WorldWideScience

Sample records for groundwater nitrogen dynamics

  1. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    Science.gov (United States)

    Stream riparian zones are often thought of as areas that provide natural remediation for groundwater contaminants, especially agricultural nitrogen (N). While denitrification and vegetative uptake tend to be efficient N removal processes in slow moving shallow groundwater, these mechanisms decrease ...

  2. Evaluation of Groundwater Pollution Nitrogen Fertilizer Using Expert System

    OpenAIRE

    Ta-oun, Mongkon; Daud, Mohamed; Bardaie, Mohd Zohadie

    2017-01-01

    An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia to identify potential groundwater quality problems. The expert system could predict the groundwater pollution potential under several conditions of agricultural activities and exiting environments. Four categories of groundwater pollution potential were identified base on an N-fertilizer groundwater pollution potential index. A groundwater pol...

  3. Groundwater dating for understanding nitrogen in groundwater systems - Time lag, fate, and detailed flow path ways

    Science.gov (United States)

    Morgenstern, Uwe; Hadfield, John; Stenger, Roland

    2014-05-01

    Nitrate contamination of groundwater is a problem world-wide. Nitrate from land use activities can leach out of the root zone of the crop into the deeper part of the unsaturated zone and ultimately contaminate the underlying groundwater resources. Nitrate travels with the groundwater and then discharges into surface water causing eutrophication of surface water bodies. To understand the source, fate, and future nitrogen loads to ground and surface water bodies, detailed knowledge of the groundwater flow dynamics is essential. Groundwater sampled at monitoring wells or discharges may not yet be in equilibrium with current land use intensity due to the time lag between leaching out of the root zone and arrival at the sampling location. Anoxic groundwater zones can act as nitrate sinks through microbial denitrification. However, the effect of denitrification on overall nitrate fluxes depends on the fraction of the groundwater flowing through such zones. We will show results from volcanic aquifers in the central North Island of New Zealand where age tracers clearly indicate that the groundwater discharges into large sensitive lakes like Lake Taupo and Lake Rotorua are not yet fully realising current land use intensity. The majority of the water discharging into these lakes is decades and up to over hundred years old. Therefore, increases in dairy farming over the last decades are not yet reflected in these old water discharges, but over time these increased nitrate inputs will eventually work their way through the large groundwater systems and increasing N loads to the lakes are to be expected. Anoxic zones are present in some of these aquifers, indicating some denitrification potential, however, age tracer results from nested piezo wells show young groundwater in oxic zones indicating active flow in these zones, while anoxic zones tend to have older water indicating poorer hydraulic conductivity in these zones. Consequently, to evaluate the effect of denitrification

  4. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  5. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  6. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    Science.gov (United States)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of the Tararua and

  7. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  8. Molecular signature of organic nitrogen in septic-impacted groundwater

    Science.gov (United States)

    Arnold, William A.; Longnecker, Krista; Kroeger, Kevin D.; Kujawinski, Elizabeth B.

    2014-01-01

    Dissolved inorganic and organic nitrogen levels are elevated in aquatic systems due to anthropogenic activities. Dissolved organic nitrogen (DON) arises from various sources, and its impact could be more clearly constrained if specific sources were identified and if the molecular-level composition of DON were better understood. In this work, the pharmaceutical carbamazepine was used to identify septic-impacted groundwater in a coastal watershed. Using ultrahigh resolution mass spectrometry data, the nitrogen-containing features of the dissolved organic matter in septic-impacted and non-impacted samples were compared. The septic-impacted groundwater samples have a larger abundance of nitrogen-containing formulas. Impacted samples have additional DON features in the regions ascribed as ‘protein-like’ and ‘lipid-like’ in van Krevelen space and have more intense nitrogen-containing features in a specific region of a carbon versus mass plot. These features are potential indicators of dissolved organic nitrogen arising from septic effluents, and this work suggests that ultrahigh resolution mass spectrometry is a valuable tool to identify and characterize sources of DON.

  9. Nitrogen dynamics in land cleared of alien vegetation (Acacia saligna) and impacts on groundwater at Riverlands Nature Reserve (Western Cape, South Africa)

    CSIR Research Space (South Africa)

    Jovanovic, Nebojsa

    2009-01-01

    Full Text Available in the background map. The main outcome of the field measurements and model- ling exercise was that clearing alien Acacia species induces a fast release of nitrogen due to decreased evapotranspiration and increased recharge. However, in the long run... Geological Survey Open-File Rep. 01-82, Denver, Colorado. ...

  10. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    Science.gov (United States)

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  11. Distribution and Sources of Nitrate-Nitrogen in Kansas Groundwater

    Directory of Open Access Journals (Sweden)

    Margaret A. Townsend

    2001-01-01

    Full Text Available Kansas is primarily an agricultural state. Irrigation water and fertilizer use data show long- term increasing trends. Similarly, nitrate-N concentrations in groundwater show long-term increases and exceed the drinking-water standard of 10 mg/l in many areas. A statistical analysis of nitrate-N data collected for local and regional studies in Kansas from 1990 to 1998 (747 samples found significant relationships between nitrate-N concentration with depth, age, and geographic location of wells. Sources of nitrate-N have been identified for 297 water samples by using nitrogen stable isotopes. Of these samples, 48% showed fertilizer sources (+2 to +8 and 34% showed either animal waste sources (+10 to +15 with nitrate-N greater than 10 mg/l or indication that enrichment processes had occurred (+10 or above with variable nitrate-N or both. Ultimate sources for nitrate include nonpoint sources associated with past farming and fertilization practices, and point sources such as animal feed lots, septic systems, and commercial fertilizer storage units. Detection of nitrate from various sources in aquifers of different depths in geographically varied areas of the state indicates that nonpoint and point sources currently impact and will continue to impact groundwater under current land uses.

  12. Onsite wastewater system nitrogen contributions to groundwater in coastal North Carolina.

    Science.gov (United States)

    Humphrey, C P; O'Driscoll, M A; Deal, N E; Lindbo, D L; Thieme, S C; Zarate-Bermudez, M A

    2013-12-01

    The objective of the study described in this article was to evaluate the nitrogen contributions from two onsite wastewater systems (sites 1 and 2) to groundwater and adjacent surface waters in coastal Beaufort County, North Carolina. Groundwater levels and water quality parameters including total nitrogen, nitrogen species, temperature, and pH were monitored from October 2009 to May 2010. Nitrogen was also tested in groundwater from deeper irrigation or drinking water wells from the two sites and six additional neighboring residences. Mean total nitrogen concentrations in groundwater beneath onsite wastewater systems 1 and 2 were 34.3 +/- 16.7 mg/L and 12.2 +/- 2.9 mg/L, respectively, and significantly higher than background groundwater concentrations (Groundwater in the deeper wells appeared not to be influenced by the onsite systems. Groundwater nitrogen concentrations typically decreased with distance down-gradient from the systems, but were still elevated relative to background conditions more than 15 m from the systems and near the estuary. This was a pioneering effort to better understand the link of onsite systems, the fate of nitrogen in the environment, and public health.

  13. Effects of watershed land use on nitrogen concentrations and δ15 nitrogen in groundwater

    Science.gov (United States)

    Cole, Marci L.; Kroeger, Kevin D.; McClelland, J.W.; Valiela, I.

    2006-01-01

    Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ 15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ 15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ 15N values to receiving waters. The enriched δ 15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.

  14. Nitrogen cycling within an alluvial aquifer during groundwater fluctuations

    Science.gov (United States)

    Bouskill, N.; Conrad, M. E.; Bill, M.; Brodie, E.; Forbes, M. S.; Casciotti, K. L.; Williams, K. H.

    2015-12-01

    Subsurface terrestrial-aquatic interfaces are hotspots of biogeochemical cycling of terrestrially derived organic matter and nutrients. However, pathways of nitrogen (N) loss within subsurface aquifers are poorly understood. Here we take an experimental and mechanistic modeling approach to gauge the contribution of different microbial functional groups to the transformation and loss of N in an unconfined aquifer at Rifle, Colorado. During 2014 we measured nitrate (NO3), ammonia, gaseous nitrous oxide (N2O) and the corresponding isotopic composition of NO3 and N2O. Coincident with an annual Spring/ Summer excursion in groundwater elevation, we observed a rapid decline in NO3 concentrations at three discrete depths (2, 2.5 and 3 m) within the aquifer. Isotopic measurements (i.e., δ18O and δ15N) of NO3 suggest an immediate onset of biological N loss at 2 m, but not at 3 m where the isotopic composition demonstrated dilution of NO3 concentration prior to the onset of biological N loss. This implies that the groundwater becomes increasingly anoxic as it rises within the capillary fringe. We observed the highest rates of N2O production concomitant with the largest enrichment of the δ18ONO3 and δ15NNO3 isotopes. A mechanistic microbial model representing the diverse physiology of nitrifiers, aerobic and anaerobic (denitrifying) heterotrophs and anammox bacteria indicates that the bulk of N2O production and N loss is attributable to denitrifying heterotrophs. However, this relationship is dependent on the coupling between aerobic and anaerobic microbial guilds at the oxic-anoxic interface. Modeling results suggest anammox plays a more prominent role in N loss under conditions where the organic matter input is low and rapidly drawn down by aerobic heterotrophs prior to the rise of the water table. We discuss our modeling results in light of recent molecular microbiology work at this site, but also with respect to implications for N loss across terrestrial

  15. Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang

    2012-01-01

    Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic...

  16. Quality of bedrock groundwater in western Finland, with special reference to nitrogen compounds

    Directory of Open Access Journals (Sweden)

    Karro, E.

    1999-12-01

    Full Text Available Monitoring of bedrock aquifers utilized for water supply in the Vaasa region, western Finland, suggests slight changes in the chemical composition of groundwater resulting both from natural and anthropogenic factors. Applying the permissible limits for parameters in drinking water reveals that the groundwater quality is generally good. Groundwater occurring in fractures and fissures of the crystalline bedrock is protected from anthropogenic pollution by clay and till deposits with low permeability. Temporally, the contents of nitrogen compounds in groundwater exhibit a decreasing trend. Reducing conditions prevailing in bedrock aquifers are reflected in elevated ammonium, iron and manganese contents in water.

  17. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trièves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  18. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trieves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  19. Impact of Groundwater Level on Nitrate Nitrogen Accumulation in the Vadose Zone Beneath a Cotton Field

    Directory of Open Access Journals (Sweden)

    Xiyun Jiao

    2017-02-01

    Full Text Available In this study, the impacts of groundwater level on nitrate nitrogen accumulation in the vadose zone of a cotton field were investigated. Experiments were conducted in a cotton field at the CAS Ecological Agricultural Experiment Station in Nanpi from 2008 to 2010. A vertical observation well was drilled, and time-domain reflectometry probes and soil solution extractors were installed every 50 cm in the walls of the well to a depth of 5 m. The soil water content was monitored, and soil solution samples were obtained and analyzed every six days throughout the growing seasons during the three studied years. Additionally, a water consumption experiment was conducted, and the topsoil water content and leaf area index were measured in the cotton field. The resulting data were used to estimate parameters for use in a soil hydraulic and nitrate nitrogen movement model, and cotton evapotranspiration was calculated using the Penman–Monteith method. Groundwater level increases and decreases of ±4 m were simulated during a ten-year period using HYDRUS-1D. The results showed significant nitrate nitrogen accumulation in the vadose zone when the groundwater level remained unchanged or decreased, with increased accumulation as the groundwater depth increased. Additionally, increased precipitation and a deeper groundwater level resulted in greater nitrate nitrogen leaching in the cotton root zone. Therefore, irrigation and fertilization strategies should be adjusted based on precipitation conditions and groundwater depth.

  20. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation.

    Science.gov (United States)

    Cho, Kun-Ching; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2016-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled (15)N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the (15)N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via (13)C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Shallow groundwater nitrogen responses to different land use managements in the riparian zone of Yuqiao Reservoir in North China

    Institute of Scientific and Technical Information of China (English)

    LU Haiming; YIN Chengqing

    2008-01-01

    This field study investigated the nitrogen concentrations in the shallow groundwater from an ephemeral stream and four land uses:cropland,two-year restored (2yr) and five-years restored (5yr) woodlands,fishponds,and the nitrogen flux in the riparian zone of Yuqiao Reservoir.The groundwater nitrate-N concentrations in cropland were the highest among the four land uses.Total dissolved nitrogen (TDN) and nitrate-N concentrations in the 2yr woodland were significantly (p<0.05) higher than in 5yr woodland.The lowest nitrogen concentrations were detected in fishponds.Nitrate-N was the main form in cropland and 2yr woodland,whereas both nitrate-N and diSSolved organic nitrogen (DON) were the main species in 5yr woodland and fishponds.But,ammonium-N was the main form in the ephemeral stream.During the rainy season,the groundwater flow wim dissolved nitrogen drains from upland into the reservoir along the hydraulic gradient.The woodland between the cropland and reservoir could act as a buffer to retain shallow groundwater nitrogen.The dominant form of ammonium-N in the groundwater TDN pool in ephemeral stream indicated that nitrogen from the village and orchard in upland flowed into the reservoir via subsurface flow.The fishpond Was not an important pollution source for nitrogen transfer via shallow groundwater.

  2. Nitrogen and phosphorus budgets for the Yucatán littoral: An approach for groundwater management.

    Science.gov (United States)

    Arandacirerol, Nancy; Comín, Francisco; Herrera-Silveira, Jorge

    2011-01-01

    Human activities have altered the balance of ecosystems to the detriment of natural environments. Eutrophication is a serious risk in Yucatán, a state in the eastern peninsula of México where groundwater supplies the only freshwater to a karst shelf environment. While economic development in Yucatán is increasing, environmental awareness is lagging, and efficient waste treatment systems are lacking. To assess potential nitrogen and phosphorus inputs into the coastal zone of Yucatán, we analyzed government reports and the chemical composition of groundwater and aquaculture wastewater. Swine, poultry, and tourism are revealed as the main continental nutrient sources, while groundwater with high nitrate concentrations is the principal coastal nutrient source, a pattern similar to other river discharges around the world. This study demonstrates that environmental risk management practices must be implemented in the Yucatán region to protect groundwater quality.

  3. Nitrogen speciation and trends, and prediction of denitrification extent, in shallow US groundwater

    Science.gov (United States)

    Hinkle, Stephen R.; Tesoriero, Anthony J.

    2014-01-01

    Uncertainties surrounding nitrogen cycling complicate assessments of the environmental effects of nitrogen use and our understanding of the global carbon–nitrogen cycle. In this paper, we synthesize data from 877 ambient-monitoring wells across the US to frame broad patterns of nitrogen speciation and trends. At these sites, groundwater frequently contains substantial co-occurring NO3− and XSN2 (N2 from denitrification), reflecting active/ongoing denitrification and/or a mixture of undenitrified and denitrified groundwater. NO3− and NH4+ essentially do not co-occur, indicating that the dominant source of NH4+ at these sites likely is not dissimilatory reduction of NO3− to NH4+. Positive correlations of NH4+ with apparent age, CH4, dissolved organic carbon, and indicators of reduced conditions are consistent with NH4+ mobilization from degradation of aquifer organic matter and contraindicate an anthropogenic source of NH4+ for most sites. Glacial aquifers and eastern sand and gravel aquifers generally have lower proportions of NO3− and greater proportions of XSN2 than do fractured rock and karst aquifers and western sand and gravel aquifers. NO3− dominates in the youngest groundwater, but XSN2 increases as residence time increases. Temporal patterns of nitrogen speciation and concentration reflect (1) changing NO3− loads over time, (2) groundwater residence-time controls on NH4+ mobilization from solid phases, and (3) groundwater residence-time controls on denitrification. A simple classification tree using readily available variables (a national coverage of soil water depth, generalized geology) or variables reasonably estimated in many aquifers (residence time) identifies categorical denitrification extent (50%) with 79% accuracy in an independent testing set, demonstrating a predictive application based on the interconnected effects of redox, geology, and residence time.

  4. Preliminary characterization of nitrogen and phosphorus in groundwater discharging to Lake Spokane, northeastern Washington, using stable nitrogen isotopes

    Science.gov (United States)

    Gendaszek, Andrew S.; Cox, Stephen E.; Spanjer, Andrew R.

    2016-02-29

    Lake Spokane, locally referred to as Long Lake, is a 24-mile-long section of the Spokane River impounded by Long Lake Dam that has, in recent decades, experienced water-quality problems associated with eutrophication. Consumption of oxygen by the decomposition of aquatic plants that have proliferated because of high nutrient concentrations has led to seasonally low dissolved oxygen concentrations in the lake. Of nitrogen and phosphorus, the two primary nutrients necessary for aquatic vegetation growth, phosphorus was previously identified as the limiting nutrient that regulates the growth of aquatic plants and, thus, dissolved oxygen concentrations in Lake Spokane. Phosphorus is delivered to Lake Spokane from municipal and industrial point-source inputs to the Spokane River upstream of Lake Spokane, but is also conveyed by groundwater and surface water from nonpoint-sources including septic tanks, agricultural fields, and wildlife. In response, the Washington State Department of Ecology listed Lake Spokane on the 303(d) list of impaired water bodies for low dissolved oxygen concentrations and developed a Total Maximum Daily Load for phosphorus in 1992, which was revised in 2010 because of continuing algal blooms and water-quality concerns.This report evaluates the concentrations of phosphorus and nitrogen in shallow groundwater discharging to Lake Spokane to determine if a difference exists between nutrient concentrations in groundwater discharging to the lake downgradient of residential development with on-site septic systems and downgradient of undeveloped land without on-site septic systems. Elevated nitrogen isotope values (δ15N) within the roots of aquatic vegetation were used as an indicator of septic-system derived nitrogen. δ15N values were measured in August and September 2014 downgradient of residential development near the lakeshore, of residential development on 300-ft-high terraces above the lake, and of undeveloped land in the eastern (upper) and

  5. System dynamics modeling of nitrogen removal in a stormwater infiltration basin with biosorption-activated media.

    Science.gov (United States)

    Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin P; Williams, Evan Shane

    2013-07-01

    Stormwater infiltration basins, one of the typical stormwater best management practices, are commonly constructed for surface water pollution control, flood mitigation, and groundwater restoration in rural or residential areas. These basins have soils with better infiltration capacity than the native soil; however, the ever-increasing contribution of nutrients to groundwater from stormwater due to urban expansion makes existing infiltration basins unable to meet groundwater quality criteria related to environmental sustainability and public health. This issue requires retrofitting current infiltration basins for flood control as well as nutrient control before the stormwater enters the groundwater. An existing stormwater infiltration basin in north-central Florida was selected, retrofitted, and monitored to identify subsurface physiochemical and biological processes during 2007-2010 to investigate nutrient control processes. This implementation in the nexus of contaminant hydrology and ecological engineering adopted amended soil layers packed with biosorption activated media (BAM; tire crumb, silt, clay, and sand) to perform nutrient removal in a partitioned forebay using a berm. This study presents an infiltration basin-nitrogen removal (IBNR) model, a system dynamics model that simulates nitrogen cycling in this BAM-based stormwater infiltration basin with respect to changing hydrologic conditions and varying dissolved nitrogen concentrations. Modeling outputs of IBNR indicate that denitrification is the biogeochemical indicator in the BAM layer that accounted for a loss of about one third of the total dissolved nitrogen mass input.

  6. Source partitioning of anthropogenic groundwater nitrogen in a mixed-use landscape, Tutuila, American Samoa

    Science.gov (United States)

    Shuler, Christopher K.; El-Kadi, Aly I.; Dulai, Henrietta; Glenn, Craig R.; Fackrell, Joseph

    2017-07-01

    This study presents a modeling framework for quantifying human impacts and for partitioning the sources of contamination related to water quality in the mixed-use landscape of a small tropical volcanic island. On Tutuila, the main island of American Samoa, production wells in the most populated region (the Tafuna-Leone Plain) produce most of the island's drinking water. However, much of this water has been deemed unsafe to drink since 2009. Tutuila has three predominant anthropogenic non-point-groundwater-pollution sources of concern: on-site disposal systems (OSDS), agricultural chemicals, and pig manure. These sources are broadly distributed throughout the landscape and are located near many drinking-water wells. Water quality analyses show a link between elevated levels of total dissolved groundwater nitrogen (TN) and areas with high non-point-source pollution density, suggesting that TN can be used as a tracer of groundwater contamination from these sources. The modeling framework used in this study integrates land-use information, hydrological data, and water quality analyses with nitrogen loading and transport models. The approach utilizes a numerical groundwater flow model, a nitrogen-loading model, and a multi-species contaminant transport model. Nitrogen from each source is modeled as an independent component in order to trace the impact from individual land-use activities. Model results are calibrated and validated with dissolved groundwater TN concentrations and inorganic δ15N values, respectively. Results indicate that OSDS contribute significantly more TN to Tutuila's aquifers than other sources, and thus should be prioritized in future water-quality management efforts.

  7. Optimal dynamic management of groundwater pollutant sources.

    Science.gov (United States)

    Gorelick, S.M.; Remson, I.

    1982-01-01

    The linear programing-superposition method is presented for managing multiple sources of groundwater pollution over time. The method uses any linear solute transport simulation model to generate a unit source-concentration response matrix that is incorporated into a management model. -from Authors

  8. Groundwater nitrate pollution: High-resolution approach of calculating the nitrogen balance surplus for Germany

    Science.gov (United States)

    Klement, Laura; Bach, Martin; Breuer, Lutz; Häußermann, Uwe

    2017-04-01

    The latest inventory of the EU Water Framework Directive determined that 26.3% of Germany's groundwater bodies are in a poor chemical state regarding nitrate. As of late October 2016, the European Commission has filed a lawsuit against Germany for not taking appropriate measures against high nitrate levels in water bodies and thus failing to comply with the EU Nitrate Directive. Due to over-fertilization and high-density animal production, Agriculture was identified as the main source of nitrate pollution. One way to characterize the potential impact of reactive nitrogen on water bodies is the soil surface nitrogen balance where all agricultural nitrogen inputs within an area are contrasted with the output, i.e. the harvest. The surplus nitrogen (given in kg N per ha arable land and year) can potentially leach into the groundwater and thus can be used as a risk indicator. In order to develop and advocate appropriate measures to mitigate the agricultural nitrogen surplus with spatial precision, high-resolution data for the nitrogen surplus is needed. In Germany, not all nitrogen input data is available with the required spatial resolution, especially the use of mineral fertilizers is only given statewide. Therefore, some elements of the nitrogen balance need to be estimated based on agricultural statistics. Hitherto, statistics from the Federal Statistical Office and the statistical offices of the 16 federal states of Germany were used to calculate the soil surface balance annually for the spatial resolution of the 402 districts of Germany (mean size 890 km2). In contrast, this study presents an approach to estimate the nitrogen surplus at a much higher spatial resolution by using the comprehensive Agricultural census data collected in 2010 providing data for 326000 agricultural holdings. This resulted in a nitrogen surplus map with a 5 km x 5 km grid which was subsequently used to calculate the nitrogen concentration of percolation water. This provides a

  9. The impact of an underground cut-off wall on nutrient dynamics in groundwater in the lower Wang River watershed, China.

    Science.gov (United States)

    Kang, Pingping; Xu, Shiguo

    2017-03-01

    Underground cut-off walls in coastal regions are mainly used to prevent saltwater intrusion, but their impact on nutrient dynamics in groundwater is not clear. In this study, a combined analysis of multiple isotopes ([Formula: see text]) and nitrogen and phosphorus concentrations is used in order to assess the impact of the underground cut-off walls on the nutrient dynamics in groundwater in the lower Wang River watershed, China. Compared with the nitrogen and phosphorus concentrations in groundwater downstream of the underground cut-off walls, high [Formula: see text] and total dissolved nitrogen concentrations and similar concentration levels of [Formula: see text] and total dissolved phosphorus are found in groundwater upstream of the underground cut-off walls. The isotopic data indicated the probable occurrence of denitrification and nitrification processes in groundwater upstream, whereas the fingerprint of these processes was not shown in groundwater downstream. The management of fertilizer application is critical to control nitrogen concentrations in groundwater restricted by the underground cut-off walls.

  10. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    Science.gov (United States)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  11. Use of a mixing model to investigate groundwater-surface water mixing and nitrogen biogeochemistry in the bed of a groundwater-fed river

    Science.gov (United States)

    Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao

    2010-05-01

    The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual

  12. Prediction of changes in groundwater dynamics caused by relocation of river embankments

    Directory of Open Access Journals (Sweden)

    U. Mohrlok

    2003-01-01

    Full Text Available Ecosystems in river valleys are affected mainly by the hydraulic conditions in wetlands including groundwater dynamics. The quantitative prediction of changes in groundwater dynamics caused by river embankment relocation requires numerical modelling using a physically-based approach. Groundwater recharge from the intermittently flooded river plains was determined by a leakage approach considering soil hydraulic properties. For the study area in the Elbe river valley north of Magdeburg, Germany, a calibrated groundwater flow model was established and the groundwater dynamics for the present situation as well as for the case of embankment relocation were simulated over a 14-year time period. Changes in groundwater depth derived from simulated groundwater levels occurred only during flood periods. By analysing the spatial distributions of changes in statistical parameters, those areas with significant impact on the ecosystems by embankment relocation can be determined. Keywords: groundwater dynamics,groundwater recharge, flood plains, soil hydraulic properties, numerical modelling, river embankment relocation

  13. Groundwater Dynamics and Quality Assessment in an Agricultural Area

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2011-01-01

    Full Text Available Problem statement: The analysis of the relationships among the different hydrogeological Units and the assessment of groundwater quality are fundamental to adopt suitable territorial planning measures aimed to reduce the potential groundwater pollution especially in agricultural regions. In this study, the characteristics of groundwater dynamics and the assessment of its quality in the Cuneo Plain (NW Italy were examined. Approach: In order to define the geological setting an intense bibliographic analysis has been performed by the authors. This analysis was implemented by several correlated land controls and specific surveys that have permitted to analyze to certain reliability the Quaternary evolution of the entire plain sector and the current relationships among the different geological bodies that strongly affect the groundwater dynamics. Results: The Quaternary alluvial deposits overlap a Tertiary sedimentary succession through a series of erosional unconformity surfaces. These Quaternary deposits highlight a variable thickness ranging from 80-100 m in the foothills of the mountains up to a few meters in the more distal portion of the plain. In these deposits there are several unconfined aquifers which are not hydraulically interconnected due to the deep fluvial incisions that reach the underlying tertiary substrate. The Cuneo plain is intensively populated and lot of villages and farms characterize the landscape. In the overall area it is present an intensive agricultural and livestock activity predominantly represented by crops of wheat and corn and farms of cattle and pigs. All these activities represent point and diffuse groundwater pollution sources and require a considerable amount of groundwater which is withdrawn from the Quaternary aquifers by means of thousands of water wells. The groundwater quality is strongly influenced by the content of nitrates and manganese. The nitrates are linked to pollution due to agricultural activities

  14. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  15. Tracing natural gas transport into shallow groundwater using dissolved nitrogen and alkane chemistry in Parker County, Texas

    Science.gov (United States)

    Larson, T.; Nicot, J. P.; Mickler, P. J.; Darvari, R.

    2015-12-01

    Dissolved methane in shallow groundwater drives public concern about the safety of hydraulic fracturing. We report dissolved alkane and nitrogen gas concentrations and their stable isotope values (δ13C and δ15N, respectively) from 208 water wells in Parker county, Texas. These data are used to differentiate 'stray' natural gas and low temperature microbial methane, and (2) estimate the ratio of stray gas to groundwater. The ratio of (gas-phase) stray natural gas to groundwater is estimated by correlating dissolved methane and nitrogen concentrations and dissolved nitrogen δ15N values. Our hypothesis is groundwater exposed to high volumes of stray natural gas have high dissolved methane concentrations and low dissolved nitrogen concentrations and δ15N values. Alternatively, groundwater exposed to low volumes of stray gas-phase natural gas have elevated dissolved methane, but the concentration of dissolved nitrogen and its d15N value is atmospheric. A cluster of samples in Parker county have high concentrations of dissolved methane (>10mg/L) with d13Cmethane and alkane ratios (C1/C2+C3) typical of natural gas from the Barnett Shale and the Strawn Formation. Coupling dissolved nitrogen concentrations and δ15N values with these results, we suggest that few of the wells in this cluster preserve large gas to water ratios. Many samples with high dissolved methane concentrations have atmospheric dissolved nitrogen concentrations and δ15N values, providing evidence against high flux natural gas transport into shallow groundwater. These results demonstrate that dissolved nitrogen chemistry, in addition to dissolved alkane and noble gas measurements, may be useful to discern sources of dissolved methane and estimate ratios of stray natural gas-water ratios.

  16. Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater.

    Science.gov (United States)

    Chen, Ying-Xue; Zhang, Yan; Chen, Guang-Hao

    2003-05-01

    This study focused on the appropriate catalyst preparation and operating conditions for maximizing catalytic reduction efficiency of nitrate into nitrogen gas from groundwater. Batch experiments were conducted with prepared Pd and/or Cu catalysts with hydrogen gas supplied under specific operating conditions. It has been found that Pd-Cu combined catalysts prepared at a mass ratio of 4:1 can maximize the nitrate reduction into nitrogen gas. With an increase in the quantity of the catalysts, both nitrite intermediates and ammonia can be kept at a low level. It has also been found that the catalytic activity is mainly affected by the mass ratio of hydrogen gas to nitrate nitrogen, and hydrogen gas gauge pressure. Appropriate operating values of H(2)/NO(3)-N ratio, hydrogen gas gauge pressure, pH, and initial nitrate concentration have been determined to be 44.6g H(2)/g N, 0.15 atm, 5.2 (-), 100 mg x L(-1) for maximizing the catalytic reduction of nitrate from groundwater.

  17. Characterization of groundwater dynamics in landslides in varved clays

    Directory of Open Access Journals (Sweden)

    J. E. van der Spek

    2013-01-01

    Full Text Available Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trièves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and cut through by fissures. The hydraulic conductivity of the clay layers is negligible compared to the silt layers. It is conceptualized that fissures form a hydraulic connection between the colluvium and the varved clays. Groundwater recharge flows through the colluvium into the fissures where water is exchanged horizontally between the fissure and the silt layers of the varved clays. Groundwater flow in the colluvium is simulated with the Boussinesq equation while flow in the silt layers of the varved clays is simulated with the Richards' equation. Longitudinal outflow from the fissure is simulated with a linear-reservoir model. Scattered data of relatively short monitoring periods is available for several landslides in the region. A good similarity between observed and simulated heads is obtained, especially when considering the lack of important physical parameters such as the fissure width and the distance between the monitoring point and the fissure. A simulation for the period 1959–2004 showed some correlation between peaks in the simulated heads and the recorded occurrence of landslides while the bottom of the varved clays remained saturated during the entire simulation period.

  18. Nitrogen and Carbon Dynamics Across Trophic Levels Along an Atmospheric Nitrogen Deposition Gradient

    Science.gov (United States)

    Wissinger, B. D.; Bell, M. D.; Newingham, B. A.

    2011-12-01

    Atmospheric nitrogen deposition has altered soil biogeochemical processes and plant communities across the United States. Prior investigations have demonstrated these alterations; however, little is known about the effects of elevated nitrogen on higher trophic levels. Building upon previous research that revealed an atmospheric nitrogen deposition gradient from the San Bernardino Mountains through Joshua Tree National Park in California, we investigated atmospheric nitrogen and its effects on soils, plants, and harvester ants. We measured nitrogen and carbon concentrations, along with carbon and nitrogen stable isotopes, across trophic levels at eighteen urban and unpopulated sites along the deposition gradient. Carbon and nitrogen attributes were determined in atmospheric nitric acid, soil, Larrea tridentata and Ambrosia dumosa leaves, seeds from selected plant species, and ants. We predicted carbon and nitrogen ratios and isotopes to change in areas with higher nitrogen deposition and vary along the deposition gradient. Nitrogen (p=0.02) and carbon (p=0.05) concentrations, as well as C:N ratios (p=<0.001), significantly differed in Messor pergandei individuals among sites; however, no correlation was found between these carbon and nitrogen attributes and the nitrogen deposition gradient (%N r2=0.02, %C r2=0.007, C:N r2=0.02). The δ15N and δ13C values of the ants, leaf tissues, and seeds measured across the gradient follow similar patterns with r2 values all below 0.20. Our results suggest the current and previous rates of nitrogen deposition in this area are not enough to modify nitrogen and carbon concentrations and isotope values. Compensatory nitrogen cycling processes in the soil may reduce the effects of increased nitrogen on plants and thus higher trophic levels. Nitrogen and carbon dynamics across trophic levels might change after longer ecosystem exposure to elevated nitrogen; however, other abiotic and biotic factors are likely driving current

  19. Teaching groundwater dynamics: connecting classroom to practical and field classes

    Science.gov (United States)

    Hakoun, V.; Mazzilli, N.; Pistre, S.; Jourde, H.

    2013-01-01

    Preparing future hydrogeologists to provide inputs in societal discussions in a changing world is a challenging task that induces a need for efficient teaching frameworks. The educational literature suggests that hydrogeology courses should consistently integrate classroom instruction with practical and field classes. However, most teaching examples still separate these three class components. This paper presents an introductory course to groundwater dynamics taught at the Université des Sciences de Montpellier, France. The adopted pedagogical scheme and the proposed activities are described in details. The key points of the proposed course are: (i) an educational scheme that iteratively links groundwater dynamics topics to the three class components, (ii) a course that is structured around a main thread (well testing) called in each class component, (iii) a pedagogical approach that promotes active learning strategies, in particular using original practical classes and field experiments. The experience indicates that the proposed scheme improves the learning process, as compared to a classical, teacher-centered approach.

  20. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China).

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO3(-), with the concentration varying from 0.1mg/L to 206mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh (groundwater of the Poyang Lake basin has Eh>100mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ(15)N and δ(18)О) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ(18)О values from -4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the (15)N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    Science.gov (United States)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  2. Teaching groundwater dynamics: connecting classroom to practical and field classes

    OpenAIRE

    Hakoun, V.; N. Mazzilli; Pistre, S.; H. Jourde

    2013-01-01

    Preparing future hydrogeologists to provide inputs in societal discussions in a changing world is a challenging task that induces a need for efficient teaching frameworks. The educational literature suggests that hydrogeology courses should consistently integrate classroom instruction with practical and field classes. However, most teaching examples still separate these three class components. This paper presents an introductory course to groundwater dynamics taught at the Université des Scie...

  3. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D.; Podar, Mircea; Hazen, Terry C.; Arkin, Adam P.; Phelps, Tommy J.; Palumbo, Anthony V.; Faybishenko, Boris A.; Elias, Dwayne A.

    2010-05-01

    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which

  4. Stable isotope fractionation related to microbial nitrogen turnover in constructed wetlands treating contaminated groundwater

    Science.gov (United States)

    Voloshchenko, O.; Knoeller, K.

    2013-12-01

    To improve the efficiency of ground- and wastewater treatment in constructed wetlands (CWs), better understanding of the occurring processes is necessary. This research explores N-isotope fractionations associated with the removal of ammonium from contaminated groundwater in pilot-scale CWs downstream of the chemical industrial area Leuna, Germany. The groundwater at the site is contaminated mainly by organic (BTEX, MTBE) and inorganic compounds (ammonium). We assume that the anaerobic ammonium oxidation (ANAMMOX) plays an important role in nitrogen removal in these CWs. However, to date, interactions between processes of aerobic and anaerobic ammonium oxidation in CWs still have not been well explored. Especially, the importance of the ANAMMOX process for the nitrogen removal is generally accepted, but its role in CWs is quite unknown. For this aim, three CWs were chosen: planted horizontal subsurface flow (HSSF); unplanted HSSF, and floating plant root mat (FPRM). Water samples were taken at the inflow and outflow as well as from the pore space at different distances (1, 2.5 and 4 m) from the inlet and at different depths (20, 30 and 40 cm in the HSSF-CWs, 30 cm in the FPRM). Samples were collected in a time interval of 1 to 6 weeks during 1 year with the exception of the winter season. Physicochemical parameters, nitrogen isotope signatures of ammonium, as well as nitrogen and oxygen isotope signatures of nitrate were analysed. Within the CWs, spatial concentration gradients of the nitrogen species (ammonium and nitrate) are observed. N-isotope variations of ammonium and nitrate are interpreted according to the prevailing processes of the N-transformations. Based on isotope mass-balance approach microbial processes such as nitrification, denitrification, and ANAMMOX are quantified. DNA from biofilms at roots and gravel was extracted using FastDNA Spin Kit For Soil (MP Biomedicals). PCR, quantitative PCR, cloning, and sequencing were applied with the purpose of

  5. Evaluation of the risk of diffuse pollution of groundwater by nitrogen substances from agricultural land use as background for allocation of effective measures

    Directory of Open Access Journals (Sweden)

    Bujnovský Radoslav

    2016-03-01

    Full Text Available The risk of diffuse pollution of groundwater by nitrogen substances from agricultural land is perceived as a result of the interaction of groundwater vulnerability (determined by the characteristics of the environment overlying groundwater in relation to water transport or soil solution and loading of overlying environment by nitrogen. Index of groundwater vulnerability was assessed on the basis of four parameters, namely, the amount of effective rainfall in the period from October to March, the capacity of soil to accumulate water, the average depth of the groundwater table and the permeability of the rock environment. Assessment of the index of loading of overlying environment by nitrogen was based on two parameters, namely, nitrogen balance and crop cover on agricultural land in the winter half on districts level in 2012, which corresponds with current state of the load. The resulting risk of groundwater pollution by nitrogen was expressed by the formula counting with the transformed values of groundwater vulnerability index and the index of loading of overlying environment by nitrogen. From practical point of view, the above mentioned indexes, as well as the subsequent risk of diffuse groundwater pollution, were spatially expressed via three associated categories. Based on the evaluation of relevant parameters, 5.18% of agricultural land falls into the category of very high and high risk, 42.20% in the medium risk category and 52.62% in the category of low and very low risk of diffuse pollution of groundwater by nitrogen from agricultural land.

  6. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China)

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO3-, with the concentration varying from 0.1 mg/L to 206 mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh ( 100 mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ15N and δ18O) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ18O values from - 4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the 15N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions.

  7. New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements

    Science.gov (United States)

    Opsahl, S. P.; Musgrove, M.; Slattery, R. N.

    2017-03-01

    Understanding nitrate dynamics in groundwater systems as a function of climatic conditions, especially during contrasting patterns of drought and wet cycles, is limited by a lack of temporal and spatial data. Nitrate sensors have the capability for making accurate, high-frequency measurements of nitrate in situ, but have not yet been evaluated for long-term use in groundwater wells. We measured in situ nitrate continuously in two groundwater monitoring wells -one rural and one urban-located in the recharge zone of a productive karst aquifer in central Texas in order to resolve changes that occur over both short-term (hourly to daily) and long-term (monthly to yearly) periods. Nitrate concentrations, measured as nitrate-nitrogen in milligrams per liter (mg/L), during drought conditions showed little or no temporal change as groundwater levels declined. During aquifer recharge, extremely rapid changes in concentration occurred at both wells as documented by hourly data. At both sites, nitrate concentrations were affected by recharging surface water as evidenced by nitrate concentrations in groundwater recharge (0.8-1.3 mg/L) that were similar to previously reported values for regional recharging streams. Groundwater nitrate concentrations responded differently at urban and rural sites during groundwater recharge. Concentrations at the rural well (approximately 1.0 mg/L) increased as a result of higher nitrate concentrations in groundwater recharge relative to ambient nitrate concentrations in groundwater, whereas concentrations at the urban well (approximately 2.7 mg/L) decreased as a result of the dilution of higher ambient nitrate concentrations relative to those in groundwater recharge. Notably, nitrate concentrations decreased to as low as 0.8 mg/L at the urban site during recharge but postrecharge concentrations exceeded 3.0 mg/L. A return to higher nitrate concentrations postrecharge indicates mobilization of a localized source of elevated nitrate within the

  8. Nitrogen and Oxygen Isotopes of Low-Level Nitrate in Groundwater For Environmental Forensics

    Science.gov (United States)

    Wang, Y.

    2009-05-01

    Sources of nitrate in water from human activities include fertilizers, animal feedlots, septic systems, wastewater treatment lagoons, animal wastes, industrial wastes and food processing wastes. Nitrogen and Oxygen isotopic analysis of nitrate in groundwater is essential to source identification and environmental forensics as nitrate from different sources carry distinctly different N and O isotopic compositions. Nitrate is extracted from groundwater samples and converted into AgNO3 using ion exchange techniques. The purified AgNO3 is then broken down into N2 and CO for N and O isotopic measurement. Since nitrate concentrations in natural ground waters are usually less than 2 mg/L, however, such method has been limited by minimum sample size it requires, in liters, which is highly nitrate concentration dependent. Here we report a TurboVap- Denitrifier method for N and O isotopic measurement of low-level dissolved nitrate, based on sample evaporation and isotopic analysis of nitrous oxide generated from nitrate by denitrifying bacteria that lack N2O- reductase activity. For most groundwater samples with mg/L-level of nitrate direct injection of water samples in mLs is applied. The volume of sample is adjusted according to its nitrate concentration to achieve a final sample size optimal for the system. For water samples with ug/L-level of nitrate, nitrate is highly concentrated using a TurboVap evaporator, followed by isotopic measurement with Denitrifier method. Benefits of TurboVap- Denitrifier method include high sensitivity and better precision in both isotopic data. This method applies to both freshwater and seawater. The analyses of isotopic reference materials in nitrate-free de-ionized water and seawater are included as method controls to correct for any blank effects. The isotopic data from groundwater and ocean profiles demonstrate the consistency of the data produced by the TurboVap-Denitrifier method.

  9. Mass balance of nitrogen and potassium in urban groundwater in Central Africa, Yaounde/Cameroon.

    Science.gov (United States)

    Kringel, R; Rechenburg, A; Kuitcha, D; Fouépé, A; Bellenberg, S; Kengne, I M; Fomo, M A

    2016-03-15

    Mass flow of nutrients from innumerous latrines and septic tanks was assessed to best describe the groundwater quality situation in the urban environment of Yaounde. 37 groundwater samples were taken at the end of dry season 2012 and analysed for nutrient related (NO3(-), NH4(+), NO2(-), K(+), Cl(-), HPO4(2-) and TOC) and physico-chemical ambient parameters. A survey on waste water discharge close to water points constrained point sources from sanitation. The results showed that the median of nitrate concentration exceeds the WHO limit. We realized that EC increases from the geogenic background to very high levels in the urban area within short distance, suggesting anthropogenic input. Dug wells showed nitrate and ammonium in equivalent concentrations, indicating incomplete nitrification and mandating their inclusion into water type classification. The mass turnover of nutrients in urban groundwater scales high in comparison to national statistical figures on fertilizer import for 2012. A mass N,K balance for infiltration water overestimates observed concentrations by a factor of 4.5. The marked balance gap is attributed to dynamic non-equilibrium between input and output. Unresolved questions like a) urban sanitation, b) hygiene & health and c) environmental protection urgently call for closing the nutrient cycle. In the light of Cameroonian strategies on rural development, tackling the groundwater nutrient, urban agriculture, food--NEXUS might partially restore urban and periurban ecosystem services under economical constraints and thus improve living conditions.

  10. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions

  11. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Directory of Open Access Journals (Sweden)

    Chonggang Xu

    Full Text Available Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2 concentration, temperature, and radiation when evaluated against published data of V(c,max (maximum carboxylation rate and J(max (maximum electron transport rate. A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the

  12. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics.

    Science.gov (United States)

    Hobbie, Erik A; Högberg, Peter

    2012-10-01

    In this review, we synthesize field and culture studies of the 15N/14N (expressed as δ15N) of autotrophic plants, mycoheterotrophic plants, parasitic plants, soil, and mycorrhizal fungi to assess the major controls of isotopic patterns. One major control for plants and fungi is the partitioning of nitrogen (N) into either 15N-depleted chitin, ammonia, or transfer compounds or 15N-enriched proteinaceous N. For example, parasitic plants and autotrophic hosts are similar in δ15N (with no partitioning between chitin and protein), mycoheterotrophic plants are higher in δ15 N than their fungal hosts, presumably with preferential assimilation of fungal protein, and autotrophic, mycorrhizal plants are lower in 15N than their fungal symbionts, with saprotrophic fungi intermediate, because mycorrhizal fungi transfer 15N-depleted ammonia or amino acids to plants. Similarly, nodules of N2-fixing bacteria transferring ammonia are often higher in δ15N than their plant hosts. N losses via denitrification greatly influence bulk soil δ15N, whereas δ15N patterns within soil profiles are influenced both by vertical patterns of N losses and by N transfers within the soil-plant system. Climate correlates poorly with soil δ15N; climate may primarily influence δ15N patterns in soils and plants by determining the primary loss mechanisms and which types of mycorrhizal fungi and associated vegetation dominate across climatic gradients.

  13. Transport of Nitrogen and Phosphorus from Onsite Wastewater Treatment Systems to Shallow Groundwater

    Science.gov (United States)

    Toor, G.

    2014-12-01

    The knowledge about the nutrients transport from the vadose zone of onsite wastewater treatment systems (commonly called septic systems) is crucial to protect groundwater quality as 25% of US population uses septic systems to discharge household wastewater. For example, our preliminary data showed that about 47% of applied water was recovered at 60-cm below drainfield of septic systems. This implies that contaminants present in wastewater, if not attenuated in the vadose zone, can be transported to shallow groundwater. This presentation will focus on the biophysical and hydrologic controls on the transport of nitrogen (N) and phosphorus (P) from the vadose of two conventional (drip dispersal, gravel trench) and an advanced (with aerobic and anaerobic medias) system. These systems were constructed using two rows of drip pipe (37 emitters/mound) placed 0.3 m apart in the center of 6 m x 0.6 m drainfield. Each system received 120 L of wastewater per day. During 20-month period (May 2012 to December 2013), soil-water samples were collected from the vadose zone using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected from piezometers installed at 3-3.30 m depth below the drainfield. A complimentary 1-year study using smaller drainfields (0.5 m long, 0.9 m wide, 0.9 m high) was conducted to obtain better insights in the vadose zone. A variety of instruments (multi-probe sensors, suction cup lysimeters, piezometers, tensiometers) were installed in the vadose zones. Results showed that nitrification controlled N evolution in drainfield and subsequent transport of N plumes (>10 mg/L) into groundwater. Most of the wastewater applied soluble inorganic P (>10 mg/L) was quickly attenuated in the drainfield due to fixation (sorption, precipitation) in the vadose zone (advanced system was extremely effective as it removed >95% N from wastewater, but was less effective at removing P. This presentation will conclude with

  14. ~(15)N Isotope Used for Study of Groundwater Nitrogen Pollution in Shijiazhuang City, China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ~(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...

  15. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  16. Application of Time-Series Model to Predict Groundwater Dynamic in Sanjiang Plain,Northeast China

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhaoqing; LIU Guihua; YAN Baixing

    2011-01-01

    To study the groundwater dynamic in the typical region of Sanjiang Plain,long-term groundwater level observation data in the Honghe State Farm were collected and analyzed in this paper.The seasonal and long-term groundwater dynamic was explored.From 1996 to 2008,groundwater level kept declining due to intensive exploitation of groundwater resources for rice irrigation.A decline of nearly 5 m was found for almost all the monitoring wells.A time-series method was established to model the groundwater dynamic.Modeled results by time-series model showed that the groundwater level in this region would keep declining according to the current exploitation intensity.A total dropdown of 1.07 m would occur from 2009 to 2012.Time-series model can be used to model and forecast the groundwater dynamic with high accuracy.Measures including control on groundwater exploitation amount and application of water saving irrigation technique should be taken to prevent the continuing declining of groundwater in the Sanjiang Plain.

  17. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    Energy Technology Data Exchange (ETDEWEB)

    Meixner, Tom (University of Arizona, Tucson, AZ); Tidwell, Vincent Carroll; Oelsner, Gretchen (University of Arizona, Tucson, AZ); Brooks, Paul (University of Arizona, Tucson, AZ); Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  18. Applying GM(1,1) to Forecasting the Dynamic Variation of Groundwater in Chuang Ye Farm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The area of well rice in the sanjiang Plain is incresing recently.At the same time,the groundwater resource has been wasted.Thus,the resource of groundwater is shortening.More and more area appears the phenomenon of "hanger pump" and "funnel".According to these problems the paper adopts Chuang Ye farm as the research base,through handle the data of groundwater,applying GM(1,1) to forecasting the dynamic variation of groundwater.The writer hopes to provide some references about using groundwater resource of the area in the future for readers.

  19. Limiting nitrogen and veterinary pharmaceutical input into groundwater: combining hydrogeophysics and soil science

    Science.gov (United States)

    Noell, Ursula; Stadler, Susanne

    2017-04-01

    The EU Interreg project TOPSOIL investigates opportunities to improve surface and groundwater quality as well as water management strategies under the consideration of climate adaptation challenges. Within the framework of the project, we investigate the transport behavior of percolation water in the unsaturated zone, the migration of nitrogen and veterinary pharmaceuticals in soils, and - together with different stakeholders (e.g. farmers, water supply companies) - develop common strategies to minimize the migration of these substances into the groundwater. In our study we focus on distinguishing preferential and diffuse flow using soil scientific and geophysical methods. During the first investigation campaign, we combined soil sampling with radiometry and electrical conductivity overview measurements on the typical sandy soil of the studied area south of Oldenburg, Germany. We used the CMD explorer for the electromagnetic mapping (horizontal and vertical dipoles, intercoil spacing of 1.48/2.82/4.49 m, investigations depths of appr. 0 - 6 m) and the radiometry detector comprised five sodium-iodide crystals each with a volume of 4 litres. The spectral data are evaluated for potassium (1.37 - 1.57 MeV), uranium (Bi-214) (1.66 - 1.86MeV) and thorium (T-208) (2.41 - 2.81MeV) and total counts (0.41-2.81MeV). A total of 292 soil samples were taken from 46 ram coring profiles (depth range: 0 to 3 m) and analyzed for soil chemical parameters and water content. The first evaluation showed a good correlation between conductivity and radiometry measurements. While the uranium and thorium values are generally low, the potassium values possibly reflect higher clay contents as do the higher conductivity values. The geophysical overview measurements were used to select the locations for soil sampling and we specifically targeted presumably clay-rich as well as clay-poor areas for sampling.

  20. Effects of an intensive hog farming operation on groundwater in east Mediterranean (I): a study on electrical conductivity, as well as nitrogen and sulfur nutrients.

    Science.gov (United States)

    Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Liodakis, Stylianos

    2014-12-01

    The discharge of treated animal wastewater produced in concentrated animal feeding operations (CAFOs) on surface soil (within CAFOs borders) leads to groundwater degradation. In this research, groundwater degradation effects of an intensive hog farming operation, located in a Mediterranean area, were investigated. Treated animal wastewater was discharged on a small plot (~10.8 ha) with a geologic fault. Groundwater samples were taken from seven groundwater monitoring wells close to the farm. These wells were affected by the subsurface flow of waters, due to the presence of the geologic fault. In the summer, a significant increase of electrical conductivity values was noted in and attributed to falling water table levels. During the winter, significant increases in concentrations of ammonium nitrogen, nitrate nitrogen, and sulfate were noted and attributed to high precipitation, which assisted in the leaching of nitrogen and sulfur to groundwater.

  1. A Dynamic Knowledge Model for Nitrogen Fertilization in Wheat Management

    Institute of Scientific and Technical Information of China (English)

    ZHU Yan; CAO Wei-xing; DAI Ting-bo; SUN Chuan-fan

    2003-01-01

    By analyzing and extracting the research progress on nitrogen fertilization in wheat, a dynamic knowledge model for management decision-making on total nitrogen rate, ratios of organic to inorganic and of basal to dressing nitrogen under different environments and cultivars in wheat was developed with principle of nutrient balance and by integrating the quantitative effects of grain yield and quality targets, soil characters, variety traits and water management levels. Case studies on the nitrogen fertilization model with the data sets of different eco-sites, cultivars, soil fertility levels, grain yield and quality targets and water management levels indicate a good performance of the model system in decision-making and wide applicability.

  2. Estimating groundwater dynamics at a Colorado River floodplain site using historical hydrological data and climate information

    Science.gov (United States)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Ficklin, Darren L.

    2016-03-01

    Long-term prediction of groundwater dynamics is important for assessing water resources and their impacts on biogeochemical cycling. However, estimating future groundwater dynamics is challenging due to the wide range of spatiotemporal scales in hydrological processes and uncertainty in future climate conditions. In this study, we develop a Bayesian model to combine small-scale historical hydrological data with large-scale climate information to estimate groundwater dynamics at a floodplain site in Rifle, Colorado. Although we have only a few years of groundwater elevation measurements, we have 47 years of streamflow data from a gaging station approximately 43 km upstream and long-term climate prediction on the Upper Colorado River Basin. To estimate future daily groundwater dynamics, we first develop a time series model to downscale the monthly streamflow derived from climate information to daily streamflow, and then transform the daily streamflow to groundwater dynamics at the downstream floodplain site. We use Monte Carlo methods to estimate future groundwater dynamics at the site through sampling from the joint posterior probability distribution. The results suggest that although future groundwater levels are expected to be similar to the current levels, the timing of the high groundwater levels is predicted to occur about 1 month earlier. The developed framework is extendable to other sites to estimate future groundwater dynamics given disparate data sets and climate projections. Additionally, the obtained estimates are being used as input to a site-specific watershed reactive transport models to predict how climate-induced changes will influence future biogeochemical cycling relevant to a variety of ecosystem services.

  3. Dynamic evaluation of groundwater resources in Zhangye Basin

    Institute of Scientific and Technical Information of China (English)

    LiNa Mi; HongLang Xiao; ZhengLiang Yin; ShengChun Xiao

    2016-01-01

    Groundwater resource is vital to the sustainable development of socio-economics in arid and semi-arid regions of Northwest China. An estimation of the groundwater resources variation in Zhangye Basin was made during 1985–2013 based on long-term groundwater observation data and geostatistical method. The results show that from 1985 to 2013, groundwater storage exhibited tremendous dissimilarity on temporal and spatial scale for the whole Zhangye Basin, especially before and after implementation of the water diversion policy. Trend of groundwater storage varied from quick to slow decline or increase. The accumulative groundwater storage decreased nearly 47.52×108 m3, and annual average depletion rate reached 1.64×108 m3/a. Among which, the accumulative groundwater storage of the river and well water mixed irrigation district decreased by 37.48×108 m3, accounting for about 78.87% of the total groundwater depletion of the Zhangye Basin. Accumulative depletion of groundwater storage varied in respective irrigation districts. Though groundwater resources depletion rate slowed down from 2005, the overall storage in the whole basin and re-spective districts during 1985–2013 was still in a severe deficit such that, the groundwater resource was in a rather negative balance, which could threaten the local aquifer. This is the joint effect of climate change and human activities, however human activities, such as water diversion policy and groundwater exploitation, became increasingly intense. Our research results could provide a reasonable estimation for the groundwater balance in Zhangye Basin, providing a scientific basis for water resources unified planning and, this method can provide a relatively reliable way of estimation for large scale groundwater resources.

  4. Carbon and nitrogen stoichiometry regulates the magnitude and temporal dynamics of nitrogenous nutrient regeneration in sandy beach pore water

    Science.gov (United States)

    Goodridge, B. M.; Melack, J. M.

    2013-12-01

    Sandy beaches are located at the interface of terrestrial and marine ecosystems, lining about 70% of the world's ice-free coastline. They can be conduits for fresh groundwater delivery of dissolved inorganic nitrogen (DIN), a vital and often limiting nutrient source, to oceans along coastlines where a hydrologic connection exists with shallow coastal aquifers. However, even along such coastlines, the majority of water within beach sands is recirculated seawater (i.e., pore water), and the regeneration of DIN from the mineralization of marine organic matter (OM) is considered the dominant source of DIN in beach pore water and flux to coastal oceans. The biogeochemical mechanisms regulating the magnitude of and temporal changes in DIN regeneration in saline beach pore water are therefore of prime importance in assessing the role of beaches in coastal marine nitrogen cycling. We assessed the potential stoichiometric control of resource carbon to nitrogen (C:N) on pore water DIN regeneration at four sandy beach study locations, and temporal evolution of pore water C:N at two of the four study locations, along the Santa Barbara, California coastline during synoptic sampling events over the course of a year. We identified pore water dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) as the resources most likely available to microbial heterotrophic metabolism (i.e., C:N), the dominant catalyst of DIN regeneration in marine sediments, finding a negative exponential correlation of DIN with DOC:TDN ratios (673 × 173 e-1.05 × 0.30(DOC:TDN); R2 = 0.55, n = 123). DOC:TDN ratios also demonstrated a negative exponential correlation with residence time (10.0 × 1.7 e-1.08 × 0.48(RT) + 1.61 × 0.54; R2 = 0.79, n = 46), estimated using radon-222 as a pore water residence time tracer. Using model-derived DOC:TDN ratios as the independent variable in the DIN vs. DOC:TDN relationship, we explored temporal changes in DIN regeneration. The modeled DIN vs. residence time

  5. Can we monitor groundwater head variation from space? Coupling ERS spaceborne microwave observations to groundwater dynamics

    NARCIS (Netherlands)

    Sutanudjaja, E. H.; de Jong, S. M.; van Geer, F. C.; Bierkens, M. F. P.

    2012-01-01

    The objective of this study is to investigate whether the time series of a remote sensing based soil moisture product, referred as the European Remote Sensing Soil Water Index (ERS SWI), correlates to in-situ observations of groundwater heads; and can thus be used for groundwater head prediction. As

  6. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    Science.gov (United States)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  7. Dynamical Analysis of a Nitrogen-Phosphorus-Phytoplankton Model

    Directory of Open Access Journals (Sweden)

    Yunli Deng

    2015-01-01

    Full Text Available This paper presents a nitrogen-phosphorus-phytoplankton model in a water ecosystem. The main aim of this research is to analyze the global system dynamics and to study the existence and stability of equilibria. It is shown that the phytoplankton-eradication equilibrium is globally asymptotically stable if the input nitrogen concentration is less than a certain threshold. However, the coexistence equilibrium is globally asymptotically stable as long as it exists. The system is uniformly persistent within threshold values of certain key parameters. Finally, to verify the results, numerical simulations are provided.

  8. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin

    Science.gov (United States)

    Lin, Yen-Heng; Lo, Min-Hui; Chou, Chia

    2016-02-01

    Adding a groundwater component to land surface models affects modeled precipitation. The additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focuses on how groundwater dynamics affect atmospheric convection in the Amazon River basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. Additionally, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation that results from downwelling transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, with implications for precipitation changes during the dry season, observed in most current climate models.

  9. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis

    Institute of Scientific and Technical Information of China (English)

    XIAO DuNing; LI XiaoYu; SONG DongMei; YANG GuoJing

    2007-01-01

    Application scope of geostatistics has been gradually extended from original geologic field to soil science and ecological field, etc. And its successful application results have been widely demonstrated. But little information is reported as to the direct use of geostatistical method to work out the distribution map of groundwater characteristics. In this paper the semivariogram of geostatistics, in combination with GIS, was used to quantitatively study the spatial variation characteristics of groundwater table depth and mineralization degree and their relation to the landuse changes. F test of the used spherical model reached a very significant level, and the theoretical model can well reflect the spatial structural characteristics of groundwater table depth and mineralization degree and achieve an ideal result. This shows that the application of the method in the dynamical simulation of groundwater is feasible. And this paper also provides useful reference for the application of geostatistics in the study of the dynamical variations of groundwater resources in the oasis.

  10. Potential Negative Effects of Groundwater Dynamics on Dry Season Convection in the Amazon River Basin

    Science.gov (United States)

    Lin, Y. H.; Lo, M. H.; Chou, C.

    2014-12-01

    Adding a groundwater component to land surface models affects modeled precipitation because the additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focused on how groundwater dynamics affect atmospheric convection in the Amazon River Basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. In addition, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation resulting from downward transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, which have implications for precipitation changes during the dry season observed in most current climate models.

  11. Nitrogen Additions Affect Root Dynamics in a Boreal Forest Ecosystem

    Science.gov (United States)

    Turner, K. M.; Treseder, K. K.

    2004-12-01

    As with many ecosystems, North American boreal forests are increasingly subjected to anthropogenic nitrogen deposition. To examine potential effects on plant growth, we created nitrogen fertilization plots in three sites along an Alaskan fire chronosequence composed of forests aged 5, 17, and 80 years. Each site had been exposed to two years of nitrogen fertilization, with four control plots and four nitrogen plots per site. General observations indicate that aboveground net primary productivity appears to be nitrogen limited in each site. We hypothesized that nitrogen fertilization would positively influence root dynamics as well, with nitrogen additions resulting in an increase in standing root biomass and length. To test our hypothesis, we used a minirhizotron camera to collect sequential images of roots in the top 10 cm of soil in both nitrogen fertilized and control plots in each site. Images were collected monthly during the growing season, with a total of five sampling times between May 2003 and May 2004. We then analyzed the images with WinRhizotron root measurement software. Nitrogen fertilization had varying effects on root biomass among the three sites, with a significant site by N interaction (P = 0.039). A decrease in root biomass was observed in the 5 and 80 year old sites, dropping from 207 g/m2 to 79 g/m2 and from 230 g/m2 to 129 g/m2 for the youngest and oldest sites, respectively. In contrast, root biomass increased from 52 g/m2 to 107 g/m2 in the 17 year old site. (Values are for the top 10 cm of soil only, and likely underestimate total root stocks.) Patterns in standing root lengths diverged from those of root biomass, with a 2.5-fold overall increase under nitrogen fertilization across all sites (P = 0.004). There were no significant differences among sites in nitrogen response. Standing root biomass and length differed from one another in their responses to nitrogen fertilization because nitrogen additions decreased specific root weight (as g

  12. Biomass and nitrogen dynamics in an irrigated hybrid poplar plantation

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, R.A.

    1985-01-01

    A 3-year study measured the effects of ground cover treatments and nitrogen fertilization on biomass and nitrogen dynamics in an irrigated hybrid poplar (Populus deltoides Bartr. x P. trichocarpa Torr. and Gray, clone NC-9922) plantation in northern Wisconsin. Annually fertilized (112 kg N/ha/yr) and unfertilized plots were either maintained weed-free (bare soil), allowed to revegetate with native weeds, or seeded to birdsfoot trefoil (Lotus corniculatus L.). Trees in bare soil plots responded to fertilization primarily in the third growing season, but total biomass of 3-year-old trees was not increased by annual fertilization. High nitrate-nitrogen concentrations in the soil solution suggested significant leaching in both unfertilized and fertilized bare soil plots in the first growing season, and in fertilized plots the second season. Nitrate-nitrogen concentrations declined sharply in fertilized bare soil plots during the third growing season. Cover crop biomass was greatest in the second year and declined thereafter due to declines in below-ground components. Fertilization increased tree growth in these plots, but cover crop treatments had no effect. Results of this study suggest that, under irrigated conditions, a cover crop can substantially reduce leaching losses of nutrients and serve as a slow-release pool of nitrogen after the trees achieve crown closure. Fertilization is not recommended in these plantations until the second growing season if a cover crop is present and the third growing season if complete weed control is practiced.

  13. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    Full Text Available Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  14. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope

    Science.gov (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei

    2015-01-01

    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping. PMID:26560103

  15. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope.

    Science.gov (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei

    2015-01-01

    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  16. Variation Dynamics of Total Nitrogen and Nicotine of Burley Tobacco at Various Growing Stages under Different Nitrogen Nutrition Levels

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] This study aimed to investigate the variation dynamics of total nitrogen and nicotine of burtey tobacco at various growing stages under different ni- trogen nutrition levels to provide reference for optimizing fertilization technologies for burley tobacco. [Method] Fresh burley tobacco leaves were collected at various growing stages and dried to measure the content of total nitrogen, protein and nico- tine by using INTEGRAL automated chemical analyzer and analyze the correlation with nitrogen application level. [Result] Regardless of the nitrogen application level, the content of total nitrogen and protein showed a downward trend since root ex- tending stage and reached the minimum at mature stage; the content of nicotine showed an upward trend since early vigorous growing stage and increased to the maximum at mature stage; the content of total nitrogen, protein and nicotine all in- creased after air curing; the content of total nitrogen, protein and nicotine showed positive correlation with nitrogen application level, while total nitrogen/nicotine was negatively correlated. The results indicate that nitrogen level is closely related to the total nitrogen and nicotine of burley tobacco at growing period and post-air curing, rational application of nitrogen is an important measure to regulate the content of total nitrogen and nicotine of tobacco. [Conclusion] This study provides scientific ba- sis for rational fertilization of burley tobacco.

  17. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  18. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Application scope of geostatistics has been gradually extended from original geologic field to soil science and ecological field, etc. and its successful application results have been widely demonstrated. But little information is reported as to the direct use of geostatistical method to work out the distribu- tion map of groundwater characteristics. In this paper the semivariogram of geostatistics, in combina- tion with GIS, was used to quantitatively study the spatial variation characteristics of groundwater table depth and mineralization degree and their relation to the landuse changes. F test of the used spherical model reached a very significant level, and the theoretical model can well reflect the spatial structural characteristics of groundwater table depth and mineralization degree and achieve an ideal result. This shows that the application of the method in the dynamical simulation of groundwater is feasible. And this paper also provides useful reference for the application of geostatistics in the study of the dy- namical variations of groundwater resources in the oasis.

  19. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment

    Energy Technology Data Exchange (ETDEWEB)

    Knops, J.M.H.; Tilman, D.

    2000-01-01

    The authors used two independent methods to determine the dynamics of soil carbon and nitrogen following abandonment of agricultural fields on a Minnesota sand plain. First, they used a chronosequence of 19 fields abandoned from 1927 to 1982 to infer soil carbon and nitrogen dynamics. Second, they directly observed dynamics of carbon and nitrogen over a 12-yr period in 1900 permanent plots in these fields. These observed dynamics were used in a differential equation model to predict soil carbon and nitrogen dynamics. The two methods yielded similar results. Resampling the 1,900 plots showed that the rates of accumulation of nitrogen and carbon over 12 yr depended on ambient carbon and nitrogen levels in the soil, with rates of accumulation declining at higher carbon and nitrogen levels. A dynamic model fitted to the observed rates of change predicted logistic dynamics for nitrogen and carbon accumulation. On average, agricultural practices resulted in a 75% loss of soil nitrogen and an 89% loss of soil carbon at the time of abandonment. Recovery to 95% of the preagricultural levels is predicted the soil carbon, nitrogen, and carbon:nitrogen ratio patterns observed in the chronosequence of old fields, suggesting that the chronosequence may be indicative of actual changes in soil carbon and nitrogen. Their results suggest that the rate of carbon accumulation was controlled by the rate of nitrogen accumulation, which in turn depended on atmospheric nitrogen deposition and symbiotic nitrogen fixation by legumes. Their data support the hypothesis that these abandoned fields initially retain essentially all nitrogen and have a closed nitrogen cycle. Multiple regression suggests that vegetation composition had a significant influence on the rates of accumulation of both nitrogen and carbon; legumes increased these rates, and C{sub 3} grasses and forbs decreased them. C{sub 4} grasses increased the C:N ratio of the soil organic matter and thereby increased the rate of

  20. A new method to dynamically simulate groundwater table in land surface model VIC

    Institute of Scientific and Technical Information of China (English)

    YANG Hongwei; XIE Zhenghui

    2003-01-01

    Soil moisture plays an important role in water and energy balance in land-atmospheric interaction, but is impacted directly by the groundwater table. Dynamic variation of the groundwater table can be described mathematically by a moving boundary problem. In this paper, the moving boundary problem is reduced to a fixed boundary problem through a coordinate transformation. A new model of groundwater table simulation is developed using the mass-lumped finite element method and is coupled with the land surface model of Variable Infiltration Capacity (VIC). The simulation results show that the new model not only can simulate the groundwater table dynamically, but also can evade the choice of water table depth scale in computation with a low computation cost.

  1. How to use an educational sand-box model to enhance the knowledge groundwater dynamics

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2013-12-01

    Full Text Available Forty-five adults, which do professionally not deal with geology or groundwaters, filled a voluntary questionnaire on groundwater dynamics in Slovenia. The survey pointed out that about a fifth to a quarter of them has a weak knowledge on this topic. Groundwater occurrence, production and pollution are quite well known, excluding a widely spread opinion on subsurface water veins and underground rivers and lakes (which are true only for karstic aquifers, but groundwater protection is much less known. It has turned out that the answers often base on the experience of the interviewee rather than on an understanding of a regional groundwater dynamics. Therefore, we believe that it is worth to start a systematic education on groundwaters not only for geologists but also for general public. The VO-KA company from Ljubljana has given an incentive for development of an educational sand-box model of the Ljubljansko polje aquifer, which will be used to spread knowledge on ground- and drinking water. The model of an inhomogeneous and anisotropic intergranular aquifer has predominately a two-dimensional water flow. It enables visualisation of natural features and anthropogenic on the quantity and quality state of the stored groundwater. It can be used to explain hydrogeological phenomena on various levels of knowledge, from simple visualisation to more complicated mathematical descriptions.

  2. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.

    Science.gov (United States)

    Shah, J J Follstad; Dahm, C N

    2008-04-01

    Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where

  3. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  4. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    Science.gov (United States)

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  5. 华北平原地下水动态变化%Shallow groundwater dynamics in North China Plain

    Institute of Scientific and Technical Information of China (English)

    王仕琴; 宋献方; 王勤学; 肖国强; 刘昌明; 柳鉴容

    2009-01-01

    The groundwater level of 39 observation wells including 35 unconfined wells and 4 confined wells from 2004 to 2006 in North China Plain (NCP) was monitored using automatic groundwater monitoring data loggers KADEC-MIZU Ⅱ of Japan. The automatic groundwater sensors were installed for the corporation project between China and Japan. Combined with the monitoring results from 2004 to 2006 with the major factors affecting the dynamic patterns of groundwater, such as topography and landform, depth of groundwater level, exploitation or discharge extent, rivers and lakes, the dynamic regions of NCP groundwater were gotten. According to the dynamic features of groundwater in NCP, six dynamic patterns of ground-water level were identified, including discharge pattern in the piedmont plain, lateral re-charge-runoff-discharge pattern in the piedmont plain, recharge-discharge pattern in the central channel zone, precipitation infiltration-evaporation pattern in the shallow groundwater region of the central plain, lateral recharge-evaporation pattern in the recharge-affected area along the Yellow River and infiltration-discharge-evaporation pattern in the littoral plain. Based on this, the groundwater fluctuation features of various dynamic patterns were inter-preted and the influencing factors of different dynamic patterns were compared.

  6. Simulation of nitrate-concentration variation and estimation of nitrogen-form transformation in groundwater by modified rain-runoff model

    Science.gov (United States)

    Hong, N.; Hama, T.; Suenaga, Y.; Huang, X.; Wei, Q.; Kawagoshi, Y.

    2015-12-01

    Groundwater is an important drinking-water source throughout the world. Nitrate is considered as one of the most widespread contaminant in groundwater and some studies have presented that intake of excess amount of nitrate could be associated with several types of disease. Modeling of nitrate-concentration in groundwater and estimation of nitrogen-form transformation by meteorological effects is necessary for countermeasure to nitrate contamination in groundwater. In this research, groundwater-quality tank model (GQTM) coupled with Fuzzy Optimize Method (FOM) and Shuffled Complex Evolution-University of Arizona (SCE-UA) is proposed to simulate NO3- and Cl- concentrations simultaneously. For the simulation, daily precipitation data and weekly data of NO3- and Cl- concentrations at two observation wells in Kumamoto City for three years (2012-2015) were used. The GQTM coupled with FOM and SCE-UA algorithm provided accurate simulation results in the variations of NO3- and Cl- concentrations. Difference in the concentration-variation ratio between NO3- and Cl- suggested that NO3- concentration variation was mainly due to dilution and concentration processes rather than nitrogen transformation by nitrification-denitrification reaction in the both observation wells. This calculation provides a simple and reliable method in nitrification and denitrification process estimation. The GQTM coupled with FOM and SCE-UA must be useful for managing of groundwater supplies in effective and sustainable manner by providing scientific evidence for the risk of groundwater quality.

  7. Dynamics of rainwater lenses on upward seeping saline groundwater

    NARCIS (Netherlands)

    Eeman, Sara

    2017-01-01

    Fresh water is generally a limited resource in coastal areas which are often densely populated. In low-lying areas, groundwater is mostly saline and both agriculture and freshwater nature depend on a thin lens of rainwater that is formed by precipitation surplus on top of saline, upward seeping grou

  8. Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen.

    Science.gov (United States)

    Hammad, Hafiz Mohkum; Farhad, Wajid; Abbas, Farhat; Fahad, Shah; Saeed, Shafqat; Nasim, Wajid; Bakhat, Hafiz Faiq

    2017-01-01

    Knowledge of the dynamics of plant nitrogen (N) uptake at varying irrigation water levels is critical for strategizing increased N recovery efficiency (NRE), water use efficiency (WUE), and maize yield. The N dynamics were studied under various irrigation regimes to evaluate NRE, WUE, and maize yield. A pot experiment was conducted using three irrigation water regimes (50, 75, and 100% field capacity (FC)) and four N fertilizer rates (0, 1.6, 3.2, and 4.8 g pot(-1)) applied with two fertilizer application methods including foliar and soil applications. The highest plant growth and grain yields were achieved by application of 4.8 g N pot(-1) with 100% FC. Contrarily, the maximum WUE (7.0 g L(-1)) was observed by the lowest irrigation water (50% FC) with the highest N fertilizer rates (4.8 g pot(-1)). Nitrogen concentration in the stem and grain was linearly increased by increasing N fertilizer rates with irrigation water. However, in the root, N concentration was decreased when the crop was supplied with 100% FC. In plant, maximum N uptake (6.5 mg g(-1)) was observed when 4.8 g N pot(-1) was applied with 100% FC. Nitrogen recovery efficiency was increased by increasing N rate up to 3.2 g pot(-1) with 100% FC. Therefore, for achieving maximum WUE and NRE, the highest water and N applications, respectively, are not necessary.

  9. Vertical Sampling in Recharge Areas Versus Lateral Sampling in Discharge Areas: Assessing the Agricultural Nitrogen Legacy in Groundwater

    Science.gov (United States)

    Gilmore, T. E.; Genereux, D. P.; Solomon, D. K.; Mitasova, H.; Burnette, M.

    2014-12-01

    Agricultural nitrogen (N) is a legacy contaminant often found in shallow groundwater systems. This legacy has commonly been observed using well nests (vertical sampling) in recharge areas, but may also be observed by sampling at points in/beneath a streambed using pushable probes along transects across a channel (lateral sampling). We compared results from two different streambed point sampling approaches and from wells in the recharge area to assess whether the different approaches give fundamentally different pictures of (1) the magnitude of N contamination, (2) historic trends in N contamination, and (3) the extent to which denitrification attenuates nitrate transport through the surficial aquifer. Two different arrangements of streambed points (SP) were used to sample groundwater discharging into a coastal plain stream in North Carolina. In July 2012, a 58 m reach was sampled using closely-spaced lateral transects of SP, revealing high average [NO3-] (808 μM, n=39). In March 2013, transects of SP were widely distributed through a 2.7 km reach that contained the 58 m reach and suggested overall lower [NO3-] (210 μM, n=30), possibly due to variation in land use along the longer study reach. Mean [NO3-] from vertical sampling (2 well nests with 3 wells each) was 296 μM. Groundwater apparent ages from SP in the 58 m and 2.7 km reaches suggested lower recharge [NO3-] (observed [NO3-] plus modeled excess N2) in 0-10 year-old water (1250 μM and 525 μM, respectively), compared to higher recharge [NO3-] from 10-30 years ago (about 1600 μM and 900 μM, respectively). In the wells, [NO3-] was highest (835 μM) in groundwater with apparent age of 12-15 years and declined as apparent age increased, a trend that was consistent with SP in the 2.7 km reach. The 58 m reach suggested elevated recharge [NO3-] (>1100 μM) over a 50-year period. Excess N2 from wells suggested that about 62% of nitrate had been removed via denitrification since recharge, versus 51% and 78

  10. Simulated groundwater flow paths, travel time, and advective transport of nitrogen in the Kirkwood-Cohansey aquifer system, Barnegat Bay–Little Egg Harbor Watershed, New Jersey

    Science.gov (United States)

    Voronin, Lois M.; Cauller, Stephen J.

    2017-07-31

    Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base

  11. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso

    2016-11-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km(2) ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  12. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso

    2016-01-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  13. Isotopic investigation of the discharge driven nitrogen dynamics in a mesoscale river catchment

    Science.gov (United States)

    Mueller, Christin; Zink, Matthias; Krieg, Ronald; Rode, Michael; Merz, Ralf; Knöller, Kay

    2016-04-01

    Nitrate in surface and groundwater has increased in the last decades due to landuse change, the application of different fertilizer for agricultural landuse and industrial dust in the atmospheric deposition. Increasing nitrate concentrations have a major impact on eutrophication, especially for coastal ecosystems. Therefore it is important to quantify potential nitrate sources and determine nitrate process dynamics with its drivers. The Bode River catchment (total size of 3200 m2) in the Harz Mountains in Germany was intensively investigated by a monitoring approach with 133 sampling points representing the same number of sub-catchments for a period of two years. The area is characterized by a strong anthropogenic gradient, with forest conservation areas in the mountain region, grassland, and intensively mixed farming in the lowlands. Consecutive discharge simulations by a mesoscale hydrological model (mhM) allow a quantitative analysis of nitrate fluxes for all observed tributaries. The investigation of nitrate isotopic signatures for characteristic landscape types allows the delineation of dominant NO3- sources: coniferous forests are characterized by recycled nitrified soil nitrogen; grassland is mainly impacted by organic fertilizer (manure) and nitrified soil-N; in agricultural land use areas nitrate predominantly derives from synthetic fertilizer application. Besides source delineation, the relationship between runoff and nitrate dynamics was analyzed for the entire Bode river catchment and, more detailed, for one major tributary with minor artificial reservoirs (Selke River). Thereby, it becomes apparent that nitrate isotopic variations increase with decreasing discharge. This effect might be due to a local, more intense impact of bacterial denitrification under low discharge conditions (higher residence time) in the anoxic soil zone, in the groundwater that discharges into the river and in the hyporheic zone. Generally, δ15N and δ18Oof nitrate decrease

  14. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: a review

    Science.gov (United States)

    Jahangir, M. M. R.; Fenton, O.; Gill, L.; Müller, C.; Johnston, P.; Richards, K. G.

    2014-07-01

    The nitrogen (N) removal efficiency of constructed wetlands (CWs) is very inconsistent and does not alone explain if the removed species are reduced by physical attenuation or if they are transformed to other reactive forms (pollution swapping). There are many pathways for the removed N to remain in the system: accumulation in the sediments, leaching to groundwater (nitrate-NO3- and ammonium-NH4+), emission to atmosphere via nitrous oxide- N2O and ammonia and/or conversion to N2 gas and adsorption to sediments. The kinetics of these pathways/processes varies with CWs management and therefore needs to be studied quantitatively for the sustainable use of CWs. For example, the quality of groundwater underlying CWs with regards to the reactive N (Nr) species is largely unknown. Equally, there is a dearth of information on the extent of Nr accumulation in soils and discharge to surface waters and air. Moreover, CWs are rich in dissolved organic carbon (DOC) and produce substantial amounts of CO2 and CH4. These dissolved carbon (C) species drain out to ground and surface waters and emit to the atmosphere. The dynamics of dissolved N2O, CO2 and CH4 in CWs is a key "missing piece" in our understanding of global greenhouse gas budgets. In this review we provide an overview of the current knowledge and discussion about the dynamics of C and N in CWs and their likely impacts on aquatic and atmospheric environments. We suggest that the fate of various N species in CWs and their surface emissions and subsurface drainage fluxes need to be evaluated in a holistic way to better understand their potential for pollution swapping. Research on the process based N removal and balancing the end products into reactive and benign forms are critical to assess environmental impacts of CWs. Thus we strongly suggest that in situ N transformation and fate of the transformation products with regards to pollution swapping requires further detailed examination.

  15. Nitrogen Loads in Groundwater Entering Back Bays and Ocean from Fire Island National Seashore, Long Island, New York

    Science.gov (United States)

    Schubert, Christopher E.; deVries, M. Peter; Finch, Anne J.

    2010-01-01

    Fire Island is a barrier island that lies south of central Long Island, N.Y. It is about 60 km (37 mi) long and 0.5 km (1/4 mi) wide and is bounded by the Great South Bay, Narrow Bay, and Moriches Bay estuaries to the north; by the Atlantic Ocean to the south; by Fire Island Inlet to the west; and by Moriches Inlet to the east (fig. 1). Fire Island National Seashore (FIIS) encompasses a 42-km (26-mi) length of Fire Island that is bordered by Robert Moses State Park to the west and Smith Point County Park to the east (fig. 2). Interspersed throughout FIIS are 17 residential beach communities that together contain about 4,100 homes. The barrier island's summer population increases 50-fold through the arrival of summer residents and vacationers. The National Park Service (NPS) has established several facilities on the island to accommodate visitors to FIIS. About 2.2 million people visit at least one of the 17 communities and (or) Smith Point County Park, the waterways surrounding Fire Island, or a FIIS facility annually (National Park Service, 2007). Combined visitation on a peak-season weekend day can be as high as 100,000 (National Park Service, 2002). Most homes and businesses in the 17 barrier-island communities discharge untreated wastewater directly to the shallow (water-table) aquifer through private septic systems and cesspools; the NPS facilities discharge wastewater to this aquifer through leach fields and cesspools. (The community of Ocean Beach (fig. 2) has a treatment plant that discharges to tidewater.) Contaminants in sewage entering the shallow groundwater move through the flow system and are ultimately discharged to adjacent marine surface waters, where they can pose a threat to coastal habitats. A contaminant of major concern is nitrogen, which is derived from fertilizers and human waste. The continuous inflow of nitrogen to surface-water bodies can lead to increased production of phytoplankton and macroalgae, which in turn can cause oxygen

  16. Assessing nitrogen dynamics in European ecosystems, integrating measurement and modelling: conclusions

    Directory of Open Access Journals (Sweden)

    A. J. Wade

    2004-01-01

    Full Text Available This contribution closes this special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA. New developments in the understanding of the factors and processes determining the concentrations and loads of nitrogen are outlined. The ability of the INCA model to simulate the hydrological and nitrogen dynamics of different European ecosystems is assessed and the results of the first scenario analyses investigating the impacts of deposition, climatic and land-use change on the nitrogen dynamics are summarised. Consideration is given as to how well the model has performed as a generic tool for describing the nitrogen dynamics of European ecosystems across Arctic, Maritime, Continental and Mediterranean climates, its role in new research initiatives and future research requirements. Keywords: nitrogen, nitrate, ammonium, phosphorus, catchments, streams, rivers, river basins

  17. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    Science.gov (United States)

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-07-14

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ((3)H) and stable isotopes ((2)H and (18)O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ(18)O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ(18)O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ(18)O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ((3)H: 5 - 10 T.U.) and deeper zone ((3)H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Groundwater Quality and Nitrogen Use Efficiency in Nebraska's Central Platte River Valley.

    Science.gov (United States)

    Ferguson, Richard B

    2015-03-01

    Groundwater nitrate contamination has been an issue in the Platte River Valley of Nebraska since the 1960s, with groundwater nitrate-N concentrations frequently in excess of 10 mg L. This article summarizes education and regulatory efforts to reduce the environmental impact of irrigated crop production in the Platte River Valley. In 1988, a Groundwater Management Area (GWMA) was implemented in the Central Platte Natural Resources District to encourage adoption of improved management practices. Since 1988, there have been steady declines in average groundwater nitrate-N concentrations of about 0.15 mg NO-N L yr in much of the GWMA (from 19 to 15 mg NO-N L). However, N use efficiency (NUE) (partial factor productivity for N [PFP]) has increased very little from 1988 to 2012 (60-65 kg grain kg N), whereas statewide PFP increased from 49 to 67 kg grain kg N in the same period. Although growers are encouraged to credit N from sources besides fertilizer (e.g., soil residual, legumes, irrigation water, and manure), confidence in and use of credits tended to decrease as credits became larger; there was a tendency toward an average N rate regardless of credit-based recommendations. This information, coupled with data from other studies, suggests that much of the decline in groundwater nitrate can be attributed to improved irrigation management-especially conversion from furrow to sprinkler irrigation-and to a lesser extent to improved timing of N application. The development and adoption of improved N management practices, such as fertigation, controlled-release N formulation, and use of crop canopy sensors for in-season N application may be required for further significant NUE gains in these irrigated systems.

  19. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition

    Institute of Scientific and Technical Information of China (English)

    DENG Xiao-wen; LIU Ying; HAN Shi-jie

    2009-01-01

    The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg·ha-1yr-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dissolved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52·78% of added N was retained in the litter. The percentage of N retention was positively correlated (R2=0.91, p<0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter.

  20. Nitrogen uptake dynamics, yield and quality as influenced by nitrogen fertilization in Piel de sapo melon

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, M. T.; Cabello, M. J.; Cartagena, M. C.; Tarquis, A. M.; Arce, A.; Ribas, F.

    2012-11-01

    The need to reduce nitrogen (N) fertilizer pollution strengthens the importance of improving the utilization efficiency of applied N to crops. This requires knowledge of crop N uptake characteristics and how fertilization management affects it. A three-year field experiment was conducted from May to September in central Spain to investigate the influence of different N rates, which ranged from 11 to 393 kg ha{sup -}1, applied through drip irrigation, on the dynamics of N uptake, nitrogen use efficiency (NUE), fruit yield and quality of a Piel de sapo melon crop (Cucumis melo L. cv. Sancho). Both N concentration and N content increased in different plant parts with the N rate. Leaves had the highest N concentration, which declined by 40-50% from 34-41 days after transplanting (DAT), while the highest N uptake rate was observed from 30-35 to 70-80 DAT, coinciding with fruit development. In each year, NUE declined with increasing N rate. With N fertilizer applications close to the optimum N rate of 90-100 kg ha -1, the fruits removed approximately 60 kg N ha -1, and the amount of N in the crop residue was about 80 kg N ha -1; this serves to replenish the organic nutrient pool in the soil and may be used by subsequent crops following mineralization. (Author) 36 refs.

  1. Coastal groundwater dynamics off Santa Barbara, California: combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity

    Science.gov (United States)

    Swarzenski, Peter W.; Izbicki, John A.

    2009-01-01

    This paper presents repeat field measurements of 222Rn and 223,224,226,228Ra, electromagnetic seepage meter-derived advective fluxes, and multi-electrode, stationary and continuous marine resistivity surveys collected between November 2005 and April 2007 to study coastal groundwater dynamics within a marine beach in Santa Barbara, California. The study provides insight into magnitude and dynamics of submarine groundwater discharge (SGD) and associated nutrient loadings into near-shore coastal waters, where the predominant SGD drivers can be both spatially and temporally separated. Rn-222 and 223,224,226,228Ra were utilized to quantify the total and saline contribution, respectively, of SGD. The two short-lived 224,223Ra isotopes provided an estimate of apparent near-shore water mass age, as well as an estimate of the Ra-derived eddy diffusion coefficient, Kh (224Ra = 2.86 ?? 0.7 m2 s-1; 223Ra = 1.32 ?? 0.5 m2 s-1). Because 222Rn (t1/2 = 3.8 day) and 224Ra (t1/2 = 3.66 day) have comparable half-lives and production terms, they were used in concert to examine respective water column removal rates. Electromagnetic seepage meters recorded the physical, bi-directional exchange across the sediment/water interface, which ranged from -6.7 to 14.5 cm day-1, depending on the sampling period and position relative to the low tide line. Multi-day time-series 222Rn measurements in the near-shore water column yielded total (saline + fresh) SGD rates that ranged from 3.1 ?? 2.6 to 9.2 ?? 0.8 cm day-1, depending on the sampling season. Offshore 226Ra (t1/2 = 1600 year) and 222Rn gradients were used with the calculated Kh values to determine seabed flux estimates (dpm m-2 day-1), which were then converted into SGD rates (7.1 and 7.9 cm day-1, respectively). Lastly, SGD rates were used to calculate associated nutrient loads for the near-shore coastal waters off Santa Barbara. Depending on both the season and the SGD method utilized, the following SGD-derived nutrient inputs were

  2. Genetic associations as indices of nitrogen cycling rates in an aerobic denitrification biofilter used for groundwater remediation.

    Science.gov (United States)

    Zhang, Yan; Ji, Guodong; Wang, Rongjing

    2015-10-01

    An aerobic denitrification biofilter (ADB) for groundwater remediation was developed with high removal efficiencies (total nitrogen (TN): 82.3-95.8%; NO3(-)-N: 93.2-98.2%). Nitrate (NO3(-)-N) transformation rates stabilized between 21.0 and 23.4 g/(m(3) h), whereas nitrite (NO2(-)-N) and ammonium (NH4(+)-N) transformation rates remained less than 6.0 g/(m(3) h) as the dissolved oxygen (DO) level increased from 1.0 mg/L to 6.0 mg/L. Nitric oxide (NO) and nitrous oxide (N2O) accumulated with great fluctuations (NO: 0-1.6×10(-3) g/(m(3) h); N2O: 0.1-1.1g/(m(3)h)) throughout the experiment. This study suggested that gene associations reflect quantitative relationships with aerobic denitrification rates and can provide useful information regarding aerobic denitrification processes in groundwater. Especially, the qnorB/nosZ ratio acts as the main driver for NO3(-)-N and NH4(+)-N transformation, while the qnorB/nosZ ratio followed by the (nirS+nirK)/nosZ ratio serve a dominant role in the accumulation of N2O and NO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained

  4. Fire dynamics and implications for nitrogen cycling in boreal forests

    Science.gov (United States)

    Harden, Jennifer W.; Mack, Michelle; Veldhuis, Hugo; Gower, S. T.

    2003-02-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  5. POPULATION DYNAMICS OF SMALL MAMMALS ACROSS A NITROGEN AMENDED LANDSCAPE

    Science.gov (United States)

    Biogeochemical alterations of the nitrogen cycle from anthropogenic activities could have significant effects on ecological processes at the population, community and ecosystem levels. Nitrogen additions in grasslands have produced qualitative and quantitative changes in vegetat...

  6. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  7. Measuring and modeling spatio-temporal patterns of groundwater storage dynamics to better understand nonlinear streamflow response

    Science.gov (United States)

    Rinderer, Michael; van Meerveld, Ilja; McGlynn, Brian

    2017-04-01

    Information about the spatial and temporal variability in catchment scale groundwater storage is needed to identify runoff source area dynamics and better understand variability in streamflow. However, information on groundwater levels is typically only available at a limited number of monitoring sites and interpolation or upscaling is necessary to obtain information on catchment scale groundwater dynamics. Here we used data from 51 spatially distributed groundwater monitoring sites in a Swiss pre-alpine catchment and time series clustering to define six groundwater response clusters. Each of the clusters was distinct in terms of the groundwater rise and recession but also had distinctly different topographic site characteristics, which allowed us to assign a groundwater response cluster to all non-monitored locations. Each of them was then assigned the mean groundwater response of the monitored cluster members. A site was considered active (i.e., enabling lateral subsurface flow) when the groundwater levels rose above the groundwater response threshold which was defined based on the depth of the more transmissive soil layers (typically between 10 cm and 30 cm below the soil surface). This allowed us to create maps of the active areas across the catchment at 15 min time intervals. The mean fraction of agreement between modeled groundwater activation (based on the mean cluster member time series) and measured groundwater activation (based on the measured groundwater level time series at a monitoring site) was 0.91 (25th percentile: 0.88, median: 0.92, 75th percentile: 0.95). The fraction of agreement dropped by 10 to 15 % at the beginning of events but was never lower than 0.4. Connectivity between all active areas and the stream network was determined using a graph theory approach. During rainfall events, the simulated active and connected area extended mainly laterally and longitudinally along the channel network, which is in agreement with the variable source

  8. Experimental,numerical and sensitive analysis of nitrogen dynamics in soils irrigated with treated sewage

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An ammonia volatilization submodel and a crop-growth submodel have been set up and incorporated to the 2D nitrogen transport and transformation simulation model Nitrogen-2D. The coupled model Nitrogen-2D considers all the important nitrogen transformation processes such as mineralization, immobilization, denitrification, nitrification, volatilization, root uptake and soil adsorption in the soil. The model was used to simulate the nitrogen dynamics for the experiment in four lysimeters under sewage irrigation. Simulation results show that the model can describe the water content and ammonium nitrogen content distribution well but simulate the change of the nitrate nitrogen poorly. Sensitivity analysis shows that the simulation results are influenced by the soil water characteristic parameters severely, especially by the parameter of n. The model is much less sensitive to N dynamic parameters.

  9. Evaluating Chemical Tracers as Indicators of Nitrate-Nitrogen Sources in Groundwater

    Science.gov (United States)

    Nitka, A.; DeVita, W.; McGinley, P.

    2014-12-01

    Groundwater nitrate-N concentrations greater than 3 mg/L usually indicate contamination from either agriculture or wastewater disposal. The objective of this study was to use chemical indicators to reliably determine sources of nitrate contamination in private wells. We developed an analytical method for a suite of human waste indicators. The selection of chemical tracers was based on their likely occurrence and mobility in groundwater. The suite included artificial sweeteners, pharmaceuticals and personal care products. Pesticide metabolites were used to identify contamination due to agricultural practices. A densely populated suburban area with adjacent agricultural land was selected. Eighteen private water supply wells and six monitoring wells were analyzed for nitrate-N and contaminant indicators. All of the wells with nitrate concentrations greater than 3 mg/L had at least one chemical indicator. Of these, 90% had two or more human waste contaminants, 40% had pesticide metabolites, and 30% had both. Of the wells with nitrate greater than 10 mg/L, 80% had two or more human waste indicators, 70% had pesticide metabolites, and 50% had both. The results of this research will help direct land management decisions and selection of appropriate water treatment options.

  10. [Effects of nitrogen fertilization on population dynamics and yield of high-yielding wheat and on alteration of soil nitrogen].

    Science.gov (United States)

    Ye, You-Liang; Wang, Gui-Liang; Zhu, Yun-Ji; Li, Huan-Huan; Huang, Yu-Fang

    2010-02-01

    Taking wheat varieties Yumai 49-198 (multi-spike phenotype) and Lankao Aizao 8 (large-spike phenotype) as test materials, field experiments were conducted at Wenxian and Lankao sites of Henan Province to study the effects of nitrogen fertilization on their population dynamics and yield and on the alteration of soil nitrogen. Five nitrogen application rates, i. e., 0, 90, 180, 270, and 360 N kg x hm(-2) were installed. The population amount of the two test varieties were all increased after emergence, reached the highest at jointing stage, and decreased afterwards. As for Yumai 49-198, its population amount had no significant differences at wintering and turning-green stages among the five nitrogen application rates and two experimental sites, but differed significantly after jointing stage with the nitrogen application rates. For Lankao Aizao 8, its population amount had no significant differences among the nitrogen application rates during whole growth period. The grain yield of the two varieties increased with the increase of nitrogen fertilization rate, but excessive nitrogen fertilization decreased the grain yield. Yumai 49-198 had the highest yield at 270 N kg x hm(-2), being 9523 and 9867 kg x hm(-2) at Wenxian and Lanako sites, respectively, while Lankao Aizao 8 had the highest yield at 180 N kg x hm(-2), being 9258 and 9832 kg x hm(-2) at Wenxian and Lanako sites, respectively. With the increase of nitrogen fertilization rate, soil nitrate N concentration and apparent nitrogen loss increased. At Wenxian and Lankao sites, the apparent soil nitrogen loss for Yumai 49-198 was 32.56% - 51.84% and - 16.7% - 42.6% of fertilized nitrogen, and that for Lankao Aizao 8 was 18.58% - 52.94% and - 11.5% - 45.8% of fertilized nitrogen, respectively. Considering the yield and environmental effect comprehensively, the nitrate N concentration in 0-90 cm soil layer in our case should not be exceeded 120 - 140 kg x hm(-2), and the maximal nitrogen application rate should not

  11. Organic and inorganic nitrogen dynamics in soil - advanced Ntrace approach

    Science.gov (United States)

    Andresen, Louise C.; Björsne, Anna-Karin; Bodé, Samuel; Klemedtsson, Leif; Boeckx, Pascal; Rütting, Tobias

    2016-04-01

    Depolymerization of soil organic nitrogen (SON) into monomers (e.g. amino acids) is currently thought to be the rate limiting step for the terrestrial nitrogen (N) cycle. The production of free amino acids (AA) is followed by AA mineralization to ammonium, which is an important fraction of the total N mineralization. Accurate assessment of depolymerization and AA mineralization rate is important for a better understanding of the rate limiting steps. Recent developments in the 15N pool dilution techniques, based on 15N labelling of AA's, allow quantifying gross rates of SON depolymerization and AA mineralization (Wanek et al., 2010; Andersen et al., 2015) in addition to gross N mineralization. However, it is well known that the 15N pool dilution approach has limitations; in particular that gross rates of consumption processes (e.g. AA mineralization) are overestimated. This has consequences for evaluating the rate limiting step of the N cycle, as well as for estimating the nitrogen use efficiency (NUE). Here we present a novel 15N tracing approach, which combines 15N-AA labelling with an advanced version of the 15N tracing model Ntrace (Müller et al., 2007) explicitly accounting for AA turnover in soil. This approach (1) provides a more robust quantification of gross depolymerization and AA mineralization and (2) suggests a more realistic estimate for the microbial NUE of amino acids. Advantages of the new 15N tracing approach will be discussed and further improvements will be identified. References: Andresen, L.C., Bodé, S., Tietema, A., Boeckx, P., and Rütting, T.: Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought, SOIL, 1, 341-349, 2015. Müller, C., Rütting, T., Kattge, J., Laughlin, R. J., and Stevens, R. J.: Estimation of parameters in complex 15N tracing models via Monte Carlo sampling, Soil Biology & Biochemistry, 39, 715-726, 2007. Wanek, W., Mooshammer, M., Blöchl, A., Hanreich, A., and Richter

  12. Carbon and Nitrogen Isotope Analysis of Atrazine and Desethylatrazine at Sub-μg/L Concentrations in Groundwater

    Science.gov (United States)

    Schreglmann, Kathrin; Hoeche, Martina; Steinbeiss, Sibylle; Reinnicke, Sandra; Elsner, Martin

    2013-04-01

    Environmental degradation of organic micropollutants is difficult to monitor due to their diffuse and ubiquitous input. Current approaches - concentrations measurements over time, or daughter-to-parent compound ratios - may fall short, because they do not consider dilution, compound- specific sorption characteristics or alternative degradation pathways. Compound specific isotope analysis (CSIA) offers an alternative approach based on evidence from isotope values. Until now, however, the relatively high limits for precise isotope analysis by gas chromatography - isotope ratio mass spectrometry (GC-IRMS) have impeded CSIA of sub µg/L scale micropollutant concentrations in field samples. We present the first measurements of C and N isotope ratios of the herbicide atrazine and its metabolite desethylatrazine at concentrations of 100 to 1000 ng/L in natural groundwater samples. Solid phase extraction and preparative HPLC were tested and validated for preconcentration and cleanup of groundwater samples of up to 10 liters without bias by isotope effects. Matrix interferences after solid phase extraction could be greatly reduced by a preparative HPLC cleanup step prior to GC-IRMS analysis. Sensitivity was increased by a factor of 6 to 8 by changing the injection method from large-volume-injection to cold-on-column injection on the GC-IRMS system. Carbon and nitrogen isotope values of field samples showed no obvious correlation with concentrations or desethylatrazine-to-atrazine ratios. Contrary to expectations, however, δ13C values of desethylatrazine were consistently less negative than those of atrazine from the same sites. Potentially, this line of evidence may contain information about further desethylatrazine degradation. In such a case the common practice of using desethylatrazine-to-atrazine ratios would underestimate natural atrazine degradation.

  13. The new Caribbean Nitrogen Index to assess nitrogen dynamics in vegetable production systems in southwestern Puerto Rico

    Directory of Open Access Journals (Sweden)

    Miguel Oliveras-Berrocales

    2017-03-01

    Full Text Available Nutrient loss from agricultural fields is one of the main factors influencing surface- and ground-water quality. Typical fertilizer nitrogen (N consumption rates in vegetable production systems and horticultural crops in Puerto Rico fluctuate between 112 and 253 kg N/ha. The nitrogen use efficiency of vegetable crops is low, increasing the potential for nitrogen losses and high residual soil nitrate content. Quantification of residual soil N and N losses to the environment can be a difficult task. Simulation models such as the USDA-ARS N Index can be used to identify the relative magnitude of varying N-loss pathways and to identify best management practices. Field studies were conducted to quantify residual soil N and crop N removal, and to validate the Nitrogen Index in onion, tropical pumpkin and tomato production systems in the Lajas Valley in southwestern Puerto Rico. Relationships between observed and simulated values were determined to examine the capability of the model for evaluating N losses. There was good correlation between observed and predicted values for residual soil N (r =0.88 and crop N removal (r =0.99 (p<0.05. In the production systems evaluated, the N volatilization losses ranged from 1 to 4 kg N/ha, the denitrification losses ranged from 18 to 46 kg N/ha, the leaching losses ranged from 155 to 779 kg N/ha, and the residual soil nitrate ranged from 64 to 401 kg N/ha. The N use efficiency ranged from 15% to 39%. The results obtained showed that the Nitrogen Index tool can be a useful tool for evaluating N transformations in vegetable production systems of Puerto Rico's semi-arid zone.

  14. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    Science.gov (United States)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality was not predictably related to imperviousness or catchment size. Rather, rainfall depth and duration, time since antecedent rainfall, and stream channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited

  15. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: Natural sources versus human pollution

    Science.gov (United States)

    Kreitler, Charles W.; Browning, Lawrence A.

    1983-02-01

    Results of nitrogen-isotope analyses of nitrate in the waters of the Cretaceous Edwards aquifer in Texas, U.S.A., indicate that the source of the nitrate is naturally-occurring nitrogen compounds in the recharge streams. In contrast, nitrogen isotopes of nitrate in the fresh waters of the Pleistocene Ironshore Formation on Grand Cayman Island, West Indies, indicate that human wastes are the source of the nitrate. The Cretaceous Edwards Limestone is a prolific aquifer that produces principally from fracture porosity along the Balcones Fault Zone. Recharge is primarily by streams crossing the fault zone. Rainfall is ˜ 70 cm yr. -1, and the water table is generally deeper than 30 m below land surface. The δ15 N of 73 samples of nitrate from Edwards waters ranged from + 1.9 to + 10‰ with an average of + 6.2‰. This δ15 N range is within the range of nitrate in surface water in the recharge streams ( δ 15N range = + 1 to + 8.3‰ ) and within the range of nitrate in surface water from the Colorado River, Texas, ( δ 15N range = + 1 to + 11‰ ). No sample was found to be enriched in 15N, which would suggest the presence of nitrate from animal waste ( δ 15N range = + 10 to + 22‰ ). The Ironshore Formation contains a small freshwater lens that is recharged entirely by percolation through the soil. Average rainfall is 165 cm yr. -1, and the water table is within 3 m of land surface. The δ15 N of four nitrate samples from water samples of the Ironshore Formation ranged from + 18 to + 23.9‰, which indicates a cesspool/septictank source of the nitrate. Limestone aquifers in humid environments that are recharged by percolation through the soil appear to be more susceptible to contamination by septic tanks than are aquifers in subhumid environments that feature thick unsaturated sections and are recharged by streams.

  16. Erosional nitrogen losses in a geomorphologically dynamic wet tropical watershed

    Science.gov (United States)

    Weintraub, S. R.; Stallard, R. F.; Taylor, P.; Asner, G. P.; Townsend, A. R.

    2013-12-01

    In erosion-prone watersheds, the loss of nutrients associated with eroding topsoil can be substantial. Previous studies in a geomorphologically dynamic wet-tropical study site demonstrated elevated nitrogen availability, characterized by larger nitrate pools, higher 15-N enrichment, and higher rates of net and potential nitrification, on stable ridge-tops compared to N-poor steep hillslopes. In the current study, we sought to test whether these pronounced differences in N availability were correlated with spatial patterns of erosional N-export. In order to characterize N transport patterns within a small (12-hectare) forested watershed, we buried Gerlach troughs at approximately 15-meter intervals along a 100-meter long study hillslope, beginning at the ridge-slope break and continuing downslope toward the stream. We recovered and analyzed all soil, water, and detritus collected by these troughs over the course of one year and concurrently monitored rainfall and stream discharge. We also measured soil mineralogy, texture, and permeability (Ksat) at the topographic locations where troughs were installed. We observed distinct patterns in the nature and timing of downslope N transport, with shifts in the contribution of dissolved versus particulate losses both across the hillslope and with intensification of wet-season precipitation. Unlike the flat ridge-top, steeper downslope segments exported a substantial amount of N during the late wet season, approximately 85% of which was in particulate form. These slope fluxes help account for much of the watershed- scale losses of > 10 kg particulate N per hectare per year, quantified in a nearby stream. Soil mineralogic and hydraulic characteristics varied in concert with general N export patterns, implying different degrees of soil stability and the dominance of different soil water flowpaths in steeper versus flatter areas. In this forested landscape, geomorphic position determines overland N fluxes and likely couples N

  17. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: a review

    Directory of Open Access Journals (Sweden)

    M. M. R. Jahangir

    2014-07-01

    Full Text Available The nitrogen (N removal efficiency of constructed wetlands (CWs is very inconsistent and does not alone explain if the removed species are reduced by physical attenuation or if they are transformed to other reactive forms (pollution swapping. There are many pathways for the removed N to remain in the system: accumulation in the sediments, leaching to groundwater (nitrate-NO3- and ammonium-NH4+, emission to atmosphere via nitrous oxide- N2O and ammonia and/or conversion to N2 gas and adsorption to sediments. The kinetics of these pathways/processes varies with CWs management and therefore needs to be studied quantitatively for the sustainable use of CWs. For example, the quality of groundwater underlying CWs with regards to the reactive N (Nr species is largely unknown. Equally, there is a dearth of information on the extent of Nr accumulation in soils and discharge to surface waters and air. Moreover, CWs are rich in dissolved organic carbon (DOC and produce substantial amounts of CO2 and CH4. These dissolved carbon (C species drain out to ground and surface waters and emit to the atmosphere. The dynamics of dissolved N2O, CO2 and CH4 in CWs is a key "missing piece" in our understanding of global greenhouse gas budgets. In this review we provide an overview of the current knowledge and discussion about the dynamics of C and N in CWs and their likely impacts on aquatic and atmospheric environments. We suggest that the fate of various N species in CWs and their surface emissions and subsurface drainage fluxes need to be evaluated in a holistic way to better understand their potential for pollution swapping. Research on the process based N removal and balancing the end products into reactive and benign forms are critical to assess environmental impacts of CWs. Thus we strongly suggest that in situ N transformation and fate of the transformation products with regards to pollution swapping requires further detailed examination.

  18. Dynamics of natural prokaryotes, viruses, and heterotrophic nanoflagellates in alpine karstic groundwater

    OpenAIRE

    Wilhartilz, I.C.; Krischner, A.K.T; C. P. D. Brussaard; Fisher, U.R.; Wieltschnig, C.; Stadler, H; Farnleitner, A.H.

    2013-01-01

    Abstract Seasonal dynamics of naturally occurring prokaryotes, viruses, and heterotrophic nanoflagellates in two hydro-geologically contrasting alpine karst springs were monitored over three annual cycles. To our knowledge, this study is the first to shed light on the occurrence and possible interrelationships between these three groups in karstic groundwater. Hydrological and microbiological standard indicators were recovered simultaneously in order to estimate surface influence, especially ...

  19. Nitrate dynamics in the soil and unconfined aquifer in arid groundwater coupled ecosystems of the Monte desert, Argentina

    Science.gov (United States)

    Aranibar, J. N.; Villagra, P. E.; Gomez, M. L.; JobbáGy, E.; Quiroga, M.; Wuilloud, R. G.; Monasterio, R. P.; Guevara, A.

    2011-12-01

    In arid ecosystems, vegetation controls water and nitrate movement in the soil, reducing solute transport to aquifers. Here we analyzed nitrate distribution and transport throughout the soil profile and to the groundwater under different ecologic (vegetation type) and topographic (upland/lowland) situations across sand dune ecosystems with shallow water tables, subject to domestic grazing in the Monte desert. Based on vertical nitrate distributions in deep soil profiles we found that dune uplands (deep groundwater, low productivity) lost relatively more nitrogen than lowlands (shallow groundwater, high productivity), likely reinforcing productivity contrasts along these topographic positions. The traditional practice of nighttime animal concentration in corrals may affect nitrogen transport, with poorly vegetated interdunes at livestock posts showing higher subsoil nitrate concentrations than a well-vegetated nonsettled interdune. Vegetation left its imprint on the vertical distribution of nitrate, as suggested by the presence of a depletion zone that matched the depth of maximum root densities, followed by an underlying zone of accumulation. To explore how nitrogen exports to groundwater could affect water quality and nutrient supply to phreatophyte plants, we characterized groundwater flow patterns based on a potentiometric map and sediment characteristics, and measured groundwater electric conductivity, nitrate and arsenic concentration, and stable isotopes across 29 wells (5.8-12 m deep). Under the present land use and climate conditions, nitrate leaching does not seem to have an important and widespread effect on water quality. Nitrate concentration exceeded established limits for human consumption (45 mg L-1) in only one well, while arsenic concentration exceeded the established limits (10 μg L-1) in all but one well, reaching extreme values of 629 μg L-1. Yet, our analysis suggests that nitrate exports from corrals can reach the aquifer in localized areas

  20. An Isotopic view of water and nitrogen transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nit...

  1. Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics

    Science.gov (United States)

    Wang, Xingwang; Huo, Zailin; Feng, Shaoyuan; Guo, Ping; Guan, Huade

    2016-12-01

    Estimating evapotranspiration from groundwater (ETg) is of importance to understanding water cycle and agricultural water management. Traditional ETg estimation was developed for regional steady condition and is difficult to be used for cropland where ETg changes with crop growth and irrigation schemes. In the present study, a new method estimating daily ETg during the crop growing season was developed. In this model, the effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is in good agreement with the measured data for four soil profiles and different depths to groundwater table. Coefficient of determination (R2) and coefficient of efficiency (NSE) are mostly larger than 0.85 and 0.70, respectively. This result suggests that the new method incorporating both soil texture and moisture dynamics can be used to estimate average daily groundwater evapotranspiration in cropland and contribute to quantifying the field water cycle.

  2. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    NARCIS (Netherlands)

    van Engeland, T.; Soetaert, K.; Knuijt, K.; Laane, R.W.P.M.; Middelburg, J.J.

    2010-01-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the robu

  3. Assessment of the dynamics in nitrogen and carbon sequestration of European forest soils

    NARCIS (Netherlands)

    Vries, de W.; Salm, van der C.; Reinds, G.J.; Dise, N.B.; Gundersen, P.; Erisman, J.W.; Posch, M.

    2003-01-01

    This report describes the major result of a research project that focused on the assessment of the dynamics in nitrogen and carbon sequestration of European forest soils by estimation of the: (i) retention or release of nitrogen species for selected Intensive Monitoring plots by comparing the input,

  4. Evaluating Chemical Tracers in Suburban Groundwater as Indicators of Nitrate-Nitrogen Sources

    Science.gov (United States)

    Nitka, A.; DeVita, W. M.; McGinley, P.

    2015-12-01

    The CDC reports that over 15 million US households use private wells. These wells are vulnerable to contamination. One of the most common contaminants in private wells is nitrate. Nitrate has a health standard of 10 mg/L. This standard is set to prevent methemaglobinemia, or "blue baby" syndrome, in infants. In extreme cases it can affect breathing and heart function, and even lead to death. Elevated nitrate concentrations have also been associated with increased risk of thyroid disease, diabetes, and certain types of cancer. Unlike municipal wells, there is no mandatory testing of private wells. It is the responsibility of users to have their well water tested. The objective of this research was to identify the most useful chemical tracers for determining sources of nitrate in private water supplies. Chemical characteristics, such as mobility in groundwater and water solubility, as well as frequency of use, were considered when choosing source indicators. Fourteen pharmaceuticals and personal care products unique to human use were chosen to identify wells impacted by septic waste. A bovine antibiotic and five pesticide metabolites were used to identify contamination from agricultural sources. Eighteen private wells were selected in a suburban area with septic systems and adjacent agricultural land. The wells were sampled five times and analyzed to provide a temporal profile of nitrate and the tracers. The artificial sweetener sucralose was found in >70% of private wells. Wells with sucralose detected had nitrate concentrations between 5-15 mg/L. The herbicide metabolite metolachlor ESA was detected in 50% of the wells. These wells typically had the highest nitrate concentrations, often >10 mg/L. The common use and frequent detection of these two compounds made them the most reliable indicators of nitrate sources evaluated in this study. This information will help well owners determine appropriate treatment and remediation options and could direct future

  5. Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes

    Science.gov (United States)

    Robertson, Wendy Marie; Böhlke, John Karl; Sharp, John M.

    2017-01-01

    Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans-Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3−concentrations. Median increases in groundwater NO3− (by 0.7–0.9 mg-N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans-Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human-influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3− to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3− (122–910 kg-N/ha) was sufficient to cause the observed groundwater NO3− increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3− trends can be explained by small volumes of high NO3− modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long-term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.

  6. Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA

    Science.gov (United States)

    Sobota, D. J.; Compton, J.; Goodwin, K. E.

    2012-12-01

    We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and

  7. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  8. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    Science.gov (United States)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  9. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-04-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  10. Modelling water flow and seasonal soil moisture dynamics in analluvial groundwater-fed wetland

    Directory of Open Access Journals (Sweden)

    I. Joris

    2003-01-01

    Full Text Available Complex interactions occur in riparian wetlands between groundwater, surface water and climatic conditions. Knowledge of the hydrology of these systems is necessary to understand their functioning and their value and models are a useful and probably essential tool to capture their hydrological complexity. In this study, a 2D-model describing saturated-unsaturated water flow is applied to a transect through a groundwater-fed riparian wetland located along the middle reach of the river Dijle. The transect has high levees close to the river and a depression further into the floodplain. Scaling factors are introduced to describe the variability of soil hydraulic properties along the transect. Preliminary model calculations for one year show a good agreement between model calculations and measurements and demonstrate the capability of the model to capture the internal groundwater dynamics. Seasonal variations in soil moisture are reproduced well by the model thus translating external hydrological boundary conditions to root zone conditions. The model proves to be a promising tool for assessing effects of changes in hydrological boundary conditions on vegetation type distribution and to gain more insight in the highly variable internal flow processes of riparian wetlands. Keywords: riparian wetland,eco-hydrology, upward seepage, floodplain hydrology

  11. Nitrogen dynamics in a soil-sugar cane system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Julio Cesar Martins de; Reichardt, Klaus; Bacchi, Osny O.S.; Timm, Luis Carlos; Tominaga, Tania Toyomi; Castro Navarro, Roberta de; Cassaro, Fabio Augusto Meira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo. E-mail: lctimm@carpa.ciagri.usp.br; Dourado-Neto, Durval [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegertal; Trivelin, Paulo Cesar Ocheuse [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Piccolo, Marisa de Cassia [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Biogeoquimica

    2000-09-01

    Results of an organic matter management experiment of a sugar cane crop are reported for the first cropping year. Sugar cane was planted in October 1997, and labeled with a {sup 15}N fertilizer pulse to study the fate of organic matter in the soil-plant system. A nitrogen balance is presented, partitioning the system in plant components (stalk, tip and straw), soil components (five soil organic matter fractions) and evaluating leaching losses. The {sup 15}N label permitted to determine, at the end of the growing season, amounts of nitrogen derived from the fertilizer, present in the above mentioned compartments. (author)

  12. Nitrogen Dynamics Variation in Overlying Water of Jinshan Lake, China

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2015-01-01

    Full Text Available Jinshan Lake is a famous urban landscape lake with approximately 8.8 km2 water area, which is located on the north of Zhenjiang, of Jiangsu Province, China. Eighteen sampled sites were selected and overlying water was sampled from 2013 to 2014 to study the seasonal and spatial variation of nitrogen in overlying water of Jinshan Lake. Results showed that physicochemical characteristics of temperature, pH, and DO showed high seasonal variation, whereas they had no significant spatial differences in the 18 sampling points (P>0.05 in overlying water of Jinshan Lake. Nitrogen concentrations showed strong seasonal variation trends. The ranked order of TN was as follows: spring > summer > autumn > winter; the order of NH4+-N was as follows: spring > autumn > summer > winter, whereas NO3--N concentrations revealed an inverse seasonal pattern, with maxima occurring in winter and minimal values occurring in spring. Nitrogen concentrations had dramatic spatial changes in 18 sampling points of Jinshan Lake. Physicochemical parameter difference, domestic wastes pollution, and rainfall runoff source may have led to seasonal and spatial fluctuation variations of nitrogen in overlying water of Jinshan Lake, China.

  13. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene.

    Science.gov (United States)

    Ukpong, A M; Chetty, N

    2012-07-04

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  14. The Dynamic of Soil Nitrogen in Forage Systems Based on Corn Silage Culture

    Directory of Open Access Journals (Sweden)

    Ioan Peţ

    2012-05-01

    Full Text Available The research on soil nitrogen dynamics of crop structures of the feed system studied had se purpose to reveal the amounts of Nt made at the end of the vegetation periods and on the entire cumulative period of each system, both in unfertilized and fertilized variants with nitrogen. Following the obtained results there was found that the introduction into the feed of corn silage and aristed ryegrass the cumulative amount of Nt in soil was 181.5 kg / ha, at the unfertilized variants and 190.2 kg/ha in the nitrogen fertilized variants.

  15. Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico

    Science.gov (United States)

    Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo

    2017-04-01

    The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the

  16. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  17. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    Science.gov (United States)

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land

  18. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xinguo

    2014-01-01

    costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate......, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two....... A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...

  19. Predicting major subsurface transport pathways as a key to understand spatial dynamics of reactive nitrogen in stream water

    DEFF Research Database (Denmark)

    Kraft, P.; Dalgaard, Tommy; Schelde, Kirsten

    groundwater movement. Cause and effects of Nr Approach can therefore be spatially disaggregated, i.e. leached Nr applied uphill on agricultural land can for example lead to gaseous N emissions downhill in riparian plains. In the Danish NitroEurope study landscape, lateral translocation of dissolved nitrogen...

  20. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  1. Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): a multi-proxy approach

    Science.gov (United States)

    Mechal, Abraham; Birk, Steffen; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra; Kebede, Seifu

    2017-03-01

    Hydrochemical and isotope data in conjunction with hydraulic head and spring discharge observations were used to characterize the regional groundwater flow dynamics and the role of the tectonic setting in the Gidabo River Basin, Ethiopian Rift. Both groundwater levels and hydrochemical and isotopic data indicate groundwater flow from the major recharge area in the highland and escarpment into deep rift floor aquifers, suggesting a deep regional flow system can be distinguished from the shallow local aquifers. The δ18O and δ2H values of deep thermal (≥30 °C) groundwater are depleted relative to the shallow (floor. Based on the δ18O values, the thermal groundwater is found to be recharged in the highland around 2,600 m a.s.l. and on average mixed with a proportion of 30 % shallow groundwater. While most groundwater samples display diluted solutions, δ13C data of dissolved inorganic carbon reveal that locally the thermal groundwater near fault zones is loaded with mantle CO2, which enhances silicate weathering and leads to anomalously high total dissolved solids (2,000-2,320 mg/l) and fluoride concentrations (6-15 mg/l) exceeding the recommended guideline value. The faults are generally found to act as complex conduit leaky barrier systems favoring vertical mixing processes. Normal faults dipping to the west appear to facilitate movement of groundwater into deeper aquifers and towards the rift floor, whereas those dipping to the east tend to act as leaky barriers perpendicular to the fault but enable preferential flow parallel to the fault plane.

  2. Nitrogen dynamics in a soil-sugar cane system

    OpenAIRE

    2000-01-01

    Results of an organic matter management experiment of a sugar cane crop are reported for the first cropping year. Sugar cane was planted in October 1997, and labeled with a 15N fertilizer pulse to study the fate of organic matter in the soil-plant system. A nitrogen balance is presented, partitioning the system in plant components (stalk, tip and straw), soil components (five soil organic matter fractions) and evaluating leaching losses. The 15N label permitted to determine, at the end of the...

  3. Control of Groundwater Pollution from Animal Feeding Operations: A Farm-Level Dynamic Model for Policy Analysis

    Science.gov (United States)

    Wang, J.; Baerenklau, K.

    2012-12-01

    Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being

  4. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    Science.gov (United States)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  5. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses

    CERN Document Server

    Yao, Jinping; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2015-01-01

    We experimentally demonstrate ultrafast dynamic of generation of a strong 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the excited and ground states of N2 for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  6. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation.

    Science.gov (United States)

    Spät, Philipp; Maček, Boris; Forchhammer, Karl

    2015-01-01

    Cyanobacteria have shaped the earth's biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signaling, adaptation, and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry toward the detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labeling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phospho)proteome of Synechocystis to date, identifying 2382 proteins and 183 phosphorylation events and quantifying 2111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 h. Among the proteins with increased phosphorylation, the PII signaling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.

  7. Modeling Changing Morphology and Density Dependent Groundwater Flow in a Dynamic Environment: case study

    Science.gov (United States)

    Huizer, Sebastian; Bierkens, Marc; Oude Essink, Gualbert

    2015-04-01

    The prospect of sea level rise and increase in extreme weather conditions has led to a new focus on coastal defense in the Netherlands. As an innovative solution for coastal erosion a mega-nourishment named the Sand Motor (or Sand Engine) has been constructed at the Dutch coast. This body of sand will be distributed slowly along the coastline by wind, waves and currents; keeping the coastal defense structures in place and creating a unique, dynamic environment with changing morphology over time. The large size and position of the Sand Motor might lead to a substantial increase of fresh ground water resources. This creates an opportunity to combine coastal protection with an increase of fresh water resources in coastal regions. With a three dimensional, density dependent, groundwater model the effects of changing morphology over time and the potential increase in fresh water availability have been studied. The preliminary model calculations show that in a period of 20 years volume of fresh water gradually increases to ca. 12 Mm3. In the nearby dune area 7-8 Mm3 is abstracted yearly, therefore the first results are promising in increasing fresh groundwater resources. More model calculations will be performed to investigate the sensitivity of the change in the fresh, brackish and salt water distribution.

  8. Coupling WRF with LEAFHYDRO: introducing groundwater and a fully dynamic water table in regional climate simulations

    Science.gov (United States)

    Martínez de La Torre, A.; Rios Entenza, A.; Gestal Souto, L.; Miguez Macho, G.

    2010-09-01

    Here we present a soil-vegetation-hydrology model, LEAFHYDRO coupled with the WRF model. LEAFHYDRO includes a groundwater parameterization with a dynamic water table and river routing and it can be run at a finer resolution than the atmosphere within WRF. Offline multiyear simulations over the Iberian Peninsula at 2.5 km resolution with the LEAFHYDRO model with and without groundwater indicate that introducing the water table parameterization has a significant impact on soil moisture amounts, soil moisture persistence and evapotranspiration fluxes. This is particularly true over the semiarid flat plateaus of the Iberian interior, where the atmospheric source of precipitation is scarce and the water table is naturally shallow due to slow drainage and lateral flow convergence from the surrounding mountains. Climatic simulations with the coupled WRF-HYDRO system suggest that the memory induced in the soil by the water table significantly impact the simulated precipitation, especially in the spring, when the land-surface atmospheric coupling is strong and rainfall amounts have their annual peak inland Iberia.

  9. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...... edges were used to study the effects of varying N deposition load on SOC stocks and fluxes as well as on the temperature sensitivity of SOM respiration. In a third study, the effects of 20 years of continuous experimental N addition (35 kg N ha-1 year-1) on soil C budget were investigated. Our general...

  10. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...... hypotheses were that elevated N deposition will: i) increase SOC stocks owing to positive effect of N on litterfall C inputs combined with negative effect on SOM decomposition regardless of negative effects on belowground C inputs by roots and associated mycorrhiza; ii) reduce the temperature sensitivity......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...

  11. Nitrogen dynamics in Posidonia oceanica cuttings: implications for transplantation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lepoint, Gilles; Vangeluwe, Denis; Eisinger, Michael; Paster, Markus; Treeck, Peter van; Bouquegneau, Jean-Marie; Gobert, Sylvie

    2004-03-01

    A {sup 15}N tracer study was performed during an experimental transplantation trial of natural Posidonia oceanica cuttings. The experiment was done in situ at 17 m depth in the Revellata Bay (Calvi, NW Corsica, France). Despite high survival rates of transplants (>90%) after one year, the weight and the N content of transplants are significantly lower than those of reference plants. In absence of roots, the transplants are not able to meet their N requirement because, leaf uptake is insufficient to replenish the N lost during the natural leaf decay. This could constitute a major cause of long-term failure for transplantation experiments or natural re-colonisation processes. The increase of the {sup 15}N content in the roots shows that the plant re-allocates the nitrogen of one organ (i.e. leaves, rhizomes) to ensure the growth of another (i.e. roots)

  12. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    Science.gov (United States)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  13. Rainwater lens dynamics and mixing between infiltrating rainwater and upward saline groundwater seepage beneath a tile-drained agricultural field

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Oude Essink, Gualbert; Vermue, Esther; Post, Vincent E.A.

    2013-01-01

    Thin rainwater lenses (RW-lenses) near the land surface are often the only source of freshwater in agricultural areas with regionally-extensive brackish to saline groundwater. The seasonal and inter-annual dynamics of these lenses are poorly known. Here this knowledge gap is addressed by investigati

  14. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  15. Using Nonlinear Dynamics for Environmental Management of the Vadose Zone and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2003-03-27

    The need to improve characterization and prediction methods for flow and transport in partially saturated and saturated heterogeneous soils and fractured rock has long been recognized. Such improvement would be specifically welcomed in the fields of environmental management, containment and remediation of contaminated sites. Until recently, flow and transport processes in heterogeneous soils and fractured rock (with oscillating irregularities) were assumed to be random and were analyzed using conventional stochastic and deterministic methods. In this presentation, I will present the results of laboratory and field investigations of flow and transport in unsaturated soils and fractured rock, applying the methods of nonlinear dynamics and deterministic chaos. I will discuss using these methods for the development of improved characterization and prediction methods as well as for the development of remediation technologies for contaminated soils and groundwater.

  16. In situ carbon and nitrogen dynamics in ryegrass-clover mixtures

    DEFF Research Database (Denmark)

    Rasmussen, J.; Eriksen, J.; Jensen, Erik Steen

    2007-01-01

    Carbon (C) and nitrogen (N) dynamics in a third production year ryegrass–clover mixture were investigated in the field. Cylinders (diameter 29.7 cm) were installed to depths of 20, 40 and 60 cm and equipped with suction cups to collect percolating pore water. Ryegrass and clover leaves were cross...

  17. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    Science.gov (United States)

    Alex Abdelnour; Robert B. McKane; Marc Stieglitz; Feifei Pan; Yiwei. Cheng

    2013-01-01

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where two major disturbance events have occurred during the past 500 years: a stand-replacing fire...

  18. Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins

    NARCIS (Netherlands)

    Kraal, P.; Nierop, K.G.J.; Kaal, J.; Tietema, A.

    2009-01-01

    We investigated the carbon (C) mineralisation and nitrogen (N) dynamics in litter from a Corsican pine forest in response to individual and combined additions of aluminium (M), condensed tannin (extracted from fresh Corsican pine needles) and hydrolysable tannin (commercial tannic acid). Production

  19. Some Aspects of Dynamics of Nitrogen-14 Quadrupolar Spin-System

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, T. N., E-mail: trudakov@qrsciences.com; Hayes, P. A.; Chisholm, W. P. [QRSciences Limited (Australia)

    2004-12-15

    This is a study of the behaviour of nuclear quadrupole resonance (NQR) signals in the 'observation windows' of multi-pulse sequence for a nitrogen-14 spin-system. Obtained results revealed steady state (SS) and spin echo (SE) components of the signal. The results contribute to the understanding the dynamic properties of the quadrupolar spin-system.

  20. Reactive transport modeling of biogeochemical dynamics in subterranean estuaries: Implications for submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.

    2007-01-01

    The quality of groundwater, in particular in coastal areas, is increasingly deteriorating due to the input of nutrients (NO3-, NH4+ and PO4) from septic systems and agricultural leaching. The discharge of groundwater to coastal waters, termed submarine groundwater discharge (SGD), is now recognized

  1. Nitrogen-isotopes and multi-parameter sewage water test for identification of nitrate sources: Groundwater body Marchfeld East of Vienna

    Science.gov (United States)

    Kralik, Martin

    2017-04-01

    The application of nitrogen and oxygen isotopes in nitrate allows, under favourable circumstances, to identify potential sources such as precipitation, chemical fertilisers and manure or sewage water. Without any additional tracer, the source distinction of nitrate from manure or sewage water is still difficult. Even the application of boron isotopes can in some cases not avoid ambiguous interpretation. Therefore, the Environment Agency Austria developed a new multi parametrical indicator test to allow the identification and quantification of pollution by domestic sewage water. The test analyses 8 substances well known to occur in sewage water: Acesulfame and sucralose (two artificial, calorie-free sweeteners), benzotriazole and tolyltriazole (two industrial chemicals/corrosion inhibitors), metoprolol, sotalol, carbamazepine and the metabolite 10,11-Dihydro-10,11-dihydroxycarbamazepine (pharmaceuticals) [1]. These substances are polar and degradation in the aquatic system by microbiological processes is not documented. These 8 Substances do not occur naturally which make them ideal tracers. The test can detect wastewater in the analysed water sample down to 0.1 %. This ideal coupling of these analytic tests helps to identify the nitrogen sources in the groundwater body Marchfeld East of Vienna to a high confidence level. In addition, the results allow a reasonable quantification of nitrogen sources from different types of fertilizers as well as sewage water contributions close to villages and in wells recharged by bank filtration. Recent investigations of groundwater in selected wells in Marchfeld [2] indicated a clear nitrogen contribution by wastewater leakages (sewers or septic tanks) to the total nitrogen budget. However, this contribution is shrinking and the main source comes still from agricultural activities. [1] Humer, F.; Weiss, S.; Reinnicke, S.; Clara, M.; Grath, J.; Windhofer, G. (2013): Multi parametrical indicator test for urban wastewater influence

  2. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Ehrnsten, U.; Toivonen, A. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland); Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H. [Department of Mechanical Engineering, Helsinki University of Technology Puumiehenkuja 3, P.O. Box 4200, FIN-02015 HUT (Finland)

    2004-07-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  3. Fostering assumption-based stress-test thinking in managing groundwater systems: learning to avoid failures due to basic dynamics

    Science.gov (United States)

    Guillaume, Joseph H. A.; El Sawah, Sondoss

    2014-06-01

    Sustainable groundwater resource management can only be achieved if planning processes address the basic dynamics of the groundwater system. Conceptual and distributed groundwater models do not necessarily translate into an understanding of how a plan might operate in reality. Prompted by Australian experiences, `iterative closed-question modelling' has been used to develop a process of iterative dialogue about management options, objectives and knowledge. Simple hypothetical models of basic system dynamics that satisfy agreed assumptions are used to stress-test the ability of a proposed management plan to achieve desired future conditions. Participants learn from models in which a plan succeeds and fails, updating their assumptions, expectations or plan. Their new understanding is tested against further hypothetical models. The models act as intellectual devices that confront users with new scenarios to discuss. This theoretical approach is illustrated using simple one and two-cell groundwater models that convey basic notions of capture and spatial impacts of pumping. Simple extensions can address uncertain climate, managed-aquifer recharge and alternate water sources. Having learnt to address the dynamics captured by these models, participants may be better placed to address local conditions and develop more effective arrangements to achieve management outcomes.

  4. Hydrogeologic framework, ground-water geochemistry, and assessment of nitrogen yield from base flow in two agricultural watersheds, Kent County, Maryland

    Science.gov (United States)

    Bachman, L.J.; Krantz, D.E.; Böhlke, John Karl

    2002-01-01

    Hydrostratigraphic and geochemical data collected in two adjacent watersheds on the Delmarva Peninsula, in Kent County, Maryland, indicate that shallow subsurface stratigraphy is an important factor that affects the concentrations of nitrogen in ground water discharging as stream base flow. The flux of nitrogen from shallow aquifers can contribute substantially to theeutrophication of streams and estuaries, degrading water quality and aquatic habitats. The information presented in this report includes a hydrostratigraphic framework for the Locust Grove study area, analyses and interpretation of ground-water chemistry, and an analysis of nutrient yields from stream base flow. An understanding of the processes by which ground-waternitrogen discharges to streams is important for optimal management of nutrients in watersheds in which ground-water discharge is an appreciable percentage of total streamflow. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency (USEPA), collected and analyzed hydrostratigraphic and geochemical data in support ofground-water flow modeling by the USEPA.The adjacent watersheds of Morgan Creek and Chesterville Branch have similar topography and land use; however, reported nitrogen concentrations are generally 6 to 10 milligrams per liter in Chesterville Branch but only 2 to 4 milligrams per liter in Morgan Creek. Ground water in the surficial aquifer in the recharge areas of both streams has high concentrations of nitrate(greater than 10 milligrams per liter as N) and dissolved oxygen. One component of the ground water discharging to Morgan Creek typically is anoxic and contains virtually no dissolved nitrate; most of the ground water discharging to Chesterville Branch is oxygenated and contains moderately high concentrations of nitrate.The surficial aquifer in the study area is composed of the deeply weathered sands and gravels of the Pensauken Formation (the Columbia aquifer) and the underlying glauconitic

  5. Impacts of Invasive Pests on Forest Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Lovett, G. M.; Crowley, K. F.

    2014-12-01

    Forests of the U.S. have been subject to repeated invasions of destructive insects and diseases imported from other continents. Like other disturbances, these pests can produce short-term ecosystem effects due to tree mortality, but unlike other disturbances, they often target individual species and therefore can cause long-term species change in the forest. Because tree species vary in their influence on carbon (C) and nitrogen (N) cycles, pest-induced species change can radically alter the biogeochemistry of a forest. In this paper we use both data and modeling to examine how pest-induced species change may alter the C and N cycling in forests of the eastern U.S. We describe a new forest ecosystem model that distinguishes individual tree species and allows species composition to shift over the course of the model run. Results indicate that the mortality of eastern hemlock (Tsuga canadensis) by hemlock woolly adelgid and its replacement by faster-growing species such as black birch (Betula lenta) will reduce forest floor C stocks but increase productivity as the birch become established. Decline of American beech (Fagus grandifolia) from beech bark disease and its replacement by sugar maple (Acer saccharum) is likely to decrease soil C storage and increase N leaching from the ecosystem. Responses to other invasive pests will also be discussed. The magnitude of these species-specific effects on C and N cycling is in many cases larger than direct effects expected from changes in climate and atmospheric N deposition, indicating that species change should be included in models that predict forest ecosystem function under future environmental conditions.

  6. Nitrogen and phosphorus dynamics in the biofloc production of the pacific white shrimp, Litopenaeus vannamei

    OpenAIRE

    Silva, Kassio Rios da; Wasielesky Junior,Wilson; Abreu, Paulo Cesar Oliveira Vergne de

    2013-01-01

    A study evaluating nitrogen and phosphorus dynamics was carried out using biofloc technology (BFT) systems employed to raise Litopenaeus vannamei juveniles. The study was carried out for 42 d in three fiberglass tanks with 210 L useful volume with no water exchange. Salinity, temperature, dissolved oxygen, pH, nutrients, suspended solids, and chlorophyll-a were monitored every 3 d. At the completion of the experiment, the shrimp had absorbed 39.1 and 35.0% of the total nitrogen (N) and phosph...

  7. Dynamic reallocation of marketable nitrogen emission permits in Danish freshwater aquaculture

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Andersen, Jesper Levring; Bogetoft, Peter

    2014-01-01

    The potential gains from a regulatory change allowing for reallocation of marketable nitrogen emission permits under a cap and trade system are analyzed in a dynamic context using Data Envelopment Analysis to formulate linear programming models. In these models new, more environmental friendly...... farms are gradually introduced to the industry over 10 years. The new industry structure, production, and profitability gains are investigated, and the effect of changing the overall level of nitrogen emission is analyzed. Our results show that there is scope for a more efficient allocation of resources...

  8. Dynamic Reallocation of Marketable Nitrogen Emission Permits in Danish Freshwater Aquaculture

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Levring Andersen, Jesper; Bogetoft, Peter

    2014-01-01

    The potential gains from a regulatory change allowing for reallocation of marketable nitrogen emission permits under a cap and trade system are analyzed in a dynamic context using Data Envelopment Analysis to formulate linear programming models. In these models new, more environmental friendly...... farms are gradually introduced to the industry over 10 years. The new industry structure, production, and profitability gains are investigated, and the effect of changing the overall level of nitrogen emission is analyzed. Our results show that there is scope for a more efficient allocation of resources...

  9. Examining regional groundwater-surface water dynamics using an integrated hydrologic model of the San Joaquin River basin

    Science.gov (United States)

    Gilbert, James M.; Maxwell, Reed M.

    2017-02-01

    Widespread irrigated agriculture and a growing population depend on the complex hydrology of the San Joaquin River basin in California. The challenge of managing this complex hydrology hinges, in part, on understanding and quantifying how processes interact to support the groundwater and surface water systems. Here, we use the integrated hydrologic platform ParFlow-CLM to simulate hourly 1 km gridded hydrology over 1 year to study un-impacted groundwater-surface water dynamics in the basin. Comparisons of simulated results to observations show the model accurately captures important regional-scale partitioning of water among streamflow, evapotranspiration (ET), snow, and subsurface storage. Analysis of this simulated Central Valley groundwater system reveals the seasonal cycle of recharge and discharge as well as the role of the small but temporally constant portion of groundwater recharge that comes from the mountain block. Considering uncertainty in mountain block hydraulic conductivity, model results suggest this component accounts for 7-23 % of total Central Valley recharge. A simulated surface water budget guides a hydrograph decomposition that quantifies the temporally variable contribution of local runoff, valley rim inflows, storage, and groundwater to streamflow across the Central Valley. Power spectra of hydrograph components suggest interactions with groundwater across the valley act to increase longer-term correlation in San Joaquin River outflows. Finally, model results reveal hysteresis in the relationship between basin streamflow and groundwater contributions to flow. Using hourly model results, we interpret the hysteretic cycle to be a result of daily-scale fluctuations from precipitation and ET superimposed on seasonal and basin-scale recharge and discharge.

  10. A dynamically-coupled groundwater, land surface and regional climate model to predict seasonal watershed flow and groundwater response, FINAL LDRD REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Kollet, S; Chow, F; Granvold, P; Duan, Q

    2007-02-23

    This final report is organized in four sections. Section 1 is the project summary (below), Section 2 is a submitted manuscript that describes the offline, or spinup simulations in detail, Section 3 is also a submitted manuscript that describes the online, or fully-coupled simulations in detail and Section 3, which is report that describes work done via a subcontract with UC Berkeley. The goal of this project was to develop and apply a coupled regional climate, land-surface, groundwater flow model as a means to further understand important mass and energy couplings between regional climate, the land surface, and groundwater. The project involved coupling three distinct submodels that are traditionally used independently with abstracted and potentially oversimplified (inter-model) boundary conditions. This coupled model lead to (1) an improved understanding of the sensitivity and importance of coupled physical processes from the subsurface to the atmosphere; (2) a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that will provide insight into the certainty of hydrologic forecasting, dominance and sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic model representation of weather predictions, precipitation and temperature, at the regional scale. Regional climate models are typically used for the simulation of weather, precipitation and temperature behavior over 10-1000 km domains for weather or climate prediction purposes, and are typically driven by boundary conditions derived from global climate models (GCMs), observations or both. The land or ocean surface typically represents a bottom boundary condition of these models, where important mass (water) and energy fluxes are approximated. The viability and influence of these

  11. A dynamically-coupled groundwater, land surface and regional climate model to predict seasonal watershed flow and groundwater response, FINAL LDRD REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Kollet, S; Chow, F; Granvold, P; Duan, Q

    2007-02-23

    This final report is organized in four sections. Section 1 is the project summary (below), Section 2 is a submitted manuscript that describes the offline, or spinup simulations in detail, Section 3 is also a submitted manuscript that describes the online, or fully-coupled simulations in detail and Section 3, which is report that describes work done via a subcontract with UC Berkeley. The goal of this project was to develop and apply a coupled regional climate, land-surface, groundwater flow model as a means to further understand important mass and energy couplings between regional climate, the land surface, and groundwater. The project involved coupling three distinct submodels that are traditionally used independently with abstracted and potentially oversimplified (inter-model) boundary conditions. This coupled model lead to (1) an improved understanding of the sensitivity and importance of coupled physical processes from the subsurface to the atmosphere; (2) a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that will provide insight into the certainty of hydrologic forecasting, dominance and sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic model representation of weather predictions, precipitation and temperature, at the regional scale. Regional climate models are typically used for the simulation of weather, precipitation and temperature behavior over 10-1000 km domains for weather or climate prediction purposes, and are typically driven by boundary conditions derived from global climate models (GCMs), observations or both. The land or ocean surface typically represents a bottom boundary condition of these models, where important mass (water) and energy fluxes are approximated. The viability and influence of these

  12. Evaluating storm-scale groundwater recharge dynamics with coupled weather radar data and unsaturated zone modeling

    Science.gov (United States)

    Nasta, P.; Gates, J. B.; Lock, N.; Houston, A. L.

    2013-12-01

    Groundwater recharge rates through the unsaturated zone emerge from complex interactions within the soil-vegetation-atmosphere system that derive from nonlinear relationships amongst atmospheric boundary conditions, plant water use and soil hydraulic properties. While it is widely recognized that hydrologic models must capture soil water dynamics in order to provide reliable recharge estimates, information on episodic recharge generation remains uncommon, and links between storm-scale weather patterns and their influence on recharge is largely unexplored. In this study, the water balance of a heterogeneous one-dimensional soil domain (3 m deep) beneath a typical rainfed corn agro-ecosystem in eastern Nebraska was numerically simulated in HYDRUS-1D for 12 years (2001-2012) on hourly time steps in order to assess the relationships between weather events and episodic recharge generation. WSR-88D weather radar reflectivity data provided both rainfall forcing data (after estimating rain rates using the z/r ratio method) and a means of storm classification on a scale from convective to stratiform using storm boundary characteristics. Individual storm event importance to cumulative recharge generation was assessed through iterative scenario modeling (773 total simulations). Annual cumulative recharge had a mean value of 9.19 cm/yr (about 12 % of cumulative rainfall) with coefficient of variation of 73%. Simulated recharge generation events occurred only in late winter and spring, with a peak in May (about 35% of total annual recharge). Recharge generation is observed primarily in late spring and early summer because of the combination of high residual soil moisture following a winter replenishment period, heavy convective storms, and low to moderate potential evapotranspiration rates. During the growing season, high rates of root water uptake cause rapid soil water depletion, and the concurrent high potential evapotranspiration and low soil moisture prevented recharge

  13. Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium.

    Science.gov (United States)

    Klump, Stephan; Kipfer, Rolf; Cirpka, Olaf A; Harvey, Charles F; Brennwald, Matthias S; Ashfaque, Khandaker N; Badruzzaman, Abu Borhan M; Hug, Stephan J; Imboden, Dieter M

    2006-01-01

    The contamination of groundwater by geogenic arsenic is the cause of major health problems in south and southeast Asia. Various hypotheses proposing that As is mobilized by the reduction of iron (oxy)hydroxides are now under discussion. One important and controversial question concerns the possibility that As contamination might be related to the extraction of groundwater for irrigation purposes. If As were mobilized by the inflow of re-infiltrating irrigation water rich in labile organic carbon, As-contaminated groundwater would have been recharged after the introduction of groundwater irrigation 20-40 years ago. We used environmental tracer data and conceptual groundwater flow and transport modeling to study the effects of groundwater pumping and to assess the role of reinfiltrated irrigation water in the mobilization of As. Both the tracer data and the model results suggest that pumping induces convergent groundwater flow to the depth of extraction and causes shallow, young groundwater to mix with deep, old groundwater. The As concentrations are greatest at a depth of 30 m where these two groundwater bodies come into contact and mix. There, within the mixing zone, groundwater age significantly exceeds 30 years, indicating that recharge of most of the contaminated water occurred before groundwater irrigation became established in Bangladesh. Hence, at least at our study site, the results call into question the validity of the hypothesis that re-infiltrated irrigation water is the direct cause of As mobilization; however, the tracer data suggest that, at our site, hydraulic changes due to groundwater extraction for irrigation might be related to the mobilization of As.

  14. Groundwater Nitrogen Pollution and Assessment of Its Health Risks: A Case Study of a Typical Village in Rural-Urban Continuum, China

    Science.gov (United States)

    Gao, Yang; Yu, Guirui; Luo, Chunyan; Zhou, Pei

    2012-01-01

    Protecting groundwater from nitrogen contamination is an important public-health concern and a major national environmental issue in China. In this study, we monitored water quality in 29 wells from 2009 to 2010 in a village in Shanghai city, whick belong to typical rural-urban continuum in China. The total N and NO3-N exhibited seasonal changes, and there were large fluctuations in NH4-N in residential areas, but without significant seasonal patterns. NO2-N in the water was not stable, but was present at high levels. Total N and NO3-N were significantly lower in residential areas than in agricultural areas. The groundwater quality in most wells belonged to Class III and IV in the Chinese water standard, which defines water that is unsuitable for human consumption. Our health risk assessments showed that NO3-N posed the greatest carcinogenic risk, with risk values ranging from 19×10−6 to 80×10−6, which accounted for more than 90% of the total risk in the study area. PMID:22514611

  15. Nitrogen Dynamics are a Key Factor in Explaining Global Land Carbon Sink

    Science.gov (United States)

    Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.; Ciais, P.; Schaefer, K. M.; King, A. W.; Wei, Y.; Cook, R. B.; Fisher, J. B.; Hayes, D. J.; Huang, M.; Ito, A.; Jain, A. K.; Lei, H.; Lu, C.; Maignan, F.; Mao, J.; Parazoo, N.; Peng, S.; Poulter, B.; Ricciuto, D. M.; Shi, X.; Tian, H.; Wang, W.; Zeng, N.; Zhao, F.

    2015-12-01

    The terrestrial carbon cycle plays a critical role in regulating the amount of anthropogenic emissions that remain in the atmosphere. Yet, land-atmosphere carbon dynamics are one of the largest sources of uncertainty in projections of future climate. Reducing this uncertainty requires understanding the relative role of various drivers to land carbon uptake. We use an ensemble of land surface models to quantify the influence of climate, land use history, atmospheric CO2, and nitrogen deposition on the strength of the net land sink over the past 110 years. Each model can be thought of as one realization of terrestrial carbon cycling and the factors most important in controlling land sink strength. Using a series of sensitivity simulations, we identify the dominant drivers to the net land sink that emerge consistently across models, both globally and regionally. We find that the relative importance of external forcing factors on the strength of net land carbon uptake varies considerably across models and depends strongly on whether nitrogen cycling is explicitly simulated. Models without a nitrogen cycle estimate cumulative land carbon uptake (since 1959) that is 3 times greater (93.3 ± 84.1 PgC) than global mass balance constraints (34.6 ± 41.6 PgC). Surprisingly, the greatest impacts are seen in the tropics, where coupled carbon-nitrogen cycle models estimate CO2 fertilization and climate affects that are ~60% weaker than models without a nitrogen cycle. The results highlight the importance of model structure on the inferred sensitivity of land carbon uptake to external forcing factors. The range in sensitivity across models is important for future climate projections since the differences in the processes that explain trends in net land sink strength between models with and without nitrogen dynamics can lead to very different future trajectories of atmospheric CO2 and thus climate.

  16. Integration of nitrogen dynamics into a global terrestrial ecosystem model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaojuan [University of Illinois, Urbana-Champaign; Wittig, Victoria [University of Illinois, Urbana-Champaign; Jain, Atul [University of Illinois, Urbana-Champaign; Post, Wilfred M [ORNL

    2009-01-01

    A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations from the LIDET data set were compiled for calibration and evaluation of the decomposition submodel within ISAM. For aboveground decomposition, the calibration is accomplished by optimizing parameters related to four processes: the partitioning of leaf litter between metabolic and structural material, the effect of lignin on decomposition, the climate control on decomposition and N mineralization and immobilization. For belowground decomposition, the calibrated processes include the partitioning of root litter between decomposable and resistant material as a function of litter quality, N mineralization and immobilization. The calibrated model successfully captured both the C and N dynamics during decomposition for all major biomes and a wide range of climate conditions. Model results show that net N immobilization and mineralization during litter decomposition are dominantly controlled by initial N concentration of litter and the mass remaining during decomposition. The highest and lowest soil organicNstorage are in tundra (1.24 KgNm2) and desert soil (0.06 Kg N m2). The vegetation N storage is highest in tropical forests (0.5 Kg N m2), and lowest in tundra and desert (<0.03 Kg N m2). N uptake by vegetation is highest in warm and moist regions, and lowest in cold and dry regions. Higher rates of N leaching are found in tropical regions and subtropical regions where soil moisture is higher. The global patterns of vegetation and soil N, N uptake and N leaching estimated with ISAM are consistent with measurements and previous modeling studies. This gives us confidence that ISAM

  17. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  18. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation.

    Directory of Open Access Journals (Sweden)

    Philipp eSpät

    2015-03-01

    Full Text Available Cyanobacteria have shaped the earth’s biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signalling, adaptation and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry towards the unbiased detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labelling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phosphoproteome of Synechocystis to date, identifying 2,382 proteins and 183 phosphorylation events and quantifying 2,111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 hours. Among the proteins with increased phosphorylation, the PII signalling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.

  19. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    Directory of Open Access Journals (Sweden)

    Y. Wu

    2013-03-01

    Full Text Available Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C and nitrogen (N cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1 daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2 competition among three plants functional types (PFTs, production and litter production of plants; (3 decomposition of peat; and (4 production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  20. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    Science.gov (United States)

    Wu, Y.; Blodau, C.

    2013-08-01

    Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  1. GlnK Facilitates the Dynamic Regulation of Bacterial Nitrogen Assimilation

    Science.gov (United States)

    Gosztolai, Adam; Schumacher, Jörg; Behrends, Volker; Bundy, Jacob G.; Heydenreich, Franziska; Bennett, Mark H.; Buck, Martin; Barahona, Mauricio

    2017-05-01

    Ammonium assimilation in E. coli is regulated by two paralogous proteins (GlnB and GlnK), which orchestrate interactions with regulators of gene expression, transport proteins and metabolic pathways. Yet how they conjointly modulate the activity of glutamine synthetase (GS), the key enzyme for nitrogen assimilation, is poorly understood. We combine experiments and theory to study the dynamic roles of GlnB and GlnK during nitrogen starvation and upshift. We measure time-resolved in vivo concentrations of metabolites, total and post-translationally modified proteins, and develop a concise biochemical model of GlnB and GlnK that incorporates competition for active and allosteric sites, as well as functional sequestration of GlnK. The model predicts the responses of GS, GlnB and GlnK under time-varying external ammonium level in the wild type and two genetic knock-outs. Our results show that GlnK is tightly regulated under nitrogen-rich conditions, yet it is expressed during ammonium run-out and starvation. This suggests a role for GlnK as a buffer of nitrogen shock after starvation, and provides a further functional link between nitrogen and carbon metabolisms.

  2. [Seasonal dynamics of nitrogen- and phosphorus absorption efficiency of wetland plants in Minjiang River estuary].

    Science.gov (United States)

    Zhang, Wen-Long; Zeng, Cong-Sheng; Zhang, Lin-Hai; Wang, Wei-Qi; Lin, Yan; Ai, Jin-Quan

    2009-06-01

    Taking the native Phragmites australis and invasive Spartina alterniflora in Minjiang River estuary as test objectives, this paper studied the seasonal dynamics of their biomass and nitrogen- and phosphorus absorption efficiency. A typical single-peak curve was presented for the seasonal dynamics of aboveground biomass and nitrogen- and phosphorus absorption efficiency of the two species. P. australis had the maximum aboveground biomass (2195.33 g X m(-2)) in summer, while S. alterniflora had it (3670.02 g X m(-2)) in autumn. The total nitrogen (TN) and total phosphorus (TP) contents of P. australis reached the peak (21.06 g x m(-2) of TN and 1.12 g x m(-2) of TP) in summer and in autumn, respectively, while those of S. alterniflora all reached the peak (26.76 g x m(-2) of TN and 3.23 g x m(-2) of TP) in autumn. Both of the two species had a higher absorption efficiency in TN than in TP (P absorption efficiency of TN and TP than P. australis (P nitrogen- and phosphorus absorption efficiency of the plants.

  3. Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics

    Science.gov (United States)

    Weyer, K.

    2013-12-01

    required to overcome the resistance to downward flow in penetrated rocks. As one of the consequences, the engineering hydraulics concept of buoyancy forces does not comply with physics. In general the vectorial forces within gravitationally-driven flow systems are ignored when using engineering hydraulics. Scheidegger (1974, p. 79) states, however, verbatim and unequivocally: 'It is thus a force potential and not a velocity potential which governs flow through porous media' (emphasis added). This presentation will outline the proper forces for groundwater flow and their calculations based on Hubbert's force potential and additional physical insights by Weyer (1978). REFERENCES Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., New York, NY, USA. de Marsily, G. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, San Diego, California, USA. Hubbert, M.K. 1940. The theory of groundwater motion. Journal of Geology 48(8): 785-944. Muskat, Morris, 1937. The flow of homogeneous fluids through porous media. McGraw-Hill Book Company Inc., New York, NY, USA Scheidegger. A.E., 1974. The physics of flow through permeable media. Third Edition. University of Toronto Press, Toronto, Ontario, Canada Weyer, K.U., 1978. Hydraulic forces in permeable media. Bulletin du B.R.G.M., Vol. 91, pp. 286-297, Orléans, France.

  4. Molecular Dynamics Simulation of Diffusion Coefficients of Oxygen, Nitrogen and Sodium Chloride in Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    肖吉; 陆九芳; 陈健; 李以圭

    2001-01-01

    Molecular dynamics simulation has been performed to determine the infinite-dilution diffusion coefficients of oxygen and nitrogen, and the diffusion coefficients of NaCl in supercritical water from 703.2- 763.2 K and 30-45 MPa.The results obtained show that the diffusion coefficients in supercritical water increase with temperature, while decreasing with pressure. Nevertheless, the diffusion coefficients in supercritical water are much larger than those in normal water.

  5. Incorporating Groundwater Dynamics and Surface/Subsurface Runoff Mechanisms in Regional Climate Modeling over River Basins in China

    Institute of Scientific and Technical Information of China (English)

    QIN Peihua; XIE Zhenghui; YUAN Xing

    2013-01-01

    To improve the capability of numerical modeling of climate-groundwater interactions,a groundwater component and new surface/subsurface runoff schemes were incorporated into the regional climate model RegCM3,renamed RegCM3_Hydro.20-year simulations from both models were used to investigate the effects of groundwater dynamics and surface/subsurface runoff parameterizations on regional climate over seven river basins in China.A comparison of results shows that RegCM3_Hydro reduced the positive biases of annual and summer (June,July,August) precipitation over six river basins,while it slightly increased the bias over the Huaihe River Basin in eastern China.RegCM3_Hydro also reduced the cold bias of surface air temperature from RegCM3 across years,especially for the Haihe and the Huaihe river basins,with significant bias reductions of 0.80℃ and 0.88℃,respectively.The spatial distribution and seasonal variations of water table depth were also well captured.With the new surface and subsurface runoff schemes,RegCM3_Hydro increased annual surface runoff by 0.11-0.62 mm d-1 over the seven basins.Though previous studies found that incorporating a groundwater component tends to increase soil moisture due to the consideration of upward groundwater recharge,our present work shows that the modified runoff schemes cause less infiltration,which outweigh the recharge from groundwater and result in drier soil,and consequently cause less latent heat and more sensible heat over most of the basins.

  6. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.

    Science.gov (United States)

    Koven, Charles D; Lawrence, David M; Riley, William J

    2015-03-24

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  7. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Univ. of Oklahoma, Norman, OK (United States); He, Zhili [Univ. of Oklahoma, Norman, OK (United States); Van Nostrand, Joy D. [Univ. of Oklahoma, Norman, OK (United States); Qin, Yujia [Univ. of Oklahoma, Norman, OK (United States); Deng, Ye [Univ. of Oklahoma, Norman, OK (United States); Chinese Academy of Sciences (CAS), Beijing (China); Wu, Liyou [Univ. of Oklahoma, Norman, OK (United States); Tu, Qichao [Univ. of Oklahoma, Norman, OK (United States); Zhejiang Univ., Hangzhou (China); Wang, Jianjun [Univ. of Oklahoma, Norman, OK (United States); Chinese Academy of Sciences (CAS), Nanjing (China); Schadt, Christopher W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); W. Fields, Matthew [Montana State Univ., Bozeman, MT (United States); Hazen, Terry C. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arkin, Adam P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stahl, David A. [Univ. of Washington, Seattle, WA (United States); Zhou, Jizhong [Univ. of Oklahoma, Norman, OK (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsinghua Univ., Beijing (China)

    2017-03-16

    To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced in this paper genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4–2, U(VI), NO3, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4–31 days, whereas Desulfobacterium became dominant at 80–140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Finally, our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.

  8. Modeling Changing Morphology and Density Dependent Groundwater Flow in a Dynamic Environment: case study

    Science.gov (United States)

    Huizer, S.; Bierkens, M. F.; Oude Essink, G.

    2014-12-01

    In many coastal regions around the world climate change will lead to a sea level rise and an increase in extreme weather conditions. This prospect has resulted in a new focus on coastal protection in the Netherlands, resulting in the initiation of an innovative coastal defence project called the Sand Motor. In this project a large body of sand or so-called mega-nourishment has been constructed along the Dutch coast. This body of sand will be distributed slowly along the coastline by wind, waves and currents. Keeping the coastal defence structures in place and creating a unique, dynamic environment with changing morphology over time. Because of the large size of the body of sand (21.5 million m3) and the position at the coastline and near coastal dunes, the Sand Motor might cause a substantial increase of the fresh water availability by increasing the volume fresh water lens underneath the dunes. This creates an opportunity to combine coastal protection with an increase of fresh water resources in coastal regions. With a three dimensional, density dependent, groundwater model the effects of changing morphology over time and the potential increase in fresh water availability have been studied.

  9. The use of video imagery to analyse groundwater and shoreline dynamics on a dissipative beach

    NARCIS (Netherlands)

    Huisman, C.E.; Bryan, K.R.; Coco, G.; Ruessink, B.G.

    2011-01-01

    Groundwater seepage is known to influence beach erosion and accretion processes. However, field measurements of the variation of the groundwater seepage line (GWSL) and the vertical elevation difference between the GWSL and the shoreline are limited. We developed a methodology to extract the tempora

  10. Plasma urea nitrogen and progesterone concentrations and follicular dynamics in ewes fed proteins of different degradability

    Directory of Open Access Journals (Sweden)

    Gustavo Bianchi Lazarin

    2012-07-01

    Full Text Available The effects of overfeeding with protein of different degradability on body condition, plasma urea nitrogen and progesterone concentrations, ovulation number and follicular dynamics were assessed in Santa Ines ewes. Twelve ewes were assigned to a randomized block design according to body weight and received overfeeding with soybean meal or with corn gluten meal or maintenance diet for 28 days before ovulation and during the next estrous cycle. Blood samples were taken on days 7, 14, 21, and 28 after the beginning of treatments for analysis of plasma urea nitrogen and on days 3, 6, 9, 12, and 15 into the estrous cycle for analysis of plasma urea nitrogen and progesterone. Follicular dynamics was monitored daily by ultrasound during one estrous cycle. Dry matter and crude protein intake, weight gain, plasma urea nitrogen concentration before ovulation, number of ovulations, diameter of the largest follicle of the 1st and of the 2nd waves and the growth rate of the largest follicle of the 1st wave were higher in the ewes that received overfeeding. The growth rate of the largest follicle of the 3rd wave was higher in the ewes fed maintenance diet. The back fat thickness, plasma urea nitrogen before ovulation and progesterone concentrations, diameter of the largest follicle of the 2nd wave and growth rate of the largest follicle of the 3rd wave were higher in ewes that received overfeeding with soybean meal. The growth rate of the largest follicle of the 1st wave was higher in ewes that received overfeeding with corn gluten meal. Overfeeding with protein-rich feeds may increase the ovulation number and with soybean meal, it may be effective in increasing plasma progesterone concentration in ewes.

  11. Ammonium-nitrogen-contaminated groundwater remediation by a sequential three-zone permeable reactive barrier (multibarrier) with oxygen-releasing compound (ORC)/clinoptilolite/spongy iron: column studies.

    Science.gov (United States)

    Huang, Guoxin; Liu, Fei; Yang, Yingzhao; Kong, Xiangke; Li, Shengpin; Zhang, Ying; Cao, Dejun

    2015-03-01

    A novel sequential permeable reactive barrier (multibarrier), composed of oxygen-releasing compound (ORC)/clinoptilolite/spongy iron zones in series, was proposed for ammonium-nitrogen-contaminated groundwater remediation. Column experiments were performed to: (1) evaluate the overall NH4(+)-N removal performance of the proposed multibarrier, (2) investigate nitrogen transformation in the three zones, (3) determine the reaction front progress, and (4) explore cleanup mechanisms for inorganic nitrogens. The results showed that NH4 (+)-N percent removal by the multibarrier increased up to 90.43 % after 21 pore volumes (PVs) at the influent dissolved oxygen of 0.68∼2.45 mg/L and pH of 6.76∼7.42. NH4(+)-N of 4.06∼10.49 mg/L was depleted and NOx(-)-N (i.e., NO3 (-)-N + NO2(-)-N) of 4.26∼9.63 mg/L was formed before 98 PVs in the ORC zone. NH4(+)-N of ≤4.76 mg/L was eliminated in the clinoptilolite zone. NOx(-)-N of 10.44∼12.80 mg/L was lost before 21 PVs in the spongy iron zone. The clinoptilolite zone length should be reduced to 30 cm. Microbial nitrification played a dominant role in NH4(+)-N removal in the ORC zone. Ion exchange was majorly responsible for NH4(+)-N elimination in the clinoptilolite zone. Chemical reduction and hydrogenotrophic denitrification both contributed to NOx(-)-N transformation, but the chemical reduction capacity decreased after 21 PVs in the spongy iron.

  12. Factors controlling the evolution of groundwater dynamics and chemistry in the Senegal River Delta

    Directory of Open Access Journals (Sweden)

    Abdoul Aziz Gning

    2017-04-01

    New hydrological insights for the region: Results show that groundwater far away from rivers and outside irrigated plots has evolved from marine water to brines under the influence of evapotranspiration. Near rivers, salinity of groundwater is lower than seawater and groundwater mineralization seems to evolve in the direction of softening through cationic exchanges related to permanent contact with fresh water. Despite large volumes of water used for rice cultivation, groundwater does not show any real softening trend in the cultivated parcels. Results show that the mechanisms that contribute to repel salt water from the sediments correspond to a lateral flush near permanent surface water streams and not to vertical drainage and dilution with rainfall or irrigation water. It is however difficult to estimate the time required to come back to more favorable conditions of groundwater salinity.

  13. Daily dynamics of the number and activity of nitrogen-fixing bacteria in fallow and intensely cultivated soils

    Science.gov (United States)

    Emer, N. R.; Semenov, A. M.; Zelenev, V. V.; Zinyakova, N. B.; Kostina, N. V.; Golichenkov, M. V.

    2014-08-01

    The daily dynamics (during 33 days) of the number (colony-forming units (CFU)) of nitrogen-fixing bacteria and of the nitrogen-fixing activity (the acetylene method) were determined in a gray forest soil under a fallow land and under an intensely cultivated field. The daily dynamics of the CFUs determined on the nitrogen-free medium in the samples from both plots had wavelike patterns. The daily values of the actual and potential activities of nitrogen fixation in the samples from the fallow land plot and of the actual activity of nitrogen fixation in the samples from the intensely cultivated soil were low and close to the detection limit. The potential activity of nitrogen fixation in the intensely cultivated soil was significant and also had a wavelike pattern. The harmonic analysis of the daily dynamics of the CFUs and nitrogen fixation showed the statistically significant harmonics of these biological characteristics pointing to the objective and regular character of the wavelike dynamics. The revealed dynamics of the biological characteristics of the soils and the methods of their analysis are important in terms of the comparative study of the biological properties of different soils.

  14. Groundwater contamination from an inactive uranium mill tailings pile: 2. Application of a dynamic mixing model

    Science.gov (United States)

    Narasimhan, T. N.; White, A. F.; Tokunaga, T.

    1986-12-01

    At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series [White et al., 1984] we presented field data as well as an interpretation based on a static mixing model. As an upper bound, we estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work we present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNAmic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.

  15. What is baseflow? Integrating hydrometric and hydrochemical methods to assess dynamic groundwater contributions to montane streams under low flows

    Science.gov (United States)

    Blumstock, Maria; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Malcolm, Iain; Soulsby, Chris

    2014-05-01

    We monitored changing groundwater-surface water interactions through an unusual prolonged dry spell in the Scottish Highlands in summer 2013. The period between May and September saw a 20 year return period drought, these changing hydrometric conditions were monitored in an intensively instrumented 3.2km2 catchment. This montane catchment is underlain by granite and metasediments and has extensive cover of diverse drift deposits. The drought saw slight declines in soil moisture and groundwater levels in valley bottom wetlands but major, rapid declines on steeper upland slopes. This coincided with gradual declines in discharge, however the chemical composition of reducing stream flows showed marked temporal variation which differed spatially. Synoptic hydrogeochemical surveys were carried out on four occasions as flows declined. Each survey repeated sampling of 30 sites on the 3km long stream network as the catchment transitioned from wet to dry conditions. Samples were analysed for major anions, cations and water isotopes. Initial surveys just after the last winter rain showed relatively homogenous stream chemistry, dominated by drainage from acidic peat soils in valley bottom areas. Stream chemistry became increasingly enriched with weathering-derived solutes (e.g. alkalinity, Ca, Mg etc.) as flows declined and groundwater contributions to flow increases. Repeat surveys showed an evolving chemistry of groundwater contributions as discharge from smaller shallower stores sequentially depleted. However, these changes showed marked spatial variability reflecting geochemical differences in the bedrock geology and the distribution of drift deposits. Importantly, much more dynamism was observed than previously thought with diverse montane groundwater bodies contributing to flows differentially during the recession. In addition, strong topographic shading in this montane catchment results in spatially variable radiation inputs and evapotranspiration. This is reflected in

  16. Two-dimensional vertical moisture-pressure dynamics above groundwater waves: Sand flume experiments and modelling

    Science.gov (United States)

    Shoushtari, Seyed Mohammad Hossein Jazayeri; Cartwright, Nick; Perrochet, Pierre; Nielsen, Peter

    2017-01-01

    This paper presents a new laboratory dataset on the moisture-pressure relationship above a dispersive groundwater wave in a two-dimensional vertical unconfined sand flume aquifer driven by simple harmonic forcing. A total of five experiments were conducted in which all experimental parameters were kept constant except for the oscillation period, which ranged from 268 s to 2449 s between tests. Moisture content and suction head sensor pairings were co-located at two locations in the unsaturated zone both approximately 0.2 m above the mean watertable elevation and respectively 0.3 m and 0.75 m from the driving head boundary. For all oscillation periods except for the shortest (T = 268s), the formation of a hysteretic moisture-pressure scanning loop was observed. Consistent with the decay of the saturated zone groundwater wave, the size of the observed moisture-pressure scanning loops decayed with increasing distance landward and the decay rate is larger for the shorter oscillation periods. At the shortest period (T = 268s), the observed moisture-pressure relationship was observed to be non-hysteretic but with a capillary capacity that differs from that of the static equilibrium wetting and drying curves. This finding is consistent with observations from existing one-dimensional vertical sand column experiments. The relative damping of the moisture content with distance landward is higher than that for the suction head consistent with the fact that transmission of pressure through a porous medium occurs more readily than mass transfer. This is further supported by the fact that observed phase lags for the unsaturated zone variables (i.e. suction head and moisture content) relative to the driving head are greater than the saturated zone variables (i.e. piezometric head). Harmonic analysis of the data reveals no observable generation of higher harmonics in either moisture or pressure despite the strongly non-linear relationship between the two. In addition, a phase lag

  17. Effects of increased summer flooding on nitrogen dynamics in impounded mangroves.

    Science.gov (United States)

    Verhoeven, Jos T A; Laanbroek, Hendrikus J; Rains, Mark C; Whigham, Dennis F

    2014-06-15

    Mangroves are important for coastal protection, carbon sequestration and habitat provision for plants and animals in the tropics and subtropics. Mangroves are threatened by habitat destruction and sea level rise, but management activities such as impounding for mosquito control can also have negative effects. We studied the effects of Rotational Impoundment Management (RIM) on nitrogen dynamics in impoundments dominated by three types of Black mangrove (Avicennia germinans) stands along the Indian River Lagoon (Florida). RIM, designed for noxious insect control, involves pumping estuarine water into impoundments in this area during spring and summer to raise water levels by 30 cm. We compared aspects of the nitrogen cycle before and after the start of the RIM and measured the same variables in an impoundment without RIM management. RIM led to the accumulation of ammonium in the substrate which coincided with a lowering of nitrification rates and decreased denitrification rates. Salt pan habitats dominated by dwarf mangroves became less saline following RIM initiation. Shoot growth of mangroves increased in response to higher nitrogen availability and lower pore water salinity. Mangrove responses were greatest in areas with dwarf and sparse mangrove cover. Overall, RIM resulted in lower nitrification and denitrification leading to lower nitrogen losses and increased Black mangrove growth, all benefits of RIM beyond those associated with noxious insect control.

  18. Molecular dynamics study of strain-induced diffusivity of nitrogen in pure iron nanocrystalline

    Science.gov (United States)

    Mohammadzadeh, Roghayeh; Razmara, Naiyer; Razmara, Fereshteh

    2016-12-01

    In the present study, the self-diffusion process of nitrogen in pure iron nanocrystalline under strain conditions has been investigated by Molecular Dynamics (MD). The interactions between particles are modeled using Modified Embedded Atom Method (MEAM). Mean Square Displacement (MSD) of nitrogen in iron structure under strain is calculated. Strain is applied along [ 11 2 ¯ 0 ] and [ 0001 ] directions in both tensile and compression conditions. The activation energy and pre-exponential diffusion factor for nitrogen diffusion is comparatively high along [ 0001 ] direction of compressed structure of iron. The strain-induced diffusion coefficient at 973 K under the compression rate of 0.001 Å/ps along [ 0001 ] direction is about 6.72E-14 m2/s. The estimated activation energy of nitrogen under compression along [ 0001 ] direction is equal to 12.39 kcal/mol. The higher activation energy might be due to the fact that the system transforms into a more dense state when compressive stress is applied.

  19. Groundwater discharge to wetlands driven by storm and flood events: Quantification using continuous Radon-222 and electrical conductivity measurements and dynamic mass-balance modelling

    Science.gov (United States)

    Gilfedder, B. S.; Frei, S.; Hofmann, H.; Cartwright, I.

    2015-09-01

    The dynamic response of groundwater discharge to external influences such as rainfall is an often neglected part of water and solute balances in wetlands. Here we develop a new field platform for long-term continuous 222Rn and electrical conductivity (EC) measurements at Sale Wetland, Australia to study the response of groundwater discharge to storm and flood events. The field measurements, combined with dynamic mass-balance modelling, demonstrate that the groundwater flux can increase from 3 to ∼20 mm d-1 following storms and up to 5 mm d-1 on the receding limb of floods. The groundwater pulses are likely produced by activation of local groundwater flow paths by water ponding on the surrounding flood plains. While 222Rn is a sensitive tracer for quantifying transient groundwater discharge, the mass-balance used to estimate fluxes is sensitive to parameterisation of gas exchange (k) with the atmosphere. Comparison of six equations for calculating k showed that, based on parameterisation of k alone, the groundwater flux estimate could vary by 58%. This work shows that neglecting transient processes will lead to errors in water and solute flux estimates based on infrequent point measurements. This could be particularly important for surface waters connected to contaminated or saline groundwater systems.

  20. Groundwater dynamics in the complex aquifer system of Gidabo River Basin, southern Main Ethiopian Rift: Evidences from hydrochemistry and isotope hydrology

    Science.gov (United States)

    Degu, Abraham; Birk, Steffen; Dietzel, Martin; Winkler, Gerfried; Moggessie, Aberra

    2014-05-01

    Located in the tectonically active Main Ethiopian Rift system, the Gidabo River Basin in Ethiopia has a complex hydrogeological setting. The strong physiographic variation from highland to rift floor, variability in volcanic structures and disruption of lithologies by cross-cutting faults contribute for their complex nature of hydrogeology in the area. Until now, the groundwater dynamics and the impact of the tectonic setting on groundwater flow in this region are not well understood, though the local population heavily depends on groundwater as the major water supply. A combined approach based on hydrochemical and isotopic data was applied to investigate the regional flow dynamics of the groundwater and the impact of tectonic setting. Groundwater evolves from slightly mineralized Ca-Mg-HCO3 on the highland to highly mineralized Na-HCO3 dominating type in the deep rift floor aquifers. δ18O and δD composition of groundwater show a general progressive enrichment from the highland to the rift floor, except in thermal and deep rift floor aquifers. Relatively the thermal and deep rift floor aquifers are depleted and show similar signature to the groundwaters of highland, indicating groundwater inflow from the highland. Correspondingly, rising HCO3 and increasingly enriched signatures of δ 13C points to hydrochemical evolution of DIC and diffuse influx of mantle CO2 into the groundwater system. Thermal springs gushing out along some of the fault zones, specifically in the vicinity of Dilla town, display clear influence of mantle CO2 and are an indication of the role of the faults acting as a conduit for deep circulating thermal water to the surface. By considering the known geological structures of the rift, hydrochemical and isotopic data we propose a conceptual groundwater flow model by characterizing flow paths to the main rift axis. The connection between groundwater flow and the impact of faults make this model applicable to other active rift systems with similar

  1. Groundwater contamination in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tase, Norio [Univ. of Tsukuba, Ibaraki (Japan)

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed. 9 refs., 3 figs., 4 tabs.

  2. Groundwater contamination in Japan

    Science.gov (United States)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  3. The Effects of Soybean Cultivation on Soil Nitrogen Dynamics in the Southeast of Brazilian Amazon

    Science.gov (United States)

    Figueira, A. S.; Davidson, E. A.; Hayhoe, S.; Porder, S.; Neill, C.; Martinelli, L. A.

    2009-12-01

    Anthropogenic activities, including agricultural expansion, have greatly changed the nitrogen dynamics in tropical systems. The expanding soybean frontier in Brazil is a reality, and investigations of the processes driving N dynamics in these systems are needed to minimize environmental impacts and promote sustainability of agricultural systems. In order to understand the effects of soybean cultivation on the nitrogen cycle, we investigated physical and chemical properties of soils, soil N stocks, and soil δ15N in old growth forest, pasture, and along a chronosequence of soybean fields (2, 5, and 6 year-old) in the Brazilian state of Mato Grosso, which is at the southern limit of the Amazon forest. An increase in N stocks in the first 10cm depth of soil was observed along the following sequence of land-uses: pasture, soybean, and forest. We also observed differences in physical and chemical soil properties between forest and soybean sites. There was no difference in the soil δ15N among the chronosequence of soybean fields, although values were lower than the values found in the pasture and higher than those found in the forest soil. These preliminary results showed a pattern of nitrogen accumulation in the soil along the chronosequence of soybean fields, indicating a possible return to the levels of N cycling occurring in the forest soil before the conversion to pasture and soybean

  4. Carbon and Nitrogen Cycling in Urban Landscapes: Global, Regional Dynamics and Case Studies.

    Science.gov (United States)

    Svirejeva-Hopkins, A.; Nardoto, G. B.; Schellnhuber, H.

    2008-12-01

    The urban population has been growing rapidly in the last decades and is predicted to continue its exponential trend, especially in the developing countries, which would create additional pressure on the environment by overpopulated unsustainable cities and will continue to substantially change the main Biogeochemical cycles. Such disturbances in the main driving cycle of the Biosphere (global carbon cycle) and the nitrogen cycle, induced by sprawling urban human activities, lead to global, regional and local environmental problems, i.e. global warming, photochemical smog, stratospheric ozone depletion, soil acidification, nitrate pollution of surface and ground water, coastal ecosystem disturbances. Since urban areas are expected to continue their rapid expansion in the 21st century, accompanied by growing energy production, increased food demand, expanding transportation and industrialization it becomes more and more important to be able to describe and forecast the dynamics of biogeochemical functioning of these landscapes (which have altered characteristics compared to the natural ecosystems). Moreover, from the environmental policy perspective, a high density of people makes cities focal points of vulnerability to global environmental change. The model based on the forecasting the dynamics of urban area growth, allows us to forecast the dynamics of Carbon and Nitrogen on the urban territories at different scales. However, nitrogen cycle is very complex and is closely interlinked with the other major biogeochemical cycles, such as oxygen and water. The system of water supply and liquid waste carried by water out of the system 'city' is investigated. In order to better understand the mechanisms of cycling, we consider the case studies, when we investigated the detailed fluxes of Carbon and Nitrogen in Sao Paolo (Brazil) and Paris (France). When we know the yearly amounts of carbon and nitrogen, produced by a city, we should be capable of coming up with what

  5. A DYNAMIC MIXED MODEL WITH NITROGEN LEACHING LOSSES FROM THE PONDED PADDY RICE FIELD UNDER SITUATION OF BURIED PIPE DRAINAGE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to study the law of nitrogen leaching losses from the paddy field under the condition of drainage, based on the theories of potential energy and solute transport, a water-nitrogen dynamic mixed model by combining the flow net with dynamic method was established. In the computation of buried pipe drainage, the superposition principle was used to simplify the complex solving of the two-dimensional problem about water-nitrogen transportation in Soil-Plant-Air-Continuous (SPAC) system into several one-dimensional problems. The presented method is simple and practical. Some field experiments were carried out to demonstrate the validity of the model.

  6. Integration of nitrogen dynamics into the Noah-MP land model v1.1 for climate and environmental predictions

    Directory of Open Access Journals (Sweden)

    X. Cai

    2015-05-01

    Full Text Available Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP is unique in that it is the next generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN plant model and the Soil and Water Assessment Tool (SWAT soil nitrogen dynamics. This incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long-term Ecological Research site within the U.S. Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching. Furthermore, the addition of nitrogen dynamics improves the modeling of the carbon and water cycles (e.g., net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.

  7. Satellite-based estimation of watershed groundwater storage dynamics in a freeze-thaw area under intensive agricultural development

    Science.gov (United States)

    Ouyang, Wei; Liu, Bing; Wu, Yuyang

    2016-06-01

    Understanding the temporal-spatial characteristics of groundwater storage is critical for agricultural planning and management in the future, thereby causing more challenges in water resource management. However, the special hydrological features of the snow water equivalent, soil moisture, and total canopy water storage in the freeze-thawing agricultural area requires the innovative methods for the water resource analysis. The watershed land cover variation and the expanding pattern of the farmlands over a decade were identified using the TM-Landsat series data. Combined with the traditional measurements of the water resource, the monthly gravity field data from the Gravity Recovery And Climate Experiment (GRACE) was validated and applied. The water resources distribution based on the remotely sensed data demonstrated that the forest in the watershed center had a larger amount of water storage. The inter-annual and seasonal variability of total water storage (TWS) over the agricultural area was analyzed and the higher value appeared in the thawing period of April. The correlations of the TWS streamflow, soil moisture and snow water equivalent with precipitation were all identified. The precipitation was the dominant factor for the watershed TWS and the groundwater dynamics. Under the similar precipitation condition, the lower groundwater storage in recent years was the consequence of the expanding of farmland. The watershed averaged decrease rate of groundwater level from 2003 to 2012 was 1.06 mm/year, which was much lower than the rates in other agricultural areas. The freeze-thawing process with smelt snow and rainfall in summer had more time and chance to recharge the groundwater resource and provided the sustainable water resource. This study proved that the application of GRACE was an effective method for the temporal-spatial estimation of the TWS anomalies in the freeze-thawing agricultural area.

  8. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater-surface water exchange

    Science.gov (United States)

    Steelman, Colby M.; Kennedy, Celia S.; Capes, Donovan C.; Parker, Beth L.

    2017-06-01

    Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater-surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater-surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze-thaw cycle. Surface electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods captured conditions beneath the riverbed along a pool-riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle) and dominant surficial rock properties (competent versus weathered rock rubble surface). While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river ice during the winter season

  9. Controls on groundwater dynamics and root zone aeration of a coastal fluvial delta island, Wax Lake, Louisiana

    Science.gov (United States)

    O'Connor, M.; Hardison, A. K.; Moffett, K. B.

    2013-12-01

    Louisiana coastal wetlands are thought to function as buffers, filtering nutrient-rich terrestrial runoff as it travels to the Gulf of Mexico. While surface water filtration by these wetlands is a large and active area of research, flow through subsurface portions of the wetlands and possible nutrient cycling in the root zone has been largely overlooked. Specifically for Louisiana's coastal deltas, the physics and chemistry of island groundwater systems is unknown.To characterize these subsurface hydraulic dynamics at Pintail Island in the Wax Lake Delta, Louisiana, we collected sediment core samples and penetrometer measurements, monitored surface water and groundwater levels and chemistry, and analyzed meteorological, tidal, and river discharge data. As a first step, we focused on identifying wetland sediment properties and the relative influence of the major hydrologic controls, tides, delta outlet discharge, rainfall, and evapotranspiration, on water table dynamics. Pintail Island is a two-layer system with fine sediments and organic matter overlying sandy deltaic deposits. The sediment layer interface occurs approximately 60 cm below ground surface, around the mean surface water level. The vegetation root zone is concentrated in the surficial layer, although willow roots can extend into the deeper, higher-permeability sandy layer. Groundwater data from the upper portion of this sandy layer (~1m deep) is most strongly influenced by tides but also responds to long-term changes in discharge. While the tides are damped as they propagate into the island sediments, they also flood interior island lagoons, setting up groundwater gradients to potentially drive fluid and nutrient fluxes through the islands. Although the tidally oscillating water table causes significant temporal variation in root zone fluid potentials, evapotranspiration dynamics do not appear to strongly influence groundwater dynamics at depth, consistent with the shallow concentration of roots

  10. Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide

    Science.gov (United States)

    Yang, Wan-Li; An, Jun-Hong; Zhang, Cheng-Jie; Chen, Chang-Yong; Oh, C. H.

    2015-10-01

    We investigate the dynamics of quantum correlation between two separated nitrogen vacancy centers (NVCs) placed near a one-dimensional plasmonic waveguide. As a common medium of the radiation field of NVCs propagating, the plasmonic waveguide can dynamically induce quantum correlation between the two NVCs. It is interesting to find that such dynamically induced quantum correlation can be preserved in the long-time steady state by locally applying individual driving on the two NVCs. In particular, we also show that a large degree of quantum correlation can be established by this scheme even when the distance between the NVCs is much larger than their operating wavelength. This feature may open new perspectives for devising active decoherence-immune solid-state optical devices and long-distance NVC-based quantum networks in the context of plasmonic quantum electrodynamics.

  11. Estuarine Nitrogen Dynamics Along the Alaskan Beaufort Sea Coast: Seasonal Patterns and Potential Climate Change Effects

    Science.gov (United States)

    McClelland, J. W.; Connelly, T. L.; Crump, B. C.; Kellogg, C.; Dunton, K. H.

    2014-12-01

    Seasonal runoff and sea-ice cover create highly dynamic estuarine conditions in the Arctic. Studies focusing on major systems such as the Mackenzie have demonstrated how these variables interact to influence nutrient supply and uptake dynamics. Far less is known about the seasonality of smaller estuarine systems in the Arctic. Data collected from lagoons along the eastern Alaska Beaufort Sea coast show that salinities range from near zero in the spring to as high as 50 in the winter. Runoff and sea-ice thaw in the spring create highly stratified conditions, with hyper-saline bottom waters persisting through the summer in some locations. These variations in physical conditions are accompanied by variations in nitrogen availability within the lagoons. High concentrations of ammonium, and to a lesser extent nitrate, build up under the ice during the winter months. These nutrients are rapidly depleted during the ice break-up period and remain low throughout the summer. Concentrations of organic nitrogen, on the other hand, peak during the ice break-up period. While river inputs contribute directly to this nitrogen peak through the supply of land-derived organic matter, fatty acid markers also show that locally produced organic matter (primarily diatoms) peaks during the ice break-up period. Seasonal changes in nitrogen are accompanied by distinct shifts in microbial community composition as well as changes in stable isotope values of metazoan consumers. Changes in climate that are altering both runoff and sea-ice have the potential to influence the quantity and timing of nutrient availability and associated biological production in arctic coastal waters.

  12. Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system.

    Science.gov (United States)

    Wells, Naomi S; Hakoun, Vivien; Brouyère, Serge; Knöller, Kay

    2016-07-01

    Groundwater under industrial sites is characterised by heterogeneous chemical mixtures, making it difficult to assess the fate and transport of individual contaminants. Quantifying the in-situ biological removal (attenuation) of nitrogen (N) is particularly difficult due to its reactivity and ubiquity. Here a multi-isotope approach is developed to distinguish N sources and sinks within groundwater affected by complex industrial pollution. Samples were collected from 70 wells across the two aquifers underlying a historic industrial area in Belgium. Below the industrial site the groundwater contained up to 1000 mg N l(-1) ammonium (NH4(+)) and 300 mg N l(-1) nitrate (NO3(-)), while downgradient concentrations decreased to ∼1 mg l(-1) DIN ([DIN] = [NH4(+)N] + [NO3(-)N] + [NO2(-)N]). Mean δ(15)N-DIN increased from ∼2‰ to +20‰ over this flow path, broadly confirming that biological N attenuation drove the measured concentration decrease. Multi-variate analysis of water chemistry identified two distinct NH4(+) sources (δ(15)NNH4(+) from -14‰ and +5‰) within the contaminated zone of both aquifers. Nitrate dual isotopes co-varied (δ(15)N: -3‰ - +60‰; δ(18)O: 0‰ - +50‰) within the range expected for coupled nitrification and denitrification of the identified sources. The fact that δ(15)NNO2(-) values were 50‰-20‰ less than δ(15)NNH4(+) values in the majority of wells confirmed that nitrification controlled N turnover across the site. However, the fact that δ(15)NNO2(-) was greater than δ(15)NNH4(+) in wells with the highest [NH4(+)] shows that an autotrophic NO2(-) reduction pathway (anaerobic NH4(+) oxidation or nitrifier-denitrification) drove N attenuation closest to the contaminant plume. This direct empirical evidence that both autotrophic and heterotrophic biogeochemical processes drive N attenuation in contaminated aquifers demonstrates the power of multiple N isotopes to untangle N cycling in highly complex

  13. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen.

    Science.gov (United States)

    Airoldi, Edoardo M; Miller, Darach; Athanasiadou, Rodoniki; Brandt, Nathan; Abdul-Rahman, Farah; Neymotin, Benjamin; Hashimoto, Tatsu; Bahmani, Tayebeh; Gresham, David

    2016-04-15

    Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. InSaccharomyces cerevisiae(budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate. Differential expression of the NCR regulon and additional nitrogen-responsive genes results in >500 transcripts that are differentially expressed in cells growing in the presence of different nitrogen sources in batch cultures. Here we find that in growth rate-controlled cultures using nitrogen-limited chemostats, gene expression programs are strikingly similar regardless of nitrogen source. NCR expression is derepressed in all nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these conditions, only 34 transcripts exhibit nitrogen source-specific differential gene expression. Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to cells growing in nitrogen-limited chemostats results in rapid, dose-dependent repression of the NCR regulon. Using a novel means of computational normalization to compare global gene expression programs in steady-state and dynamic conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results in the transient overproduction of transcripts required for protein translation. Simultaneously, we find that that accelerated mRNA degradation underlies the rapid clearing of a subset of transcripts, which is most pronounced for the highly expressed NCR

  14. The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater

    Science.gov (United States)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-08-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.

  15. Groundwater dynamics and arsenic mobilisation in Bangladesh: a national-scale characterisation

    OpenAIRE

    Shamsudduha, M.

    2011-01-01

    Elevated arsenic (As) concentrations in groundwater-fed drinking water supplies in Bangladesh are a major public health problem but the hydrogeological conditions that give rise to the mobilisation and regional-scale distribution of As in shallow groundwater remain unknown. Published hypotheses developed from highly localised case studies are, to date, untested regionally and contradictory. My doctoral thesis makes a novel and substantial contribution to knowledge of the relationship between ...

  16. Biodiversity and Dynamics of Planthoppers and Their Natural Enemies in Rice Fields with Different Nitrogen Regimes

    Institute of Scientific and Technical Information of China (English)

    LU Zhong-xian; S.VILLAREAL; YU Xiao-ping; K.L.HEONG; HU Cui

    2006-01-01

    A field experiment was conducted to study the effect of different nitrogen fertilizer rates I.e. 200, 100 and 0 kg N/ha in paddy fields at International Rice Research Institute, Manila, Philippines. Biodiversity of arthropods sampled by Blower-Vac, and dynamics of planthoppers, egg parasitoids of Homoptera trapped by rice plants with eggs of brown planthoppers (BPH) Nilaparvata lugens (St(ā)l), and web spiders on rice canopy collected by sweeping net, were analyzed at different rice growth stages. The most abundant arthropods were sampled at the milking stage of rice, totalling 116 species identified into 14 insect orders and 15 species of spider in all samples. Meanwhile the number of arthropod species significantly increased with rice growth and the diversity indices increased with the increase of nitrogen rate at the booting stage. On the other hand, in the dominant predators, Pardosa pseudoannulata, Callitrichi formosana, Micraspis sp., Cyrtorhinus lividipennis, Veliidae sp. And Mesoveliidae sp., only C. Lividipennis and Micraspis sp. Were increased significantly in abundance following the application of nitrogen at the milking stage of rice. The egg parasitoids of plant-hoppers were predominated by Anagrus flaveolus and Oligosita sp. And their densities in the field without nitrogen fertilizer were markedly higher than those in fields with 100 and 200 kg N/ha at both booting and milking stages of rice. The number and web area of dominant residential spiders Tetragnatha sp. And Araneus sp. In rice canopy significantly reduced with the increase of nitrogen fertilizer. The population density of planthoppers, included BPH and the white-backed planthoppers (WBPH) Sogatella furcifera Horváth, peaked during the booting stage, however, the number of BPH in rice field with 200 kg N/ha was considerably higher than those in other two rice fields with 100 kg N/ha and 0 kg N/ha at the booting as well as the milking stage. These results indicated that the rapid growth in

  17. Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh.

    Science.gov (United States)

    Whitehead, P G; Sarkar, S; Jin, L; Futter, M N; Caesar, J; Barbour, E; Butterfield, D; Sinha, R; Nicholls, R; Hutton, C; Leckie, H D

    2015-06-01

    This study investigates the potential impacts of future climate and socio-economic change on the flow and nitrogen fluxes of the Ganga river system. This is the first basin scale water quality study for the Ganga considering climate change at 25 km resolution together with socio-economic scenarios. The revised dynamic, process-based INCA model was used to simulate hydrology and water quality within the complex multi-branched river basins. All climate realizations utilized in the study predict increases in temperature and rainfall by the 2050s with significant increase by the 2090s. These changes generate associated increases in monsoon flows and increased availability of water for groundwater recharge and irrigation, but also more frequent flooding. Decreased concentrations of nitrate and ammonia are expected due to increased dilution. Different future socio-economic scenarios were found to have a significant impact on water quality at the downstream end of the Ganga. A less sustainable future resulted in a deterioration of water quality due to the pressures from higher population growth, land use change, increased sewage treatment discharges, enhanced atmospheric nitrogen deposition, and water abstraction. However, water quality was found to improve under a more sustainable strategy as envisaged in the Ganga clean-up plan.

  18. Dynamics and stability of the Townsend discharge in nitrogen in narrow gaps

    Science.gov (United States)

    Astrov, Yu. A.; Lodygin, A. N.; Portsel, L. M.

    2014-03-01

    This paper investigates the dynamics of the Townsend discharge in nitrogen in narrow gaps. To provide stability of discharge in a broad range of current, we apply a plane-parallel structure, one of the electrodes of which is made of a high-resistivity gallium arsenide. The results of experiments are analyzed in the framework of theory [Yu. P. Raizer et al., Tech. Phys. 51, 185 (2006), 10.1134/S1063784206020071], which considers the dynamics of discharge in short nitrogen-filled gaps of similar structures. According to the theory, a key parameter of discharge dynamics is time ϑ that defines the rate of discharge response to perturbations. In our work, time ϑ is experimentally found by analyzing the noise spectrum of the discharge glow in the stable and spatially uniform state of the structure. This characteristic time depends linearly on the discharge gap width, which corroborates conclusions based on the standard model of Townsend discharge. However, its values are substantially shorter compared to those predicted by theory. The relationship between ϑ and experimentally observed critical current density for the oscillatory instability, jcr, is applied to find the discharge negative differential resistance for a set of parameters of the discharge gap.

  19. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis.

    Science.gov (United States)

    Fujita, Hironori; Aoki, Seishiro; Kawaguchi, Masayoshi

    2014-01-01

    The stabilization of host-symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost-benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume-rhizobia symbioses, which is extendable to other single-host, multiple

  20. Dynamics of Small-Scale Perched Aquifers in the Semi-Arid South-Western Region of Madagascar and Implications for the Sustainable Groundwater Exploitation

    Science.gov (United States)

    Englert, A.; Brinkmann, K.; Kobbe, S.; Buerkert, A.

    2016-12-01

    The south-western region of Madagascar is characterized by limited water resources throughout the year and recurrent droughts, which affect agricultural production and increase the risk of food insecurity. To deliver reliable estimates on the availability and dynamics of water resources, we studied the hydrogeology of several villages in the Mahafaly region. Detailed investigations were conducted for a selected village on a calcareous plateau to predict the local water resources under changing boundary conditions including enhanced water abstraction and changes in groundwater recharge. In 2014 a participatory monitoring network was established, which allowed groundwater level measurements in three wells twice a day. Additional hydrogeological investigations included pumping tests, automatic monitoring of meteorological data, daily groundwater abstraction appraisal and mapping of the spatial extent of the perched aquifer using satellite data. Analysis of the measured data unraveled the aquifer dynamic to be dominated by a groundwater level driven leakage process. The latter is superimposed by groundwater recharge in the rainy season and a daily groundwater abstraction. Based on these findings we developed a model for the aquifer, which allows to predict the duration of groundwater availability as a function of annual precipitation and daily water abstraction. The latter will be implemented in an agent-based land-use model, were groundwater abstraction is a function of population and livestock. The main objective is to model land use scenarios and global trends (climate, market trends and population development) through explicit imbedding of artificial and natural groundwater dynamics. The latter is expected to enable the evaluation of additional water abstraction for agricultural purposes without endangering water supply of the local population and their livestock.

  1. Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond

    CERN Document Server

    Acosta, V M; Faraon, A; Huang, Z; Fu, K -M C; Stacey, A; Simpson, D A; Tomljenovic-Hanic, S; Greentree, A D; Prawer, S; Beausoleil, R G

    2011-01-01

    We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located less than ~100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a range of 300 GHz. Using high-resolution emission spectroscopy, we observe electrical tuning of the strengths of both cycling and spin-altering transitions. Under resonant excitation, we apply dynamic feedback to stabilize the ZPL frequency, nearly eliminating spectral diffusion on timescales greater than ~50 ms.

  2. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  3. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model,...

  4. Establishing dynamic thresholds for potato nitrogen status diagnosis with the SPAD chlorophyll meter

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong-li; LIU Yan-chun; QIN Yong-lin; CHEN Yang; FAN Ming-shou

    2015-01-01

    The hand-held soil plant analysis development (SPAD) chlorophyl meter has proved to be a promising tool in evaluating the nitrogen status of the potato and guiding fertilization recommendations. In the process of N evaluation of potato plants and N recommendation, it is critical to establish the threshold SPAD value (SPAD reading), below which nitrogen supplement is required. And taking convenient using into account, the threshold needs to be dynamic throughout the potato growing season so that the users can test their potato plants and make fertilization decision at any growing time of potato. To complete this goal, ifeld experiments with different nitrogen supply levels were conducted in different sites in northern China from 2009 to 2011. The results showed that threshold SPAD values decrease as the growing season progresses for al cultivars and planting sites. By statistical analysis, the threshold regression models were established respectively as:y=−0.003x2−0.0507x+58.213 (y, threshold SPAD value;x, days after emergence) for the potato cultivar Kexin 1, and y=−0.003x2+0.017x+52.489 (y, threshold SPAD value;x, days after emergence) for the cultivar Shepody, from which, the threshold SPAD value at any day after emergence can be calculated.

  5. Removal of ammonium-nitrogen from groundwater using a fully passive permeable reactive barrier with oxygen-releasing compound and clinoptilolite.

    Science.gov (United States)

    Huang, Guoxin; Liu, Fei; Yang, Yingzhao; Deng, Wei; Li, Shengpin; Huang, Yuanying; Kong, Xiangke

    2015-05-01

    A novel fully passive permeable reactive barrier (PRB) with oxygen-releasing compound (ORC) and clinoptilolite was proposed for the removal of ammonium-nitrogen from groundwater. The PRB involves a combination of oxygen release, biological nitrification, ion exchange, and bioregeneration. A pilot-scale performance comparison experiment was carried out employing three parallel columns to assess the proposed PRB. The results showed that the PRB achieved nearly complete [Formula: see text] depletion (>99%). [Formula: see text] of 5.23-10.88 mg/L was removed, and [Formula: see text] of <1.93 mg/L and [Formula: see text] of 2.03-19.67 mg/L were generated. Ion exchange and biological nitrification both contributed to [Formula: see text] removal, and the latter played a dominant role under the condition of sufficient oxygen. Biological nitrification favored a delay in sorption saturation and a release of exchange sites. The ORC could sufficiently, efficiently supply oxygen for approximately 120 pore volumes. The clinoptilolite ensured a robust [Formula: see text] removal in case of temporary insufficient biological activities. No external alkalinity sources had to be supplied and no inhibition of aerobic metabolism occurred. The ceramicite had a negligible effect on the biomass growth. Based on the research findings, a full-scale continuous wall PRB was installed in Shenyang, China in 2012.

  6. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  7. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  8. Controllable quantum dynamics of inhomogeneous nitrogen-vacancy center ensembles coupled to superconducting resonators

    Science.gov (United States)

    Song, Wan-Lu; Yang, Wan-Li; Yin, Zhang-Qi; Chen, Chang-Yong; Feng, Mang

    2016-09-01

    We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters.

  9. Effects of sea-level rise on barrier island groundwater system dynamics: ecohydrological implications

    Science.gov (United States)

    Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.

    2014-01-01

    We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.

  10. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.; Landuyt, W.

    2015-12-01

    The bioenergy crops, Corn, Miscanthus and switchgrass have a potential to meet future energy demands in the US and mitigate climate change by partially replacing fossil fuels. However, the large-scale cultivation of these bioenergy crops may also impact climate change through changes in albedo, evapotranspiration (ET), and greenhouse gas (GHG) emissions. Whether these climate effects will mitigate or exacerbate climate change in the short and long terms is uncertain. The uncertainties come from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data- modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  11. An improved conceptual understanding of snowmelt and groundwater dynamics in the semi-arid Andes

    Science.gov (United States)

    Sproles, Eric; Hevia, Andres; Soulsby, Chris; Tetzlaff, Doerthe

    2016-04-01

    The contribution of snowmelt to groundwater has long been recognized as an important component of the hydrological cycle in semi-arid northern central Chile (29°-32°S). Despite its importance as a water resource, this transition to groundwater remains poorly understood. Climatically, the High Cordillera in northern central Chile receives approximately 10 times as much annual precipitation as the valley bottoms, falling almost exclusively as snow above 3500 m during the winter months. Geologically, the High Cordillera is characterized by steep topography and a highly dissected landscape underlain by bedrock. Groundwater stores in the mountain headwaters are assumed to be constrained to the valley bottoms. The current working hypothesis of watershed processes in the High Cordillera describes fluxes of spring melt moving through the hillslope via local flowpaths to valley aquifers that recharge streams throughout the headwater reaches. Previous studies in the region indicate Pre-Cordilleran aquifers, located in lower elevation dry ephemeral valleys, are hydrologically disconnected from the High Cordillera. These watersheds have no seasonal snowpack, and recharge occurs primarily during infrequent rain events. These isolated Pre-Cordilleran aquifers serve as an important water resource for rural residents and infrastructure. We present stable isotope, geochemical, and groundwater level data from the wet El Niño winter of 2015 that suggests a topographically disconnected aquifer in the Pre-Cordillera received considerable recharge from High Cordillera snowmelt. These novel findings are indicative of deep groundwater flow paths between the Pre- and High Cordillera during the wet winter and spring of 2015, and improve the conceptual understanding of hydrological processes in the region. Additionally, these results will directly benefit groundwater management in the Pre-Cordillera and better inform modeling efforts in the High Cordillera. While this study is limited to

  12. Dynamics of biomass composition and growth during recovery of nitrogen-starved Chromochloris zofingiensis

    NARCIS (Netherlands)

    Mulders, K.J.M.; Lamers, P.P.; Wijffels, R.H.; Martens, D.E.

    2015-01-01

    The effect of nitrogen replenishment on the kinetics of secondary carotenoids, triacylglycerol (TAG) and primary cell components was studied in nitrogen-starved Chromochloris zofingiensis (Chlorophyta), an oleaginous and carotenogenic microalga. Nitrogen resupplied after a period of starvation was i

  13. Dynamics of biomass composition and growth during recovery of nitrogen-starved Chromochloris zofingiensis

    NARCIS (Netherlands)

    Mulders, K.J.M.; Lamers, P.P.; Wijffels, R.H.; Martens, D.E.

    2015-01-01

    The effect of nitrogen replenishment on the kinetics of secondary carotenoids, triacylglycerol (TAG) and primary cell components was studied in nitrogen-starved Chromochloris zofingiensis (Chlorophyta), an oleaginous and carotenogenic microalga. Nitrogen resupplied after a period of starvation was

  14. Nitrogen dynamics model in zero water exchange, low salinity intensive ponds of white shrimp, Litopenaeus vannamei, at Colima, Mexico

    Directory of Open Access Journals (Sweden)

    Francisco A Castillo-Soriano

    2013-03-01

    Full Text Available We present a mathematical model based on differential equations describing the dynamics of nitrogen (NH4+, NO2-, NO3- and organic nitrogen in phytoplankton in ponds of white shrimp (Litopenaeus vannamei, with low salinity and zero turnovers, from planting to harvest. The model predicts the results of commercial production in three ponds. We show that this culture system, without replacement, retains the nitrogen and shrimp produced a lower feed conversion in comparison with systems with replacement. The model can be used to define strategies for improved performance.

  15. Degradation dynamics and bioavailability of land-based dissolved organic nitrogen in the Bohai Sea: Linking experiment with modeling.

    Science.gov (United States)

    Li, Keqiang; Ma, Yunpeng; Dai, Aiquan; Wang, Xiulin

    2017-02-24

    Dissolved organic nitrogen (DON) is the major nitrogen form in the Bohai Sea. Land-based DON is released into the nitrogen pool and degraded by planktonic microbiota in coastal ocean. In this study, we evaluated the degradation of land-based DON, particularly its dynamics and bioavailability, in coastal water by linking experiment and modeling. Results showed that the degradation rate constant of DON from sewage treatment plant was significantly faster than those of other land-based sources (Pmodel in the Bohai Sea. In the model, large amounts of DIN were supplied from DON of Liao River than the other rivers because of prolonged flushing time in Liaodong Bay.

  16. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs

    Energy Technology Data Exchange (ETDEWEB)

    May, J.D.; Burdette, S.B.; Gilliam, F.S. [Marshall Univ., Huntington, WV (United States). Dept. of Biological Sciences; Adams, M.B. [USDA Forest Service, Timber and Watershed Laboratory, Parsons, WV (United States)

    2005-05-01

    Atmospheric nitrogen deposition in deciduous forests can act as a fertilizer initially. However, at chronic elevated deposition levels, the nitrogen levels may exceed the demands of biota. This study examined the ecosystem response to nitrogen saturation. In particular, the effects of excessive nitrogen fertilization on foliar nutrient dynamics and stem growth was examined in 3 tree species in a mixed deciduous forest at Fernow Experimental Forest near Parsons, West Virginia. Two watersheds were used. The first acted as a control which did not receive any treatments, and the second received 3 aerial applications of ammonium sulfate annually since 1989. Foliage of red maple, tulip poplar and black cherry were sampled in 1992, 1997 and 2000. Stem diameter growth, foliar nitrogen concentrations, nitrogen-phosphorous ratios and nutrient resorption were studied. In the earliest study, foliar nitrogen concentration of all 3 species was 11 per cent higher in the fertilized watershed compared to the control watershed. By 2000, that was no longer the case. Nitrogen concentration and nitrogen-phosphorous ratios were higher in the control watershed. Nitrogen resorption efficiencies in red maple and black cherry were 30 per cent lower in the treated watershed. Stem diameter growth in the treated watershed was 55 per cent lower in the red maple and 30 per cent lower in the tulip poplar and black cherry compared to that of the control watershed. The results suggest that the fertilized watershed had slower growth in red maple and to a lesser extent, black cherry and tulip poplar. It was concluded that increasing nitrogen saturation can lead to changes in species composition. 32 refs., 1 tab., 5 figs.

  17. Long-term Carbon and Nitrogen Dynamics at SPRUCE Revealed through Stable Isotopes in Peat Profiles

    Science.gov (United States)

    Hobbie, E. A.

    2015-12-01

    Carbon and nitrogen turnover in peatlands is of considerable interest because peat is a large reservoir of stored carbon that could emit greenhouse gases in response to climate change. Because peat cores preserve a long-term record of system carbon and nitrogen dynamics, it is possible to use stable isotopes as markers of changes in carbon (C) and nitrogen (N) dynamics over time. Here, we used δ15N and δ13C patterns throughout the depth profile of peat cores to understand controls over C-N cycling in the Marcell S1 forested bog in northern Minnesota. In multiple regression analyses, δ15N and δ13C correlated strongly with depth, plot location, %C, %N, and each other. Negative correlation of δ15N with %N presumably reflected removal of 15N-depleted N via denitrification, diffusion, or plant N transfer via mycorrhizal fungi. A step increase in the depth coefficient for δ15N of ~3‰ from -25 cm to -35 cm suggested that the N removal process primarily operates at a discrete depth corresponding to the juncture between aerobic and anaerobic layers defined by the water table. Higher δ15N and lower δ13C in plots closer to uplands may reflect distinct hydrology and accompanying shifts in C and N dynamics in the lagg area fringing the bog. The Suess effect (declining δ13CO2 since the Industrial Revoluation) and aerobic decomposition lowered δ13C in recent surficial samples. Small increases in δ13C at -112 cm (4300 calibrated years BP) and -85 cm (3800 calibrated years BP) may reflect C dynamics during a suspected transitional fen stage (based on paleoecology at a nearby bog), when reduced methanotrophy retained less 13C-depleted carbon derived from methane than in later periods. The C/N decreased until about -85 cm and thereafter remained steady, suggesting that the active zone of aerobic processing during drought may extend to this depth. The inflection point in calculated carbon accumulation rates at this depth supports this conclusion.

  18. Global simulation of interactions between groundwater and terrestrial ecosystems

    Science.gov (United States)

    Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.

    2016-12-01

    In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to

  19. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a

  20. Stream-subsurface nutrient dynamics in a groundwater-fed stream

    Science.gov (United States)

    Rezanezhad, F.; Niederkorn, A.; Parsons, C. T.; Van Cappellen, P.

    2015-12-01

    The stream-riparian-aquifer interface plays a major role in the regional flow of nutrients and contaminants due to a strong physical-chemical gradient that promotes the transformation, retention, elimination or release of biogenic elements. To better understand the effect of the near-stream zones on stream biogeochemistry, we conducted a field study on a groundwater-fed stream located in the rare Charitable Research Reserve, Cambridge, Ontario, Canada. This study focused on monitoring the spatial and temporal distributions of nutrient elements within the riparian and hyporheic zones of the stream. Several piezometer nests and a series of passive (diffusion) water samplers, known as peepers, were installed along longitudinal and lateral transects centered on the stream to obtain data on the groundwater chemistry. Groundwater upwelling along the stream resulted in distinctly different groundwater types and associated nitrate concentrations between small distances in the riparian zone (water, concentrations of nutrients (NO3-, NH4+, SO42- and carbon) did not significantly change before the downstream outlet. Although reduction of nitrate and sulphate were found in the riparian zone of the stream, this did not significantly influence the chemistry of the adjacent stream water. Also, minimal retention in the hyporheic zones limited reduction of reactive compounds (NO3- and SO42-) within the stream channel. The results showed that the dissolved organic carbon (DOC) and residence time of water in the hyporheic zone and in surface water limited denitrification.

  1. Groundwater dynamics and water budget analysis at a wetland-dominated forested floodplain

    Science.gov (United States)

    Foster, S.; Callahan, T. J.; Senn, L.; Shelley, D.

    2013-12-01

    This study investigated the preliminary relationships between groundwater behavior, vegetation communities, and soil characteristics in a mature, protected forested floodplain at Congaree National Park, South Carolina. Time series analysis of groundwater level data were collected hourly at ten different piezometers from 2009 to 2013. Piezometers were screened 4-7 m deep in the surficial aquifer and arrayed from the floodplain bluff along a 3-km, valley-perpendicular transect to Cedar Creek, a local tributary of the Congaree River. Eight of the ten sites were in an unconfined portion of the floodplain aquifer, and the other two sites closer to Cedar Creek were locally confined due to a 1.5 - 3-m thick clay layer above the piezometer screen. Time series analysis, including depth below ground surface, response to storm events, and diurnal evapotranspiration (ET) signals was used to functionally group piezometer sites with similar characteristics. Lithologic logs collected during piezometer installation and forest community structure at each site were inspected to look for relationships to explain groundwater behavior. A separate analysis of ET signals helped assess potential feedbacks between vegetation and groundwater in this wetland-dominated setting. This project stemmed from hydrology class trips to Congaree National Park sponsored by the park's education and outreach program. Students learned field methods and data collection, management, and analysis techniques to reinforce hydrology concepts and principles.

  2. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a grou

  3. Modeling land-based nitrogen loads from groundwater-dominated agricultural watersheds to estuaries to inform nutrient reduction planning

    Science.gov (United States)

    Jiang, Yefang; Nishimura, Peter; van den Heuvel, Michael R.; MacQuarrie, Kerry T. B.; Crane, Cindy S.; Xing, Zisheng; Raymond, Bruce G.; Thompson, Barry L.

    2015-10-01

    Excessive nitrate loads from intensive potato production have been linked to the reoccurring anoxic events in many estuaries in Prince Edward Island (PEI), Canada. Community-led watershed-based nutrient reduction planning has been promoted as a strategy for water quality restoration and initial nitrate load criteria have been proposed for the impacted estuaries. An integrated modeling approach was developed to predict base flow nitrate loads to inform the planning activities in the groundwater-dominated agricultural watersheds. Nitrate load is calculated as base flow multiplied by the average of nitrate concentration at the receiving watershed outlet. The average of nitrate concentration is estimated as the integration of nitrate leaching concentration over the watershed area minus a nitrate loss coefficient that accounts for long-term nitrate storage in the aquifer and losses from the recharge to the discharge zones. Nitrate leaching concentrations from potato rotation systems were estimated with a LEACHN model and the land use areas were determined from satellite image data (2006-2009) using GIS. The simulated average nitrate concentrations are compared with the arithmetic average of nitrate concentration measurements in each of the 27 watersheds for model calibration and in 138 watersheds for model verifications during 2006-2009. Sensitivity of the model to the variations of land use mapping errors, nitrate leaching concentrations from key sources, and nitrate loss coefficient was tested. The calibration and verification statistics and sensitivity analysis show that the model can provide accurate nitrate concentration predictions for watersheds with drainage areas more than 5 km2 and nitrate concentration over 2 mg N L-1, while the model resolution for watersheds with drainage areas below 5 km2 and/or nitrate concentration below 2 mg N L-1 may not be sufficient for nitrate load management purposes. Comparisons of normalized daily stream discharges among the

  4. Dynamic analysis of groundwater in drought-irrigation area of Zhaozhou County%肇州旱灌区地下水动态分析

    Institute of Scientific and Technical Information of China (English)

    高宇; 齐鹏; 戴长雷; 李芳花

    2016-01-01

    肇州县是黑龙江西部重要的旱田灌区,农业灌溉主要依赖于地下水,地下水动态分析是灌区地下水承载力评价的基础和前提。对26眼长期观测井及85眼统测井数据进行了时空动态分析。通过分析指出,肇州旱灌区地下水动态类型以人工开采型为主;以6眼典型监测井为例,在作为平水年的2012年,多数井6月地下水水位达到年内低值,11月地下水水位达到年内高值,次年规律相同,灌溉取水对地下水影响强烈;在1980—2012年,区内地下水水位呈整体下降趋势,平均降幅为0.18 m/a ,逐年增加的地下水开采量直接导致了的地下水水位下降;当前区域地下水水流向大致是东北至西南向。%Zhaozhou County is an important drought-irrigation area in the west of Heilongjiang . Agricultural irrigation depends on the groundwater .In order to evaluate and predict the groundwater resources in drought-irrigation area of Zhaozhou , the dynamic analysis of groundwater is needed .In this paper , Zhaozhou County as the research area, analyses the data of 26 long-term observation wells and 85 wells.In 2012, for the six typical wells, the value of groundwater level is lowest in June , groundwater level reached the highest value in November , and it has the same regular pattern in next year .The influence of irrigation water on the groundwater is strong .In Zhaozhou , the groundwater dynamic type is mainly the artificial exploitation type , and some areas are the radial flow type .From 1980 to 2012 , the groundwater level in Zhaozhou County was decreasing year by year .The range of groundwater change is 0.18 m/a.The decisive factor of the decline of the groundwater level is groundwater exploitation increasing year by year .The groundwater flow direction is roughly northeast to southwest .

  5. Modelling nitrogen dynamics and distributions in the River Tweed, Scotland: an application of the INCA model

    Directory of Open Access Journals (Sweden)

    H. P. Jarvie

    2002-01-01

    Full Text Available The INCA (Integrated Nitrogen in Catchments model was applied to the River Tweed in the Scottish Borders, a large-scale (4400km2, spatially heterogeneous catchment, draining a wide range of agricultural land-use types, and which contributes approximately 20% of UK river flows to the North Sea. The model was calibrated for the first four years' data record (1994 to 1997 and tested over the following three years (1998 to 2000. The model calibration and testing periods incorporated a high degree of variability in climatic conditions and river flows within the Tweed catchment. The ability of the INCA model to reproduce broad-scale spatial patterns and seasonal dynamics in river flows and nitrate concentrations suggests that the processes controlling first order variability in river water nitrate concentrations have been represented successfully within the model. The tendency of the model to overestimate summer/early autumn baseflow nitrate concentrations during dry years may be linked to the operation of aquatic plant uptake effects. It is, therefore, suggested that consideration be given to incorporating a spatially and temporally variable in-stream plant uptake term for the application of INCA to lowland eutrophic rivers. Scenarios to examine possible impacts of environmental change on nitrate concentrations on the Tweed are examined. These include the effects of (i implementing different recommendations for fertiliser use and land use change under the Nitrate Sensitive Areas (NSA Scheme and the Scottish Code of Good Agricultural Practice, (ii worst case scenario changes linked to a dramatic reduction in livestock numbers as a result of a crisis in UK livestock farming and (iii changes in atmospheric nitrogen deposition. Keywords: Nitrate, nitrogen, modelling, Tweed, INCA

  6. Resonance of graphene nanoribbons doped with nitrogen and boron: a molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Ye Wei

    2014-05-01

    Full Text Available Based on its enticing properties, graphene has been envisioned with applications in the area of electronics, photonics, sensors, bio-applications and others. To facilitate various applications, doping has been frequently used to manipulate the properties of graphene. Despite a number of studies conducted on doped graphene regarding its electrical and chemical properties, the impact of doping on the mechanical properties of graphene has been rarely discussed. A systematic study of the vibrational properties of graphene doped with nitrogen and boron is performed by means of a molecular dynamics simulation. The influence from different density or species of dopants has been assessed. It is found that the impacts on the quality factor, Q, resulting from different densities of dopants vary greatly, while the influence on the resonance frequency is insignificant. The reduction of the resonance frequency caused by doping with boron only is larger than the reduction caused by doping with both boron and nitrogen. This study gives a fundamental understanding of the resonance of graphene with different dopants, which may benefit their application as resonators.

  7. Nitrogen dynamics in soils cultivated with maize and fertilized with pig slurry

    Directory of Open Access Journals (Sweden)

    Maria Emília Borges Alves

    2012-04-01

    Full Text Available The proper disposal of pig manure is of great importance because, when mishandled, it can contaminate water resources. This study aimed to evaluate the nitrogen dynamics in a Cerrado Oxisol and its absorption, over time, by a maize crop managed with pig slurry associated with mineral fertilization (N P K. The study was conducted at a private farm, in the region of Sete Lagoas, Minas Gerais, Brazil. The maize crop was able to recover 62% of the mineral nitrogen that entered the soil-plant system, while 9% leached as nitrate and, to a lesser amount, as ammonium. The maximum average content of nitrate and ammonium of 92 kg ha-1 and 43 kg ha-1, respectively, was observed in the 0 to 0.3 m soil layer during the early crop development stage. A minimum content of 5.8 kg ha-1 of nitrate and 9.0 kg ha-1 of ammonium, respectively, was measured at the end of the cycle. In addition, the nitrate content at that soil layer, at the end of the maize cycle, remained below the values measured at the native Cerrado, indicating that the agricultural use of the land poses no additional risk to the nitrate accumulation and leaching into the soil profile.

  8. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  9. Near-infrared induced charge dynamics of the nitrogen vacancy center in diamond

    Science.gov (United States)

    Hopper, David A.; Grote, Richard R.; Exarhos, Annemarie L.; Bassett, Lee C.

    The nitrogen-vacancy (NV) center in diamond is a key functional element in emerging quantum technologies such as nodes in quantum information processing and nanoscale sensors for condensed matter physics and biology. Recent efforts to optimize the NV's functionality lead to the discovery of photoinduced charge-state switching between the negative (NV-) and neutral (NV0) states which holds great potential to enhance the fidelity of spin readout. While the charge state dynamics under visible illumination have been studied, the effect of infrared light remains unexplored. Here, we use a tunable, pulsed infrared source to illuminate NV centers under various spin and optical states. Precise time-domain control of visible, microwave, and infrared pulses together with single-shot charge readout allows for the direct probing of spin and charge dynamics induced by the infrared light. This new understanding is relevant for the development of advanced protocols to leverage the NV's complete spin, charge, and optical dynamics for quantum control and sensing applications.

  10. NUMERICAL SIMULATION OF GROUNDWATER DYNAMICS FOR SONGHUAJIANG RIVER VALLEY IN CHINA

    Institute of Scientific and Technical Information of China (English)

    ADIL Elkrail; SHU Long-cang; HAO Zhen-chun

    2004-01-01

    The study area was designed and constructed, based on the simplification of a conceptual model, to develop a three-dimensional groundwater flow model for simulation of two-layers system. Finite difference groundwater flow model was constructed for the Central Songhuajiang River alluvial plain in Northeast China, with the coverage of 786.6km2.The grid networks with a spacing of 474.4m by 509.5m were used to cover the model area. The trial-and-error technique was used to calibrate the model. The sensitivity of the simulations to the model parameters was studied and the most sensitive parameters that controlling the residual heads distribution in the Songhuajiang River valley were defined.

  11. Spin Dynamics in Graphene and Graphene like Nanocarbon Doped with Nitrogen the ESR Analysis

    CERN Document Server

    Alegaonkar, Ashwini P; Pardeshi, Satish K; Alegaonkar, Prashant S

    2013-01-01

    Nano engineered spin degree of freedom in carbon system may offer desired exchange coupling with optimum spin orbit interaction which is essential, to construct solid state qubits, for fault tolerant quantum computation. The purpose of this communication is to analyze spin dynamics of, basically, four types of systems, (i) Graphene (system with inversion symmetry), (ii) Graphene like nanocarbons (GNCs, broken inversion symmetry and heterostructure, sp2 and sp3, environment), and (iii) their nitrogen doped derivatives. The spin transport data was obtained using the electron spin resonance spectroscopy (ESR) technique, carried out over 123 to 473K temperature range. Analysis of shape, linewidths of dispersion derivatives,, and g factor anisotropy has been carried out. Spin parameters such as, spin spin relaxation time, spin lattice relaxation time, spin flip parameter,spin relaxation rate,spin, momentum relaxation rate,pseudo chemical potential, density of states, effective magnetic moment, spin concentration, ...

  12. Modelling Nitrogen and Phosphorus Dynamics in a Mesocosm Pelagic Ecosystem in Laizhou Bay in China

    Institute of Scientific and Technical Information of China (English)

    LI Keqiang; WANG Xiulin; HAN Xiurong; SHI Xiaoyong; CHEN Hu

    2009-01-01

    A model of nitrogen and phosphorus dynamics in mesocosm experiments was established on the basis of a summary and synthesis of the existing models. The established model comprised seven state variables (DIN, PO4-P, DON, DOE phyto-plankton, zooplankton and detritus) and five modules-phytoplankton, zooplankton, dissolved inorganic nutrients, dissolved or-ganic nutrients and detritus. Comparison with the in situ experimental data in Laizhou Bay at the end of August 2002 showed that this model could properly simulate the variations of DIN, PO4-P, and phytoplankton biomass in a mesocosm pelagic ecosystem. It was found that not only the model structure but also the parameters adopted were fit for simulation. The sensitivity of the main state variables to the parameter change was assessed by sensitivity analysis. All these results are useful for studying the control mechanism of biogeochemical cycling of nutrients in Laizhou Bay and other Chinese coastal waters.

  13. A nitrogen and phosphorus dynamic model of mesocosm pelagic ecosystem in the Jiaozhou Bay in China

    Institute of Scientific and Technical Information of China (English)

    LI Keqiang; WANG Xiulin; LIANG Shengkang; SHI Xiaoyong; ZHU Chenjian; CHEN Hu

    2008-01-01

    A nitrogen and phosphorus dynamic model of mesocosm pelagic ecosystem was established according to the summary and synthesis of the models available, in which seven state variables (DIN, PO4-P, DON, DOP, phytoplankton, zooplankton and detritus)were included. Logically it had five modules-phytoplankton, zooplankton, dissolved inorganic nutrients, dissolved organic nutrients and detritus. The results showed that this model could simulate the variations of DIN, PO4-P, DON, DOP, POC and phytoplankton biomass in pelagic ecosystem in mesocosm properly, based on the site experiment data in the Jiaozhou Bay in the autumn of 1999 and the summer of 2000. Not only the logical structure but also the model parameters were feasible, and about 20 parameters were made to fit for the Jiaozhou Bay during the simulation. All of these are necessary to study the control mechanism of nutrients biogeochemical cycling in the Jiaozhou Bay and other China' s coastal waters.

  14. Carbon, nitrogen and heavy metal dynamics in long-term wastewater irrigated Mexican soils.

    Science.gov (United States)

    Herre, A; Siebe, C; Kaupenjohann, M

    2000-01-01

    In column experiments of Mexican wastewater irrigated soils the effects of changing water quality (untreated = UT, primary = PT and tertiary treated = TT wastewater) on carbon, nitrogen and heavy metal dynamics were investigated. In the column effluents the nitrate concentrations varied between 141-683 mg l-1. The total amount of leached TOC decreased in the order UT > PT > TT. Outflow concentrations of Pb ranged from 31.6-166.5 micrograms l-1 and of Cu from 31.2-146.8 micrograms l-1. Irrigation water quality influenced the Pb but not the Cu efflux. Cu seemed to be co-transported with TOC by preferential flow whereas there was no correlation of Pb and TOC concentrations in the effluents. The possibility of Pb transport through preferential flow paths is discussed.

  15. Interconnection of tectonic stresses in the Earth's crust and dynamics of the groundwater basin functioning

    Science.gov (United States)

    Koneshov, Vycheslav; Trifonova, Tatiana; Trifonov, Dmitriy; Arakelian, Sergey

    2016-04-01

    1. Possible influence of tectonic stresses on the occurrence of catastrophic floods by the mechanism of modification of the 3D-cracknet of the rock formations and the transit of the groundwater in this natural transport system in the conditions of functioning of the river catchment basin is discussed. Several floods (not freshets) took place in 2013-2014, which probably could be associated with corresponding seismic processes in the Earth's crust, are considered. 2. A river basin formation in the mountain slope can be considered as a self-organizing staged process of its evolution passing through several non-equilibrium but steady-state conditions. The controlling parameter is the process of the crack spreading out. Crack development up the slope but downward substance transit, stipulates a feedback within the unified 3D-river basin system. 3. We have briefly described and rendered the mechanism of the influence of seismic activity on the occurrence of concrete floods with the use of combined maps of groundwater resources and the boundaries of lithospheric plates on the territory and the revealed regularities in seismic waves propagation and interaction with groundwater. 4. In the practical aspect a proposed hypothesis can be useful during the definition of potentially dangerous areas for catastrophic water events taking into account the interference of the state of the underground hydrosphere and the tectonic structure of the rheological section of bowels of the earth on the concrete territories under some adjustable (seismic) conditions.

  16. Dynamic Attribution of Global Water Demand to Surface Water and Groundwater Resources: Effects of Abstractions and Return Flows on River Discharge

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Wada, Yoshi; Bierkens, Marc

    2013-04-01

    As human water demand is increasing worldwide, groundwater is abstracted at rates that exceed groundwater recharge in many areas, resulting in depletion of existing groundwater stocks. Most studies, that focus on human water consumption and water stress indicate a gap between water demand and availability. However, between studies very different assumptions are made on how water abstraction is divided between surface water, groundwater, and other resources. Moreover, simplified assumptions are used of the interactions between groundwater and surface water. Here, we simulate at the global scale, the dynamic attribution of total water demand to surface water and groundwater resources, based on actual water availability and accounting for return flows and surface water- groundwater interactions. The global hydrological model PCR-GLOBWB is used to simulate water storages, abstractions, and return flows for the model period 1960-2010, with a daily time step at 0.5° x 0.5° spatial resolution. Total water demand is defined as requirements for irrigation, industry, and domestic use. Water abstractions are variably taken from surface water and groundwater resources depending on availability of both resources. Return flows of non-consumed abstracted water contribute to a single source; those of irrigation recharging groundwater, those of industry and domestic use discharging to surface waters. Groundwater abstractions are taken from renewable groundwater, or when exceeding recharge from an alternative unlimited resource. This resource consists of non-renewable groundwater, or non-local water, the former being an estimate of groundwater depletion. Results show that worldwide the effect of water abstractions is evident, especially on the magnitude and frequency of low flows when the contribution of groundwater through baseflow is substantial. River regimes are minimally affected by abstractions in industrial regions because of the high return flows. In irrigated regions the

  17. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils.

    Directory of Open Access Journals (Sweden)

    Michele C Pereira E Silva

    Full Text Available BACKGROUND: Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. METHODOLOGY/PRINCIPAL FINDINGS: In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K, indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. CONCLUSIONS: Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.

  18. Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress

    Science.gov (United States)

    Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur

    2017-04-01

    Climate change is projected to lead to an increased frequency and duration of severe drought events in future. Already within the last twenty years, however, drought stress related forest mortality has been increasing across the globe. Tree and forest die off events have multiple adverse effects on ecosystem functioning and might convert previous carbon sinks to act as carbon sources instead and can thus intensify the effect of climate change and global warming. Current predictions of forest's functioning under drought and thus forest mortality under future climatic conditions are constrained by a still incomplete picture of the trees' physiological reactions that allows some trees to survive drought periods while others succumb. Concerning the effects of drought on the carbon balance and on tree hydraulics our picture is getting more complete, but still interactions between abiotic factors and pest and diseases as well as the interaction between carbon and nutrient balances as factors affecting drought induced mortality are not well understood. Reduced carbon allocation from shoots to roots might cause a lack of energy for root nutrient uptake and to a shortage of carbon skeletons for nitrogen assimilation and thus to an impaired nutrient status of trees. To tackle these points, we have performed a drought stress experiment with six different plant species, 3 broad leaf (maple, beech and oak) and 3 deciduous (pine, fir and spruce). Potted two-year-old seedlings were kept inside a greenhouse for 5 months and 3 levels of drought stress (no stress (control), intermediate and intensive drought stress) were applied by controlling water supply. Gas exchange measurements were performed periodically to monitor photosynthesis, transpiration, stomatal conductance. At the pinnacle of drought stress, we applied isotopic pulse labelling: On the one hand we exposed trees to 13CO2 to investigate on carbon dynamics and the allocation of new assimilates within the plant. Moreover

  19. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Jansen, J.l.C.; Aspegren, H.

    2002-01-01

    The population dynamics of activated sludge in a pilot plant with two activated sludge systems, both designed for enhanced biological phosphorus removal (EBPR), but one of them with (BNP) and the other without (BP) nitrogen removal, was monitored during a period of 2.5 years. The influent water...

  20. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation

    Science.gov (United States)

    Ying Ouyang; Jiaen Zhang; Theodor D. Leininger; Brent R. Frey

    2015-01-01

    Although short-rotation woody crop biomass production technology has demonstrated a promising potential to supply feedstocks for bioenergy production, the water and nutrient processes in the woody crop planation ecosystem are poorly understood. In this study, a computer model was developed to estimate the dynamics of water and nitrogen (N) species (e.g., NH4...

  1. Dynamic Model Improves Agronomic and Environmental Outcomes for Maize Nitrogen Management over Static Approach.

    Science.gov (United States)

    Sela, Shai; van Es, Harold M; Moebius-Clune, Bianca N; Marjerison, Rebecca; Moebius-Clune, Daniel; Schindelbeck, Robert; Severson, Keith; Young, Eric

    2017-03-01

    Large temporal and spatial variability in soil nitrogen (N) availability leads many farmers across the United States to over-apply N fertilizers in maize ( L.) production environments, often resulting in large environmental N losses. Static Stanford-type N recommendation tools are typically promoted in the United States, but new dynamic model-based decision tools allow for highly adaptive N recommendations that account for specific production environments and conditions. This study compares the Corn N Calculator (CNC), a static N recommendation tool for New York, to Adapt-N, a dynamic simulation tool that combines soil, crop, and management information with real-time weather data to estimate optimum N application rates for maize. The efficiency of the two tools in predicting the Economically Optimum N Rate (EONR) is compared using field data from 14 multiple N-rate trials conducted in New York during the years 2011 through 2015. The CNC tool was used with both realistic grower-estimated potential yields and those extracted from the CNC default database, which were found to be unrealistically low when compared with field data. By accounting for weather and site-specific conditions, the Adapt-N tool was found to increase the farmer profits and significantly improve the prediction of the EONR (RMSE = 34 kg ha). Furthermore, using a dynamic instead of a static approach led to reduced N application rates, which in turn resulted in substantially lower simulated environmental N losses. This study shows that better N management through a dynamic decision tool such as Adapt-N can help reduce environmental impacts while sustaining farm economic viability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Groundwater dynamics in wetland soils control the production and transfer mechanisms of dissolved reactive phosphorus in an agricultural landscape

    Science.gov (United States)

    Dupas, Rémi; Gu, Sen; Gruau, Gérard; Gascuel-Odoux, Chantal

    2015-04-01

    Because of its high sorption affinity on soils solid phase, mitigation options to reduce diffuse P transfer usually focus on trapping particulate P forms delivered via surface flowpaths. Therefore, vegetated buffer zones placed between croplands and watercourses have been promoted worldwide, sometimes in wetland areas. To investigate the risk of such P trapping riparian wetlands (RWs) releasing dissolved P to rivers, we monitored molybdate reactive P (MRP) in the free soil solution of two RWs in an intensively farmed catchment. Two main mechanisms causing MRP release were identified in light of the geochemical and hydrological conditions in the RWs, controlled by groundwater dynamics. First, soil rewetting after the dry summer was associated with the presence of a pool of mobile P, limited in size. Its mobilization started under conditions of water saturation caused by groundwater uprise in RW organo-mineral soil horizons. Second, the establishment of anoxic conditions in the end of the winter caused reductive solubilization of Fe oxide-hydroxide, along with release of P. Comparison between sites revealed that the first MRP release occurred only in a RW with P enriched soils, whereas the second was recorded even in a RW with a low soil P status. Seasonal variations in MRP concentrations in the stream were synchronized with those in RW soils. Hence, enriched and/or periodically anoxic RWs can act as a key component of the P transfer continuum in agricultural landscapes by converting particulate P from croplands into MRP released to rivers.

  3. Digging navigable waterways through lagoon tidal flats: which short and long-term impacts on groundwater dynamics and quality?

    Science.gov (United States)

    Teatini, Pietro; Isotton, Giovanni; Nardean, Stefano; Ferronato, Massimiliano; Tosi, Luigi; Da Lio, Cristina; Zaggia, Luca; Bellafiore, Debora; Zecchin, Massimo; Baradello, Luca; Corami, Fabiana; Libralato, Giovanni; Morabito, Elisa; Broglia, Riccardo; Zaghi, Stefano

    2017-04-01

    Coastal lagoons are highly valued ephemeral habitats that have experienced in many cases the pressure of human activities since the development of urbanisation and economic activities within or around their boundaries. One typical intervention is dredging of canals to increase the exchange of water with the sea or for navigation purposes. In order to divert the route of large cruise liners from the historic center of Venice, Italy, the Venice Port Authority has recently proposed a project for the dredging of a new 3-km long and 10-m deep navigation canal (called Marghera-Venice Canal, MVC, in the sequel) through the shallows of the Venice Lagoon. The MVC will connect the passenger terminal located in the southwestern part of the historic center to a main channel that reaches the industrial area on the western lagoon margin. Can the new MVC facilitate saltwater intrusion below the lagoon bottom? Can the release into the lagoon of the chemicals detected in the groundwater around the industrial site be favoured by the MVC excavation? Can the depression waves generated by the ship transit (known as ship-wakes) along the MVC affect the flow and contaminant exchange between the subsurface and surficial systems? A response to these questions has been provided by the use of uncoupled and coupled density-dependent groundwater flow and transport simulators. The hydrogeological modelling has been supported by an in-depth characterization of the Venice lagoon subsurface along the MVC. Geophysical surveys, laboratory analyses on groundwater and sediment samples, in-situ measurements through piezometers and pressure sensors, and the outcome of 3D hydrodynamic and computational fluid dynamic (CFD) models have been used to set-up and calibrate the subsurface multi-model approach. The modelling results can be summarized as follows: i) the MVC has a negligible effect in relation to the propagation of the tidal regime into the subsoil; ii) the depression caused by the ship transit

  4. Spatial Dynamic Optimization of Groundwater Use with Ecological Standards for Instream Flow

    Science.gov (United States)

    Brozovic, N.; Han, J.; Speir, C.

    2011-12-01

    Instream flow requirements for protected species in arid and semi-arid regions have created the need to reduce groundwater use adjacent to streams. We present an integrated hydrologic-economic model that optimizes agricultural groundwater use next to streams with flow standards. Policies to meet instream flow standards should aim to minimize the welfare losses to irrigated agriculture due to reduced pumping. Previous economic studies have proposed spatially targeted water allocations between groundwater irrigators and instream demands. However, these studies focused on meeting aggregate instream flow goals on a seasonal or yearly basis rather than meeting them on a continuous basis. Temporally aggregated goals ignore important intra-seasonal hydrologic effects and may not provide sufficient habitat quality for species of concern. We present an optimization model that solves for groundwater pumping allocations across space in a stream-aquifer system with instream flow goals that must be met on a daily basis. We combine an analytical model of stream depletion with a farm profit maximization model that includes cumulative crop yield damages from water stress. The objective is the minimization of agricultural losses from reduced groundwater use while minimum instream flow requirements for ecological needs are met on a daily basis. As a case study, we apply our model to the Scott River Basin in northern California. This is a region where stream depletion resulting from extensive irrigation has degraded habitat for Coho salmon, a species protected under the U.S. Endangered Species Act. Our results indicate the importance of considering the lag between the time at which pumping occurs and the time at which stream depletion related to that pumping occurs. In general, we find that wells located farther from the stream should be allocated more water in most hydrologic scenarios. However, we also find that the spatial and temporal distribution of optimal groundwater pumping

  5. Soil carbon dynamics: the effects of nitrogen input, intake demand and off-take by animals.

    Science.gov (United States)

    Parsons, A J; Thornley, J H M; Newton, P C D; Rasmussen, S; Rowarth, J S

    2013-11-01

    Elucidation of the drivers of soil carbon (C) change is required to enable decisions to be made on how to achieve soil C sequestration. Interactions between different components in the ecosystem in combination with feedback mechanisms mean that identifying drivers through conventional experimental approaches or by retro-fitting models to data are unlikely to result in the insights needed for the future. This paper explains soil C dynamics by using a process-based model. Drivers considered in the model include nitrogen (N) fertiliser inputs, intake demand, and off-take of animal products. The effect of the grazing animal in uncoupling the C and N cycles is explained, plus the implications of the farming system ('drystock' versus milk). The model enables depiction of the dynamic equilibrium achieved with time when a proposed change in the drivers is sustained. The results show that soil C loss under lactating cows is a result of N, rather than C, being removed in milk. Counter-intuitively, at the same intake demand, N loss under 'milk' is less than under 'dry-stock', as is C loss in animal respiration. Possibilities for changing the longevity of C in the soil are discussed, and the compromise between food production, N loss and C sequestration is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.

    Science.gov (United States)

    Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar

    2016-02-01

    Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.

  7. Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian-hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein

    2011-01-01

    Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...

  8. Groundwater dynamics in the Amazon basin from remotely sensed observations and hydrological models

    Science.gov (United States)

    Frappart, Frédéric; Papa, Fabrice; Tomasella, Javier; Ramillien, Guillaume; Güntner, Andreas; Emilio, Thaise; Schietti, Juliana; da Silva Carvalho, João

    2014-05-01

    Groundwater plays a key role in the terrestrial hydrological cycle and the water balance on the continents. It accounts for more than 30% (i.e., 8,000,000 km3 to 10,000,000 km3) of global fresh-water resources, and is also the major resource of water supply for 40% of the world's population and 50% of the world's food production. However, groundwater storage and its variations are still poorly known at global scale due to the limited extent of current monitoring networks. Most of the studies on geohydrology in the Amazon basin were carried out at local scale except a recent study that pointed out evidences on regional scale groundwater flows using a geothermal method. Gravimetry from space offers the unique opportunity to monitor water resources at basin to continental scales. The Gravity Recovery And Climate Experiment (GRACE) mission, launched in 2002, detects tiny changes in the Earth's gravity field which can be related to spatio-temporal variations of TWS at monthly or sub-monthly time-scales. Variations in groundwater storage (GW) can be separated from the TWS anomalies measured by GRACE using external information on the other hydrological reservoirs such as in situ observations, model outputs, or both. Very few studies have been undertaken yet in large river basins characterized by extensive wetlands and floodplains, due to the lack of reliable and timely information about the extent, spatial distribution, as well as the amount of water stored in wetlands and floods and their temporal variations. Using multi-satellite observations for surface water storage (SW) and hydrological outputs for soil moisture (SM), variations in GW were estimated in the Negro basin, the second largest tributary of the Amazon in terms of discharge. Here, the same approach was applied in the whole Amazon basin, allowing to estimate the contribution of each hydrological reservoir to TWS, to monitor its time variations, and to map the annual changes in the aquifers over 2003

  9. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution.

    Science.gov (United States)

    Hosono, Takahiro; Tokunaga, Takahiro; Kagabu, Makoto; Nakata, Haruhiko; Orishikida, Takanori; Lin, In-Tian; Shimada, Jun

    2013-05-15

    During early 2000, a new analytical procedure for nitrate isotopic measurement, termed the "denitrifier method", was established. With the development of the nitrate isotope tracer method, much research has been reported detailing sources of groundwater nitrate and denitrification mechanisms. However, a shortcoming of these tracer studies has been indicated owing to some overlapping of isotope compositions among different source materials and denitrification trends. In order to reduce these uncertainties, we examined nitrate isotope ratios within a frame of "regional groundwater flow dynamics" to eliminate unnecessary uncertainties in elucidating nitrate sources and behaviors. A total of 361 samples were collected from the Kumamoto area: the circulated groundwater system with a scale of 10(3) km(2) in southern Japan. Subsequently, the nitrate pollution was examined within the above-mentioned framework. As a result, a reasonable identification of the sources and attenuation behaviors (both denitrification and dilution) of groundwater nitrate pollution was obtained over the study area. This study demonstrates that the use of nitrate isotope tracers efficiently improves with a comprehensive understanding of groundwater flow dynamics. The approach emphasized in this study is important and should be applicable in other areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Groundwater dynamic, temperature and salinity response to the tide in Patagonian marshes: Observations on a coastal wetland in San José Gulf, Argentina

    Science.gov (United States)

    Alvarez, María del Pilar; Carol, Eleonora; Hernández, Mario A.; Bouza, Pablo J.

    2015-10-01

    The processes regulating the relationship between tidal flows and shallow groundwater dynamics, temperature and salinity in a coastal wetland in an arid climate are analysed in a detailed field study carried out in the marsh located at Playa Fracasso (Argentina). The continuous records of groundwater level, temperature and electrical conductivity from a transect perpendicular to the coastline were studied during a period ranging from summer to winter, together with the information obtained in hydrogeomorphological field surveys and soil profiles. An assessment of the processes conditioning marsh hydrology was carried out contemplating seasonal (summer-winter) and periodical variations caused by tidal flows. The study showed that the dynamics of groundwater in relation to tidal flows depends almost exclusively on the infiltration of tidal water when the marsh is flooded during spring tides (syzygy), with an increase in the groundwater discharge level at the onset of syzygy. The differences in temperature between sea and continental water were very useful in defining the origin of the different contributions. Groundwater salinity is mainly associated with the leaching of the soil salts that enter with the sea water infiltrating during flood events. The presence of saline soils in the marsh is regulated by the evapotranspiration predominating in arid zones. The conceptual hydrological model suggested may help in the understanding of the hydrological processes in other similar marshes of Patagonia, as well as in coastal wetlands of arid zones worldwide.

  11. [Dynamics of nitrogen and sulfur wet deposition in typical forest stand at different spatial levels in Simian Mountain, mid-subtropical region].

    Science.gov (United States)

    Sun, Tao; Ma, Ming; Wang, Ding-yong; Huang, Li-xin

    2014-12-01

    In order to investigate the dynamics of nitrogen and sulfur wet deposition in subtropical forest ecosystem, one typical forest stand, evergreen broad-leaved forest, at Simian Mountain located in Chongqing was selected in this research. Based on field monitoring, effects of precipitation, throughfall, litterfall, and groundwater runoff of the typical forest stand on the quality of water of Simian Mountain were investigated from September 2012 to August 2013. Results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.89 and maximum pH of 5.14. The soil, canopies and trunks could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy had the function of adsorption and purification of NO3-, NO2- and SO4(2-), and the average entrapment rate was 56.68%, 45.84% and 35.51%, respectively. Moreover, the degradation of litter was probably the main reason for the increase of ion concentrations in the surface litter water. Forest soils could absorb and neutralize NO3-, SO2- and NH4+, and release NO2-. The evergreen broad-leaf forest of mid-subtropical region had the function of interception on NO3-, NO2-, NH4+ and SO4(2-), and the total entrapment rate was 92.86%, 57.86%, 87.24% and 87.25%, respectively, and it had a certain buffering function for the acid rain.

  12. Dynamic Regulation of Nitrogen and Organic Acid Metabolism of Cherry Tomato Fruit as Affected by Different Nitrogen Forms

    Institute of Scientific and Technical Information of China (English)

    XU Xin-Juan; LI Qing-Yu; SONG Xiao-Hui; Shen Qi-Rong; Dong Cai-Xia

    2012-01-01

    Cherry tomatoes (Lycopersicon esculentum Mill.,cv.hongyangli) were hydroponically cultivated in a greenhouse to determine the effect of different nitrogen (N) forms on organic acid concentration and the activities of related enzymes involved in nitrogen and organic acid metabolism during cherry tomato fruit development.The results showed that fruit nitrate reductase (NR) activity was much higher following treatment with 100% NO-3 and 75% NO-3 +25% NH+4 than with 100% NH+4 except at maturity.Glutamine synthetaee (GS) activity trended downward during fruit development under all three treatments.Plants fed 100% NH4+ had the lowest fruit citrate and malate levels at maturity,with the highest malate concentration at an early stage.The activity of phosphoenolpyruvate carboxylase (PEPC) was found to be in accord with the malate concentration with every N source.Under all three N forms,the citrate synthase (CS) activity peaked one week before the citrate concentration.

  13. Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET

    DEFF Research Database (Denmark)

    Berntsen, J.; Petersen, B.M.; Jacobsen, Brian H.

    2003-01-01

    The whole farm model FASSET ver. 1.0 was used for evaluation of the environmental and economic consequences of implementing different nitrogen taxes. The taxation policies analysed were a tax on nitrogen in mineral fertiliser, a tax on nitrogen in mineral fertiliser and imported animal feedstuff...

  14. Nitrogen trading tool

    Science.gov (United States)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  15. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-10-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of the socio-economy and the sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between the unsaturated vadose zone and groundwater reservoir is a critical link to understanding regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In the Tarim River basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux between the unsaturated vadose zone and groundwater reservoir is influenced strongly by irrigation. Recently, mulched drip irrigation, a sophisticated water-saving irrigation method, was widely applied in the Tarim River basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gaining a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2012 and 2013 in a typical oasis within the Tarim River basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux at the groundwater table is mostly downward (310.5 mm year-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (16.1 mm year-1) due to the moderate

  16. The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system.

    Science.gov (United States)

    Liang, Bin; Kang, Lingyun; Ren, Tao; Junliang, Li; Chen, Qing; Wang, Jingguo

    2015-05-01

    A long-term greenhouse experiment (2004-2012) was conducted with continuous tomato (Lycopersicum esculentum Mill.) plantings to understand the influence of an exogenous nitrogen supply from irrigation water, chemical fertilizer, or organic amendment on the N balance and soluble organic nitrogen (SON). The results from 16 tomato growing seasons indicated that the application of organic amendment (manure and straw) alone (Or-N) resulted in the same yield as the conventional chemical N with organic amendment (Co-N) and the reduced chemical N with organic amendment (Re-N) treatments. The annual apparent N loss was >1000 and 438 kg N ha(-1) in the Co-N and Re-N treatments, respectively. Over the study period, the SON in the 1.8 m soil profile was 1449 and 1978 kg N ha(-1) in the Re-N and Co-N treatments, respectively, it was 1.7- and 2.3-fold higher than that observed in the Or-N treatment, which indicated that SON increased with the chemical N application. The percentage of SON in the cumulative soluble N (SON plus mineral N) ranged from 28% to 44%, and there were no significant differences across the 0-0.6, 0.6-1.2, and 1.2-1.8 m soil profile, which indicated that the leaching and distribution of SON was similar to those of the mineral N in the 0-1.8 m soil profile. We conclude that the mobility of soluble organic N in the 0-1.8 m of the soil was synchronous with the mineral N under a greenhouse production system, and the risk of soluble organic N leaching increased with inorganic N application rate. Therefore, leaching of SON in the intensive agriculture should not be ignored when evaluating the risk of N leaching.

  17. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    Science.gov (United States)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p < 0.01). There were also significant relationships between soil pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p < 0.01), soil pH and soil C-to-N ratio (r = -0.76, p < 0.01), and the ratio of C-acquiring to N-acquiring enzyme activity and soil C-to-N ratio (r = 0.78, p < 0.01). These results suggest that soil Ca concentrations influence C and N cycling dynamics in these soils through their effect on soil pH.

  18. Responses of Greenhouse Tomato and Pepper Yields and Nitrogen Dynamics to Applied Compound Fertilizers

    Institute of Scientific and Technical Information of China (English)

    ZHU Jian-Hua; LI Xiao-Lin; ZHANG Fu-Suo; LI Jun-Liang; P.CHRISTIE

    2004-01-01

    Yield and N uptake of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annuum L.) crops in five successive rotations receiving two compound fertilizers (12-12-17 and 21-8-11 N-P2O5-K2O) were studied to determine 1)crop responses,2) dynamics of NO3-N and NH4-N in different soil layers,3) N balance and 4) system-level N efficiencies.Five treatments (2 fertilizers,2 fertilizer rates and a control),each with three replicates,were arranged in the study.The higher N fertilizer rate,300 kg N ha-1 (versus 150 kg N ha-i),returned higher vegetable fruit yields and total aboveground N uptake with the largest crop responses occurring for the low-N fertilizer (12-12-17) applied at 300 kg N ha-1 rather than with the high-N fertilizer (21-8-11). Ammonium-N in the top 90 cm of the soil profile declined during the experiment,while nitrate-N remained at a similar level throughout the experiment with the lower rate of fertilizer N.At the higher rate of N fertilizer there was a continuous NO3-N accumulation of over 800 kg N ha-1. About 200 kg N ha-1 was applied with irrigation to each crop using NO3-contaminated groundwater. In general,about 50% of the total N input was recovered from all treatments. Pepper,relative to tomato,used N more efficiently with smaller N losses,but the crops utilized less than 29% of the fertilizer N over the two and a half-year period. Local agricultural practices maintained high residual soil nutrient status. Thus,optimization of irrigation is required to minimize nitrate leaching and maximize crop N recovery.

  19. Groundwater discharge dynamics from point to catchment scale in a lowland stream: Combining hydraulic and tracer methods

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Sebok, Eva; Duque, Carlos

    2015-01-01

    nutrient or pollutant transport zones from nearby agricultural fields. VTP measurements confirmed high groundwater fluxes in discharge areas indicated by DTS and ADCP, and this coupling of ADCP, DTS and VTP proposes a novel field methodology to detect areas of concentrated groundwater discharge with higher......Detecting, quantifying and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the groundwater–surface water interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance...... because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point-to-catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point-scale, groundwater...

  20. Identification of the nitrate contamination sources of the Brusselian sands groundwater body (Belgium) using a dual-isotope approach.

    Science.gov (United States)

    Mattern, Samuel; Sebilo, Mathieu; Vanclooster, Marnik

    2011-09-01

    Isotopic fingerprinting is an advanced technique allowing the classification of the nitrate source pollution of groundwater, but needs further development and validation. In this study, we performed measurements of natural stable isotopic composition of nitrate ((15)N and (18)O) in the groundwater body of the Brussels sands (Belgium) and studied the spatial and temporal dynamics of the isotope signature of this aquifer. Potential nitrogen sources sampled in the region had isotopic signatures that fell within the corresponding typical ranges found in the literature. For a few monitoring stations, the isotopic data strongly suggest that the sources of nitrate are from mineral fertiliser origin, as used in agriculture and golf courses. Other stations suggest that manure leaching from unprotected stockpiles in farms, domestic gardening practices, septic tanks and probably cemeteries contribute to the nitrate pollution of this groundwater body. For most monitoring stations, nitrate originates from a mixing of several nitrogen sources. The isotopic signature of the groundwater body was poorly structured in space, but exhibited a clear temporal structure. This temporal structure could be explained by groundwater recharge dynamics and cycling process of nitrogen in the soil-nitrogen pool.

  1. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida

    Science.gov (United States)

    Feller, Ilka C.; Whigham, D.F.; McKee, K.L.; Lovelock, C.E.

    2003-01-01

    The objectives of this study were to determine effects of nutrient enrichment on plant growth, nutrient dynamics, and photosynthesis in a disturbed mangrove forest in an abandoned mosquito impoundment in Florida. Impounding altered the hydrology and soil chemistry of the site. In 1997, we established a factorial experiment along a tree-height gradient with three zones, i.e., fringe, transition, dwarf, and three fertilizer treatment levels, i.e., nitrogen (N), phosphorus (P), control, in Mosquito Impoundment 23 on the eastern side of Indian River. Transects traversed the forest perpendicular to the shoreline, from a Rhizophora mangle-dominated fringe through an Avicennia germinans stand of intermediate height, and into a scrub or dwarf stand of A. germinans in the hinterland. Growth rates increased significantly in response to N fertilization. Our growth data indicated that this site is N-limited along the tree-height gradient. After 2 years of N addition, dwarf trees resembled vigorously growing saplings. Addition of N also affected internal dynamics of N and P and caused increases in rates of photosynthesis. These findings contrast with results for a R. mangle-dominated forest in Belize where the fringe is N-limited, but the dwarf zone is P-limited and the transition zone is co-limited by N and P. This study demonstrated that patterns of nutrient limitation in mangrove ecosystems are complex, that not all processes respond similarly to the same nutrient, and that similar habitats are not limited by the same nutrient when different mangrove forests are compared.

  2. Catchment-Scale Simulation of Nitrogen Dynamics Using a Modular Hydrological Modelling Framework

    Science.gov (United States)

    Basu, N. B.; Shafii, M.; Craig, J. R.; Schiff, S. L.; Van Cappellen, P.

    2016-12-01

    The hydrological modelling framework Raven is a modular and flexible modelling framework for semi-distributed simulation of watershed hydrology. Raven enables the incorporation of different hydrologic processes, the evaluation of model choices, and hypothesis testing about model structure. Raven also supports the simulation of solute transport in catchments and in the surface water network. We developed a coupled hydrological-biogeochemical model within Raven to simulate catchment-scale nitrate loss in the Grand River Watershed (GRW), the largest basin in Southern Ontario feeding into the Lake Erie. GRW is a snow-dominated catchment and has severe nitrate contamination issues (due to intensive agriculture and a dense tile drainage system), especially during the snowmelt events. We used several sets of hydrochemical data (including tiles data), combined with a unique flow partitioning approach to constrain flow pathways in the hydrology model, which is critical to the accurate representation of the sources and sinks in the biogeochemical model. A biogeochemical model was then coupled to the hydrologic model in Raven to simulate nitrogen processes and identify nitrate loss at a variety of spatio-temporal scales in GRW. The preliminary results obtained after applying the coupled model to a subbasin in GRW are promising and we are at the stage of upscaling the model to the entire watershed. Raven, as an open-source object-oriented software, is currently being used by watershed managers, and incorporating nutrients dynamics in the code makes it applicable to solving water quality problems at the catchment scale as well.

  3. Dynamics of carbon, nitrogen and phosphorus in soil amended with irradiated, pasteurized and limed biosolids.

    Science.gov (United States)

    Franco-Hernández, Olivia; Mckelligan-Gonzalez, Alba Natalia; Lopez-Olguin, Ana Maria; Espinosa-Ceron, Fabiola; Escamilla-Silva, Eleazar; Dendooven, Luc

    2003-03-01

    Sewage biosolids contain high concentrations of pathogens, which limits their use as soil amendment. This study investigated how application of lime (Ca(OH)2), irradiation, or pasteurization reduced pathogens in biosolids and how its application affected soil characteristics. A soil sampled outside the canopy of Mesquite trees (Prosopis laevigata) and from a pasture at Lerma (Mexico) was amended with treated or untreated biosolids, characterized and incubated aerobically while dynamics of carbon (C), nitrogen (N) and phosphorus (P) were monitored. Heavy metals concentrations in the biosolids were low, so it was of excellent quality (USEPA). The amount of pathogens in the biosolids made it a class "B" (USEPA) which can be used in forests. Only irradiation sufficiently reduced faecal coliforms to make it a class "A" biosolids without restrictions in application. C mineralization increased significantly when biosolids were added, but not concentrations of available P (P < 0.05). Ammonium (NH4+) concentrations in soil amended with biosolids were higher compared to unamended soil, but not the concentrations of nitrate (NO3-) except when biosolids treated with Ca(OH)2 was added to the Lerma soil.

  4. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems

    Science.gov (United States)

    Dimova, Natasha T.; Swarzenski, Peter W.; Dulaiova, Henrieta; Glenn, Craig R.

    2012-01-01

    Multichannel electrical resistivity (ER) measurements were conducted at two contrasting coastal sites in Hawaii to obtain new information on the spatial scales and dynamics of the fresh water–seawater interface and rates of coastal groundwater exchange. At Kiholo Bay (located on the dry, Kona side of the Big Island) and at a site in Maunalua Bay (Oahu), there is an evidence for abundant submarine groundwater discharge (SGD). However, the hydrologic and geologic controls on coastal groundwater discharge are likely to be different at these two sites. While at Kiholo Bay SGD is predominantly through lava tubes, at the Maunalua Bay site exchange occurs mostly through nearshore submarine springs. In order to calculate SGD fluxes, it is important to understand the spatial and temporal scales of coastal groundwater exchange. From ER time series data, subsurface salinity distributions were calculated using site-specific formation factors. A salinity mass balance box model was then used to calculate rates of point source (i.e., spatially discreet) and total fresh water discharge. From these data, mean SGD rates were calculated for Kiholo Bay (∼9,200 m3/d) and for the Maunalua Bay site (∼5,900 m3/d). While such results are on the same order of magnitude to geochemical tracer-derived SGD rates, the ER SGD rates provide enhanced details of coastal groundwater exchange that can enable a more cohesive whole watershed perspective.

  5. A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Belyazid, Salim, E-mail: salim@belyazid.com [Belyazid Consulting and Communication, Stationsvaegen 13, SE-517 34 Bollebygd (Sweden); Kurz, Dani [EKG Geoscience, Maulbeerstrasse 14, CH-3011 Bern (Switzerland); Braun, Sabine [Institut fuer Angewandte Planzenbiologie, Sandgrubenstrasse 25, CH-4124 Schoenenbuch (Switzerland); Sverdrup, Harald [Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund (Sweden); Rihm, Beat [Meteotest, Fabrikstrasse 14, CH-3012 Bern (Switzerland); Hettelingh, Jean-Paul [Coordination Centre for Effects, PO Box 303, NL-3720 AH Bilthoven (Netherlands)

    2011-03-15

    A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. - Research highlights: > Plant community changes can be used to estimate critical loads of nitrogen. > Climate change is decisive for future changes of geochemistry and plant communities. > Climate change cannot be ignored in estimates of critical loads. > The model ForSAFE-Veg was successfully used to set critical loads of nitrogen. - Plant community composition can be used in dynamic modelling to estimate critical loads of nitrogen deposition, provided the appropriate reference deposition, future climate and target plant communities are defined.

  6. Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand

    Science.gov (United States)

    Morgenstern, U.; Daughney, C. J.; Leonard, G.; Gordon, D.; Donath, F. M.; Reeves, R.

    2015-02-01

    flow paths that could facilitate microbial denitrification reactions. Nitrate from land-use activities that leaches out of the root zone of agricultural land into the deeper part of the groundwater system must be expected to travel with the groundwater to the lake. The old age and the highly mixed nature of the water discharges imply a very slow and lagged response of the streams and the lake to anthropogenic contaminants in the catchment, such as nitrate. Using the age distribution as deduced from tritium time series data measured in the stream discharges into the lake allows prediction of future nutrient loads from historic land-use activities 50 years ago. For Hamurana Stream, the largest stream to Lake Rotorua, it takes more than a hundred years for the groundwater-dominated stream discharge to adjust to changes in land-use activities. About half of the currently discharging water is still pristine old water, and after this old water is completely displaced by water affected by land use, the nitrogen load of Hamurana Stream will approximately double. These timescales apply to activities that cause contamination, but also to remediation action.

  7. Analysis of groundwater dynamics in the complex aquifer system of Kazan Trona, Turkey, using environmental tracers and noble gases

    Science.gov (United States)

    Arslan, Sebnem; Yazicigil, Hasan; Stute, Martin; Schlosser, Peter; Smethie, William M.

    2015-02-01

    The Eocene deposits of Kazan Basin in Turkey contain a rare trona mineral which is planned to be extracted by solution mining. The complex flow dynamics and mixing mechanisms as noted from previous hydraulic and hydrochemical data need to be augmented with environmental tracer and noble gas data to develop a conceptual model of the system for the assessment of the impacts of the mining and to develop sustainable groundwater management policies throughout the area. The tracers used include the stable isotopes of water (δ2H, δ18O), δ13C and 14C of dissolved inorganic carbon (DIC), tritium (3H), the chlorofluorocarbons CFC-11 and CFC-12, and the noble gases He and Ne. The system studied consists of three aquifers: shallow, middle, and deep. CFC data indicate modern recharge in the shallow system. The estimates of ages through 14C dating for the deeper aquifer system are up to 34,000 years. Helium concentrations cover a wide range of values from 5 × 10-8 to 1.5 × 10-5 cm3 STP/g. 3He/4He ratios vary from 0.09RA to 1.29RA (where RA is the atmospheric 3He/4He ratio of 1.384 × 10-6), the highest found in water from the shallow aquifer. Mantle-derived 3He is present in some of the samples indicating upward groundwater movement, possibly along a NE-SW-striking fault-like feature in the basin.

  8. Legacy Sources, Sinks and Time Lags: 200 Years Of Nitrogen Dynamics in the Mississippi and Susquehanna River Basins

    Science.gov (United States)

    Van Meter, K. J.; Van Cappellen, P.; Basu, N. B.

    2016-12-01

    Global flows of reactive nitrogen (N) have increased significantly over the last century in response to land-use change, agricultural intensification and elevated levels of atmospheric N deposition. Despite widespread implementation of a range of conservation measures to mitigate the impacts of N-intensive agriculture, N concentrations in surface waters are in many cases remaining steady or continuing to increase. Such lack of response has been attributed to legacy N stores in subsurface reservoirs that contribute to time lags between conservation measures implemented on the landscape and water quality benefits realized in receiving water bodies. It has remained unclear, however, what the magnitudes of such stores might be, and how they are partitioned between shallow soil and deeper groundwater reservoirs. In the present work, we have synthesized data to develop a comprehensive, 214-year (1800 - 2014) trajectory of N inputs to the land surface of the continental United States. We have concurrently developed a parsimonious, process-based model, ELEMeNT, that utilizes this N input trajectory together with a travel time-based approach to simulate transport and biogeochemical transformations of N along subsurface pathways. Using the model, we have reconstructed historic nutrient yields at the outlets of two major U.S. watersheds, the Mississippi River Basin (MRB) and Susquehanna River Basin (SRB), which are the sources of significant nutrient contamination to the Gulf of Mexico and Chesapeake Bay, respectively. Our results show significant N loading above baseline levels in both watersheds before the widespread use of commercial N fertilizers, largely due to 19th-century conversion of natural forest and grassland areas to row-crop agriculture. Model results also allow us to quantify the magnitudes of legacy N in soil and groundwater pools, and highlight the dominance of soil N legacies in MRB and groundwater legacies in SRB. Approximately 85% of the current annual N

  9. Population dynamics of free living, nitrogen fixing bacteria Azospirillum in Manakkudi mangrove ecosystem, India.

    Science.gov (United States)

    Ravikumar, S; Gnanadesigan, M; Ignatiammal, S Thadedus Maria; Sumaya, S

    2012-05-01

    Seasonal variations of population dynamics of free living nitrogen fixing bacteria, Azospirillum in relation to chemical parameters in Manakkudi mangrove ecosystem was assessed in root and rhizosphere soil samples of mangroves and mangrove associated plants. In rhizosphere soil and root samples, the counts of Azospirillum were recorded maximum in Acrostichum aureum as 8.63 +/- 0.92 x 10(4) and 115.48 +/- 17.36 x 10(4) CFU g(-1), respectively. The counts of Azospirillum in non-rhizosphere soil varied from 0.01 +/- 0.001 x 10(4) to 5.77 +/- 0.92 x 10(4) CFU g(-1) and found maximum in February and minimum in March and September. Azospirillum counts in water samples were found maximum (2.24 x 10(4) CFU l(-1)) in February. During seasonal variations maximum counts of Azospirillum were recorded during southwest monsoon season in Avicennia officinalis (1.40 x 10(4) CFU g(-1)) followed by Rhizophora mucronata (1.07 x 10(4) CFU g(-1)). The average maximum population density of Azospirillum counts was found during non monsoon season (9.73 x 10(4) CFU g(-1)) and the average maximum population density of Azospirillum counts was found with the mangrove associated root samples (13.73 x 10(4) CFU g(-1)). Of the selected isolates Azospirillum lipoferum (60%) was found to be predominant followed by Azospirillum brasilense (25%), Azospirillum irakense (5%), Azospirillum halopraeferens (5%) and Azospirillum amazonense (5%). Of the isolated species, A. halopraeferens exhibited better growth at 35 g l(-1) NaCl. The level of Fe, Cu, Zn and Mn were varied from 0.91 to 15.93 ppm. The level of Mn (12.13 ppm) was found maximum during non-monsoon of rhizosphere soil sample. Highest rainfall (192.80 mm) and atmospheric temperature (25.10 degrees C) were recorded during south west monsoon and non monsoon seasons. The increased population density was greatly influenced by the pH (r = +0.686). The present finding provides enough information on the nitrogen flow through biological process in

  10. The dynamics of nitrogen derived from a chemical nitrogen fertilizer with treated swine slurry in paddy soil-plant systems.

    Science.gov (United States)

    Lee, Joonhee; Choi, Hong L

    2017-01-01

    A well-managed chemical nitrogen (N) fertilization practice combined with treated swine slurry (TSS) is necessary to improve sustainability and N use efficiency in rice farming. However, little is known about the fate of N derived from chemical N fertilizer with and without TSS in paddy soil-plant systems. The objectives of this study were (1) to estimate the contribution of applied N fertilizer to N turnover in rice paddy soil with different N fertilization practices that were manipulated by the quantity of treated swine slurry and chemical N fertilizer (i.e., HTSS+LAS, a high amount of TSS with a low amount of ammonium sulfate; LTSS+HAS, a low amount of TSS with a high amount of ammonium sulfate; AS, ammonium sulfate with phosphorus and potassium; C, the control) and (2) to compare the rice response to applied N derived from each N fertilization practice. Rice biomass yield, 15N recovery in both rice grain and stems, soil total N (TN), soil inorganic N, and soil 15N recovery were analyzed. Similar amounts of 15N uptake by rice in the TSS+AS plots were obtained, indicating that the effects of the different quantities of TSS on chemical fertilizer N recovery in rice during the experimental period were not significant. The soil 15N recoveries of HTSS+LAS, LTSS+HAS, and AS in each soil layer were not significantly different. For the HTSS+LAS, LTSS+HAS and AS applications, total 15N recoveries were 42%, 43% and 54%, respectively. Because the effects of reducing the use of chemical N fertilizer were attributed to enhancing soil quality and cost-effectiveness, HTSS+LAS could be an appropriate N fertilization practice for improving the long-term sustainability of paddy soil-plant systems. However, N losses, especially through the coupled nitrification-denitrification process, can diminish the benefits that HTSS+LAS offers.

  11. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  12. Molecular-dynamics study of the dynamical excitations in commensurate monolayer films of nitrogen molecules on graphite: A test of the corrugation in the nitrogen-graphite potential

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    1995-01-01

    The dynamical excitations in a commensurate monolayer solid of N2 molecules adsorbed on graphite have been studied using molecular-dynamics simulations. Velocity and rotational correlation functions as well as coherent intermediate scattering functions and dynamical structure factors have been ca...... demonstrated from the time dependence of the mean-square displacement of the molecules and the two-dimensional diffusion coefficient is estimated to be 2–3×10-5 cm2/s at 75–80 K.......The dynamical excitations in a commensurate monolayer solid of N2 molecules adsorbed on graphite have been studied using molecular-dynamics simulations. Velocity and rotational correlation functions as well as coherent intermediate scattering functions and dynamical structure factors have been...

  13. Dynamics of ethanol production from deproteinized whey by Kluyveromyces marxianus: An analysis about buffering capacity,thermal and nitrogen tolerance

    OpenAIRE

    Nathalia Lima Moreira; Leandro Freire dos Santos; Carlos Ricardo Soccol; Hélio Hiroshi Suguimoto

    2015-01-01

    The production of value-added products could be a valuable option for cheese wastewater management. However, this kind of study cannot just focus alone on getting the final product. This also necessitates studies on the dynamics of bioprocesses. With these as background, the present investigation aimed at evaluating the buffering capacity of deproteinized whey and effect of temperature and nitrogen source on ethanol yields from it. The batch fermentation conditions used to evaluate ethanol pr...

  14. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.

    Science.gov (United States)

    Moreau-Fournier, Magali F; Daughney, Christopher J

    2012-12-01

    Optimization of a water quality network through a change in sampling frequency is the only way to increase cost-efficiency without any reduction in the robustness of the data. Existing techniques define optimal sampling frequency based on analysis of historical data from the monitoring network under investigation. Their application to a large network comprised of many sites and many monitored parameters is both technical and challenging. This paper presents a simple non-parametric method for reviewing sampling frequency that is consistent with highly censored environmental data and oriented towards reduction of sampling frequency as a cost-saving measure. Based on simple descriptive statistics, the method is applicable to large networks with long time series and many monitored parameters. The method also provides metrics for interpretation of newly collected data, which enables identification of sites for which a future change in sampling frequency may be necessary, ensuring that the monitoring network is both current and adaptive. Application of this method to the New Zealand National Groundwater Monitoring Programme indicates that reduction of sampling frequency at any site would result in a significant loss of information. This paper also discusses the potential for reducing analysis frequency as an alternative to reduction of sampling frequency.

  15. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  16. A Demonstration of Nitrogen Dynamics in Oxic and Hypoxic Soils and Sediments.

    Science.gov (United States)

    Ambler, Julie; Pelovitz, Kelly; Ladd, Timothy; Steucek, Guy

    2001-01-01

    Describes an experiment in which the incubation time to observe denitrification and other processes of the nitrogen cycle is reduced from 7-14 days to 24-48 hours. Presents calculations of processes in the nitrogen cycle in the form of a dichotomous key. (SAH)

  17. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    Science.gov (United States)

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  18. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    Science.gov (United States)

    Alexander, R.B.; Böhlke, J.K.; Boyer, E.W.; David, M.B.; Harvey, J.W.; Mulholland, P.J.; Seitzinger, S.P.; Tobias, C.R.; Tonitto, C.; Wollheim, W.M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  19. The influence of riverine nitrogen on the dynamics of the North Sea oxygen minimum zone

    Science.gov (United States)

    Große, Fabian; Kreus, Markus; Lenhart, Hermann; Pätsch, Johannes

    2016-04-01

    The mitigation of eutrophication and its concomitants, like oxygen deficiency in bottom waters, is one of the major aspects of the ecological management of coastal marine ecosystems. In the past, biogeochemical models helped to significantly improve the understanding of the interaction of the physical and biological processes driving eutrophication. Anthropogenic river input of nitrogen (N) and phosphorus (P) is the main driver for eutrophication. Nevertheless, the quantification of their influence in a specific region remains an important issue, since it is as crucial for an efficient management as it is difficult to obtain. During the past decade, a quantitative method applicable to biogeochemical models - often referred to as `trans-boundary nutrient transports' (TBNT) - became more and more popular in the context of marine ecosystem management. This method allows for the tracing of elements from various sources, e.g., nitrogen (N) from different rivers, throughout the whole process chain of the applied model. By this, it provides valuable information about the contributions from different sources to the overall amount and turnover of an element in different areas of the model domain. This information constitutes the basis for the quantification, evaluation and optimisation of river input reduction targets for the tributaries, which are defined in relation to their ecological consequences in the marine environment. In existing studies, the TBNT method has been applied to a variety of biogeochemical models, e.g. to quantify the atmospheric contribution to total N in the North Sea (Troost et al., 2013). This study presents a novel approach to link the TBNT method applied to N to the biological processes driving the oxygen dynamics in the bottom layer of the North Sea. For this purpose, simulations from the biogeochemical model ECOHAM (ECOlogical model HAMburg) are analysed for the years 2002 and 2010, with the focus on the southern central North Sea, the region of

  20. Primary production dynamics in a pristine groundwater influenced coastal lagoon of the Yucatan Peninsula

    Science.gov (United States)

    Medina-Gómez, Israel; Herrera-Silveira, Jorge A.

    2006-06-01

    Dzilam lagoon is a shallow (0.6 m mean depth) ecosystem with 9.4 km 2 surface area, located in the north coast of the Yucatan Peninsula, and connected to the Gulf of Mexico through a permanent inlet. Freshwater input is possible through numerous sinkholes distributed throughout the lagoon, which also represent a continuous source of nitrate and silicate. The low anthropogenic influence has maintained a pristine condition in Dzilam lagoon, manifested in a spatial heterogeneity of water quality and primary production strongly related to the environmental fluctuations. To determine the annual variability of primary production and identify the factors controlling it, 12 monthly samplings were undertaken at six stations, from September 1998 to August 1999. Thus, physical-chemical parameters, inorganic nutrients concentrations, chlorophyll- a, phytoplankton production and seagrass biomass were measured. The water residence time in Dzilam lagoon is higher during dry season due to the significant evaporation rate, and shorter in rainy season because of increase in precipitation and volume of groundwater discharge. The multivariate analysis results suggest that the salinity gradient, changes in aquatic vegetation biomass, and the remineralized nutrients in sediments constitute key processes depicting the water quality and net primary production in Dzilam lagoon. Furthermore, the biogeochemical benthic processes, combined with a longer stay of phytoplankton cells within the lagoon, enhanced primary production in the water column during dry season, as opposite as rainy period, when the inferior water residence time yielded lower production values. The seagrasses ( Halodule wrightii and Ruppia maritima) showed the highest biomass (110.5 g dw/m 2/d) in dry season, while the lowest recordings were observed during cold fronts, with a salient belowground contribution (rhizomes and roots). Seagrasses and phytoplankton participation to the total primary production in Dzilam lagoon

  1. Nitrogen storage dynamics are affected by masting events in Fagus crenata.

    Science.gov (United States)

    Han, Qingmin; Kabeya, Daisuke; Iio, Atsuhiro; Inagaki, Yoshiyuki; Kakubari, Yoshitaka

    2014-03-01

    It is generally assumed that the production of a large crop of seeds depletes stores of resources and that these take more than 1 year to replenish; this is accepted, theoretically, as the proximate mechanism of mast seeding (resource budget model). However, direct evidence of resource depletion in masting trees is very rare. Here, we trace seasonal and inter-annual variations in nitrogen (N) concentration and estimate the N storage pool of individuals after full masting of Fagus crenata in two stands. In 2005, a full masting year, the amount of N in fruit litter represented half of the N present in mature leaves in an old stand (age 190-260 years), and was about equivalent to the amount of N in mature leaves in a younger stand (age 83-84 years). Due to this additional burden, both tissue N concentration and individual N storage decreased in 2006; this was followed by significant replenishment in 2007, although a substantial N store remained even after full masting. These results indicate that internal storage may be important and that N may be the limiting factor for fruiting. In the 4 years following full masting, the old stand experienced two moderate masting events separated by 2 years, whilst trees in the younger stand did not fruit. This different fruiting behavior may be related to different "costs of reproduction" in the full masting year 2005, thus providing more evidence that N may limit fruiting. Compared to the non-fruiting stand, individuals in the fruiting stand exhibited an additional increase in N concentrations in roots early in the 2007 growing season, suggesting additional N uptake from the soil to supply resource demand. The enhanced uptake may alleviate the N storage depletion observed in the full masting year. This study suggests that masting affects N cycle dynamics in mature Fagus crenata and N may be one factor limiting fruiting.

  2. Trickling filter for urea and bio-waste processing - dynamic modelling of nitrogen cycle

    Science.gov (United States)

    Zhukov, Anton; Hauslage, Jens; Tertilt, Gerin; Bornemann, Gerhild

    Mankind’s exploration of the solar system requires reliable Life Support Systems (LSS) enabling long duration manned space missions. In the absence of frequent resupply missions, closure of the LSS will play a very important role and its maximisation will to a large extent drive the selection of appropriate LSS architectures. One of the significant issues on the way to full closure is to effectively utilise biological wastes such as urine, inedible biomass etc. A very promising concept of biological waste reprocessing is the use of trickling filters which are currently being developed and investigated by DLR, Cologne, Germany. The concept is called Combined Regenerative Organic-Food Production (C.R.O.P.) and is based on the microbiological treatment of biological wastes and reprocessing them into aqueous fertilizer which can directly be used in a greenhouse for food production. Numerous experiments have been and are being conducted by DLR in order to fully understand and characterize the process. The human space exploration group of the Technical University of Munich (TUM) in cooperation with DLR has started to establish a dynamic model of the trickling filter system to be able to assess its performance on the LSS level. In the first development stage the model covers the nitrogen cycle enabling to simulate urine processing. This paper describes briefly the C.R.O.P. concept and the status of the trickling filter model development. The model is based on enzyme-catalyzed reaction kinetics for the fundamental microbiological reaction chain and is created in MATLAB. Verification and correlation of the developed model with experiment results has been performed. Several predictive studies for batch sequencing behavior have been performed, demonstrating a good capability of C.R.O.P. concept to be used in closed LSS. Achieved results are critically discussed and way forward is presented.

  3. Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in northern Michigan

    Directory of Open Access Journals (Sweden)

    B. Seok

    2013-08-01

    Full Text Available The dynamic behavior of nitrogen oxides (NOx = NO + NO2 and ozone (O3 above and within the canopy at the University of Michigan Biological Station AmeriFlux (UMBS Flux site was investigated by continuous multi-height vertical gradient measurements during the summer and the fall of 2008. A daily maximum in nitric oxide (NO mixing ratios was consistently observed during the morning hours between 06:00 and 09:00 EST above the canopy. Daily NO maxima ranged between 0.1 and 2 ppbv (with a median of 0.3 ppbv, which were 2 to 20 times above the atmospheric background. The sources and causes of the morning NO maximum were evaluated using NOx and O3 measurements and synoptic and micrometeorological data. Numerical simulations with a multi-layer canopy-exchange model were done to further support this analysis. The observations indicated that the morning NO maximum was caused by the photolysis of NO2 from non-local air masses, which were transported into the canopy from aloft during the morning breakup of the nocturnal boundary layer. The analysis of simulated process tendencies indicated that the downward turbulent transport of NOx into the canopy compensates for the removal of NOx through chemistry and dry deposition. The sensitivity of NOx and O3 concentrations to soil and foliage NOx emissions was also assessed with the model. Uncertainties associated with the emissions of NOx from the soil or from leaf-surface nitrate photolysis did not explain the observed diurnal behavior in NOx (and O3 and, in particular, the morning peak in NOx mixing ratios. However, a ~30% increase in early morning NOx and NO peak mixing ratios was simulated when a foliage exchange NO2 compensation point was considered. This increase suggests the potential importance of leaf-level, bidirectional exchange of NO2 in understanding the observed temporal variability in NOx at UMBS.

  4. Aeration-Induced Changes in Temperature and Nitrogen Dynamics in a Dimictic Lake.

    Science.gov (United States)

    Holmroos, Heidi; Horppila, Jukka; Laakso, Sanna; Niemistö, Juha; Hietanen, Susanna

    2016-07-01

    Low levels of oxygen (O) in the hypolimnion layer of lakes are harmful to benthic animals and fish; they may also adversely affect nutrient cycles. Artificial aeration is often used in lake management to counteract these problems, but the effects of aeration on nitrogen (N) cycling are not known. We studied the effects of hypolimnetic aeration on N dynamics and temperature in a eutrophic lake by comparing continuous and pulsed aeration with a nonaerated station. Aeration decreased the accumulation of NH-N deep in the lake (20-33 m) by supplying O for nitrification, which in turn provided substrate for denitrification and promoted N removal. Aeration also increased the temperature in the hypolimnion. Denitrification rate was highest in the nonaerated deep areas (average, 7.62 mg N m d) due to very high rates during spring turnover of the water column, demonstrating that natural turnover provides O for nitrification. During stratification, denitrification was highest at the continuously aerated station (4.06 mg N m d) and lowest at the nonaerated station (3.02 mg N m d). At the periodically aerated station, aeration pauses did not restrict the increase in temperature but resulted in accumulation of NH-N and decreased the contribution of denitrification as a nitrate reduction process. Our findings demonstrate that hypolimnetic aeration can substantially affect N cycling in lakes and that the effect depends on the aeration strategy. Because N is one of the main nutrients controlling eutrophication, the effects of aeration methods on N removal should be considered as part of strategies to manage water quality in lakes.

  5. Dynamics of natural prokaryotes, viruses and heterotrophic nanoflagellates in alpine karstic groundwater

    NARCIS (Netherlands)

    Wilhartilz, I.C.; Krischner, A.K.T; Brussaard, C.P.D.; Fisher, U.R.; Wieltschnig, C.; Stadler, H.; Farnleitner, A.H.

    2013-01-01

    Seasonal dynamics of naturally occurring prokaryotes, viruses, and heterotrophic nanoflagellates in two hydro-geologically contrasting alpine karst springs were monitored over three annual cycles. To our knowledge, this study is the first to shed light on the occurrence and possible

  6. Dynamics of natural prokaryotes, viruses and heterotrophic nanoflagellates in alpine karstic groundwater

    NARCIS (Netherlands)

    I.C. Wilhartilz; A.K.T Krischner; C.P.D. Brussaard; U.R. Fisher; C. Wieltschnig; H. Stadler; A.H. Farnleitner

    2013-01-01

    Seasonal dynamics of naturally occurring prokaryotes, viruses, and heterotrophic nanoflagellates in two hydro-geologically contrasting alpine karst springs were monitored over three annual cycles. To our knowledge, this study is the first to shed light on the occurrence and possible interrelationshi

  7. Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter

    Science.gov (United States)

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition

  8. Alterations in the nitrogen dynamics of European beech trees infested by the woolly beech aphid

    Science.gov (United States)

    Levia, D. F.; Michalzik, B.

    2012-12-01

    Insects are a major stressor in wooded ecosystems, triggering profound changes in the hydrology, biogeochemistry, and net primary productivity of infested forests. The influence of woolly beech aphids (Phyllaphis fagi L.) on nitrogen cycling via throughfall, stemflow, and litter leachates is not well understood. Employing a combination of field sampling, X-ray photoelectron spectroscopy, and scanning electron microscopy, we examined and compared the alterations and partitioning of nitrogen (particulate, dissolved, organic, inorganic) between control (uninfested) and infested trees. Preliminary results suggest that the amount of nitrogen routed to the soil is much lower in throughfall and stemflow of infested trees than control trees. Preliminary X-ray photoelectron spectroscopy and scanning electron microscopy measurements on the abaxial surface of sample leaves have demonstrated that the surface microbiology and nitrogen chemistry of control, lightly infested, and heavily infested leaves are notably different. These observations suggest that the aphids alter the phyllosphere ecology to such an extent that they trigger nitrogen uptake by microbes on the leaf surface in the presence of easily available carbon from aphid excretions (i.e., honeydew). A better understanding of nitrogen cycling in stressed forests would advance theories of nitrogen cycling.

  9. Dynamics of nitrogen nutrition of coexisting dominant trees in mixed broad-leaved/Korean pine forest

    Institute of Scientific and Technical Information of China (English)

    Li Yuwen

    1999-01-01

    Chemical analysis of ammonium, nitrate and total nitrogen in tree leaves and roots and an in-vivo bioassay for nitrate reductase activity (NRA) were used to monitor the seasonal variations in nitrogen assimilation among four coexisting dominant tree species, including Pinus koraiensis, Ti/ia amurensis, Fraxinus mandshurica and Acer mono, in a virgin mixed broad-leaved/Korean pine (Pinus koraiensis) forest. The soil study included individual horizons of L+F (0-5 cm), Ah (5-11 cm) and Aw (11-25 cm). All four species had nitrate and ammonium in their roots and leaves, and also NRA in leaves. This indicated that these coexisting species were adapted to ammonium + nitrate nutrition. A negative correlation existed between nitrate use and ammonium use. Ammonium concentration was higher than that of nitrate in tree leaves and roots, and also in soils, which indicated climax woody species had a relative preference for ammonium nutrition. There was a positive relationship between tree nitrogen nutrition use and soil nitrogen nutrient supply. Utilization of ammonium and nitrate as well as the seasonal patterns differed significantly between the species. Peaks of ammonium, nitrate, NRA and total nitrogen in one species were therefore not necessarily synchronous with peaks in other species, and which indicated a species-specific seasonal use of nitrogen. The species-specific temporal differentiation in nitrogen use might reduce the competition between co-existing species and may be an important mechanism promoting stability of virgin mixed broad-leaved∥Korean pine forest.

  10. Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting

    Science.gov (United States)

    Boettcher, Steven; Merz, Christoph; Lischeid, Gunnar

    2015-04-01

    control the system. The method was applied on a data set of groundwater head and lake water level. Two factors explaining more than 95 percent of the observed spatial variations were identified: (1) the anthropogenic impact of a waterworks in the study area and (2) natural groundwater recharge dynamics of different degrees of dampening at the respective sites of observation. The spatial variation of the identified processes revealed previously unknown hydraulic connections between two aquifers and between surface water bodies and groundwater. The obtained information can be used to reduce model structure uncertainty and a more efficient process-based modeling of hydraulic system behavior. Thus, the approach provides essential information to evaluate and adapt strategies for an integrated water resources management in complex landscapes. Bloschl, G., Sivapalan, M., 1995. Scale Issues in Hydrological Modeling - a Review. Hydrological Processes, 9(3-4): 251-290. Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290: 2319-2323. Wood, E.F., Sivapalan, M., Beven, K., Band, L., 1988. Effects of Spatial Variability and Scale with Implications to Hydrologic Modeling. Journal of Hydrology, 102(1-4): 29-47.

  11. Long-term groundwater contamination after source removal—The role of sorbed carbon and nitrogen on the rate of reoxygenation of a treated-wastewater plume on Cape Cod, MA, USA

    Science.gov (United States)

    Smith, Richard L.; Repert, Deborah A.; Barber, Larry B.; LeBlanc, Denis R.

    2013-01-01

    The consequences of groundwater contamination can remain long after a contaminant source has been removed. Documentation of natural aquifer recoveries and empirical tools to predict recovery time frames and associated geochemical changes are generally lacking. This study characterized the long-term natural attenuation of a groundwater contaminant plume in a sand and gravel aquifer on Cape Cod, Massachusetts, after the removal of the treated-wastewater source. Although concentrations of dissolved organic carbon (DOC) and other soluble constituents have decreased substantially in the 15 years since the source was removed, the core of the plume remains anoxic and has sharp redox gradients and elevated concentrations of nitrate and ammonium. Aquifer sediment was collected from near the former disposal site at several points in time and space along a 0.5-km-long transect extending downgradient from the disposal site and analyses of the sediment was correlated with changes in plume composition. Total sediment carbon content was generally low (< 8 to 55.8 μmol (g dry wt)− 1) but was positively correlated with oxygen consumption rates in laboratory incubations, which ranged from 11.6 to 44.7 nmol (g dry wt)− 1 day− 1. Total water extractable organic carbon was < 10–50% of the total carbon content but was the most biodegradable portion of the carbon pool. Carbon/nitrogen (C/N) ratios in the extracts increased more than 10-fold with time, suggesting that organic carbon degradation and oxygen consumption could become N-limited as the sorbed C and dissolved inorganic nitrogen (DIN) pools produced by the degradation separate with time by differential transport. A 1-D model using total degradable organic carbon values was constructed to simulate oxygen consumption and transport and calibrated by using observed temporal changes in oxygen concentrations at selected wells. The simulated travel velocity of the oxygen gradient was 5–13% of the groundwater velocity. This

  12. Limits to Global Groundwater Consumption

    Science.gov (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  13. Thermochemistry and Dynamics of Reactive Species: Nitrogen-rich Compounds, Metals and SiC Clusters in Free and Solvated Environment

    Science.gov (United States)

    2005-10-31

    of Reactive Species : Nitrogen-rich F49620-02-1-0371 Compounds, Metals and SiC clusters in Free and Solvated Environments Sb. GRANT NUMBER 5c. PROGRAM...F49620-02-1-0371 Thermochemistry and Dynamics of Reactive Species : Nitrogen-rich Compounds, Metals, and SiC clusters in Free and Solvated Environments...research program remain the same as before: obtaining fundamental thermochemical and dynamical data on reactive species Status of Effort This report

  14. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-ting; ZHU Wei-xing; MO Jiang-ming; ZHOU Guo-yi; GUNDERSEN Per

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions.Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching,and higher soil C/N ratios. Mineral soil extractable NH4+-N and NO3--N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4+-N in the mature forest. In contrast, inorganic N (both NH4+-N and NO3--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.

  15. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    Science.gov (United States)

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability.

  16. Groundwater Dynamics under Water Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-02-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of socio-economy and sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between unsaturated vadose zone and groundwater reservoir is a critical link to understand regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In Tarim River Basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux is influenced strongly by irrigation. Recently, mulched drip irrigation, a very advanced water-saving irrigation method, has been widely applied in the Tarim River Basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gain a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2011 and 2012 in a typical oasis within Tarim River Basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux is mostly downward (310.5 mm yr-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (-16.1 mm yr-1) due to the moderate groundwater table depth (annual average depth 2.9 m). Traditional secondary salinization caused by intense phreatic

  17. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    Science.gov (United States)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  18. The effects of pelleted sewage sludge on Norway spruce establishment and nitrogen dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Anders

    1999-07-01

    In Sweden there is a big resource in unutilised sewage sludge. Studies have shown that application of municipal sewage sludge can improve forest productivity and planting environment. This study is examining the effects of two types of pelleted sewage sludge (pure sludge and a mixture of sludge and domestic wastes compost) on nitrogen turnover. Large differences were found in the fertilisation effect of the different treatments. The pure sewage sludge pellets treatment showed significant increases for NH{sub 4}-accumulation, nitrification and NO{sub 3}-leaching in the top 10 cm of the soil. Uptake of nitrogen was increased in spruce plants and vegetation. The mixed sludge/domestic waste pellets treatment showed indications of a minor initial release of nitrogen. This is seen as a small but significant initial increase in soil nitrification. These results suggest that the pure sewage sludge pellet is an adequate nitrogen fertiliser. The mixed sludge though is inadequate at least in the short run.

  19. POPULATION DYNAMICS OF COTTON RATS ACROSS A LANDSCAPE MANIPULATED BY NITROGEN ADDITIONS AND ENCLOSURE FENCING

    Science.gov (United States)

    Nitrogen additions in grasslands have produced qualitative and quantitative changes in vegetation resulting in an increase in biomass and decrease in plant species diversity. As with plants, we theorize that animal communities will decrease in species richness and become dominat...

  20. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

    Science.gov (United States)

    Sakaguchi, K.; Zeng, X.; Leung, LR; Shao, P.

    2016-12-01

    Land carbon sensitivity to atmospheric CO2 concentration (βL) and climate warming (γL) is a crucial part of carbon-climate feedbacks that affect the magnitude of future warming. Although these sensitivities can be estimated by earth system models, their dependence on model representation of land carbon dynamics and the inherent model assumptions has rarely been investigated. Using the widely used Community Land Model version 4 as an example, we examine how βL and γL vary with prescribed versus dynamic vegetation covers. Both sensitivities are found to be larger with dynamic compared to prescribed vegetation on decadal timescale in the late twentieth century, with a more robust difference in γL. The latter is a result of dynamic vegetation model deficiencies in representing the competitions between deciduous versus evergreen trees and tree versus grass over the tropics and subtropics. The biased vegetation cover changes the regional characteristics of carbon-nitrogen cycles such that plant productivity responds less strongly to the enhancement of nitrogen mineralization with warming, so more carbon is lost to the atmosphere with rising temperature. The result calls for systematic evaluations of land carbon sensitivities with varying assumptions for land cover representations to help prioritize development effort and constrain uncertainties in carbon-climate feedbacks.

  1. Dynamic Vulnerability of Karst Systems: a Concept to understand qualitative and quantitative Aspects of Karst springs due to Changes in Groundwater Recharge

    Science.gov (United States)

    Huggenberger, P.; Butscher, C.; Epting, J.; Auckenthaler, A.

    2015-12-01

    Karst groundwater resources represent valuable water resources, which may be affected by different types of pollution and changes of groundwater recharge by climate change. In many parts of Europe, it has been predicted that record-breaking heat waves, such as the one experienced in 2003 and 2015, will become more frequent. At the same time, even as summers become drier, the incidence of severe precipitation events could increase. What is the influence such changes to the quantitative and qualitative aspects of Karst groundwater systems? A factor to be considered in conjunction with groundwater quality is the vulnerability of the resource, which is defined as the sensitivity of a groundwater system to pollution. Intrinsic vulnerability refers to the sensitivity to pollution when considering only natural, geogenic conditions without the effects of human activities such as contaminant release. Intrinsic vulnerability depends on the recharge conditions, which are dependent on the surface and subsurface structure and on precipitation and evaporation patterns. The latter are highly time dependent. Therefore, our groundwater vulnerability concept also includes dynamic aspects of the system, the variations of spatial and temporal components. We present results of combined monitoring and modelling experiments of several types of Karst systems in the Tabular and the Folded Jura of NW Switzerland. The recharge, conduit flow, diffuse flow(RCD) rainfall-discharge model "RCD-seasonal" was used to simulate the discharge and substance concentration of several spring. This lumped parameter model include: the recharge system (soil and epikarst system), the conduit flow system, and the diffuse flow system. The numerically derived Dynamic Vulnerability Index (DVI) can indicate qualitative changes of spring water with sufficient accuracy to be used for drinking water management. In addition, the results obtained from the test sites indicate a decrease in short-lived contaminants in

  2. A simulation model-assisted study on water and nitrogen dynamics and their effects on crop performance in the wheat-maize system I:The model

    Institute of Scientific and Technical Information of China (English)

    LIANG Weili; L(U) Hongzhan; WANG Guiyan; D.J.Connor; G.M.Rimmington

    2007-01-01

    Based on data collected from field experiments,a comprehensive model was built on the Ithink (a registered trademark of iSee Systems) platform to simulate the dynamics of water and nitrogen,and crop performance in the winter wheat-summer maize double cropping system of the North China plain.The model,consisting of seven sub models,i.e.weather generator,phenology,biomass,dry matter partitioning,water balance,nitrogen balance,and nitrogen absorption and partitioning,well reflects water and nitrogen use and their relationship with crop yield under field conditions.A vertical water movement equation is employed in the water balance sub model to account for movement between layers.Crop transpiration and soil evaporation are simulated separately according to potential evaporation,crop cover and a soil water deficit coefficient.Soil evaporation is from the surface layer only while crop transpiration comprises the total amount of water absorbed by the root system from all soil layers.The model considers that nitrogen transformations,transfers and uptake are fulfilled by root systems.Transformation of nitrogen as mineralization,fixation and denitrification are responsive to soil moisture and temperature.Nitrogen movement is simulated with a convection-dispersion equation with nitrate as the soil solute.Nitrogen absorption and partitioning sub model includes the effects of water and nitrogen supply,crop nitrogen demand and nitrogen content in various crop organs.The model can be used to simulate crop yield,water- and nitrogen-use efficiencies and water-nitrogen leaching to specific soil layers in different water and nitrogen management practices.

  3. Liquid nitrogen in fluid dynamics: Visualization and velocimetry using frozen particles

    Science.gov (United States)

    Fonda, Enrico; Sreenivasan, Katepalli R.; Lathrop, Daniel P.

    2012-08-01

    High-Reynolds-number flows are common both in nature and industrial applications, but are difficult to attain in laboratory settings using standard test fluids such as air and water. To extend the Reynolds number range, water and air have been replaced at times by low-viscosity fluids such as pressurized air, sulfur hexafluoride, and cryogenic nitrogen gas, as well as liquid and gaseous helium. With a few exceptions, liquid nitrogen has been neglected despite the fact that it has a kinematic viscosity of about a fifth of that of water at room temperature. We explore the use of liquid nitrogen here. In particular, we study the use of frozen particles for flow visualization and velocimetry in liquid nitrogen. We create particles in situ by injecting a gaseous mixture of room-temperature nitrogen and an additional seeding gas into the flow. We present a systematic study of potential seeding gases to determine which create particles with the best fidelity and optical properties. The technique has proven capable of producing sub-micrometer sized tracers that allow particle tracking and particle image velocimetry. We review possible high-Reynolds-number experiments using this technique, and discuss the merits and challenges of using liquid nitrogen as a test fluid.

  4. Dynamics of nitrogenous substances content in the diet of the wood mouse (Apodemus sylvaticus

    Directory of Open Access Journals (Sweden)

    Ladislav Čepelka

    2013-01-01

    Full Text Available The representation of nitrogenous substances in the stomach content of Apodemus sylvaticus was determined using the NIRS (near-infrared spectroscopy method. Out of the total of 247 examined stomachs, 66 were male and 181 female. Sampling of study material was conducted in 2003–2010 at three isolated forest sites in South Moravia with different habitat conditions and different type of management (old semi-natural forest with dominance of English Oak (Quercus robur; production forest with dominant Sessile Oak (Quercus petraea and Black Locust (Robinia pseudoacacia; pheasantry with variable mixture of forest plots. The determined nitrogenous substances content ranged from 9.5–64.4% of dry matter. With respect to nitrogenous substances content, the habitat, site and sex factors were assessed as statistically insignificant. On the other hand, the factor of a given year (χ2 = 31.14; p < 0.000 and that of sexual activity (χ2 = 7.86; p = 0.005 showed significant differences. In relation to season, both the average nitrogenous substances content in diet and the standard deviation oscillated. The highest average nitrogenous substances content was determined in winter months, when the most significant dispersion in values was determined as well. In years following mast years (2004 and 2007 high values of standard deviations in dietary nitrogenous compounds content were determined.

  5. The influence of wildfire severity on soil char composition and nitrogen dynamics

    Science.gov (United States)

    Rhoades, Charles; Fegel, Timothy; Chow, Alex; Tsai, Kuo-Pei; Norman, John, III; Kelly, Eugene

    2017-04-01

    both indicate that C contained or leached from severely-burned char layers has higher aromaticity and thus chemical stability compared to C in unburned soils. Mineral soil (0-5 cm depth) beneath char layers in high severity portions of the Hayman Fire had significantly more soil N and C and lower pH. Potential net mineralization - an index of the supply of plant-available nitrogen - differed between the severely-burned areas and both unburned and moderately-burn areas. Negative net mineralization in unburned and moderately burned soils indicates immobilization or retention of inorganic N by soil microbes. In contrast, soils burned at high severity produced inorganic N sources available to plants, leaching and gas losses. Water soluble nitrate comprised a larger proportion of inorganic N leached from the char layer of high severity burns. Mineral soil in those areas had both higher water soluble nitrate and total inorganic N in leachate. Char layers that have persisted for fifteen years influence soil N turnover within the Hayman Fire affected area and may contribute to elevated N losses in streams burned at high severity. The chemical stability of soil char layers perpetuates their importance for C sequestration and N dynamics in burned landscapes.

  6. Temporal and spatial dynamics of carbon and nitrogen in headwater snow-dominated catchments, Jemez Mountains, New Mexico

    Science.gov (United States)

    Dannemann, F. K.; Zapata, X.; McIntosh, J. C.; Perdrial, J. N.; Brooks, P. D.; Chorover, J.; Lohse, K. A.; Fricke, H. C.

    2011-12-01

    The concentration and availability of stream nutrients, particularly dissolved organic carbon (DOC) and nitrogen species, determine aquatic system productivity, and are important indicators of catchment hydrobiogeochemical processes. In semi-arid montane areas, such as the Valles Caldera National Preserve located within the Jemez River Basin, NM, an understanding of the relationship between discharge and nutrient concentrations is particularly important. Although the annual hydrograph is dominated (~40%) by spring snowmelt, similar to well studies sites in the northern Rockies, the JRB region receives a much larger percentage of precipitation associated with summer rainfall, and consequently may provide insight into how more northerly catchments will respond to changing climate. This study focuses on four headwater catchments: History Grove, La Jara, Upper Jaramillo and Upper Redondo, over two water years (2009 to 2011) to examine how nutrient concentrations vary as a function of hillslope aspect, catchment hydrologic responses, seasonality, and discharge. Stream water grab samples were collected on a monthly to weekly basis from 2009 to 2011 and analyzed for inorganic carbon (DIC), dissolved organic carbon (DOC) and nitrogen species (total dissolved nitrogen (DN), NO3, NO2, NH4). DOC and DN concentrations in stream waters from all 4 catchments are positively correlated, indicating a tight coupling of carbon and nitrogen. During dry periods (September to February) stream waters have high DIC (4.8-7.6 mg/L), and low DOC (1.6-2.7 mg/L) and DN (<0.3 mg/L) concentrations, indicating that stream water is dominated by groundwater inputs. In contrast, during spring snowmelt (March-May) stream waters have high DOC (2.9-6.2 mg/L) and DN (0.2-0.5mg/L) concentrations and low DIC (3.1-4.5mg/L) values; the majority of DN is comprised of organic-N. These results suggest flushing of shallow soil waters during snowmelt periods. High DIC (5.8-6.3mg/L), and low DOC (1.7-4.0mg/L) and

  7. Carbon and Nitrogen dynamics in forest soils depending on light conditions and tree species

    Science.gov (United States)

    Veselinovic, Bojana; Hager, Herbert

    2013-04-01

    Climate change mitigation actions under the Kyoto Protocol apply among other decreases of CO2-emissions and/or increases of carbon (C) stocks. As soils represent the second biggest C-reservoir on Earth, an exact estimation of the stocks and reliable knowledge on C-dynamics in forest soils is of high importance. Anyhow, here, the accurate GHG-accounting, emission reductions and increase in C stocks is hampered due to lack of reliable data and solid statistical methods for the factors which influence C-sequestration in and its release from these systems. In spite of good progress in the scientific research, these factors are numerous and diverse in their interactions. This work focuses on influence of the economically relevant tree species - Picea abies, Fagus sylvatica and Quercus spp. - and light conditions on forest floor and mineral soil C and N dynamics in forest soils. Spruce monocultures have been widely used management practices in central European forests during the past century. Such stands are in lower altitudes and on heavy and water logged soils unstable and prone to disturbances, especially to windthrows. We hypothesize that windthrow areas loose C & N and that the establishment of the previous nutrient stocks is, if at all, only possible to be reached over the longer periods of time. We research also how the increased OM depletion affects the change of C & N stocks in forest floor vs. mineral soil. Conversion of such secondary spruce monocultures to site adequate beech and oak forests may enable higher stocks allocated predominantly as stable organic carbon and as plant available nitrogen. For this purpose sites at 300-700 m altitude with planosols were chosen in the region of the Northern Alpine Foothills. A false chronosequence approach was used in order to evaluate the impacts of the tree species and change in light conditions on dynamic of C & N in the forest floor and mineral soil, over the period 0-100 (for oak 120 y.) years. The C- and N

  8. Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions

    Science.gov (United States)

    Cai, X.; Yang, Z.-L.; Fisher, J. B.; Zhang, X.; Barlage, M.; Chen, F.

    2016-01-01

    Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station - a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.

  9. Detecting groundwater discharge dynamics from point to catchment scale in a lowland stream: combining hydraulic and tracer methods

    Directory of Open Access Journals (Sweden)

    J. B. Poulsen

    2014-12-01

    Full Text Available Detecting, quantifying, and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the surface water–groundwater interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point to catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point scale groundwater fluxes to the stream were quantified based on Vertical streambed Temperature Profiles (VTP. At the reach scale (0.15–2 km the spatial distribution of zones of focused groundwater discharge was investigated by the use of Distributed Temperature Sensing (DTS. Groundwater discharge to the stream was quantified using differential gauging with an Acoustic Doppler Current Profiler (ADCP. At the catchment scale (26–114 km2 runoff sources during main rain events were investigated by hydrograph separations based on Electrical Conductivity (EC and stable isotopes 2H / 1H. Clear differences in runoff sources between catchments were detected, ranging from approximately 65% event water for the most responsive sub-catchment and less than 10% event water for the least responsive sub-catchment. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments, indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during events. There were also clear spatial patterns of focused groundwater discharge detected by the DTS and ADCP measurements at the reach scale suggesting high spatial variability, where a significant part of groundwater discharge was concentrated in few zones indicating the possibility of concentrated nutrient or pollutant

  10. Interactive effects of changing climate, increasing atmospheric CO2, nitrogen deposition and disturbance on carbon and nitrogen dynamics in Oregon forests

    Science.gov (United States)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.

    2012-12-01

    Disturbance and climate are two of the most important factors governing forest carbon storage and uptake. Disturbances by fire, insects, and diseases that can reduce forest carbon storage have significantly increased in recent years, and this trend is projected to continue. We examined forest carbon dynamics in response to climate, increased atmospheric CO2 and nitrogen deposition in Oregon for the period 2010-2100, assuming current harvest rates would continue. We used the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP 4.5 (moderate GHG reductions) and RCP 8.5 (high emissions) scenarios. For the RCP 4.5 moderate GHG reductions scenario, regional relative humidity remains constant overtime, predicted atmospheric CO2 concentrations rise to 550 ppm and nitrogen deposition varies from 2.2 kg N ha-1 yr-1 in the mesic ecoregions to 3.3 kg N ha-1 yr-1 in the semi-arid ecoregions. This is a change of 5.5 kg N ha-1 yr-1). At the end of the 21st century, predicted regional net ecosystem production (NEP) is 13.7 Tg C yr-1 (107 g C m-2 yr-1) for business-as-usual (BAU) conditions compared with the current NEP of 13.2 ± 1.6 Tg C yr-1 (103 g C m-2 yr-1). There is no significant influence on NEP by changing climate, nitrogen deposition, and increasing CO2 concentrations in the long term for the moderate RCP 4.5 scenario. Increases in BAU net primary production (NPP) are accompanied by increases in heterotrophic respiration (Rh) from a warmer climate, resulting in no change in NEP. Predicted soil mineral nitrogen is maintained for the first 40-50 years and then declines. In Pacific Northwest forests, our results support the hypothesis that increases in NPP and Rh due to climate warming are enhanced by CO2 fertilization and warming until nitrogen limitation occurs and carbon uptake declines following a peak in 2030 and then drops below its current value. We applied clearcut management scenarios

  11. Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in Northern Michigan

    Directory of Open Access Journals (Sweden)

    B. Seok

    2012-12-01

    Full Text Available The dynamic behavior of nitrogen oxides (NOx = NO + NO2 and ozone (O3 above and within the canopy at the University of Michigan Biological Station AmeriFlux (UMBS Flux site was investigated by continuous multi-height vertical gradient measurements during the summer and the fall of 2008. A daily maximum in nitric oxide (NO levels was consistently observed during the morning hours between 06:00 and 09:00 EST above the canopy. Daily NO maxima ranged between 0.2 and 2 ppbv (with a median of 0.3 ppbv, which was 2 to 20 times above its atmospheric background. The sources and causes of this NO maximum were evaluated using NOx and O3 measurements and synoptic and micrometeorological data. This analysis was further supported by numerical simulations with a multi-layer canopy exchange model implemented into a single-column chemistry-climate model. The observations indicated that the morning NO maximum was caused by the photolysis of NO2 from non-local air masses, which were transported into the canopy from aloft during the morning breakup of the nocturnal boundary layer. The analysis of simulated process tendencies indicated that the downward turbulent transport of NOx into the canopy compensates for the removal of NOx through chemistry and dry deposition. The sensitivity of NOx and O3 concentrations on soil and foliage NOx emissions was also assessed with the model. Uncertainties associated with the emissions of NOx from the soil or from leaf-surface nitrate photolysis did not explain the observed diurnal behavior in NOx (and O3, and in particular, the morning NOx peak mixing ratio. However, when considering the existence of a NO2 compensation point, an increase in the early morning NOx and NO peak mixing ratios by ~30% was simulated. This increase suggests the potential

  12. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production.

    Science.gov (United States)

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-08-01

    The study synergistically optimized nitrogen and phosphorous concentrations for attainment of maximum lipid productivity in Chlorella minutissima. Nitrogen and phosphorous limited cells (N(L)P(L)) showed maximum lipid productivity (49.1±0.41mg/L/d), 1.47 folds higher than control. Nitrogen depletion resulted in reduced cell size with large sized lipid droplets encompassing most of the intracellular space while discrete lipid bodies were observed under nitrogen sufficiency. Synergistic N/P starvations showed more prominent effect on photosynthetic pigments as to individual deprivations. Phosphorous deficiency along with N starvation exhibited 17.12% decline in carbohydrate while no change in nitrogen sufficient cells were recorded. The optimum N(L)P(L) concentration showed balance between biomass and lipid by maintaining intermediate cell size, pigments, carbohydrate and proteins. FAME profile showed C14-C18 carbon chains in N(L)P(L) cells with biodiesel properties comparable to plant oil methyl esters. Hence, synergistic N/P limitation was effective for enhancing lipid productivity with reduced consumption of nutrients.

  13. Carbon dynamics in subtropical forest soil. Effects of atmospheric carbon dioxide enrichment and nitrogen addition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juxiu X.; Zhou, Guoyi Y.; Zhang, Deqiang Q.; Duan, Honglang L.; Deng, Qi; Zhao, Liang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Xu, Zhihong H. [Griffith Univ., Nathan, Queensland (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2010-06-15

    The levels of atmospheric carbon dioxide concentration ([CO{sub 2}]) are rapidly increasing. Understanding carbon (C) dynamics in soil is important for assessing the soil C sequestration potential under elevated [CO{sub 2}]. Nitrogen (N) is often regarded as a limiting factor in the soil C sequestration under future CO{sub 2} enrichment environment. However, few studies have been carried out to examine what would happen in the subtropical or tropical areas where the ambient N deposition is high. In this study, we used open-top chambers to study the effect of elevated atmospheric [CO{sub 2}] alone and together with N addition on the soil C dynamics in the first 4 years of the treatments applied in southern China. Materials and methods Above- and below-ground C input (tree biomass) into soil, soil respiration, soil organic C, and total N as well as dissolved organic C (DOC) were measured periodically in each of the open-top chambers. Soil samples were collected randomly in each chamber from each of the soil layers (0-20, 20-40, and 40-60 cm) using a standard soil sampling tube (2.5-cm inside diameter). Soil leachates were collected at the bottom of the chamber below-ground walls in stainless steel boxes. Results and discussion The highest above- and below-ground C input into soil was found in the high CO{sub 2} and high N treatment (CN), followed by the only high N treatment (N+), the only high CO{sub 2} treatment (C+), and then the control (CK) without any CO{sub 2} enrichment or N addition. DOC in the leachates was small for all the treatments. Export of DOC played a minor role in C cycling in our experiment. Generally, soil respiration rate in the chambers followed the order: CN treatment > C + treatment > N + treatment > the control. Except for the C+ treatment, there were no significant differences in soil total N among the CN treatment, N + treatment, and the control. Overall, soil organic C (SOC) was significantly affected by the treatments (p < 0.0001). SOC

  14. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume.

    Science.gov (United States)

    Ma, Jie; Nossa, Carlos W; Alvarez, Pedro J J

    2015-09-01

    The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a surrogate ethanol blend fuel plume (10% ethanol + 50 mg/L benzene + 50 mg/L toluene). Two-year continuous ethanol-blended release significantly changed the groundwater geochemistry (resulted in anaerobic, low pH, and organotrophic conditions) and increased bacterial and archaeal populations by 82- and 314-fold respectively. Various anaerobic heterotrophs (fermenters, acetogens, methanogens, and hydrocarbon degraders) were enriched. Two years after the release was shut off, all contaminants and their degradation byproducts disappeared and groundwater geochemistry completely restored to the pre-release states (aerobic, neutral pH, and oligotrophic). Bacterial and archaeal populations declined by 18- and 45-fold respectively (relative to the time of shut off). Microbial community structure reverted towards the pre-release states and alpha diversity indices rebounded, suggesting the resilience of microbial community to ethanol blend releases. We also found shifts from O2-sensitive methanogens (e.g., Methanobacterium) to methanogens that are not so sensitive to O2 (e.g., Methanosarcina and Methanocella), which is likely to contribute to the persistence of methanogens and methane generation following the source removal. Overall, the rapid disappearance of contaminants and their metabolites, rebound of geochemical footprints, and resilience of microbial community unequivocally document the natural capacity of groundwater ecosystem to attenuate and recover from a large volume of catastrophic spill of ethanol-based biofuel.

  15. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River basin, Maryland

    Science.gov (United States)

    McFarland, Randolph E.

    1997-01-01

    In an effort to improve water quality in Chesapeake Bay, agricultural practices are being promoted that are intended to reduce contaminant transport to the Bay. The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River basin, Maryland, during 1986-92. Nitrogen load was larger in ground water than in surface runoff at both sites. At the study site in the Piedmont Province, nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pound per acre per year) as corn under no-till cultivation was replaced by no-till soybeans, continuous alfalfa, and contoured strip crops alternated among corn, alfalfa, and soybeans. At the study site in the Coastal Plain Province, no-till soybeans resulted in a nitrogen load in ground water of 12.55 (lb/acre)/yr, whereas conventional-till soybeans resulted in a nitrogen load in ground water of 11.51 (lb/acre)/yr.

  16. Nitrogen fertilization and root growth dynamics of durum wheat for a sustainable production

    Directory of Open Access Journals (Sweden)

    Donato De Giorgio

    2012-07-01

    Full Text Available In an area of the Apulian Tavoliere (southern Italy, the effects of three levels of nitrogen fertilization (0, 50 and 100 kg N ha–1 on root development, growth analysis and yield parameters of durum wheat were evaluated. The research was conducted over a four-year period (1994-97. The non-destructive mini-rhizotron method was used to study the root system at stem extension and at the beginning of heading and ripening stages. At the end of tillering and at boot and flowering stages, samples of wheat biomass were taken and subjected to growth analysis. Yield data and the main biometric parameters were collected at harvest time. The doses of nitrogen (N fertilizer 50 and 100 kg N ha–1 had a greater effect on root development in the 20-30 cm soil layer and on epigeal biomass than the control test (N0 without nitrogen fertilization. In the test (N0 the growth of root and epigeal biomass was slower during the first vegetative phases, however, afterwards both of them recovered and the root system was mainly developed in the 30-40 cm soil layer. A better development of root system in deeper soil layers, without nitrogen supply, has allowed the plant to overcome more easily the water-deficit and thermal stresses during the ripening stage. The results of this research have shown that the production of grain with 50 kg ha–1 of N is similar to those of 100 kg ha–1 of N doses and higher than the test without nitrogen fertilization. In this kind of environment can be recommended a nitrogen dose of 50 kg ha–1 for obtaining an increase in grain production with low costs and reduced agricultural sources of pollution.

  17. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    Science.gov (United States)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    Mycorrhizal fungi are ubiquitous symbionts on terrestrial plants that are particularly important for plant nitrogen nutrition. 15N content appears to be a useful marker of the mycorrhizal role in plant nitrogen supply because of an apparent fractionation against 15N during transfer of nitrogen from mycorrhizal fungi to host plants. Because plants developing during primary succession are gradually colonized by mycorrhizal fungi, such situations provide good opportunities to study interactions between mycorrhizal colonization and plant 15N content. Here, we present results of a study of nitrogen isotope patterns in ecosystem components during the first 100 years of ecosystem development after glacial retreat, and compare those patterns with those on adjacent mature terrain. Soils in primary succession were depleted in 15N relative to nitrogen-fixing plants. Nonmycorrhizal plants and plants generally colonized by ectomycorrhizal, ericoid, or arbuscular fungi showed similar 15N content very early in succession (-4 to -6‰ ), corresponding to low colonization levels of all plant species. Subsequent colonization of evergreen plants by ectomycorrhizal and ericoid fungi led to a 5-6‰ decline in 15N content, indicating transfer of 15N-depleted N from fungi to plants. The values recorded (-10 to -14‰ ) are among the lowest yet observed in vascular plants. Nonmycorrhizal plants and plants colonized by arbuscular mycorrhizal fungi did not decline in 15N content. Most ectomycorrhizal and saprotrophic fungi were similar in 15N content in early succession (-1 to -3‰ ), with the notable exception of ectomycorrhizal fungi suspected of proteolytic capabilities, which were 15N enriched relative to all other fungi. 15N contents in both plants and soil from the mature site were 5‰ greater than in recently exposed sites. We conclude that 1) the primary nitrogen source to this ecosystem must be atmospheric deposition, 2) low plant 15N content generally corresponds with greater

  18. The application of a dynamic OpenMI coupling between a regional climate model and a distributed surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    To support climate adaptation measures for water resources, we have developed and evaluated a dynamic coupling between a comprehensive distributed hydrological modelling system, MIKE SHE, and a regional climate modelling system, HIRHAM. The coupled model enables two-way interaction between......-dominated catchment, the Skjern River, Denmark. The 2500 km2 catchment model is embedded in a meso-scale (4000 km x 2800 km) climate modelling domain. By using the ERA Interim reanalysis as boundary conditions the coupling performance is evaluated against measurements of both climatic and hydrological variables...... the atmosphere and the groundwater via the soil and land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions as well as human interventions. The coupled model is applied to one-way and two-way coupled simulations for a managed groundwater...

  19. Non-Geometric Conditional Phase Gate by Quantum Zeno Dynamics in Laser-Excited Nitrogen-Vacancy Centers

    Institute of Scientific and Technical Information of China (English)

    SU Wan-Jun; SHEN Li-Tuo; WU Huai-Zhi; LIN Xiu

    2013-01-01

    Based on the quantum Zeno dynamics,we propose a two-qubit non-geometric conditional phase gate between two nitrogen-vacancy centers coupled to a whispering-gallery mode cavity.The varying phases design of periodic laser can be used for realizing non-geometric conditional phase gate,and the cavity mode is virtually excited during the gate operation.Thus,the fidelity of the gate operation is insensitive to cavity decay and the fluctuation of the preset laser intensity.The numerical simulation with a realistic set of experimental parameters shows that the gate fidelity 0.987 can be within reached in the near future.

  20. Dynamics of the nitrogen content in aboveground phytomass on the turf after fertilization of different forms of fertilizers

    OpenAIRE

    HRIC, Peter; Ján JANČOVIČ; Peter KOVÁR; Ľuboš VOZÁR

    2017-01-01

    The aim of this experiment was to find out dynamics of the nitrogen (N) content in aboveground phytomass on the turf after fertilization of different forms of fertilizers under non–irrigated conditions. The experiment was carried out in warm and dry conditions in the area of Nitra (Slovak Republic). There were included 7 treatments: 1. Without fertilization, 2. Saltpetre with dolomite, Superphosphate, Potassium salt, 3. Turf fertilizer 15–3–8 (+ 3MgO + 0.8Fe + 18S), 4. Slow release fertilizer...

  1. Short-term microbial dynamics in a drinking water plant treating groundwater with occasional high microbial loads.

    Science.gov (United States)

    Besmer, Michael D; Hammes, Frederik

    2016-12-15

    Short-term fluctuations in bacterial concentrations in drinking water systems, occurring on time scales of hours-to-weeks, are essentially unexplored due to a lack of microbial monitoring tools that allow high frequency measurements. Here, we applied fully automated online flow cytometry to measure the total cell concentrations (TCC) in both raw water (karstic groundwater) and treated water (flocculation - ultrafiltration (UF) - ozonation - granular active carbon (GAC) filtration) during a period of 70 days at high temporal resolution (n > 4000 for both water types). We detected and characterized in considerable detail aperiodic fluctuations in the raw water following regional precipitation, with TCC increasing up to 50-fold from a dry weather baseline of approximately 120 cells μl(-1) to an event peak of > 5000 cells μl(-1). Moreover, we observed the buffering of the treatment plant against these fluctuations, but in addition we recorded a completely unexpected periodic fluctuation of TCC in the treated water after GAC filtration. We concluded that the latter was the result of fluctuating water abstraction from the treatment plant reservoir by two connected water utilities, which resulted in variations in water throughput in the plant. This in turn influenced bacterial detachment and dilution in the GAC filter. This study provides strong evidence of multiple different microbial dynamics occurring in a drinking water treatment system. Given numerous possible sources of natural and operational fluctuations in raw water and drinking water treatment plants, such microbial fluctuations should be expected in many systems. The high-frequency monitoring approach presented herein can improve the understanding and eventual mitigation of such fluctuations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nitrogen dynamics of spring-fed wetland ecosystems of the Sierra Nevada foothills oak woodland

    Science.gov (United States)

    Randall D. Jackson; Barbara Allen-Diaz

    2002-01-01

    Spring-fed wetlands are small, highly productive, patchy ecosystems nested within the oak woodland/annual grassland matrix of the Sierra Nevada foothills. In an effort to place these wetlands in a landscape context, we described seasonal variation (1999-2000 growing season) in nitrogen cycling parameters at 6 spring-fed wetland sites of the Sierra Nevada foothill oak...

  3. Nitrogen and carbon dynamics in prairie vegetation strips across topographical gradients in mixed Central Iowa agroecosystems

    Science.gov (United States)

    Marlín Pérez-Suárez; Michael J. Castellano; Randall Kolka; Heidi Asbjornsen; Matthew. Helmers

    2014-01-01

    Reductions of nitrogen (N) export from agricultural lands because of changes in specific N stocks andfluxes by incorporation of small amounts of prairie vegetation strips (PVS) are poorly understood. Theprimary objective of this study was to evaluate the effect of the presence and topographical position of PVSon soil and plant carbon (C) and N stocks relative to annual...

  4. Dynamics of Nitric Oxide and Nitrous Oxide Emission during Nitrogen Conversion Processes

    NARCIS (Netherlands)

    Kampschreur, M.J.

    2010-01-01

    Nitric oxide (NO) and nitrous oxide (N2O) emissions can be a serious threat to the environment. Rising levels of N2O in the atmosphere contribute to global warming and destruction of the ozone layer. This thesis describes an investigation on the emission of NO and N2O during nitrogen conversion proc

  5. Thresholds of Disturbance: Land Management Effects on Vegetation and Nitrogen Dynamics

    Science.gov (United States)

    2005-03-31

    floor , and can cause an immediate increase in soil nutrients, including nitrogen (Schoch and Binkley 1986; Beckage and Stout 2000; Wan et al. 2001...Ultisols and Entisols and include Troup sandy loams (siliceous, thermic Grossarenic Kandiudults), Lakeland sands ( thermic , coated Typic Quartzipsamments...Ailey loamy sand (loamy, siliceous, thermic Arenic Kanhapludults), and Nankin sandy loams (clayey, kaolinitic, thermic Typic Kanhapludults

  6. Nitrogen dynamics in organic and conventional cotton production systems in India

    Science.gov (United States)

    Duboc, O.; Adamtey, N.; Forster, D.; Cadisch, G.

    2012-04-01

    Ongoing population growth still represents a challenge to agricultural production (food, fiber and fuel material supply). In spite of the undeniable achievements reached with the "green revolution" technologies, there is a growing awareness among scientists and policy makers that diverse and integrated approaches which are both productive and sustainable are now necessary to meet the agricultural challenges. Integrated and organic agriculture are such alternatives which need to be better investigated and implemented. While long-term experiments in temperate regions have assessed the effect of organic agriculture on different crops and soil quality, there is currently a lack of reliable data from tropical regions, such as findings arising from long-term systems comparison trials. This has necessitated a long-term system comparison trials in Kenya, Bolivia and India by the Research Institute of Organic Agriculture (FiBL) and its partners (icipe, BioRe, Ecotop and Institute of Ecology) (www.systems-comparison.fibl.org). In India the project is based in Madhya Pradesh, in which organic and conventional production systems are being compared in a 2-yr crop rotation - cotton (yr 1) and soybean-wheat (yr 2). The field trial is planned for a time span of 10-20 years, in order to investigate long-term effects of those production systems on yields, soil characteristics, or economic return. A PhD study is incorporated into this project to investigate the effect of the production systems on soil characteristics. The main focus will be on nitrogen cycling under the different production systems. Particular attention will be given to nitrogen use efficiencies and the synchrony of nitrogen availability (e.g. nitrogen mineralization with the polyethylene bag technique, monitoring of soil mineral N) with plant nitrogen uptake, for which allometric equations will be calibrated in order to circumvent destructive sampling on the plots of the long-term experiment. Nitrogen losses

  7. [Dynamic changes in functional genes for nitrogen bioremediation of petroleum-contaminated soil cycle during].

    Science.gov (United States)

    Wu, Bin-Bin; Lu, Dian-Nan; Liu, Zheng

    2012-06-01

    Microorganisms in nitrogen cycle serve as an important part of the ecological function of soil. The aim of this research was to monitor the abundance of nitrogen-fixing, denitrifying and nitrifying bacteria during bioaugmentation of petroleum-contaminated soil using real-time polymerase chain reaction (real-time PCR) of nifH, narG and amoA genes which encode the key enzymes in nitrogen fixation, nitrification and ammoniation respectively. Three different kinds of soils, which are petroleum-contaminated soil, normal soil, and remediated soil, were monitored. It was shown that the amounts of functional microorganisms in petroleum-contaminated soil were far less than those in normal soil, while the amounts in remediated soil and normal soil were comparable. Results of this experiment demonstrate that nitrogen circular functional bacteria are inhibited in petroleum-contaminated soil and can be recovered through bioremediation. Furthermore, copies of the three functional genes as well as total petroleum hydrocarbons (TPH) for soils with six different treatments were monitored. Among all treatments, the one, into which both E. cloacae as an inoculant and wheat straw as an additive were added, obtained the maximum copies of 2.68 x 10(6), 1.71 x 10(6) and 8.54 x 10(4) per gram dry soil for nifH, narG and amoA genes respectively, companying with the highest degradation rate (48% in 40 days) of TPH. The recovery of functional genes and removal of TPH were better in soil inoculated with E cloacae and C echinulata collectively than soil inoculated with E cloacae only. All above results suggest that the nitrogen circular functional genes could be applied to monitor and assess the bioremediation of petroleum-contaminated soil.

  8. Dynamics of the nitrogen content in aboveground phytomass on the turf after fertilization of different forms of fertilizers

    Directory of Open Access Journals (Sweden)

    Peter HRIC

    2017-06-01

    Full Text Available The aim of this experiment was to find out dynamics of the nitrogen (N content in aboveground phytomass on the turf after fertilization of different forms of fertilizers under non–irrigated conditions. The experiment was carried out in warm and dry conditions in the area of Nitra (Slovak Republic. There were included 7 treatments: 1. Without fertilization, 2. Saltpetre with dolomite, Superphosphate, Potassium salt, 3. Turf fertilizer 15–3–8 (+ 3MgO + 0.8Fe + 18S, 4. Slow release fertilizer SRF NPK 14–5–14 (+ 4CaO + 4MgO + 7S, 5. Controlled release fertilizer Duslocote NPK (S 13-9-18 (+ 6S, 6. Organic fertilizer Condit (5-1-1 and 7. Organic fertilizer Veget (3-2-1. In the begging of the seasons fertilizing by controlled release fertilizer Duslocote NPK (S 13-9-18 (+ 6S had a slow onset of action. The opposite trend had use of organic fertilizer Condit (5-1-1 on nitrogen content in aboveground turf phytomass. The nitrogen concentration was statistically higher in variants fertilized with inorganic fertilizer and organic fertilizer Condit (5-1-1 (33,727 mg*kg-1 – 36,737 mg*kg-1 as a non-fertilized turf (28,446 mg*kg-1. Higher nitrogen content in aboveground phytomass was after application of organic fertilizer Condit (5-1-1 into the turf in comparison with fertilization inorganic fertilizers.

  9. Mineralization of organic matter with warming in boreal forest soils is influenced by nitrogen dynamics

    Science.gov (United States)

    Li, J.; Ziegler, S. E.; Lane, C. S.; Billings, S. A.

    2011-12-01

    Temperature is an important factor in regulating soil organic matter (SOM) decomposition, but the drivers of microbial substrate choice with changing temperature regimes remain poorly elucidated. For example, nitrogen (N) dynamics play a key role in dictating activity levels of different microbial groupings, which in turn may influence who in a microbial community is better able to take advantage of more favorable energetics in a warmer soil profile. These issues are particularly important for large SOM reservoirs, such as those in the boreal biome. To address these issues, we collected soils in organic horizons from two forested sites along the Newfoundland-Labrador Boreal Ecosystem Latitude Transect (NL-BELT) in eastern Canada. Sites differ in latitude and mean annual temperature, but are similar in forest cover and soil type. We incubated humified Oe+Oa materials and replaced Oi with low or high C:N coniferous litter possessing a distinct δ13C signature for 120 days at 15°C and 20°C. During the incubation, we assessed respiratory CO2 losses and its origin via δ13C of CO2, microbial biomass, and the activity of multiple exo-enzymes associated with the mineralization of slow-turnover and more labile substrates. As predicted by enzyme kinetics, warming positively influenced respiratory loss and the proportion of CO2 derived from more humified SOM, particularly in late stages of the incubation. We observed no interaction effect of warming and Oi C:N on respired CO2 or microbial biomass C or N in soil from either site. Oi C:N influenced respiratory loss from higher latitude soils, with lower C:N Oi input dampening respiration rates early in the incubation, and promoting it at later stages. Late in the incubation, when the positive effect of warming on CO2 release from more humified SOM was most pronounced, the warming-induced increase in phenol oxidase activity was further enhanced when Oi material had a relatively low C:N by factors of 1.87 and 17 for lower vs

  10. A Physically Based Dynamic Recrystallization Model Considering Orientation Effects for a Nitrogen Alloyed Ultralow Carbon Stainless Steel during Hot Forging

    Institute of Scientific and Technical Information of China (English)

    Gan-lin XIE; An HE; Hai-long ZHANG; Gen-qi WANG; Xi-tao WANG

    2016-01-01

    The nitrogen alloyed ultralow carbon stainless steel is a good candidate material for primary loop pipes of AP1000 nuclear power plant.These pipes are manufactured by hot forging,during which dynamic recrystallization acts as the most important microstructural evolution mechanism.A physically based model was proposed to describe and predict the microstructural evolution in the hot forging process of those pipes.In this model,the coupled effects of dislocation density change,dynamic recovery,dynamic recrystallization and grain orientation function were con-sidered.Besides,physically based simulation experiments were conducted on a Gleeble-3500 thermo-mechanical sim-ulator,and the specimens after deformation were observed by optical metallography (OM)and electron back-scat-tered diffraction (EBSD)method.The results confirm that dynamic recrystallization is easy to occur with increasing deformation temperature or strain rate.The grains become much finer after full dynamic recrystallization.The model shows a good agreement with experimental results obtained by OM and EBSD in terms of stress-strain curves,grain size,and recrystallization kinetics.Besides,this model obtains an acceptable accuracy and a wide applying scope for engineering calculation.

  11. Dynamic Metabolic Flux Analysis Demonstrated on Cultures Where the Limiting Substrate Is Changed from Carbon to Nitrogen and Vice Versa

    Directory of Open Access Journals (Sweden)

    Gaspard Lequeux

    2010-01-01

    Full Text Available The main requirement for metabolic flux analysis (MFA is that the cells are in a pseudo-steady state, that there is no accumulation or depletion of intracellular metabolites. In the past, the applications of MFA were limited to the analysis of continuous cultures. This contribution introduces the concept of dynamic MFA and extends MFA so that it is applicable to transient cultures. Time series of concentration measurements are transformed into flux values. This transformation involves differentiation, which typically increases the noisiness of the data. Therefore, a noise-reducing step is needed. In this work, polynomial smoothing was used. As a test case, dynamic MFA is applied on Escherichia coli cultivations shifting from carbon limitation to nitrogen limitation and vice versa. After switching the limiting substrate from N to C, a lag phase was observed accompanied with an increase in maintenance energy requirement. This lag phase did not occur in the C- to N-limitation case.

  12. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A multi-tracer approach to delineate groundwater dynamics in the Rio Actopan Basin, Veracruz State, Mexico

    Science.gov (United States)

    Pérez Quezadas, Juan; Heilweil, Victor M.; Cortés Silva, Alejandra; Araguas, Luis; Salas Ortega, María del Rocío

    2016-07-01

    Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11-20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.

  14. A multi-tracer approach to delineate groundwater dynamics in the Rio Actopan Basin, Veracruz State, Mexico

    Science.gov (United States)

    Pérez Quezadas, Juan; Heilweil, Victor M.; Cortés Silva, Alejandra; Araguas, Luis; Salas Ortega, María del Rocío

    2016-12-01

    Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11-20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.

  15. Quantifying Grassland-to-Woodland Transitions and the Implications for Carbon and Nitrogen Dynamics in the Southwest United States

    Science.gov (United States)

    Wessman, Carol A.; Archer, Steven R.; Asner, Gregory P.; Bateson, C. Ann

    2004-01-01

    Replacement of grasslands and savannas by shrublands and woodlands has been widely reported in tropical, temperate and high-latitude rangelands worldwide (Archer 1994). These changes in vegetation structure may reflect historical shifts in climate and land use; and are likely to influence biodiversity, productivity, above- and below ground carbon and nitrogen sequestration and biophysical aspects of land surface-atmosphere interactions. The goal of our proposed research is to investigate how changes in the relative abundance of herbaceous and woody vegetation affect carbon and nitrogen dynamics across heterogeneous savannas and shrub/woodlands. By linking actual land-cover composition (derived through spectral mixture analysis of AVIRIS, TM, and AVHRR imagery) with a process-based ecosystem model, we will generate explicit predictions of the C and N storage in plants and soils resulting from changes in vegetation structure. Our specific objectives will be to (1) continue development and test applications of spectral mixture analysis across grassland-to-woodland transitions; (2) quantify temporal changes in plant and soil C and N storage and turnover for remote sensing and process model parameterization and verification; and (3) couple landscape fraction maps to an ecosystem simulation model to observe biogeochemical dynamics under changing landscape structure and climatological forcings.

  16. Nitrogen attenuation along delivery pathways in agricultural catchments

    Science.gov (United States)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  17. Transpiration and Groundwater Uptake Dynamics of Pinus Brutia on a Fractured Mediterranean Mountain Slope during Two Hydrologically Contrasting Years

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2017-04-01

    Semi-arid environments tend to have extreme temporal variability in rainfall, resulting in extended periods with little to no precipitation. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. Tree species survive in these environments by developing various adaptation mechanisms to access water. The main objective of this study is to examine the differences of two hydrologically contrasting years on the transpiration and groundwater uptake dynamics of Pinus brutia trees. We selected four trees for sap flow monitoring in an 8966-m2 fenced area of Pinus brutia forest. The site is located at 620 m elevation, on the northern foothills of the Troodos mountains in Cyprus. The slope of the site ranges between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. Monitoring started on 1 January 2015 and is ongoing. We measured soil depth in a 1-m grid around each of the selected trees for monitoring. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the selected trees. We installed seventeen soil moisture sensors at 12-cm depth and two at 30-cm depth, where the soil was deeper than 24 cm. We randomly installed 28 metric manual rain gauges under the trees' canopy to measure throughfall. For stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used sap flow heat ratio method (HRM) instruments to determine sap flow rates of the Pinus brutia. Hourly meteorological conditions were observed by an automatic meteorological station. Here we present the results of the January to October periods, in order to have comparable results for the two contrasting years. During the wet year of 2015, we measured 439

  18. Nitrogen dynamics in the tidal freshwater Potomac River, Maryland and Virginia, water years 1979-81

    Science.gov (United States)

    Shultz, David J.

    1989-01-01

    On an annual basis, river-supplied nitrate is the predominant form of nitrogen supplied to the tidal Potomac River from external sources. Much of the nitrate is associated with high flows that have rapid transit times through the tidal river. The Blue Plains Sewage-Treatment Plant (STP) at Washington, D.C., is the greatest source of all nitrogen species during low-flow periods. Prior to the fall of 1980, ammonia concentrations in depth-integrated, composited water samples were greatest (more than 1.00 mg/L (milligram per liter) as nitrogen) during summer periods near Alexandria, Va., because of loading from the nearby Blue Plains STP and reduced river discharge. After the fall of 1980, initiation of advanced wastewater treatment at the Blue Plains STP reduced ammonia loading to the river by 90 percent and increased nitrate loading by a similar percentage. As a result, concentrations of ammonia during the 1981 low-flow period were less than 0.20 mg/L as nitrogen at Alexandria, while nitrate concentrations were greater than 1.50 mg/L as nitrogen. Concentrations of ammonia and nitrate at Alexandria were shown to be reasonably predictable by use of a simple dilution model that considers only loading from Chain Bridge and the Blue Plains STP. This apparently is the result of the short residence time through the Chain Bridge-to-Alexandria section of the tidal Potomac River, which precludes significant biological alterations. In marked contrast, the residence times of water parcels in the tidal Potomac River from Alexandria to Quantico, Va., are much greater because of the geometry of the reach. Biological nitrogen-cycle transformation processes affect nitrogen-species concentrations to a greater extent in this reach, especially during summer low-flow periods. Mass-balance calculations that separate changes in transport mass from biological transformations indicatethat the tidal Potomac River was a net sink for all the nitrogen constituents during the 1980 and 1981 summer

  19. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  20. Molecular-dynamics simulations of the dynamical excitations in commensurate submonolayer films of nitrogen molecules on graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter; Taub, H.

    1996-01-01

    The dynamics of commensurate submonolayer solids of N-2 molecules adsorbed on the basal planes of graphite have been studied using molecular-dynamics simulations. The calculations yielded the temperature dependence of the Brillouin-zone-center gap in the acoustic-phonon branches, for comparison...

  1. Dynamical variations in groundwater chemistry influenced by intermittent water delivery at the lower reaches of the Tarim River

    Institute of Scientific and Technical Information of China (English)

    CHENYongjin; CHENYaning; LIUJiazhen; LIWeihong; IJun; XUChangchun

    2005-01-01

    The water of Bosten Lake was released to lower reaches of the Tarim River for 5 times from 2000 to 2002. The changes of total dissolved solid (TDS) and the major ions (SO42-, Cl-, Na-,Ca2+, Mg2- and HCO3- ) were analyzed during this period. It was found out that TDS and the concentrations of the major ions initially and quickly increased and then decreased, but finally increased again. These changes were different at different distances from the river, which indicated that the groundwater changes relied on the distance from the river. In addition, the salt in groundwater was only diluted but not removed by the water. It was suggested that ecological measures should be sought to really promote the quality of the groundwater at the lower reaches of the Tarim River.

  2. Using groundwater age to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand

    Science.gov (United States)

    Morgenstern, U.; Daughney, C. J.; Leonard, G.; Gordon, D.; Donath, F. M.; Reeves, R.

    2014-08-01

    The water quality of Lake Rotorua has declined continuously over the past 50 yr despite mitigation efforts over recent decades. Delayed response of the groundwater discharges to historic land-use intensification 50 yr ago was the reason suggested by early tritium measurements, which indicated large transit times through the groundwater system. We use the isotopic and chemistry signature of the groundwater for detailed understanding of the origin, fate, flow pathways, lag times, and future loads of contaminants. A unique set of high-quality tritium data over more than four decades, encompassing the time when the tritium spike from nuclear weapons testing moved through the groundwater system, allows us to determine detailed age distribution parameters of the water discharging into Lake Rotorua. The Rotorua volcanic groundwater system is complicated due to the highly complex geology that has evolved through volcanic activity. Vertical and steeply-inclined geological contacts preclude a simple flow model. The extent of the Lake Rotorua groundwater catchment is difficult to establish due to the deep water table in large areas, combined with inhomogeneous groundwater flow patterns. Hierarchical cluster analysis of the water chemistry parameters provided evidence of the recharge source of the large springs near the lake shore, with discharge from the Mamaku ignimbrite through lake sediment layers. Groundwater chemistry and age data show clearly the source of nutrients that cause lake eutrophication, nitrate from agricultural activities and phosphate from geologic sources. With a naturally high phosphate load reaching the lake continuously via all streams, the only effective way to limit algae blooms and improve lake water quality in such environments is by limiting the nitrate load. The groundwater in the Rotorua catchment, once it has passed through the soil zone, shows no further decrease in dissolved oxygen, indicating absence of electron donors in the aquifer that

  3. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    Science.gov (United States)

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  4. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Science.gov (United States)

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  5. Evolutionarily stable strategy of carbon and nitrogen investments in forest leaves and its application in vegetation dynamic modeling

    Science.gov (United States)

    Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.

    2015-12-01

    Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The

  6. Effects of poultry manure, compost, and biochar amendments on soil nitrogen dynamics in maize production systems

    Science.gov (United States)

    Ryals, R.; Tang, J.; Hastings, M. G.; Dell, C. J.; Sims, T.

    2013-12-01

    Intensification of animal agriculture has profound impacts on the global and local biogeochemistry of nitrogen (N), resulting in consequences to environmental and human health. In the Chesapeake Bay watershed, intensive agriculture is the primary contributor to N pollution, with animal manure comprising more than half of N from agriculture. Management interventions may play an important role in mitigating reactive N pollution in the Bay watershed. The objective of our research was to test management strategies that maximize benefits of poultry manure as an agricultural resource while minimizing it as a source of reactive nitrogen to the atmosphere and ground and surface waters. We conducted field experiments in two agricultural regions of the Chesapeake Bay watershed (Georgetown, Delaware and State College, Pennsylvania) to explore the effects of poultry manure amendments on gaseous N losses and soil N transformations. Treatments were applied at rates needed to meet the plant N demand at each site and included unfertilized controls, fertilizer N (urea), and raw, composted, or and biocharred poultry manure. The fate of the N from all sources was followed throughout the growing season. Global greenhouse gases emitted from soil (nitrous oxide [N2O] and carbon dioxide [CO2]) and regional air pollutants (nitrogen oxides [NOx] and ammonia [NH3]) were measured. Gas measurements were coupled with data on treatment effects on temperature, moisture, and concentrations of nitrate (NO3¬-) and ammonium (NH4+) in surface soils (0-10 cm). Soil NO3- and NH4+ were also measured approximately monthly in the soil profile (0-10, 10-30, 30-50, 50-70, and 70-100 cm) as an index of leaching potential. Plant N uptake and grain production were also quantified to quantify crop N use efficiency and compare measured N losses for each N source. Our results suggest that the form of poultry manure amendments can affect the magnitude of reactive N losses to the environment.

  7. Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil

    Science.gov (United States)

    Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara

    2017-04-01

    The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact

  8. Effects of plant diversity on microbial nitrogen and phosphorus dynamics in soil

    Science.gov (United States)

    Prommer, Judith; Braun, Judith; Daly, Amanda; Gorka, Stefan; Hu, Yuntao; Kaiser, Christina; Martin, Victoria; Meyerhofer, Werner; Walker, Tom W. N.; Wanek, Wolfgang; Wasner, Daniel; Wiesenbauer, Julia; Zezula, David; Zheng, Qing; Richter, Andreas

    2017-04-01

    There is a general consensus that plant diversity affects many ecosystem functions. One example of such an effect is the enhanced aboveground and belowground plant biomass production with increasing species richness, with implications for carbon and nutrient distribution in soil. The Jena Experiment (http://www.the-jena-experiment.de/), a grassland biodiversity experiment established in 2002 in Germany, comprises different levels of plant species richness and different numbers of plant functional groups. It provides the opportunity to examine how changes in biodiversity impact on microbially-mediated nutrient cycling processes. We here report on plant diversity and plant functional composition effects on growth and nitrogen and phosphorus transformation rates, including nitrogen use efficiency, of microbial communities. Microbial growth rates and microbial biomass were positively affected by increasing plant species richness. Amino acid and ammonium concentrations in soil were also positively affected by plant species richness, while phosphate concentrations in contrast were negatively affected. The cycling of organic N in soils (estimated as gross protein depolymerization rates) increased about threefold with plant diversity, while gross N and P mineralization were not significantly affected by either species or functional richness. Microbial nitrogen use efficiency did not respond to different levels of plant diversity but was very high (0.96 and 0.98) across all levels of plant species richness, demonstrating a low N availability for microbes. Taken together this indicates that soil microbial communities were able to meet the well-documented increase in plant N content with species richness, and also the higher N demand of the microbial community by increasing the recycling of organic N such as proteins. In fact, the microbial community even overcompensated the increased plant and microbial N demand, as evidenced by increased levels of free amino acids and

  9. Maps of critical loads and exceedance for sulfur and nitrogen to forest soils in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Frogner, T.; Wright, R.F.; Cosby, B.J.; Esser, J.M.

    1994-12-31

    This report uses the dynamic MAGIC (Model of Acidification of Groundwater in Catchments) model to calculate critical loads of sulfur and nitrogen for forest soils in Norway. Inputs include soil survey data, atmospheric deposition data, forest productivity data, and surface water chemistry. Two scenarios for future sulfur deposition are used with two scenarios of nitrogen retention in catchments. The magnitude and patterns of calculated nitrogen critical loads and exceedance differ substantially depending on the scenario chosen for sulfur deposition and nitrogen retention. In the worst case, critical loads for N are low and exceeded in southernmost Norway. In the best case, critical loads for N are high and not exceeded. More information on the processes controlling N retention in forested ecosystems is of utmost importance for the specification of nitrogen critical loads. 25 refs., 14 figs., 1 table

  10. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.|info:eu-repo/dai/nl/304838403

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic

  11. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic alg

  12. Modeling biogeochemical processes in subterranean estuaries : Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.; Slomp, C.P.; Tuncay, K.; Meile, C.

    2008-01-01

    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3 −, NH4 +, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox

  13. Surface water, groundwater and unified 3D-crack network as a triple coupling dynamic system for a river watershed functioning - manifestation in catastrophic floods

    Science.gov (United States)

    Trifonova, Tatiana; Tulenev, Nikita; Trifonov, Dmitriy; Arakelian, Sergei

    2014-05-01

    stimulating a trigger mechanism for releasing of groundwater; (ii) the crackness/fracturing structure as a characteristic property for all rocks, being dissecting by totality of cracks/fissures and along which (in the case when a good development crack becomes a fault) a vertical and/or lateral movement (of both groundwater and surface water mass) occurs as a result of excessive strain; (iii) areas of formation and modification in time of groundwater transit system, and especially the modalities for it exit on surface by different factors including tectonic processes under adjustable conditions for both localization of earthquake epicenters/volcanos activity areas and occurring floods in respect of propagating of seismic waves and dislocation of border for lithospheric plates/magma objects in the river basin region; (iv) the way of distribution over surface for water flows/fronts in the further, which can be described by nonlinear hydrodynamic approach, e.g. by different classes of solutions for Korteweg-de Vries equation, associated with observable natural phenomena. 4. Monitoring in dynamics of state of hydrostatic/hydrodynamic pressures in underground aquifers (e.g. by artesian wells in comparison with two databases: before and after the events) is an important factor in assessing of acceptable risk for the events. Combining it with monitoring of seismic activity should allow to make a more detailed forecasting and zoning of potentially dangerous areas for such natural disasters.

  14. Nitrogen Dynamics of the Savanna Flux Site at Skukuza, Kruger National Park.

    Science.gov (United States)

    Woghiren, A. J.; Scholes, M.

    2001-12-01

    The SAFARI 2000 campaign aims at validating satellite-based estimates of photosynthesis and net primary productivity (NPP). The Skukuza site has two vegetation types, a Combretum (broad-leafed) savanna and an Acacia (fine-leafed) savanna. Since it is expected that these two vegetation types may have markedly different responses to global climate change, it is an ideal site for the Earth observing systems (EOS) validation experiment. NPP estimates need to be explained and supported using corresponding data on the N (nitrogen) budgets for the site. Plants capable of nitrogen fixation usually had higher % N and lower \\delta15N signatures than their non-nitrogen-fixing counterparts. Most species had isotopically enriched signatures relative to the standard, which was air. The mean enrichments for the legumes varied from -1.76 to 3.32%, while that of the non-legumes ranged from 3.02 to 7.08%. In the herbaceous layer, Stylosanthes fruticosa and Macrotyloma maranguense had the highest fixation rates, with 84% and 41% being contributed by each species respectively (4.9 - 6.8 kg N ha-1 yr-1 is fixed in this layer). Since these species occurred in dense patches at the broad-leafed site, it was assumed that this was the contribution of N2 fixation to this savanna. The dominant N2 fixing tree was Acacia nilotica, with 50 % of its N being fixed. Trees at the fine-leafed site fixed between 2.9 - 5.5 kg N ha-1 yr-1, while herbaceous legumes contributed 4.9 - 6.8 kg N ha-1 yr-1. Nitrogen mineralisation is seasonal, with particularly high rates of mineralisation in spring. In winter, NH4+ dominates at the fine-leafed site, when it is scarcely detectable at the broad-leafed site. On the other hand, nitrate prevails in summer at the fine-leafed site, while it is being immobilised at the broad-leafed site. In contrast to another South African savanna, NH4+ is detected in large quantities (0.85 μ g N g-1 dry soil day-1) at both sites during summer. The nitrification rates are

  15. Dynamics of nitrogen concentration on intercropped ryegrass - 10.4025/actascianimsci.v34i1.12661

    Directory of Open Access Journals (Sweden)

    Alexandre Mossate Gabbi

    2011-11-01

    Full Text Available The dynamics of nitrogen (N in ryegrass intercropped with different forage species with regard to dry matter (DM accumulation within an agroecological transition system was evaluated. Annual ryegrass was intercropped with black oats (RY + BO, white clover (RY + WC and forage peanut (RY + FP. The experimental design was completely randomized, with three replications. The study applied the N dilution model for plant tissue which comparatively uses modifiable factors of the environment at optimal levels. The model shows decline in N concentration due to the DM accumulation of temperate grass pastures. Data were compared to model by the root mean square deviation analysis. Dilution coefficient (β, used in all pasture samples, was lower than -0.60. Highest N concentration decline in plant tissues, due to DM accumulation, occurred in RY + WC pastures (β = -0.94, followed by RY + FP (β = - 0.86 and RY + BO (β = - 0.67, respectively. Ryegrass intercropped with white clover showed the highest N content in plant tissue, with a nitrogen nutrition index close to the proposed model.

  16. Dynamics of ethanol production from deproteinized whey by Kluyveromyces marxianus: An analysis about buffering capacity,thermal and nitrogen tolerance

    Directory of Open Access Journals (Sweden)

    Nathalia Lima Moreira

    2015-06-01

    Full Text Available The production of value-added products could be a valuable option for cheese wastewater management. However, this kind of study cannot just focus alone on getting the final product. This also necessitates studies on the dynamics of bioprocesses. With these as background, the present investigation aimed at evaluating the buffering capacity of deproteinized whey and effect of temperature and nitrogen source on ethanol yields from it. The batch fermentation conditions used to evaluate ethanol production were temperatures 30, 35, 40°C and pH 4.5, 5.0, 5.5, 6.0. To study the influence of nitrogen source on ethanol yield, a design matrix was applied using yeast extract and (NH42SO4.The final pH was analyzed to evaluate the buffering capacity. The results showed that the Kluyveromyces marxianus was thermotolerance to produce ethanol at 35 and 40°C, which was not observed at 30°C. Results also showed that the deproteinization procedure did not affect the buffering capacity of cheese whey. Finally, higher ethanol production was obtained using yeast extract (3% v/v. These results could be important for developing low-cost method for industrial production of ethanol from deproteinized whey.

  17. Dissolved Nitrogen and Phosphorus Dynamics in the Lower Portion of the Paraiba do Sul River, Campos dos Goytacazes, RJ, Brazil

    Directory of Open Access Journals (Sweden)

    Silva Mônica Aparecida Leite

    2001-01-01

    Full Text Available The Paraíba do Sul river lower reach was monitored monthly between August 1995 and July 1996. This study was aimed at evaluating the temporal dynamics of dissolved nitrogen and phosphorus and its main controlling factors. Minimum and maximum observed values were as follows: N-NO2- - 0.08/0.51; N-NO3- - 21/57; N-NH4+ - 1.4/6.7; DON - 4.9/86.0; DIN -24.5/60.9; P-PO4(3- - 0.43/1.66; DOP - 0.05/0.92; pH - 6.2/7.8; Dissolved Oxygen - 6.4/10.1; Conductivity - 48/74; Temperature - 20.5/31.1 (Nutrients - µM; Dissolved Oxygen - mg/l; Conductivity - µS/cm; Temperature - °C. Discharge presented a characteristic seasonal variation, showing a peak in January. Increasing P-PO4(3-, DOP, N-NH4+ and N-NO2- concentrations with increasing discharges could be associated to the partial flooding of inumerous fluvial islands and floodplains and to the agricultural practices of sugar cane crops that during the wet season could transfer nitrogen and phosphorus compounds to the fluvial channel.

  18. Tracing Crop Nitrogen Dynamics on the Field-Scale by Combining Multisensoral EO Data with an Integrated Process Model- A Validation Experiment for Cereals in Southern Germany

    Science.gov (United States)

    Hank, Tobias B.; Bach, Heike; Danner, Martin; Hodrius, Martina; Mauser, Wolfram

    2016-08-01

    Nitrogen, being the basic element for the construction of plant proteins and pigments, is one of the most important production factors for agricultural cultivation. High resolution and near real-time information on nitrogen status in the soil thus is of highest interest for economically and ecologically optimized fertilizer planning and application. Unfortunately, nitrogen storage in the soil column cannot be directly observed with Earth Observation (EO) instruments. Advanced EO supported process modelling approaches therefore must be applied that allow tracing the spatiotemporal dynamics of nitrogen transformation, translocation and transport in the soil and in the canopy. Before these models can be applied as decision support tools for smart farming, they must be carefully parameterized and validated. This study applies an advanced land surface process model (PROMET) to selected winter cereal fields in Southern Germany and correlates the model outputs to destructively sampled nitrogen data from the growing season of 2015 (17 sampling dates, 8 sample locations). The spatial parametrization of the process model thereby is supported by assimilating eight satellite images (5 times Landsat 8 OLI and 3 times RapidEye). It was found that the model is capable of realistically tracing the temporal and spatial dynamics of aboveground nitrogen uptake and allocation (R2 = 0.84, RMSE 31.3 kg ha-1).

  19. Effects of a Control Release Nitrogen Fertilizer and Thinning on the Nitrogen Dynamics of a Mid-Rotation Loblolly Pine Stand in the Piedmont of Virginia

    OpenAIRE

    Elliot, James Robertson

    2006-01-01

    Nitrogen deficiency is characteristic of many mid-rotation loblolly pine (Pinus taeda L.) plantations in the Piedmont region of the southeastern USA. Fertilization with urea is the most common method used to correct this deficiency. Previous studies show that urea fertilization produces a rapid pulse of available nitrogen (N) with only a portion being utilized by plantation trees. Controlled release fertilizers release available N more slowly over a longer period of time and therefore may ...

  20. Effects of a Control Release Nitrogen Fertilizer and Thinning on the Nitrogen Dynamics of a Mid-Rotation Loblolly Pine Stand in the Piedmont of Virginia

    OpenAIRE

    Elliot, James Robertson

    2006-01-01

    Nitrogen deficiency is characteristic of many mid-rotation loblolly pine (Pinus taeda L.) plantations in the Piedmont region of the southeastern USA. Fertilization with urea is the most common method used to correct this deficiency. Previous studies show that urea fertilization produces a rapid pulse of available nitrogen (N) with only a portion being utilized by plantation trees. Controlled release fertilizers release available N more slowly over a longer period of time and therefore may ...

  1. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes....... In 2005, FI and PRD2 were investigated, where FI plants received 100% of evaporative demands, while PRD2 plants received 70% water of FI at each irrigation event after tuber initiation. In 2006, besides FI and PRD2 treatments, DI and PRDI receiving 70% water of FI during the whole season were also studied....... Crop N uptake and residual NH (4)-N and NO3-N to a depth of 0-50 cm, at 10 cm intervals were analyzed. For both years, the PRD2 treatment resulted in 30% water saving and maintained yield as compared with the FI treatment, while when investigated in 2006 only, DI and PRDI treatments resulted...

  2. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    Science.gov (United States)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  3. Trend Analyses of Nitrate in Danish Groundwater

    Science.gov (United States)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  4. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    Science.gov (United States)

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  5. DRAINMOD-FOREST: Integrated Modeling of Hydrology, Soil Carbon and Nitrogen Dynamics, and Plant Growth for Drained Forests.

    Science.gov (United States)

    Tian, Shiying; Youssef, Mohamed A; Skaggs, R Wayne; Amatya, Devendra M; Chescheir, G M

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model, which was adapted mainly from the 3-PG model. The forest growth model estimates net primary production, C allocation, and litterfall using physiology-based methods regulated by air temperature, water deficit, stand age, and soil N conditions. The performance of the newly developed DRAINMOD-FOREST model was evaluated using a long-term (21-yr) data set collected from an artificially drained loblolly pine ( L.) plantation in eastern North Carolina, USA. Results indicated that the DRAINMOD-FOREST accurately predicted annual, monthly, and daily drainage, as indicated by Nash-Sutcliffe coefficients of 0.93, 0.87, and 0.75, respectively. The model also predicted annual net primary productivity and dynamics of leaf area index reasonably well. Predicted temporal changes in the organic matter pool on the forest floor and in forest soil were reasonable compared to published literature. Both predicted annual and monthly nitrate export were in good agreement with field measurements, as indicated by Nash-Sutcliffe coefficients above 0.89 and 0.79 for annual and monthly predictions, respectively. This application of DRAINMOD-FOREST demonstrated its capability for predicting hydrology and C and N dynamics in drained forests under limited silvicultural practices.

  6. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy Impact on canopy photosynthesis

    NARCIS (Netherlands)

    Dreccer, M.F.; Oijen, van M.; Schapendonk, A.H.C.M.; Pot, C.S.; Rabbinge, R.

    2000-01-01

    The development of vertical canopy gradients of leaf N has been regarded as an adaptation to the light gradient that helps to maximize canopy photosynthesis. In this study we report the dynamics of vertical leaf N distribution during vegetative growth of wheat in response to changes in N availabilit

  7. [Impacts of reclaimed water irrigation of urban lawn on groundwater quality].

    Science.gov (United States)

    Wang, Qiao-Huan; Chen, Wei-Ping; Wang, Xiao-Ke; Ren, Yu-Fen; Zhang, Ye

    2012-12-01

    Based on long-term monitoring of groundwater and irrigation water quality, the dynamics of the main physicochemical property and pollutant concentration of groundwater influenced by reclaimed water irrigation were examined in this study. The results of our five-year continuous study showed that the ammonium nitrogen concentration in reclaimed water ranged 0.05-65.4 mg x L(-1) with an average of 12.0 mg x L(-1), which exceeded the urban miscellaneous water quality standards for urban greening (GB/T 18920-2002). The total nitrogen in reclaimed water averaged at 28.3 mg x L(-1), ranging from 2.56 mg x L(-1) to 78.0 mg x L(-1), which was also relatively high. The groundwater quality indexes were normal with small fluctuations under tap-water irrigation. The influence of lawn irrigation with reclaimed water on the groundwater water quality was significant in the shallow well with a depth of 6 m, but not obvious in the deep well with a depth of 20 m. The greatest change was found in the enhanced value of nitrate concentration. The nitrate nitrogen concentration in shallow underground water had significantly positive correlation but lagging with the concentration of dissolved nitrogen in the irrigation reclaimed water, which indicated that lawn irrigation with reclaimed water might cause nitrate nitrogen pollution in shallow underground water. Therefore, considering the huge water consumption for the urban greening, it is suggested that the criteria of reclaimed water reuse should be further improved to avoid the risk of environmental pollution.

  8. Carbon and nitrogen dynamics in mesocosms of five different European peatlands

    Science.gov (United States)

    Blodau, Christian; Zajac, Katarzyna

    2015-04-01

    Elevated nitrogen (N) deposition, a key growth limiting nutrient in ombrotrophic peatlands, can cause various shifts in peatland N cycling. Quantification of N transformation rates and fluxes within peatlands that are induced by long-term N deposition is crucial for understanding the mechanisms and robustness of N retention. Using a 15N labeled tracer under steady state conditions at two water table levels, we investigated the fate of N in mesocosms from five European peatlands, which have a history of differing long-term N load. Peat contained the largest N pool, followed by Sphagnum (0 - 5 cm), shrubs, graminoids and the dissolved pool. We found a decline of N recovery from the peat and an increase of N recovery from shrubs and the dissolved pool across the N deposition gradient. Sphagnum mosses not only intercepted large amounts of 15N in the mesocosms (0.2 - 0.35 mg g-1) but they also retained the tracer most effectively relative to their biomass. Polluted sites (Lille Vildmose, Frölichshaier Sattelmoor) contained the largest dissolved nitrogen pools and the highest nitrate concentrations. At the same time the recoveries of their Sphagnum pools were in the range of the recovery recorded for the Sphagnum layer from the 'clean' site (Degerö Stormyr). Our experiment shows that a decline in N retention at levels above ca. 1.5 g m-2 yr-1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, might not be an evidence for Sphagnum saturation. As long as N is required for the synthesis of biomass Sphagnum species can thrive even at strongly elevated long-term N loads. A change in WT position from -28 to -8 cm influenced CO2 fluxes from mesocosms only to a small degree, which implies that small changes in water table position may be less important in controlling CO2 exchange with the atmosphere than often assumed. Although water table rise was a main driver for increase of methane emissions in all cores, short time lags (3

  9. Groundwater Dynamics as an Essential Factor in the Precipitation of the Pine Point MVT Lead-Zinc Deposits

    Science.gov (United States)

    Weyer, K. U.

    2014-12-01

    Hypotheses on the genesis of MVT lead zinc deposits place that genesis generally well into the geological past with elevated temperatures in the 100 °C range. In the case of the Pine Point lead zinc deposits, the time of genesis has been assumed to have happened from the Middle Devonian age to the Tertiary age. It is generally said that, based on isotope data, the ore forming fluid there must have been hydrothermal in a temperature range of 100 °C or more. The average homogenized temperature in fluid inclusions in dolomite in the Pine Point area has been reported to be 116 °C and the burial temperature at about 70 °C. In the course of a former joint industry/governmental research project on regional and local groundwater flow, water chemistry, and water isotopes, all available regional and local geological and mineral data for exploration bore holes were collected. The massive body of these data indicated that in the Pine Point region, the present groundwater flow systems and their respective chemistry would support the continuous formation of ore bodies from glacial times to the present day. This body of data provides strong indications that the interplay of today's groundwater flow systems, their chemistry, and the associated microbiological activity may currently be forming MVT ore bodies and mineral showings even at low non-hydrothermal temperatures in the range of 3 °C. Upon abandonment of Pine Point Mines this suspicion was supported by the occurrence of a 'black smoker' discharging from a flowing hole near one of the formerly mined ore bodies (Figure 1). At Pine Point, MVT ore bodies are positioned within karstic rocks at the intersection of two active and very substantial groundwater flow systems. In one of these systems, groundwater carries sulphate, while the other, upwelling one, also carries NaCl and metals. At the ore bodies, microbiological populations of sulfur-reducing bacteria are present and participate in forming conditions for ore

  10. A calibration protocol of a one-dimensional moving bed bioreactor (MBBR) dynamic model for nitrogen removal.

    Science.gov (United States)

    Barry, U; Choubert, J-M; Canler, J-P; Héduit, A; Robin, L; Lessard, P

    2012-01-01

    This work suggests a procedure to correctly calibrate the parameters of a one-dimensional MBBR dynamic model in nitrification treatment. The study deals with the MBBR configuration with two reactors in series, one for carbon treatment and the other for nitrogen treatment. Because of the influence of the first reactor on the second one, the approach needs a specific calibration strategy. Firstly, a comparison between measured values and simulated ones obtained with default parameters has been carried out. Simulated values of filtered COD, NH(4)-N and dissolved oxygen are underestimated and nitrates are overestimated compared with observed data. Thus, nitrifying rate and oxygen transfer into the biofilm are overvalued. Secondly, a sensitivity analysis was carried out for parameters and for COD fractionation. It revealed three classes of sensitive parameters: physical, diffusional and kinetic. Then a calibration protocol of the MBBR dynamic model was proposed. It was successfully tested on data recorded at a pilot-scale plant and a calibrated set of values was obtained for four parameters: the maximum biofilm thickness, the detachment rate, the maximum autotrophic growth rate and the oxygen transfer rate.

  11. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator.

    Science.gov (United States)

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-02-23

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed.

  12. TILLAGE AND DYNAMICS OF INORGANIC NITROGEN IN ECOLOGICAL AND INTEGRATION MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    J SMATANA

    2002-05-01

    Full Text Available During the period of 1991-1993 in the field experiment, the effect of different soil management (tillage 0,24 m and tillage 0,12-0,15 m in ecological and integration management system on changes of inorganic nitrogen (Nan = N-NH4 + + N-NO3 - content in the soil layer from 0 up to 0,6 m of the soil depth (0,00-0,30 m and 0,30- 0,60 m were studied. Trials were held in a warm climatic zone of the South – Western Slovakia on the brown soil. Different soil management systems (tillage 0,24 m and tillage 0,12-0,15 m considerably did not affected ammonification and nitrification processes in the soil. The sustainability of minimalization via shallow ploughing is not excluded, on the contrary this minimalization may have high a positive influence on economic saving the energy, labour costs, etc. The quantitative and qualitative changes of studied form of N were significantly effected by weather and soil depth. Soil content of N-NH4 + and N-NO3 - was in negative correlation with soil depth.

  13. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen

    OpenAIRE

    Airoldi, Edoardo M.; Miller, Darach; Athanasiadou, Rodoniki; Brandt, Nathan; Abdul-Rahman, Farah; Neymotin, Benjamin; Hashimoto, Tatsu; Bahmani, Tayebeh; Gresham, David

    2016-01-01

    Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. In Saccharomyces cerevisiae (budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen sour...

  14. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. Wegehenkel

    2009-08-01

    Full Text Available Vegetation affects water balance of the land surface by e.g. storage of precipitation water in the canopy and soil water extraction by transpiration. Therefore, it is essential to consider the role of vegetation in affecting water balance by taking into account the temporal dynamics of e.g. leaf area index, rooting depth and stomatal conductance in hydrological models. However until now, most conceptual hydrological models do not treat vegetation as a dynamic component. This paper presents an analysis of the effects of the application of two different complex vegetation models combined with a hydrological model on the model outputs evapotranspiration and groundwater recharge. Both model combinations were used for the assessment of the effects of climate change on water balance in a mesoscale catchment loctated in the Northeastern German Lowlands. One vegetation model assumes a static vegetation development independent from environmental conditions. The other vegetation model calculates dynamic development of vegetation based on photosynthesis, respiration, allocation, and phenology. The analysis of the results obtained from both model combinations indicated the importance of taking into account vegetation dynamics in hydrological models especially if such models are used for the assessment of the impacts of climate change on water balance components.

  15. Simulation of the long-term carbon and nitrogen dynamics in Dutch forest soils under Scots pine

    Directory of Open Access Journals (Sweden)

    B.-J. Groenenberg

    1998-01-01

    Full Text Available Dynamics of C and N in forest soils in the Nutrient Cycling and Soil Acidification Model (NUCSAM are described by the transformation and decomposition of three organic matter compartments, litter, fermented material and humic material. These three compartments are allocated to the morphological distinguishable L, F and H horizons of the organic layer. Changes in the pools of these organic compartments are described with first order equations for decomposition and transformation. Rate constants for decomposition and transformation were derived by calibrating the model to measured organic matter pools in organic layers of a chrono-sequence of five first succession Scots pine stands between 15 and 120 years old. Simulated pools of organic matter in the organic layers were in agreement with measured pools in the five pine stands, except for the first thirty years of the H-horizon. During this period, an increase in organic matter in the H horizon was simulated while no H horizons were observed in the field. The simulated total pool of organic matter in the organic layer agreed well with values from a field inventory in 20 other Scots pine stands, but the simulated distribution over the three horizons differed from the field measurements which varied among sites. For the Scots pine stands the model was able to simulate the organic matter accumulation in the top 40-cm of the mineral soil; derived almost completely from fine root turnover. The accumulated pool of nitrogen in the organic layer was in agreement with measured pools for the oldest Scots pine stand but was too high for the younger stands. Especially, the accumulation of N in the F-horizon was too fast, presumably due to an overestimated retention of nitrogen.

  16. Non-Redfield carbon and nitrogen cycling in the Arctic: Effects of ecosystem structure and dynamics

    Science.gov (United States)

    Daly, Kendra L.; Wallace, Douglas W. R.; Smith, Walker O.; Skoog, Annelie; Lara, RubéN.; Gosselin, Michel; Falck, Eva; Yager, Patricia L.

    1999-02-01

    The C:N ratio is a critical parameter used in both global ocean carbon models and field studies to understand carbon and nutrient cycling as well as to estimate exported carbon from the euphotic zone. The so-called Redfield ratio (C:N = 6.6 by atoms) [Redfield et al., 1963] is widely used for such calculations. Here we present data from the NE Greenland continental shelf that show that most of the C:N ratios for particulate (autotrophic and heterotrophic) and dissolved pools and rates of transformation among them exceed Redfield proportions from June to August, owing to species composition, size, and biological interactions. The ecosystem components that likely comprised sinking particles and had relatively high C:N ratios (geometric means) included (1) the particulate organic matter (C:N = 8.9) dominated by nutrient-deficient diatoms, resulting from low initial nitrate concentrations (approximately 4 μM) in Arctic surface waters; (2) the dominant zooplankton, herbivorous copepods (C:N = 9.6), having lipid storage typical of Arctic copepods; and (3) copepod fecal pellets (C:N = 33.2). Relatively high dissolved organic carbon concentrations (median 105 μM) were approximately 25 to 45 μM higher than reported for other systems and may be broadly characteristic of Arctic waters. A carbon-rich dissolved organic carbon pool also was generated during summer. Since the magnitude of carbon and nitrogen uncoupling in the surface mixed layer appeared to be greater than in other regions and occurred throughout the productive season, the C:N ratio of particulate organic matter may be a better conversion factor than the Redfield ratio to estimate carbon export for broad application in northern high-latitude systems.

  17. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  18. Changes in Microbial Nitrogen Dynamics with Soil Depth, and along a Latitudinal Transect in Western Siberia

    Science.gov (United States)

    Wild, B.; Schnecker, J.; Knoltsch, A.; Takriti, M.; Mooshammer, M.; Gentsch, N.; Mikutta, R.; Alves, R.; Gittel, A.; Lashchinskiy, N.; Richter, A.

    2015-12-01

    Plant productivity is often limited by low N availability, and this has been attributed to the slow breakdown of N-containing polymers such as proteins into amino acids that are small enough for uptake. Under such conditions, plants and microorganisms efficiently use the available N for growth, and the microbial release of excess N as ammonium (N mineralization), as well as the transformation of ammonium into nitrate (nitrification) is low. Nitrogen limitation is expected to increase towards high latitudes as conditions become less favourable for decomposition. On the other hand, within an ecosystem, microbial N limitation is expected to decrease with soil depth, following the decrease in the C/N ratio of organic matter. To test these hypotheses, we sampled organic topsoils, mineral topsoils and mineral subsoils from seven ecosystems along a latitudinal transect in Western Siberia, ranging from tundra (67°N) to boreal forest and further to steppe (54°N), and determined gross rates of protein depolymerization, N mineralization and nitrification using 15N pool dilution assays. We found that all rates decreased with depth following the decrease in organic matter content. Related to microbial biomass, however, only protein depolymerization decreased with depth, whereas N mineralization and nitrification significantly increased. This pattern was consistent across the seven ecosystems studied. Furthermore, we did not find indications for a decrease in microbial N limitation from arctic to temperate systems. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth. With microbial N immobilization constrained by low C availability, subsoils might harbour an easily available N pool that can contribute to plant N nutrition, but might also promote N losses from the ecosystem, e.g., by nitrate leaching, even in high latitude systems such as tundra and boreal

  19. Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan

    Directory of Open Access Journals (Sweden)

    T.-Y. Lee

    2014-02-01

    Full Text Available Dissolved inorganic nitrogen (DIN, including ammonium, nitrite and nitrate export from land to ocean is becoming dominated by anthropogenic activities and severely altering the aquatic ecosystem. However, rare observational analyses have been conducted in the Oceania, the hotspot of global DIN export. In this study a whole watershed monitoring network (20 stations was conducted in 2003 to investigate the controlling factors of DIN export in the Danshui River of Taiwan. The results showed that DIN concentration ranged from ∼16 μM in the headwater and up to ∼430 μM in the estuary. However, the dominating DIN species transformed gradually from NO3− in the headwater (∼97% to NH4+ in the estuary (∼70%, which well followed the descending dissolved oxygen (DO distribution (from ∼8 mg L−1 to ∼1 mg L−1. NO2− was observed in the transition zone from high to low DO. DIN yield was increasing downstream, ranging from ∼160 to ∼6000 kg N km−2 yr−1 as population density increases toward the estuary, from ∼15 pop km−2 to ∼2600 pop km−2. Although the individual DIN export, ∼2.40 kg N person−1 yr−1, was comparable to the global average, the close-to-top DIN yield was observed owing to abundant rainfall, dense population, and the sensitive response to population increase. The Danshui River occupies 1.8 × 10−3% of the land surface area of the Earth but discharges disproportionately high percentage, ∼60 × 10−3% (∼14 000 t N yr−1 of the annual global DIN export to the ocean. Through this study, regulating factors and the significance of human population on DIN export were identified, and the regional databases were supplemented to promote the completeness of global models.

  20. Dynamics of biochemical properties associated with soil nitrogen mineralization following nitrification inhibitor and fungicide applications.

    Science.gov (United States)

    Zhang, Manyun; Wang, Weijin; Wang, Jun; Teng, Ying; Xu, Zhihong

    2017-04-01

    Agrochemical applications may have side effects on soil biochemical properties related to soil nitrogen (N) mineralization and thus affect N cycling. The present study aimed to evaluate the effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) and fungicide iprodione on soil neutral protease (NPR), alkaline protease (APR), chitinase (CHI), and their functional genes (nprA, aprA, and chiA) related to soil N mineralization. The following four treatments were included: blank control (CK), single DMPP application (DAA), weekly iprodione applications (IPR), and the combined applications of DMPP and iprodione (DI). Compared with the CK treatment, DMPP application significantly inhibited the CHI activity in the first 14 days of incubation, and iprodione applications, particularly when applied alone, decreased the NPR, APR, and CHI activities. Relative to the IPR treatment, extra DMPP application had the potential to alleviate the inhibitory effects of iprodione on the activities of these enzymes. DMPP application significantly increased aprA gene abundances after 14 days of incubation. However, repeated iprodione applications, alone or with the DMPP, decreased nprA and chiA gene abundances. Relative to the CK treatment, DMPP application generated negligible effects on the positive/negative correlations between soil enzyme activities and the corresponding functional gene abundances. However, the positive correlation between the CHI activity and chiA gene abundance was changed to negative correlation by repeated iprodione applications, alone or together with the DMPP. Our results demonstrated that agrochemical applications, particularly repeated fungicide applications, can have inadvertent effects on enzyme activities and functional gene abundances associated with soil N mineralization.

  1. Temporal dynamics of groundwater-surface water interaction under the effects of climate change: A case study in the Kiskatinaw River Watershed, Canada

    Science.gov (United States)

    Saha, Gopal Chandra; Li, Jianbing; Thring, Ronald W.; Hirshfield, Faye; Paul, Siddhartho Shekhar

    2017-08-01

    Groundwater-surface water (GW-SW) interaction plays a vital role in the functioning of riparian ecosystem, as well as sustainable water resources management. In this study, temporal dynamics of GW-SW interaction were investigated under climate change. A case study was chosen for a study area along the Kiskatinaw River in Mainstem sub-watershed of the Kiskatinaw River Watershed, British Columbia, Canada. A physically based and distributed GW-SW interaction model, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), was used. Two different greenhouse gas (GHG) emission scenarios (i.e., A2: heterogeneous world with self-reliance and preservation of local identities, and B1: more integrated and environmental friendly world) of SRES (Special Report on Emissions Scenarios) from Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) were used for climate change study for 2020-2040. The simulation results showed that climate change influences significantly the temporal patterns of GW-SW interaction by generating variable temporal mean groundwater contributions to streamflow. Due to precipitation variability, these contributions varied monthly, seasonally, and annually. The mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to be 74.5% (σ = 2%) and 75.6% (σ = 3%), respectively. As compared to that during the base modeling period (2007-2011), the mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to decrease by 5.5% and 4.4%, respectively, due to the increased precipitation (on average 6.7% in the A2 and 4.8% in the B1 scenarios) and temperature (on average 0.83 °C in the A2 and 0.64 °C in the B1 scenarios). The results obtained from this study will provide useful information in the long-term seasonal and annual water extractions from the river for future water supply, as well as for evaluating the ecological conditions of the

  2. Real-time observation of ultrafast dynamics of individual rotational states in a molecular wavepacket with strong-field-ionization-induced nitrogen lasing

    CERN Document Server

    Zeng, Bin; Li, Guihua; Yao, Jinping; Zhang, Haisu; Ni, Jielei; Jing, Chenrui; Xie, Hongqiang; Cheng, Ya

    2014-01-01

    Molecular rotational spectroscopy based on strong-field-ionization-induced nitrogen laser is employed to investigate the time evolution of the rotational wave packet composed by a coherent superposition of quantum rotational states created in a field-free molecular alignment. We show that this technique uniquely allows real-time observation of the ultrafast dynamics of the individual rotational states in the rotational wavepacket. Our analysis also shows that there exist two channels of generation of the nitrogen laser, shedding new light on the population inversion mechanism behind the air laser generated by intense femtosecond laser pulses.

  3. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen....... Therefore secondly a much simpler mass balance approach is used with lumped descriptions of the most important hydrological processes controlling water level and groundwater inflow to the system. The water level dynamics are here described and bracketed nicely and a dynamic description of the seepage rate...... the dynamic description of groundwater seepage can be very useful in future studies of the links between seepage, soil water chemistry and vegetation in groundwater dependent terrestrial ecosystems....

  4. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles

    Science.gov (United States)

    Hobbie, Erik A.; Chen, Janet; Hanson, Paul J.; Iversen, Colleen M.; McFarlane, Karis J.; Thorp, Nathan R.; Hofmockel, Kirsten S.

    2017-05-01

    Peatlands encode information about past vegetation dynamics, climate, and microbial processes. Here, we used δ15N and δ13C patterns from 16 peat profiles to deduce how the biogeochemistry of the Marcell S1 forested bog in northern Minnesota responded to environmental and vegetation change over the past ˜ 10 000 years. In multiple regression analyses, δ15N and δ13C correlated strongly with depth, plot location, C / N, %N, and each other. Correlations with %N, %C, C / N, and the other isotope accounted for 80 % of variance for δ15N and 38 % of variance for δ13C, reflecting N and C losses. In contrast, correlations with depth and topography (hummock or hollow) reflected peatland successional history and climate. Higher δ15N in plots closer to uplands may reflect upland-derived DON inputs and accompanying shifts in N dynamics in the lagg drainage area surrounding the bog. The Suess effect (declining δ13CO2 since the Industrial Revolution) lowered δ13C in recent surficial samples. High δ15N from -35 to -55 cm probably indicated the depth of ectomycorrhizal activity after tree colonization of the peatland over the last 400 years, as confirmed by the occasional presence of wood down to -35 cm depth. High δ13C at ˜ 4000 years BP (-65 to -105 cm) could reflect a transition at that time to slower rates of peat accumulation, when 13C discrimination during peat decomposition may increase in importance. Low δ13C and high δ15N at -213 and -225 cm ( ˜ 8500 years BP) corresponded to a warm period during a sedge-dominated rich fen stage. The above processes appear to be the primary drivers of the observed isotopic patterns, whereas there was no clear evidence for methane dynamics influencing δ13C patterns.

  5. Soil and plant nitrogen dynamics of a tomato crop under different fertilization strategies

    DEFF Research Database (Denmark)

    Doltra, Jordi; Muñoz, P; Antón, A

    2010-01-01

    A field experiment was conducted in 2007 to investigate the effects of the N fertilizer source on the soil and plant N dynamics of a tomato crop grown in a sandy loam soil. The fertilization treatments were: mineral N-fertilization applied by fertigation (TM); organic N-fertilization (TO) with co......A field experiment was conducted in 2007 to investigate the effects of the N fertilizer source on the soil and plant N dynamics of a tomato crop grown in a sandy loam soil. The fertilization treatments were: mineral N-fertilization applied by fertigation (TM); organic N-fertilization (TO......) with compost obtained from the organic fraction of urban waste (OFUW); and a combined treatment (TC) with half organic and half mineral N. Compost was incorporated in November 2006. Plants were drip irrigated with well water. The nitrate concentrations in the irrigation solutions were determined on a weekly....... The model was calibrated using data from a previous experiment. No differences between treatments were observed with respect to yield or N content in marketable fruits. The amount of N left in the field at the end of the cropping period was significantly lower in TO than in TC and TM. Simulated plant growth...

  6. Temporal variation of transit time of rainfall-runoff water and groundwater flow dynamics inferred by noble gasses concentration (SF6, CFCs) in a forested small catchment (Fukushima, Japan)

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Time variant transit time of water in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway and water storage. Though rainstorm event has been recognized as active phase on catchment hydrology, accurate and precise time variance of water transit time and related water dynamics during rainstorm have not been well clarified yet. Here, in order to reveal temporal variation of mean transit time of groundwater and related hydrological processes in a forested small catchment during rainstorm event, periodic and intensive field observations (15 - 17th July 2015, rainfall of 100.8 mm in total) were conducted in Yamakiya district (Fukushima, Japan) from September 2014 to December 2015. Discharge volume, groundwater table and precipitation amount were measured in 10 minutes interval. Water samples were taken from groundwater, discharge water, soil water and precipitation for determination of stable isotopic compositions (δ18O, δ2H), inorganic solutes concentration and dissolved noble gasses concentration (CFC11, CFC12, CFC113, SF6) in water. Storm hydrograph and groundwater table clearly responded to rainfall event especially with more than 30 mm per day throughout monitoring period. According to SF6 concentration in water, the mean transit time of discharge water (perennial spring) showed 3 - 6.5 years in the no-rainfall period (steady state), but fluctuated from zero to 12.5 years in the rainstorm event with totally 100.8 mm (unsteady state). The mean transit time of discharge water dramatically altered from zero to 12.5 years from before to after the tentative hydrograph peak in the rising limb, indicating new water components were dominant before tentative hydrograph peak, whereas deep groundwater component with longer residence time contributed much to discharge after the tentative hydrograph peak. On the other hand, mean residence time of groundwater (water in 5 m well) ranged from 0.5 to 11.5 years

  7. The effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions

    Science.gov (United States)

    Aydan, Ö.; Ito, T.

    2015-11-01

    It is well known that some sinkholes or subsidence take place from time to time in the areas where abandoned room and pillar type mines exist. The author has been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region and there is a great concern about the stability of these abandoned mines during large earthquakes as well as in the long term. The 2003 Miyagi Hokubu and 2011 Great East Japan earthquakes caused great damage to abandoned mines and resulted in many collapses. The author presents the effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions and discusses the implications on the areas above abandoned lignite mines in this paper.

  8. Simulation of water and nitrogen dynamics as affected by drip fertigation strategies

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-jun; LI Jiu-sheng; ZHAO Bing-qiang; LI Yan-ting

    2015-01-01

    The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patterns and nutrient distributions under drip fertigation have been proved to be closely related to the fertigation strategies. In order to ifnd out the critical factors that affect the nutrient distribution under different drip fertigaiton strategies, a computer simulation model HYDRUS2D/3D was used to simulate the water and nitrate distribution for various fertigation strategies from a surface point source. Simulation results were compared with the observed ones from our previous studies. A 15° wedge-shaped plexiglass container was used in our experiment to represent one-twenty-fourth of the complete cylinder. The height of container is 40 cm, and the radius is 41 cm. The ammonium nitrate solution was added through a no. 7 needle connected to a Mariotte tube with a lfexible hose. The soil water content, nitrate and ammonium concentrations were measured. The comparison of simulated and observed data demonstrated that the model performed reliably. The numerical analysis for various fertigation strategies from a surface point source showed that: (1) The total amount of irrigation water, the concentration of the fertilizer solution and the amount of pure water used to lfush the pipeline after fertilizer solution application are the three critical factors inlfu-encing the distribution of water and fertilizer nitrogen in the soil. (2) The fresh water irrigation duration prior to fertigation has no obvious effect on nitrate distribution. The longer lfushing time period after fertigation resulted in nitrate accumulation closer to the wetting front. From the point of avoiding the possibility of nitrate loss from the root zone, we recommended that the lfushing time period should be as shorter as possible. (3) For a given amount of fertilizer, higher

  9. N fluxes in two nitrogen saturated forested catchments in Germany: dynamics and modelling with INCA

    Directory of Open Access Journals (Sweden)

    J.-J. Langusch

    2002-01-01

    Full Text Available The N cycle in forests of the temperate zone in Europe has been changed substantially by the impact of atmospheric N deposition. Here, the fluxes and concentrations of mineral N in throughfall, soil solution and runoff in two German catchments, receiving high N inputs are investigated to test the applicability of an Integrated Nitrogen Model for European Catchments (INCA to small forested catchments. The Lehstenbach catchment (419 ha is located in the German Fichtelgebirge (NO Bavaria, 690-871 m asl. and is stocked with Norway spruce (Picea abies (L. Karst. of different ages. The Steinkreuz catchment (55 ha with European beech (Fagus sylvatica L. as the dominant tree species is located in the Steigerwald (NW Bavaria, 400-460 m asl.. The mean annual N fluxes with throughfall were slightly higher at the Lehstenbach (24.6 kg N ha-1 than at the Steinkreuz (20.4 kg N ha-1. In both catchments the N fluxes in the soil are dominated by NO3. At Lehstenbach, the N output with seepage at 90 cm soil depth was similar to the N flux with throughfall. At Steinkreuz more than 50 % of the N deposited was retained in the upper soil horizons. In both catchments, the NO3 fluxes with runoff were lower than those with seepage. The average annual NO3 concentrations in runoff in both catchments were between 0.7 to 1.4 mg NO3-N L-1 and no temporal trend was observed. The N budgets at the catchment scale indicated similar amounts of N retention (Lehstenbach: 19 kg N ha-1yr-1 ; Steinkreuz: 17 kg N ha-1yr-1. The parameter settings of the INCA model were simplified to reduce the model complexity. In both catchments, the NO3 concentrations and fluxes in runoff were matched well by the model. The seasonal patterns with lower NO3 runoff concentrations in summer at the Lehstenbach catchment were replicated. INCA underestimated the increased N3 concentrations during short periods of rewetting in late autumn at the Steinkreuz catchment. The model will be a helpful tool for the

  10. A simulation model assisted study on water and nitrogen dynamics and their effects on crop performance in the wheat-maize system: (II) model calibration, evaluation and simulated experimentation

    Institute of Scientific and Technical Information of China (English)

    Hongzhan L(U); Weili LIANG; Guiyan WANG; David J.CONNOR; Glyn M. RIMMINGTON

    2009-01-01

    The test on the model with data collected from two years' field experiments revealed an ability to satisfactorily simulate crop parameters such as LAI, biomass accumulation and partitioning, yield, and variables influencing crop growth and development as nitrogen uptake by crops and partitioning in different organs, and dynamics of soil water and nitrogen including infiltration and leaching. With the model, crop yield, water use efficiency (WUE), nitrogen use efficiency (NYE) and water-nitrogen leaching at specific soil layers under various water and nitrogen management practices were simulated to provide data used as references for designing sustainable nitrogen and water management practices. The outputs of the simulated experiment with various treatments of irrigation and nitrogen application indicated that crop yield was closely related to water and nitrogen application, crop water use was positively related to irrigation amount, and nitrogen fertilization could improve the crop water use and WUE within certain limits. This is a valuable evidence to be considered in water-saving farming. Nitrogen uptake had a positive relation to nitrogen application, while irrigation to some extent improved its uptake by crops and hence increased NYE. Additionally, irrigation and fertilization had great effects on nitrogen leaching. Thus, in order to improve WUE and NYE, the model showed how nitrogen application and irrigation should be well coordinated.

  11. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    Science.gov (United States)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  12. Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation.

    Science.gov (United States)

    King, Andrew J; Preheim, Sarah P; Bailey, Kathryn L; Robeson, Michael S; Roy Chowdhury, Taniya; Crable, Bryan R; Hurt, Richard A; Mehlhorn, Tonia; Lowe, Kenneth A; Phelps, Tommy J; Palumbo, Anthony V; Brandt, Craig C; Brown, Steven D; Podar, Mircea; Zhang, Ping; Lancaster, W Andrew; Poole, Farris; Watson, David B; W Fields, Matthew; Chandonia, John-Marc; Alm, Eric J; Zhou, Jizhong; Adams, Michael W W; Hazen, Terry C; Arkin, Adam P; Elias, Dwayne A

    2017-02-10

    Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.

  13. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy;

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  14. Nitrogen Effects on Organic Dynamics and Soil Communities in Forest and Agricultural Systems

    Science.gov (United States)

    Grandy, S.; Neff, J.; Sinsabaugh, B.; Wickings, K.

    2008-12-01

    Human activities have doubled the global flux of biologically available N to terrestrial ecosystems but the effects of N on soil organic matter dynamics and soil communities remain difficult to predict. We examined soil organic matter chemistry and enzyme kinetics in three soil fractions (>250, 63-250, and lignin derivatives to total polysaccharides in the >250 μm fraction of the sugar maple/basswood system but there were no changes in other size classes or in the black oak/white oak system. We also measured significant increases in the ratio of lignin derivatives to N-bearing compounds in the 63-250 and >250 μm fractions in both ecosystems but not in the corn-based cropping system. Our results demonstrate that changes in soil organic matter chemistry resulting from atmospheric N deposition or fertilization are directly linked to variation in enzyme responses to increased N availability across ecosystems and soil size fractions.

  15. Dynamics of mature pea residue nitrogen turnover in unplanted soil under field conditions

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1994-01-01

    mineralizable after 2 yr of decomposition, indicating that the remaining residue N-15 was present in rather recalcitrant soil organic matter. After 90 days of decomposition N-15 unaccounted for corresponded to 10% of the input, increasing to 20-30% after 2-3 yr of decomposition. The main part of the N......The dynamics of N-15-labelled mature, pea (Pisum sativum L.) residue turnover in soil were studied in two 3 yr experiments, using residue sizes of decomposition there was a sharp decline in the amount of N-15 in organic...... to the biomass N-15, but the size of the potentially-mineralizable N-15 pool was much smaller than the biomass N-15 pool. After 3 yr of decomposition, 28% (Expt 1) and 45% (Expt 2) of the residue N-15 input was present in the topsoil in organic forms. Only 1-2% of the residual organic N-15 was potentially...

  16. Soil and plant nitrogen dynamics of a tomato crop under different fertilization strategies

    DEFF Research Database (Denmark)

    Doltra, Jordi; Muñoz, P; Antón, A

    2010-01-01

    ) with compost obtained from the organic fraction of urban waste (OFUW); and a combined treatment (TC) with half organic and half mineral N. Compost was incorporated in November 2006. Plants were drip irrigated with well water. The nitrate concentrations in the irrigation solutions were determined on a weekly......A field experiment was conducted in 2007 to investigate the effects of the N fertilizer source on the soil and plant N dynamics of a tomato crop grown in a sandy loam soil. The fertilization treatments were: mineral N-fertilization applied by fertigation (TM); organic N-fertilization (TO...... basis. Soil samples were taken before planting and at harvest from depths of up to 90 cm in order to determine moisture and N-NO3- levels. The estimated amounts of total N-NO3- available in the different treatments, including the initial content in the 0-90 cm soil layer, were 560 (TC), 570 (TO) and 610...

  17. Dynamic changes of inorganic nitrogen and astaxanthin accumulation in Haematococcus pluvialis

    Science.gov (United States)

    Liu, Jian-Guo; Yin, Ming-Yan; Zhang, Jing-Pu; Liu, Wei; Meng, Zhao-Cai

    2002-12-01

    This study on dynamic changes of culture color, astaxanthin and chlorophylls, inorganic N including N-NO{3/-}, N-NO{2/-} and N-NH{4/+} in batch culture of Haematococcus pluvialis exposed to different additive nitrate concentration showed (1) ast/chl ratio was over 0.8 for brown and red algae, but was usually less than 0.5 for green and yellow algae; (2) N-NO{3/-}, in general, was unstable and decreased, except for a small unexpected increase in nitrate enriched treatment groups; (3) measurable amounts of N-NO{2/-}, and N-NH{4/+} were observed respectively with three change modes although no external nitrite and ammonia were added into the culture; (4) a non-linear correlation between ast/chl ratio (or color) changes and the levels of N-NO{3/-}, N-NO{2/-}, N-NH{4/+} in H. pluvialis culture; (5) up and down variation of the ast/chl ratio occurred simultaneously with a perceptible color change from yellow to brown (or red) when N-NO{3/-}, N-NO{2/-} and N-NH{4/+} fluctuated around 30, 5, 5, μmol/L respectively; (6) existence of three dynamic modes of N-NO{3/-}, N-NO{2/-} and N-NH{4/+} changes, obviously associated with initial external nitrate; (7) the key level of total inorganic N concentration regulating the above physiological changes during indoor cultivation was about 50 μmol/L; and (8) 0.5 10 mmol/L of nitrate was theoretically conducive to cell growth in batch culture.

  18. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  19. Shifts and dynamics of greenhouse gas fluxes in coastal marshes: Responses to short- and long-term nitrogen additions (Invited)

    Science.gov (United States)

    Moseman-Valtierra, S.; Kroeger, K. D.; Tang, J.; Fisher, K.; Bratton, J. F.; Crusius, J.

    2010-12-01

    Coastal wetlands are estimated to sequester carbon at faster rates than most ecosystems, and thus they are appealing targets for efforts to ameliorate climate change through biological C storage. However, to accurately estimate the climatic impact of such strategies, we must simultaneously consider fluxes of greenhouse gases from these ecosystems, including CH4 and N2O. Coastal salt marshes are currently thought to represent minor sources of greenhouse gases relative to freshwater wetlands, but the few measurements that exist for N2O and CH4 fluxes in these systems have not spanned the range of their dynamic environmental conditions. Further, multiple anthropogenic sources have disproportionately increased nitrogen loads in coastal ecosystems, which we hypothesized may significantly enhance N2O emissions from salt marshes. We tested this hypothesis with short- and long-term manipulative experiments at low to moderate nitrogen loads in pristine temperate Spartina patens marshes at Plum Island (MA). In July 2009, we compared background greenhouse gas fluxes with those measured immediately after either a single addition of nitrate (equivalent to 1.4g N m -2) or a control solution of artificial seawater. Prior to manipulations, the salt marsh sediments represented small sinks of N2O, as fluxes averaged -33 μmol N2O m-2 day-1. Yet, within one hour of manipulations, the plots with nitrate additions became sources of N2O, with fluxes averaging 42 and 108 μmol N2O m-2 day-1 in light and dark chambers, respectively. These exceeded fluxes in control plots by more than an order of magnitude. Respiratory CO2 fluxes were also significantly higher in nitrate-enriched plots (4.4 +/- 1 μmol CO2 m-2 s-1) than in controls (2.4 +/- 0.3 μmol CO2 m-2 s-1) immediately following the nitrate additions. Methane fluxes were not affected by nitrogen, but they varied spatially, ranging from 7.5 to 2200 μmol CH4 m-2 day-1. Although the enhanced N2O fluxes did not persist after 2 days, the

  20. Implications of carbon saturation model structure for simulated nitrogen mineralization dynamics

    Directory of Open Access Journals (Sweden)

    C. M. White

    2014-06-01

    Full Text Available Carbon (C saturation theory suggests that soils have a~limited capacity to stabilize organic C and that this capacity may be regulated by intrinsic soil properties such as clay content and mineralogy. While C saturation theory has advanced our ability to predict soil C stabilization, we only have a weak understanding of how C saturation affects N cycling. In biogeochemical models, C and N cycling are tightly coupled, with C decomposition and respiration driving N mineralization. Thus, changing model structures from non-saturation to C saturation dynamics can change simulated N dynamics. Carbon saturation models proposed in the literature calculate a theoretical maximum C storage capacity of saturating pools based on intrinsic soil properties, such as clay content. The extent to which current C stocks fill the storage capacity of the pool is termed the C saturation ratio, and this ratio is used to regulate either the efficiency or the rate of C transfer from donor to receiving pools. In this study, we evaluated how the method of implementing C saturation and the number of pools in a model affected net N mineralization from decomposing plant residues. In models that use the C saturation ratio to regulate transfer efficiency, C saturation affected N mineralization, while in those in which the C saturation ratio regulates transfer rates, N mineralization was independent of C saturation. When C saturation ratio regulates transfer efficiency, as the saturation ratio increases, the threshold C : N ratio at which positive net N mineralization occurs also increases because more of the C in the residue is respired. In a single-pool model where C saturation ratio regulated the transfer efficiency, predictions of N mineralization from residue inputs were unrealistically high, missing the cycle of N immobilization and mineralization typically seen after the addition of high C : N inputs to soils. A more realistic simulation of N mineralization was achieved

  1. A STELLA Model to Estimate Water and Nitrogen Dynamics in a Short-Rotation Woody Crop Plantation.

    Science.gov (United States)

    Ouyang, Ying; Zhang, Jiaen; Leininger, Theodor D; Frey, Brent R

    2015-01-01

    Although short-rotation woody crop biomass production technology has demonstrated a promising potential to supply feedstocks for bioenergy production, the water and nutrient processes in the woody crop planation ecosystem are poorly understood. In this study, a computer model was developed to estimate the dynamics of water and nitrogen (N) species (e.g., NH-N, NO-N, particulate organic N, and soluble organic N [SON]) in a woody crop plantation using STELLA (tructural hinking and xperiential earning aboratory with nimation) software. A scenario was performed to estimate diurnal and monthly water and N variations of a 1-ha mature cottonwood plantation over a 1-yr simulation period. A typical monthly variation pattern was found for soil water evaporation, leaf water transpiration, and root water uptake, with an increase from winter to summer and a decrease from summer to the following winter. Simulations further revealed that the rate of soil water evaporation was one order of magnitude lower than that of leaf water transpiration. In most cases, the relative monthly water loss rates could be expressed as evapotranspiration > root uptake > percolation > runoff. Leaching of NO-N and SON depended not only on soil N content but also on rainfall rate and duration. Leaching of NO-N from the cottonwood plantation was about two times higher than that of SON. The relative monthly rate of N leaching was NO-N > SON > NH-N. This study suggests that the STELLA model developed is a useful tool for estimating water and N dynamics from a woody crop plantation.

  2. Carbon and nitrogen dynamics of the intertidal seagrass, Zostera japonica, on the southern coast of the Korean peninsula

    Science.gov (United States)

    Kim, Jong-Hyeob; Kim, Seung Hyeon; Kim, Young Kyun; Lee, Kun-Seop

    2016-12-01

    Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.

  3. Dynamics of nitrogen in a PAHs contaminated soil amended with biosolid or vermicompost in the presence of earthworms.

    Science.gov (United States)

    Contreras-Ramos, S M; Alvarez-Bernal, D; Dendooven, L

    2007-05-01

    Nitrogen mineralization in PAHs contaminated soil in presence of Eisenia fetida amended with biosolid or vermicompost was investigated. Sterilized and unsterilized soil was contaminated with PAHs, added with E. fetida and biosolid or vermicompost and incubated aerobically for 70 days, while dynamics of inorganic N were monitored. Addition of E. fetida to sterilized soil increased concentration of NH(4)(+) 100> mg N kg(-1), while concentrations in unsterilized remained 80 mg kg(-1). Addition of PAHs had no significant effect on concentration of NH(4)(+) compared to the unamended soil, except in the soil added with biosolid. Addition of E. fetida to sterilized soil increased concentration of NO(2)(-) 15> mg N kg(-1) while concentrations in unsterilized soil remained 20 mg kg(-1). Addition of PAHs had no significant effect on concentration of NO(2)(-) compared to the unamended soil. Addition of biosolid and vermicompost increased concentration of NO(3)(-), while addition of E. fetida decreased concentration of NO(3)(-) in biosolid amended soil. It was found that NH(4)(+) and NO(2)(-) oxidizers were present in the gut of E. fetida, but their activity was not sufficient enough to inhibit a temporarily increase in concentrations of NH(4)(+) and NO(2)(-). Contamination with PAHs induced immobilization of N in biosolid or vermicompost amended soil, as did feeding of E. fetida on biosolid or vermicompost.

  4. Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils

    DEFF Research Database (Denmark)

    Pörtl, K.; Zechmeister-Boltenstern, S.; Wanek, W.

    2007-01-01

    Natural N-15 abundance measurements of ecosystem nitrogen (N) pools and N-15 pool dilution assays of gross N transformation rates were applied to investigate the potential of delta N-15 signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected...... from pure spruce (Picea abies (L.) Karst.) and mixed spruce-beech (Fagus sylvatica L.) stands on stagnic gleysol in Austria. Soil delta N-15 values of both forest sites increased with depth to 50 cm, but then decreased below this zone. delta N-15 values of microbial biomass (mixed stand: 4.7 +/- 0...... represented the main N2O-producing process in the mixed forest stand as we detected a significant N-15 enrichment of its substrate NO3- (3.6 +/- 4.5 parts per thousand) compared to NH4+ (-4.6 +/- 2.6 parts per thousand) and its product N2O (-11.8 +/- 3.2 parts per thousand). In a N-15-labelling experiment...

  5. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  6. Photo induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single shot charge state detection

    CERN Document Server

    Aslam, N; Neumann, P; Jelezko, F; Wrachtrup, J

    2012-01-01

    The nitrogen-vacancy centre (NV) has drawn much attention for over a decade, yet detailed knowledge of the photophysics needs to be established. Under typical conditions, the NV can have two stable charge states, negative (NV-) or neutral (NV0), with photo induced interconversion of these two states. Here, we present detailed studies of the ionization dynamics of single NV centres in bulk diamond at room temperature during illumination in dependence of the excitation wavelength and power. We apply a recent method which allows us to directly measure the charge state of a single NV centre, and observe its temporal evolution. Results of this work are the steady state NV- population, which was found to be always < 75% for 450 to 610 nm excitation wavelength, the relative absorption cross-section of NV- for 540 to 610 nm, and the energy of the NV- ground state of 2.6 eV below the conduction band. These results will help to further understand the photo-physics of the NV centre.

  7. Dynamics of nitrogen transformation depending on different operational strategies in laboratory-scale tidal flow constructed wetlands.

    Science.gov (United States)

    Chang, Yongjiang; Wu, Shubiao; Zhang, Tao; Mazur, Robert; Pang, Changle; Dong, Renjie

    2014-07-15

    The influence of different flooded/drained (F/D) time ratios and different effluent flow rates on the dynamics of nitrogen transformations in three laboratory-scale tidal flow constructed wetland systems (TFCWs-A, B, and C) under varying NH4(+)-N and COD influent loadings was investigated in this study. Good organic matter removal performance up to 90% was achieved for all experimental TFCWs under inflow concentrations of 300 and 150 mg/L regardless of F/D and effluent flow rate. The ammonium removal efficiency of wetland with F/D=3h:3h (55%) was higher than that of the wetland with F/D=5h:1h (47%) under an ammonium inflow concentration of 60 mg/L, indicating the positive effect of longer drained and shorter flooded time on tidal-operated wetlands under nitrification. In addition, more uniform oxygen distribution and better nitrification capacity within the wetland might be achieved with a relatively slow effluent flow rate of 0.025 L/s. TFCWs were shown to be a robust and reliable option to achieve high TN removal of 70% due to its repeated cycle of "wet" and "dry" periods, particularly for the treatment of wastewater with high organic content. Moreover, F/D and effluent flow rates of tidal flow constructed wetlands exhibited no significant effect on phosphorus removal in this study. Other techniques, such as pretreatment or post treatment, require further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized 13C NMR signals in the 100-200 range are demonstrated with DNP at 25 K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30 K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  9. Characteristics, and carbon and nitrogen dynamics in soil irrigated with wastewater for different lengths of time.

    Science.gov (United States)

    Ramirez-Fuentes, E; Lucho-constantino, C; Escamilla-Silva, E; Dendooven, L

    2002-11-01

    Irrigation of agricultural land with wastewater will increase crop production, but also heavy metal concentrations and the rate of infection of farmers with pathogens. The risks associated with the use of wastewater are reduced by treating the wastewater, but treatment also reduces organic material, phosphorus and inorganic N for crops. We investigated characteristics, e.g. heavy metal concentrations, of soils of the valley of the Mezquital (Mexico) irrigated with waste from Mexico City water since 1912, 1925, 1965, 1976, 1996 or 1997, or not irrigated at all, and dynamics of C and N when soil was amended with wastewater or drainage water. Concentrations of total Mg, Hg, Mo, Ca, Cu and Cr, available concentrations of Pb, Cd and Cu increased significantly with length of irrigation (P hazardous concentrations. Although organic C, total N, microbial biomass C and N, and microbial activity, as witnessed by CO2 production, increased with length of irrigation, N mineralization did not. Oxidation of NO2- was inhibited and could be due to increases in salinity, toxic compounds or heavy metals. We found that N mineralization was low or absent so it will not compensate for the loss of N when the wastewater is treated and application of N fertilizer will be required to maintain the same level of crop production. The characteristics of the soils appear not to have deteriorated after years of application of wastewater, but further irrigation even with treated wastewater might increase sodicity and salinity and pose a threat to future crop production.

  10. Model-based process analysis of partial nitrification efficiency under dynamic nitrogen loading.

    Science.gov (United States)

    Güven, Didem; Kutlu, Ozgül; Insel, Güçlü; Sözen, Seval

    2009-08-01

    In this study, the ammonia removal efficiency for high ammonia-containing wastewaters was evaluated via partial nitrification. A nitrifier biocommunity was first enriched in a fill-and-draw batch reactor with a specific ammonium oxidation rate of 0.1 mg NH(4) (-)-N/mg VSS.h. Partial nitrification was established in a chemostat at a hydraulic retention time (HRT) of 1.15 days, which was equal to the sludge retention time (SRT). The results showed that the critical HRT (SRT) was 1.0 day for the system. A maximum specific ammonium oxidation rate was achieved as 0.280 mg NH(4) (-)-N/mg VSS.h, which is 2.8-fold higher than that obtained in the fill-and-draw reactor, indicating that more adaptive and highly active ammonium oxidizers were enriched in the chemostat. Dynamic modeling of partial nitrification showed that the maximum growth rate for ammonium oxidizers was found to be 1.22 day(-1). Modeling studies also validated the recovery period as 10 days.

  11. Hyperpolarization of nitrogen-15 nuclei by cross polarization and dissolution dynamic nuclear polarization

    Science.gov (United States)

    Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Melzi, Roberto; Jannin, Sami; Bodenhausen, Geoffrey

    2017-01-01

    Dynamic Nuclear Polarization (DNP) is often achieved by the direct transfer of polarization from electrons to nuclei such as 13C, induced by microwave saturation of the wings of narrow EPR lines of radicals like trityl. In the indirect approach on the other hand, DNP is used to transfer the polarization from the electrons of radicals such as nitroxides that have broad EPR lines to nuclear spins I = 1H, followed by cross-polarization (CP) from I = 1H to S = 13C or other nuclei with low gyromagnetic ratios. This approach is particularly attractive for S = 15N, since direct DNP yields modest polarizations P(15N) 2 h. In this paper, we show that CP from 1H to 15N at 1.2 K can yield P(15N) = 25% with τCP-DNP(15N) = 10-15 min. After rapid dissolution and transfer to a solution-state NMR spectrometer, a polarization P(15N) = 20% was observed at 300 K. The longitudinal relaxation times in solution can be as long as T1(15N) > 800 s in favorable cases.

  12. 基于模糊神经算法的区域地下水盐分动态预测%Regional groundwater salinity dynamics forecasting based on neuro-fuzzy algorithm

    Institute of Scientific and Technical Information of China (English)

    余世鹏; 杨劲松; 刘广明; 姚荣江; 王相平

    2014-01-01

    为探讨前馈型人工神经网络BP-ANN(back propagation artificial neural network)和模糊神经NF (neuro-fuzzy)2种神经网络算法在区域地下水盐分动态预测中的应用过程与效果,首先通过经典统计分析确定区域地下水盐分动态的主要驱动因子以及可用的模型输入因子组合,采用“试错法”确定神经网络模型的最优结构,进而开展地下水盐分中长期动态的有效模拟预测。结果表明,在长江河口寅阳和大兴地区以降水动态为单输入的NF(5-gbellmf-160)和以降水与内河水盐分动态为双输入的NF(4-gaussmf-100)为最优预测模型。研究表明神经网络模型对地下水盐分动态的预测精度优于常规线性模型,其中,NF、BP-ANN、线性模型在寅阳测点的预测相关系数分别为0.565、0.445、0.261,在大兴测点的预测相关系数分别为0.886、0.784、0.543。与BP-ANN、线性模型相比,基于模糊神经算法的 NF 模型具有更好的误差纠错和仿真能力,在寅阳和大兴测点的预测误差分别降低了30%以上和50%以上。相关研究结果在区域水盐动态科学预警研究领域有较好地应用前景。%The study conducted a detailed analysis of the modeling processes and performances of 2 types of different neural network models including back propagation artificial neural network (BP-ANN) and neuro-fuzzy (NF), in the groundwater salinity dynamics forecasting. Firstly, the classical statistical analysis was used to determine the dominant driving factors of groundwater salinity dynamics and to reveal the available model inputs combinations. Then, the optimal neural network model structures were determined by the trial-and-error method and used to effectively forecast the mid-long term groundwater salinity dynamics. By our research, the idea of necessity in selecting the optimal NF model parameters of transfer functions, rule numbers and iteration steps was innovatively

  13. Dynamic outgassing of deuterium, helium and nitrogen from plasma-facing materials under DEMO relevant conditions

    Science.gov (United States)

    Möller, S.; Matveev, D.; Martynova, Y.; Unterberg, B.; Rasinski, M.; Wegener, T.; Kreter, A.; Linsmeier, Ch.

    2017-01-01

    In confined plasma magnetic fusion devices significant amounts of the hydrogen isotopes used for the fusion reaction can be stored in the plasma-facing materials by implantation. The desorption of this retained hydrogen was seen to follow a t α law with α  ≈  -0.7 in tokamaks. For a pulsed fusion reactor this outgassing can define the inter-pulse waiting time. This work presents new experimental data on the dynamic outgassing in ITER grade tungsten exposed under the well-defined conditions of PSI-2 to pure and mixed D2 plasmas. A peak ion flux of 1022 D+ m-2 s is applied for up to 6 h at sample temperatures of up to 900 K. Pure D2 and mixed D2  +  He, D2  +  N2 and D2  +  He  +  N2 plasmas are applied to the sample at 68 V bias. The D2, He, N outgassing at 293 K and 580 k are observed via in-vacuo quadrupole mass spectrometry covering the range of 40 s-200 000 s after exposure. The outgassing decay follows a single power law with exponents α  =  -0.7  to  -1.1 at 293 K, but at 580 K a drop from α  =  -0.25 to  -2.35 is found. For DEMO a pump-down time to 0.5 mPa in the order of 1-5 h can be expected. The outgassing is in all cases dominated by D2.

  14. DYNAMIC CHANGES OF INORGANIC NITROGEN AND ASTAXANTHIN ACCUMULATION IN HAEMATOCOCCUS PLUVIALIS

    Institute of Scientific and Technical Information of China (English)

    刘建国; 殷明炎; 张京浦; 刘伟; 孟昭才

    2002-01-01

    This study on dynamic changes of culture color, astaxanthin and chlorophylls, inorganic N including N-NO-3, N-NO-2 and N-NH+4 in batch culture of Haematococcus pluvialis exposed to different additive nitrate concentrati on showed (1) ast/chl ratio was over 0.8 for brown and red algae, but was usually less than 0. 5 for green and yellow algae; (2) N-NO-3, in general, was unstable and decreased , except for a small unexpected increase in nitrate enriched treatment groups; (3) mea surable amounts of N-NO-2 and N-NH+4 were observed respectively with three cha nge modes although no external nitrite and ammonia were added into the culture; (4) a non-linear correlation between ast/chl ratio (or color) changes and th e levels of N-NO-3 , N-NO-2 , N-NH+4 in H. pluvialis culture; (5) up and down variation of the ast/chl ratio occurred simultaneously with a perceptible color change from yellow to brown (or red) when N-NO-3, N-NO-2 and N-NH+ 4 fluctuated around 30, 5, 5 μmol/L respectively; (6) existence of three d ynamic modes of N-NO-3, N-NO-2 and N-NH+4 changes, obviously associated with initial external nitrate; (7) the key level of total inorganic N concentration regulatin g the above physiological changes during indoor cultivation was about 50 μmol/L ; and (8) 0.5-10 mmol/L of nitrate was theoretically conducive to cell growth in batch culture.

  15. 渭干河灌区地下水埋深与矿化度时空分布动态%Spatial and Temporal Dynamic Distribution of Groundwater Depth and Mineralization in Weigan River Irrigation District

    Institute of Scientific and Technical Information of China (English)

    吐尔逊·艾山; 塔西甫拉提·特依拜; 买买提·阿扎提; 买买提依明·买买提

    2011-01-01

    以新疆渭干河灌区为例,利用渭干河灌区38眼监测井的1997~2007年期间地下水埋深和地下水矿化度数据,对渭干河灌区地下水位及地下水矿化度的年际变化、季节变化动态及空间分布特征及其变化原因进行初步的分析。结果表明:11 a期间,研究区春季地下水位最高,研究区地下水位从灌区上部往下部或边缘有明显的上升特征。地下水矿化度的整体趋势为灌区上游的矿化度值较低,灌区下游和边缘地区的矿化度较高。灌区年均地下水位和地下水矿化度总体上有下降趋势。%Taking Xinjiang Weigan River irrigation district as an example,38 observation wells’ data from 1997 to 2007 of groundwater depth and groundwater mineralization were used in the paper to analyze annual change of groundwater depth and the groundwater mineralization of Weigan River irrigation district,and their seasonal dynamics and spatial distribution.The results showed that in the 11 years period,the highest groundwater level appeared in spring.The groundwater level rose significantly from the top of irrigation district to the periphery of the oasis.The overall trend of groundwater mineralization is that groundwater mineralization is relatively low in the upper reaches of the irrigation district,and relatively high in the lower edge and downstream of the irrigation district.The annual groundwater depth and groundwater mineralization generally decreased in the irrigation district.

  16. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  17. Carbon and nitrogen dynamics of soil and litter along an altitudinal gradient in Atlantic Forest

    Science.gov (United States)

    Piccolo, M. D.; Martins, S. C.; Camargo, P. B.; Carmo, J. B.; Sousa Neto, E.; Martinelli, L. A.

    2008-12-01

    The Ombrophylus Dense Forest or Atlantic Forest is the second most important Biome in extension of Brazil, and it is considered a hot-spot in terms of biodiversity. It is localized in Brazilian Coast, and it covered originally 1.2 million km2, but currently only 8% of the original forest remains. The study was carried out in Sao Paulo State, Brazil (23° 24' S and 45° 11' W). The studied areas were: Restinga Vegetation (RV), 5 m above sea level; Low Altitude Ombrophylus Dense Forest (LAODF), 100 m asl; Submontane Ombrophylus Dense Forest (SODF), 600m asl and; Montane Ombrophylus Dense Forest (MODF), 1000 m asl. The aim of this study was to evaluate the effect of altitudinal gradient, with specific phytophysiognomies, on C and N dynamics in the soil and litter at Atlantic Forest. A sampling area of 1 ha was subdivided in contiguous sub- parcels (10 x 10 m). The forest floor litter accumulated (0.06 m2) was collected monthly (n=60), during 12 months, in each phytophysiognomies. Soils samples (0-0.05m depth) were collected (n=32) from square regular grids, 30 m away from each other. Changes in litter contents of C and N were not detected along the altitudinal gradient, and the values observed were 400 and 15g kg-1 for C and N, respectively. Litter ä13C values did not change significantly with the altitudinal gradient and were represented by C3 plants values. The C and N stocks were high in the clay soils (LAODF, SODF and MODF) when compared to sandy soil (RV). The soil C stocks (24 to 30 Mg ha-1) were similar among the altitudinal gradients, except RV (16 Mg ha-1). The areas of elevated altitude (MODF and SODF) showed high N stocks (2.3 Mg ha-1), followed by LAODF (1.8Mg ha-1) and RV (0.9Mg ha-1). In all altitudes there was 13C enrichment with soil depth, and it can be explained by the different fractions of the organic matter distributed along the soil profile, and also due the effect of the isotopic dilution between the forest floor litter and the soil.

  18. [Dynamics of carbon and nitrogen storage of Cupressus chengiana plantations in the arid valley of Minjiang River, Southwest China].

    Science.gov (United States)

    Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she

    2015-04-01

    The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.

  19. Elevated carbon dioxide effects on nitrogen dynamics in grasses, with emphasis on rhizosphere processes

    Energy Technology Data Exchange (ETDEWEB)

    Gorissen, A.; Cotrufo, M.F.

    1999-12-01

    Three perennial grass species, perennial ryegrass (Lolium perenne L.), colonial bentgrass (Agrostis capillaris L.), and sheep fescue (Festuca ovina L.), were grown at two CO{sub 2} concentrations (350 and 700 {micro}L L{sup {minus}1}) and under two N regimes: one with a minor addition of 8 kg N ha{sup {minus}1} and one with an addition of {approximately}278 kg N ha{sup {minus}1}, both labeled with {sup 15}N. The effects of elevated CO{sub 2} on {sup 15}N and N uptake and dynamics in the plant-soil systems were determined after 32 and 55 d, with close attention to the rhizosphere. Total N uptake by the plants was not affected by elevated CO{sub 2}, compared with ambient CO{sub 2}, independent on N treatment and grass species. A clear decrease from 1.77 at ambient CO{sub 2} to 1.25 at elevated CO{sub 2} was observed in the shoot/root (S/R) ratio of N, resulting from a significant decrease of the N concentration in shoots, and an unchanged root N concentration. At 700 {micro}L L{sup {minus}1} CO{sub 2}, N concentration in the shoots decreased from 12.9 to 9.9 g kg{sup {minus}1}, even at the low N supply, whereas the slight decrease in root N concentration for plants grown at elevated CO{sub 2} was not significantly different. The relative increase of {sup 15}N found in the rhizosphere soil microbial biomass (SMB) and the rhizosphere soil residue under elevated CO{sub 2} was too small to affect plant growth, even in the low N treatment. The total amount of {sup 15}N recovered in the plants was not affected by the CO{sub 2} treatment. Although at the second harvest slightly more {sup 15}N was found in the plants than at the first harvest, probably due to turnover of the SMB, no interaction with CO{sub 2} was observed. This shows that the fertilizer {sup 15}N had not been immobilized to a larger extent or for a longer time by the SMB at elevated CO{sub 2} than under ambient CO{sub 2}, even independent of N level and grass species. No evidence was found that under

  20. Nitrogen sources, transport and processing in peri-urban floodplains.

    Science.gov (United States)

    Gooddy, D C; Macdonald, D M J; Lapworth, D J; Bennett, S A; Griffiths, K J

    2014-10-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose.

  1. Causality analysis of groundwater dynamics based on a Vector Autoregressive model in the semi-arid basin of Gundal (South India)

    Science.gov (United States)

    Mangiarotti, S.; Sekhar, M.; Berthon, L.; Javeed, Y.; Mazzega, P.

    2012-08-01

    Causal relationships existing between observed levels of groundwater in a semi-arid sub-basin of the Kabini River basin (Karnataka state, India) are investigated in this study. A Vector Auto Regressive model is used for this purpose. Its structure is built on an upstream/downstream interaction network based on observed hydro-physical properties. Exogenous climatic forcing is used as an input based on cumulated rainfall departure. Optimal models are obtained thanks to a trial approach and are used as a proxy of the dynamics to derive causal networks. It appears to be an interesting tool for analysing the causal relationships existing inside the basin. The causal network reveals 3 main regions: the Northeastern part of the Gundal basin is closely coupled to the outlet dynamics. The Northwestern part is mainly controlled by the climatic forcing and only marginally linked to the outlet dynamic. Finally, the upper part of the basin plays as a forcing rather than a coupling with the lower part of the basin allowing for a separate analysis of this local behaviour. The analysis also reveals differential time scales at work inside the basin when comparing upstream oriented with downstream oriented causalities. In the upper part of the basin, time delays are close to 2 months in the upward direction and lower than 1 month in the downward direction. These time scales are likely to be good indicators of the hydraulic response time of the basin which is a parameter usually difficult to estimate practically. This suggests that, at the sub-basin scale, intra-annual time scales would be more relevant scales for analysing or modelling tropical basin dynamics in hard rock (granitic and gneissic) aquifers ubiquitous in south India.

  2. Conceptualization and validation of a dynamic model for the simulation of nitrogen transformations and fluxes in fish ponds

    NARCIS (Netherlands)

    Jimenez-Montealegre, R.; Verdegem, M.C.J.; Dam, van A.A.; Verreth, J.A.J.

    2002-01-01

    Nitrogen is a key element in aquatic environments and an important pond management variable. In aquaculture systems, nitrogen accumulation eventually leads to a deterioration of the system. The interactions between various N-species are complex and difficult to integrate. Modelling can improve our a

  3. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling.

    Science.gov (United States)

    Schiltz, Séverine; Munier-Jolain, Nathalie; Jeudy, Christian; Burstin, Judith; Salon, Christophe

    2005-04-01

    The fluxes of (1) exogenous nitrogen (N) assimilation and (2) remobilization of endogenous N from vegetative plant compartments were measured by 15N labeling during the seed-filling period in pea (Pisum sativum L. cv Cameor), to better understand the mechanism of N remobilization. While the majority (86%) of exogenous N was allocated to the vegetative organs before the beginning of seed filling, this fraction decreased to 45% at the onset of seed filling, the remainder being directed to seeds. Nitrogen remobilization from vegetative parts contributed to 71% of the total N in mature seeds borne on the first two nodes (first stratum). The contribution of remobilized N to total seed N varied, with the highest proportion at the beginning of filling; it was independent of the developmental stage of each stratum of seeds, suggesting that remobilized N forms a unique pool, managed at the whole-plant level and supplied to all filling seeds whatever their position on the plant. Once seed filling starts, N is remobilized from all vegetative organs: 30% of the total N accumulated in seeds was remobilized from leaves, 20% from pod walls, 11% from roots, and 10% from stems. The rate of N remobilization was maximal when seeds of all the different strata were filling, consistent with regulation according to the N demand of seeds. At later stages of seed filling, the rate of remobilization decreases and may become controlled by the amount of residual N in vegetative tissues.

  4. Application of fast pyrolysis biochar to a loamy soil - Effects on carbon and nitrogen dynamics and potential for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bruun, E.W.

    2011-05-15

    Thermal decomposition of biomass in an oxygen-free environment (pyrolysis) produces bio-oil, syngas, and char. All three products can be used to generate energy, but an emerging new use of the recalcitrant carbon-rich char (biochar) is to apply it to the soil in order to enhance soil fertility and at the same time mitigate climate change by sequestering carbon in the soil. In general, the inherent physicochemical characteristics of biochars make these materials attractive agronomic soil conditioners. However, different pyrolysis technologies exist, i.e. slow pyrolysis, fast pyrolysis, and full gasification systems, and each of these influence the biochar quality differently. As of yet, there is only limited knowledge on the effect of applying fast pyrolysis biochar (FP-biochar) to soil. This PhD project provides new insights into the short-term impacts of adding FP-biochar to soil on the greenhouse gas (GHG) emissions and on soil carbon and nitrogen dynamics. The FP-biochars investigated in the thesis were generated at different reactor temperatures by fast pyrolysis of wheat straw employing a Pyrolysis Centrifuge Reactor (PCR). The carbohydrate content ranged from more than 35 % in FP-biochars made at a low reactor temperature (475 deg. C) down to 3 % in FP-biochars made at high temperatures (575 deg. C). The relative amount of carbohydrates in the FP-biochar was found to be correlated to the short-term degradation rates of the FP-biochars when applied to soil. Fast and slow pyrolysis of wheat straw resulted in two different biochar types with each their distinct physical structures and porosities, carbohydrate contents, particle sizes, pH values, BET surface areas, and elemental compositions. These different physicochemical properties obviously have different impacts on soil processes, which underscores that results obtained from soil studies using slow pyrolysis biochars (SP-biochar) are not necessarily applicable for FP-biochars. For example, the incorporation

  5. A Comparison of Symmetric and Asymmetric Warming Regimes on the Soil Carbon and Nitrogen Dynamics of Grassland Ecosystems

    Science.gov (United States)

    Wig, J.; Lajtha, K.; Gregg, J. W.

    2010-12-01

    and asymmetric treatments after four years. Here we present the most recent data collected from the Terracosms, focusing on soil carbon and nitrogen dynamics.

  6. Drivers of nitrogen dynamics in ecologically based agriculture revealed by long-term, high-frequency field measurements.

    Science.gov (United States)

    Finney, Denise M; Eckert, Sara E; Kaye, Jason P

    2015-12-01

    Nitrogen (N) loss from agriculture impacts ecosystems worldwide. One strategy to mitigate these losses, ecologically based nutrient management (ENM), seeks to recouple carbon (C) and N cycles to reduce environmental losses and supply N to cash crops. However, our capacity to apply ENM is limited by a lack of field-based high-resolution data on N dynamics in actual production contexts. We used data from a five-year study of organic cropping systems to investigate soil inorganic N (SIN) variability and nitrate (NO3-) leaching in ENM. Four production systems initiated in 2007 and 2008 in central Pennsylvania varied in crop rotation, timing and intensity of tillage, inclusion of fallow periods, and N inputs. Extractable SIN was measured fortnightly from March through November throughout the experiment, and NO3- N concentration below the rooting zone was sampled with lysimeters during the first year of the 2008 start. We used recursive partitioning models to assess the importance of management and environmental factors to SIN variability and NO3- leaching and identify interactions between influential variables. Air temperature and tillage were the most important drivers of SIN across systems. The highest SIN concentrations occurred when the average air temperature three weeks prior to measurement was above 21 degrees C. Above this temperature and within 109 days of moldboard plowing, average SIN concentrations were 22.1 mg N/kg soil; 109 days or more past plowing average SIN dropped to 7.7 mg N/kg soil. Other drivers of SIN dynamics were N available from manure and cover crops. Highest average leachate NO3- N concentrations (15.2 ppm) occurred in fall and winter when SIN was above 4.9 mg/kg six weeks prior to leachate collection. Late season tillage operations leading to elevated SIN and leachate NO3- N concentrations were a strategy to reduce weeds while meeting consumer demand for organic products. Thus, while tillage that incorporates organic N inputs preceding cash

  7. Long-term impacts of land-use change on dynamics of tropical soil carbon and nitrogen pools

    Institute of Scientific and Technical Information of China (English)

    YANG Jing-cheng; HUANG Jian-hui; PAN Q