggested drinking water limits range from 8 to 1000 Bq/l for radon and 14 to 160 μg/l for uranium. Radioelement content was closely related to lithology, the lowest concentrations being derived from the largely Caledonian rocks of the Troendelag area, and the highest from the Precambrian Iddefjord Granite of South East Norway where median values of 2500 Bq/l, 15 μg/l and 0.38 μg/l, respectively, were obtained. The Iddefjord Granite is not believed to be unique in Norway yielding high dissolved radionuclide contents in groundwaters, and several other granitic aquifers warrant further investigation in this respect. 63 refs., 13 figs., 8 tabs

  11. Nutrient removal using biosorption activated media: Preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    International Nuclear Information System (INIS)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO 3 − /Cl − ) ratios for the shallow groundwater indicates that prior to using BAM, NO 3 − concentrations were substantially influenced by nitrification or variations in NO 3 − input. In contrast, for the new basin utilizing BAM, NO 3 − /Cl − ratios indicate minor nitrification and NO 3 − losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO 3 − losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO 4 3− ) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO 4 3− /Cl − ratios for shallow

  12. Concentrations and speciation of arsenic along a groundwater flow-path in the Upper Floridan aquifer, Florida, USA

    Science.gov (United States)

    Haque, S. E.; Johannesson, K. H.

    2006-05-01

    Arsenic (As) concentrations and speciation were determined in groundwaters along a flow-path in the Upper Floridan aquifer (UFA) to investigate the biogeochemical “evolution“ of As in this relatively pristine aquifer. Dissolved inorganic As species were separated in the field using anion-exchange chromatography and subsequently analyzed by inductively coupled plasma mass spectrometry. Total As concentrations are higher in the recharge area groundwaters compared to down-gradient portions of UFA. Redox conditions vary from relatively oxic to anoxic along the flow-path. Mobilization of As species in UFA groundwaters is influenced by ferric iron reduction and subsequent dissolution, sulfate reduction, and probable pyrite precipitation that are inferred from the data to occur along distinct regions of the flow-path. In general, the distribution of As species are consistent with equilibrium thermodynamics, such that arsenate dominates in more oxidizing waters near the recharge area, and arsenite predominates in the progressively reducing groundwaters beyond the recharge area.

  13. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-02

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems.

  14. The effect of restored and native oxbows on hydraulic loads of nutrients and stream water quality

    Science.gov (United States)

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Joseph P.Schubauer-Berigan,

    2016-01-01

    The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north-central Iowa in a native oxbow in the Lyons Creek watershed and two restored oxbow wetlands in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows, and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water-groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 11.8 mg/L to 40.9 mg/L, the median daily mean nitrate-N concentration was 33.0 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 0.07 mg/L in August to 32.2 mg/L in June. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L in April to 26.7 mg/L in July; the daily mean nitrate-N concentration for the sampled period was 9.78 mg/L. Nutrient load reduction occurred in oxbow wetlands in Lyons and Prairie Creek watersheds in north-central Iowa but efficiency of reduction was variable. Little nutrient reduction occurred in the native Lyons Creek oxbow during 2013. Concentrations of all nutrient constituents were not significantly (P>0.05, Wilcoxon rank sum) different in water discharging from the tile line than in water leaving the Lyons Creek oxbow. A combination of physical features and flow conditions suggest that the residence time of

  15. Decadal-scale changes in dissolved-solids concentrations in groundwater used for public supply, Salt Lake Valley, Utah

    Science.gov (United States)

    Thiros, Susan A.; Spangler, Larry

    2010-01-01

    Basin-fill aquifers are a major source of good-quality water for public supply in many areas of the southwestern United States and have undergone increasing development as populations have grown over time. During 2005, the basin-fill aquifer in Salt Lake Valley, Utah, provided approximately 75,000 acre-feet, or about 29 percent of the total amount of water used by a population of 967,000. Groundwater in the unconsolidated basin-fill deposits that make up the aquifer occurs under unconfined and confined conditions. Water in the shallow unconfined part of the groundwater system is susceptible to near-surface contamination and generally is not used as a source of drinking water. Groundwater for public supply is withdrawn from the deeper unconfined and confined parts of the system, termed the principal aquifer, because yields generally are greater and water quality is better (including lower dissolved-solids concentrations) than in the shallower parts of the system. Much of the water in the principal aquifer is derived from recharge in the adjacent Wasatch Range (mountain-block recharge). In many areas, the principal aquifer is separated from the overlying shallow aquifer by confining layers of less permeable, fine-grained sediment that inhibit the downward movement of water and any potential contaminants from the surface. Nonetheless, under certain hydrologic conditions, human-related activities can increase dissolved-solids concentrations in the principal aquifer and result in groundwater becoming unsuitable for consumption without treatment or mixing with water having lower dissolved-solids concentrations. Dissolved-solids concentrations in areas of the principal aquifer used for public supply typically are less than 500 milligrams per liter (mg/L), the U.S. Environmental Protection Agency (EPA) secondary (nonenforceable) drinking-water standard. However, substantial increases in dissolved-solids concentrations in the principal aquifer have been documented in some

  16. Monitoring of Heavy Metal Concentration in Groundwater of Qorveh County, Kurdistan Province, Iran

    Directory of Open Access Journals (Sweden)

    Nafiseh Yousefi

    2016-07-01

    Full Text Available Background & Aims of the Study: Nowadays, the quality of water is a very important concern. High levels of heavy metals in drinking water may cause some health problems such as cancer. The aim of this study is determination of some heavy metal concentrations in groundwater of some parts of Qorveh county, Kurdistan, Iran. Materials & Methods: In this study 25 water samples were analyzed, using Inductively Coupled Plasma for determining the concentrations of iron, chromium, copper and zinc. As a case study, the groundwater contamination in some parts of Qorveh county, Kurdistan, Iran, was investigated and compared to the maximum contaminant level specified by the World Health Organization (WHO and Iranian Standard Institute (IS: 1053, using ANOVA test. Results: Obtained results showed that in some cases the concentration of heavy metals were above WHO and IS: 1053. Conclusions: Heavy metals contamination can enter the food chain and cause various health problems. Thus, according to the obtained results, it is necessary to launch water management programs in the study area.

  17. The effect of growing media and concentration of nutrient solution on growth, flowering and macroelement content of media and leaves of Tymophylla tenuiloba Small

    Directory of Open Access Journals (Sweden)

    Joanna Nowak

    2013-12-01

    Full Text Available Effects of growing media and concentration of nutrient solution on growth, flowering, evapotranspiration and macroelement content of media and leaves of Tymophylla tenuiloba were evaluated under ebb-and-flow conditions. Two media: peat and peat + perlite (3:l, v/v, and four concentrations of nutrient solution: 1.0, 1.5, 2.0, 2.5 mS cm-1 were applied. High quality plants were produced in both media and all concentration of nutrient solution. The lowest evapotranspiration was measured at the highest concentration of nutrient solution. N concentration of leaves was high in all treatments. Concentrations of K, Ca, and Mg decreased with increasing concentration of nutrient solution. Opposite was found for P. At the end of cultivation the lowest pH was measured in the upper layer of growing media. The highest total soluble salt level was measured in the upper layers. Upper layers accumulated more N-NO3, P, Ca, and Mg. Mineral element content of both media was high in all concentrations of nutrient solution. Low concentration of nutrient solution at 1.0 mS cm-1 is recommended, although -1Tymophylla tenuiloba-1 can be also cultivated at higher concentrations of nutrient solution up to 2.5mS cm-1, if placed on the same bench with other bedding plants requiring more nutrients.

  18. Transposing Concentration-Discharge Curves onto Unmonitored Catchments to Estimate Seasonal Nutrient Loads

    Science.gov (United States)

    Minaudo, C.; Moatar, F.; Abbott, B. W.; Dupas, R.; Gascuel-Odoux, C.; Pinay, G.; Roubeix, V.; Danis, P. A.

    2017-12-01

    Many lakes and reservoirs in Europe suffer from severe eutrophication. Accurate quantification of nutrient loads are critical for effective mitigation measures, but this information is often unknown. For example, in France, only 50 out of 481 lakes and reservoirs have national monitoring allowing estimation of interannual nitrogen and phosphorus loads, and even these loads are computed from low-frequency data. To address this lack of data, we developed a straightforward method to predict seasonal loads in lake tributaries. First, we analyzed concentration-discharge (C-Q) curves in monitored catchments and identified slopes, intercepts, and coefficient of variation of the log(C)-log(Q) regressions determined for both low and high flows, separated by the median daily flow [Moatar et al., 2017]. Then, we used stepwise multiple linear regression models to empirically link the characteristics of C-Q curves with a set of catchment descriptors such as land use, lithology, morphology indices, climate, and hydrological indicators. Modeled C-Q relationships were then used to estimate annual and seasonal nutrient loads in nearby and similar unmonitored catchments. We implemented this approach on a large dataset from France where stream flow was surveyed daily and water quality (suspended solids, nitrate, total phosphorus, and orthophosphate concentrations) was measured on a monthly basis at 233 stations over the past 20 years in catchments from 10 to 3000 km². The concentration at the median daily flow (seen here as a metric of the general level of contamination in a catchment) was predicted with uncertainty ranging between 30 and 100 %, depending on the variable. C-Q slopes were predicted with large errors, but a sensitivity analysis was conducted to determine the impact of C-Q slopes uncertainties on computed annual and seasonal loads. This approach allows estimation of seasonal and annual nutrient loads and could be potentially implemented to improve protection and

  19. Regional monitoring of temporal changes in groundwater quality

    NARCIS (Netherlands)

    Broers, H.P.; Grift, B. van der

    2004-01-01

    Changes in agricultural practices are expected to affect groundwater quality by changing the loads of nutrients and salts in recharging groundwater, but regional monitoring networks installed to register the changes often fail to detect them and interpretation of trend analysis results is difficult.

  20. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    Science.gov (United States)

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. Copyright © 2016. Published by Elsevier B.V.

  1. Concentrations of chloride and sodium in groundwater in New Hampshire from 1960 through 2011

    Science.gov (United States)

    Medalie, Laura

    2013-01-01

    Several studies from the 1970s and more recently (for example, Hall (1975), Daley and others (2009) and Mullaney (2009)) have found that concentrations of chloride and sodium in groundwater in New Hampshire have increased during the past 50 years. Increases likely are related to road salt and other anthropogenic sources, such as septic systems, wastewater, and contamination from landfills and salt-storage areas. According to water-quality data reported to the New Hampshire Department of Environmental Services (NHDES), about 100 public water systems (5 percent) in 2010 had at least one groundwater sample with chloride concentrations that were equal to or exceeded the U.S. Environmental Protection Agency (USEPA) secondary maximum contaminant level (SMCL) of 250 mg/L before the water was treated for public consumption. The SMCL for chloride is a measurement of potential cosmetic or aesthetic effects of chloride in water. High concentrations of chloride and sodium in drinking-water sources can be costly to remove.

  2. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas.

    Science.gov (United States)

    Gong, Gordon; Mattevada, Sravan; O'Bryant, Sid E

    2014-04-01

    Exposure to arsenic causes many diseases. Most Americans in rural areas use groundwater for drinking, which may contain arsenic above the currently allowable level, 10µg/L. It is cost-effective to estimate groundwater arsenic levels based on data from wells with known arsenic concentrations. We compared the accuracy of several commonly used interpolation methods in estimating arsenic concentrations in >8000 wells in Texas by the leave-one-out-cross-validation technique. Correlation coefficient between measured and estimated arsenic levels was greater with inverse distance weighted (IDW) than kriging Gaussian, kriging spherical or cokriging interpolations when analyzing data from wells in the entire Texas (pgroundwater arsenic level depends on both interpolation methods and wells' geographic distributions and characteristics in Texas. Taking well depth and elevation into regression analysis as covariates significantly increases the accuracy in estimating groundwater arsenic level in Texas with IDW in particular. Published by Elsevier Inc.

  3. Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian highlands: Topographic and land-use controls

    Science.gov (United States)

    Guzman, Christian D.; Tilahun, Seifu A.; Dagnew, Dessalegn C.; Zimale, Fasikaw A.; Zegeye, Assefa D.; Boll, Jan; Parlange, Jean-Yves; Steenhuis, Tammo S.

    2017-12-01

    Soil and water conservation structures, promoted by local and international development organizations throughout rural landscapes, aim to increase recharge and prevent degradation of soil surface characteristics. This study investigates this unexamined relationship between recharge, water table depths, and soil surface characteristics (nutrients) in a small sub-watershed in the northwestern Ethiopian highlands. These highland watersheds have high infiltration rates (mean 70 mm hr-1, median 33 mm hr-1), recharging the shallow unconfined hillslope aquifer with water transport occurring via subsurface pathways down the slope. The perched water tables reflect the subsurface flux and are deep where this flux is rapid in the upland areas (138 cm below surface). Soil saturation and overland flow occur when the subsurface flux exceeds the transport capacity of the soil in the lower downslope areas near the ephemeral stream (19 cm below surface). Land use is directly related to the water table depth, corresponding to grazing and fallowed (saturated) land in the downslope areas and cultivated (unsaturated) land in the middle and upper parts where the water table is deeper. Kjeldahl Total Nitrogen (TN), Bray II available phosphorus (AP), and exchangeable potassium (K+) averages exhibit different behaviors across slope, land use transects, or saturation conditions. TN was moderate to low (0.07% ± 0.04) in various land uses and slope regions. Bray II AP had very low concentrations (0.25 mg kg-1 ± 0.26) among the different slope regions with no significant differences throughout (p > .05). The exchangeable cation (K+, Ca2+, Mg2+) concentrations and pH, however, were greater in non-cultivated (seasonally saturated) lands and in a downslope direction (p < .001, p < .005, p < .05, and p < .005, respectively). These results show that the perched groundwater plays an important role in influencing land use, the amount of water seasonally available for crop growth, and exchangeable

  4. Bioremediation Of Heavy Metals By Pseudomonas Putida Isolated From Groundwater In Egypt.

    Directory of Open Access Journals (Sweden)

    Fawazy

    2015-08-01

    Full Text Available In this present study total four bacterial isolates were obtained from 34 collected groundwater samples in 10th of Ramadan Sharkia governorate Egypt. These isolate were grown on nutrient agar supplemented with 1mgl of iron manganese and combination between them VV. Further testing of the bacterial isolates were grown on nutrient agar supplemented with different concentrations 2 4 5 6 7 8 and 9 mgl of iron and manganese. Out of four isolates one bacterial isolate no.83 has shown the resistance to heavy metals at maximum concentration of 8mgl. Selected isolate no.S83 was identified as Pseudomonas putida S83 according to Bergeys manual depending on morphological and biochemical characteristics. Transmission electron microscopy study of P. putida isolate no. S83 showed accumulation of heavy metal salts within and external to bacterial cells. P. putida S83 have higher removal efficiency of Fe2 94.5 and Mn2 94 at concentration 2 mgl and 96 hours.

  5. Groundwater-Quality Data in the Colorado River Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the 188-square-mile Colorado River Study unit (COLOR) was investigated October through December 2007 as part of the Priority Basin Project of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and the U.S. Geological Survey (USGS) is the technical project lead. The Colorado River study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within COLOR, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 28 wells in three study areas in San Bernardino, Riverside, and Imperial Counties. Twenty wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the Study unit; these wells are termed 'grid wells'. Eight additional wells were selected to evaluate specific water-quality issues in the study area; these wells are termed `understanding wells.' The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], gasoline oxygenates and degradates, pesticides and pesticide degradates, pharmaceutical compounds), constituents of special interest (perchlorate, 1,4-dioxane, and 1,2,3-trichlorpropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents. Concentrations of naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 220 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and matrix spikes) were collected at

  6. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary

    Science.gov (United States)

    Portnoy, J.W.; Nowicki, B.L.; Roman, C.T.; Urish, D.W.

    1998-01-01

    As residential development, on-site wastewater disposal, and groundwater contamination increase in the coastal zone, assessment of nutrient removal by soil and sedimentary processes becomes increasingly important. Nitrogen removal efficiency depends largely on the specific flow paths taken by groundwater as it discharges into nitrogen-limited estuarine waters. Shoreline salinity surveys, hydraulic studies, and thermal infrared imagery indicated that groundwater discharge into the Nauset Marsh estuary (Eastham, Massachusetts) occurred in high-velocity seeps immediately seaward of the upland-fringing salt marsh. Discharge was highly variable spatially and occurred through permeable, sandy sediments during low tide. Seepage chamber monitoring showed that dissolved inorganic nitrogen (principally nitrate) traversed nearly conservatively from the aquifer through shallow estuarine sediments to coastal waters at flux rates of 1–3 mmol m−2 h−1. A significant relationship between pore water NO3-N concentrations and NO3-N flux rates may provide a rapid method of estimating nitrogen loading from groundwater to the water column.

  7. Determination of reference concentrations for inorganic analytes in groundwater at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    Background (or reference) concentrations for inorganics in Y-12 Plant groundwater were determined using a combination of statistical cluster analysis and conventional cumulative probability graphing. Objective was to develop a methodology for setting groundwater reference concentrations that uses all site groundwater data instead of only results of sampling upgradient of groundwater contamination. Y-12 was selected as prototype because the groundwater data set is very large and the data have been consistently collected since 1986. A conceptual framework of groundwater quality at Y-12 was formulated; as a quality check, data were statistically modeled or clustered. Ten hydrochemical regimes or clusters were identified. Six well clusters closely corresponded to the water quality framework and to observed water quality regimes in groundwater at Y-12. Four clusters were associated with nitrate, an S-3 Site contaminant, or with nonspecific contaminants commonly encountered at shallow depths at industrial sites (e.g., road salt). These four clusters were eliminated from the reference data set. Cumulative probability graphs were used within a cluster or group of clusters to distinguish contaminated wells from wells with ambient water quality. Only median values of unfiltered samples were plotted. Outlying data points (assumed to be contaminated samples) were identified and eliminated from the data set. When all outliers for a given inorganic had been identified and deleted from the data set, the reference concentration was set at the one-sided upper tolerance limit on the 95th percentile with 95% confidence. The methodology proved useful in integrating a large amount of data into the Y-12 plant groundwater conceptual framework and in identifying those wells or groups of wells that have monitoring or sample and analysis problems or that may be monitoring site-related contamination

  8. 222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland)

    International Nuclear Information System (INIS)

    Przylibski, Tadeusz A.; Gorecka, Joanna

    2014-01-01

    Based on research conducted in three Variscan granitoid massifs located within the crystalline Bohemian Massif, the authors confirmed that the higher the degree of their erosional dissection, the smaller the concentration of 222 Rn in groundwaters circulating in these massifs. This notion implies that radon waters and high-radon waters, from which at least some of the dissolved radon should be removed before feeding them as drinking water to the water-supply system, could be expected in granitoid massifs which have been poorly exposed by erosion. At the same time, such massifs must be taken into account as the areas of possible occurrence of radon medicinal waters, which in some countries can be used for balneotherapy in health resorts. Slightly eroded granitoid massifs should be also regarded as very probable radon prone areas or areas of high radon potential. - Highlights: • The concentration of 222 Rn in groundwater depends on the zone of the granitoid massif which is exposed on the ground surface. • The highest 222 Rn concentrations occur in the least eroded granitoid massifs, the lowest in massifs with exposed root parts. • The stronger the erosional dissection of a granitoid massif, the lower 222 Rn concentration in groundwaters in this massif. • Not all granitoid massifs are areas with groundwaters containing high concentrations of 222 Rn. • The least eroded granitoid massifs are radon prone areas with the occurrence of high-radon and radon groundwaters

  9. IMPACT OF LEATHER PROCESSING INDUSTRIES ON CHROMIUM CONCENTRATION IN GROUNDWATER SOUTH OF CHENNAI CITY, INDIA

    Science.gov (United States)

    Elango, L.; Brindha, K.; G. Rajesh, V.

    2009-12-01

    The groundwater quality is under threat due to disposal of effluents from a number of industries. Poor practice of treatment of wastes from tanning industries or leather processing industries lead to pollution of groundwater. This study was carried out with the objective of assessing the impact of tanneries on groundwater quality in Chromepet area which is a part of the metropolitan area of Chennai, Tamil Nadu, India. This area serves as the home town for a number of small and large scale tanning industries. People in certain parts of this area depend on the groundwater for their domestic needs as there is no piped drinking water supply system. Topographically this region is generally flat with gentle slope towards east and north east. The charnockite rocks occur as basement at the depth of about 15m from the surface of this area. Weathered charnockite rock occurs at the depth from 7m to 15m from the ground surface. The upper layer consists of loamy soil. Groundwater occurs in the unconfined condition at a depth from 0.5m to 5m. Thirty six groundwater samples were collected during March 2008 and the groundwater samples were analysed for their heavy metal (chromium) content using atomic absorption spectrophotometer. Bureau of Indian Standards (BIS) recommended the maximum permissible limit of chromium in drinking water as 0.05 mg/l. Considering this, it was found that 86% of the groundwater samples possessed concentration of chromium above the maximum permissible limit recommended by BIS. The tanneries use chrome sulphate to strengthen the leather and make it water repellent. The excess of chromium gets washed off and remains in the wastewater. This wastewater is disposed into open uncovered drains either untreated or after partial treatment. Thus the chromium leaches through the soil and reaches the groundwater table. Apart from this, there is also huge quantity of solid waste resulting from the hides and skins which are dumped off without suitable treatment. The

  10. Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system

    Directory of Open Access Journals (Sweden)

    Mohammad Zahirul Islam

    2018-04-01

    Full Text Available ABSTRACT This study was conducted to investigate the effects of nutrient and salinity concentrations on the quality of deepflow technique hydroponic system cultivated cherry tomatoes (Lycopersicon esculentum Mill ‘Unicorn’. The conditions were: (1 control (NS-1 × nutrient Solution, Electrical Conductivity – EC: 2.5 mS∙cm–1; (2 2 × NS (2 × NS-Double NS, EC: 5 mS∙cm–1; (3 NS + 4.23 mM NaCl (NaCl-Sodium Chloride, EC: 5 mS∙cm–1; and (4 NS + 13.70 mM Sea Water – SW (EC: 7.5 mS∙cm–1. NS + 13.70 mM SW treatment showed the lowest fresh weight loss. Visual quality as well as shelf life was the longest in NS (1 × nutrient solution treated tomato fruits. The longest shelf life at 5 °C, 11 °C, and 24 °C were 21, 16, and 8 days, respectively, in NS (1 × nutrient solution treated tomato fruits. The highest firmness was recorded in NS (1 × nutrient solution treated tomato fruits, which was retained after storage. Moreover, NS + 13.70 mM SW treatment increased the cherry tomato fruit’s quality, especially soluble solids and sugar contents. These results indicate that salinity concentration has effect the soluble solids and sugar of cherry tomato fruits. In addition, nutrient concentration influenced the shelf life and firmness of cherry tomato fruits.

  11. Data to support "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations & Biological Condition"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets are included here to support the manuscript "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition". This...

  12. Speciation and mobility of trace elements and uranium in a river/groundwater infiltration system

    International Nuclear Information System (INIS)

    Gunten, H.R. von

    1994-01-01

    The infiltration and migration behaviour of dissolved species from the river Glatt, Switzerland, into a hydrologically connected shallow groundwater aquifer was investigated for more than 10 years. Seasonal cycles of the concentrations of several species were observed in the sediments of the riverbed and in the groundwater. The bacteria-mediated oxidation of organic matter and aquatic biota in the riverbed sediments governed related chemical and redox processes which led to significant changes in the composition and properties of the infiltrating water. Up to 1990, significant peaks of manganese, cadmium, uranium and other trace elements appeared each summer in the interstitial water of the sediments and in the groundwater. Recently, these peaks disappeared completely. The authors attribute these drastic changes in the water chemistry to a more efficient removal of the nutrient phosphate from surface waters

  13. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate.

    Science.gov (United States)

    Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.

  14. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment

    International Nuclear Information System (INIS)

    Katsoyiannis, Ioannis A.; Hug, Stephan J.; Ammann, Adrian; Zikoudi, Antonia; Hatziliontos, Christodoulos

    2007-01-01

    The cities in the Aksios and Kalikratia areas in Northern Greece rely on arsenic contaminated groundwater for their municipal water supply. As remedial action strongly depends on arsenic speciation, the presence of other possible contaminants, and on the general water composition, a detailed study with samples from 21 representative locations was undertaken. Arsenic concentrations were typically 10-70 μg/L. In the groundwaters of the Aksios area with lower Eh values (87-172 mV), pH 7.5-8.2 and 4-6 mM HCO 3 alkalinity, As(III) predominated. Manganese concentrations were mostly above the EC standard of 0.05 mg/L (0.1-0.7 mg/L). In groundwaters of the Kalikratia area with higher Eh values (272-352 mV), pH 6.7-7.5 and 6-12 mM HCO 3 alkalinity, As(V) was the main species. Uranium in the groundwaters was also investigated and correlations with total arsenic concentrations and speciation were examined to understand more of the redox chemistry of the examined groundwaters. Uranium concentrations were in the range 0.01-10 μg/L, with the higher concentrations to occur in the oxidizing groundwaters of the Kalikratia area. Uranium and total arsenic concentrations showed no correlation, whereas uranium concentrations correlated strongly with As(III)/As(tot) ratios, depicting their use as a possible indicator of groundwater redox conditions. Finally, boron was found to exceed the EC drinking water standard of 1 mg/L in some wells in the Kalikratia area and its removal should also be considered in the design of a remedial action

  15. Concentration of Uranium levels in groundwater

    International Nuclear Information System (INIS)

    Babu, M. N. S.; Somashekar, R. K.; Kumar, S. A.; Shivanna, K.; Krishnamurthy, V.; Eappen, K. P.

    2008-01-01

    The uranium isotopes during their course of their disintegration decay into other radioactive elements and eventually decay into stable lead isotopes. The cause of environmental concern is the emanation of beta and gamma radiation during disintegration. The present study tends to estimate uranium in groundwater trapped in granite and gneiss rocks. Besides, the study aims at estimating the radiation during natural disintegration process. The water samples were collected and analyzed following inductively coupled plasma mass spectrometric technique while water sample collection was given to the regions of Kolar District, South India, due to the representation. The significant finding was the observation of very high levels of uranium in groundwater compared to similar assays reported at other nearby districts. Also, the levels were considerable to those compared to groundwater levels of uranium reported by other scientists, On the basis of this study, it was inferred that the origin of uranium was from granite strata and there was a trend of diffusion observed in the course of flow-path of water in the region

  16. Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts

    Science.gov (United States)

    Moseman-Valtierra, Serena; Kroeger, Kevin D.; Crusius, John; Baldwin, Sandy; Green, Adrian; Brooks, Thomas W.; Pugh, E.

    2015-01-01

    Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1). Intertidal N2O fluxes were positively related to porewater ammonium concentrations at 10 and 25 cm depths. In groundwater from 7 shoreline wells, dissolved N2O ranged from 488% of saturation (56 nM N2O) to more than 13000% of saturation (1529 nM N2O) and was positively related to nitrate concentrations. Fresh and brackish porewater underlying 14 chambers was also supersaturated in N2O, ranging from 2980% to 13175% of saturation. These observations support a relationship between anthropogenic nutrient loading and N2O emissions in West Falmouth Harbor, with both groundwater sources and also local N2O production within nutrient-rich, intertidal sediments in the groundwater seepage face. N2O emissions from intertidal "hotspot" in this harbor, together with estimated surface water emissions, constituted 2.4% of the average overall rate of nitrogen export from the watershed to the estuary. This suggests that N2O emissions factors from coastal ecosystems may be underestimated. Since anthropogenic nutrient loading affects estuaries worldwide, quantification of N2O dynamics is warranted in other anthropogenically-impacted coastal ecosystems.

  17. Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts.

    Science.gov (United States)

    Moseman-Valtierra, Serena; Kroeger, Kevin D; Crusius, John; Baldwin, Sandra; Green, Adrian; Brooks, T Wallace; Pugh, Emily

    2015-01-01

    Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1). Intertidal N2O fluxes were positively related to porewater ammonium concentrations at 10 and 25 cm depths. In groundwater from 7 shoreline wells, dissolved N2O ranged from 488% of saturation (56 nM N2O) to more than 13000% of saturation (1529 nM N2O) and was positively related to nitrate concentrations. Fresh and brackish porewater underlying 14 chambers was also supersaturated in N2O, ranging from 2980% to 13175% of saturation. These observations support a relationship between anthropogenic nutrient loading and N2O emissions in West Falmouth Harbor, with both groundwater sources and also local N2O production within nutrient-rich, intertidal sediments in the groundwater seepage face. N2O emissions from intertidal "hotspot" in this harbor, together with estimated surface water emissions, constituted 2.4% of the average overall rate of nitrogen export from the watershed to the estuary. This suggests that N2O emissions factors from coastal ecosystems may be underestimated. Since anthropogenic nutrient loading affects estuaries worldwide, quantification of N2O dynamics is warranted in other anthropogenically-impacted coastal ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The effects of land application of farm dairy effluent on groundwater quality : West Coast 2001

    International Nuclear Information System (INIS)

    Baker, T.M.; Hawke, R.M.

    2007-01-01

    Land application of agricultural effluent is becoming a standard farming practice. The application of farm dairy effluent to land, as opposed to direct discharge to waterways, is the preferred method for disposal in New Zealand as regulatory authorities move to protect and enhance water quality and meet Maori spiritual and cultural values. Land application recognises the nutrient value of dairy effluent; however, it is not without risks. Careful management of land application of the effluent is required because of the potential nutrient and bacterial contamination of groundwater. In 2001, 19 groundwater bores were sampled on four occasions to assess the effects of farm dairy effluent on groundwater quality. Elevated (> 1.6 g m -3 nitrate-nitrogen concentrations were found in 14 of these bores (43 of 74 samples). The available long-term data shows statistically significant increasing trends in nitrate-nitrogen and chloride over the period 1998 to 2007. The nitrate-nitrogen and chloride results suggest effluent is the source of the elevated nitrate-nitrogen; however, the nitrogen isotope analysis indicates that the source of the nitrate-nitrogen may be from fertiliser or soil organic matter (average δ 15 N value of 3.5 permille). Spatially isolated occurrences of bacterial contamination were also recorded: in 7 bores and 12% of all samples analysed. Groundwater dating, using chlorofluorocarbons, suggested that the groundwater in the region was young (8 to 12 years). Overall, the spatial and temporal data suggests human influences are affecting groundwater quality on the West Coast. (author). 27 refs., 5 figs., 2 tabs

  19. Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA

    Science.gov (United States)

    Burow, K.R.; Dubrovsky, N.M.; Shelton, James L.

    2007-01-01

    Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency's maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however. ?? Springer-Verlag 2007.

  20. Veterinary Antibiotics in Young Dutch Groundwater under Intensive Livestock Farming

    Science.gov (United States)

    Vliet, M. V.; Kivits, T.; Broers, H. P.; Beeltje, H.; Griffioen, J.

    2016-12-01

    Dutch groundwater is heavily affected by nutrient loads from agricultural origin. The use of antibiotics is also widespread in Dutch farming practice, 200.000 kg active substance over 1.839.000 ha of agricultural land. National measures were established to reduce the applications. Spreading of manure over farmlands is assumed to be the main pathway for the leaching of antibiotics to groundwater, but actual numbers are lacking. We studied the occurrence of veterinary antibiotics in groundwater in two areas with intensive livestock farming, sampling existing multi-level wells that were previously age dated using tritium-helium. Wells were selected based on the following criteria: the uppermost screen is situated just below the average groundwater level, which is not deeper than 3 meters, the well is in an agricultural field where rainwater infiltrates avoiding areas adjacent to ditches or streams, the groundwater quality is known for several years and the age of the extracted water is known to be young (antibiotics used in in intensive livestock farming were analyzed belonging to the following groups: tetracyclines, sulfonamides, diaminopyrimidines, β-lactams, macrolides, lincosamides, quinolones and in addition nitrofurans and chloramphenicol. The samples were analyzed for antibiotics by liquid chromatography/mass spectrometry preceded by solid phase extraction (Oasis HLB cartridge). Five out of 22 antibiotics were detected: sulfamethazine, sulfadiazine, sulfamethoxazole, lincomycin, chloramphenicol in concentration ranges of 0.2 to 18 ng/l. Sulfamethazine was most frequently found, and shows a continuous concentration-depth profile in 3 out of 4 multi-level wells. Sulfonamides were found in groundwater up to 20 m. depth and in water aged between 1 and 25 years old. The study shows that sulfonamides are omnipresent in groundwater up to 25 years old, which corresponds with the known history of the use of antibiotics in veterinary practice.

  1. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey

    Science.gov (United States)

    Fisher, Irene; Phillips, Patrick J.; Colella, Kaitlyn; Fisher, Shawn C.; Tagliaferri, Tristen N.; Foreman, William T.; Furlong, Edward T.

    2016-01-01

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24–32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  2. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio.

    Science.gov (United States)

    Claire Botner, E; Townsend-Small, Amy; Nash, David B; Xu, Xiaomei; Schimmelmann, Arndt; Miller, Joshua H

    2018-05-03

    Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH 4 ) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH 4 concentration, CH 4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH 4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH 4 source. Radiocarbon dating of CH 4 in combination with stable isotopic analysis of CH 4 in three samples indicated that fossil C substrates are the source of CH 4 in groundwater, with one 14 C date indicative of modern biogenic carbonate reduction. We found no relationship between CH 4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH 4 concentration, CH 4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH 4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH 4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.

  3. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    International Nuclear Information System (INIS)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region dominated by dairy farming. No data from this area were used for calibrating the regression models. The model was validated by additional probability sampling. This sample was used to estimate errors in 1) the predicted areal fractions where the EU standard of 50 mg l -1 is exceeded for farms with low N surpluses (ALT) and farms with higher N surpluses (REF); 2) predicted cumulative frequency distributions of nitrate concentration for both groups of farms. Both the errors in the predicted areal fractions as well as the errors in the predicted cumulative frequency distributions indicate that the regression models are invalid for the sandy soils of this study area. - This study indicates that linear regression models that predict nitrate concentrations in the upper groundwater using residual soil N contents should be applied with care.

  4. Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: potential cancer risk.

    Science.gov (United States)

    Rahman, Mohammad Mahmudur; Dong, Zhaomin; Naidu, Ravi

    2015-11-01

    We investigated the concentrations of 23 elements in groundwater from arsenic (As) contaminated areas of Bangladesh and West Bengal, India to determine the potential human exposure to metals and metalloids. Elevated concentrations of As was found in all five study areas that exceeded the World Health Organization (WHO) guideline value of 10μg/L. The mean As concentrations in groundwater of Noakhali, Jalangi and Domkal, Dasdia Nonaghata, Deganga and Baruipur were 297μg/L, 262μg/L, 115μg/L, 161μg/L and 349μg/L, respectively. Elevated concentrations of Mn were also detected in all areas with mean concentrations were 139μg/L, 807μg/L, 341μg/L, 579μg/L and 584μg/L for Noakhali, Jalangi and Domkal, Dasdia Nonaghata, Deganga and Baruipur, respectively. Daily As intakes from drinking water for adults and the potential cancer risk for all areas was also estimated. Results suggest that mitigation activities such as water treatment should not only be focused on As but must also consider other elements including Mn, B and Ba. The groundwater used for public drinking purposes needs to be tested periodically for As and other elements to ensure the quality of drinking water is within the prescribed national guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Factors controlling the population size of microbes in groundwater from AECL's Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S.; Hamon, C. [Atomic Energy of Canada Limited, Whiteshell Labs., Pinawa, Manitoba (Canada); Mills, K. [University of Saskatoon, Saskatoon, SK (Canada); Rana, S.; Vaidyanathan, S. [Deep River Science Academy, Whiteshell Campus Summer 1997, Pinawa, Manitoba (Canada)

    2001-01-01

    Microbial populations in groundwaters from AECL's Underground Research Laboratory (URL) range from 10{sup 3} to 10{sup 5} cells/mL. Based on the total dissolved organic carbon (DOC), nitrate and phosphate content of these waters, populations of about 10{sup 5} to 10{sup 7} cells/mL should be possible. Upon storage of groundwater samples, total cell counts generally increase and viable cell counts always increase. A study was undertaken to determine what controls the in situ microbial population size in groundwater and what causes this population to grow upon sampling. Fresh URL groundwater was filter-sterilized, inoculated with small quantities of the unaltered water and incubated in the absence and presence of added nutrients (nitrate, phosphate and glucose). Unfiltered groundwater and R2A growth medium inoculated with unaltered groundwater, were also incubated. Microbial changes over time were followed by total and viable (on R2A medium) cell counts. Results showed that in the absence of any nutrient addition, populations grew to between 5 x 10{sup 5} to 4 x 10{sup 6} cells/mL, regardless of the initial size of the population ({approx}10{sup 1} to 10{sup 4} cells/mL), suggesting that nutrients for growth were available in the unamended groundwater. It was hypothesized that the original groundwater population was in 'equilibrium' with the underground environment, which likely included a large population of sessile cells in biofilms on fracture surfaces. Sampling of the groundwater removed the large demand on nutrient supplies by the sessile population which subsequently allowed the planktonic population to grow to a new 'equilibrium' with the available nutrients in the sample bottles. Addition of single nutrients (C, N or P) did not increase cell numbers, suggesting that more than one nutrient is limiting growth. Glucose was used very efficiently aerobically in the presence of both added N and P, but somewhat less under anaerobic

  6. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    Science.gov (United States)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach

  7. Design and testing of a process-based groundwater vulnerability assessment (P-GWAVA) system for predicting concentrations of agrichemicals in groundwater across the United States

    Science.gov (United States)

    Barbash, Jack E; Voss, Frank D.

    2016-03-29

    Efforts to assess the likelihood of groundwater contamination from surface-derived compounds have spanned more than three decades. Relatively few of these assessments, however, have involved the use of process-based simulations of contaminant transport and fate in the subsurface, or compared the predictions from such models with measured data—especially over regional to national scales. To address this need, a process-based groundwater vulnerability assessment (P-GWAVA) system was constructed to use transport-and-fate simulations to predict the concentration of any surface-derived compound at a specified depth in the vadose zone anywhere in the conterminous United States. The system was then used to simulate the concentrations of selected agrichemicals in the vadose zone beneath agricultural areas in multiple locations across the conterminous United States. The simulated concentrations were compared with measured concentrations of the compounds detected in shallow groundwater (that is, groundwater drawn from within a depth of 6.3 ± 0.5 meters [mean ± 95 percent confidence interval] below the water table) in more than 1,400 locations across the United States. The results from these comparisons were used to select the simulation approaches that led to the closest agreement between the simulated and the measured concentrations.The P-GWAVA system uses computer simulations that account for a broader range of the hydrologic, physical, biological and chemical phenomena known to control the transport and fate of solutes in the subsurface than has been accounted for by any other vulnerability assessment over regional to national scales. Such phenomena include preferential transport and the influences of temperature, soil properties, and depth on the partitioning, transport, and transformation of pesticides in the subsurface. Published methods and detailed soil property data are used to estimate a wide range of model input parameters for each site, including surface

  8. Nitrogen and potassium concentrations in the nutrients solution for melon plants growing in coconut fiber without drainage.

    Science.gov (United States)

    Gratieri, Luiz Augusto; Cecílio Filho, Arthur Bernardes; Barbosa, José Carlos; Pavani, Luiz Carlos

    2013-01-01

    With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The "Bonus no. 2" was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L(-1)) and four K concentrations (4, 6, 8, and 10 mmol L(-1)). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO₃ and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L(-1)) and K (10 mmol L(-1)) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm(-2)).

  9. Lignification in beech grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation

    International Nuclear Information System (INIS)

    Blaschke, L; Forstreuter, M.; Sheppard, L. J.; Leith, K.; Murray, M. B.; Polle, A.

    2002-01-01

    Results of a study undertaken to investigate contradictory observations reported in the literature to the effect that growth in elevated carbon dioxide affects ontogeny, are discussed. Results of this study showed that seedlings grown at elevated carbon dioxide had nitrogen concentrations of about 15 per cent lower than seedlings grown in ambient carbon dioxide. Elevated carbon dioxide caused increased growth and biomass production in trees with a medium to high nutrient supply, but had no effect on growth of trees with a low nutrient supply rate. Because elevated carbon dioxide enhanced seedling growth in the high nutrient supply treatments, the total amount of lignin produced per seedling was higher in these treatments. Overall, the results suggest that carbon dioxide availability does not directly affect lignin concentrations, but affects them indirectly through the effects on or an interaction with nitrogen supply and growth. In seedlings, elevated carbon dioxide reduced lignin concentration on a dry mass basis, indicating diminished wood quality in a carbon dioxide-enriched atmosphere. 51 refs., 2 tabs., 5 figs

  10. Litter production and its nutrient concentration in some fuelwood trees grown on sodic soil

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V.K. (National Botanical Research Inst., Lucknow (India))

    1992-01-01

    Litter production was estimated in 8-year-old tree plantations of Acacia nilotica, Prosopis juliflora, Dalbergia sisso, and Terminalia arjuna planted in a monoculture tree cropping system on sodic soils of Lucknow Division, India. Mean annual litter fall of these trees amounted to 5.9, 7.4, 5.0 and 5.4 t ha[sup -1], respectively. Irrespective of tree species, the leaf litter concentrations of N, K and Ca were greater than those of P and Mg. The concentration of nutrients in leaf tissues was negatively correlated for N and Ca, with the magnitude of leaf fall in D. sissoo, but was positively correlated for Ca and Mg in A. nilotica; no such correlations were found in P. juliflora and T. arjuna. The variations in the concentration of leaf litter nutrient did not appear to be species specific but depended on adverse edaphic properties including the fertility status of sodic soil. A. nilotica and P. juliflora with bimodal patterns of litter fall return greater amounts of nutrients to the soil surface than D. sissoo and T. arjuna which have unimodal patterns of litter fall. The study indicated the potential benefit of a mixed plantation system having variable leaf fall patterns among the planted trees so providing constant litter mulch to help in conserving soil moisture. (author).

  11. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments.

    Science.gov (United States)

    Zhu, Wei; Zhou, Xiaohua; Chen, Huaimin; Gao, Li; Xiao, Man; Li, Ming

    2016-09-15

    Correlations between Microcystis colony size and environmental factors were investigated in Meiliang Bay and Gonghu Bay of Lake Taihu (China) from 2011 to 2013. Compared with Gonghu Bay, both nutrient concentrations and Microcystis colony sizes were greater in Meiliang Bay. The median colony size (D50: 50% of the total mass of particles smaller than this size) increased from April to August and then decreased until November. In both bays, the average D50 of Microcystis colonies were 500 μm) dominated in summer. The differences in colony size in Meiliang Bay and Gonghu Bay were probably due to horizontal drift driven by the prevailing south wind in summer. Redundancy analysis (RDA) of field data indicated that colony size was negatively related to nutrient concentrations but positively related to air temperature, suggesting that low nutrient concentrations and high air temperature promoted formation of large colonies. To validate the field survey, Microcystis colonies collected from Lake Taihu were cultured at different temperatures (15, 20, 25 and 30 °C) under high and low nutrient concentrations for 9 days. The size of Microcystis colonies significantly decreased when temperature was above 20 °C but had no significant change at 15 °C. The differences in temperature effects on colony formation shown from field and laboratory suggested that the larger colonies in summer were probably due to the longer growth period rather than the higher air temperature and light intensity. In addition, colony size decreased more significantly at high nutrient levels. Therefore, it could be concluded that high nutrient concentration and temperature may alleviate formation of large colonies of Microcystis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Impact of seasonality on the nutrient concentrations in Gautami-Godavari Estuarine Mangrove Complex, Andhra Pradesh, India.

    Science.gov (United States)

    Rao, Karuna; Priya, Namrata; Ramanathan, A L

    2018-04-01

    Spatiotemporal variations of dissolved nutrients were studied along Gautami-Godavari mangrove ecosystem to delineate their sources and fate. Average values of nitrate (NO 3 - ), dissolved silica (DSi) and phosphate (PO 4 3- ) is 2.09 mg/l, 12.7 mg/l and 0.16 mg/l in wet season and 0.47 mg/l, 6.96 mg/l and 0.29 mg/l in dry season respectively. In wet season river discharge has significant influence on NO 3 - and DSi. In dry season, NO 3 - and PO 4 3- are controlled by groundwater discharge, benthic exchange and various in situ processes owing to sediment redox condition. Mixing model shows net addition of phosphate in Coringa mangroves (95%) and Lower estuary (13%) and net removal of nitrate (24.79%) in Coringa mangrove and in estuary (58.9%). Thus present mangrove acts as net source for phosphate and net sink for nitrate and DSi. Nutrient ratio shows seasonal switching between potential Phosphorus and Nitrogen limitation in wet and dry season respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  14. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide

  15. Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin

    Directory of Open Access Journals (Sweden)

    J. Meynendonckx

    2006-01-01

    Full Text Available The relative influence of a set of watershed characteristics on surface water nutrient concentrations was examined in 173 watersheds within two subcatchments (Upper-Scheldt and Nete of the River Scheldt Basin (Flanders, Belgium. Each watershed was described by seasonal rainfall, discharge loading of point sources, morphological characteristics (area, average slope, drainage density, elongation, land use and soil properties (soil texture and drainage. Partial regression analysis revealed that soil drainage variables had the strongest influence on nutrient concentrations. Additional influence was exerted by land use and point source loading variables. Nitrate concentrations were positively correlated with effluent loadings coming from wastewater treatment plants and with the area of agricultural land. Phosphate concentrations were best explained by effluent loadings of industrial point sources and by the area of urban land. Land use close to the river was not a better predictor of nitrate and phosphate concentrations than land use away from the river. This suggests that the mediating impact of riparian zones is rather explained by the hydrologic pathways within the buffer strip.

  16. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice

    Science.gov (United States)

    García-Morales, Soledad; Pérez-Sato, Juan Antonio

    2018-01-01

    Cerium (Ce) belongs to the rare earth elements (REEs), and although it is not essential for plants, it can stimulate growth and other physiological processes. The objective of this research was to evaluate the effect of Ce on seed germination, initial seedling growth, and vegetative growth in rice (Oryza sativa L.) cv. Morelos A-98. During the germination process, the seeds were treated with Ce concentrations of 0, 4, 8, and 12 μM; after 5 d, germination percentage was recorded and after 10 d seedling growth was measured. For vegetative growth, a hydroponic system was established where 14-d-old plants without previous Ce treatment were transferred into nutrient solution. After two weeks of acclimatizing, 0, 25, 50, and 100 μM Ce were added to the nutrient solution for 28 d. Ce significantly increased germination and the initial growth variables of the seedlings. During vegetative growth, Ce increased plant height, number of tillers, root volume, and shoot fresh and dry biomass, without affecting root biomass weight. With low Ce concentrations (25 and 50 μM), the concentrations of chlorophylls and amino acids in the shoots were similar to those in the control, like amino acid concentration in the roots at a concentration of 25 μM Ce. Conversely, the concentration of total sugars increased in the shoot with the application of 25, 50, and 100 μM Ce, and in the roots with the application of 50 μM Ce. Also, Ce did not affect the concentration of macro or micronutrients in the shoots. However, in the roots, the high Ce concentration decreased the concentrations of Ca, Fe, Mn, and Zn, while the Mg concentration increased. Our results indicate that Ce, at the right concentrations, can function as a biostimulant in rice germination and growth. PMID:29579100

  17. Effects of temperature changes on groundwater ecosystems

    Science.gov (United States)

    Griebler, Christian; Kellermann, Claudia; Schreglmann, Kathrin; Lueders, Tillmann; Brielmann, Heike; Schmidt, Susanne; Kuntz, David; Walker-Hertkorn, Simone

    2014-05-01

    The use of groundwater as a carrier of thermal energy is becoming more and more important as a sustainable source of heating and cooling. At the same time, the present understanding of the effects of aquifer thermal usage on geochemical and biological aquifer ecosystem functions is extremely limited. Recently we started to assess the effects of temperature changes in groundwater on the ecological integrity of aquifers. In a field study, we have monitored hydrogeochemical, microbial, and faunal parameters in groundwater of an oligotrophic aquifer in the vicinity of an active thermal discharge facility. The observed seasonal variability of abiotic and biotic parameters between wells was considerable. Yet, due to the energy-limited conditions no significant temperature impacts on bacterial or faunal abundances and on bacterial productivity were observed. In contrast, the diversity of aquifer bacterial communities and invertebrate fauna was either positively or negatively affected by temperature, respectively. In follow-up laboratory experiments temperature effects were systematically evaluated with respect to energy limitation (e.g. establishment of unlimited growth conditions), geochemistry (e.g. dynamics of DOC and nutrients), microbiology (e.g. survival of pathogens), and fauna (temperature preference and tolerance). First, with increased nutrient and organic carbon concentrations even small temperature changes revealed microbiological dynamics. Second, considerable amounts of adsorbed DOC were mobilized from sediments of different origin with an increase in temperatures. No evidence was obtained for growth of pathogenic bacteria and extended survival of viruses at elevated temperatures. Invertebrates clearly preferred natural thermal conditions (10-12°C), where their highest frequency of appearance was measured in a temperature gradient. Short-term incubations (48h) of invertebrates in temperature dose-response tests resulted in LT50 (lethal temperature) values

  18. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    OpenAIRE

    Correia, Carlos M.; Coutinho, João F.; Bacelar, Eunice A.; Gonçalves, Berta M.; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn con...

  19. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  20. Groundwater Inputs to Rivers: Hydrological, Biogeochemical and Ecological Effects Inferred by Environmental Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Stellato, L. [Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE), Seconda Universita degli Studi di Napoli, Caserta (Italy); Newman, B. D. [Isotope Hydrology Section, International Atomic Energy Agency, Vienna (Austria)

    2013-05-15

    In an effort to improve river management, numerous studies over the past two decades have supported the concept that river water and groundwater need to be considered together, as part of a hydrologic continuum. In particular, studies of the interface between surface water and groundwater (the hyporheic zone) have seen the tight collaboration of catchment hydrologists and stream ecologists in order to elucidate processes affecting stream functioning. Groundwater and surface waters interact at different spatial and temporal scales depending on system hydrology and geomorphology, which in turn influence nutrient cycling and in-stream ecology in relation to climatic, geologic, biotic and anthropogenic factors. In this paper, groundwater inputs to rivers are explored from two different and complementary perspectives: the hydrogeological, describing the generally acknowledged mechanisms of streamflow generation and the main factors controlling stream-aquifer interactions, and the ecologic, describing the processes occurring at the hyporheical and the riparian zones and their possible effects on stream functioning and on nutrient cycling, also taking into consideration the impact of human activities. Groundwater inflows to rivers can be important controls on hot moment/hot spot type biogeochemical behaviors. A description of the common methods used to assess these processes is provided emphasizing tracer methods (including physical, chemical and isotopic). In particular, naturally occurring isotopes are useful tools to identify stream discharge components, biogeochemical processes involved in nutrient cycling (such as N and P dynamics), nutrient sources and transport to rivers, and subsurface storage zones and residence times of hyporheic water. Several studies which have employed isotope techniques to clarify the processes occurring when groundwater enters the river,are reported in this chapter, with a view to highlighting both the advantages and limitations of these

  1. NPK fertilization effects on concentration of nutrients in Valencia orange leaves

    International Nuclear Information System (INIS)

    Basso, C.; Mielniczuk, J.; Bohnen, H.

    1983-01-01

    The effects of NPK fertilization on the nutrient concentration in the leaves was evaluated in a field experiment of Valencia orange (Citrus sinensis Osbeck) growing in a sandy acid soil, with 4N, 3P and 4K fertilizer levels. N and Cu contents in the leaves were high, while P and Zn levels were low, in all treatments. Increasing the levels of N, P 2 O 5 and K 2 O fertilization resulted in an increase of the N, P and K concentration in the leaves, respectively. Crescent levels of N fertilization raised Mn and decreased Ca concentration in the leaves. P and K contents in the leaves correlated positively. With a great availability and absorption of K, reduction on he foliar contents of Mg and Ca ocurred. (M.A.C.) [pt

  2. Estimating the relation between groundwater and river water by measuring the concentration of Rn-222

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Minoru; Morisawa, Shinsuke [Kyoto Univ. (Japan). Faculty of Engineering

    1997-02-01

    This study aimed to estimate the relationship between groundwater in shallow layer and river water by determining the concentrations of {sup 222}Rn and nitric nitrogen along with water temperature. The region around ca. 20 km along river A in a certain basin was chosen as a test area. The Rn concentration of groundwater was determined by Rn extracting with toluene and counting in liquid scintillation counter, whereas for river water, it was determined by activated charcoal passive collector method developed by the authors, by which the amount of Rn adsorbed on activated charcoal was estimated by Ge-solid state detector. In addition, water temperature and nitric nitrogen concentration were measured at various points in the test area. Thus, a distribution map of the three parameters was made on the basis of the data obtained in December, 1989. Since Rn concentration is generally higher in ground water than river water and the water temperature in December is higher in the former, it seems likely that the concentrations of Rn and nitric nitrogen would become higher in the area where ground water soaks into river water. Thus, the directions of ground water flow at the respective sites along river A were estimated from the data regarding the properties of ground water. (M.N.)

  3. Nitrogen and Potassium Concentrations in the Nutrients Solution for Melon Plants Growing in Coconut Fiber without Drainage

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Gratieri

    2013-01-01

    Full Text Available With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1 and four K concentrations (4, 6, 8, and 10 mmol L−1. The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1 and K (10 mmol L−1 resulted in higher masses for the first (968 g and the second (951 g fruits and crop yield (4,425 gm−2.

  4. THE MAIN NUTRIENTS CONCENTRATION FROM INTRA TISSUE WATER OF BENTHOS ORAGANISMS FROM MURES BASIN

    Directory of Open Access Journals (Sweden)

    DANA POPA

    2008-05-01

    Full Text Available In the hydrographic basin of Mures river, aboard an altitude gradient, were taken samples of intra tissue waters from benthonic organisms for research the nutrients concentrations. The reference point was represented by a dairy caw farm where the agricultural fields of this is applied the organic fertilization with manure. The intra tissue water samples from benthonic organisms were prelevated in spring and autumn and the prelevate dates are the same with spread manure dates. At the intra tissue water level, concentrations value of N and P are bigger at the second data prelevations than first data prelevations and we can conclude that the benthonic oligochetas activity increase, more than, they density increase in Mures basin. The high concentrations of NH4 show as that Mures basin is a zone characterized by high degree of anoxia and this fact is supported by significant differences between seasonal prelevations. The explication is the manifestation to the cumulated and at distance effects of introduction in water to some organic products, very probably washed from neighborhoods agricultural field. Were calculated values of Student test for seasonal comparisons and were founded significant differences between nutrients concentration values at first and second prelevations.

  5. Preliminary study on arsenic concentration in groundwater in usual exploited aquifer in Ho Chi Minh City (pleistocene aquifer QIm)

    International Nuclear Information System (INIS)

    Phan Thanh Tong; Nguyen Kien Chinh; Tran Thi Bich Lien; Nguyen Van Suc; Le Danh Chuan; Huynh Le Khoa

    2004-01-01

    Recent days, As in groundwater is a hot spot in some countries in Asia (e.g India, Bangladesh, Myanmar, Thailand) that was revealed through Executive Meetings of RAS/8/084. In Vietnam, some reports on groundwater quality in Red River Delta and Mekong Delta (with few random groundwater samples selected to analyse randomly) brought an opinion that groundwater in some region in Vietnam contains a quantity of As is over WHO Limit to As concentration in drinking water. This project hat been carrying out in Ho Chi Minh City in order to survey and make a preliminary assessment on As content in groundwater in shallow aquifer which is usual exploited in one of important social-economic centers of Vietnam. (author)

  6. Groundwater Quality Data for the Tahoe-Martis Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Munday, Cathy; Belitz, Kenneth

    2009-01-01

    results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate of compliance or noncompliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from the Tahoe-Martis wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides) were detected in about 40 percent of the samples from grid wells, and most concentrations were less than 1/100th of regulatory and nonregulatory health-based thresholds, although the conentration of perchloroethene in one sample was above the USEPA maximum contaminant level (MCL-US). Concentrations of all trace elements and nutrients in samples from grid wells were below regulatory and nonregulatory health-based thresholds, with five exceptions. Concentra

  7. Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams

    Science.gov (United States)

    Ciparis, Serena; Iwanowicz, Luke R.; Voshell, J. Reese

    2012-01-01

    Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO4-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17β-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations > 1 ng/L. Relatively high concentrations of DIN (> 1000 μg/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R2 = 0.56–0.81) and E2Eq (R2 = 0.39–0.75). Relationships between watershed densities of AFOs and PO4-P were weaker, but were also significant (R2 = 0.27–0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO4-P than streams without WWTP discharges, and PO4-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms.

  8. Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams.

    Science.gov (United States)

    Ciparis, Serena; Iwanowicz, Luke R; Voshell, J Reese

    2012-01-01

    Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO(4)-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17β-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations >1 ng/L. Relatively high concentrations of DIN (>1000 μg/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R(2) = 0.56-0.81) and E2Eq (R(2) = 0.39-0.75). Relationships between watershed densities of AFOs and PO(4)-P were weaker, but were also significant (R(2) = 0.27-0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO(4)-P than streams without WWTP discharges, and PO(4)-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Experimental analysis of an effect of the nutrient type and its concentration on the rheological properties of the baker’s yeast suspensions

    Directory of Open Access Journals (Sweden)

    Major-Godlewska Marta

    2015-09-01

    Full Text Available The aim of the study presented was to experimentally analyze an effect of the nutrient type and its concentration on the variability of rheological properties of the baker’s yeast suspensions for different time periods. Aqueous suspensions of the baker’s yeast of various concentration (solution I, without nutrient and yeasts suspended in aqueous solution of sucrose or honey as nutrients with different concentration (solution II or solution III were tested. Experiments were carried out using rotational rheoviscometer of type RT10 by a company HAAKE. The measurements were conducted for different time periods (from 1 h up to 144 h at given fluid temperature. On the basis of the obtained data, rheological characteristics of the aqueous solution of baker’s yeast suspensions without and with nutrients of different sucrose or honey concentration were identified and mathematically described.

  10. The Effect of Potassium Concentration in Nutrient Solution on Lycopene, Vitamin C and Qualitative Characteristics of Cherry Tomato in Saline Conditions

    Directory of Open Access Journals (Sweden)

    E. Shabani Sangtarashani

    2013-06-01

    Full Text Available Potassium (K has a special place in improving the quality of agricultural products. To evaluate the effect of K concentration in nutrient solution on lycopene content, vitamin C and qualitative characteristics of cherry tomato in NaCl salinity conditions, an experiment was carried out as a completely randomized design with five treatments and three replications at university of Tabriz, Tabriz, Iran, in 2010. Treatments consisted of four concentrations of K (0.2, 2, 7 and 14 mM in nutrient solution with 60 mM NaCl concentration. A nutrient solution treatment without salinity was considered as control. The experiment was conducted in greenhouse, in a hydroponic system. The results indicated that increasing of K concentration increased lycopene content in fruit. Lycopene content in control treatment showed significant difference (P<0.01 in comparison with salinity treatments. With increasing the K concentration (except at 14 mM concentration, vitamin C content was increased, but indicated no statistically significant difference. Vitamin C content in saline conditions was more than control treatment, but showed no significant difference. Adding potassium concentration in nutrient solution improved yield and enhanced quality parameters such as percentage of dry matter, soluble solids and electrical conductivity of fruit extract. Since in saline conditions, the qualitative characteristics of tomato at 7 mM concentration were in the best situation, therefore using this concentration is recommended.

  11. Ground-water quality for Grainger County, Tennessee

    Science.gov (United States)

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  12. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  13. Regression models for estimating concentrations of atrazine plus deethylatrazine in shallow groundwater in agricultural areas of the United States

    Science.gov (United States)

    Stackelberg, Paul E.; Barbash, Jack E.; Gilliom, Robert J.; Stone, Wesley W.; Wolock, David M.

    2012-01-01

    Tobit regression models were developed to predict the summed concentration of atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] and its degradate deethylatrazine [6-chloro-N-(1-methylethyl)-1,3,5,-triazine-2,4-diamine] (DEA) in shallow groundwater underlying agricultural settings across the conterminous United States. The models were developed from atrazine and DEA concentrations in samples from 1298 wells and explanatory variables that represent the source of atrazine and various aspects of the transport and fate of atrazine and DEA in the subsurface. One advantage of these newly developed models over previous national regression models is that they predict concentrations (rather than detection frequency), which can be compared with water quality benchmarks. Model results indicate that variability in the concentration of atrazine residues (atrazine plus DEA) in groundwater underlying agricultural areas is more strongly controlled by the history of atrazine use in relation to the timing of recharge (groundwater age) than by processes that control the dispersion, adsorption, or degradation of these compounds in the saturated zone. Current (1990s) atrazine use was found to be a weak explanatory variable, perhaps because it does not represent the use of atrazine at the time of recharge of the sampled groundwater and because the likelihood that these compounds will reach the water table is affected by other factors operating within the unsaturated zone, such as soil characteristics, artificial drainage, and water movement. Results show that only about 5% of agricultural areas have greater than a 10% probability of exceeding the USEPA maximum contaminant level of 3.0 μg L-1. These models are not developed for regulatory purposes but rather can be used to (i) identify areas of potential concern, (ii) provide conservative estimates of the concentrations of atrazine residues in deeper potential drinking water supplies, and (iii) set priorities

  14. The nitrate response of a lowland catchment and groundwater travel times

    Science.gov (United States)

    van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans

    2010-05-01

    Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface

  15. A study on variation in dissolved silica concentration in groundwater of hard rock aquifers in Southeast coast of India

    International Nuclear Information System (INIS)

    Pradeep, K; Nepolian, M; Anandhan, P; Chandran; Kaviyarasan, R; Chidambaram, S; Prasanna, M V

    2016-01-01

    Ground water of hard rock aquifers due to its lesser permeability results in the increased residence time, which leads to the higher concentration of ions. Hence in order to understand the hydro-geochemistry of the groundwater of a hard rock aquifer in India, 23 groundwater samples were collected from different locations of the study area and subjected to analysis of major cations and anions. The results of silica showed different range of concentration and was plotted in different groups. In order to understand the reason for this variation, different techniques like Thermodynamics, Statistics and GIS were adopted and it was inferred that the concentration was mainly governed by lithology and land use pattern of the study area. (paper)

  16. Nutrient Management Programs, Nitrogen Fertilizer Practices, and Groundwater Quality in Nebraska’s Central Platte Valley (U.S., 1989–1998

    Directory of Open Access Journals (Sweden)

    Stan Daberkow

    2001-01-01

    Full Text Available Given the societal concern about groundwater pollution from agricultural sources, public programs have been proposed or implemented to change farmer behavior with respect to nutrient use and management. However, few of these programs designed to change farmer behavior have been evaluated due to the lack of detailed data over an appropriate time frame. The Central Platte Natural Resources District (CPNRD in Nebraska has identified an intensively cultivated, irrigated area with average groundwater nitrate-nitrogen (N levels about double the EPA’s safe drinking water standard. The CPNRD implemented a joint education and regulatory N management program in the mid-1980s to reduce groundwater N. This analysis reports N use and management, yield, and groundwater nitrate trends in the CPNRD for nearly 3000 continuous-corn fields from 1989 to 1998, where producers faced limits on the timing of N fertilizer application but no limits on amounts. Groundwater nitrate levels showed modest improvement over the 10 years of this analysis, falling from the 1989–1993 average of 18.9 to 18.1 mg/l during 1994–1998. The availability of N in excess of crop needs was clearly documented by the CPNRD data and was related to optimistic yield goals, irrigation water use above expected levels, and lack of adherence to commercial fertilizer application guidelines. Over the 10-year period of this analysis, producers reported harvesting an annual average of 9729 kg/ha, 1569 kg/ha (14% below the average yield goal. During 1989�1998, producers reported annually applying an average of 162.5 kg/ha of commercial N fertilizer, 15.7 kg/ha (10% above the guideline level. Including the N contribution from irrigation water, the potential N contribution to the environment (total N available less estimated crop use was estimated at 71.7 kg/ha. This is an estimate of the nitrates available for denitrification, volatilization, runoff, future soil N, and leaching to groundwater. On

  17. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    Science.gov (United States)

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the

  18. Intrinsic bioremediation of diesel-contaminated cold groundwater in bedrock

    International Nuclear Information System (INIS)

    Cross, K.M.; Biggar, K.W.; Guigard, S.E.

    2006-01-01

    Natural attenuation refers to the natural process by which contaminants in groundwater or soil are reduced through a combination of physico-chemical processes and biodegradation by indigenous organisms. The physico chemical processes include advection, dilution, dispersion, sorption, volatilization and abiotic transformation. This study evaluated the historical contaminant and geochemical evidence of natural attenuation at a well site where groundwater had been contaminated by a diesel fuel leak in 1982. In particular, evidence of intrinsic bioremediation was evaluated. Evidence of microbial activity was determined by most probably number (MPN) and commercial biological activity reaction tests. Groundwater samples from the site were incubated in a laboratory under aerobic and anaerobic conditions with electron acceptor and nutrient amendment to assess microbial activity. Mineralization of carbon 14-dodecane was measured to determine aerobic biodegradation rates. Anaerobic biodegradation rates were calculated from the depletion of total extractable hydrocarbon over 717 days. Nutrient addition increased the anaerobic first-order biodegradation rate from 0.0005 to 0.0016 per day. It was suggested controlled nutrient addition can improve the current slow rates of intrinsic bioremediation. 33 refs., 9 tabs., 5 figs

  19. A groundwater mass flux model for screening the groundwater-to-indoor-air exposure pathway

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, T.; Blanc, P.C. de; Connor, J. [Groundwater Services Inc, Houston, TX (United States)

    2003-07-01

    The potential for human exposure via volatilisation of groundwater contaminants into indoor air has been a focus of increasing concern in recent years. At a small number of sites, elevated indoor vapour concentrations have been measured within buildings overlying shallow groundwater contaminated with chlorinated solvents, causing public concern over the potential for similar problems at other corrective action sites. In addition, use of the screening-levelmodel developed by Johnson and Ettinger (1991) for the groundwater-to-indoor-air exposure pathway has suggested that low microgram per litre (ug/L)-range concentrations of either chlorinated or non-chlorinated volatile organic compounds dissolved in groundwater could result in indoor vapour concentrations in excess of applicable risk-based exposure limits. As an alternative screening tool, this paper presents a groundwater mass flux model for evaluation of transport to indoor air. The mass flux model is intended to serve as a highly conservative screening tool that over-predicts groundwater-to-indoor-air mass flux, yet still provides sufficient sensitivity to identify sites for which the groundwater-to-indoor air exposure pathway is not a concern. (orig.)

  20. Dredging effects on selected nutrient concentrations and ecoenzymatic activity in two drainage ditch sediments in the lower Mississippi River Valley

    Directory of Open Access Journals (Sweden)

    Matt Moore

    2017-09-01

    Full Text Available Agricultural drainage ditches are conduits between production acreage and receiving aquatic systems. Often overlooked for their mitigation capabilities, agricultural drainage ditches provide an important role for nutrient transformation via microbial metabolism. Variations in ecoenzyme activities have been used to elucidate microbial metabolism and resource demand of microbial communities to better understand the relationship between altered nutrient ratios and microbial activity in aquatic ecosystems. Two agricultural drainage ditches, one in the northeast portion of the Arkansas Delta and the other in the lower Mississippi Delta, were monitored for a year. Sediment samples were collected prior to each ditch being dredged (cleaned, and subsequent post-dredging samples occurred as soon as access was available. Seasonal samples were then collected throughout a year to examine effects of dredging on selected nutrient concentrations and ecoenzymatic activity recovery in drainage ditch sediments. Phosphorus concentrations in sediments after dredging decreased 33–66%, depending on ditch and phosphorus extraction methodology. Additionally, ecoenzymatic activity was significantly decreased in most sediment samples after dredging. Fluorescein diacetate hydrolysis activity, an estimate of total microbial activity, decreased 56–67% after dredging in one of the two ditches. Many sample sites also had significant phosphorus and ecoenzymatic activity differences between the post-dredge samples and the year-long follow-up samples. Results indicate microbial metabolism in dredged drainage ditches may take up to a year or more to recover to pre-dredged levels. Likewise, while sediment nutrient concentrations may be decreased through dredging and removal, runoff and erosion events over time tend to quickly replenish nutrient concentrations in replaced sediments. Understanding nutrient dynamics and microbial metabolism within agricultural drainage ditches is

  1. Empirical quantification of lacustrine groundwater discharge - different methods and their limitations

    Science.gov (United States)

    Meinikmann, K.; Nützmann, G.; Lewandowski, J.

    2015-03-01

    Groundwater discharge into lakes (lacustrine groundwater discharge, LGD) can be an important driver of lake eutrophication. Its quantification is difficult for several reasons, and thus often neglected in water and nutrient budgets of lakes. In the present case several methods were applied to determine the expansion of the subsurface catchment, to reveal areas of main LGD and to identify the variability of LGD intensity. Size and shape of the subsurface catchment served as a prerequisite in order to calculate long-term groundwater recharge and thus the overall amount of LGD. Isotopic composition of near-shore groundwater was investigated to validate the quality of catchment delineation in near-shore areas. Heat as a natural tracer for groundwater-surface water interactions was used to find spatial variations of LGD intensity. Via an analytical solution of the heat transport equation, LGD rates were calculated from temperature profiles of the lake bed. The method has some uncertainties, as can be found from the results of two measurement campaigns in different years. The present study reveals that a combination of several different methods is required for a reliable identification and quantification of LGD and groundwater-borne nutrient loads.

  2. The effect of microbial activity and adsorption processes on groundwater dissolved organic carbon character and concentration

    Science.gov (United States)

    Meredith, K.; McDonough, L.; Oudone, P.; Rutlidge, H.; O'Carroll, D. M.; Andersen, M. S.; Baker, A.

    2017-12-01

    Balancing the terrestrial global carbon budget has proven to be a significant challenge. Whilst the movement of carbon in the atmosphere, rivers and oceans has been extensively studied, the potential for groundwater to act as a carbon source or sink through both microbial activity and sorption to and from mineral surfaces, is poorly understood. To investigate the biodegradable component of groundwater dissolved organic carbon (DOC), groundwater samples were collected from multiple coastal and inland sites. Water quality parameters such as pH, electrical conductivity, temperature, dissolved oxygen were measured in the field. Samples were analysed and characterised for their biodegradable DOC content using spectrofluorometric and Liquid Chromatography-Organic Carbon Detection (LC-OCD) techniques at set intervals within a 28 day period. Further to this, we performed laboratory sorption experiments on our groundwater samples using different minerals to examine the effect of adsorption processes on DOC character and concentration. Calcium carbonate, quartz and iron coated quartz were heated to 400ºC to remove potential carbon contamination, and then added at various known masses (0 mg to 10 g) to 50 mL of groundwater. Samples were then rotated for two hours, filtered at 0.2 μm and analysed by LC-OCD. This research forms part of an ongoing project which will assist in identifying the factors affecting the mobilisation, transport and removal of DOC in uncontaminated groundwater. By quantifying the relative importance of these processes, we can then determine whether the groundwater is a carbon source or sink. Importantly, this information will help guide policy and identify the need to include groundwater resources as part of the carbon economy.

  3. Fluorine geochemistry in bedrock groundwater of South Korea

    International Nuclear Information System (INIS)

    Chae, Gi-Tak; Yun, Seong-Taek; Mayer, Bernhard; Kim, Kyoung-Ho; Kim, Seong-Yong; Kwon, Jang-Soon; Kim, Kangjoo; Koh, Yong-Kwon

    2007-01-01

    High fluoride concentrations (median = 4.4 mg/L) in deep bedrock groundwater of South Korea prevent the usage of it as a drinking water source. The hydrogeochemistry of deep thermal groundwaters (N = 377) in diverse bedrocks has been studied in order to evaluate the geologic and geochemical controls on fluoride concentrations in groundwater. The groundwater samples were clustered geologically, and the average and median concentrations of fluoride were compared by the Mann-Whitney U test. The order of median fluoride concentration with respect to geology is as follows: metamorphic rocks ≥ granitoids ≥ complex rock >> volcanic rocks ≥ sedimentary rocks. This result indicates that the geological source of fluoride in groundwater is related to the mineral composition of metamorphic rocks and granitoids. With respect to groundwater chemistry, the fluoride concentration was highest in Na-HCO 3 type groundwater and lowest in Ca-HCO 3 type groundwater. Ionic relationships also imply that the geochemical behavior of fluoride in groundwater is related to the geochemical process releasing Na and removing Ca ions. The thermodynamic relationship between the activities of Ca and F indicates that fluoride concentration is controlled by the equilibrium of fluorite (CaF 2 ). In other words, the upper limits of fluoride concentration are determined by the Ca ion; i.e., Ca concentrations play a crucial role in fluoride behavior in deep thermal groundwater. The result of this study suggests that the high fluoride in groundwater originates from geological sources and fluoride can be removed by fluorite precipitation when high Ca concentration is maintained. This provides a basis for a proper management plan to develop the deep thermal groundwater and for treatment of high fluoride groundwater frequently found in South Korea

  4. [Assessment of shallow groundwater nitrate concentrations in typical terrestrial ecosystems of Chinese Ecosystem Research Network (CERN) during 2004-2009].

    Science.gov (United States)

    Xu, Zhi-Wei; Zhang, Xin-Yu; Sun, Xiao-Min; Yuan, Guo-Fu; Wang, Sheng-Zhong; Liu, Wen-Hua

    2011-10-01

    The nitrate-N (NO3(-) -N) concentrations of 38 shallow groundwater wells from 31 of the typical terrestrial ecosystems on Chinese Ecosystem Research Network (CERN) were assessed using the monitoring data from 2004 to 2009. The results showed that the average values of NO3(-) -N concentrations were significantly higher in the agricultural (4.85 mg x L(-1) +/- 0.42 mg x L(-1)), desert (oasis) (3.72 mg x L(-1) +/- 0.42 mg x L(-1)) and urban ecosystems (3.77 mg x L(-1) 0.51 mg x L(-1)) than in the grass (1.59 mg x L(-1) +/- 0.35 mg L(-1)) and forest ecosystems (0.39 mg x L(-1) +/- 0.03 mg x L(-1)). Nitrate was the major form of nitrogen, with between 56% to 88% of nitrogen in the nitrate-N form in the shallow groundwater of desert (oasis), urban and agricultural ecosystems. Nitrate-N concentrations for some agricultural ecosystems (Ansai, Yanting, Yucheng) and desert (oasis) ecosystems (Cele, Linze, Akesu) analysis exceeded the 10 mg x L(-1) World Health Organization drinking water standards between 14.3% and 84.6%. Significant seasonality was found in Ansai, Fengqiu, Yanting agricultural ecosystems and the Beijing urban ecosystem using the relatively high frequency monitoring data, with the higher nitrate concentrations usually found during summer and winter months. The monitoring results indicated that the shallow groundwater of agricultural ecosystems was contaminated by agricultural management practices, i.e. fertilization, while the shallow groundwater of forest ecosystems was under natural condition with no contamination from human activities.

  5. Influence of fresh water, nutrients and DOC in two submarine-groundwater-fed estuaries on the west of Ireland.

    Science.gov (United States)

    Smith, Aisling M; Cave, Rachel R

    2012-11-01

    Coastal fresh water sources, which discharge to the sea are expected to be directly influenced by climate change (e.g. increased frequency of extreme weather events). Sea-level rise and changes in rainfall patterns, changes in demand for drinking water and contamination caused by population and land use change, will also have an impact. Coastal waters with submarine groundwater discharge are of particular interest as this fresh water source is very poorly quantified. Two adjacent bays which host shellfish aquaculture sites along the coast of Co. Galway in the west of Ireland have been studied to establish the influence of fresh water inputs on nutrients and dissolved organic carbon (DOC) in each bay. Neither bay has riverine input and both are underlain by the karst limestone of the Burren and are susceptible to submarine groundwater discharge. Water and suspended matter samples were collected half hourly over 13 h tidal cycles over several seasons. Water samples were analysed for nutrients and DOC, while suspended matter was analysed for organic/inorganic content. Temperature and salinity measurements were recorded during each tidal station by SBE 37 MicroCAT conductivity/temperature sensors. Long-term mooring data were used to track freshwater input for Kinvara and Aughinish Bays and compare it with rainfall data. Results show that Kinvara Bay is much more heavily influenced by fresh water input than Aughinish Bay, and this is a strong source of fixed nitrogen to Kinvara Bay. Only during flood events is there a significant input of inorganic nitrogen from fresh water to Aughinish Bay, such as in late November 2009. Fresh water input does not appear to be a significant source of dissolved inorganic phosphate (DIP) to either bay, but is a source of DOC to both bays. C:N ratios of DOC/DON show a clear distinction between marine and terrestrially derived dissolved organic material. Copyright © 2012. Published by Elsevier B.V.

  6. Concentrations and potential health hazards of organochlorine pesticides in (shallow) groundwater of Taihu Lake region, China.

    Science.gov (United States)

    Wu, Chunfa; Luo, Yongming; Gui, Tong; Huang, Yujuan

    2014-02-01

    A total of 27 shallow groundwater samples were collected from the Taihu Lake region (TLR), to determine the concentrations of 14 organochlorine pesticide (OCP) species, identify their possible sources, and estimate health risk of drinking the shallow groundwater. All OCP species occurred in the shallow groundwater of TLR with high detection frequency except p, p'-dichlorodiphenyldichlorothane (p, p'-DDD) and p, p'-dichlorodiphenyltrichloroethane (p, p'-DDT). DDTs and hexachlorocyclohexanes (HCHs) were the dominant OCP contaminants in the shallow groundwater of TLR, and they account for 44.2% total OCPs. The low α-HCH/γ-HCH ratio, high β-HCH/(α+γ)-HCH ratio and β-HCH being the dominant HCH isomers for the majority of samples suggest that the HCHs were mainly from the historical use of lindane after a period of degradation. p, p'-DDE being the dominant DDT metabolite for all the samples indicated that the DDTs were mainly from the historical residues. Compositional analysis also suggested that there were fresh input sources of heptachlors, aldrins and endrins in addition to the historical residues. Correlation analysis indicated the hexachlorobenzene (HCB) impurity in the shallow groundwater of TLR was likely from the historical application of lindane and technical HCH (a mixture of HCH isomers that is produced by photochlorination of benzene). Carcinogenic risk values for α-HCH, heptachlor, heptachlor epoxide, aldrins and dieldrin in the shallow groundwater in majority area of TLR were found to be >10(-6), posing a potentially serious cancer risk to those dependant on shallow groundwater for drinking water. © 2013.

  7. Nutrient concentrations in leachate and runoff from dairy cattle lots with different surface materials

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...

  8. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  9. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  10. Groundwater Quality Data for the Northern Sacramento Valley, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth

    2009-01-01

    to 11 percent of the wells, and the results for these samples were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples were within acceptable ranges for nearly all compounds, indicating acceptably low variability. Matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples from REDSAC were below drinking-water thresholds. Volatile organic compounds (VOC) and pesticides were detected in less than one-quarter of the samples and were generally less than a hundredth of any health-based thresholds. NDMA was detected in one grid well above the NL-CA. Concentrations of all nutrients and trace elements in samples from REDSAC wells were below the health-based thresholds except those of arsenic in three samples, which were above the USEPA maximum contaminant level (MCL-US). However

  11. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  12. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2007-01-01

    Excessive nitrate-nitrogen (nitrate) loss from agricultural watersheds is an environmental concern. A common conservation practice to improve stream water quality is to retire vulnerable row croplands to grass. In this paper, a groundwater travel time model based on a geographic information system (GIS) analysis of readily available soil and topographic variables was used to evaluate the time needed to observe stream nitrate concentration reductions from conversion of row crop land to native prairie in Walnut Creek watershed, Iowa. Average linear groundwater velocity in 5-m cells was estimated by overlaying GIS layers of soil permeability, land slope (surrogates for hydraulic conductivity and gradient, respectively) and porosity. Cells were summed backwards from the stream network to watershed divide to develop a travel time distribution map. Results suggested that groundwater from half of the land planted in prairie has reached the stream network during the 10 years of ongoing water quality monitoring. The mean travel time for the watershed was estimated to be 10.1 years, consistent with results from a simple analytical model. The proportion of land in the watershed and subbasins with prairie groundwater reaching the stream (10-22%) was similar to the measured reduction of stream nitrate (11-36%). Results provide encouragement that additional nitrate reductions in Walnut Creek are probable in the future as reduced nitrate groundwater from distal locations discharges to the stream network in the coming years. The high spatial resolution of the model (5-m cells) and its simplicity may make it potentially applicable for land managers interested in communicating lag time issues to the public, particularly related to nitrate concentration reductions over time. ?? 2007 Springer-Verlag.

  14. Concentrations and activity ratios of uranium isotopes in groundwater from Donana National Park, South of Spain

    International Nuclear Information System (INIS)

    Bolivar, J. P.; Olias, M.; Gonzalez-Garcia, F.; Garcia-Tenorio, R.

    2008-01-01

    The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Donana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and 210 Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that 234 U/ 238 U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer

  15. Curtailment of nutrient losses at the farm level

    NARCIS (Netherlands)

    Oenema, O.; Boer, den D.J.; Erp, van P.J.

    1990-01-01

    A combination of various measures is proposed to minimize losses of nutrients from dairy farms and arable farms to groundwater, surface water and the atmosphere. These measures necessitate adjustment of fertilization practices and farm management. Fo

  16. Using high-resolution in situ radon measurements to determine groundwater discharge at a remote location: Tonle Sap Lake, Cambodia

    International Nuclear Information System (INIS)

    Burnett, W.C.; Chanyotha, S.

    2013-01-01

    Tonle Sap Lake (Cambodia) is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about fourfold. We hypothesize that nutrients are at least partially delivered via groundwater discharge, especially during the draining portion of the annual flood cycle. We surveyed over 200 km in the northern section of the lake using a customized system that measures natural 222 Rn (radon), temperature, conductivity, GPS coordinates and water depth while underway. Results showed that there were portions of the lake with significant enrichments in radon, indicating likely groundwater inputs. These same areas were generally characterized by lower electrical conductivities. Samples collected from nearby wells also showed a general inverse relationship between radon and conductivity. Our data suggest that groundwater pathways are important, accounting for roughly 10-20 % of the freshwater flow of the Tonle Sap tributary (connection to the Mekong River), the largest single source of fresh water to the lake. Nutrient inputs from these inputs, because of higher concentrations in groundwater, will be correspondingly higher. (author)

  17. Denitrification in groundwater at uranium mill tailings sites

    International Nuclear Information System (INIS)

    Goering, Timothy J.; Groffman, Armando; Thomson, Bruce

    1992-01-01

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  18. Denitrification in groundwater at uranium mill tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Goering, Timothy J [Jacobs Engineering Group, Inc., Albuquerque, NM (United States); Groffman, Armando [Roy F. Weston, Inc., Albuquerque, NM (United States); Thomson, Bruce [University of New Mexico, Albuquerque, NM (United States)

    1992-07-01

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  19. Concentração e conteúdo de nutrientes em lisianto, cultivado em hidroponia, em sistema NFT = Concentration and nutrient content in lisianthus grown in a hydroponic NFT system

    Directory of Open Access Journals (Sweden)

    Fernanda Alice Antonello Londero Backes

    2008-10-01

    Full Text Available O diagnóstico nutricional é fundamental para determinar as exigências das plantas quanto aos nutrientes, de forma a se proceder a um manejo adequado, de acordo com a espécie. Assim, para determinar as concentrações e conteúdos nutricionais adequados à produção e qualidade de plantas de lisianto em cultivo hidropônico, instalou-se um experimento onde as plantas foram cultivadas em sistema NFT, em diferentes soluções nutritivas. O experimento foi conduzido, segundo delineamento experimental em blocos casualizados, em esquema fatorial 4x3, totalizando 12 tratamentos, com três repetições. Ostratamentos foram compostos de quatro cultivares (Echo Champagne, Mariachi Pure White, Balboa Yellow e Ávila Blue Rim e três soluções nutritivas (Teste, Steiner modificada e Barbosa. Foram avaliadas as concentrações e os conteúdos dos nutrientes nas folhas e conteúdos na parte aérea das plantas. As plantas cultivadas nas soluções Barbosa eTeste apresentaram resultados satisfatórios quanto às concentrações e aos conteúdos de nutrientes, enquanto a solução Steiner modificada produziu plantas com limitações nutricionais.The nutritional diagnosis is fundamental for determining plantnutrients, in order to correctly manage the nutritional requirements for each species. Thus, in order to determine the ideal nutrient amount and concentration for obtaining the best yield and quality of lisianthus grown hydroponically, an experiment was conducted inwhich the plants were grown under the NFT system in different nutrient solutions. The experiment was conducted according to a random block design arrangement in a 4x3 factorial scheme, totaling 12 treatments with three repetitions. The treatments werecomprised of four cultivars (Echo Champagne, Mariachi Pure White, Balboa Yellow and Ávila Blue Rim and three nutrient solutions (Test, modified Steiner and Barbosa. In the leaves, nutrient concentration and content were evaluated; in the aerial

  20. The activity concentrations of 222Rn and corresponding health risk in groundwater samples from basement and sandstone aquifer; the correlation to physicochemical parameters

    International Nuclear Information System (INIS)

    Abdurabu, Wedad Ali; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Heryansyah, Arien

    2016-01-01

    This study aims to evaluate the activity concentrations of 222 Rn and to assess the corresponding health risk in groundwater samples obtained in Juban District, Ad Dali’ Governorate, Yemen. The measurements were performed by RAD 7 radon detector manufactured by DURRIDGE COMPANY Inc. The activity concentrations of 222 Rn ranged from 1.0±0.2 Bq l −1 to 896.0±0.8 Bq l −1 . 57% of the groundwater samples were above the US Environmental Protection Agency (USEPA) recommended value for Rn in water. Induced coupled plasma mass spectrometry (ICP-MS) was used to determine the concentrations of uranium in groundwater samples. The measured concentration of U ranged from 0.33±0.01 μg l −1 to 24.6±0.6 μg l −1 . The results were comparable to internationally recommended values. The highest concentration of U and 222 Rn were found to be in the basement aquifer, while the lowest concentrations of both radionuclides were in the sandstone aquifer. High concentrations of Rn are found along fault zones. The relationship between the activity concentration of 222 Rn, concentration of U and physicochemical parameters were investigated. The results showed a very strong relationship between activity concentrations of 222 Rn with concentrations of U and the salinity of water. - Highlights: • The highest concentration of U and 222 Rn was found to be in the basement aquifer. • A 57% of the groundwater samples were above the USEPA recommended value. • Mean annual effective dose for ingestion was 24 times the world average. • Mean annual effective dose for inhalation was 23 times the world. • Strong relationship between 222 Rn with concentration of U in the basement aquifer.

  1. Radon as a groundwater tracer in Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Grolander, Sara

    2009-10-01

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  2. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  3. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

    International Nuclear Information System (INIS)

    Victor Garcia-Gaytan, Libia Iris Trejo-Tellez; Olga Tejeda-Sartorius; Maribel Ramirez-Martinez; Julian Delgadillo-Martinez; Fernando Carlos Gomez-Merino; Soledad Garcia-Morales

    2018-01-01

    Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (- 0.036, - 0.072, - 0.092, and - 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers. (author)

  4. Effect of thymol and carvacrol on nutrient digestibility in rams fed high or low concentrate diets.

    Science.gov (United States)

    Zamiri, M J; Azizabadi, E; Momeni, Z; Rezvani, M R; Atashi, H; Akhlaghi, A

    2015-01-01

    Published data on the effects of essential oils (EO) on in vivo nutrient digestibility in sheep are contradictory. In 2 experiments, the effect of thymol and carvacrol on nutrient digestibility was studied in sheep fed with high (70%) or low (52%) concentrate diets, using incomplete Latin Square designs. The essential oils were mixed with the concentrate portion of the diet at the rate of 0.0, 0.3, or 0.6 g per kg dry matter (DM) diet. Supplementation of thymol had no significant effect on digestibility of dry matter (DM), organic matter (OM), crude protein (CP) and acid detergent fiber (ADF). The main effect of thymol on neutral detergent fiber (NDF) and ether extract (EE) digestibility and on nitrogen balance (NB) was significant (Pdigestibility. The main effect of carvacrol on ruminal ammonia levels and NB was significant, but within each level of dietary concentrate no significant differences were observed in ammonia levels and NB. Inclusion of 0.3 g/kg diet DM of carvacrol or thyme was more effective than 0.6 g/kg diet DM in terms of NB but neither dose affected nutrient digestibility. Future research should determine the long-term effects of essential oils on digestibility and performance in sheep, before recommendation can be made for their use under practical husbandry conditions.

  5. Long-Term Trends in Nutrient Concentrations and Fluxes in Streams Draining to Lake Tahoe, California

    Science.gov (United States)

    Domagalski, J. L.

    2017-12-01

    Lake Tahoe, situated in the rain shadow of the eastern Sierra Nevada at an elevation of 1,897 meters, has numerous small to medium sized tributaries that are sources of nutrients and fine sediment. The Tahoe watershed is relatively small and the surface area of the lake occupies about 38% of the total watershed area (1,313 km2). Each stream contributing water to the lake therefore also occupies a small watershed, mostly forested, with typical trees being Jeffrey, Ponderosa, or Sugar Pine and White Fir. Outflow from the lake contributes to downstream uses such as water supply and ecological resources. Only about 6% of the watershed is urbanized or residential land, and wastewater is exported to adjacent basins and not discharged to the lake as part of a plan to maintain water clarity. The lake's exceptional clarity has been diminishing due to phytoplankton and fine sediment, prompting development of management plans to improve water quality. Much of the annual discharge and flux of nutrients to the lake results from snowmelt in the spring and summer months, and climatic changes have begun to shift this melt to earlier time frames. Winter rains on urbanized land also contribute to nutrient loads. To understand the relative importance of land use, climate, and other factors affecting stream concentrations and fluxes, a Weighted Regression on Time Discharge and Season (WRTDS) model documented trends over a time frame of greater than 25 years. Ten streams have records of discharge, nutrient (NO3, NH3, OP, TP, TKN) and sediment data to complete this analysis. Both urbanized and non-urbanized locations generally show NO3 trending down in the 1980s. Some locations show initially decreasing orthophosphate trends, followed by small significant increases in concentration and fluxes starting around 2000 to 2005. Although no wastewater enters the streams, ammonia concentrations mimic those of orthophosphate, with initially negative trends in concentration and flux followed by

  6. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  7. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    International Nuclear Information System (INIS)

    Smidt, Geerd Ahlrich

    2011-01-01

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg -1 ) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L -1 , the median 0.50 μg L -1 . 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L -1 . The regional distribution of U concentrations largely agrees with the geological setting reported for mineral waters

  8. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    Energy Technology Data Exchange (ETDEWEB)

    Smidt, Geerd Ahlrich

    2011-12-20

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg{sup -1}) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L{sup -1}, the median 0.50 μg L{sup -1}. 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L{sup -1}. The regional distribution of U concentrations largely agrees with the geological setting reported for

  9. Geographic variation in the relationships of temperature, salinity or sigma sub t versus plant nutrient concentrations in the world ocean. [silicic acid, nitrate, and phosphate concentration

    Science.gov (United States)

    Kamykowski, D.; Zentara, S. J.

    1985-01-01

    A NODC data set representing all regions of the world ocean was analyzed for temperature and sigma-t relationships with nitrate, phosphate or silicic acid. Six cubic regressions were for each ten degree square of latitude and longitude containing adequate data. World maps display the locations that allow the prediction of plant nutrient concentrations from temperature or sigma-t. Geographic coverage improves along the sequence: nitrate, phosphate, and silicic acid and is better for sigma-t than for temperature. Contour maps of the approximate temperature of sigma-t at which these nitrients are no longer measurable in a parcel of water are generated, based on a percentile analysis of the temperature or sigma-t at which less than a selected amount of plant nutrient occurs. Results are stored on magnetic tape in tabular form. The global potential to predict plant nutrient concentrations from remotely sensed temperature of sigma-t and to emphasize the latitudinally and longitudinally changing phytoplankton growth environment in present and past oceans is demonstrated.

  10. Pharmaceuticals as indictors of sewage-influenced groundwater

    Science.gov (United States)

    Müller, Beate; Scheytt, Traugott; Asbrand, Martin; de Casas, Andrea Mross

    2012-09-01

    A set of human pharmaceuticals enables identification of groundwater that is influenced by sewage and provides information on the time of recharge. As the consumption rates of the investigated pharmaceuticals have changed over time, so too has the composition of the sewage. At the study area, south of Berlin (Germany), irrigation was performed as a method of wastewater clean-up at sewage irrigation farms until the early 1990s. Today, treated wastewater is discharged into the surface-water-stream Nuthegraben. Groundwater and surface-water samples were analyzed for the pharmaceutical substances clofibric acid, bezafibrate, diclofenac, carbamazepine and primidone, the main ions and organic carbon. The pharmaceutical substances were detected at concentrations up to microgram-per-liter level in groundwater and surface-water samples from the Nuthegraben Lowland area and from the former irrigation farms. Concentrations detected in groundwater are generally much lower than in surface water and there is significant variation in the distribution of pharmaceutical concentrations in groundwater. Groundwater influenced by the irrigation of sewage water shows higher primidone and clofibric-acid concentrations. Groundwater influenced by recent discharge of treated sewage water into the surface water shows high carbamazepine concentrations while concentrations of primidone and clofibric acid are low.

  11. Nutrient digestibility and beef cattle performance fed by lerak (Sapindus rarak meal in concentrate ration

    Directory of Open Access Journals (Sweden)

    S. Suharti

    2009-10-01

    Full Text Available This research was aimed to study the use of Lerak fruit meal to improve performance and feed digestibility of beef cattle. The research consisted of two trials (in vitro and in vivo studies. The in vitro trial was screening of bioactive compounds (saponin, tanin, dan diosgenin in Lerak fruit (including seed and continued to evaluate the effectivity of these compounds against ruminal protozoa. The in vivo study was done using 12 Ongole Crossbreed cattle which received 1of 3 different treatments: 1 concentrate without Lerak as control, 2 concentrate containing 2.5% Lerak, and 3 concentrate containing 5% Lerak. Anti protozoal activity, daily gain, and nutrient digestibility of beef cattle were measured. Results showed that saponin concentration in Lerak extracted by methanol was higher than that in Lerak extracted by water and Lerak meal, 81.5%; 8.2% and 3.85% respectively. Lerak extracted by methanol have higher antiprotozoal activity in vitro than Lerak extracted by water. In vivo experiment showed that there were no significant differences (P>0.05 of nutrient intake and digestibility in all treatments, that means the ration had good palatability and quality. Average daily gain of PO fed 2.5% Lerak was 20% higher than that of control diet (0.9 kg/day.

  12. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    Science.gov (United States)

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  13. Contributions of Phosphorus from Groundwater to Streams in the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces, Eastern United States

    Science.gov (United States)

    Denver, Judith M.; Cravotta,, Charles A.; Ator, Scott W.; Lindsey, Bruce D.

    2011-01-01

    , magnesium, chloride, nitrate, sulfate, iron, and aluminum. These associations can result from the dissolution of alkali feldspars containing phosphorus; the precipitation of apatite; the precipitation of calcite, iron hydroxide, and aluminum hydroxide with associated sorption of phosphate ions; and the potential for release of phosphate from iron-hydroxide and other iron minerals under reducing conditions. Anthropogenic sources of phosphate such as fertilizer and manure and processes such as biological uptake, evapotranspiration, and dilution also affect phosphorus concentrations. The phosphate concentrations in surface water were not correlated with the silica concentration, but were positively correlated with concentrations of major cations and anions, including chloride and nitrate, which could indicate anthropogenic sources and effects of evapotranspiration on surface-water quality. Mixing of older, mineralized groundwater with younger, less mineralized, but contaminated groundwater was identified as a critical factor affecting the quality of stream base flow. In-stream processing of nutrients by biological processes also likely increases the phosphorus concentration in surface waters. Potential geologic contributions of phosphorus to groundwater and streams may be an important watershed-management consideration in certain hydrogeologic and geochemical environments. Geochemical controls effectively limit phosphorus transport through groundwater to streams in areas underlain by carbonate rocks; however, in crystalline and siliciclastic settings, phosphorus from mineral or human sources may be effectively transported by groundwater and contribute a substantial fraction to base-flow stream loads.

  14. The MANAGE database: nutrient load and site characteristic updates and runoff concentration data.

    Science.gov (United States)

    Harmel, Daren; Qian, Song; Reckhow, Ken; Casebolt, Pamela

    2008-01-01

    The "Measured Annual Nutrient loads from AGricultural Environments" (MANAGE) database was developed to be a readily accessible, easily queried database of site characteristic and field-scale nutrient export data. The original version of MANAGE, which drew heavily from an early 1980s compilation of nutrient export data, created an electronic database with nutrient load data and corresponding site characteristics from 40 studies on agricultural (cultivated and pasture/range) land uses. In the current update, N and P load data from 15 additional studies of agricultural runoff were included along with N and P concentration data for all 55 studies. The database now contains 1677 watershed years of data for various agricultural land uses (703 for pasture/rangeland; 333 for corn; 291 for various crop rotations; 177 for wheat/oats; and 4-33 yr for barley, citrus, vegetables, sorghum, soybeans, cotton, fallow, and peanuts). Across all land uses, annual runoff loads averaged 14.2 kg ha(-1) for total N and 2.2 kg ha(-1) for total P. On average, these losses represented 10 to 25% of applied fertilizer N and 4 to 9% of applied fertilizer P. Although such statistics produce interesting generalities across a wide range of land use, management, and climatic conditions, regional crop-specific analyses should be conducted to guide regulatory and programmatic decisions. With this update, MANAGE contains data from a vast majority of published peer-reviewed N and P export studies on homogeneous agricultural land uses in the USA under natural rainfall-runoff conditions and thus provides necessary data for modeling and decision-making related to agricultural runoff. The current version can be downloaded at http://www.ars.usda.gov/spa/manage-nutrient.

  15. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  16. Impact of the river Liffey discharge on nutrient and chlorophyll concentrations in the Liffey estuary and Dublin Bay (Irish Sea)

    Science.gov (United States)

    O'Higgins, T. G.; Wilson, J. G.

    2005-08-01

    Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.

  17. Nutrient supply of plants in aquaponic systems

    OpenAIRE

    Bittsánszky, András; Uzinger, Nikolett; Gyulai, Gábor; Mathis, Alex; Junge, Ranka; Villarroel, Morris; Kotzen, Benzion; Komives, Tamas

    2016-01-01

    In this preliminary article we present data on plant nutrient concentrations in aquaponic systems, and compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in aquaponic system are significantly lower for most nutrients, compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels than “standard” hydroponic solutions. This is especially true for green leafy...

  18. Absorption and nutrient concentration in apple (Pyrus mains L.)

    OpenAIRE

    Trani, P.E.; Haag, H.P.; Sarruge, J.R.; Dechen, A.R.; Catani, CB

    1981-01-01

    In order to obtain the following informations: a) dry matter production and extraction of nutrients by the fruits at different ages; b) dry matter production and extraction of nutrient by the leaves and "trunk + branches" collected at the flowering stage; c) dry matter production and export of nutrients by pruning (leaves and branches) at the begining dormant stage; A trial was conducted on Latossolo Vermelho Escuro Orto group (Orthox) at Buri, São Paulo State, Brazil. The material was collec...

  19. Quantifying Nutrient and Mercury Concentrations and Loads in Lake Tahoe Snowpack

    Science.gov (United States)

    Pearson, C.; Obrist, D.; Schumer, R.

    2012-12-01

    Recent climate models predict a large decrease in Sierra Nevada snowpack over the next fifty years as a result of climate change. This decrease will not only affect the hydrologic balance but also change inputs of nutrients and pollutants through atmospheric deposition. In the Lake Tahoe basin, winter precipitation dominates and snowfall provides approximately 70 percent of the annual water input. From the first snowfall until the end of melting, snowpack acts as a temporary storage for atmospheric deposition that accumulates throughout winter and spring. Through melt and runoff processes, these nutrients and pollutants can enter the aquatic ecosystem where they can have detrimental effects on lake clarity and health. Most previous studies in this basin have focused on direct atmospheric deposition loads to the lake surface, and little temporal and spatial information is available on the dynamics of atmospheric deposition in the basin's snowpack. We here present nitrogen (N), phosphorus (P), and mercury (Hg) concentrations and pool sizes in snowpack along two elevational transects in the Tahoe Basin from January to April of 2012. Total N and P concentrations in the snowpack ranged from 0.07 mg/L to 0.38 mg/L and 0.003 mg/L to 0.109 mg/L, respectively. P concentrations showed strong increases from the west-side to the east-side of the basin which we attribute to local (e.g., urban or road-dust), in-basin sources that are distributed along the dominant west-wind patterns. N species, on the other hand, generally showed little spatial trends, indicating that its sources were more diffuse and possibly from out-of- basin. Hg concentrations ranged from 0.81 ppt to 6.25 ppt and showed similar spatial patterns as N. Hg, however, also showed significant snowpack concentration decreases during storm-free periods which we attribute to gaseous losses of Hg back to the atmosphere from photochemical reduction. These emissions are further supported by lower Hg concentrations in

  20. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  1. Yield, Quality, and Nutrient Concentrations of Strawberry (Fragaria ×ananassa Duch. cv. 'Sonata') Grown with Different Organic Fertilizer Strategies.

    Science.gov (United States)

    Pokhrel, Bhaniswor; Laursen, Kristian Holst; Petersen, Karen Koefoed

    2015-06-17

    Four combinations of two solid organic fertilizers (Monterra Malt and chicken manure) applied before planting and two liquid organic fertilizers (broad bean and Pioner Hi-Fruit/K-Max) given through drip irrigation (fertigation) were compared with inorganic fertilization regarding growth, yield, nutrient concentration, and fruit quality of strawberries. Broad bean fertigation combined with Monterra Malt resulted in a similar fruit yield as inorganic fertilizer and a higher yield than Monterra Malt combined with Pioner; however, total soluble solids, firmness, and titratable acid were improved with Pioner fertigation, although these parameters were more affected by harvest time than the applied fertilizers. The concentrations of most nutrients in fruits and leaves were higher in inorganically fertigated plants. The reductions in fruit yield in three of four treatments and fruit weight in all organic treatments may be due to a combination of the following conditions in the root zone: (1) high pH and high NH4(+)/NO3(-) ratio; (2) high EC and/or high NaCl concentration; (3) cation imbalance; and (4) nutrient deficiency.

  2. Comparison of groundwater quality from forested (Waimarino River), urban (Turangi), and natural wetland (South Taupo Wetlands) subcatchments at the southern end of Lake Taupo

    International Nuclear Information System (INIS)

    Rosen, M.R.; Reeves, R.R.; Eser, P.; Chague-Goff, C.; Coshell, L.

    1998-01-01

    onto the lake sediments. (5) At present, the extent of the ammonium-rich groundwater is unknown. However, should it reach Lake Taupo, oxidation of the ammonium to nitrate would occur at the groundwater-lakewater interface and increase the nutrient concentrations in the lake. (6) Preliminary results from groundwater quality measurements during harvesting in the Waimarino catchment do not show any deterioration that could be linked to harvesting practices. Long-term monitoring will be needed to confirm this. (author). 60 refs., 32 figs

  3. Trends and transformation of nutrients and pesticides in a Coastal Plain aquifer system, United States

    Science.gov (United States)

    Denver, J.M.; Tesoriero, A.J.; Barbaro, J.R.

    2010-01-01

    Four local-scale sites in areas with similar corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] agriculture were studied to determine the effects of different hydrogeologic settings of the Northern Atlantic Coastal Plain (NACP) on the transport of nutrients and pesticides in groundwater. Settings ranged from predominantly well-drained soils overlying thick, sandy surficial aquifers to predominantly poorly drained soils with complex aquifer stratigraphy and high organic matter content. Apparent age of groundwater, dissolved gases, N isotopes, major ions, selected pesticides and degradates, and geochemical environments in groundwater were studied. Agricultural chemicals were the source of most dissolved ions in groundwater. Specific conductance was strongly correlated with reconstructed nitrate (the sum of N in nitrate and N gas) (R2 = 0.81, p < 0.0001), and is indicative of the relative degree of agricultural effects on groundwater. Trends in nitrate were primarily related to changes in manure and fertilizer use at the well-drained sites where aquifer conditions were consistently oxic. Nitrate was present in young groundwater but completely removed over time through denitrification at the poorly drained sites where there were variations in chemical input and in geochemical environment. Median concentrations of atrazine (6-chloro-N-ethyl-N'-(1- methylethyl)-1,3,5-triazine-2,4-diamine), metolachlor (2-chloro-N-(2-ethyl-6- methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide), and some of their common degradates were higher at well-drained sites than at poorly drained sites, with concentrations of degradates generally higher than those of the parent compounds at all sites. An increase in the percentage of deethylatrazine to total atrazine over time at one well-drained site may be related to changes in manure application. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  4. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.

    2013-01-01

    A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other

  5. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Science.gov (United States)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5-45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only), total nitrogen (TN, lake only), total dissolved phosphorus (TDP, groundwater only), total phosphorus (TP, lake only), δ18O / δ16O isotope ratios and fluorescent dissolved organic matter (FDOM) components derived from parallel factor analysis (PARAFAC). The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS). The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs) of the lake (0.25-3.5 years in 0.25-year increments). These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration, the CATS model isolated

  6. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  7. Recharge sources and residence times of groundwater as determined by geochemical tracers in the Mayfield Area, southwestern Idaho, 2011–12

    Science.gov (United States)

    Hopkins, Candice B.

    2013-01-01

    Parties proposing residential development in the area of Mayfield, Idaho are seeking a sustainable groundwater supply. During 2011–12, the U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used geochemical tracers in the Mayfield area to evaluate sources of aquifer recharge and differences in groundwater residence time. Fourteen groundwater wells and one surface-water site were sampled for major ion chemistry, metals, stable isotopes, and age tracers; data collected from this study were used to evaluate the sources of groundwater recharge and groundwater residence times in the area. Major ion chemistry varied along a flow path between deeper wells, suggesting an upgradient source of dilute water, and a downgradient source of more concentrated water with the geochemical signature of the Idaho Batholith. Samples from shallow wells had elevated nutrient concentrations, a more positive oxygen-18 signature, and younger carbon-14 dates than deep wells, suggesting that recharge comes from young precipitation and surface-water infiltration. Samples from deep wells generally had higher concentrations of metals typical of geothermal waters, a more negative oxygen-18 signature, and older carbon-14 values than samples from shallow wells, suggesting that recharge comes from both infiltration of meteoric water and another source. The chemistry of groundwater sampled from deep wells is somewhat similar to the chemistry in geothermal waters, suggesting that geothermal water may be a source of recharge to this aquifer. Results of NETPATH mixing models suggest that geothermal water composes 1–23 percent of water in deep wells. Chlorofluorocarbons were detected in every sample, which indicates that all groundwater samples contain at least a component of young recharge, and that groundwater is derived from multiple recharge sources. Conclusions from this study can be used to further refine conceptual hydrological models of the area.

  8. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    constituents such as nutrients.The total gain in streamflow from the upper end to the lower end of each valley reach was positively correlated with the annual-runoff volume calculated for the drainage area of the reach. This correlation was not greatly affected by the proportions of ground-water and tributary contributions, except at two reaches that lost much of their tributary flow after the July survey. In these reaches, the gain in total streamflow showed a negative departure from this correlation.Calculated ground-water discharge exceeded the total tributary inflow in each valley reach in both surveys. Groundwater discharge, as a percentage of streamflow gain, was greatest among reaches in wide valleys (about 1,000-ft wide valley floors) that contain permeable valley fill because tributary flows were seasonally diminished or absent as a result of streambed infiltration. Tributary inflows, as a percentage of streamflow gain, were highest in reaches of narrow valleys (200-500-ft wide valley floors) with little valley fill and high annual runoff.Stream-water and ground-water quality were characterized by major-ion type as either (1) naturally occurring water types, relatively unaffected by road salt, or (2) road-salt-affected water types having elevated concentrations of chloride and sodium. The naturally occurring waters were typically the calcium-bicarbonate type, but some contained magnesium and (or) sulfate as secondary ions. Magnesium concentration in base flow is probably related to the amount of till and its carbonate content, or to the amount of lime used on cultivated fields within a drainage area. Sulfate was a defining ion only in dilute waters (with short or unreactive flow paths) with low concentrations of bicarbonate. Nearly all tributary waters were classified as naturally occurring water types.Ground-water discharge from nearly all valley reaches that contain State or county highways had elevated concentrations of chloride and sodsodium. The mean chloride

  9. Modeled sensitivity of Lake Michigan productivity and zooplankton to changing nutrient concentrations and quagga mussels

    Science.gov (United States)

    Pilcher, Darren J.; McKinley, Galen A.; Kralj, James; Bootsma, Harvey A.; Reavie, Euan D.

    2017-08-01

    The recent decline in Lake Michigan productivity is often attributed to filter feeding by invasive quagga mussels, but some studies also implicate reductions in lakewide nutrient concentrations. We use a 3-D coupled hydrodynamic-biogeochemical model to evaluate the effect of changing nutrient concentrations and quagga mussel filtering on phytoplankton production and phytoplankton and zooplankton biomass. Sensitivity experiments are used to assess the net effect of each change separately and in unison. Quagga mussels are found to have the greatest impact during periods of isothermal mixing, while nutrients have the greatest impact during thermal stratification. Quagga mussels also act to enhance spatial heterogeneity, particularly between nearshore-offshore regions. This effect produces a reversal in the gradient of nearshore-offshore productivity: from relatively greater nearshore productivity in the prequagga lake to relatively lesser nearshore productivity after quaggas. The combined impact of both processes drives substantial reductions in phytoplankton and zooplankton biomass, as well as significant modifications to the seasonality of surface water pCO2, particularly in nearshore regions where mussel grazing continues year-round. These results support growing concern that considerable losses of phytoplankton and zooplankton will yield concurrent losses at higher trophic levels. Comparisons to observed productivity suggest that both quagga mussel filtration and lower lakewide total phosphorus are necessary to accurately simulate recent changes in primary productivity in Lake Michigan.

  10. Distribution of Isotopic and Environmental Tracers in Groundwater, Northern Ada County, Southwestern Idaho

    Science.gov (United States)

    Adkins, Candice B.; Bartolino, James R.

    2010-01-01

    Residents of northern Ada County, Idaho, depend on groundwater for domestic and agricultural uses. The population of this area is growing rapidly and groundwater resources must be understood for future water-resource management. The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used a suite of isotopic and environmental tracers to gain a better understanding of groundwater ages, recharge sources, and flowpaths in northern Ada County. Thirteen wells were sampled between September and October 2009 for field parameters, major anions and cations, nutrients, oxygen and hydrogen isotopes, tritium, radiocarbon, chlorofluorocarbons, and dissolved gasses. Well depths ranged from 30 to 580 feet below land surface. Wells were grouped together based on their depth and geographic location into the following four categories: shallow aquifer, intermediate/deep aquifer, Willow Creek aquifer, and Dry Creek aquifer. Major cations and anions indicated calcium-bicarbonate and sodium-bicarbonate water types in the study area. Oxygen and hydrogen isotopes carried an oxygen-18 excess signature, possibly indicating recharge from evaporated sources or water-rock interactions in the subsurface. Chlorofluorocarbons detected modern (post-1940s) recharge in every well sampled; tritium data indicated modern water (post-1951) in seven, predominantly shallow wells. Nutrient concentrations tended to be greater in wells signaling recent recharge based on groundwater age dating, thus confirming the presence of recent recharge in these wells. Corrected radiocarbon results generated estimated residence times from modern to 5,100 years before present. Residence time tended to increase with depth, as confirmed by all three age-tracers. The disagreement among residence times indicates that samples were well-mixed and that the sampled aquifers contain a mixture of young and old recharge. Due to a lack of data, no conclusions about sources of recharge could be drawn

  11. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Directory of Open Access Journals (Sweden)

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  12. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Science.gov (United States)

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  13. Source Material and Concentration of Wildfire-Produced Pyrogenic Carbon Influence Post-Fire Soil Nutrient Dynamics

    Directory of Open Access Journals (Sweden)

    Lucas A. Michelotti

    2015-04-01

    Full Text Available Pyrogenic carbon (PyC is produced by the thermal decomposition of organic matter in the absence of oxygen (O. PyC affects nutrient availability, may enhance post-fire nitrogen (N mineralization rates, and can be a significant carbon (C pool in fire-prone ecosystems. Our objectives were to characterize PyC produced by wildfires and examine the influence that contrasting types of PyC have on C and N mineralization rates. We determined C, N, O, and hydrogen (H concentrations and atomic ratios of charred bark (BK, charred pine cones (PC, and charred woody debris (WD using elemental analysis. We also incubated soil amended with BK, PC, and WD at two concentrations for 60 days to measure C and N mineralization rates. PC had greater H/C and O/C ratios than BK and WD, suggesting that PC may have a lesser aromatic component than BK and WD. C and N mineralization rates decreased with increasing PyC concentrations, and control samples produced more CO2 than soils amended with PyC. Soils with PC produced greater CO2 and had lower N mineralization rates than soils with BK or WD. These results demonstrate that PyC type and concentration have potential to impact nutrient dynamics and C flux to the atmosphere in post-fire forest soils.

  14. Groundwater-Quality Data in the Antelope Valley Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2009-01-01

    -control samples (blanks, replicates, and samples for matrix spikes) were collected at 12 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most compoundsThis study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with drinking water standards. Most constituents that were detected in groundwater samples were found at concentrations below drinking-water thresholds. Volatile organic compounds (VOCs) were detected in about one-half of the samples and pesticides detected in about one-third of the samples; all detections of these constituents were below health-based thresholds. Most detections of trace elements and nutrients in samples from ANT wells were below health-based thresholds. Exceptions include: one detection of nitrite plus nitr

  15. Nutrient supply of plants in aquaponic systems

    Directory of Open Access Journals (Sweden)

    Andras Bittsanszky

    2016-10-01

    Full Text Available In this preliminary article we present data on plant nutrient concentrations in aquaponics systems, and we compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in the aquaponics system are significantly lower for most nutrients compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels compared to “standard” hydroponic solutions. This is especially true for green leafy vegetables that rarely need additional nutritional supplementation. It is concluded that in the highly complex system of aquaponics, special care has to be taken, via continuous monitoring of the chemical composition of the circulating water, to provide adequate concentrations and ratios of nutrients, and especially for the potentially toxic component, ammonium. If certain plants require nutrient supplementation, we consider that one based on organic substances would be most beneficial. However, protocols for the application of such nutrient amendments still need to be developed.

  16. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014

    Science.gov (United States)

    Landmeyer, James E.; Effinger, Thomas N.

    2016-01-01

    Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.

  17. Concentrations and compositions of colloidal particles in groundwater near the ICPP, Idaho National Laboratory, Idaho

    International Nuclear Information System (INIS)

    Estes, M.; McCurry, M.

    1994-01-01

    The presence of colloidal material is being investigated in groundwater near the ICPP to determine whether the concentrations and chemical compositions are suitable to have an impact on the transport of Sr-90. Colloids are proposed as a viable transport mechanism, and may have an influence on the chemical trends observed in three wells near the ICPP. Ultrafiltration of groundwater samples has been performed on difFerent intervals in USGS wells 45, 46, and Site 14, has provided filtrate samples, for analyses by ICP-MS, and filters for analyses by SEM/EDS. Preliminary results indicate that concentrations of colloids are from 2.1-0.8 ppm for the >0.45 μm size fraction, and 2.3-9.8 ppm for the <0.45 μm size fractions. Compositions consist of calcite, silicic acid, ferrihydrite, clay, and possibly dolomite. Calcium was shown to have the largest contribution from both EDS and ICP-MS. Magnesium and silicon were also found to filter out in large concentrations. Iron and aluminum are minor constituents of the colloidal mass and contain concentrations of <10ppb and <1ppb, respectively. These results indicate that if colloids are going to have a major impact on contaminant migration then the coprecipitation of Sr-90 with calcite and dolomite would have to be a sorption mechanism. Sorption onto Fe and Al colloids probably does not have a major impact because of the low concentrations. Clay colloids were noted to be relatively abundant and may also have an impact on Sr-90 migration, due to the exchange of Sr with other cations in the clay structure. 14 refs., 4 figs., 2 tabs

  18. The Transboundary Aquifer Management Challenge: Linking Landscape Patterns and Groundwater Nitrate Concentrations in the Abbotsford-Sumas Aquifer, USA/Canada

    Science.gov (United States)

    Gallagher, T.; Gergel, S. E.

    2015-12-01

    Changes in land use and landscape pattern can have an array of impacts on aquatic systems, including impacts which span international waters and borders. Globally, agricultural land use patterns and practices are among the factors responsible for elevated nitrate concentrations in groundwater aquifers. Coordination of landscape monitoring across trans-boundary aquifers is needed to monitor and address contamination issues as landscape patterns can vary widely among different political jurisdictions. Landscape indicators, which quantify the amount and arrangement of land cover (such as proportion and abundance of land cover types), are one such way to improve our understanding of cross-border aquatic system interactions. In Western North America, the Abbotsford-Sumas Aquifer (ASA) spans the US-Canada border and provides drinking water for over 100,000 people. Intensive agriculture combined with high precipitation and well-drained soils make this aquifer susceptible to nitrate leaching. To understand how landscape patterns influence nitrate concentrations, we ask: Which landscape indicators correlate most strongly with elevated nitrate concentrations? A seamless cross-border land cover mosaic was created by harmonizing a variety of US and Canadian geodata. Auxiliary high spatial resolution imagery (e.g., 5m RapidEye and historical Google Earth) were used to quantify fine-scale landscape features (such as number of farm field renovations) with suspected mechanistic links to nitrate sources. We examined groundwater nitrate concentrations in shallow wells (screens Environment Canada. Surrounding each well, terrestrial zones of influence (aligned with the directional flow of groundwater) were delineated within which landscape patterns were characterized. Multiple regression was used to compare the strength of relationships between land use practices and nitrate concentrations. Preliminary results show strong positive correlations between area of raspberry renovations and

  19. Groundwater residence time : tell me who you are and I will tell which information you may provide

    Science.gov (United States)

    Aquilina, Luc; Labasque, Thierry; Kolbe, Tamara; Marçais, Jean; Leray, Sarah; Abbott, Ben; de Dreuzy, Jean-Raynald

    2016-04-01

    Groundwater residence-time or ages have been widely used in hydrogeology during the last decades. Following tritium measurements, anthropogenic gases (CFC, SF6, 35Kr) have been developed. They provide information at the aquifer scale on long residence times. They complement the more localized data obtained from sparse boreholes with hydraulic and geophysical methods. Anthropogenic tracer concentrations are most generally considered as "Groundwater ages" using a piston flow model providing an order of magnitude for the residence time. More advanced information can however be derived from the combined analysis of the tracer concentrations. For example, the residence time distribution over the last 50 years can be well approached by the concentration of two sufficient different anthropogenic tracers in the group (CFC, SF6, 35Kr), i.e. tracers whose anthropogenic chronicles are sufficiently different. And, with additional constrains on geological and hydraulic properties, groundwater ages contribute to characterize the aquifer structures and the groundwater resources. Complex geological environments also include old groundwater bodies in extremely confined aquifer sections. In such cases, various tracers are related to highly different processes. CFCs can be taken as a marker of modern contamination to track exchanges between shallower and deeper aquifers, leakage processes, and modification of circulations linked to recent anthropogenic changes. 14C or 36Cl can be used to evidence much older processes but have to be related to the history of the chemical element itself. Numerous field studies in fact demonstrate the broad-range extent of the residence time distribution spanning in some cases several orders of magnitude. Flow and transport models in heterogeneous structures confirm such wide residence times and help to characterize their distribution. Residence times also serve as a privileged interface to the fate of some contaminants in aquifers or to trace

  20. Nutrient-enhanced growth of Cladophora prolifera in harrington sound, bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem

    Science.gov (United States)

    Lapointe, Brian E.; O'Connell, Julie

    1989-04-01

    The green alga Cladophora prolifera (Chlorophyta, Cladophorales) has formed widespread blooms in Bermuda's inshore waters during the past 20 years, but, to date, no conclusive evidence links these blooms to nutrient enrichment. This study assessed the nutrient-dependance of productivity of Cladophora collected from Harrington Sound, a confined P-limited marine system where Cladophora first became abundant. Both N- and P-enrichment decreased the doubling time of Cladophora, which ranged from 14 days (with N and P enrichment) to 100 days (without enrichment). Nutrient enrichment also enhanced the light-saturated photosynthetic capacity (i.e. P max) of Cladophora, which ranged from 0·50 mg C g dry wt -1 h -1 (without enrichment) to 1·0 mg C g dry wt -1 h -1 (with enrichment). Tissue C:N, C:P and N:P ratios of unenriched Cladophora were elevated—25, 942, and 49, respectively—levels that suggest limitation by both N and P but primary limitation by P. Pore-waters under Cladophora mats had reduced salinities, elevated concentrations of NH 4, and high N:P ratios (N:P of 85), suggesting that N-rich groundwater seepage enriches Cladophora mats. The alkaline phosphatase capacity of Cladophora was high compared to other macroalgae in Harrington Sound, and its capacity was enhanced by N-enrichment and suppressed by P-enrichment. Because the productivity of Cladophora is nutrient-limited in shallow waters of Harrington Sound, enhanced growth and increased biomass of Cladophora result from cumulative seepage of N-rich groundwaters coupled with efficient utilization and recycling of dissolved organo-phosphorus compounds.

  1. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    Science.gov (United States)

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic

  2. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  3. Nutrient and Phytoplankton Analysis of a Mediterranean Coastal Area

    Science.gov (United States)

    Sebastiá, M. T.; Rodilla, M.

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected ( Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  4. Nutrient and phytoplankton analysis of a Mediterranean coastal area.

    Science.gov (United States)

    Sebastiá, M T; Rodilla, M

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected (Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  5. An Integrated Multimodal Sensor for the On-site Monitoring of the Water Content and Nutrient Concentration of Soil by Measuring the Phase and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Masato FUTAGAWA

    2012-03-01

    Full Text Available We have fabricated a new multimodal sensor chip which is capable of simultaneous on-site measurements of the water content and nutrient concentration. Until now, in agriculture, water content sensors, such as TDR sensors, have been unable to provide accurate measurements, since these sensors are affected by the nutrient concentration in the soil solution. Therefore, tensiometers have generally been used. However, these are large-scale sensors and are not suitable for the precise measurements required in agriculture. Our proposed sensors are the world’s first to enable independent measurements of the water content and nutrient concentration.

  6. PO.RA project. An analysis on gas radon concentrations in soil versus fluctuations in the groundwater table

    International Nuclear Information System (INIS)

    Serentha', C.; Torretta, M.

    2001-01-01

    Man is daily exposed to natural radiation, mainly due to cosmic rays and natural radioactive elements, whose most important radioactive daughters are 222 Rn (radon) and 220 Rn (thoron). Being these ones gaseous, they can spread through the ground, reaching the atmosphere and accumulating in rooms, where their concentrations may be very high. As radon exhalation is strongly connected with the hydrogeological features of the environment, this study tried to find a relationship between fluctuations in the groundwater table and gas radon concentrations in soil, in order to try estimates of indoor radon concentrations [it

  7. Long-term observations on the influence of groundwater level variations on BTEX concentrations in groundwater; Langzeituntersuchungen zum Einfluss von Grundwasserschwankungen auf die BTEX-Konzentration im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Puettmann, W. [J.W. Goethe-Universitaet Frankfurt a. M., Institut fuer Atmosphaere und Umwelt, AG Umweltanalytik, Frankfurt/Main (Germany); Hettwer, K.; Warrelmann, J. [Universitaet Bremen, Zentrum fuer Umweltforschung und Umwelttechnologie, Bremen (Germany); Gaab, S.

    2007-06-15

    A long-term study on natural attenuation and remediation in soil and groundwater at the former military base Schaeferhof-Sued (Niedersachsen) was performed at a former gasoline filling station. At this locality, a large residual source of benzene, toluene, ethylbenzene, xylenes (BTEX) and additional petroleum hydrocarbons is present in the soil. BTEX-concentrations in the groundwater and their correlation with groundwater level variations were monitored for three years. Within the monitoring period, a very dry summer was recorded, which caused the groundwater level to drop by 1.7 m and the BTEX concentrations to increase from 240 {mu}g/l to 1300 {mu}g/l at the site of contamination. The microbial degradation of BTEX was documented by data on consumption of electron acceptors (oxygen, nitrate or sulphate) and production of reduced products (Fe(II), methane). The degradation is further supported by the detection of metabolites. Therefore, the increasing BTEX concentrations were not a consequence of limited biological degradation. (orig.) [German] Auf dem frueher militaerisch genutzten Gelaende Schaeferhof-Sued (Niedersachsen) wurden im Bereich einer ehemaligen Abfuellstation fuer Kraftstoffe Langzeituntersuchungen zum natuerlichen Schadstoffabbau und -rueckhalt im Boden und Grundwasser durchgefuehrt. Der Standort weist eine hohe Restkontamination der Verbindungen Benzol, Toluol, Ethylbenzol und Xylole (BTEX), sowie Mineraloelkohlenwasserstoffen (MKW) in der ungesaettigten Bodenzone auf. Ueber einen Zeitraum von drei Jahren wurden die BTEX-Konzentrationen im Grundwasser und deren Abhaengigkeit von einer Aenderung des Grundwasserstandes untersucht und eine negative Korrelation der Schadstoffkonzentrationen mit der Hoehe des Grundwasserstandes festgestellt. Im Beobachtungszeitraum lag das sehr trockene Sommerhalbjahr 2003, was im Vergleich zum vorhergehenden Winterhalbjahr eine Absenkung des Grundwasserspiegels um 1,7 m zur Folge hatte und die BTEX-Konzentrationen am

  8. Equilibrium concentration of radionuclides in cement/groundwater/carbon steel system

    International Nuclear Information System (INIS)

    Keum, D. K.; Cho, W. J.; Hahn, P. S.

    1997-01-01

    Equilibrium concentration of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment, while it almost entirely exists as the precipitate of Fe(OH) 3 (s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amounts of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements - cesium, strontium, cobalt, nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system. (author)

  9. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A; Lance, P E; Downs, A; Kier, Brian P [EMCON Northwest Inc., Portland, OR (United States)

    1994-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  10. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  11. Concentrations and activity ratios of uranium isotopes in groundwater from Doñana National Park, South of Spain

    Science.gov (United States)

    Bolívar, J. P.; Olías, M.; González-García, F.; García-Tenorio, R.

    2008-08-01

    The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Doñana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and 210Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that 234U/238U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer.

  12. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India.

    Science.gov (United States)

    Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi

    2016-12-15

    Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Groundwater-quality data in the Santa Barbara study unit, 2011: results from the California GAMA Program

    Science.gov (United States)

    Davis, Tracy A.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    elements, nutrients, major and minor ions, silica, total dissolved solids [TDS], alkalinity, and arsenic, chromium, and iron species); and radioactive constituents (radon-222 and gross alpha and gross beta radioactivity). Naturally occurring isotopes (stable isotopes of hydrogen and oxygen in water, stables isotopes of inorganic carbon and boron dissolved in water, isotope ratios of dissolved strontium, tritium activities, and carbon-14 abundances) and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 281 constituents and water-quality indicators were measured. Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 12 percent of the wells in the Santa Barbara study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples generally were within the limits of acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 82 percent of the compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH and to non-regulatory benchmarks established for aesthetic concerns by

  14. Impacts of swine manure pits on groundwater quality

    International Nuclear Information System (INIS)

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.

    2002-01-01

    New information is presented on impacts on groundwater by manure storage in deep ground pits. - Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and δ 15 N and δ 18 O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal

  15. Impacts of swine manure pits on groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D

    2002-12-01

    New information is presented on impacts on groundwater by manure storage in deep ground pits. - Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and {delta}{sup 15}N and {delta}{sup 18}O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human

  16. Occurrence and distribution of organic chemicals and nutrients and comparison of water-quality data from public drinking-water supplies in the Columbia aquifer in Delaware, 2000-08

    Science.gov (United States)

    Reyes, Betzaida

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey, conducted a groundwater-quality investigation to (a) describe the occurrence and distribution of selected contaminants, and (b) document any changes in groundwater quality in the Columbia aquifer public water-supply wells in the Coastal Plain in Delaware between 2000 and 2008. Thirty public water-supply wells located throughout the Columbia aquifer of the Delaware Coastal Plain were sampled from August through November of 2008. Twenty-two of the wells in the sampling network for this project were previously sampled in 2000. Eight new wells were selected to replace wells no longer in use. Groundwater collected from the wells was analyzed for the occurrence and distribution of selected pesticides, pesticide degradates, volatile organic compounds, nutrients, and major inorganic ions. Nine of the wells were analyzed for radioactive elements (radium-226, radium-228, and radon). Groundwater-quality data were compared for sites sampled in both 2000 and 2008 to document any changes in water quality. One or more pesticides were detected in samples from 29 of the 30 wells. There were no significant differences in pesticide and pesticide degradate concentrations and similar compounds were detected when comparing sampling results from 2000 and 2008. Pesticide and pesticide degradate concentrations were generally less than 1 microgram per liter. Twenty-four compounds, 14 pesticides, and 10 pesticide degradates were detected in at least one sample; the pesticide degradates, metolachlor ethanesulfonic acid, deethylatrazine, and alachlor ethanesulfonic acid were the most frequently detected compounds, each found in more than 50 percent of samples. Almost 80 percent of the detected pesticides were agricultural herbicides, which reflects the prevalence and wide distribution of agriculture in sampled areas, as well the dominance of

  17. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    Science.gov (United States)

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  18. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris.

    Science.gov (United States)

    Alketife, Ahmed M; Judd, Simon; Znad, Hussein

    2017-01-01

    The synergistic effects and optimization of nitrogen (N) and phosphorus (P) concentrations on the growth of Chlorella vulgaris (CCAP 211/11B, CS-42) and nutrient removal have been investigated under different concentrations of N (0-56 mg/L) and P (0-19 mg/L). The study showed that N/P ratio has a crucial effect on the biomass growth and nutrient removal. When N/P=10, a complete P and N removal was achieved at the end of cultivation with specific growth rate (SGR) of 1 d -1 and biomass concentration of 1.58 g/L. It was also observed that when the N content <2.5 mg/L, the SGR significantly reduced from 1.04 to 0.23 d -1 and the maximum biomass produced was decreased more than three-fold to 0.5 g/L. The Box-Behnken experimental design and response surface method were used to study the effects of the initial concentrations (P, N and C) on P and N removal efficiencies. The optimized P, N and C concentrations supporting 100% removal of both P and N at an SGR of 0.95 were 7, 55 and 10 mg/L respectively, with desirability value of 0.94. The results and analysis obtained could be very useful when applying the microalgae for efficient wastewater treatment and nutrient removal.

  19. Nitrate in Danish groundwater during the last 60 years

    DEFF Research Database (Denmark)

    Hansen, B; Thorling, L; Dalgaard, Tommy

    2011-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater (see Figure 1). Regulation and technical improvements in the intensive farming in Denmark...

  20. Validation of two portable instruments to measure iron concentration in groundwater in rural Bangladesh.

    Science.gov (United States)

    Merrill, Rebecca D; Shamim, Abu Ahmed; Labrique, Alain B; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Keith P

    2009-06-01

    Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions.

  1. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  2. Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007-08

    Science.gov (United States)

    Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.

    2012-01-01

    phosphorus concentrations at most UMIS and USNK sites peaked in the spring during runoff and then decreased through the remainder of the sampling period. Total phosphorus and orthophosphate concentrations in OZRK streams peaked during summer indicating a runoff-based source of both nutrients. Orthophosphate concentrations may increase in streams in the late summer when surface runoff composes less of total streamflow, and when groundwater containing orthophosphate becomes a more dominant source in streams during lower flows. Seston chlorophyll a concentrations were greatest early in the growing season (spring), whereas the spring runoff events coincided with reductions in benthic algal chlorophyll a biomass likely because of scour of benthic algae from the channel bottom that are entrained in the water column during that period. Nitrate, ammonia, and orthophosphate concentrations also decreased during that same period, indicating dilution in the spring during runoff events. The data from this study indicate that the source of water (surface runoff or groundwater) to a stream and the intensity of major runoff events are important factors controlling instream concentrations. Biological processes appear to affect nutrient concentrations during more stable lower flow periods in later summer, fall, and winter when residence time of water in a channel is longer, which allows more time for biological uptake and transformations. Management of nutrient conditions in streams is challenging and requires an understanding of multiple factors that affect in-stream nutrient concentrations and biological uptake and growth.

  3. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary

    Science.gov (United States)

    Liu, Jianan; Du, Jinzhou; Wu, Ying; Liu, Sumei

    2018-04-01

    In this study, we used a 224Ra mass balance model to evaluate the importance of submarine groundwater discharge (SGD) for the budgets of biogenic elements in two major Chinese estuaries: the Pearl River Estuary (PRE) and the Changjiang River Estuary (CRE). The apparent water age in the PRE was estimated to be 4.8 ± 1.1 days in the dry season and 1.8 ± 0.6 days in the wet season using a physical model based on the tidal prism. In the dry season, the water age in the CRE was estimated to be 11.7 ± 3.0 days using the 224Ra/223Ra activities ratios apparent age model. By applying the 224Ra mass balance model, we obtained calculations of the SGD flow in the PRE of (4.5-10) × 108 m3 d-1 (0.23-0.50 m3 m-2 d-1) and (1.2-2.7) × 108 m3 d-1 (0.06-0.14 m3 m-2 d-1) in the dry season and wet season, respectively, and the estimated SGD flux was (4.6-11) × 109 m3 d-1 (0.18-0.45 m3 m-2 d-1) in the dry season of the CRE. In comparison with the nutrient fluxes from the rivers, the SGD-derived nutrient fluxes may play a vital role in controlling the nutrient budgets and stoichiometry in the study areas. The large amount of dissolved inorganic nitrogen and phosphorus fluxes together with high N: P ratios into the PRE and CRE would potentially contribute to eutrophication and the occurrence of red tides along the adjacent waters.

  4. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    Science.gov (United States)

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho

  5. Linking nutrient enrichment, sediment erodibility and biofilms

    Science.gov (United States)

    Conrad, B.; Mahon, R.; Sojka, S. L.

    2014-12-01

    Sediment movement in coastal lagoons affects nutrient flux and primary producer growth. Previous research has shown that sediment erodibility is affected by biofilm concentration and that growth of benthic organisms, which produce biofilm, is affected by nutrient enrichment. However, researchers have not examined possible links between nutrient addition and sediment erodibility. We manipulated nutrient levels in the water column of 16 microcosms filled with homogenized sediment from a shallow coastal lagoon and artificial seawater to determine the effects on biofilm growth, measured through chlorophyll a and colloidal carbohydrate concentrations. Erosion tests using a Gust microcosm were conducted to determine the relationship between sediment erodibility and biofilm concentration. Results show that carbohydrate levels decreased with increasing nutrient enrichment and were unrelated to chlorophyll concentrations and erodibility. The nutrient levels did not predictably affect the chlorophyll levels, with lower chlorophyll concentrations in the control and medium enrichment treatments than the low and high enrichment treatments. Controls on biofilm growth are still unclear and the assumed relationship between carbohydrates and erodibility may be invalid. Understanding how biofilms respond to nutrient enrichment and subsequent effects on sediment erodibility is essential for protecting and restoring shallow coastal systems.

  6. EPA's Review of Concentrated Animal Feeding Operation (CAFO) Permits and Nutrient Management Plans in the Chesapeake Bay Watershed

    Science.gov (United States)

    Starting in 2013, EPA conducted reviews of Concentrated Animal Feeding Operations (CAFOs) permits and nutrient management plans (NMPs) in six of the Bay jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia).

  7. Nitrogen fate in a subtropical mangrove swamp: Potential association with seawater-groundwater exchange.

    Science.gov (United States)

    Xiao, Kai; Wu, Jiapeng; Li, Hailong; Hong, Yiguo; Wilson, Alicia M; Jiao, Jiu Jimmy; Shananan, Meghan

    2018-04-18

    Coastal mangrove swamps play an important role in nutrient cycling at the land-ocean boundary. However, little is known about the role of periodic seawater-groundwater exchange in the nitrogen cycling processes. Seawater-groundwater exchange rates and inorganic nitrogen concentrations were investigated along a shore-perpendicular intertidal transect in Daya Bay, China. The intertidal transect comprises three hydrologic subzones (tidal creek, mangrove and bare mudflat zones), each with different physicochemical characteristics. Salinity and hydraulic head measurements taken along the transect were used to estimate the exchange rates between seawater and groundwater over a spring-neap tidal cycle. Results showed that the maximum seawater-groundwater exchange occurred within the tidal creek zone, which facilitated high-oxygen seawater infiltration and subsequent nitrification. In contrast, the lowest exchange rate found in the mangrove zone caused over-loading of organic matter and longer groundwater residence times. This created an anoxic environment conducive to nitrogen loss through the anammox and denitrification processes. Potential oxidation rates of ammonia and nitrite were measured by the rapid and high-throughput method and rates of denitrification and anammox were measured by the modified membrane inlet mass spectrometry (MIMS) with isotope pairing, respectively. In the whole transect, denitrification accounted for 90% of the total nitrogen loss, and anammox accounted for the remaining 10%. The average nitrogen removal rate was about 2.07g per day per cubic meter of mangrove sediments. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Arsenic geochemistry of groundwater in Southeast Asia.

    Science.gov (United States)

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  9. Tomato root growth and phosphorus absorption kinetics by tomato plants as affected by phosphorus concentration in nutrient solution

    International Nuclear Information System (INIS)

    Fontes, P.C.R.; Barber, S.A.

    1984-01-01

    To evaluate the effects P concentrations in nutrient solution on root growth and on root physiological characteristics involved in P uptake by tomato Lycopersicon esculentum Mill plants, six seedlings were grown in nutrient solution at initial concentrations of 48.5, 97, 194 and 388 μMP until one day before harvest. They were then transferred to solutions with P at 20 μM and 30 μM, and the depletion curves and Michaelis-Menten parameters were determined. The conclusions were that as P supply increased and as the plant P contents are sufficient for maximum growth, the rate of P uptake tends to be lower. The results also indicate that total P uptake by tomato seedlings depends on the amount of root surface area exposed to P. (M.A.C.) [pt

  10. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Directory of Open Access Journals (Sweden)

    E. Kristensen

    2018-02-01

    Full Text Available Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC, coloured dissolved organic matter (CDOM and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5–45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only, total nitrogen (TN, lake only, total dissolved phosphorus (TDP, groundwater only, total phosphorus (TP, lake only, δ18O ∕ δ16O isotope ratios and fluorescent dissolved organic matter (FDOM components derived from parallel factor analysis (PARAFAC. The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS. The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs of the lake (0.25–3.5 years in 0.25-year increments. These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration

  11. Temporal variation of transit time of rainfall-runoff water and groundwater flow dynamics inferred by noble gasses concentration (SF6, CFCs) in a forested small catchment (Fukushima, Japan)

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Time variant transit time of water in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway and water storage. Though rainstorm event has been recognized as active phase on catchment hydrology, accurate and precise time variance of water transit time and related water dynamics during rainstorm have not been well clarified yet. Here, in order to reveal temporal variation of mean transit time of groundwater and related hydrological processes in a forested small catchment during rainstorm event, periodic and intensive field observations (15 - 17th July 2015, rainfall of 100.8 mm in total) were conducted in Yamakiya district (Fukushima, Japan) from September 2014 to December 2015. Discharge volume, groundwater table and precipitation amount were measured in 10 minutes interval. Water samples were taken from groundwater, discharge water, soil water and precipitation for determination of stable isotopic compositions (δ18O, δ2H), inorganic solutes concentration and dissolved noble gasses concentration (CFC11, CFC12, CFC113, SF6) in water. Storm hydrograph and groundwater table clearly responded to rainfall event especially with more than 30 mm per day throughout monitoring period. According to SF6 concentration in water, the mean transit time of discharge water (perennial spring) showed 3 - 6.5 years in the no-rainfall period (steady state), but fluctuated from zero to 12.5 years in the rainstorm event with totally 100.8 mm (unsteady state). The mean transit time of discharge water dramatically altered from zero to 12.5 years from before to after the tentative hydrograph peak in the rising limb, indicating new water components were dominant before tentative hydrograph peak, whereas deep groundwater component with longer residence time contributed much to discharge after the tentative hydrograph peak. On the other hand, mean residence time of groundwater (water in 5 m well) ranged from 0.5 to 11.5 years

  12. Groundwater phosphorus in forage-based landscape with cow-calf operation.

    Science.gov (United States)

    Sigua, Gilbert C; Chase, Chad C

    2014-02-01

    Forage-based cow-calf operations may have detrimental impacts on the chemical status of groundwater and streams and consequently on the ecological and environmental status of surrounding ecosystems. Assessing and controlling phosphorus (P) inputs are, thus, considered the key to reducing eutrophication and managing ecological integrity. In this paper, we monitored and evaluated P concentrations of groundwater (GW) compared to the concentration of surface water (SW) P in forage-based landscape with managed cow-calf operations for 3 years (2007-2009). Groundwater samples were collected from three landscape locations along the slope gradient (GW1 10-30% slope, GW2 5-10% slope, and GW3 0-5% slope). Surface water samples were collected from the seepage area (SW 0% slope) located at the bottom of the landscape. Of the total P collected (averaged across year) in the landscape, 62.64% was observed from the seepage area or SW compared with 37.36% from GW (GW1 = 8.01%; GW2 = 10.92%; GW3 = 18.43%). Phosphorus in GW ranged from 0.02 to 0.20 mg L(-1) while P concentration in SW ranged from 0.25 to 0.71 mg L(-1). The 3-year average of P in GW of 0.09 mg L(-1) was lower than the recommended goal or the Florida's numeric nutrients standards (NNS) of 0.12 mg P L(-1). The 3-year average of P concentration in SW of 0.45 mg L(-1) was about fourfold higher than the Florida's NNS value. Results suggest that cow-calf operation in pasture-based landscape would contribute more P to SW than in the GW. The risk of GW contamination by P from animal agriculture production system is limited, while the solid forms of P subject to loss via soil erosion could be the major water quality risk from P.

  13. Spatial and temporal variability of fluoride concentrations in groundwater resources of Larestan and Gerash regions in Iran from 2003 to 2010.

    Science.gov (United States)

    Amini, Hassan; Haghighat, Gholam Ali; Yunesian, Masud; Nabizadeh, Ramin; Mahvi, Amir Hossein; Dehghani, Mohammad Hadi; Davani, Rahim; Aminian, Abd-Rasool; Shamsipour, Mansour; Hassanzadeh, Naser; Faramarzi, Hossein; Mesdaghinia, Alireza

    2016-02-01

    There is discrepancy about intervals of fluoride monitoring in groundwater resources by Iranian authorities. Spatial and temporal variability of fluoride in groundwater resources of Larestan and Gerash regions in Iran were analyzed from 2003 to 2010 using a geospatial information system and the Mann-Kendall trend test. The mean concentrations of fluoride for the 8-year period in the eight cities and 31 villages were 1.6 and 2.0 mg/l, respectively; the maximum values were 2.4 and 3.8 mg/l, respectively. Spatial, temporal, and spatiotemporal variability of fluoride in overall groundwater resources were relatively constant over the years. However, results of the Mann-Kendall trend test revealed a monotonic trend in the time series of one city and 11 villages for the 8-year period. Specifically, one city and three villages showed positive significant Kendall's Tau values, suggesting an upward trend in fluoride concentrations over the 8-year period. In contrast, seven villages displayed negative significant Kendall's Tau values, arguing for a downward trend in fluoride concentrations over the years. From 2003 to 2010, approximately 52 % of the Larestan and Gerash areas have had fluoride concentrations above the maximum permissible Iranian drinking water standard fluoride level (1.4 mg/l), and about 116,000 people were exposed to such excess amounts. Therefore, our study supports for a close monitoring of fluoride concentrations from health authorities in monthly intervals, especially in villages and cities that showed positive trend in fluoride concentrations. Moreover, we recommend simultaneous implementation of cost-effective protective measures or interventions until a standard fluoride level is achieved.

  14. Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes

    Science.gov (United States)

    Robertson, Wendy Marie; Böhlke, John Karl; Sharp, John M.

    2017-01-01

    Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans-Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3−concentrations. Median increases in groundwater NO3− (by 0.7–0.9 mg-N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans-Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human-influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3− to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3− (122–910 kg-N/ha) was sufficient to cause the observed groundwater NO3− increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3− trends can be explained by small volumes of high NO3− modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long-term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.

  15. Application of hexametaphosphate as a nutrient for in situ bioreclamation

    International Nuclear Information System (INIS)

    Steiof, M.; Dott, W.

    1995-01-01

    The investigation concerns bioremediation of an old fuel oil-contaminated site where the amount of leaked fuel oil was approximately 15,000 to 17,000 L. The larger portion of the oil floating on the groundwater was removed at the end of the 1970s. The highest concentrations of total petroleum hydrocarbons (TPH) in the soil are about 16,000 mg/kg dry weight. The pollution is distributed to 4 to 9 m below ground level, thus lying in the aquifer. The in situ remediation design includes two infiltration wells, two production wells, and an on-site groundwater processing plant. To cover the electron acceptor demand of the metabolizing microorganisms, hydrogen peroxide and nitrate, as well as phosphate, were added to the reinfiltrated water to cover the nutrient demand. Using disodium dihydrogen diphosphate as a phosphorus source resulted in the precipitation of insoluble phosphates, which plugged the infiltration wells and the surrounding aquifer. Alternatively, sodium hexametaphosphate was used as a phosphorus source. Using polyphosphate as a phosphorus source eliminated precipitation and plugging in the infiltration wells and, for the first time, a phosphorus supply for the whole contaminated area was observed

  16. Ground-water flow and water quality in the Upper Floridan aquifer, southwestern Albany area, Georgia, 1998-2001

    Science.gov (United States)

    Warner, Debbie; Lawrence, Stephen J.

    2005-01-01

    During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected

  17. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  18. Predicting Groundwater Chlorine Concentration in Dezful Aquifer Using the Panel Data Model

    Directory of Open Access Journals (Sweden)

    Ghazaleh Hadighanavat

    2015-12-01

    Full Text Available Groundwater resources are of great importance in arid and semi-arid regions due to their ease of access and low extraction costs. Compared to studies conducted on the quantity of groundwater resources, less research has been devoted to groundwater qulity. The present study was thus designed and implemented to forecast groundwater chlorine variations in Dazful Plain in Khuzistan Province, Iran. " Panel data" is a regression model that considers variables of different units over time. In this study, it was exploitedfor the simultaneous prediction of groundwater quality in different wells. For this purpose, meteorological parameters such as rain and ET0 as well as the quality parameters including EC, sodium, calcium, and magnesium were collected in ten wells in the study area on a seasonal basis over a period of 8 years. In the next step, the data thus collected were subjected to different "panel data" regression models including Common Effects, Fixed Effects, and Random Effects. The results showed that the Random Effects Regression Model was best suited for predicting groundwater quality. Moreover, performance indicators (R2= 0.96, RMSE= 2.445 revealed the effectiveness of this method.

  19. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand.

    Science.gov (United States)

    Sheibley, Richard W; Duff, John H; Tesoriero, Anthony J

    2014-11-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO), ammonium (NH), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (/, , , and ) correlated with NO retention but not NH or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO demand. However, because the fraction of median reach-scale travel time due to transient storage () was ≤1.2% across the sites, only a relatively small demand for NO could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    Science.gov (United States)

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  1. Groundwater flow in a coastal peatland and its influence on submarine groundwater discharge

    Science.gov (United States)

    Ptak, T.; Ibenthal, M.; Janssen, M.; Massmann, G.; Lenartz, B.

    2017-12-01

    Coastal peatlands are characterized by intense interactions between land and sea, comprising both a submarine discharge of fresh groundwater and inundations of the peatland with seawater. Nutrients and salts can influence the biogeochemical processes both in the shallow marine sediments and in the peatland. The determination of flow direction and quantity of groundwater flow are therefore elementary. Submarine groundwater discharge (SGD) has been reported from several locations in the Baltic. The objective of this study is to quantify the exchange of fresh and brackish water across the shoreline in a coastal peatland in Northeastern Germany, and to assess the influence of a peat layer extending into the Baltic Sea. Below the peatland, a shallow fine sand aquifer differs in depth and is limited downwards by glacial till. Water level and electrical conductivity (EC) are permanently measured in different depths at eight locations in the peatland. First results indicate a general groundwater flow direction towards the sea. Electrical conductivity measurements suggest different permeabilities within the peat layer, depending on its thickness and degradation. Near the beach, EC fluctuates partially during storm events due to seawater intrusion and reverse discharge afterwards. The groundwater flow will be verified with a 3D model considering varying thicknesses of the aquifer. Permanent water level and electrical conductivity readings, meteorological data and hydraulic conductivity from slug tests and grain size analysis are the base for the calibration of the numerical model.

  2. Groundwater-quality data in the Klamath Mountains study unit, 2010: results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the 8,806-square-mile Klamath Mountains (KLAM) study unit was investigated by the U.S. Geological Survey (USGS) from October to December 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The KLAM study unit was the thirty-third study unit to be sampled as part of the GAMA-PBP. The GAMA Klamath Mountains study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined by the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the KLAM study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallower groundwater may be more vulnerable to surficial contamination. In the KLAM study unit, groundwater samples were collected from sites in Del Norte, Siskiyou, Humboldt, Trinity, Tehama, and Shasta Counties, California. Of the 39 sites sampled, 38 were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the primary aquifer system in the study unit (grid sites), and the remaining site was non-randomized (understanding site). The groundwater samples were analyzed for basic field parameters, organic constituents (volatile organic compounds [VOCs] and pesticides and pesticide degradates), inorganic constituents (trace elements, nutrients, major and minor ions, total dissolved solids [TDS]), radon-222, gross alpha and gross beta

  3. Investigation on shallow groundwater in a small basin using natural radioisotopes

    International Nuclear Information System (INIS)

    Hamada, Hiromasa; Komae, Takami

    1996-01-01

    The authors conducted an investigation on shallow groundwater using natural radioisotopes as indicators in the small basin of the Hinuma River, Kasama City, Ibaraki Prefecture, Japan. 3 H concentrations in the groundwater showed that it originated from precipitation in the 1960's. Since 222 Rn concentrations decreased as groundwater flowed downstream, they were influenced by infiltration of surface water. Especially, during the irrigation period, the decrease of 222 Rn concentrations was remarkable in the lowland. From the distribution of 222 Rn concentrations in surface water, the sections where groundwater seeped into a river were found, and a quantitative analysis of groundwater seepage in the two sections was conducted on the basis of 222 Rn concentrations in groundwater and in surface water. The ratios of groundwater seepage to the flow at the upstream station for the two sections were about 5% and 10%, respectively. The water movement within the basin, i.e., the actual manner in which surface water infiltrated underground and groundwater seeped into a river, was clarified by analyzing the variations of natural radioisotope concentrations in water and the water balance of the basin. (author)

  4. Nutrient and sediment concentrations and loads in the Steele Bayou Basin, northwestern Mississippi, 2010–14

    Science.gov (United States)

    Hicks, Matthew B.; Murphy, Jennifer C.; Stocks, Shane J.

    2017-06-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers-Vicksburg District, monitored streamflow, water quality, and sediment at two stations on the Steele Bayou in northwestern Mississippi from October 2010 through September 2014 to characterize nutrient and sediment concentrations and loads in areas where substantial implementation of conservation efforts have been implemented. The motivation for this effort was to quantify improvements, or lack thereof, in water quality in the Steele Bayou watershed as a result of implementing large- and small-scale best-management practices aimed at reducing nutrient and sediment concentrations and loads. The results of this study document the hydrologic, water-quality, and sedimentation status of these basins following over two decades of ongoing implementation of conservation practices.Results from this study indicate the two Steele Bayou stations have comparable loads and yields of total nitrogen, phosphorus, and suspended sediment when compared to other agricultural basins in the southeastern and central United States. However, nitrate plus nitrite yields from basins in the Mississippi River alluvial plain, including the Steele Bayou Basin, are generally lower than other agricultural basins in the southeastern and central United States.Seasonal variation in nutrient and sediment loads was observed at both stations and for most constituents. About 50 percent of the total annual nutrient and sediment load was observed during the spring (February through May) and between 25 and 50 percent was observed during late fall and winter (October through January). These seasonal patterns probably reflect a combination of seasonal patterns in precipitation, runoff, streamflow, and in the timing of fertilizer application.Median concentrations of total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and suspended sediment were slightly higher at the upstream station, Steele Bayou near Glen Allan

  5. Nitrates in Groundwater Discharges from the Azores Archipelago: Occurrence and Fluxes to Coastal Waters

    Directory of Open Access Journals (Sweden)

    J. Virgílio Cruz

    2017-02-01

    Full Text Available Groundwater discharge is an important vector of chemical fluxes to the ocean environment, and as the concentration of nutrients is often higher in discharging groundwater, the deterioration of water quality in the receiving environment can be the result. The main objective of the present paper is to estimate the total NO3 flux to coastal water bodies due to groundwater discharge in the volcanic Azores archipelago (Portugal. Therefore, 78 springs discharging from perched-water bodies have been monitored since 2003, corresponding to cold (mean = 14.9 °C and low mineralized (47.2–583 µS/cm groundwater from the sodium-bicarbonate to sodium-chloride water types. A set of 36 wells was also monitored, presenting groundwater with a higher mineralization. The nitrate content in springs range between 0.02 and 37.4 mg/L, and the most enriched samples are associated to the impact of agricultural activities. The total groundwater NO3 flux to the ocean is estimated in the range of 5.23 × 103 to 190.6 × 103 mol/km2/a (∑ = ~523 × 103 mol/km2/a, exceeding the total flux associated to surface runoff (∑ = ~281 × 103 mol/km2/a. In the majority of the islands, the estimated fluxes are higher than runoff fluxes, with the exception of Pico (47.2%, Corvo (46% and Faial (7.2%. The total N-NO3 flux estimated in the Azores (~118.9 × 103 mol/km2/a is in the lower range of estimates made in other volcanic islands.

  6. Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas

    Directory of Open Access Journals (Sweden)

    S. Binet

    2009-12-01

    Full Text Available Water chemical analysis of 100 springs from the Orco and the Tinée valleys (Western Italy and Southern France and a 7 year groundwater chemistry monitoring of the 5 main springs were performed. All these springs drain from crystalline rock slopes. Some of these drain from currently active gravitational slope deformations.

    All groundwaters flowing through presently unstable slopes show anomalies in the sulfate concentrations compared to stable aquifers. Particularly, an increase of sulfate concentrations was observed repeatedly after each of five consecutive landslides on the La Clapière slope, thus attesting to the mechanical deformations are at the origin of this concentration change. Significant changes in the water chemistry are produced even from slow (mm/year and low magnitude deformations of the geological settings.

    Pyrite nuclei in open fractures were found to be coated by iron oxides. This suggests that the increase of dissolved sulfate relates to oxidative dissolution of Pyrite. Speciation calculations of Pyrite versus Gypsum confirmed that observed changes in the sulfate concentrations is predominantly provided from Pyrite. Calculated amounts of dissolved minerals in the springs water was obtained through inverse modelling of the major ion water analysis data. It is shown that the concentration ratio of calculated dissolved Pyrite versus calculated dissolved gneiss rock allows us to unambiguously distinguish water from stable and unstable areas. This result opens an interesting perspective for the follow-up of sliding or friction dynamic in landslides or in (a seismic faults.

  7. Natural 222Rn and 220Rn indicate the impact of the Water–Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River estuary, China

    International Nuclear Information System (INIS)

    Xu, Bochao; Xia, Dong; Burnett, William C.; Dimova, Natasha T.; Wang, Houjie; Zhang, Longjun; Gao, Maosheng; Jiang, Xueyan; Yu, Zhigang

    2014-01-01

    Highlights: • 220 Rn and 222 Rn were combined to locate intensive SGD sites. • Influence of WSRS to SGD was found for the first time. • SGD was a dominant nutrient pathway in the Yellow River estuary. - Abstract: Submarine groundwater discharge (SGD) in estuaries brings important influences to coastal ecosystems. In this study, we observed significant SGD in the Yellow River estuary, including a fresh component, during the Water–Sediment Regulation Scheme (WSRS) period. We used the 222 Rn and 220 Rn isotope pair to locate sites of significant SGD within the study area. Three apparent SGD locations were found during a non-WSRS period, one of which became much more pronounced, according to the remarkably elevated radon levels, during the WSRS. Increased river discharge (from 245 m 3 s −1 to 3560 m 3 s −1 ) and the elevated river water level (from 11 m to 13 m) during the WSRS led to a higher hydraulic head, enhancing groundwater discharge in the estuary. Our results suggest that high river discharge (>3000 m 3 s −1 ) might be necessary for elevated fresh submarine groundwater discharging (FSGD). Vertical profiles of salinity, DO and turbidity anomalies along the benthic boundary layer also indicated significant FSGD in the estuary during the WSRS. Nutrient concentrations had positive correlations with 222 Rn during a 24-h observation, which indicates that SGD is a dominant nutrient pathway in this area

  8. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations.

    Science.gov (United States)

    Gross, Sherilyn A; Avens, Heather J; Banducci, Amber M; Sahmel, Jennifer; Panko, Julie M; Tvermoes, Brooke E

    2013-04-01

    Concerns have arisen among the public regarding the potentialfor drinking-water contamination from the migration of methane gas and hazardous chemicals associated with hydraulic fracturing and horizontal drilling. However, little attention has been paid to the potentialfor groundwater contamination resulting from surface spills from storage and production facilities at active well sites. We performed a search for publically available data regarding groundwater contamination from spills at ULS. drilling sites. The Colorado Oil and Gas Conservation Commission (COGCC) database was selected for further analysis because it was the most detailed. The majority ofspills were in Weld County, Colorado, which has the highest density of wells that used hydraulic fracturing for completion, many producing both methane gas and crude oil. We analyzed publically available data reported by operators to the COGCC regarding surface spills that impacted groundwater From July 2010 to July 2011, we noted 77 reported surface spills impacting the groundwater in Weld County, which resulted in surface spills associated with less than 0.5% of the active wells. The reported data included groundwater samples that were analyzed for benzene, toluene, ethylbenzene, andxylene (BTEX) components of crude oil. For groundwater samples taken both within the spill excavation area and on the first reported date of sampling, the BTEX measurements exceeded National Drinking Water maximum contaminant levels (MCLs) in 90, 30, 12, and 8% of the samples, respectively. However, actions taken to remediate the spills were effective at reducing BJTEX levels, with at least 84% of the spills reportedly achieving remediation as of May 2012. Our analysis demonstrates that surface spills are an important route of potential groundwater contamination from hydraulic fracturing activities and should be a focus of programs to protect groundwater While benzene can occur naturally in groundwater sources, spills and migration

  9. Detailing new and emerging groundwater pollutants and their potential risk to groundwater environments

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan; Manamsa, Katya

    2014-01-01

    Many different sources and pathways into groundwater: wastewater, biosolids from water treatment and animal wastes are important Frequently detected groups of ECs include antimicrobials, lifestyle compounds, pharmaceuticals Although mostly detected in low ng/L concentrations in groundwater there are many examples of hot spots TPs can be found at concentrations higher than the parent and may be more mobile or polar, and more toxic ECs can be typical of source/landuse Some are re...

  10. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  11. Nutrient and secondary metabolite concentrations in a savanna are independently affected by large herbivores and shoot growth rate

    CSIR Research Space (South Africa)

    Scogings, PF

    2014-01-01

    Full Text Available Carbon-based secondary metabolites (CBSMs) such as tannins are assumed to function as plant defences against herbivores. CBSMs are thought to be inversely related to growth rate and nutrient concentrations because a physiological trade-off exists...

  12. Oxygen and diverse nutrients influence the water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    Science.gov (United States)

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  15. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    International Nuclear Information System (INIS)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-01-01

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ"3"7Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water. • Groundwater

  16. Determination of groundwater flow velocity by radon measurements

    International Nuclear Information System (INIS)

    Hohn, E.; von Gunten, H.R.

    1990-01-01

    The groundwater resources of glacio-fluvial perialpine valleys are recharged significantly by the infiltration from rivers. The groundwater residence times between rivers and wells should be known in groundwater management problems. Short residence times can be estimated using radon. Radon concentrations in rivers are usually very low. Upon filtration and movement of the water in the ground, radon is picked up and its concentration increases by 2-3 orders of magnitude according to radioactive growth laws. Residence times and flow velocities can be estimated from the increasing radon concentrations measured in groundwater sampling tubes at different distances from the river. Results obtained with this method agree with the results from experiments with artificial tracers

  17. phisco-chemical studies concerning naturally occuring radiocuclides and heavy metal concentrations in groundwater

    International Nuclear Information System (INIS)

    Abd Allah, A.A.A.

    2011-01-01

    The present work is a comprehensive of drinking water quality from various rural regions of Egypt. People are living in these rural regions have a problem of scarcely water resources. They mainly depend on groundwater resources for drinking. These water resources may be contaminated with both naturally and/or industrial pollutants unexpected. In this study, several groundwater samples are obtained from certain regions in Egypt; physical, chemical and radiological parameters are examined. Then, compared to the standard limits values of the world health organization. A new modified ion exchange resin was prepared in our laboratory with a high efficiency factor which may be used for reducing the heavy metals that are being found in groundwater samples. The removal of heavy metals such as, Pb (II), Co (II) and Mn (II) ions was carried out by the modified ion exchange resin using Batch sorption experiments. The optimum condition of the removal efficiency was conducted under different parameters such as; effect of ph, initial ion concentrations, weight loaded and contact time to determine the optimum conditions for the resin function. Kinetic studies are performed using first and second order kinetic equations. The sorption kinetic experiments are found to be agreeing well with the second order kinetic equation. The particle diffusion model was also studied. three isotherm equations are applied for sorption of the investigated elements at equilibrium are well described by the Freundlich isotherm equation indicating that sorption process of those elements are applied with heterogeneous adsorption reaction. Dubinin and Radushkevich (D-R) isotherm equation is also applied. The free energy of the adsorption process is also given in the range of the ion exchange reaction.

  18. Differences in nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia

    NARCIS (Netherlands)

    Erftemeijer, P.L.A.

    1994-01-01

    Water column, sediment and plant parameters were studied in six tropical seagrass beds in South Sulawesi, Indonesia, to evaluate the relation between seagrass bed nutrient concentrations and sediment type. Coastal seagrass beds on terrigenous sediments had considerably higher biomass of

  19. Mixing-induced groundwater denitrification beneath a manured field in southern Alberta, Canada

    International Nuclear Information System (INIS)

    McCallum, J.E.; Ryan, M.C.; Mayer, B.; Rodvang, S.J.

    2008-01-01

    Contamination of shallow groundwater by NO 3 - from manure may occur under fields where manure is spread as fertilizer and for disposal. Attenuation of NO 3 - in groundwater occurs through denitrification under certain conditions, or NO 3 - -contaminated younger groundwater may mix with older groundwater, lowering the NO 3 - concentration. In this study, δ 15 N and δ 18 O values of NO 3 - , and δ 18 O and δ 2 H values in groundwater under a manured field were evaluated to determine if groundwater NO 3 - concentrations were influenced through mixing of shallower, manure-impacted groundwater with older groundwater, or if denitrification was reducing NO 3 - concentrations. The younger groundwater showed clear evidence of manure impact with elevated Cl - (∼85 mg L -1 ) and NO 3 - concentrations (∼50 mg NO 3 -N L -1 ), and δ 15 N and δ 18 O values of NO 3 - consistent with a manure source. Vertical hydraulic gradients and δ 18 O and δ 2 H values in groundwater suggest older, more reduced groundwater is upwelling locally and mixing with the shallow groundwater. Decreasing NO 3 :Cl ratios, decreasing dissolved O 2 concentrations, and increasing δ 15 N and δ 18 O values of NO 3 - suggest that denitrification occurs locally in the aquifer. The extent of denitrification is proportional to the fraction of deeper groundwater in the aquifer. Denitrification apparently does not proceed in the younger, manure-impacted groundwater in the absence of mixing

  20. Groundwater Quality of Southeastern Brazzaville, Congo

    Directory of Open Access Journals (Sweden)

    Matini Laurent

    2010-01-01

    Full Text Available The groundwater in southeastern Brazzaville (Congo was analyzed for their fluoride contents and others related parameters in rainy season. The fluoride contents in water samples (wells and spring can be gather in three classes in the study area: low, optimal, high. Fluoride concentration in water samples presents a low significant correlation with Ca2+. This suggests that fluoride in the groundwater come from fluoride-bearing minerals such as CaF2 (fluorite. Maps were drawn to show the geographical distribution of EC, Ca2+, Mg2+and F-. Factor analysis and cluster analysis were applied to the dataset. Factor analysis resulted in four factors explained 76.90% of the total groundwater quality variance. Factor 1 (hardness of the groundwater includes total hardness, the concentration of K+, Ca2+ and pH. Factor 2 (low mineralization of the groundwater includes concentrations of TDS, Cl--, SO42+ and EC. Factor 3 (anthropogenic activities with the impact of agricultural fertilizers, farming activities, domestic wastewater, septic tanks includes concentrations of Na+ and NO3-. Factor 4 (weathering of calcium minerals includes concentrations of F-. For cluster analysis, Ward’s method and the Euclidean distance were used. The findings of the cluster analysis are presented in the form of dendrogram of the well water sites (cases. The discriminating parameters between clusters have been highlighted from the Student test. In majority, they are in accordance with those highlighted by factor analysis.

  1. Isolation and identification of Trichoderma harzianum from groundwater: An effective biosorbent for defluoridation of groundwater.

    Science.gov (United States)

    Koshle, Shalini; Mahesh, S; Swamy, S Nanjunda

    2016-01-01

    The ability of non-viable form of Trichoderma harzianum, isolated from fluoride rich groundwater, was investigated as biosorbent for defluoridation of groundwater. Biosorption experiments were carried out at laboratory scale for removal of fluoride from groundwater. Significant effect of operational parameters on fluoride biosorption using Trichoderma harzianum as biosorbent was evaluated by varying operational parameters such as: initial fluoride concentration (2-8 mgl(-1)), biosorbent dose (0.4-1.6g/100ml), groundwater pH (6-10), temperature (30-50 degrees C) and biosorption time (30-120 min). The fluoride adsorption isotherms were modeled by Langmuir and Freundlich isotherms. Our result showed that fluoride biosorption, significantly increased with increase in groundwater pH, biosorbent dose, temperature and biosorption time, whereas increase in initial fluoride concentration reduced fluoride removal. The fluoride biosorption was rapid and maximum fluoride uptake was attained with 1.6g 100ml(-1) biosorbent within 60 min. Optimal pH 10 and temperature 50 degrees C gave maximum defluoridation efficiency. Freundlich isotherm fits well for defluoridation of groundwater using Trichoderma harzianum as biosorbent which indicated that biosorbent surface sites were heterogeneous in nature and fitted into heterogeneous site binding model.

  2. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    Science.gov (United States)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their hydrological differences and the impact that annual and inter-annual climate and hydrological processes have on nutrient delivery. In the arable catchment total reactive P (TRP) concentrations in interpreted pathways declined across the quickflow, interflow and shallow groundwater of the slowflow, while TRP concentrations in the deeper groundwater, mostly contributing to baseflow, remained the same. However, the complexity of the flow pathways in the grassland catchment made it difficult to determine any trends in P concentrations as a

  3. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: Examples from Bangkok and Jakarta

    International Nuclear Information System (INIS)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-01-01

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and akarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl - concentration and δ 18 O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3 - -N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas

  4. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    Science.gov (United States)

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  5. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    and age of the sampled ground water. Quality-control samples (blanks or replicates, or samples for matrix spikes) were collected from approximately 26 percent of the wells, and the analyses of these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the quality of the environmental data was good, with low bias and low variability, and as a result, less than 0.1 percent of the analytes detected in ground-water samples were censored. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is delivered (or, supplied) to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Most constituents that were detected in ground-water samples were reported at concentrations below their established health-based thresholds. VOCs, pesticides and pesticide degradates, and potential wastewater-indicator compounds were detected in about 33 percent or less of the 42 SCRV grid wells. Concentrations of all detected organic constituents were below established health-based thresholds. Perchlorate was detected in approximately 12 percent of the SCRV grid wells; all concentrations reported were below the NL-CA threshold. Additional constituents, including major ions, trace elements, and nutrients were collected at 26 wells (16 grid wells and 10 understanding wells) of the 53 wells sampled f

  6. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  7. Influence of rural land use on streamwater nutrients and their ecological significance

    Science.gov (United States)

    Jarvie, Helen P.; Withers, Paul J. A.; Hodgkinson, Robin; Bates, Adam; Neal, Margaret; Wickham, Heather D.; Harman, Sarah A.; Armstrong, Linda

    2008-02-01

    SummaryConcentrations and loads of N and P fractions were examined for lowland rivers, the Wye and Avon, draining a range of representative agricultural land-use types in two major UK river basins. Data collected over a 2-year period demonstrated important diffuse agricultural source contributions to N and P loads in these rivers. Ground water provided a major source of total dissolved nitrogen (TDN) loads, whereas near-surface sources provided a major contribution to total phosphorus (TP) loads. In terms of aquatic ecology, concentrations of nutrients, at times of eutrophication risk (spring and summer low flows) were of key environmental and management significance. Agricultural diffuse sources provided the major source of long-term P loads across the two basins. However, the results demonstrated the dominance of point-source contributions to TP and SRP concentrations at times of ecological risk. Point sources typically 'tip the balance' of dissolved inorganic P (soluble reactive P, SRP) above the 100 μg l -1 guideline value indicative of eutrophication risk. The significance of point sources for TP and SRP concentrations was shown by (a) the strong correlations between TP, SRP and B concentrations, using B as a tracer of sewage effluent, (b) the dominant contribution of SRP to TP concentrations and (c) the predominant pattern of dilution of SRP and B with flow. The clean Chalk streams draining low intensity grassland in areas of the Avon with sparse human settlement were oligotrophic and P limited with low SRP concentrations under spring and summer baseflows attributable to groundwater sources. The data provide important insights into the ecological functioning of different lowland stream systems. There was evidence of greater SRP losses and N-limitation in a stream which drains a pond system, demonstrating the importance of longer water residence times for biological nutrient uptake.

  8. Groundwater uranium and cancer incidence in South Carolina

    Science.gov (United States)

    Wagner, Sara E.; Burch, James B.; Bottai, Matteo; Puett, Robin; Porter, Dwayne; Bolick-Aldrich, Susan; Temples, Tom; Wilkerson, Rebecca C.; Vena, John E.; Hébert, James R.

    2012-01-01

    Objective This ecologic study tested the hypothesis that census tracts with elevated groundwater uranium and more frequent groundwater use have increased cancer incidence. Methods Data sources included: incident total, leukemia, prostate, breast, colorectal, lung, kidney, and bladder cancers (1996–2005, SC Central Cancer Registry); demographic and groundwater use (1990 US Census); and groundwater uranium concentrations (n = 4,600, from existing federal and state databases). Kriging was used to predict average uranium concentrations within tracts. The relationship between uranium and standardized cancer incidence ratios was modeled among tracts with substantial groundwater use via linear or semiparametric regression, with and without stratification by the proportion of African Americans in each area. Results A total of 134,685 cancer cases were evaluated. Tracts with ≥50% groundwater use and uranium concentrations in the upper quartile had increased risks for colorectal, breast, kidney, prostate, and total cancer compared to referent tracts. Some of these relationships were more likely to be observed among tracts populated primarily by African Americans. Conclusion SC regions with elevated groundwater uranium and more groundwater use may have an increased incidence of certain cancers, although additional research is needed since the design precluded adjustment for race or other predictive factors at the individual level. PMID:21080052

  9. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H.de; Geer, F.C. van; Torfs, P.J.J.F.; Louw, P.G.B. de

    2010-01-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale

  10. [Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching].

    Science.gov (United States)

    Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang

    2012-08-01

    In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.

  11. How to know which food is good for you: bumblebees use taste to discriminate between different concentrations of food differing in nutrient content.

    Science.gov (United States)

    Ruedenauer, Fabian A; Spaethe, Johannes; Leonhardt, Sara D

    2015-07-01

    In view of the ongoing pollinator decline, the role of nutrition in bee health has received increasing attention. Bees obtain fat, carbohydrates and protein from pollen and nectar. As both excessive and deficient amounts of these macronutrients are detrimental, bees would benefit from assessing food quality to guarantee an optimal nutrient supply. While bees can detect sucrose and use it to assess nectar quality, it is unknown whether they can assess the macronutrient content of pollen. Previous studies have shown that bees preferentially collect pollen of higher protein content, suggesting that differences in pollen quality can be detected either by individual bees or via feedback from larvae. In this study, we examined whether and, if so, how individuals of the buff-tailed bumblebee (Bombus terrestris) discriminate between different concentrations of pollen and casein mixtures and thus nutrients. Bumblebees were trained using absolute and differential conditioning of the proboscis extension response (PER). As cues related to nutrient concentration could theoretically be perceived by either smell or taste, bees were tested on both olfactory and, for the first time, chemotactile perception. Using olfactory cues, bumblebees learned and discriminated between different pollen types and casein, but were unable to discriminate between different concentrations of these substances. However, when they touched the substances with their antennae, using chemotactile cues, they could also discriminate between different concentrations. Bumblebees are therefore able to discriminate between foods of different concentrations using contact chemosensory perception (taste). This ability may enable them to individually regulate the nutrient intake of their colonies. © 2015. Published by The Company of Biologists Ltd.

  12. Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002-50

    Science.gov (United States)

    Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.

    2013-01-01

    Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome. In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three springs (Jackson Blue Spring, Baltzell Springs Group, and Sandbag Spring) in the lower Apalachicola–Chattahoochee–Flint River Basin. Estimated nitrate input to groundwater at land surface, based on previous studies of nitrogen fertilizer sales and atmospheric nitrate deposition data, were used in the advective transport models for the period 2002 to 2050. Nitrate concentrations in groundwater samples collected from the six sites during 1993 to 2007 and groundwater age tracer data were used to calibrate the transport aspect of the simulations

  13. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    Science.gov (United States)

    Jurgens, B.C.; Fram, M.S.; Belitz, K.; Burow, K.R.; Landon, M.K.

    2010-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world. Journal compilation ?? 2009 National Ground Water Association. No claim to original US government works.

  14. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand.

    Science.gov (United States)

    Collins, S; Singh, R; Rivas, A; Palmer, A; Horne, D; Manderson, A; Roygard, J; Matthews, A

    2017-11-01

    Intensive agricultural activities are generally associated with nitrogen leaching from agricultural soils, and this nitrogen has the potential to percolate and contaminate groundwater and surface waters. We assessed surface water and groundwater interactions, and nitrogen leaching and its potential attenuation in shallow groundwater in the lower Rangitikei River catchment (832km 2 ), New Zealand. We combined regional- and local-scale field surveys and experiments, nutrient budget modelling, and hydraulic and geochemical methods, to gain an insight into leaching, transformation and transport of nitrogen via groundwaters to the river in the study area. Concurrent river flow gaugings (in January 2015) and a piezometric map, developed from measured depths to groundwater in 110 bores (in October 2014), suggest groundwater discharges to the Rangitikei River in the upper parts of the study area, while there is groundwater recharge near the coast. The groundwater redox characterisation, based on sampling and analysis of 15 mostly shallow bores (shallow groundwater piezometers (3-6mbgl) using single-well push-pull tests. We found generally low levels (shallow groundwater piezometers (>5mbgl), despite being installed under intensive land uses, such as dairying and cropping. Our in-field push-pull tests showed NO 3 -N reduction at four shallow groundwater piezometers, with the rates of reduction varying from 0.04mgNL -1 h - 1 to 1.57mgNL -1 h - 1 . This highlights the importance of a sound understanding of not only the sources, but also transport and transformation, or fate, of nutrients leached from farms, to mitigate the likely impacts of land use on water quality and ecosystem health in agricultural catchments. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Water use and groundwater contamination

    International Nuclear Information System (INIS)

    Elton, J.J.; Livingstone, B.

    1998-01-01

    A general review of the groundwater resources in Saskatchewan and their vulnerability to contamination was provided. In particular, the use of water and the effects on water by the oil and gas industry in Saskatchewan were discussed. It was suggested that public concerns over scarcity and contamination of water are gradually changing perceptions about Canada's abundance of water. Saskatchewan's surface water covers 12 per cent of the province. About 90 per cent of the rural populations and 80 per cent of municipalities depend on groundwater supplies. Regulations affecting oil and gas operations that could affect water resources have become more stringent. Techniques used in the detection and monitoring of groundwater affected by salt and petroleum hydrocarbons were described. Electromagnetic surveys are used in detecting salt-affected soils and groundwater. Laboratory analysis of chloride concentrations are needed to define actual chloride concentrations in groundwater. Wells and barriers can be installed to control and recover chloride plumes. Deep well injection and reverse osmosis are other methods, but there is no cheap or simple treatment or disposal method for salt-impacted groundwater. Spills or leaks of petroleum hydrocarbons from various sources can also lead to contamination of groundwater. Various assessment and remediation methods are described. Although there is no scarcity of techniques, all of them are difficult, costly, and may take several years to complete. 11 refs., 1 tab

  16. Characterization of colloids in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.

    1987-07-01

    Natural colloids in the Gorleben aquifer systems have been investigated as for their chemical composition, quantification and size distribution. Humic substances appear to be the major organic materials in these groundwaters, generating humic colloids which are analysed to be humic acid (and fulvic acid) loaded with a large number of trace heavy metal ions. These metal ions include natural homologues of actinides and some fission products in trivalent, tetravalent and hexavalent state. Concentrations of trivalent and tetravalent heavy metal ions are linearly correlated with the dissolved organic carbon (DDC) concentration in different groundwaters. The DOC is found to be present as humic colloids. The Am 3+ ions introduced in such a groundwater readily undergo the generation of its pseudocolloids through sorption or ion exchange reactions with humic colloids. The chemical behaviour of Am(III), being similar to the trivalent metal ions, e.g. Fe 3+ , REE etc. found in natural colloids, has been investigated by laser induced photoacoustic spectroscopy (LPAS). Groundwaters from Ispra, Markham Clinton and Felslabor Grimsel. Bidistilled water and one of Gorleben groundwaters, Gohy 1011, are taken for the purpose of comparison. This groundwater contains the least amount of natural colloids of all Gorleben groundwaters hitherto investigated. An indirect quantification is made by comparison of the LPAS results with experiment from Latex solution. (orig./IRB)

  17. An initial examination of tungsten geochemistry along groundwater flow paths

    Science.gov (United States)

    Dave, H. B.; Johannesson, K. H.

    2008-12-01

    Groundwater samples were collected along groundwater flow paths from the Upper Floridan (Florida), Carrizo Sand (Texas), and the Aquia (Maryland) aquifers and analyzed for tungsten (W) concentrations by high- resolution inductively couple plasma mass spectrometry. At each well head, groundwater samples were also analyzed for pH, specific conductance, temperature, alkalinity, dissolved oxygen (DO), oxidation-reduction potential (Eh), dissolved iron speciation, and dissolved sulfide [S(-II)] concentrations. Sediment samples from the Carrizo Sand and Aquia aquifers were also collected and subjected to sequential extractions to provide additional insights into the solid-phase speciation of W in these aquifers. Tungsten concentrations varied along the groundwater flow paths chiefly in response to changing pH, and to a lesser extent, variations in the redox conditions. For groundwater from the Carrizo Sand aquifer, W ranges between 3.64 and 1297 pmol/kg, exhibiting the lowest values proximal to the recharge zone. Tungsten concentrations progressively increase along the flow path, reaching 1297 pmol/kg in the sulfidic groundwaters located approximately 60 km downgradient from the recharge area. Tungsten is strongly correlated with S(-II) concentrations and pH in Carrizo groundwaters (r = 0.95 and 0.78, respectively). Within the Aquia aquifer, however, W generally occurs at lower concentrations than the Carrizo (14 to 184 pmol/kg; mean = 80 pmol/kg), and shows no systematic trends along the flow path (e.g., r = 0.08 and 0.4 for W vs. S(-II) and pH, respectively). Our data are consistent with the increase in W concentrations in Carrizo groundwaters reflecting, in part, pH-related desorption, which has been shown to be substantial for pH greater than 8. Moreover, because of the broad similarities in the chemistry of W and Mo, which forms thiomolybdates in sulfidic waters, we suggest that thiotungstate complexes may form in sulfidic groundwaters, thus partially explaining the

  18. NEON, Establishing a Standardized Network for Groundwater Observations

    Science.gov (United States)

    Fitzgerald, M.; Schroeter, N.; Goodman, K. J.; Roehm, C. L.

    2013-12-01

    The National Ecological Observatory Network (NEON) is establishing a standardized set of data collection systems comprised of in-situ sensors and observational sampling to obtain data fundamental to the analysis of environmental change at a continental scale. NEON will be collecting aquatic, terrestrial, and atmospheric data using Observatory-wide standardized designs and methods via a systems engineering approach. This approach ensures a wealth of high quality data, data algorithms, and models that will be freely accessible to all communities such as academic researchers, policy makers, and the general public. The project is established to provide 30 years of data which will enable prediction and forecasting of drivers and responses of ecological change at scales ranging from localized responses through regional gradients and up to the continental scale. The Observatory is a distributed system of sites spread across the United States, including Alaska, Hawaii, and Puerto Rico, which is subdivided into 20 statistically unique domains, based on a set of 18 ecologically important parameters. Each domain contains at least one core aquatic and terrestrial site which are located in unmanaged lands, and up to 2 additional sites selected to study domain specific questions such as nitrogen deposition gradients and responses of land use change activities on the ecosystem. Here, we present the development of NEON's groundwater observation well network design and the timing strategy for sampling groundwater chemistry. Shallow well networks, up to 100 feet in depth, will be installed at NEON aquatic sites and will allow for observation of localized ecohydrologic site conditions, by providing basic spatio-temporal near-real time data on groundwater parameters (level, temperature, conductivity) collected from in situ high-resolution instrumentation positioned in each well; and biannual sampling of geochemical and nutrient (N and P) concentrations in a subset of wells for each

  19. Impact of storm water on groundwater quality below retention/detention basins.

    Science.gov (United States)

    Zubair, Arif; Hussain, Asif; Farooq, Mohammed A; Abbasi, Haq Nawaz

    2010-03-01

    Groundwater from 33 monitoring of peripheral wells of Karachi, Pakistan were evaluated in terms of pre- and post-monsoon seasons to find out the impact of storm water infiltration, as storm water infiltration by retention basin receives urban runoff water from the nearby areas. This may increase the risk of groundwater contamination for heavy metals, where the soil is sandy and water table is shallow. Concentration of dissolved oxygen is significantly low in groundwater beneath detention basin during pre-monsoon season, which effected the concentration of zinc and iron. The models of trace metals shown in basin groundwater reflect the land use served by the basins, while it differed from background concentration as storm water releases high concentration of certain trace metals such as copper and cadmium. Recharge by storm water infiltration decreases the concentration and detection frequency of iron, lead, and zinc in background groundwater; however, the study does not point a considerable risk for groundwater contamination due to storm water infiltration.

  20. A simplified model for assessing the impact to groundwater of swine farms at regional level

    Science.gov (United States)

    Massabo, Marco; Viterbo, Angelo

    2013-04-01

    Swine manure can be an excellent source of nutrients for crop production. Several swine farms are present in the territory of Regione Umbria and more than 200.000 of swine heads are present yearly in the whole territory while some municipalities host more than 30.000 heads over a relatively limited land. Municipality with elevated number of swine heads has registered particularly higher Nitrate concentration in groundwater that requires a management plan and intervention in order to determine the maximum allowed N loads in the specific region. Use of manure and fertilizers in agricultural field produce diffuse nitrogen (N) losses that are a major cause of excessive nitrate concentrations in ground and surface waters and have been of concern since decades. Excessive nitrate concentrations in groundwater can have toxic effects when used as drinking water and cause eutrophication in surface waters. For management and environmental planning purposes, it is necessary to assess the magnitude of diffuse N losses from agricultural fields and how they are influenced by factors such as management practices, type of fertilizers -organic or inorganic - climate and soil etc. There are several methods for assessing N leaching, they span from methods based on field test to complex models that require many input data. We use a simple index method that accounts for the type of fertilizer used - inorganic, swine or cattle manure- and hydrological and hydrogeological conditions. Hydrological conditions such as infiltration rates are estimated by a fully distributed hydrological model. Data on inorganic and organic fertilization are estimated at municipal level by using the nutrient crops needs and the statistics of swine and cattle heads within the municipality. The index method has been calibrated by using groundwater concentration as a proxy of N losses from agriculture. A time series of three years of data has been analyzed. The application of the simple index method allowed to

  1. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3–, N2, Cl, SO42–, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3–, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  2. Determination of submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples by solid-phase extraction and liquid chromatography

    Science.gov (United States)

    Burkhardt, M.R.; Soliven, P.P.; Werner, S.L.; Vaught, D.G.

    1999-01-01

    A method for determining submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples has been developed. Caffeine is extracted from a 1 L water sample with a 0.5 g graphitized carbon-based solid-phase cartridge, eluted with methylene chloride-methanol (80 + 20, v/v), and analyzed by liquid chromatography with photodiode-array detection. The single-operator method detection limit for organic-free water samples was 0.02 ??g/L. Mean recoveries and relative standard deviations were 93 ?? 13% for organicfree water samples fortified at 0.04 ??g/L and 84 ?? 4% for laboratory reagent spikes fortified at 0.5 ??g/L. Environmental concentrations of caffeine ranged from 0.003 to 1.44 ??g/L in surface water samples and from 0.01 to 0.08 ??g/L in groundwater samples.

  3. Concentrations of nitrate in drinking water in the lower Yakima River Basin, Groundwater Management Area, Yakima County, Washington, 2017

    Science.gov (United States)

    Huffman, Raegan L.

    2018-05-29

    The U.S. Geological Survey, in cooperation with the lower Yakima River Basin Groundwater Management Area (GWMA) group, conducted an intensive groundwater sampling collection effort of collecting nitrate concentration data in drinking water to provide a baseline for future nitrate assessments within the GWMA. About every 6 weeks from April through December 2017, a total of 1,059 samples were collected from 156 wells and 24 surface-water drains. The domestic wells were selected based on known location, completion depth, ability to collect a sample prior to treatment on filtration, and distribution across the GWMA. The drains were pre-selected by the GWMA group, and further assessed based on ability to access sites and obtain a representative sample. More than 20 percent of samples from the domestic wells and 12.8 percent of drain samples had nitrate concentrations that exceeded the maximum contaminant level (MCL) of 10 milligrams per liter established by the U.S. Environmental Protection Agency. At least one nitrate concentration above the MCL was detected in 26 percent of wells and 33 percent of drains sampled. Nitrate was not detected in 13 percent of all samples collected.

  4. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  5. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand

    Science.gov (United States)

    Collins, S.; Singh, R.; Rivas, A.; Palmer, A.; Horne, D.; Manderson, A.; Roygard, J.; Matthews, A.

    2017-11-01

    Intensive agricultural activities are generally associated with nitrogen leaching from agricultural soils, and this nitrogen has the potential to percolate and contaminate groundwater and surface waters. We assessed surface water and groundwater interactions, and nitrogen leaching and its potential attenuation in shallow groundwater in the lower Rangitikei River catchment (832 km2), New Zealand. We combined regional- and local-scale field surveys and experiments, nutrient budget modelling, and hydraulic and geochemical methods, to gain an insight into leaching, transformation and transport of nitrogen via groundwaters to the river in the study area. Concurrent river flow gaugings (in January 2015) and a piezometric map, developed from measured depths to groundwater in 110 bores (in October 2014), suggest groundwater discharges to the Rangitikei River in the upper parts of the study area, while there is groundwater recharge near the coast. The groundwater redox characterisation, based on sampling and analysis of 15 mostly shallow bores ( 5 m bgl), despite being installed under intensive land uses, such as dairying and cropping. Our in-field push-pull tests showed NO3-N reduction at four shallow groundwater piezometers, with the rates of reduction varying from 0.04 mg N L- 1 h-1 to 1.57 mg N L- 1 h-1. This highlights the importance of a sound understanding of not only the sources, but also transport and transformation, or fate, of nutrients leached from farms, to mitigate the likely impacts of land use on water quality and ecosystem health in agricultural catchments.

  6. Effect of submarine groundwater discharge containing phosphate on coral calcification

    Science.gov (United States)

    Yasumoto, J.; Yasumoto, K.; Iijima, M.; Nozaki, M.; Asai, K.; Yasumoto, M. H.

    2017-12-01

    It is well known that the anthropogenic eutrophication enriched with various substances including phosphate in coastal waters has resulted in coral degradation. However, to the best of our knowledge, the phosphate threshold value to inhibit the coral calcification has been unclear, due to the unknown mechanisms involved in the inhibition of the calcification by phosphate. In island regions, groundwater is one of the most important clues to transport the nutrients contained in livestock or agricultural wastewaters. However, the actual conditions of coastal pollution with such nutrients have not been understood because of unperceived submarine groundwater discharge (SGD). In this study, to quantify of extremely rapid and localized SGD from Ryukyu limestone aquifer, we investigated the rate and concentration of phosphate of SGD using automated seepage mater in Yoron Island, which is located southern part of Japan. And, to elucidate the inhibition mechanisms for phosphate against coral calcification, we examined its effect on the bottom skeleton formation in primary polyps of Acropora digitifera by using the fluorescence derivatizing reagent having phosphate group (FITC-AA). As a result, the SGD was found to contain 1 to 2 µM of phosphate as much as the concentration in the coastal ground water under agricultural land. Moreover, the amount of phosphate contained in the surface layers of bottom calcareous sands close to the region of SGD were about 5 µmol/g. When the primary polyps were treated with 50 µM of FITC-AA, the bottom skeleton of the primary polyps showed the fluorescence from FITC-AA within a few minutes, suggesting the phosphate binding. Furthermore, when the polyps were treated with 10 µM of FITC-AA, irregular patterns of the elongated skeleton were observed. These results led us to conclude that phosphate is transported via a paracellular pathway to the subcalicoblastic extracellular calcifying medium. These results indicate that the phosphate adsorbed

  7. Baseline assessment of groundwater quality in Pike County, Pennsylvania, 2015

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, Charles A.

    2017-12-29

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, which have the potential for natural gas development, underlie Pike County and neighboring counties in northeastern Pennsylvania. In 2015, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, conducted a study that expanded on a previous more limited 2012 study to assess baseline shallow groundwater quality in bedrock aquifers in Pike County prior to possible extensive shale-gas development. Seventy-nine water wells ranging in depths from 80 to 610 feet were sampled during June through September 2015 to provide data on the presence of methane and other aspects of existing groundwater quality in the various bedrock geologic units throughout the county, including concentrations of inorganic constituents commonly present at low values in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. All groundwater samples collected in 2015 were analyzed for bacteria, dissolved and total major ions, nutrients, selected dissolved and total inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane. Additionally, samples from 20 wells distributed throughout the county were analyzed for selected man-made volatile organic compounds, and samples from 13 wells where waters had detectable gross alpha activity were analyzed for radium-226 on the basis of relatively elevated gross alpha-particle activity.Results of the 2015 study show that groundwater quality generally met most drinking-water standards for constituents and properties included in analyses, but groundwater samples from some wells had one or more constituents or properties, including arsenic, iron, manganese, pH, bacteria, sodium, chloride, sulfate

  8. Bacterial Diversity in Submarine Groundwater along the Coasts of the Yellow Sea

    OpenAIRE

    Ye, Qi; Liu, Jianan; Du, Jinzhou; Zhang, Jing

    2016-01-01

    Submarine groundwater (SGD) is one of the most significant pathways for the exchange of groundwater and/or source of nutrients, metals and carbon to the ocean, subsequently cause deleterious impacts on the coastal ecosystems. Microorganisms have been recognized as the important participators in the biogeochemical processes in the SGD. In this study, by utilizing 16S rRNA-based Illumina Miseq sequencing technology, we investigated bacterial diversity and distribution in both fresh well water a...

  9. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  10. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    Science.gov (United States)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  11. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  12. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  13. Risk assessment for pesticide contamination of groundwater with sparse available data

    Science.gov (United States)

    Bardowicks, K.; Heredia, O.; Billib, M.; Fernández Cirelli, A.; Boochs, P.

    2009-04-01

    The contamination of the water resources by agrochemicals is recognized in industrial countries as a very important environmental problem, nevertheless in most of developing and threshold countries the risks for health and environmental problems are not considered. In these countries agrochemicals, which are forbidden since several years in Europe (e.g. atrazine), are still in use. In some threshold countries monitoring systems are already installed for nutrients (N, P) and also a few for heavy metals, but so far the contamination by pesticides is hardly ever controlled, thus there is no data available about pesticide concentrations in soil and water. The aim of this research is to develop a methodology to show farmers and other water users (water agencies, drinking water supply companies) in basins of developing or threshold countries with sparse available data the risk of contamination of the groundwater resources by pesticides. A few data like pesticide application, precipitation, irrigation, potential evaporation and soil types are available in some regions. If these data is reliable it can be used together with some justified estimated parameters to perform simulations of the fate of pesticides to the groundwater. Therefore in two study cases in Argentina and Chile pesticide models (e.g. PESTAN, IPTM-CS) were used to evaluate the risk of contamination of the groundwater. The results were compared with contamination indicators, like one developed by O. Heredia, for checking their plausibility. Afterwards the results of the models were used as input data for simulations at the catchment scale, for instance for a groundwater simulation model (VISUAL MODFLOW). The results show a great risk for the contamination of the groundwater resources in the selected study areas, especially by atrazine. On this account the findings will be used by local researchers to improve the knowledge and the awareness of farmers and other stakeholders about the contamination of the

  14. Management of Nitrate m Groundwater: A Simulation Study

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2001-01-01

    Full Text Available Agriculture may cause nitrate and other chemicals to enter into groundwater systems. Nitrate in drinking water is considered a health hazard. A study was conducted to assess the extent of nitrate pollution of groundwater caused by agriculture and to evaluate the possibility of using the LEACHN model to manage nitrate entry into groundwater of agricultural areas of Al-Batinah, which is the most important agricultural region of Oman. Groundwater samples were collected and analyzed to assess the problem and to detect possible trends. Soil sampling and analyses were done to demonstrate the difference in the nitrate concentration in agricultural and non-agricultural soils. A questionnaire survey was conducted to gather information on agricultural practices, fertilizer input, and other possible sources of nitrate pollution. Results from the study show that 23% of groundwater samples have a concentration of nitrate-N concentration of 10 mg/l and 34% samples exceed 8 mg/l. Agricultural soils have higher levels of nitrate compared to non- agricultural soils. Results also demonstrate that nitrate levels in groundwater in Al-Batinah are rising. Application of the ‘LEACHN’ model demonstrated its suitability for use as a management tool to reduce nitrate leaching to groundwater by controlling fertilizer and water input.

  15. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.

    Science.gov (United States)

    Nöjd, Pekka; Lindroos, Antti-Jussi; Smolander, Aino; Derome, John; Lumme, Ilari; Helmisaari, Heljä-Sisko

    2009-05-01

    We studied the chemical changes in forest soil and the effects on Scots pine trees caused by continuous sprinkling infiltration over a period of two years, followed by a recovery period of two years. Infiltration increased the water input onto the forest soil by a factor of approximately 1000. After one year of infiltration, the pH of the organic layer had risen from about 4.0 to 6.7. The NH(4)-N concentration in the organic layer increased, most probably due to the NH(4) ions in the infiltration water, as the net N mineralization rate did not increase. Sprinkling infiltration initiated nitrification in the mineral soil. Macronutrient concentrations generally increased in the organic layer and mineral soil. An exception, however, was the concentration of extractable phosphorus, which decreased strongly during the infiltration period and did not show a recovery within two years. The NO(3)-N and K concentrations had reverted back to their initial level during the two-year recovery period, while the concentrations of Ca, Mg and NH(4)-N were still elevated. Nutrient concentrations in the pine needles increased on the infiltrated plots. However, the needle P concentration increased, despite the decrease in plant-available P in the soil. Despite the increase in the nutrient status, there were some visible signs of chlorosis in the current-year needles after two years of infiltration. The radial growth of the pines more than doubled on the infiltrated plots, which suggests that the very large increase in the water input onto the forest floor had no adverse effect on the functioning of the trees. However, a monitoring period of four years is not sufficient for detecting potential long term detrimental effects on forest trees.

  16. Modeling groundwater age using tritium and groundwater mineralization processes - Morondava sedimentary basin, Southwestern Madagascar

    International Nuclear Information System (INIS)

    RAMAROSON, V.

    2007-01-01

    The tritium method in the lumped parameter approach was used for groundwater dating in the Morondava sedimentary basin, Southwestern Madagascar. Tritium data were interpreted by the dispersion model. The modeling results, with P D values between 0.05 and 0.7, show that shallow groundwater age is ranging from 17 to 56 years. Different types of chemical composition were determined for these shallow ground waters, among others, Ca-HCO 3 , Ca-Na-HCO 3 , Ca-Na-Mg-HCO 3 , Ca-K-HCO 3 -NO 3 -SO 4 , Na-Cl, or Ca-Na-Mg-Cl. Likewise, deeper ground waters show various chemical type such as Ca-Na-HCO 3 , Ca-Mg-Na H CO 3 , Ca-Na-Mg-HCO 3 , Ca-Na-Mg-HCO 3 -Cl-SO 4 , Ca-Mg-HCO 3 , Na-Ca-Mg-HCO 3 -SO 4 -Cl, Na-Cl-HCO 3 or Na-HCO 3 -Cl. To evaluate the geochemical processes, the NETPATH inverse geochemical modeling type was implemented. The modeling results show that silicate minerals dissolution , including olivine, plagioclase, and pyroxene is more important than calcite or dolomite dissolution, for both shallow and deeper groundwater . In the Southern part of the study area, while halite dissolution is likely to be the source of shallow groundwater chloride concentration rise, the mineral precipitation seems to be responsible for less chloride content in deeper groundwater. Besides, ion exchange contributes to the variations of major cations concentrations in groundwater. The major difference between shallow and deep groundwater mineralization process lies in the leaching of marine aerosols deposits by local precipitation, rapidly infiltrated through the sandy formation and giving marine chemical signature to shallow groundwater [fr

  17. Technical and Regulatory Requirements for Enhanced In Situ Bioremediation of Chlorinated Solvents in Groundwater

    National Research Council Canada - National Science Library

    1998-01-01

    Enhanced in situ bioremediation (EISB) of chlorinated solvents in groundwater involves the input of an organic carbon source, nutrients, electron acceptors, and/or microbial cultures to stimulate degradation...

  18. Initial studies of submarine groundwater discharge in Mississippi coastal waters

    Science.gov (United States)

    Shiller, A. M.; Moore, W. S.; Joung, D. J.; Box, H.; Ho, P.; Whitmore, L. M.; Gilbert, M.; Anderson, H.

    2017-12-01

    Submarine groundwater discharge (SGD) is a critical component of coastal ecosystems, affecting biogeochemistry and productivity. The SGD flux and effect on the ecosystem of the Mississippi (MS) Bight has not previously been studied. We have determined Ba, δ18O of water, and Ra-isotopes, together with nutrients, chlorophyll, and dissolved oxygen (DO) during multiple cruises from fall 2015 to summer 2016. Water isotope distributions (δ18O) show that, although the MS River Delta bounds the western side of the Bight, nonetheless, Mobile Bay and other local rivers are the Bight's dominant freshwater sources. But elevated dissolved Ba and Ra isotopes cannot be explained by river input. Spatially, SGD in the MS Bight occurs over a wide area, with hot spots near the barrier islands (e.g., Chandeleurs, Horn and Dauphin Islands) and the mouth of Mobile Bay, probably in association with old buried river channels, or dredged ship channels. Based on their high concentrations in saline groundwaters sampled on the barrier islands, the elevated Ba and Ra in MS Bight water are likely due to SGD. In subsurface waters, long-lived Ra isotopes were negatively correlated with DO during spring and summer 2016, suggesting direct discharge of DO-depleted groundwater and/or accumulation of SGD-derived Ra and microbial DO consumption under strongly stratified conditions. Our ongoing study suggests that seasonal variability in flushing, water stratification, and SGD input play important roles in biological production and bottom water hypoxia in the MS Bight.

  19. Long Term Large Scale river nutrient changes across the UK

    Science.gov (United States)

    Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai

    2017-04-01

    During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as

  20. Groundwater-quality data in the Western San Joaquin Valley study unit, 2010 - Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Landon, Matthew K.; Shelton, Jennifer L.; Belitz, Kenneth

    2013-01-01

    ), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), and naturally occurring inorganic constituents (trace elements, nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], alkalinity, total arsenic and iron [unfiltered] and arsenic, chromium, and iron species [filtered]). Isotopic tracers (stable isotopes of hydrogen, oxygen, and boron in water, stable isotopes of nitrogen and oxygen in dissolved nitrate, stable isotopes of sulfur in dissolved sulfate, isotopic ratios of strontium in water, stable isotopes of carbon in dissolved inorganic carbon, activities of tritium, and carbon-14 abundance), dissolved standard gases (methane, carbon dioxide, nitrogen, oxygen, and argon), and dissolved noble gases (argon, helium-4, krypton, neon, and xenon) were measured to help identify sources and ages of sampled groundwater. In total, 245 constituents and 8 water-quality indicators were measured. Quality-control samples (blanks, replicates, or matrix spikes) were collected at 16 percent of the wells in the WSJV study unit, and the results for these samples were used to evaluate the quality of the data from the groundwater samples. Blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples all were within acceptable limits of variability. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 87 percent of the compounds. This study did not evaluate the quality of water delivered to consumers. After withdrawal, groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is delivered to the consumer, not to untreated groundwater. However, to provide some context for the results

  1. Micro and Macroscale Drivers of Nutrient Concentrations in Urban Streams in South, Central and North America.

    Science.gov (United States)

    Loiselle, Steven A; Gasparini Fernandes Cunha, Davi; Shupe, Scott; Valiente, Elsa; Rocha, Luciana; Heasley, Eleanore; Belmont, Patricia Pérez; Baruch, Avinoam

    Global metrics of land cover and land use provide a fundamental basis to examine the spatial variability of human-induced impacts on freshwater ecosystems. However, microscale processes and site specific conditions related to bank vegetation, pollution sources, adjacent land use and water uses can have important influences on ecosystem conditions, in particular in smaller tributary rivers. Compared to larger order rivers, these low-order streams and rivers are more numerous, yet often under-monitored. The present study explored the relationship of nutrient concentrations in 150 streams in 57 hydrological basins in South, Central and North America (Buenos Aires, Curitiba, São Paulo, Rio de Janeiro, Mexico City and Vancouver) with macroscale information available from global datasets and microscale data acquired by trained citizen scientists. Average sub-basin phosphate (P-PO4) concentrations were found to be well correlated with sub-basin attributes on both macro and microscales, while the relationships between sub-basin attributes and nitrate (N-NO3) concentrations were limited. A phosphate threshold for eutrophic conditions (>0.1 mg L-1 P-PO4) was exceeded in basins where microscale point source discharge points (eg. residential, industrial, urban/road) were identified in more than 86% of stream reaches monitored by citizen scientists. The presence of bankside vegetation covaried (rho = -0.53) with lower phosphate concentrations in the ecosystems studied. Macroscale information on nutrient loading allowed for a strong separation between basins with and without eutrophic conditions. Most importantly, the combination of macroscale and microscale information acquired increased our ability to explain sub-basin variability of P-PO4 concentrations. The identification of microscale point sources and bank vegetation conditions by citizen scientists provided important information that local authorities could use to improve their management of lower order river ecosystems.

  2. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  3. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York

    Science.gov (United States)

    Phillips, Patrick J.; Schubert, Christopher E.; Argue, Denise M.; Fisher, Irene J.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; Chalmers, Ann T.

    2015-01-01

    Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems.

  4. Trace elements in groundwater used for water supply in Latvia

    Science.gov (United States)

    Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads

    2014-05-01

    Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name

  5. Factor analytical approaches for evaluating groundwater trace element chemistry data

    International Nuclear Information System (INIS)

    Farnham, I.M.; Johannesson, K.H.; Singh, A.K.; Hodge, V.F.; Stetzenbach, K.J.

    2003-01-01

    The multivariate statistical techniques principal component analysis (PCA), Q-mode factor analysis (QFA), and correspondence analysis (CA) were applied to a dataset containing trace element concentrations in groundwater samples collected from a number of wells located downgradient from the potential nuclear waste repository at Yucca Mountain, Nevada. PCA results reflect the similarities in the concentrations of trace elements in the water samples resulting from different geochemical processes. QFA results reflect similarities in the trace element compositions, whereas CA reflects similarities in the trace elements that are dominant in the waters relative to all other groundwater samples included in the dataset. These differences are mainly due to the ways in which data are preprocessed by each of the three methods. The highly concentrated, and thus possibly more mature (i.e. older), groundwaters are separated from the more dilute waters using principal component 1 (PC 1). PC 2, as well as dimension 1 of the CA results, describe differences in the trace element chemistry of the groundwaters resulting from the different aquifer materials through which they have flowed. Groundwaters thought to be representative of those flowing through an aquifer composed dominantly of volcanic rocks are characterized by elevated concentrations of Li, Be, Ge, Rb, Cs, and Ba, whereas those associated with an aquifer dominated by carbonate rocks exhibit greater concentrations of Ti, Ni, Sr, Rh, and Bi. PC 3, and to a lesser extent dimension 2 of the CA results, show a strong monotonic relationship with the percentage of As(III) in the groundwater suggesting that these multivariate statistical results reflect, in a qualitative sense, the oxidizing/reducing conditions within the groundwater. Groundwaters that are relatively more reducing exhibit greater concentrations of Mn, Cs, Co, Ba, Rb, and Be, and those that are more oxidizing are characterized by greater concentrations of V, Cr, Ga

  6. Investigation of groundwater seepage from the Hanford shoreline of the Columbia River

    International Nuclear Information System (INIS)

    McCormack, W.D.; Carlile, J.M.V.

    1984-11-01

    Groundwater discharges to the Columbia River are evaluated by the Hanford Environmental Surveillance and Groundwater Surveillance Programs via monitoring of the Columbia River and Hanford groundwater. Both programs concluded that Hanford groundwater has not adversely affected Columbia River water quality. This report supplements the above programs by investigating the general characteristics of groundwater entering the Columbia River from the Hanford Site. Specific objectives of the investigation were to identify general shoreline areas where Hanford-related materials were entering the river, and to evaluate qualitatively the physical characteristics and relative magnitudes of those discharges. The study was conducted in two phases. Phase 1 involved visual inspection of Columbia River shoreline, within the Hanford Site, for indications of groundwater seepage. As a result of that inspection, 115 springs suspected of discharging groundwater were recorded. During Phase 2, water samples were collected from these springs and analyzed for Hanford-related materials known to be present in the groundwater. The specific materials used as indicators for the majority of samples were tritium or uranium and nitrate. The magnitude and distribution of concentrations measured in the spring samples were consistent with concentrations of these materials measured in groundwater near the sampled spring locations. Water samples were also collected from the Columbia River to investigate the localized effects of groundwater discharges occurring above and below river level. These samples were collected within 2 to 4 m of the Hanford shoreline and analyzed for tritium, nitrate, and uranium. Elevated concentrations were measured in river samples collected near areas where groundwater and spring concentrations were elevated. All concentrations were below applicable DOE Concentration Guides. 8 references, 6 figures, 7 tables

  7. Preliminary studies of cobalt complexation in groundwater

    International Nuclear Information System (INIS)

    Warwick, P.; Shaw, P.; Williams, G.M.; Hooker, P.J.

    1988-01-01

    A relatively non-invasive method has been used to separate complexed from free cobalt-60 in groundwater, using the weak cationic adsorption properties of Sephadex gels, and a mobile phase of natural groundwater. Results show the kinetics of Co complex formation in groundwater to be slow, and that the equilibrium position is affected by temperature, cobalt concentration and the ionic/organic strength of the groundwater. The addition of DAEA cellulose to the groundwater to remove humic material, also removed the majority of organic species which absorb UV at 254 nm, but 45% of the original total organic carbon remained, and the amount of complexed cobalt left in solution was only reduced to 76% of its former concentration. This suggests that the completed Co species separated by the method described in this paper are a mixture of inorganic and organic compounds, and studies are therefore continuing to establish their exact nature. (author)

  8. Preliminary studies of cobalt complexation in groundwater

    International Nuclear Information System (INIS)

    Warwick, P.; Shaw, P.; Williams, G.M.; Hooker, P.J.

    1988-01-01

    A relatively non-invasive method has been used to separate complexed from free cobalt-60 in groundwater, using the weak cationic adsorption properties of Sephadex gels, and a mobile phase of natural groundwater. Results show the kinetics of Co complex formation in groundwater to be slow, and that the equilibrium position is affected by temperature, cobalt concentration and the ionic/organic strength of the groundwater. The addition of DEAE cellulose to the groundwater to remove humic material, also removed the majority of organic species with absorb UV at 254 nm, but 45% of the original total organic carbon remained, and the amount of complexed cobalt left in solution was only reduced to 76% of its former concentration. This suggests that the complexed Co species separated by the method described in this paper are a mixture of inorganic and organic compounds, and studies are therefore continuing to establish their exact nature. (orig.)

  9. Functional genes reveal the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation.

    Science.gov (United States)

    Nyyssönen, Mari; Kapanen, Anu; Piskonen, Reetta; Lukkari, Tuomas; Itävaara, Merja

    2009-08-01

    A small-scale functional gene array containing 15 functional gene probes targeting aliphatic and aromatic hydrocarbon biodegradation pathways was used to investigate the effect of a pilot-scale air sparging and nutrient infiltration treatment on hydrocarbon biodegradation in creosote-contaminated groundwater. Genes involved in the different phases of polycyclic aromatic hydrocarbon (PAH) biodegradation were detected with the functional gene array in the contaminant plume, thus indicating the presence of intrinsic biodegradation potential. However, the low aerobic fluorescein diacetate hydrolysis, the polymerase chain reaction (PCR) amplification of 16S rRNA genes closely similar to sulphate-reducing and denitrifying bacteria and the negligible decrease in contaminant concentrations showed that aerobic PAH biodegradation was limited in the anoxic groundwater. Increased abundance of PAH biodegradation genes was detected by functional gene array in the monitoring well located at the rear end of the biostimulated area, which indicated that air sparging and nutrient infiltration enhanced the intrinsic, aerobic PAH biodegradation. Furthermore, ten times higher naphthalene dioxygenase gene copy numbers were detected by real-time PCR in the biostimulated area, which was in good agreement with the functional gene array data. As a result, functional gene array analysis was demonstrated to provide a potential tool for evaluating the efficiency of the bioremediation treatment for enhancing hydrocarbon biodegradation in field-scale applications.

  10. Hydrogeology, groundwater seepage, nitrate distribution, and flux at the Raleigh hydrologic research station, Wake County, North Carolina, 2005-2007

    Science.gov (United States)

    McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.

    2013-01-01

    rom 2005 to 2007, the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, conducted a study to describe the geologic framework, measure groundwater quality, characterize the groundwater-flow system, and describe the groundwater/surface-water interaction at the 60-acre Raleigh hydrogeologic research station (RHRS) located at the Neuse River Waste Water Treatment Plant in eastern Wake County, North Carolina. Previous studies have shown that the local groundwater quality of the surficial and bedrock aquifers at the RHRS had been affected by high levels of nutrients. Geologic, hydrologic, and water-quality data were collected from 3 coreholes, 12 wells, and 4 piezometers at 3 well clusters, as well as from 2 surface-water sites, 2 multiport piezometers, and 80 discrete locations in the streambed of the Neuse River. Data collected were used to evaluate the three primary zones of the Piedmont aquifer (regolith, transition zone, and fractured bedrock) and characterize the interaction of groundwater and surface water as a mechanism of nutrient transport to the Neuse River. A conceptual hydrogeologic cross section across the RHRS was constructed using new and existing data. Two previously unmapped north striking, nearly vertical diabase dikes intrude the granite beneath the site. Groundwater within the diabase dike appeared to be hydraulically isolated from the surrounding granite bedrock and regolith. A correlation exists between foliation and fracture orientation, with most fractures striking parallel to foliation. Flowmeter logging in two of the bedrock wells indicated that not all of the water-bearing fractures labeled as water bearing were hydraulically active, even when stressed by pumping. Groundwater levels measured in wells at the RHRS displayed climatic and seasonal trends, with elevated groundwater levels occurring during the late spring and declining to a low in the late fall. Vertical

  11. Study on radon concentration in groundwater of Sira and Tiptur taluk of Tumkur district, Karnataka, India

    Directory of Open Access Journals (Sweden)

    M B Karthik Kumar

    2017-01-01

    Full Text Available A study on radon concentration in groundwater samples collected from different villages of Sira and Tiptur taluk of Tumkur district has been conducted using emanometry method, and the effective dose to the public was estimated. The geometric mean of the activity concentration of dissolved radon was found to be 39.13 ± 1.99 and 3.78 ± 0.05 Bq/L for Sira and Tiptur taluk, respectively. The total annual effective dose for adult, children, and infants was also estimated and was found to be 0.20, 0.18, and 0.31 mSv/year, respectively, in Sira taluk and 0.019, 0.017, and 0.029 mSv/year in Tiptur taluk, respectively. Water samples were also analyzed for the physicochemical parameters to assess the quality of drinking water and also to understand the influence of these parameters on dissolved radon concentration. Poor correlation was observed between dissolved radon concentration and pH in both taluks.

  12. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the three Sacramento Valley study units, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark. For organic (volatile organic compounds and pesticides) and special-interest (perchlorate) constituents, relative-concentrations were classified as high (greater than 1.0); moderate (equal to or less than 1.0 and greater than 0.1); or low (equal to or less than 0.1). For inorganic (major ion, trace element, nutrient, and radioactive) constituents, the boundary between low and moderate relative-concentrations was set at 0.5. Aquifer-scale proportions were used in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifers that have a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers that have moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based, which used one value per grid cell, and spatially-weighted, which used the full dataset-were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. High and moderate aquifer-scale proportions were significantly greater for inorgani

  13. Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece

    International Nuclear Information System (INIS)

    Kouras, A.; Katsoyiannis, I.; Voutsa, D.

    2007-01-01

    An integrate study aiming at the occurrence and distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece has been carried out. Groundwater samples from public water supply wells and private wells were analysed for arsenic and other quality parameters (T, pH, EC, Ca, Mg, Na, K, Cl, HCO 3 , NO 3 , SO 4 , B, Fe, Mn). Arsenic showed high spatial variation; ranged from 0.001 to 1.840 mg/L. Almost 65% of the examined groundwaters exhibit arsenic concentrations higher than the maximum concentration limit of 0.010 mg/L, proposed for water intended for human consumption. Correlation analysis and principal component analysis were employed to find out possible relationships among the examined parameters and groundwater samples. Arsenic is highly correlated with potassium, boron, bicarbonate, sodium, manganese and iron suggesting common geogenic origin of these elements and conditions that enhance their mobility. Three groups of groundwater with different physicochemical characteristics were found in the study area: (a) groundwater with extremely high arsenic concentrations (1.6-1.9 mg/L) and high temperature (33-42 deg. C) from geothermal wells, (b) groundwater with relatively high arsenic concentrations (>0.050 mg/L), lower temperatures and relatively high concentrations of major ions, iron and manganese and, (c) groundwater with low arsenic concentrations that fulfil the proposed limits for dinking water

  14. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  15. Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Wanapat

    2013-07-01

    Full Text Available The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A was carbohydrate source; cassava chip (CC and CC+rice bran at a ratio 3:1 (CR3:1, and factor B was level of cottonseed meal (CM; 109 g CP/kg (LCM and 328 g CP/kg (HCM in isonitrogenous diets (490 g CP/kg. Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05. Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p0.05. Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

  16. Concentration of Tritium and Members of the Uranium and Thorium Decay Chains in Groundwaters in Slovenia and their Implication for Managing Groundwater Resources

    Energy Technology Data Exchange (ETDEWEB)

    Korun, M.; Kovacic, K.; Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia)

    2013-07-15

    Samples of groundwater were measured in terms of their activity concentration of gamma ray emitters, members of the uranium and thorium decay chains and tritium. The distributions of the number of samples over the measured activity concentrations are presented for {sup 238}U, {sup 226}Ra, {sup 210}Pb, {sup 228}Ra, {sup 228}Th, {sup 40}K and {sup 3}H. The distributions have three distinct shapes: log-normal distributions ({sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 228}Th), bimodal distributions ({sup 210}Pb, {sup 40}K), and a normal distribution ({sup 3}H). It appears that the log-normal distributions reflect the dilution of the radionuclides dissolved in the water. The bimodal distributions, being the sum of a log-normal distribution and a distribution having its maximum at the activity concentration of the higher mode, indicate influences from the soil surface, e.g. washout from the atmosphere and fertilizing. The normal distribution indicates mixing with rainwater under circumstances that are characterized by several independent variable parameters. (author)

  17. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  18. Origin of hexavalent chromium in groundwater

    DEFF Research Database (Denmark)

    Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.

    2017-01-01

    Hexavalent chromium constitutes a serious deterioration factor for the groundwater quality of several regions around the world. High concentrations of this contaminant have been also reported in the groundwater of the Sarigkiol hydrological basin (near Kozani city, NW Greece). Specific interest w...

  19. Occurrence of anthropogenic organic compounds and nutrients in source and finished water in the Sioux Falls area, South Dakota, 2009-10

    Science.gov (United States)

    Hoogestraat, Galen K.

    2012-01-01

    Anthropogenic organic compounds (AOCs) in drinking-water sources commonly are derived from municipal, agricultural, and industrial wastewater sources, and are a concern for water-supply managers. A cooperative study between the city of Sioux Falls, S. Dak., and the U.S. Geological Survey was initiated in 2009 to (1) characterize the occurrence of anthropogenic organic compounds in the source waters (groundwater and surface water) to water supplies in the Sioux Falls area, (2) determine if the compounds detected in the source waters also are present in the finished water, and (3) identify probable sources of nitrate in the Big Sioux River Basin and determine if sources change seasonally or under different hydrologic conditions. This report presents analytical results of water-quality samples collected from source waters and finished waters in the Sioux Falls area. The study approach included the collection of water samples from source and finished waters in the Sioux Falls area for the analyses of AOCs, nutrients, and nitrogen and oxygen isotopes in nitrate. Water-quality constituents monitored in this study were chosen to represent a variety of the contaminants known or suspected to occur within the Big Sioux River Basin, including pesticides, pharmaceuticals, sterols, household and industrial products, polycyclic aromatic hydrocarbons, antibiotics, and hormones. A total of 184 AOCs were monitored, of which 40 AOCs had relevant human-health benchmarks. During 11 sampling visits, 45 AOCs (24 percent) were detected in at least one sample of source or finished water, and 13 AOCs were detected in at least 20 percent of all samples. Concentrations of detected AOCs were all less than 1 microgram per liter, except for two AOCs in multiple samples from the Big Sioux River, and one AOC in finished-water samples. Concentrations of AOCs were less than 0.1 microgram per liter in more than 75 percent of the detections. Nutrient concentrations varied seasonally in source

  20. Public health risk assessment of groundwater contamination in Batman, Turkey.

    Science.gov (United States)

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems.

  1. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    quality-control information resulted in censoring of less than 0.2 percent of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs and pesticides were detected in less than one-third of the grid wells, and all detections in samples from SOSA wells were below health-based thresholds. All detections of trace elements and nutrients in samples from SOSA wells were below health-based thresholds, with the exception of four detections of arsenic that were above the USEPA maximum contaminant level (MCL-US) and one detection of boron that was above the CDPH notification level (NL-CA). All detections of radioactive constituents were below health-based thresholds, although four samples had activities of radon-222 above the proposed MCL-US. Most of the samples from SOSA wells had concentrations of major elements, total dissolved solids, and trace elements below the non-enforceable thresholds set for aesthetic concerns. A few samples contained iron, manganese, or total dissolved solids at concentrations above the SMCL-CA thresholds.

  2. Deposition and conversion in soil of acids, acid-forming substances and nutrients

    International Nuclear Information System (INIS)

    Mayer, R.

    1990-01-01

    Balancing of material depositions entries is the basis for their evaluation. The acid depositions must be put in relation to the acid neutralization capacity and to the buffer rate of the soil. Every 'excess' in depositons leads to an acid supply into the sub-soil and/or into the groundwater system. On the one hand, the nutrient depositions are interpreted in relation to the nutrient supplies of the soil and their availability to the plants; and on the other hand with a view to the nutrient depletion through the polants. Excesses can also lead to a (non-desirable) pollution of aquatic systems, or else to an enhanced nutrient supply in the soil. Balancing is therefore a necessary aid for the evaluation of material depositions from the atmosphere. (orig./EF) [de

  3. Methods of investigation and analysis on groundwater using radon as an indicator

    International Nuclear Information System (INIS)

    Hamada, Hiromasa; Imaizumi, Masayuki; Komae, Takami

    1997-01-01

    As for groundwater, the quality is good, and the temperature is constant throughout year, further, it can be easily utilized only by digging wells. The quantity of its utilization in one year is about 20% of total water utilization, and about 17 billion m 3 . Recently in Japan, the frequency of occurrence of water shortage is high, and the supply of river water is unstable, therefore, the importance of groundwater increased. It is indispensable to grasp in detail the state of groundwater flow as groundwater pollution is actualized, and the water quality has become problem. As the principle that radon becomes the index for groundwater analysis, the physical characteristic of radon and the features of the radon in groundwater are explained. The method of measuring radon concentration in groundwater and surface water is described. The investigation and analysis methods, to which the processes of radon formation and radon decay are applied, in which the equilibrium radon concentration in groundwater is used as the index, to which the relation of the degree of saturation in aquifer to the radon concentration in liquid phase is applied, and to which the difference of the concentrations in surface water and groundwater is applied, are reported. (K.I.)

  4. Evaluation of high-frequency mean streamwater transit-time estimates using groundwater age and dissolved silica concentrations in a small forested watershed

    Science.gov (United States)

    Peters, Norman E.; Burns, Douglas A.; Aulenbach, Brent T.

    2014-01-01

    Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.

  5. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    Science.gov (United States)

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  6. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    Science.gov (United States)

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent

  7. Ground-Water Quality Data in the Monterey Bay and Salinas Valley Basins, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N

  8. Hoe Creek groundwater restoration, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  9. Assessment of Nutrient Concentration in Sokori River, Southwest ...

    African Journals Online (AJOL)

    Nutrient enrichment leads to excessive growth of primary producers as well as heterotrophic bacteria and fungi, which increases the metabolic activities of stream water leading to a depletion of dissolved oxygen. The low discharge of stream and its fairly flat terrain nature also influenced the metabolic activities in the mid- ...

  10. A field study to evaluate the impact of different factors on the nutrient pollutant concentrations in green roof runoff.

    Science.gov (United States)

    Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai

    2013-01-01

    The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.

  11. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    Science.gov (United States)

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  12. Phytotoxic effects of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) achenes.

    Science.gov (United States)

    Ahmad, Muhammad Sajid Aqeel; Ashraf, Muhammad; Hussain, Mumtaz

    2011-01-30

    The phytotoxic effects of varying levels of nickel (0, 10, 20, 30, and 40 mg L(-1)) on growth, yield and accumulation of macro- and micro-nutrients in leaves and achenes of sunflower (Helianthus annuus L.) were appraised in this study. A marked reduction in root and shoot fresh biomass was recorded at higher Ni levels. Nickel stress also caused a substantial decrease in all macro- and micro-nutrients in leaves and achenes. The lower level of Ni (10 mg L(-1)) had a non-significant effect on various yield attributes, but higher Ni levels considerably decreased these parameters. Higher Ni levels decreased the concentrations of Ca, Mn and Fe in achenes. In contrast, achene N, K, Zn, Mn and Cu decreased consistently with increasing level of Ni, even at lower level (10 mg L(-1)). Sunflower hybrid Hysun-33 had better yield and higher most of the nutrients in achenes as compared with SF-187. The maximum reduction in all parameters was observed at the maximum level of nickel (40 mg L(-1)) where almost all parameters were reduced more than 50% of those of control plants. In conclusion, the pattern of uptake and accumulation of different nutrients in sunflower plants were nutrient- and cultivar-specific under Ni-stress. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Temporal variations of radon concentration in the saturated soil of Alpine grassland: The role of groundwater flow

    International Nuclear Information System (INIS)

    Perrier, Frederic; Richon, Patrick; Sabroux, Jean-Christophe

    2009-01-01

    Radon concentration has been monitored from 1995 to 1999 in the soil of the Sur-Fretes ridge (French Alps), covered with snow from November to April. Measurements were performed at 70 cm depth, with a sampling time of 1 h, at two points: the summit of the ridge, at an altitude of 1792 m, and the bottom of the ridge, at an altitude of 1590 m. On the summit, radon concentration shows a moderate seasonal variation, with a high value from October to April (winter), and a low value from May to September (summer). At the bottom of the ridge, a large and opposite seasonal variation is observed, with a low value in winter and a high value in summer. Fluctuations of the radon concentration seem to be associated with temperature variations, an effect which is largely delusory. Indeed, these variations are actually due to water infiltration. A simplified mixing model is used to show that, at the summit of the ridge, two effects compete in the radon response: a slow infiltration response, rich in radon, with a typical time scale of days, and a fast infiltration of radon-poor rainwater. At the bottom of the ridge, similarly, two groundwater contributions compete: one slow infiltration response, similar to the response seen at the summit, and an additional slower response, with a typical time scale of about a month. This second slower response can be interpreted as the aquifer discharge in response to snow melt. This study shows that, while caution is necessary to properly interpret the various effects, the temporal variations of the radon concentration in soil can be understood reasonably well, and appear to be a sensitive tool to study the subtle interplay of near surface transfer processes of groundwater with different transit times

  14. Temporal variations of radon concentration in the saturated soil of Alpine grassland: the role of groundwater flow.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick; Sabroux, Jean-Christophe

    2009-03-15

    Radon concentration has been monitored from 1995 to 1999 in the soil of the Sur-Frêtes ridge (French Alps), covered with snow from November to April. Measurements were performed at 70 cm depth, with a sampling time of 1 h, at two points: the summit of the ridge, at an altitude of 1792 m, and the bottom of the ridge, at an altitude of 1590 m. On the summit, radon concentration shows a moderate seasonal variation, with a high value from October to April (winter), and a low value from May to September (summer). At the bottom of the ridge, a large and opposite seasonal variation is observed, with a low value in winter and a high value in summer. Fluctuations of the radon concentration seem to be associated with temperature variations, an effect which is largely delusory. Indeed, these variations are actually due to water infiltration. A simplified mixing model is used to show that, at the summit of the ridge, two effects compete in the radon response: a slow infiltration response, rich in radon, with a typical time scale of days, and a fast infiltration of radon-poor rainwater. At the bottom of the ridge, similarly, two groundwater contributions compete: one slow infiltration response, similar to the response seen at the summit, and an additional slower response, with a typical time scale of about a month. This second slower response can be interpreted as the aquifer discharge in response to snow melt. This study shows that, while caution is necessary to properly interpret the various effects, the temporal variations of the radon concentration in soil can be understood reasonably well, and appear to be a sensitive tool to study the subtle interplay of near surface transfer processes of groundwater with different transit times.

  15. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China

    International Nuclear Information System (INIS)

    Li, Chengcheng; Gao, Xubo; Wang, Yanxin

    2015-01-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F − concentration of up to 14.1 mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F − concentrations above the WHO provisional drinking water guideline of 1.5 mg/L. Groundwater with high F − concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO 3 − content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F − mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F − in groundwater of the intermediate and deep aquifers. - Highlights: • High-F − groundwater widely occurs in Yuncheng Basin of northern China. • High-F − groundwater is Na and HCO 3 -rich and Ca-poor, with high pH. • Major hydrogeochemical processes are mineral dissolution, ion exchange and evaporation. • Shallow groundwater leakage/evaporite dissolution may cause F enrichment in lower aquifers

  16. Effect of Nitrogen Form and pH of Nutrient Solution on the Shoot Concentration of Phosphorus, Nitrate, and Nitrogen of Spinach in Hydroponic Culture

    OpenAIRE

    N. Najafi; M. Parsazadeh

    2010-01-01

    In order to study the effect of nitrogen form and pH of nutrient solution on the shoot concentration of P, nitrate, organic N + inorganic ammonium, and total N of spinach, a factorial experiment was conducted with two factors including pH of nutrient solution in three levels (4.5, 6.5 and 8.0) and nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75 and 0:100). This factorial experiment was carried out in a completely randomized design with four replicatio...

  17. A modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3- and SO42- concentrations.

    Science.gov (United States)

    Busico, Gianluigi; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Voudouris, Konstantinos; Tedesco, Dario

    2017-12-31

    Groundwater vulnerability and risk assessment are worldwide tools in supporting groundwater protection and land planning. In this study, we used three of these different methodologies applied to the Campanian Plain located in southern Italy: SINTACS, AVI and LOS. However, their capability to describe the observed chemical pollution of the area has resulted quite poor. For such a reason, a modified SINTACS method has been then implemented in the area in order to get a more reliable view of groundwater vulnerability. NO 3 - and SO 4 2- from more than 400 monitoring wells were used for specific vulnerability assessment. Land use was chosen as key parameter to infer the risk of groundwater pollution in our area. The new methodology seems to show a higher correlation with observed NO 3 - concentrations and a more reliable identification of aquifer's pollution hot spots. The main sources of NO 3 - were found in sub-urban areas, where vulnerability and risk are higher than in other areas. Otherwise due to reducing conditions triggered by the presence of elevated sedimentary organic matter and peat, concentrations below agricultural areas were lower than in sub-urban areas. The SO 4 2- specific vulnerability map showed a positive correlation with observed concentrations, due to geogenic and anthropogenic SO 4 2- sources present in the area. The combination of both NO 3 - and SO 4 2- derived risk maps becomes essential to improve the conceptual model of aquifer pollution in this severely anthropized area. The application of this new and original approach shed light on the strengths and weaknesses of each of the described previous methods and clearly showed how anthropogenic activities have to be taken into account in the assessment process. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Selective sorption of technetium from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.M. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Groundwater used for processing uranium or plutonium at DOE sites is frequently contaminated with the radionuclide {sup 99}Tc. DOE`s Paducah and Portsmouth sites are typical of the contamination problem. Solutions contaminated with radionuclides were poured into lagoons and burial pits, which created a plume that has seeped into the sandy aquifers below the vadose zone. Technetium is the principal radioactive metal-ion contaminant in Paducah site ground-water, and it is present at a concentration of about 25 ng/L. At Portsmouth, Tc is present in the groundwater at a concentration that varies greatly with distance from the source, and concentrations of >400 ng/L have been reported. Commercially available anion-exchange resins can remove the TcO{sub 4}{sup {minus}} ion in the presence of typical anions found in groundwater, but improving the selectivity will result in substantial cost savings in terms of the quantity of resin needed and the scale of the equipment required to treat huge flows rates. The pertechnetate anion is strongly sorbed on commercially-available strong-base anion-exchange resins, but in view of the low (typically nanomolar) concentrations of Tc involved, enhanced selectivity for the pertechnetate anion over other anions commonly found in groundwater such as chloride, sulfate, and nitrite will be needed. The authors have prepared and evaluated new anion-exchange resins that were designed to be highly selective for pertechnetate. The technology involves building those features that are known to enhance the selectivity of pertechnetate over other anions into the exchange sites of the resin (hydrophobicity), while at the same time maintaining favorable exchange kinetics.

  19. Changes in nutrients and decay rate of Ginkgo biloba leaf litter exposed to elevated O3 concentration in urban area

    Directory of Open Access Journals (Sweden)

    Wei Fu

    2018-03-01

    Full Text Available Ground-level ozone (O3 pollution has been widely concerned in the world, particularly in the cities of Asia, including China. Elevated O3 concentrations have potentially influenced growth and nutrient cycling of trees in urban forest. The decomposition characteristics of urban tree litters under O3 exposure are still poorly known. Ginkgo biloba is commonly planted in the cities of northern China and is one of the main tree species in the urban forest of Shenyang, where concentrations of ground-level O3 are very high in summer. Here, we hypothesized that O3 exposure at high concentrations would alter the decomposition rate of urban tree litter. In open-top chambers (OTCs, 5-year-old G. biloba saplings were planted to investigate the impact of elevated O3 concentration (120 ppb on changes in nutrient contents and decomposition rate of leaf litters. The results showed that elevated O3 concentration significantly increased K content (6.31 ± 0.29 vs 17.93 ± 0.40, P < 0.01 in leaves of G. biloba, significantly decreased the contents of total phenols (2.82 ± 0.93 vs 1.60 ± 0.44, P < 0.05 and soluble sugars (86.51 ± 19.57 vs 53.76 ± 2.40, P < 0.05, but did not significantly alter the contents of C, N, P, lignin and condensed tannins, compared with that in ambient air. Furthermore, percent mass remaining in litterbags after 150 days under ambient air and elevated O3 concentration was 56.0% and 52.8%, respectively. No significant difference between treatments was observed in mass remaining at any sampling date during decomposition. The losses of the nutrients in leaf litters of G. biloba showed significant seasonal differences regardless of O3 treatment. However, we found that elevated O3 concentration slowed down the leaf litter decomposition only at the early decomposition stage, but slightly accelerated the litter decomposition at the late stage (after 120 days. This study provides our understanding of the ecological processes regulating

  20. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Joshua Tree ground-water subbasin and 5 in the Copper Mountain ground-water subbasin) between 1980 and 2002 and analyzing the samples for major ions, nutrients, and selected trace elements. Selected samples also were analyzed for oxygen-18, deuterium, tritium, and carbon-14. The water-quality data indicated that dissolved solids and nitrate concentrations were below regulatory limits for potable water; however, fluoride concentrations in the lower aquifer exceeded regulatory limits. Arsenic concentrations and chromium concentrations were generally below regulatory limits; however, arsenic concentrations measured in water from wells perforated in the lower aquifer exceeded regulatory limits. The carbon-14 activities ranged from 2 to 72 percent modern carbon and are consistent with uncorrected ground-water ages (time since recharge) of about 32,300 to 2,700 years before present. The oxygen-18 and deuterium composition of water sampled from the upper aquifer is similar to the volume-weighted composition of present-day winter precipitation indicating that winter precipitation was the predominant source of ground-water recharge. Field studies, conducted during water years 2001 through 2003 to determine the distribution and quantity of recharge, included installation of instrumented boreholes in selected washes and at a nearby control site. Core material and cuttings from the boreholes were analyzed for physical, chemical, and hydraulic properties. Instruments installed in the boreholes were monitored to measure changes in matric potential and temperature. Borehole data were supplemented with temperature data collected from access tubes installed at additional sites along study washes. Streambed hydraulic properties and the response of instruments to infiltration were measured using infiltrometers. Physical and geochemical data collected away from the stream channels show that direct infiltration of precipitation to depths below the root zone and subsequent gro

  1. DOE`s approach to groundwater compliance on the UMTRA project

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, D. [Dept. of Energy, Washington, DC (United States); Gibb, J.P. [Geraghty and Miller, Inc. (United States); Glover, W.A. [Roy F. Weston, Inc. (United States)

    1993-03-01

    Compliance with the mandate of the Uranium Mill Tailings Radiation Control Act (UMTRCA) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites requires implementation of a groundwater remedial action plan that meets the requirements of Subpart B of the US Environmental Protection Agency`s proposed groundwater protection standards (40 CFR 192). The UMTRA Groundwater Project will ensure that unacceptable current risk or potential risk to the public health, safety and the environment resulting from the groundwater contamination attributable to the UMTRA sites, is mitigated in a timely and cost-efficient manner. For each UMTRA processing site and vicinity property where contamination exists, a groundwater remedial action plan must be developed that identifies hazardous constituents and establishes acceptable concentration limits for the hazardous constituents as either (a) alternate concentration limits (ACL), (b) maximum concentration limits (MCLs), (c) supplemental standards, or (d) background groundwater quality levels. Project optimization is a strategy that will aggressively work within the current regulatory framework using all available options to meet regulatory requirements. This strategy is outlined within.

  2. NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA

    Science.gov (United States)

    Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.

    2009-12-01

    Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one

  3. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  4. Polymer-Coated Urea Delays Growth and Accumulation of Key Nutrients in Aerobic Rice but Does Not Affect Grain Mineral Concentrations

    Directory of Open Access Journals (Sweden)

    Terry J. Rose

    2016-01-01

    Full Text Available Enhanced efficiency nitrogen (N fertilizers (EEFs may improve crop recovery of fertilizer-N, but there is evidence that some EEFs cause a lag in crop growth compared to growth with standard urea. Biomass and mineral nutrient accumulation was investigated in rice fertilized with urea, urea-3,4-dimethylpyrazole phosphate (DMPP and polymer-coated urea (PCU to determine whether any delays in biomass production alter the accumulation patterns, and subsequent grain concentrations, of key mineral nutrients. Plant growth and mineral accumulation and partitioning to grains did not differ significantly between plants fertilized with urea or urea-DMPP. In contrast, biomass accumulation and the accumulation of phosphorus, potassium, calcium, magnesium, copper, zinc and manganese were delayed during the early growth phase of plants fertilized with PCU. However, plants in the PCU treatment ultimately compensated for this by increasing growth and nutrient uptake during the latter vegetative stages so that no differences in biomass or nutrient accumulation generally existed among N fertilizer treatments at anthesis. Delayed biomass accumulation in rice fertilized with PCU does not appear to reduce the total accumulation of mineral nutrients, nor to have any impact on grain mineral nutrition when biomass and grain yields are equal to those of rice grown with urea or urea-DMPP.

  5. Preliminary analysis for model development of groundwater evolution in Horonobe area

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Yui, Mikazu

    2003-03-01

    The preliminary analysis for model development of groundwater evolution in Horonobe area was performed with data at D-1, HDB-1 and HDB-2 bore hole where hydrogen / oxygen isotope concentration, mineral property in sedimentary rock and physico-chemical parameters (pH, Eh and ionic concentrations) were measured. As a result of analysis for hydrogen and oxygen isotope concentration, saline water in marine sediment was diluted by the mixing with shallow groundwater and diffusion. And as a result of analysis for a concentration of bicarbonate from the difference of pH values measured between in-situ and under air, the estimated in-situ concentration of bicarbonate differs from that measured under air. And minerals which were assumed to be equilibrium with groundwater were selected by thermodynamic calculation. This report presents the results of preliminary analysis for groundwater evolution by using data derived from D-1, HDB-1 and HDB-2 boring research. In order to establish the model which interprets the groundwater evolution as a next step, data which satisfy the representative in-situ property of groundwater chemistry in Horonobe area are needed. Reliable measurements for physico-chemical parameter and property of minerals in sedimentary rock in dominant layer and at the variety of depth are also needed. (author)

  6. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel.

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  7. Locating Groundwater Pathways of Anthropogenic Contaminants Using a Novel Approach in Kānéohe Watershed, Óahu, Hawaíi

    Science.gov (United States)

    McKenzie, T.; Dulai, H.; Popp, B. N.; Whittier, R. B.

    2017-12-01

    We have applied a novel approach using radon, δ15N and δ18O values of nitrate, and contaminants of emerging concern (CECs) to identify groundwater pathways of anthropogenic contaminants. This approach was applied in Kānéohe watershed, located on the windward side of Óahu, which has been subject to persistent near shore water pollution. Previous research has indicated that there are strong seasonal differences between surface runoff and groundwater discharge into Kānéohe Bay. Three sub-watersheds of varying land-use (e.g. cesspool density, agriculture, urbanization) bordering Kānéohe Bay were studied. Seasonality, as well as spatial and temporal variations of groundwater discharge into streams and the bay were captured by a series of snapshot studies using a natural isotope of radon as a tracer for groundwater inflow. δ15N and δ18O values of nitrate were used as source tracking tools to determine the potential origin (e.g. wastewater, agriculture) of nitrate. These results were paired with spatial analysis of land-use and further coupled with CEC concentrations in order to evaluate how land-use relates to stream and groundwater contaminant distribution. Previously unrecognized groundwater pathways for contaminant transport were identified using radon in conjunction with CEC and stable isotopic techniques. We present results for stream and coastal water quality, focusing on nutrient and CEC fluxes across the land-ocean interface, as well as discuss the application of CECs as novel wastewater tracers.

  8. Status and understanding of groundwater quality in the Monterey-Salinas Shallow Aquifer Study Unit, 2012–13: California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen; Wright, Michael

    2018-05-30

    component of this study—the understanding assessment—identified the natural and human factors that potentially affect groundwater quality by evaluating land-use characteristics, measures of location, geologic factors, groundwater age, and geochemical conditions of the shallow aquifer. An additional component of this study was a comparison of MS-SA water-quality results to those of the GAMA Monterey Bay and Salinas Valley Groundwater Basins study unit. This study unit covered much of the same areal extent as the MS-SA, but assessed the deeper, public drinking-water aquifer system.Relative concentrations (sample concentration divided by the benchmark concentration) were used to evaluate concentrations of constituents in groundwater samples relative to water-quality benchmarks for those constituents that have Federal or California benchmarks, such as maximum contaminant levels. For organic and special-interest constituents, relative concentrations were classified as high, greater than 1.0; moderate, greater than 0.1 and less than or equal to 1.0; or low, less than or equal to 0.1. For inorganic constituents, relative concentrations were classified as high, greater than 1.0; moderate, greater than 0.5 and less than or equal to 1.0; or low, less than or equal to 0.5. A relative concentration greater than 1.0 indicates that the concentration was greater than a benchmark. Aquifer-scale proportions were used to quantify regional-scale groundwater quality. The aquifer-scale proportions are the areal percentages of the shallow aquifer system where relative concentrations for a given constituent or class of constituents were high, moderate, or low.Inorganic constituents were measured at high and moderate relative concentrations more frequently than organic constituents. In the MS-SA study unit, inorganic constituents with benchmarks were detected at high relative concentrations in 51 percent of the study unit. The greatest proportions of high relative concentrations of trace

  9. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh

    Science.gov (United States)

    Taylor, Richard G.; Chandler, Richard E.

    2015-01-01

    Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation‐induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L−1). At these scales, the GRMs reveal statistically significant inverse associations between observed As concentrations and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped and developed groundwater‐fed irrigation periods. Further, the GRMs show that the spatial variation of groundwater As concentrations is well explained by not only surface geology but also statistical interactions (i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irrigation, which induces additional recharge where it is enabled by a permeable surface geology. Collectively, these statistical associations indicate that irrigation‐induced recharge serves to flush mobile As from shallow groundwater. PMID:27524841

  10. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  11. Groundwater quality for 75 domestic wells in Lycoming County, Pennsylvania, 2014

    Science.gov (United States)

    Gross, Eliza L.; Cravotta, Charles A.

    2017-03-06

    Groundwater is a major source of drinking water in Lycoming County and adjacent counties in north-central and northeastern Pennsylvania, which are largely forested and rural and are currently undergoing development for hydrocarbon gases. Water-quality data are needed for assessing the natural characteristics of the groundwater resource and the potential effects from energy and mineral extraction, timber harvesting, agriculture, sewage and septic systems, and other human influences.This report, prepared in cooperation with Lycoming County, presents analytical data for groundwater samples from 75 domestic wells sampled throughout Lycoming County in June, July, and August 2014. The samples were collected using existing pumps and plumbing prior to any treatment and analyzed for physical and chemical characteristics, including nutrients, major ions, metals and trace elements, volatile organic compounds, gross-alpha particle and gross beta-particle activity, uranium, and dissolved gases, including methane and radon-222.Results indicate groundwater quality generally met most drinking-water standards, but that some samples exceeded primary or secondary maximum contaminant levels (MCLs) for arsenic, iron, manganese, total dissolved solids (TDS), chloride, pH, bacteria, or radon-222. Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 9 of the 75 (12 percent) well-water samples, with concentrations as high as 23.6 μg/L; arsenic concentrations were higher than the health advisory level (HAL) of 2 μg/L in 23 samples (31 percent). Total iron concentrations exceeded the secondary maximum contaminant level (SMCL) of 300 μg/L in 20 of the 75 samples. Total manganese concentrations exceeded the SMCL of 50 μg/L in 20 samples and the HAL of 300 μg/L in 2 of those samples. Three samples had chloride concentrations that exceeded the SMCL of 250 milligrams per liter (mg/L); two of those samples exceeded the SMCL of 500 mg/L for TDS. The pH ranged

  12. Halon-1301, a new Groundwater Age Tracer

    Science.gov (United States)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    concentration of Halon-1301, which indicates absence of local anthropogenic or geologic sources (contamination), despite some samples showing CFC contamination. We found agreement of 71% of mean age estimates with ages inferred from tritium and SF6 within +/- 2 years, for samples where direct age comparison could be made. The remaining sites showed reduced concentrations of Halon-1301 along with reduced concentrations of CFCs. The reasons for this need to be further assessed, but are likely caused by sorption or degradation of Halon-1301. Further Halon-1301 studies are planned covering various hydrogeologic situations, land use practises, and redox conditions to evaluate the potential of Halon-1301 as groundwater tracer, and to elucidate the causes for reduced Halon-1301 concentrations. Acknowledgements Greater Wellington Regional Council, especially S. Tidswell, is thanked for support and organisation of the sampling of the groundwater wells. This study is part of a PhD supported by GNS Science as part of the Smart Aquifer Characterization program funded by the New Zealand Ministry for Science and Innovation (http://www.smart-project.info/). References Beyer, M., van der Raaij, R., Morgenstern, U., Jackson, B. (2014) Potential groundwater age tracer found: Halon-1301 (CF3Br), as previously identified as CFC-13 (CF3Cl), Water Resources Research. Busenberg, E. and Plummer, L.N. (2008) Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfurhexafluoride (SF6), CF3Cl (CFC-13) & CF2CL2 (CFC-12), Water Resources Research 44

  13. Groundwater age determination using 85Kr and multiple age tracers (SF6, CFCs, and 3H to elucidate regional groundwater flow systems

    Directory of Open Access Journals (Sweden)

    Makoto Kagabu

    2017-08-01

    New hydrological insights for the region: The groundwater ages could not be estimated using CFCs or SF6, particularly in the urban areas because of artificial additions to the concentration over almost the entire study area. However, even in these regional circumstances, apparent ages of approximately 16, 36, and not less than 55 years were obtained for three locations on the A–A’ line (recharge area, discharge area, and stagnant zone of groundwater, respectively from 85Kr measurements. This trend was also supported by lumped parameter model analysis using a time series of 3H observations. In contrast, along the B–B’ line, the groundwater age of not less than 55 years at three locations, including the recharge to discharge area, where CFCs and SF6 were not detected, implies old groundwater: this is also the area in which denitrification occurs. In the C area, very young groundwater was obtained from shallow water and older groundwater was detected at greater depths, as supported by the long-term fluctuations of the NO3−–N concentration in the groundwater. The results of this study can be effectively used as a “time axis” for sustainable groundwater use and protection of groundwater quality in the study area, where groundwater accounts for almost 100% of the drinking water resources.

  14. Ground-water quality in agricultural areas, Anoka Sand Plain Aquifer, east-central Minnesota, 1984-90

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.

    1995-01-01

    Ground-water quality in the Anoka Sand Plain aquifer was studied as part of the multiscale Management Systems Evaluation Area (MSEA) study by collecting water samples from shallow wells during August through November 1990. The sampling was conducted to: (1) aid in selection of the MSEA research area; (2) facilitate comparison of results at the MSEA research area to the regional scale; and (3) evaluate changes in ground-water quality in the Anoka Sand Plain aquifer since a previous study during 1984 through 1987. Samples were collected from 34 wells screened in the upper 6 meters of the surficial aquifer and located in cultivated agricultural areas. Water temperature, pH, specific conductance, and presence or absence of triazine herbicides were determined at all sites and samples from selected wells were analyzed for concentrations of dissolved oxygen, alkalinity, major cations and anions, nutrients, and selected herbicides and herbicide metabolites. The results of the study indicate that the water-quality of some shallow ground water in areas of predominantly agricultural land use has been affected by applications of nitrogen fertilizers and the herbicide atrazine.

  15. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow

    Science.gov (United States)

    Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.

    2017-04-01

    Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.

  16. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in

  17. Uranium in groundwater from Western Haryana, India

    International Nuclear Information System (INIS)

    Balvinder Singh; Nawal Kishore; Vandana Pulhani

    2014-01-01

    This study was undertaken to assess uranium in groundwater and radiological and chemical risks associated with its ingestion in rural habitats in the vicinity of proposed nuclear power project in Western Haryana, India. Uranium concentration in the groundwater of the study area varied from 0.3 to 256.4 μg L -1 . Radiological risk calculated in the form of average life time dose was found 5.1 × 10 -2 mSv to the residents of the area from the ingestion of groundwater. The average cancer mortality and average cancer morbidity risk were calculated to be 4.9 × 10 -6 and 7.7 × 10 -6 respectively indicating the absence of carcinogenic risks. Chemical risk was in the range of 0.02-18.8 μg kg -1 day -1 . Hazard quotient for 72 % samples was greater than unity which indicates health risk due to chemical toxicity of uranium in groundwater. The results indicate that uranium concentrations in the groundwater of the study area are important due to chemical risk than radiological risk. (author)

  18. Monitoring effects of river restoration on groundwater with radon

    International Nuclear Information System (INIS)

    Hoehn, Eduard

    2007-01-01

    The restoration of the perialpine river Toess in a floodplain of northern Switzerland (Linsental) included the removal of bank reinforcements and tracer studies in the river and in oberservation wells of the adjacent alluvial groundwater. The river water is continuously recharging the aquifer system and the groundwater is used extensively as drinking water. Radon activity concentrations of freshly infiltrated groundwater are interpreted as radon groundwater age between the river and a well. A first flood after the restoration operations resulted in a widening of the river bed and in a reduction of the flow distance to the wells. Sixteen days after a second flood, the results of radon measurements were compared with those from before the restoration. The radon age of the groundwater between the river and the wells decreased, probably as a result of the reduction of the flow distances. Concentrations of autochthonous and coliform bacteria increased after the restoration operation and even more one day after the first flood. Thus the findings on the bacteria corroborate the interpretation of the radon concentrations. The restoration has not yet reduced the quality of the groundwater, which is pumped for drinking water. The study is contributing to the solution of land-use conflicts between river restoration and the supply of drinking water from the alluvial groundwater. (orig.) [de

  19. Modeling the interaction of light intensity, nutrient concentration and uranium toxicity in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E.; Horemans, N.; Vandenhove, H. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Cedergreen, N. [University of Copenhagen (Denmark); Jager, T. [Vrije Universiteit Amsterdam (Netherlands)

    2014-07-01

    Radioecology aims at assessing the effect of radionuclides and radiation on the environment. Since we cannot test every possible environmental situation in the laboratory, we need modeling approaches to extrapolate the results of toxicity assays to environmentally relevant scenarios. Therefore, it is of crucial importance to understand the effect of relevant environmental factors, such as nutrients, temperature and light on the toxicity of the test. Radionuclides are often found to induce the production of reactive oxygen species (ROS). In plants, an overload of ROS can lead to disturbances of the photosynthetic system. Since the light intensity determines the efficiency of the photo-systems in plants, it can be expected to interact with the effect of radionuclides. The nutrient concentration of the test medium determines the physiological state of the plant, affecting in turn the plant's capability of dealing with stress and hence influences the toxicity of the contaminant. To study the interaction of stressors with environmental conditions, mechanistic effect modeling is promoted widely in ecotoxicology. In principle, the modelling aims at a mechanistic understanding of the different processes causing the stress individually, and integrating them in one framework to study their joint effect and possible interaction. We here present a mechanistic effect model for Lemna minor (common duckweed), which is based on Dynamic Energy Budget (DEB) theory. Models based on DEB have been used widely to study the effects of compounds on animals. Due to its general applicability to all types of organisms, it holds potential to be used for comparison of species and compounds in a broad context. Energy uptake from the environment is modeled explicitly, and metabolic rates are set to depend on temperature in DEB models. Therefore, they can be used to extrapolate effects to a wide range of environmentally relevant scenarios. Until now, the DEB research in ecotoxicology has

  20. Diagnosis of the nutrient compositional space of fruit crops

    Directory of Open Access Journals (Sweden)

    Léon-Étienne Parent

    2011-03-01

    Full Text Available Tissue analysis is a useful tool for the nutrient management of fruit orchards. The mineral composition of diagnostic tissues expressed as nutrient concentration on a dry weight basis has long been used to assess the status of 'pure' nutrients. When nutrients are mixed and interact in plant tissues, their proportions or concentrations change relatively to each other as a result of synergism, antagonism, or neutrality, hence producing resonance within the closed space of tissue composition. Ternary diagrams and nutrient ratios are early representations of interacting nutrients in the compositional space. Dual and multiple interactions were integrated by the Diagnosis and Recommendation Integrated System (DRIS into nutrient indexes and by Compositional Nutrient Diagnosis into centered log ratios (CND-clr. DRIS has some computational flaws such as using a dry matter index that is not a part as well as nutrient products (e.g. NxCa instead of ratios. DRIS and CND-clr integrate all possible nutrient interactions without defining an ad hoc interactive model. They diagnose D components while D-1 could be diagnosed in the D-compositional Hilbert space. The isometric log ratio (ilr coordinates overcome these problems using orthonormal binary nutrient partitions instead of dual ratios. In this study, it is presented a nutrient interactive model as well as computation methods for DRIS and CND-clr and CND-ilr coordinates (CND-ilr using leaf analytical data from an experimental apple orchard in Southwestern Quebec, Canada. It was computed the Aitchison and Mahalanobis distances across ilr coordinates as measures of nutrient imbalance. The effect of changing nutrient concentrations on ilr coordinates are simulated to identify the ones contributing the most to nutrient imbalance.

  1. Effect of Nutrient Solution Concentration, Time and Frequency of Foliar Application on Growth of Leaf and Daughter Corms of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    R Khorasani

    2015-07-01

    Full Text Available In order to investigate the effect of different levels of nutrient solution concentration and times and frequencies of foliar applications on dry weight, nitrogen, phosphorus and potassium concentrations of leaf and corm of saffron, a pot experiment was conducted as a completely randomized design with factorial arrangement and three replications under open door conditions in research garden of ferdowsi university, faculty of agriculture. The experimental treatments were included 4 levels of solution concentration (0, 4, 8 and 12 per 1000 and 7 levels of time and frequency of foliar applications (F1: foliar application on 3th February, F2: foliar application on 18th February, F3: foliar application on 5th March, F4: foliar applications on 3th and 18th February, F5: foliar applications on 3th February and 5th March, F6: foliar applications on 18th February and 5th March, F7: foliar applications on 3th and 18th February and 5th March. Results of variance analysis showed that fresh and dry weight of corm and leaf were not influenced by concentration, time and frequency of foliar applications. Also, comparison of nitrogen, phosphorus and potassium concentrations of leaf and corm showed that there was no significant difference between levels of foliar treatments and control. Therefore, it seems that due attention to pattern of leaf and low nutrient demand of saffron, foliar applications in different levels of nutrient solution concentrations and times and frequencies of foliar applications could not increase vegetative growth and consequently, could not improve the growth and nutritional properties of saffron corms.

  2. Nutrient fluxes at the landscape level and the R* rule

    Science.gov (United States)

    Ju, Shu; DeAngelis, Donald L.

    2010-01-01

    Nutrient cycling in terrestrial ecosystems involves not only the vertical recycling of nutrients at specific locations in space, but also biologically driven horizontal fluxes between different areas of the landscape. This latter process can result in net accumulation of nutrients in some places and net losses in others. We examined the effects of such nutrient-concentrating fluxes on the R* rule, which predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, can exclude all competing species. To study the R* rule in this context, we used a literature model of plant growth and nutrient cycling in which both nutrients and light may limit growth, with plants allocating carbon and nutrients between foliage and roots according to different strategies. We incorporated the assumption that biological processes may concentrate nutrients in some parts of the landscape. We assumed further that these processes draw nutrients from outside the zone of local recycling at a rate proportional to the local biomass density. Analysis showed that at sites where there is a sufficient biomass-dependent accumulation of nutrients, the plant species with the highest biomass production rates (roughly corresponding to the best competitors) do not reduce locally available nutrients to a minimum concentration level (that is, minimum R*), as expected from the R* rule, but instead maximize local nutrient concentration. These new results require broadening of our understanding of the relationships between nutrients and vegetation competition on the landscape level. The R* rule is replaced by a more complex criterion that varies across a landscape and reduces to the R* rule only under certain limiting conditions.

  3. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  4. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    Science.gov (United States)

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.

  5. A co-metabolic approach to groundwater remediation

    International Nuclear Information System (INIS)

    Palumbo, A.V.; Boerman, P.A.; Herbes, S.E.; White, D.C.; Strandberg, G.W.; Donaldson, T.L.; Lucero, A.J.; Jennings, H.L.; Phelps, T.J.; White, D.C.

    1991-01-01

    In support of the US Department of Energy's (DOE) Integrated Demonstration (Cleanup of Organics in Soils and Groundwater at Non-arid Sites) at the Savannah River Site (SRS), Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) are involved in demonstrations of the use of methanotrophs in bioreactors for remediation of contaminated groundwater. In preparation for a field demonstration at ORNL's K-25 Site in Oak Ridge, Tennessee, ORNL is conducting batch experiments, is operating a number of bench-scale bioreactors, has designed pretreatment systems, and has modified a field-scale bioreactor provided by the Air Force Engineering and Services Center for use at the site. UT is operating benchscale bioreactors with the goal of determining the stability of a trichloroethylene-degrading methanotrophic consortia during shifts in operating conditions (e.g. pH, nutrient inputs, and contaminant mixtures). These activities are all aimed at providing the knowledge base necessary for successful treatment of contaminated groundwater at the SRS and K-25 sites as well as other DOE sites

  6. A co-metabolic approach to groundwater remediation

    International Nuclear Information System (INIS)

    Palumbo, A.V.; Boerman, P.A.; Strandberg, G.W.; Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Herbes, S.E.; Phelps, T.J.; White, D.C.

    1991-01-01

    In support of the US Department of Energy's (DOE) Integrated Demonstration (Cleanup of Organics in Soils and Groundwater at Non-arid Sites) at the Savannah River Site (SRS), Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) are involved in demonstrations of the use of methanotrophs in bioreactors for remediation of contaminated groundwater. In preparation for a field demonstration at ORNL's K-25 Site in Oak Ridge, Tennessee, ORNL is conducting batch experiments, is operating a number of bench-scale bioreactors, has designed pretreatment systems, and has modified a field-scale bioreactor provided by the Air Force Engineering and Services Center for use at the site. UT is operating bench-scale bioreactors with the goal of determining the stability of a trichloroethylene-degrading methanotrophic consortia during shifts in operating conditions (e.g. pH, nutrient inputs, and contaminant mixtures). These activities are all aimed at providing the knowledge base necessary for successful treatment of contaminated groundwater at the SRS and K-25 sites as well as other DOE sites. 18 refs., 1 fig. , 1 tab

  7. Effects of soil characteristics on grape juice nutrient concentrations and other grape quality parameters in Shiraz

    Science.gov (United States)

    Concepción Ramos, Maria; Romero, Maria Paz

    2017-04-01

    This study investigated the response of grapes to soil properties in the variety Shiraz (SH) cultivated in the Costers de Segre Designation of Origin (NE, Spain). The research was carried out in two areas with differences in vigor, which was examined using the Normalized Difference Vegetation Index (NDVI). Soil properties such as organic matter content, pH, electrical conductivity and nutrients (N, P, K, Ca, Mg, Cu, Zn and Mn) were analysed in the two areas. Soil analyses were limited to the upper 40 cm. Soil N-NO3 was measured in 2M KCl extracts. Assimilable phosphorus was analysed by extraction with 0.5 M NaHCO3 at pH 8.5 using the Olsen method. The available K, Ca and Mg were evaluated in hemaaxinecobalt trichloride extracts and the available fraction of Cu, Zn, Mn and Fe in DTPA- trietanolamine extracts, by spectroscopy atomic emission/absorption. Berry grapes were collected at maturity. Nutrients in grape juice (K, Ca, Mg Cu, Zn, Mn and Fe) were determined after a microwave hydrogen peroxide digestion in a closed vessel microwave digestion system and measured by spectroscopy. Other grape properties that determine grape quality such as pH, berry weight and sugar content were analysed using the methods proposed by the OIV. Differences in soil properties were observed between plots, which determined the differences in vigour. The vines with lower vigour were grown in the soils with higher pH, electrical conductivity and silt content, which had in addition higher Ca, Mg and K available levels as well as higher levels of Fe and Mn than the soil in which vines had higher vigour. However, the available fraction of Cu and Zn was smaller. Similar differences in nutrient concentration in the berry were observed for all nutrients except for Cu. Grape juice pH and total soluble solids (°Brix) were higher in the most vigorous vines. However, the differences in berry weight and total acidity at ripening were not significant. Keywords: acidity; berry weight; nutrients; p

  8. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    Science.gov (United States)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  9. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... food energy and basic nutrients for proper nutrition of man. ... 2008). Irrespective of the variety, crop yield is a direct ..... had recently formed the research drive of scientists so as .... Bioresource Technology for Sustainable.

  10. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2017-06-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  11. Groundwater-Quality Data in the Madera-Chowchilla Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 860-square-mile Madera-Chowchilla study unit (MADCHOW) was investigated in April and May 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within MADCHOW, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 35 wells in Madera, Merced, and Fresno Counties. Thirty of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and five more were selected to provide additional sampling density to aid in understanding processes affecting groundwater quality (flow-path wells). Detection summaries in the text and tables are given for grid wells only, to avoid over-representation of the water quality in areas adjacent to flow-path wells. Groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], low-level 1,2-dibromo-3-chloropropane [DBCP] and 1,2-dibromoethane [EDB], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA], perchlorate, and low-level 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (uranium isotopes, and gross alpha and gross beta particle activities). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen

  12. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  13. Assessment of Hydrochemistry for Use as Groundwater Age Proxy

    Science.gov (United States)

    Beyer, Monique; Daughney, Chris; Jackson, Bethanna; Morgenstern, Uwe

    2015-04-01

    Groundwater dating can aid groundwater management by providing information on groundwater flow, mixing and residence-, storage- and exposure-time of groundwater in the subsurface. Groundwater age can be inferred from environmental tracers, such as tritium, SF6 and CFCs (CFC-12, -11 and -113). These tracers often need to be applied complementarily, since they have a restricted application range and ambiguous age interpretations can be obtained. Some tracers, such as the CFCs, will become of limited use in near future, due their fading out atmospheric concentration. As a consequence of these limitations, there is a need for additional, complementary tracers to ensure groundwater dating in future. Hydrochemistry parameters, such as the concentrations and ratios of major ions, appear to be promising candidates. Hydro-chemistry data at various spatial and temporal scales are widely available through local, regional and national groundwater monitoring programmes. Promising relationships between hydrochemistry parameters and groundwater residence time or aquifer depth have been found in near piston flow environments. However, most groundwater samples contain proportions of different aged water, due to mixing of water emerging from different flow lines during sampling or discharge, which complicates the establishment of hydrochemistry-time relationships in these environments. In this study, we establish a framework to infer hydrochemistry - (residence) time relationships in non-piston flow environments by using age information inferred from environmental tracer data and lumped parameter models (LPMs). The approach involves the generation of major element concentrations by 'classic' Monte Carlo simulation and subsequent comparison of simulated and observed element concentrations by means of an objective function to establish hydrochemistry-time relationships. The framework also allows for assessment of the hydrochemistry-time relationships with regards to their potential to

  14. The role of groundwater transport in aquatic mercury cycling

    Science.gov (United States)

    Krabbenhoft, David P.; Babiarz, Christopher L.

    1992-01-01

    Mercury, which is transported globally by atmospheric pathways to remote aquatic environments, is a ubiquitous contaminant at very low (nanograms Hg per liter) aqueous concentrations. Until recently, however, analytical and sampling techniques were not available for freshwater systems to quantify the actual levels of mercury concentrations without introducing significant contamination artifacts. Four different sampling strategies were used to evaluate ground water flow as a mercury source and transport mechanism within aquatic systems. The sampling strategies employ ultraclean techniques to determine mercury concentrations in groundwater and pore water near Pallette Lake, Wisconsin. Ambient groundwater concentrations are about 2–4 ng Hg L−1, whereas pore waters near the sediment/water interface average about 12 ng Hg L−1, emphasizing the importance of biogeochemical processes near the interface. Overall, the groundwater system removes about twice as much mercury (1.5 g yr−1) as it contributes (0.7 g yr−1) to Pallette Lake. About three fourths of the groundwater mercury load is recycled, thought to be derived from the water column.

  15. Subsurface aeration of anaerobic groundwater : iron colloid formation and the nitrification process

    NARCIS (Netherlands)

    Wolthoorn, A.

    2003-01-01

    Keywords: Iron, anaerobic groundwater, groundwater purification, heterogeneous oxidation, iron colloid formation, electron microscopy, nitrification In anaerobic groundwater iron and ammonium can be found in relatively high concentrations. These substances need to be removed when groundwater is used

  16. Evaluating the performance of water purification in a vegetated groundwater recharge basin maintained by short-term pulsed infiltration events.

    Science.gov (United States)

    Mindl, Birgit; Hofer, Julia; Kellermann, Claudia; Stichler, Willibald; Teichmann, Günter; Psenner, Roland; Danielopol, Dan L; Neudorfer, Wolfgang; Griebler, Christian

    2015-01-01

    Infiltration of surface water constitutes an important pillar in artificial groundwater recharge. However, insufficient transformation of organic carbon and nutrients, as well as clogging of sediments often cause major problems. The attenuation efficiency of dissolved organic carbon (DOC), nutrients and pathogens versus the risk of bioclogging for intermittent recharge were studied in an infiltration basin covered with different kinds of macrovegetation. The quality and concentration of organic carbon, major nutrients, as well as bacterial biomass, activity and diversity in the surface water, the porewater, and the sediment matrix were monitored over one recharge period. Additionally, the numbers of viral particles and Escherichia coli were assessed. Our study showed a fast establishment of high microbial activity. DOC and nutrients have sustainably been reduced within 1.2 m of sediment passage. Numbers of E. coli, which were high in the topmost centimetres of sediment porewater, dropped below the detection limit. Reed cover was found to be advantageous over bushes and trees, since it supported higher microbial activities along with a good infiltration and purification performance. Short-term infiltration periods of several days followed by a break of similar time were found suitable for providing high recharge rates, and good water purification without the risk of bioclogging.

  17. Characterizing Field Biodegradation of N-nitrosodimethylamine (NDMA) in Groundwater with Active Reclaimed Water Recharge

    Science.gov (United States)

    McCraven, S.; Zhou, Q.; Garcia, J.; Gasca, M.; Johnson, T.

    2007-12-01

    N-Nitrosodimethylamine (NDMA) is an emerging contaminant in groundwater, because of its aqueous miscibility, exceptional animal toxicity, and human carcinogenicity. NDMA detections in groundwater have been tracked to either decomposition of unsymmetrical dimethylhydrazine (UDMH) used in rocket fuel facilities or chlorine disinfection in wastewater reclamation plants. Laboratory experiments on both unsaturated and saturated soil samples have demonstrated that NDMA can be biodegraded by microbial activity, under both aerobic and anaerobic conditions. However, very limited direct evidence for its biodegradation has been found from the field in saturated groundwater. Our research aimed to evaluate photolysis and biodegradation of NDMA occurring along the full travel path - from wastewater reclamation plant effluent, through rivers and spreading grounds, to groundwater. For this evaluation, we established an extensive monitoring network to characterize NDMA concentrations at effluent discharge points, surface water stations, and groundwater monitoring and production wells, during the operation of the Montebello Forebay Groundwater Recharge facilities in Los Angeles County, California. Field monitoring for NDMA has been conducted for more than six years, including 32 months of relatively lower NDMA concentrations in effluent, 43 months of elevated NDMA effluent concentrations, and 7 months with significantly reduced NDMA effluent concentrations. The NDMA effluent concentration increase and significant concentration decrease were caused by changes in treatment processes. The NDMA sampling data imply that significant biodegradation occurred in groundwater, accounting for a 90% mass reduction of NDMA over the six-year monitoring period. In addition, the occurrence of a discrete well monitored effluent release during the study period allowed critical analysis of the fate of NDMA in a well- characterized, localized groundwater flow subsystem. The data indicate that 80% of the

  18. Shallow groundwater quality in the Village of Patchogue, Suffolk County, New York

    Science.gov (United States)

    Abbene, Irene J.

    2010-01-01

    The onsite disposal of wastewater within the Patchogue River Basin-a riverine estuary that discharges into Great South Bay, Suffolk County, Long Island, N.Y. -has adversely affected water quality and aquatic habitats within both the tidal and non-tidal portions of the river. In response to increased development within the approximately 14 square mile basin, the Village of Patchogue has expanded efforts to manage and protect the local groundwater resources, which sustain freshwater base flow and aquatic habitats. Water-quality samples from 10 shallow wells within the Village were collected in March 2009, before the start of seasonal fertilizer application, to document the effects of onsite wastewater disposal on groundwater discharging into the Patchogue River. Each sample was analyzed for physical properties (pH, dissolved oxygen, specific conductance, and temperature), nutrients, organic carbon, major ions, and trace elements. Water samples from eight wells were analyzed for stable isotopes of nitrogen. The nitrate concentration in one well was 40 milligrams per liter (mg/L), which exceeded the U.S. Environmental Protection Agency (USEPA) and New York State Department of Health (NYSDOH) maximum contamination level in drinking water of 10 mg/L. Sodium concentrations at nine wells exceeded the USEPA Drinking Water Advisory Taste Threshold of 60 mg/L. Dissolved iron concentrations at three wells exceeded the NYSDOH and USEPA Secondary Drinking Water Standard of 300 micrograms per liter (?g/L). Nitrogen isotope signatures (d15N) were determined and compared with those reported from previous studies in Nassau and Suffolk Counties to identify possible sources of the nitrate. Local variations in measured ammonia, nitrate, total nitrogen, phosphorus, and organic carbon concentrations and d15N signatures indicate that nitrate enters the surficial aquifer from several sources (fertilizer, septic waste, and animal waste) and reflects biogeochemical processes such as

  19. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    delivered to consumers. Water supplied to consumers typically is treated after withdrawal from the ground, disinfected, and blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and non-regulatory thresholds established for aesthetic concerns (secondary maximum contamination levels, SMCL-CA) by CDPH. VOCs and pesticides were detected in samples from less than one-third of the grid wells; all detections were below health-based thresholds, and most were less than one-one hundredth of threshold values. All detections of perchlorate and nutrients in samples from OWENS were below health-based thresholds. Most detections of trace elements in ground-water samples from OWENS wells were below health-based thresholds. In samples from the 53 grid wells, three constituents were detected at concentrations above USEPA maximum contaminant levels: arsenic in 5 samples, uranium in 4 samples, and fluoride in 1 sample. Two constituents were detected at concentrations above CDPH notification levels (boron in 9 samples and vanadium in 1 sample), and two were above USEPA lifetime health advisory levels (molybdenum in 3 samples and strontium in 1 sample). Most of the samples from OWENS wells had concentrations of major elements, TDS, and trace elements below the non-enforceable standards set for aesthetic concerns. Samples from nine grid wells had concentrations of manganese, iron, or TDS above the SMCL-CAs.

  20. Origins and bioavailability of dissolved organic matter in groundwater

    Science.gov (United States)

    Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald

    2015-01-01

    Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.

  1. The occurrence and geochemistry of arsenic in groundwaters of Taiwan

    Science.gov (United States)

    Chen, W.; Lu, H.; Liu, T.

    2008-12-01

    Blackfoot disease caused by digesting water with high concentration (>0.3 mg/L) of arsenic from deep wells affected thousands of people in Chianan of Taiwan during 1930 to 1960. Drinking water with arsenic, even in a lower concentration (0.1-0.01 mg/L) increase risk of cancer that had been demonstrated by a number of studies on Taiwan. By concerning the effects of long-term chronic exposure to arsenic, the EPA of United States had revised the regulatory limit of arsenic for drinking water from 0.05 to 0.01 mg/L in 2006. Many researches have investigated on the occurrence and chemistry of the arsenic-contained groundwater and its health effects in Chianan of Taiwan. However, there are only a few studies on the other groundwater basins of Taiwan that providing about one third of water supplies for a population of 21 million. In this study, we investigate the occurrence and redox geochemistry of arsenic in nine major groundwater basins of Taiwan. The values and concentrations of pH, Eh, dissolved oxygen, nitrate, sulfate, iron, methane, sulfide, bicarbonate and ammonium in groundwaters were determined with a total of 610 monitoring wells in 2006. More than 60% of wells in the GW6 basin with a concentration of arsenic exceed 0.05 mg/L. The groundwaters in GW6 basin also have the highest average arsenic concentration. The exceeding percent (>0.05 mg/L) of wells for GW7, GW5, GW9 and GW8 basins are 30%, 20%, 18% and 8%, respectively. All of arsenic concentrations in groundwaters of GW1 to GW4 basins are lower than 0.05 mg/L, but some samples are higher than 0.01 mg/L. The exceeding percent of samples for arsenic 0.01 mg/L in GW3, GW1, GW2 and GW4 basins are 28%, 24%, 23% and 6%, respectively. Our results suggest that the concentrations of arsenic as well as iron in groundwaters of Taiwan were elevated by the iron-reducing process in aquifers. Samples, especially those with higher concentration of bicarbonate (> 400 mg/L) and oversaturated methane, mostly in the GW6 basin

  2. Sampling of dissolved gases in deep groundwater pumped to the surface

    International Nuclear Information System (INIS)

    Lahdenperae, J.

    2006-08-01

    The aim of this study was to develop method for sampling dissolved gases in groundwater pumped out from borehole. In this report the developed method called Simple gas collector (YKK) and the first results gained are described. Samples were collected from five sampling sections. First test samplings were made from multipackered deep borehole (OL-KR1/523,2-528,2 m). The rest of samples were sampled during prepumping of PAVE-samplings. All samples were analysed with mass spectrometer. Gas composition results were very reproducible but gas concentration results varied in some sampling sections. Achieved results were compared with gas results of groundwater samples taken with PAVE-equipment. YKK-results were mainly comparable to PAVE-results, although differences were observed in both gas composition and concentration results. When gas concentration is small ( 2 O) gas compositions are very comparable and when concentration is high compositions differs between YKK- and PAVE-results. Gas concentration values were very comparable when the groundwater samples contained gases a lot, but the differences were relatively higher, when the gas amount in the groundwater sample was small. According to the survey you can get comparable information of dissolved gases in groundwater with YKK-method. The limit of using this method is that pumped groundwater must be oversaturated with gases in sampling conditions. (orig.)

  3. Nutrient and Bacteria Concentrations in the Coastal Waters off ...

    African Journals Online (AJOL)

    ammonium, nitrate, nitrite, soluble reactive phosphorous) and bacteria (total and faecal coliforms) in the waters off Zanzibar Town. The study covered both the SE and NE monsoon and the two transition periods for a total of one year. Nutrient ...

  4. Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole.

    Science.gov (United States)

    Kinsman-Costello, L E; Sheik, C S; Sheldon, N D; Allen Burton, G; Costello, D M; Marcus, D; Uyl, P A Den; Dick, G J

    2017-03-01

    For a large part of earth's history, cyanobacterial mats thrived in low-oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment-water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment-mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low-oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic-rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low-throughput or shotgun metagenomic approaches, our high-throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate-reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH

  5. Spatial assessment of animal manure spreading and groundwater nitrate pollution

    Directory of Open Access Journals (Sweden)

    Roberta Infascelli

    2009-11-01

    Full Text Available Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed.

  6. Geochemical investigation of groundwater in the Tono area, Japan. Chemical characteristics and groundwater evolution

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Hama, Katsuhiro; Yoshida, Hidekazu

    1997-01-01

    Geochemical investigations form an important part of the R and D program at the Tono study site, central Japan. Detailed geological structure and groundwater chemistry have been studied to understand the geochemical environment in the sedimentary and crystalline rocks distributed in this area. The chemical evolution of the groundwater in the sedimentary rocks is characterized with the variation in Na + , Ca 2+ and HCO 3 - concentrations, and ion exchange and dissolution of calcite are dominant reactions in the evolution of groundwater. Geological investigation shows that a fracture system of crystalline rock can be classified into:intact zone, moderately fractured zone and intensely fractured zone, according to the frequency and the width of fractures and fractured zones. The groundwater in the intact and fractured zones of crystalline rock are characterized by Na + -Ca 2+ -HCO 3 - or Na + -HCO 3 - dominated water, and Na + -Ca 2+ -Fe 2+ -HCO 3 - dominated water. The chemical evolution of groundwater is, generally, controlled by water-rock interaction between plagioclase, iron minerals and groundwater. The groundwater at depth of G.L.-186m in the crystalline rock at the Tono area is characterized by the mixture between the oxidized surface water and the reduced groundwater. The investigation based on correlation between geological structures and groundwater chemistry can be applied to understand the geochemical environment in deep crystalline rock, and will support the development of a realistic hydrogeochemical model. (author)

  7. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  8. Intercropping of green garlic (Allium sativum L. induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L. in a plastic tunnel.

    Directory of Open Access Journals (Sweden)

    Xuemei Xiao

    Full Text Available A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and manganese (Mn in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg concentrations were decreased in the cucumber plants. Shoot iron (Fe concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  9. Nutrient fluxes from coastal California catchments with suburban development

    Science.gov (United States)

    Melack, J. M.; Leydecker, A.; Beighley, E.; Robinson, T.; Coombs, S.

    2005-12-01

    Numerous streams originate in the mountains fringing California's coast and transport nutrients into coastal waters. In central California, these streams traverse catchments with land covers including chaparral, grazed grasslands, orchards, industrial agriculture and suburban and urban development. Fluvial nutrient concentrations and fluxes vary as a function of these land covers and as a function of considerable fluctuations in rainfall. As part of a long-term investigation of mobilization and fluvial transport of nutrients in catchments bordering the Santa Barbara Channel we have intensively sampled nutrient concentrations and measured discharge during storm and base flows in multiple catchments and subcatchments. Volume-weighted mean concentrations of nitrate generally ranged from 5 to 25 micromolar in undeveloped areas, increased to about 100 micromolar for suburban and most agricultural catchments, and were in excess of 1000 micromolar in catchments with greenhouse-based agriculture. Phosphate concentrations ranged from 2 to 20 micromolar among the catchments. These data are used to examine the premise that the suburbanized portion of the catchments is the primary source of nutrients to the streams.

  10. Relations between total phosphorus and orthophosphorus concentrations and rainfall, surface-water discharge, and groundwater levels in Big Cypress Seminole Indian Reservation, Florida, 2014–16

    Science.gov (United States)

    McBride, W. Scott; Sifuentes, Dorothy F.

    2018-02-06

    The Seminole Tribe of Florida (the Tribe) is partnering with the U.S. Environmental Protection Agency to develop a numeric phosphorus criterion for the 52,000-acre Big Cypress Seminole Indian Reservation (BCSIR), which is located downgradient of the Everglades Agricultural Area, and of other public and private lands, in southeastern Hendry County and northwestern Broward County in southern Florida. The U.S. Geological Survey (USGS), in cooperation with the Tribe, used water-quality data collected between October 2014 and September 2016 by the Tribe and the South Florida Water Management District (SFWMD), along with data from rainfall gages, surface-water stage and discharge gages, and groundwater monitoring wells, to (1) examine the relations between local hydrology and measured total phosphorus (TP) and orthophosphorus (OP) concentrations and (2) identify explanatory variables for TP concentrations. Of particular concern were conditions when TP exceeded 10 parts per billion (ppb) (0.01 milligram per liter [mg/L]) given that the State of Florida and the Miccosukee Tribe of Indians Alligator Alley Reservation (located downstream of the BCSIR) have adopted a 10-ppb maximum TP criterion for surface waters.From October 2014 to September 2016, the Tribe collected 47–52 samples at each of nine water-quality sites for analysis of TP and OP, except at one site where 28 samples were collected. For all sites sampled, concentrations of TP (as phosphorus [P]) ranged from less than 0.002 mg/L (2 ppb) to a maximum of nearly 0.50 mg/L (500 ppb), whereas concentrations of OP (as P), the reactive form of inorganic phosphorus readily absorbed by plants and (or) abiotically absorbed, ranged from less than 0.003 mg/L (3 ppb) to a maximum of 0.24 mg/L (240 ppb). The median and interquartile ranges of concentrations of TP and OP in the samples collected in 2014–16 by the Tribe were similar to the median and interquartile ranges of concentrations in samples collected by the SFWMD at

  11. Nutrients, Toxins, and Water in Terrestrial and Aquatic Ecosystems Treated with Sewage Plant Effluents. Final Report of the Upland Recharge Program

    Energy Technology Data Exchange (ETDEWEB)

    Woodwell, G. M.; Ballard, J. T.; Clinton, J.; Pecan, E. V.

    1976-01-01

    The objective of this work was to appraise the capacity of terrestrial and aquatic plant communities for absorbing and retaining nutrients and organic matter in sewage and for releasing ''clean'' water. Experimental systems included a sere representative of the Eastern Deciduous Forest, a timothy field, two Phalaris arundinacea meadows, a freshwater marsh, a pond, and a marsh-pond complex. Sewage of two qualities was applied at the rate of 5 cm per week; one treatment was equivalent to the release from a primary treatment sewage plant, the second to that from a secondary treatment plant. Under normal circumstances, without the addition of water or nutrients in sewage, the flux of nutrients into the groundwater was greatest under the agricultural communities and least under the late successional forest communities. All the terrestrial communities were net sources of most elements. Because the agricultural communities were fertilized and a substantial fraction of the fertilizer applied remained after the first year, the agricultural communities appeared to be net sinks during the first year of the experiment. The highest concentrations of nutrients in the percolate of the untreated communities commonly occurred in the earliest stages of succession. This relationship was especially conspicuous for nitrogen. Phosphorus and iron appeared to be held tightly within most ecosystems.

  12. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Supcharoen, Ratsirin; Sioudom, Khamfeuane; Kum, Veasna; Chanyotha, Supitcha; Kritsananuwat, Rawiwan

    2017-06-01

    Tonle Sap Lake (Cambodia), a classic example of a "flood pulse" system, is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about six fold. The lake is likely phosphorus limited and we hypothesized that groundwater discharge, including recirculated lake water, may represent an important source of P and other nutrients. To address this question, we surveyed hundreds of kilometers of the lake for natural 222Rn (radon), temperature, conductivity, GPS coordinates and water depth. All major inorganic nutrients and phosphorus species were evaluated by systematic sampling throughout the lake. Results showed that there were radon hotspots, all at the boundaries between the permanent lake and the floodplain, indicating likely groundwater inputs. A radon mass balance model indicates that the groundwater flow to Tonle Sap Lake is approximately 10 km3/yr, about 25% as large as the floodwaters entering from the Mekong River during the wet monsoon. Our results suggest that the groundwater-derived dissolved inorganic phosphorus (DIP) contribution to Tonle Sap is more than 30% of the average inflows from all natural sources. Since the productivity of the lake appears to be phosphorus limited, this finding suggests that the role of groundwater is significant for Tonle Sap Lake and perhaps for other flood pulse systems worldwide.

  13. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  14. The Relative Concentrations of Nutrients and Toxins Dictate Feeding by a Vertebrate Browser, the Greater Glider Petauroides volans.

    Directory of Open Access Journals (Sweden)

    Lora M Jensen

    Full Text Available Although ecologists believe that vertebrate herbivores must select a diet that allows them to meet their nutritional requirements, while avoiding intoxication by plant secondary metabolites, this is remarkably difficult to show. A long series of field and laboratory experiments means that we have a good understanding of the factors that affect feeding by leaf-eating marsupials. This knowledge and the natural intraspecific variation in Eucalyptus chemistry allowed us to test the hypothesis that the feeding decisions of greater gliders (Petauroides volans depend on the concentrations of available nitrogen (incorporating total nitrogen, dry matter digestibility and tannins and of formylated phloroglucinol compounds (FPCs, potent antifeedants unique to Eucalyptus. We offered captive greater gliders foliage from two species of Eucalyptus, E. viminalis and E. melliodora, which vary naturally in their concentrations of available nitrogen and FPCs. We then measured the amount of foliage eaten by each glider and compared this with our laboratory analyses of foliar total nitrogen, available nitrogen and FPCs for each tree offered. The concentration of FPCs was the main factor that determined how much gliders ate of E. viminalis and E. melliodora, but in gliders fed E. viminalis the concentration of available nitrogen was also a significant influence. In other words, greater gliders ate E. viminalis leaves with a particular combination of FPCs and available nitrogen that maximised the nutritional gain but minimised their ingestion of toxins. In contrast, the concentration of total nitrogen was not correlated with feeding. This study is among the first to empirically show that browsing herbivores select a diet that balances the potential gain (available nutrients and the potential costs (plant secondary chemicals of eating leaves. The major implication of the study is that it is essential to identify the limiting nutrients and relevant toxins in a system in

  15. Sources for increased DOC-concentrations in the groundwater downstream of the landfill Hohne (DEA)

    International Nuclear Information System (INIS)

    Bahlmann, E.; Seifert, R.; Eschenbach, A.; Kleinschmidt, V.

    2017-08-01

    Construction waste together with drilling mud and oil-contaminated soil had been deposited in the landfill Hohne from 1971. Four groundwater monitoring sites had been installed: one monitoring site upstream and three sites downstream of the landfill in three different directions. Downstream of the landfill increased concentrations of chloride, sulphate, sodium and DOC (dissolved organic carbon) had been measured over a period of years. Particularly the source of the DOC has remained unclear. Assumptions were (i) leaking of contaminants from the landfill and degradation under the landfill by microbes or plants or (ii) leaching of DOC from the soil under the landfill caused by a change in the redox potential. The determination of the DOC source was the major subject of this study.

  16. Response of non-added solutes during nutrient addition experiments in streams

    Science.gov (United States)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  17. Nature and analysis of chemical species: pollution effects on surface waters and groundwater

    International Nuclear Information System (INIS)

    Young, R.H.F.

    1975-01-01

    A literature review of 103 items covers: nutrients in surface waters; runoff and waste discharges primarily from energy-intensive activities; groundwater pollution causes, effects, controls and monitoring; land and subsurface wastewater disposal; radionuclides; biological effects; thermal effluents; and biological and mathematical models for rivers

  18. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater in the Upper Hudson River Basin was typically neutral or slightly basic; the water typically was moderately hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 7 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Two pesticides, an herbicide degradate and an insecticide degredate, were detected in two samples at trace levels; seven VOCs, including chloroform, four solvents, and the gasoline additive methyl tert-butyl ether (MTBE) were detected in four samples. The greatest radon-222 activity, 2,900 picocuries per liter, was measured in a sample from a bedrock well; the median radon activity was higher in samples from bedrock wells than in samples from sand and gravel wells. Coliform bacteria were

  19. Predicting redox conditions in groundwater at a regional scale

    Science.gov (United States)

    Tesoriero, Anthony J.; Terziotti, Silvia; Abrams, Daniel B.

    2015-01-01

    Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved O2 concentrations in groundwater samples to indicators of residence time and/or electron donor availability using logistic regression. Variables that describe surficial geology, position in the flow system, and soil drainage were important predictors of oxic water. The probability of encountering oxic groundwater at a 30 m depth and the depth to the bottom of the oxic layer were predicted for the Chesapeake Bay watershed. The influence of depth to the bottom of the oxic layer on stream nitrate concentrations and time lags (i.e., time period between land application of nitrogen and its effect on streams) are illustrated using model simulations for hypothetical basins. Regional maps of the probability of oxic groundwater should prove useful as indicators of groundwater susceptibility and stream susceptibility to contaminant sources derived from groundwater.

  20. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    Science.gov (United States)

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.