WorldWideScience

Sample records for groundwater nitrate remediation

  1. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    Energy Technology Data Exchange (ETDEWEB)

    B. STRIETELMEIER; M. ESPINOSA

    2001-01-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), extremely inexpensive, and easy to replace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels was discharged from this plant for many years. Recently, the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated in 1999 to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mM nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  2. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    Energy Technology Data Exchange (ETDEWEB)

    B. STRIETELMEIR; ET AL

    2000-12-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), and extremely inexpensive and easy to emplace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels has been discharged from this plant for many years, until recently when the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated this past year to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier. will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mhl nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  3. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    Science.gov (United States)

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  4. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    Science.gov (United States)

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  5. Remediation of Nitrate-contaminated Groundwater by a Mixture of Iron and Activated Carbon

    Science.gov (United States)

    Huang, Guoxin; Liu, Fei; Jin, Aifang; Qin, Xiaopeng

    2010-11-01

    Nitrate contamination in groundwater has become a major environmental and health problem worldwide. The aim of the present study is to remediate groundwater contaminated by nitrate and develop potential reactive materials to be used in PRBs (Permeable Reactive Barriers). A new approach was proposed for abiotic groundwater remediation by reactive materials of iron chips and granular activated carbon particles. Batch tests were conducted and remediation mechanisms were discussed. The results show that nitrate decreases from 86.31 to 33.79 mgṡL-1 under the conditions of near neutral pH and reaction time of 1h. The combination of iron chips and activated carbon particles is cost-effective and suitable for further use as denitrification media in PRBs. Nitrogen species don't change significantly with the further increase in reaction time (>1 h). The iron-activated carbon-water-nitrate system tends to be steady-state. Small amounts of ammonium and nitrite (0.033-0.039 and 0.14-3.54 mgṡL-1, respectively) appear at reaction time from 0 h to 5 h. There is no substantial accumulation of nitrogen products in the system. The removal rate of nitrate only reaches 16.11% by sole iron chips at reaction time of 5 h, while 63.57% by the mixture of iron chips and activated carbon particles. There is significantly synergistic and promotive effect of mixing the two different types of materials on nitrate treatment. Fe/C ratio (1/1.5-1/2.5) doesn't cause dramatically different residual nitrate concentrations (24.09-26.70 mgṡL-1). Nitrate can't be limitlessly decreased with decreasing Fe/C ratio. The concomitant occurrences of chemical reduction, galvanic cell reaction, electrophoretic accumulation, chemical coagulation, and physical adsorption are all responsible for the overall nitrate removal by iron allied with activated carbon. To accurately quantify various nitrogen species, further studies on adsorption mechanisms of nitrite and nitrate are needed.

  6. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (treatment and promoted the utilization of pyrite in the field of environmental remediation.

  7. Test/QA Plan for Verification of Nitrate Sensors for Groundwater Remediation Monitoring

    Science.gov (United States)

    A submersible nitrate sensor is capable of collecting in-situ measurements of dissolved nitrate concentrations in groundwater. Although several types of nitrate sensors currently exist, this verification test will focus on submersible sensors equipped with a nitrate-specific ion...

  8. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    Science.gov (United States)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  9. USE OF A UNIQUE BIOBARRIER TO REMEDIATE NITRATE AND PERCHLORATE IN GROUNDWATER

    Energy Technology Data Exchange (ETDEWEB)

    Strietelmeier, E. A. (Elizabeth A.); Espinosa, Melissa L. (Melissa L.); Adams, J. D. (Joshua D. ); Leonard, P. A. (Patricia A.); Hodge, E. M. (Evangeline M.)

    2001-01-01

    Research was conducted to evaluate a multiple-layer system of volcanic rock, limestone, Apatite mineral and a 'biobarrier' to impede migration of radionuclides, metals and colloids through shallow alluvial groundwater, while simultaneously destroying contaminants such as nitrate and perchlorate. The 'bio' portion of this Multi-Barrier system uses highly porous, slowly degradable, carbon-based material (pecan shells) that serves as an energy source and supports the growth of indigenous microbial populations capable of destroying biodegradable compounds. The studies, using elevated nitrate concentrations in groundwater, have demonstrated reduction from levels of 6.5-9.7 mM nitrate (400-600 mg/L) to below discharge limits (0.16 mM nitrate). Perchlorate levels of 4.3 {micro}M (350 {micro}g/L) were also greatly reduced. Elevated levels of nitrate in drinking water are a public health concern, particularly for infants and adults susceptible to gastric cancer. Primary sources of contamination include feedlots, agriculture (fertilization), septic systems, mining and nuclear operations. A major source of perchlorate contamination in water is ammonium perchlorate from manufacture/use of rocket propellants. Perchlorate, recently identified as an EPA contaminant of concern, may affect thyroid function and cause tumor formation. A biobarrier used to support the growth of microbial populations (i.e. a biofilm) is a viable and inexpensive tool for cleaning contaminated groundwater. Aquatic ecosystems and human populations worldwide are affected by contaminated water supplies. One of the most frequent contaminants is nitrate. Remediation of nitrate in groundwater and drinking water by biodegradation is a natural solution to this problem. Microbial processes play an extremely important role in in situ groundwater treatment technologies. The assumption of carbon limitation is the basis for addition of carbon-based substrates to a system in the development of

  10. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    Science.gov (United States)

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated

  11. Remediation of Nitrate and ChromiumContaminated Groundwater by Zero-valent IronPRB

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Through continuous flow experimentation, the reactivity characteristics of zero-valent iron (Fe0)-PRB with ground watercontaminated by nitrate, chromium and the combination of nitrate and chromium were investigated. The results showed thatnitrate could be effectively deoxidized by zero-valent iron. NO2- -N was the transitional deoxidization product, while NH4+-Nwas the main final product in the effluent. Chromium could be deoxidized by zero-valent iron more effectively for the chromiumcontaminated ground water which was treated by PRB. The redox products such as Fe3+ and Cr(III) precipitated on the packingmedia during the process. For the treatment of ground water contaminated by both nitrate and chromium, the results showed thatthe Cr(VI) removal efficiency by the zero-valent iron was not affected by the co-existence of NO3- -N, while the NO3- -N removalefficiency decreased with the existence of Cr(VI).

  12. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    Science.gov (United States)

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  13. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    Science.gov (United States)

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  14. Remediation of actual groundwater polluted with nitrate by the catalytic reduction over copper-palladium supported on active carbon

    OpenAIRE

    Wang, Yi; Sakamoto, Yoshinori; Kamiya, Yuichi

    2009-01-01

    Catalytic reduction of nitrate (NO3-) in groundwater over a Cu-Pd catalyst supported on active carbon was investigated in a gas-liquid co-current flow system at 298 K. Although Cu-Pd/active carbon, in which the Cu/Pd molar ratio was more than 0.66, showed high activity, high selectivity for the formation of N2 and N2O (98%), and high durability for the reduction of 100 ppm NO3- in distilled water, the catalytic performance decreased during the reduction of NO3- in groundwater. The catalyst al...

  15. Nitrate contamination of groundwater and its countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Hisayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The inevitable increases of food production and energy consumption with an increase in world population become main causes of an increase of nitrate load to the environment. Although nitrogen is essential for the growth of animal and plant as a constituent element of protein, excessive nitrate load to the environment contaminates groundwater resources used as drinking water and leads to seriously adverse effects on the health of man and livestock. In order to clarify the problem of nitrate contamination of groundwater and search a new trend of technology development from the viewpoint of environment remediation and protection, the present paper has reviewed adverse effects of nitrate on human health, the actual state of nitrogen cycle, several kinds of nitrate sources, measures for reducing nitrate level, etc. (author)

  16. Solutions Remediate Contaminated Groundwater

    Science.gov (United States)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  17. Bioaugmentation for Groundwater Remediation

    Science.gov (United States)

    2010-02-01

    emulsified vegetable oil EX extraction well FRTR Federal Remediation Technologies Roundtable gpm gallon per minute GSA General Services Administration...logic controller PRB permeable reactive barrier PVC polyvinyl chloride ACRONYMS AND ABBREVIATIONS (continued) viii qPCR quantitative...situ growth of DHC and degradation of target contaminants. A slow-release carbon source, such as emulsified vegetable oil (EVO) is often utilized with

  18. Trend Analyses of Nitrate in Danish Groundwater

    Science.gov (United States)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  19. Detection and Remediation of Groundwater Pollution

    Institute of Scientific and Technical Information of China (English)

    王杰

    2016-01-01

    Groundwater is an important part of the water cycle and is also widely used as sources of drinking water. With the increasing de?velopment of groundwater exploitation, the pollution is becoming more and more serious. This paper talks about the main research direc?tions of groundwater pollution, the detection, the remediation and some conclusions.

  20. State of nitrate pollution in groundwater in South Africa

    CSIR Research Space (South Africa)

    Maherry, A

    2010-09-01

    Full Text Available source of drinking water; and 4. Identify areas for priority research and nitrate remediation. As is customary in South Africa, all nitrate and nitrite concentrations in this paper are expressed as an equivalent quantity of nitrogen (N) except where...: Groundwater Pollution in Africa, edited by Y. Xu and B. Usher, Taylor and Francis plc, London, UK. Van den Berg, E.C., Plarre, C., Van den Berg, H.M. and Thompson, M.W. 2008. The South African National Land Cover 2000. Agricultural Research Council...

  1. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy;

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  2. Remedies proposed for China's groundwater problems

    Science.gov (United States)

    Loaiciga, Hugo A.

    Groundwater experts and hydrologists from China and 10 other nations recently gathered in Beijing to exchange state-of-the-art scientific and technological knowledge on groundwater hydrology, modeling, remediation, and management. The participants also reviewed groundwater environmental conditions in China, identified key problems, and made recommendations to help guide the nation's groundwater policy.The Regional Workshop on Ground Water Contamination, held from July 31 to August 4, 1995, was the fifth of a series of regional workshops sponsored by the Scientific Committee on Problems of the Environment of the United Nations Environmental Program. Earlier workshops were held in Thailand (1991), Costa Rica (1993), the Czech Republic (1994), and Australia (1994).

  3. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [Navarro Research and Engineering; Miller, David [Navarro Research and Engineering; Kautsky, Mark [U. S. Department of Energy, Office of Legacy Management; Dander, David [Navarro Research and Engineering; Nofchissey, Joni [Navajo Nation Division of Natural Resources

    2016-03-06

    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  4. [Removal of nitrate from groundwater using permeable reactive barrier].

    Science.gov (United States)

    Li, Xiu-Li; Yang, Jun-Jun; Lu, Xiao-Xia; Zhang, Shu; Hou, Zhen

    2013-03-01

    To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand (biowall), and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV), which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen (NO3(-) -N) by the simulated biowall was 80%-90% (NO3(-)-N was reduced from 20 mg x L(-1) in the inlet water to 1.6 mg x L(-1) in the outlet water); the concentration of nitrite nitrogen (NO2(-) -N) in the outlet water was below 2.5 mg x L(-1); the concentration of ammonium nitrogen (NH4(+) -N) was low in the first two days but increased to about 12 mg x L(-1) since day three. The major mechanisms involved in the removal of nitrate nitrogen were adsorption and biodegradation. When increasing the water flow velocity in the simulated biowall, the removal rate of NO3(-) -N was reduced and the concentration of NH4(+) -N in the outlet water was significantly reduced. A simulated zeolite wall was set up following the simulated biowall and 98% of the NH4(+) -N could be removed from the water.

  5. Remediation Technology for Contaminated Groundwater

    Science.gov (United States)

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  6. Remediation of Groundwater Contaminated by Nuclear Waste

    Science.gov (United States)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  7. Spatial and temporal analysis of the nitrate concentrations in groundwater for South Africa

    CSIR Research Space (South Africa)

    Maherry, A

    2009-11-01

    Full Text Available and identify areas where nitrate pollution occurs as an ecological hazard for priority research and remediation. Data was sourced from the national groundwater database for the entire country for the period up until 2008. Previous maps used data pre-1990 and up...

  8. Experimental Research on PRB Reaction Medium in Remediation of Nitrate Contaminated Groundwater%PRB反应介质修复地下水中硝酸盐的试验研究

    Institute of Scientific and Technical Information of China (English)

    袁玉英; 李福林; 陈学群; 管清花; 杨丽原

    2011-01-01

    Taking groundwater of Qianhang in Jiaozhou City for an example, six kinds of PRB reactors are designed by selecting iron powder, active carbon, sawdust and its mixtures as reaction medium. The influence of reaction medium on the nitrate degradation rate and environment is discussed to find a cheap and efficient material for nitrate degradation of groundwater. The results show that the PRB technology is effective for nitrate degradation of groundwater; zero-valent I-ron, active carbon and sawdust have a certain adsorptive effect on nitrate; when PRB reactor contains zero-valent iron, it can remove more than 90% of nitrate.%以胶州前转地下水为例,选用铁粉、活性炭、锯末及其混合物为反应介质,设计6种PRB反应器,探讨了反应介质对硝酸盐降解速率及对环境的影响,以寻求一种廉价而高效的降解地下水中硝酸盐的材料.结果表明,采用PRB技术降低地下水硝酸盐浓度是可行的.零价铁、活性炭、锯末均对硝酸盐有去除作用,当PRB反应器中含有铁粉时能将硝酸盐氮去除90%以上.

  9. Summary of Remediated Nitrate Salt Surrogate Formulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leonard, Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartline, Ernest Leon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tian, Hongzhao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    High Explosives Science and Technology (M-7) completed all required formulation and testing of Remediated Nitrate Salt (RNS) surrogates on April 27, 2016 as specified in PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure", released February 16, 2016. This report summarizes the results of the work and also includes additional documentation required in that test plan. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B. The work was carried out in three rounds, with the full matrix of samples formulated and tested in each round. Results from the first round of formulation and testing were documented in memorandum M7-J6-6042, " Results from First Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Results from the second round of formulation and testing were documented in M7-16-6053 , "Results from the Second Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Initial results from the third round were documented in M7-16-6057, "Initial Results from the Third Round of Remediated Nitrate Salt Formulation and Testing."

  10. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  11. Groundwater remediation optimization using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L. L., LLNL

    1998-05-01

    One continuing point of research in optimizing groundwater quality management is reduction of computational burden which is particularly limiting in field-scale applications. Often evaluation of a single pumping strategy, i.e. one call to the groundwater flow and transport model (GFTM) may take several hours on a reasonably fast workstation. For computational flexibility and efficiency, optimal groundwater remediation design at Lawrence Livermore National Laboratory (LLNL) has relied on artificial neural networks (ANNS) trained to approximate the outcome of 2-D field-scale, finite difference/finite element GFTMs. The search itself has been directed primarily by the genetic algorithm (GA) or the simulated annealing (SA) algorithm. This approach has advantages of (1) up to a million fold increase in speed of remediation pattern assessment during the searches and sensitivity analyses for the 2-D LLNL work, (2) freedom from sequential runs of the GFTM (enables workstation farming), and (3) recycling of the knowledge base (i.e. runs of the GFTM necessary to train the ANNS). Reviewed here are the background and motivation for such work, recent applications, and continuing issues of research.

  12. Behavior of solid carbon sources for biological denitrification in groundwater remediation.

    Science.gov (United States)

    Zhang, Jianmei; Feng, Chuanping; Hong, Siqi; Hao, Huiling; Yang, Yingnan

    2012-01-01

    The present study was conducted to compare the behavior of wheat straw, sawdust and biodegradable plastic (BP) as potential carbon sources for denitrification in groundwater remediation. The results showed that a greater amount of nitrogen compounds were released from wheat straw and sawdust than from BP in leaching experiments. In batch experiments, BP showed higher nitrate removal efficiency and longer service life than wheat straw and sawdust, which illustrated that BP is the most appropriate carbon source for stimulation of denitrification activity. In column experiments, BP was able to support complete denitrification at influent nitrate concentrations of 50, 60, 70, 80, and 90 mg NO(3)(-)-N/L, showing corresponding denitrification rates of 0.12, 0.14, 0.17, 0.19, and 0.22 mg NO(3)(-)-N.L(-1).d(-1).g(-1), respectively. These findings indicate that BP is applicable for use as a carbon source for nitrate-polluted groundwater remediation.

  13. Land-use change and costs to rural households: a case study in groundwater nitrate contamination

    Science.gov (United States)

    Keeler, Bonnie L.; Polasky, Stephen

    2014-07-01

    Loss of grassland from conversion to agriculture threatens water quality and other valuable ecosystem services. Here we estimate how land-use change affects the probability of groundwater contamination by nitrate in private drinking water wells. We find that conversion of grassland to agriculture from 2007 to 2012 in Southeastern Minnesota is expected to increase the future number of wells exceeding 10 ppm nitrate-nitrogen by 45% (from 888 to 1292 wells). We link outputs of the groundwater well contamination model to cost estimates for well remediation, well replacement, and avoidance behaviors to estimate the potential economic value lost due to nitrate contamination from observed land-use change. We estimate 0.7-12 million in costs (present values over a 20 year horizon) to address the increased risk of nitrate contamination of private wells. Our study demonstrates how biophysical models and economic valuation can be integrated to estimate the welfare consequences of land-use change.

  14. Occurrence of nitrate in Tanzanian groundwater aquifers: A review

    Science.gov (United States)

    Elisante, Eliapenda; Muzuka, Alfred N. N.

    2017-03-01

    More than 25 % of Tanzanian depends on groundwater as the main source of water for drinking, irrigation and industrial activities. The current trend of land use may lead to groundwater contamination and thus increasing risks associated with the usage of contaminated water. Nitrate is one of the contaminants resulting largely from anthropogenic activities that may find its way to the aquifers and thus threatening the quality of groundwater. Elevated levels of nitrate in groundwater may lead to human health and environmental problems. The current trend of land use in Tanzania associated with high population growth, poor sanitation facilities and fertilizer usage may lead to nitrate contamination of groundwater. This paper therefore aimed at providing an overview of to what extent human activities have altered the concentration of nitrate in groundwater aquifers in Tanzania. The concentration of nitrate in Tanzanian groundwater is variable with highest values observable in Dar es Salaam (up to 477.6 mg/l), Dodoma (up to 441.1 mg/l), Tanga (above 100 mg/l) and Manyara (180 mg/l). Such high values can be attributed to various human activities including onsite sanitation in urban centres and agricultural activities in rural areas. Furthermore, there are some signs of increasing concentration of nitrate in groundwater with time in some areas in response to increased human activities. However, reports on levels and trends of nitrate in groundwater in many regions of the country are lacking. For Tanzania to appropriately address the issue of groundwater contamination, a deliberate move to determine nitrate concentration in groundwater is required, as well as protection of recharge basins and improvement of onsite sanitation systems.

  15. Occurrence of nitrate in Tanzanian groundwater aquifers: A review

    Science.gov (United States)

    Elisante, Eliapenda; Muzuka, Alfred N. N.

    2015-03-01

    More than 25 % of Tanzanian depends on groundwater as the main source of water for drinking, irrigation and industrial activities. The current trend of land use may lead to groundwater contamination and thus increasing risks associated with the usage of contaminated water. Nitrate is one of the contaminants resulting largely from anthropogenic activities that may find its way to the aquifers and thus threatening the quality of groundwater. Elevated levels of nitrate in groundwater may lead to human health and environmental problems. The current trend of land use in Tanzania associated with high population growth, poor sanitation facilities and fertilizer usage may lead to nitrate contamination of groundwater. This paper therefore aimed at providing an overview of to what extent human activities have altered the concentration of nitrate in groundwater aquifers in Tanzania. The concentration of nitrate in Tanzanian groundwater is variable with highest values observable in Dar es Salaam (up to 477.6 mg/l), Dodoma (up to 441.1 mg/l), Tanga (above 100 mg/l) and Manyara (180 mg/l). Such high values can be attributed to various human activities including onsite sanitation in urban centres and agricultural activities in rural areas. Furthermore, there are some signs of increasing concentration of nitrate in groundwater with time in some areas in response to increased human activities. However, reports on levels and trends of nitrate in groundwater in many regions of the country are lacking. For Tanzania to appropriately address the issue of groundwater contamination, a deliberate move to determine nitrate concentration in groundwater is required, as well as protection of recharge basins and improvement of onsite sanitation systems.

  16. Spatial assessment of animal manure spreading and groundwater nitrate pollution

    Directory of Open Access Journals (Sweden)

    Roberta Infascelli

    2009-11-01

    Full Text Available Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed.

  17. Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake

    OpenAIRE

    Hu, Qiang; Westerhoff, Paul; Vermaas, Wim

    2000-01-01

    The feasibility of biologically removing nitrate from groundwater was tested by using cyanobacterial cultures in batch mode under laboratory conditions. Results demonstrated that nitrate-contaminated groundwater, when supplemented with phosphate and some trace elements, can be used as growth medium supporting vigorous growth of several strains of cyanobacteria. As cyanobacteria grew, nitrate was removed from the water. Of three species tested, Synechococcus sp. strain PCC 7942 displayed the h...

  18. Perchlorate and Nitrate Remediation Efficiency and Microbial Diversity in a Containerized Wetland Bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jr., B D; Dibley, V; Pinkart, H; Legler, T

    2004-06-09

    We have developed a method to remove perchlorate (14 to 27 {micro}g/L) and nitrate (48 mg/L) from contaminated groundwater using a wetland bioreactor. The bioreactor has operated continuously in a remote field location for more than two years with a stable ecosystem of indigenous organisms. This study assesses the bioreactor for long-term perchlorate and nitrate remediation by evaluating influent and effluent groundwater for reduction-oxidation conditions and nitrate and perchlorate concentrations. Total community DNA was extracted and purified from 10-g sediment samples retrieved from vertical coring of the bioreactor during winter. Analysis by denaturing gradient gel electrophoresis of short, 16S rDNA, polymerase-chain-reaction products was used to identify dominant microorganisms. Bacteria genera identified were closely affiliated with bacteria widely distributed in soils, mud layers, and fresh water. Of the 17 dominant bands sequenced, most were gram negative and capable of aerobic or anaerobic respiration with nitrate as the terminal electron acceptor (Pseudomonas, Acinetobacter, Halomonas, and Nitrospira). Several identified genera (Rhizobium, Acinetobactor, and Xanthomonas) are capable of fixing atmospheric nitrogen into a combined form (ammonia) usable by host plants. Isolates were identified from the Proteobacteria class, known for the ability to reduce perchlorate. Initial bacterial assessments of sediments confirm the prevalence of facultative anaerobic bacteria capable of reducing perchlorate and nitrate in situ.

  19. Sulfate Reduction in Groundwater: Characterization and Applications for Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

    2012-06-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

  20. Groundwater head controls nitrate export from an agricultural lowland catchment

    Science.gov (United States)

    Musolff, Andreas; Schmidt, Christian; Rode, Michael; Lischeid, Gunnar; Weise, Stephan M.; Fleckenstein, Jan H.

    2016-10-01

    Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale.

  1. Distribution of Land Use to Purify Contaminated Groundwater by Nitrate

    Science.gov (United States)

    Iizumi, Y.; Tanaka, T.; Kinouchi, T.; Tase, N.; Fukami, K.

    2006-12-01

    Groundwater contamination by nitrate results from over-fertilizing and/or inadequate disposal of livestock excreta has been large-scale problem in agricultural area. Because nitrate is primarily transported to streams via ground water flow, explaining actual condition of groundwater is needed to propose an effective measure for the conservation and restoration of sound nitrogen cycle in agricultural river catchments. The purpose of this research was to clarify a triangular relationship between the groundwater quality and flow system, river water quality and land use. The experimental field is located on a slope from Tsukuba tableland to bottomland, which is a part of Nishi- Yata River watershed in Ibaraki Prefecture, Japan. The site area is about 0.0675 square kilometers and the altitude varies from 24 m to 19 m. Land use of tableland, bottomland and intermediate between them are forestland, paddy field and cropland, respectively. Groundwater quality and level were monitored for the year 2004. During the study period significant differences were not observed in groundwater ionic concentrations. Relative high concentrations of dissolved nitrate were detected in cropland (3 - 43 mg/l) and forestland (74 - 179 mg/l). It revealed that there was a purification zone in the paddy field and the area around its 2-4m and denitrification eliminates nitrate-nitrogen. The pressure head converted into hydraulics head, and the groundwater flow were calculated. According to the results, it seems that groundwater flow from tableland to the riverbed through bottomland. It is presumed that groundwater cultivated in cropland with chemical fertilizer pass through the purification zone of nitrate. On the other hand, it is assumed that groundwater containing nitrate originated from inadequate disposal of livestock excreta discharge from forestland does not pass through the depth of this spot. It is suggested that considering flow system of groundwater to manage distribution of land use

  2. Nitrate in Danish groundwater during the last 60 years

    DEFF Research Database (Denmark)

    Hansen, B; Thorling, L; Dalgaard, Tommy;

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater (see Figure 1). Regulation and technical improvements in the intensive farming in Denmark...

  3. The Mechanism of Nitrate Pollution in Soil and Groundwater

    Institute of Scientific and Technical Information of China (English)

    王志敏; 诸葛敏; 杨玉峥

    2013-01-01

    Soil and groundwater which are important natural resources are closely related with human health.It will be hard to recover,if it is polluted.Nitrate has become one of the most serious harmful substances contaminated in soil and groundwater.A large number of studies have shown that high fertilizer and irrigation was the main reason of soil and groundwater pollution.Pollution is mainly concentrated in agricultural developed area.

  4. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  5. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  6. Nodal failure index approach to groundwater remediation design

    Science.gov (United States)

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  7. Distribution and Sources of Nitrate-Nitrogen in Kansas Groundwater

    Directory of Open Access Journals (Sweden)

    Margaret A. Townsend

    2001-01-01

    Full Text Available Kansas is primarily an agricultural state. Irrigation water and fertilizer use data show long- term increasing trends. Similarly, nitrate-N concentrations in groundwater show long-term increases and exceed the drinking-water standard of 10 mg/l in many areas. A statistical analysis of nitrate-N data collected for local and regional studies in Kansas from 1990 to 1998 (747 samples found significant relationships between nitrate-N concentration with depth, age, and geographic location of wells. Sources of nitrate-N have been identified for 297 water samples by using nitrogen stable isotopes. Of these samples, 48% showed fertilizer sources (+2 to +8 and 34% showed either animal waste sources (+10 to +15 with nitrate-N greater than 10 mg/l or indication that enrichment processes had occurred (+10 or above with variable nitrate-N or both. Ultimate sources for nitrate include nonpoint sources associated with past farming and fertilization practices, and point sources such as animal feed lots, septic systems, and commercial fertilizer storage units. Detection of nitrate from various sources in aquifers of different depths in geographically varied areas of the state indicates that nonpoint and point sources currently impact and will continue to impact groundwater under current land uses.

  8. Assessment of nitrate concentration in groundwater in Saudi Arabia.

    Science.gov (United States)

    Alabdula'aly, Abdulrahman I; Al-Rehaili, Abdullah M; Al-Zarah, Abdullah I; Khan, Mujahid A

    2010-02-01

    Contamination of groundwater by nitrate is considered a global problem. Nitrates are introduced in the groundwater from a variety of sources like agricultural activities, poor sewer system, wastewaters, and industrial activities. In the present research, a survey of wells (n = 1,060) was undertaken in all 13 regions of the Kingdom of Saudi Arabia to assess the contained nitrate (NO(3)) levels. The results indicated variation in nitrate levels from 1.1 to 884.0 mg/L as NO(3) throughout the Kingdom. The average nitrate levels in milligrams per liter as NO(3) were as follows in descending order: 65.7 (Jizan), 60.3 (Asir), 60.0 (Qassim), 51.3 (Hail), 41.8 (Makkah Al Mukaramma), 41.3 (Madina Al Munnawara), 38.0 (Al Baha), 37.0 (Najran), 30.7, (Tabouk), 25.2 (Eastern Province), 18.8 (Riyadh), 15.8 (Al Jouf), and 9.1 (Hadwed Shamalyah). The results indicated that nitrate levels exceeded the maximum contaminant limits for drinking water (45 mg/L as NO(3)) in a number of wells (n = 213) in different regions of the Kingdom. The maximum and minimum wells exceeding the maximum contaminant limits for nitrate in drinking water were in Jizan (52.6%) and Hadwed Shamalyah (4.9%), respectively. Most of the wells which exceeded the maximum allowed limits for nitrate were in the areas which were used for agricultural and residential purposes.

  9. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation.

    Science.gov (United States)

    Hakeem, Khalid Rehman; Sabir, Muhammad; Ozturk, Munir; Akhtar, Mohd Sayeed; Ibrahim, Faridah Hanum; Ashraf, Muhammad; Ahmad, Muhammad Sajid Aqeel

    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods

  10. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater.

    Science.gov (United States)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-22

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  11. Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater

    Science.gov (United States)

    Applegate, Olin; Li, Xunde; Kliegman, Joseph I.; Langelier, Charles; Atwill, Edward R.; Harter, Thomas; DeRisi, Joseph L.

    2017-01-01

    Background Climate change produces extremes in both temperature and precipitation causing increased drought severity and increased reliance on groundwater resources. Agricultural practices, which rely on groundwater, are sensitive to but also sources of contaminants, including nitrate. How agricultural contamination drives groundwater geochemistry through microbial metabolism is poorly understood. Methods On an active cow dairy in the Central Valley of California, we sampled groundwater from three wells at depths of 4.3 m (two wells) and 100 m (one well) below ground surface (bgs) as well as an effluent surface water lagoon that fertilizes surrounding corn fields. We analyzed the samples for concentrations of solutes, heavy metals, and USDA pathogenic bacteria of the Escherichia coli and Enterococcus groups as part of a long term groundwater monitoring study. Whole metagenome shotgun sequencing and assembly revealed taxonomic composition and metabolic potential of the community. Results Elevated nitrate and dissolved organic carbon occurred at 4.3m but not at 100m bgs. Metagenomics confirmed chemical observations and revealed several Planctomycete genomes, including a new Brocadiaceae lineage and a likely Planctomycetes OM190, as well novel diversity and high abundance of nano-prokaryotes from the Candidate Phyla Radiation (CPR), the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea (DPANN) and the Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota (TACK) superphyla. Pathway analysis suggests community interactions based on complimentary primary metabolic pathways and abundant secondary metabolite operons encoding antimicrobials and quorum sensing systems. Conclusions The metagenomes show strong resemblance to activated sludge communities from a nitrogen removal reactor at a wastewater treatment plant, suggesting that natural bioremediation occurs through microbial metabolism. Elevated nitrate and rich secondary metabolite

  12. LCA of Soil and Groundwater Remediation

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Owsianiak, Mikolaj

    2017-01-01

    Today, there is increasing interest in applying LCA to support decision-makers in contaminated site management. In this chapter, we introduce remediation technologies and associated environmental impacts, present an overview of literature findings on LCA applied to remediation technologies and pr...

  13. California GAMA Program: Sources and transport of nitrate in shallow groundwater in the Llagas Basin of Santa Clara County, California

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; McNab, W; Esser, B; Hudson, G; Carle, S; Beller, H; Kane, S; Tompson, A B; Letain, T; Moore, K; Eaton, G; Leif, R; Moody-Bartel, C; Singleton, M

    2005-06-29

    long-term remediation. Examination of nitrate concentration in relation to groundwater age indicates that the nitrate management plan has not yet resulted in a decrease in the flux of nitrate to the shallow aquifer in the areas tested.

  14. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene

    OpenAIRE

    Kshitij C. Jha; Zhuonan Liu; Hema Vijwani; Mallikarjuna Nadagouda; Mukhopadhyay, Sharmila M.; Mesfin Tsige

    2016-01-01

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), th...

  15. Nitrate pollution of groundwater; all right…, but nothing else?

    Science.gov (United States)

    Menció, Anna; Mas-Pla, Josep; Otero, Neus; Regàs, Oriol; Boy-Roura, Mercè; Puig, Roger; Bach, Joan; Domènech, Cristina; Zamorano, Manel; Brusi, David; Folch, Albert

    2016-01-01

    Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include 5 different aquifer types, to investigate the influence of fertilization on the overall hydrochemical composition of groundwater. Results indicate that intense fertilizer application, causing high nitrate pollution in aquifers, also homogenize the contents of the major dissolved ions (i.e.; Cl(-), SO4(2-), Ca(2+), Na(+), K(+), and Mg(2+)). Thus, when groundwater in igneous and sedimentary aquifers is compared, significant differences are observed under natural conditions for Cl(-), Na(+) and Ca(2+) (with p-values ranging from groundwater hydrochemistry (with R(2) values of 0.490, 0.609 and 0.470, for SO4(2-), Ca(2+) and Cl(-), respectively). Nevertheless, the increasing concentration of specific ions is not only attributed to agricultural pollution, but to their enhancing effect upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that these processes should be evaluated in advance in order to assess an adequate groundwater resources management. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Nitrate pollution of groundwater; all right…, but nothing else?

    Energy Technology Data Exchange (ETDEWEB)

    Menció, Anna, E-mail: anna.mencio@udg.edu [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona (Spain); Mas-Pla, Josep, E-mail: jmas@icra.cat [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona (Spain); Institut Català de Recerca de l’Aigua (ICRA) (Spain); Otero, Neus, E-mail: notero@ub.edu [Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/ Martí i Franquès, s/n – 08028 Barcelona (Spain); Regàs, Oriol [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona (Spain); Boy-Roura, Mercè [Institut Català de Recerca de l’Aigua (ICRA) (Spain); and others

    2016-01-01

    Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include 5 different aquifer types, to investigate the influence of fertilization on the overall hydrochemical composition of groundwater. Results indicate that intense fertilizer application, causing high nitrate pollution in aquifers, also homogenize the contents of the major dissolved ions (i.e.; Cl{sup -}, SO{sub 4}{sup 2-}, Ca{sup 2+}, Na{sup +}, K{sup +}, and Mg{sup 2+}). Thus, when groundwater in igneous and sedimentary aquifers is compared, significant differences are observed under natural conditions for Cl{sup -}, Na{sup +} and Ca{sup 2+} (with p-values ranging from < 0.001 to 0.038), and when high nitrate concentrations occur, these differences are reduced (most p-values ranged between 0.054 and 0.978). Moreover, positive linear relationships between nitrate and some ions are found indicating the magnitude of the fertilization impact on groundwater hydrochemistry (with R{sup 2} values of 0.490, 0.609 and 0.470, for SO{sub 4}{sup 2-}, Ca{sup 2+} and Cl{sup -}, respectively). Nevertheless, the increasing concentration of specific ions is not only attributed to agricultural pollution, but to their enhancing effect upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that these processes should be evaluated in advance in order to assess an adequate groundwater resources management. - Highlights: • The effects of nitrate pollution have been evaluated in five different aquifer types • Statistical and multivariate analyses are used to identify groundwater changes • Agricultural pollution modifies

  17. Control of Groundwater Remediation Process as Distributed Parameter System

    Directory of Open Access Journals (Sweden)

    Mendel M.

    2014-12-01

    Full Text Available Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  18. Remediation alternatives for low-level herbicide contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Conger, R.M. [BASF Corp., Geismar, LA (United States)

    1995-10-01

    In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

  19. Groundwater quality in Maharashtra, India: focus on nitrate pollution.

    Science.gov (United States)

    Gupta, Indrani; Salunkhe, Abhaysinh; Rohra, Nanda; Kumar, Rakesh

    2011-10-01

    Groundwater Survey and Development Agency (GSDA), Central Ground Water Board (CGWB) and Maharashtra Pollution Control Board (MPCB) have been carrying out groundwater quality monitoring at about 1407 monitoring locations in various districts of Maharashtra state in India. The groundwater quality data for pH, TDS, total hardness, sulphate, flouride and nitrate were compared with BIS: 10500:2004-2005 standards for drinking purpose. The results show that nitrate pollution is becoming more prevalent in groundwater of Maharashtra. Water quality data during the period 2007-2009 show that 544 locations out of 1407 locations exceeded 45 mgl(-1), the allowable NO3 level for drinking water. About 227 locations exceeded nitrate level beyond 100 mgl(-1). At 87 talukas in 23 districts of Maharashtra the NO3 levels exceeded the standard in all samples monitored during 2007-2009. The Buldana district with highest locations (27) had nitrate above 100 mgl(-1) followed by Amravati (24) and Akola (20) districts. At 7 talukas in 4 districts, fluoride was found above permissible limit of 1.5 mgl(-1), 100% of the time. 2 talukas in 2 districts of Maharashtra showed 100% non compliance of pH as per BIS standard of 6.5-8.5 mgl(-1). The districts having good to excellent quality of groundwater were Bhandara, Gondia, Kolhapur, Mumbai city, Mumbai Suburban, Nandurbar, Raigad, Ratnagiri, Satara, Sindhudurg, Thane and Washim. Vaijapur taluka in Aurangabad, Sinnar in Nashik and Kalambh taluka in Osmanabad have very poor water quality. Paithan taluka in Aurangabad, Shegaon taluka at Buldhana district, Amolner taluka at Jalgaon district and Jafrabad in Jalna district have water unsuitable for drinking.

  20. Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence

    DEFF Research Database (Denmark)

    Hansen, B.; Dalgaard, Tommy; Thorling, L.

    2012-01-01

    The act of balancing between an intensive agriculture with a high potential for nitrate pollution and a drinking water supply almost entirely based on groundwater is a challenge faced by Denmark and similar regions around the globe. Since the 1980s, regulations implemented by Danish farmers have......, with documented positive effects on nature and the environment in Denmark. In groundwater, the upward trend in nitrate concentrations was reversed around 1980, and a larger number of downward nitrate trends were seen in the youngest groundwater compared with the oldest groundwater. However, on average......, approximately 48% of the oxic monitored groundwater has nitrate concentrations above the groundwater and drinking water standards of 50 mg l−1. Furthermore, trend analyses show that 33% of all the monitored groundwater has upward nitrate trends, while only 18% of the youngest groundwater has upward nitrate...

  1. Evaluating Chemical Tracers in Suburban Groundwater as Indicators of Nitrate-Nitrogen Sources

    Science.gov (United States)

    Nitka, A.; DeVita, W. M.; McGinley, P.

    2015-12-01

    The CDC reports that over 15 million US households use private wells. These wells are vulnerable to contamination. One of the most common contaminants in private wells is nitrate. Nitrate has a health standard of 10 mg/L. This standard is set to prevent methemaglobinemia, or "blue baby" syndrome, in infants. In extreme cases it can affect breathing and heart function, and even lead to death. Elevated nitrate concentrations have also been associated with increased risk of thyroid disease, diabetes, and certain types of cancer. Unlike municipal wells, there is no mandatory testing of private wells. It is the responsibility of users to have their well water tested. The objective of this research was to identify the most useful chemical tracers for determining sources of nitrate in private water supplies. Chemical characteristics, such as mobility in groundwater and water solubility, as well as frequency of use, were considered when choosing source indicators. Fourteen pharmaceuticals and personal care products unique to human use were chosen to identify wells impacted by septic waste. A bovine antibiotic and five pesticide metabolites were used to identify contamination from agricultural sources. Eighteen private wells were selected in a suburban area with septic systems and adjacent agricultural land. The wells were sampled five times and analyzed to provide a temporal profile of nitrate and the tracers. The artificial sweetener sucralose was found in >70% of private wells. Wells with sucralose detected had nitrate concentrations between 5-15 mg/L. The herbicide metabolite metolachlor ESA was detected in 50% of the wells. These wells typically had the highest nitrate concentrations, often >10 mg/L. The common use and frequent detection of these two compounds made them the most reliable indicators of nitrate sources evaluated in this study. This information will help well owners determine appropriate treatment and remediation options and could direct future

  2. 地下水硝酸盐污染阻断与修复技术及装备研究年度进展报告%Annual Progress Report of Research on Control and Remediation Technology and Equipment of Groundwater Nitrate Pollution

    Institute of Scientific and Technical Information of China (English)

    姜永海

    2016-01-01

    产出方面,目前,课题组申请专利5项,获得授权专利两项,提出创新技术两项,投稿学术论文6篇,其中SCI论文3篇。%Currently, the progress of study goes well,the target is basic reasonable, the job of research is carried out smoothly according to the plan, parts of study have already developed in advance. Two typical demonstrate place were chosen, one is MSW landfill which is located in Shunyi County in Beijing, the other one is breeding base in Haiyan County in Zhejiang province. At the two research bases, information collecting,hydrogeological investigation,monitoring wells building, water quality monitoring, slug and infiltration testing, all of these already have been finished, and hydrogeological parameter have been achieved. These results can be used in the design of engineering demonstration. On the basis of a great deal of laboratory data, theoretical basis are built about the remediation technology of the pollution of nitrate in groundwater, which was based of the research background of engineering demonstration field. Three kinds of remediation materials developed, including activated carbon material, slow-releasing material of oxidation and biochemical integrated material. Two innovative scientific remediation technology are studied. One is unfilled PRB in situ remediation technology of groundwater pollution, which is proposed basing deeper groundwater pollution in in the north. The remediation technology has advantages of low investment, simple process flow and low cost. The multi semi-in situ remediation of groundwater system is a new groundwater remediation technology which is researched and developed through our research. The system integrated the Wetland treatment technology, Permeable reactive barriers technology and groundwater well irrigation technology as a whole. The advantages of this system are lower cost of construction and operation, easy construction, small disturbance to the groundwater environment

  3. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferred option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.

  4. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    Science.gov (United States)

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-07-21

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  5. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Kshitij C. Jha

    2016-07-01

    Full Text Available Adsorption of chlorinated organic contaminants (COCs on carbon nanotubes (CNTs has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE, the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  6. Nitrate contamination risk assessment in groundwater at regional scale

    Science.gov (United States)

    Daniela, Ducci

    2016-04-01

    Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully

  7. Upscaling of lysimeter measurements to regional groundwater nitrate distribution

    Science.gov (United States)

    Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Rock, Gerhard

    2015-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. This is a diffuse pollution situation and measures to change agricultural production have to be investigated at the aquifer scale to safeguard drinking water supply from shallow groundwater resources Lysimeters are state-of-the-art measurements for water and solute fluxes through the unsaturated zone towards groundwater at the point scale, but due to regional heterogeneities (especially concerning soil conditions) lysimeters cannot provide aquifer-wide groundwater recharge and solute leaching. Thus, in this work the numerical simulation model SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) for quantifying groundwater recharge and nitrate leaching at aquifer scale is applied. Nevertheless, according to Groenendijk et al. (2014) a model calibration by means of lysimeter measurements is essential, since uncalibrated models are generally far from acceptable. Thus, a lysimeter provides the basis for the parameterization of numerical simulation models. To quantify also the impact on regional nitrate distribution in the groundwater, we couple the unsaturated zone model SIMWASER/STOTRASIM with the saturated groundwater flow and solute transport model FELOW (Diersch, 2009) sequentially. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that

  8. Results from Second Round of Remediated Nitrate Salt Surrogate Formulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Laboratory; Leonard, Philip [Los Alamos National Laboratory; Hartline, Ernest Leon [Los Alamos National Laboratory; Tian, Hongzhao [Los Alamos National Laboratory

    2016-04-04

    High Explosives and Technology (M-7) completed the second round of formulation and testing of Remediated Nitrate Salt (RNS) surrogates on March 17, 2016. This report summarizes the results of the work and also includes additional documentation required under test plan PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure", released February 16, 2016. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B. Results from the first round of formulation and testing were documented in memorandum M7-16-6042, "Results from First Round of Remediated Nitrate Salt Surrogate Formulation and Testing."

  9. Nitrate leaching from intensive organic farms to groundwater

    Directory of Open Access Journals (Sweden)

    O. Dahan

    2013-07-01

    Full Text Available It is commonly presumed that organic agriculture causes only minimal environmental pollution. In this study, we measured the quality of percolating water in the vadose zone, underlying both organic and conventional intensive greenhouses. Our study was conducted in newly established farms where the subsurface underlying the greenhouses has been monitored continuously from their establishment. Surprisingly, intensive organic agriculture relying on solid organic matter, such as composted manure that is implemented in the soil prior to planting as the sole fertilizer, resulted in significant down leaching of nitrate through the vadose zone to the groundwater. On the other hand, similar intensive agriculture that implemented liquid fertilizer through drip irrigation, as commonly practiced in conventional agriculture, resulted in much lower rates of pollution of the vadose zone and groundwater. It has been shown that accurate fertilization methods that distribute the fertilizers through the irrigation system, according to plant demand, during the growing season dramatically reduce the potential for groundwater contamination.

  10. Arsenic in the groundwater: Occurrence, toxicological activities, and remedies.

    Science.gov (United States)

    Jha, S K; Mishra, V K; Damodaran, T; Sharma, D K; Kumar, Parveen

    2017-04-03

    Arsenic (As) contamination in groundwater has become a geo-environmental as well as a toxicological problem across the globe affecting more than 100-million people in nearly 21 countries with its associated disease "arsenicosis." Arsenic poisoning may lead to fatal skin and internal cancers. In present review, an attempt has been made to generate awareness among the readers about various sources of occurrence of arsenic, its geochemistry and speciation, mobilization, metabolism, genotoxicity, and toxicological exposure on humans. The article also emphasizes the possible remedies for combating the problem. The knowledge of these facts may help to work on some workable remedial measure.

  11. In situ bioremediation of nitrate and perchlorate in vadose zone soil for groundwater protection using gaseous electron donor injection technology.

    Science.gov (United States)

    Evans, Patrick J; Trute, Mary M

    2006-12-01

    When present in the vadose zone, potentially toxic nitrate and perchlorate anions can be persistent sources of groundwater contamination. Gaseous electron donor injection technology (GEDIT), an anaerobic variation of petroleum hydrocarbon bioventing, involves injecting electron donor gases, such as hydrogen or ethyl acetate, into the vadose zone, to stimulate biodegradation of nitrate and perchlorate. Laboratory microcosm studies demonstrated that hydrogen and ethanol promoted nitrate and perchlorate reduction in vadose zone soil and that moisture content was an important factor. Column studies demonstrated that transport of particular electron donors varied significantly; ethyl acetate and butyraldehyde were transported more rapidly than butyl acetate and ethanol. Nitrate removal in the column studies, up to 100%, was best promoted by ethyl acetate. Up to 39% perchlorate removal was achieved with ethanol and was limited by insufficient incubation time. The results demonstrate that GEDIT is a promising remediation technology warranting further validation.

  12. Fort Ord Groundwater Remediation Studies, 2002 - 2005

    Science.gov (United States)

    2006-08-01

    water Velocity at OU 1, Former Fort Ord, California. Su, G.W., B.M. Freifeld , C.M. Oldenburg, P.D. Jordan and P.F. Daley. 2005. Lawrence Berkeley...138. Oldenburg, C. M., P. F. Daley, B. M. Freifeld , J. Hinds, and P. D. Jordan, 2002. Three- Dimensional Groundwater Flow, Aquifer Response, and...U.S. Geological Survey Contract Number 1434-95-C-40232, 29 pp. Su, G.W., B.M. Freifeld , C.M. Oldenburg, P.D. Jordan, and P.F. Daley, 2005. Data

  13. Reduction of nitrate from groundwater: powder catalysts and catalytic membrane.

    Science.gov (United States)

    Chen, Ying-Xu; Zhang, Yan; Liu, Hong-Yuan

    2003-09-01

    The reduction of nitrate contaminant in groundwater has gained renewed and intensive attention due to the environmental problems and health risks. Catalytic denetrification presents one of the most promising approaches for the removal of nitrate from water. Catalytic nitrate reduction from water by powder catalysts and catalytic membrane in a batch reactor was studied. And the effects of the initial concentration, the amounts of catalyst, and the flux H2 on the nitrate reduction were also discussed. The results demonstrated that nitrate reduction activity and the selectivity to nitrogen gas were mainly controlled by diffusion limitations and the mass transfer of the reactants. The selectivity can improved while retaining a high catalytic activity under controlled diffusion condition or the intensification of the mass transfer, and a good reaction condition. The total nitrogen removal efficiency reached above 80%. Moreover, catalytic membrane can create a high effective gas/liquid/solid interface, and show a good selectivity to nitrogen in comparative with the powder catalyst, the selectivity to nitrogen was improved from 73.4% to 89.4%.

  14. Reduction of nitrate from groundwater: powder catalysts and catalytic membrane

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-xu; ZHANG Yan; LIU Hong-yuan

    2003-01-01

    The reduction of nitrate contaminant in groundwater has gained renewed and intensive attention due to the environmental problems and health risks. Catalytic denetrification presents one of the most promising approaches for the removal of nitrate from water. Catalytic nitrate reduction from water by powder catalysts and catalytic membrane in a batch reactor was studied. And the effects of the initial concentration, the amounts of catalyst, and the flux H2 on the nitrate reduction were also discussed. The results demonstrated that nitrate reduction activity and the selectivity to nitrogen gas were mainly controlled by diffusion limitations and the mass transfer of the reactants. The selectivity can improved while retaining a high catalytic activity under controlled diffusion condition or the intensification of the mass transfer, and a good reaction condition. The total nitrogen removal efficiency reached above 80%. Moreover, catalytic membrane can create a high effective gas/liquid/solid interface, and show a good selectivity to nitrogen in comparative with the powder catalyst, the selectivity to nitrogen was improved from 73.4% to 89.4%.

  15. Remediation of TCE-contaminated groundwater using nanocatalyst and bacteria.

    Science.gov (United States)

    Kang, Ser Ku; Seo, Hyunhee; Sun, Eunyoung; Kim, Inseon; Roh, Yul

    2011-08-01

    The objective of this study was to develop and evaluate the remediation of trichloroethene (TCE)-contaminated groundwater using both a nanocatalyst (bio-Zn-magnetite) and bacterium (similar to Clostridium quinii) in anoxic environments. Of the 7 nanocatalysts tested, bio-Zn-magnetite showed the highest TCE dechlorination efficiency, with an average of ca. 90% within 8 days in a batch experiment. The column tests confirmed that the application of bio-Zn-magnetite in combination with the bacterium achieved high degradation efficiency (ca. 90%) of TCE within 5 days compared to the nanocatalyst only, which degraded only 30% of the TCE. These results suggest that the application of a nanocatalyst and the bacterium have potential for the remediation of TCE-contaminated groundwater in subsurface environments.

  16. Simultaneous Thermal Analysis of Remediated Nitrate Salt Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-13

    The actinide engineering and science group (MET-1) have completed simultaneous thermal analysis and offgas analysis by mass spectrometry (STA-MS) of remediated nitrate salt (RNS) surrogates formulated by the high explosives science and technology group (M-7). The 1.0 to 1.5g surrogate samples were first analyzed as received, then a new set was analyzed with 100-200mL 10M HNO3 +0.3 MHF added, and a third set was analyzed after 200 mL of a concentrated Pu-AM spike (in 10M HNO3 +0.3 MHF) was added. The acid and spike solutions were formulated by the actinide analytical chemistry group (C-AAC) using reagent-grade HNO3 and HF, which was also used to dissolve a small quantity of mixed, high-fired PuO2/ AmO2 oxide.

  17. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  18. [Simulation on remediation of benzene contaminated groundwater by air sparging].

    Science.gov (United States)

    Fan, Yan-Ling; Jiang, Lin; Zhang, Dan; Zhong, Mao-Sheng; Jia, Xiao-Yang

    2012-11-01

    Air sparging (AS) is one of the in situ remedial technologies which are used in groundwater remediation for pollutions with volatile organic compounds (VOCs). At present, the field design of air sparging system was mainly based on experience due to the lack of field data. In order to obtain rational design parameters, the TMVOC module in the Petrasim software package, combined with field test results on a coking plant in Beijing, is used to optimize the design parameters and simulate the remediation process. The pilot test showed that the optimal injection rate was 23.2 m3 x h(-1), while the optimal radius of influence (ROI) was 5 m. The simulation results revealed that the pressure response simulated by the model matched well with the field test results, which indicated a good representation of the simulation. The optimization results indicated that the optimal injection location was at the bottom of the aquifer. Furthermore, simulated at the optimized injection location, the optimal injection rate was 20 m3 x h(-1), which was in accordance with the field test result. Besides, 3 m was the optimal ROI, less than the field test results, and the main reason was that field test reflected the flow behavior at the upper space of groundwater and unsaturated area, in which the width of flow increased rapidly, and became bigger than the actual one. With the above optimized operation parameters, in addition to the hydro-geological parameters measured on site, the model simulation result revealed that 90 days were needed to remediate the benzene from 371 000 microg x L(-1) to 1 microg x L(-1) for the site, and that the opeation model in which the injection wells were progressively turned off once the groundwater around them was "clean" was better than the one in which all the wells were kept operating throughout the remediation process.

  19. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    Science.gov (United States)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  20. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system.

    Science.gov (United States)

    Tong, Yiran; He, Zhen

    2013-11-15

    This research aims to develop a new approach for in situ nitrate removal from groundwater by using a bioelectrochemical system (BES). The BES employs bioelectricity generated from organic compounds to drive nitrate moving from groundwater into the anode and reduces nitrate to nitrogen gas by heterotrophic denitrification. This laboratory study of a bench-scale BES demonstrated effective nitrate removal from both synthetic and actual groundwater. It was found that applying an electrical potential improved the nitrate removal and the highest nitrate removal rate of 208.2 ± 13.3g NO3(-)-Nm(-3) d(-1) was achieved at 0.8 V. Although the open circuit condition (no electricity generation) still resulted in a nitrate removal rate of 158.5 ± 4.2 gm(-3) d(-1) due to ion exchange, electricity production could inhibit ion exchange and prevent introducing other undesired ions into groundwater. The nitrate removal rate exhibited a linear relationship with the initial nitrate concentration in groundwater. The BES produced a higher current density of 33.4 Am(-3) and a higher total coulomb of 244.7 ± 9.1C from the actual groundwater than the synthetic groundwater, likely because other ions in the actual groundwater promoted ion movement to assist electricity generation. Further development of this BES will need to address several key challenges in anode feeding solution, ion competition, and long-term stability.

  1. Tracing freshwater nitrate sources in pre-alpine groundwater catchments using environmental tracers

    Science.gov (United States)

    Stoewer, M. M.; Knöller, K.; Stumpp, C.

    2015-05-01

    Groundwater is one of the main resources for drinking water. Its quality is still threatened by the widespread contaminant nitrate (NO3-). In order to manage groundwater resources in a sustainable manner, we need to find options of lowering nitrate input. Particularly, a comprehensive knowledge of nitrate sources is required in areas which are important current and future drinking water reservoirs such as pre-alpine aquifers covered with permanent grassland. The objective of the present study was to identify major sources of nitrate in groundwater with low mean nitrate concentrations (8 ± 2 mg/L). To achieve the objective, we used environmental tracer approaches in four pre-alpine groundwater catchments. The stable isotope composition and tritium content of water were used to study the hydrogeology and transit times. Furthermore, nitrate stable isotope methods were applied to trace nitrogen from its sources to groundwater. The results of the nitrate isotope analysis showed that groundwater nitrate was derived from nitrification of a variety of ammonium sources such as atmospheric deposition, mineral and organic fertilizers and soil organic matter. A direct influence of mineral fertilizer, atmospheric deposition and sewage was excluded. Since temporal variation in stable isotopes of nitrate were detected only in surface water and locally at one groundwater monitoring well, aquifers appeared to be well mixed and influenced by a continuous nitrate input mainly from soil derived nitrogen. Hydrogeological analysis supported that the investigated aquifers were less vulnerable to rapid impacts due to long average transit times, ranging from 5 to 21 years. Our study revealed the importance of combining environmental tracer approaches and a comprehensive sampling campaign (local sources of nitrate, soil water, river water, and groundwater) to identify the nitrate sources in groundwater and its vulnerability. In future, the achieved results will help develop targeted

  2. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  3. Studies on catalytic reduction of nitrate in groundwater

    Institute of Scientific and Technical Information of China (English)

    GENG Bing; ZHU Yanfang; JIN Zhaohui; LI Tielong; KANG Haiyan; WANG Shuaima

    2007-01-01

    Catalytic reduction of nitrate in groundwater by sodium formate over the catalyst was investigated.Pd-Cu/γ-Al2O3 catalyst was prepared by impregnation and characterized by brunauer-emmett-teller (BET),inductive coupled plasma (ICP),X-ray diffraction (XRD),transmission electron microscopy (TEM) and energy dispersive X-ray (EDX).It was found that total nitrogen was effectively removed from the nitrate solution (100 mg/L) and the removal efficiency was 87%.The catalytic activity was affected by pH,catalyst amount used,concentration of sodium formate,and initial concentration of nitrate.As sodium formate was used as reductant,precise control in the initial pH was needed.Excessively high or low initial pH (7.0 or 3.0) reduced catalytic activity.At initial pH of 4.5,catalytic activity was enhanced by reducing the amount of catalyst,while concentrations of sodium formate increased with a considerable decrease in N2 selectivity.In which case,catalytic reduction followed the first order kinetics.

  4. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  5. Assessment of Nitrate Contamination of Groundwater in Korea Using a Mathematical Simulation Model

    Science.gov (United States)

    Lee, E.; Kim, M.; Lee, K.

    2005-12-01

    According to the nationwide groundwater monitoring system, nitrate is one of the major contaminants found in groundwater in Korea. Septic systems, animal waste and fertilizer are potential sources of nitrate contamination. There have been a growing number of studies on identification of the source of nitrate contamination of groundwater at agricultural sites, or analysis of the groundwater contamination at intensive livestock facilities. However, there have been a few studies on linkage between the surface loading of nitrate sources and the level of groundwater contamination. The objective of this study is to assess the groundwater contamination with nitrate resulted from current agricultural practices, and the potential impacts of changes in the practices on the groundwater contamination by using a mathematical model. An integrated modeling framework incorporating the nitrogen leaching model, LEACHN, and mass transport model, RT3D linked to MODFLOW was used to account for the fate and transport of nitrate through soil and groundwater. Data were collected from different areas so that they could represent the condition of agricultural sites in Korea. The groundwater nitrate contamination was assessed for different crops and soil types under varying fertilization rates and manure application.

  6. Nitrate leaching from intensive organic farms to groundwater

    Science.gov (United States)

    Dahan, O.; Babad, A.; Lazarovitch, N.; Russak, E. E.; Kurtzman, D.

    2014-01-01

    It is commonly presumed that organic agriculture causes only minimal environmental pollution. In this study, we measured the quality of percolating water in the vadose zone, underlying both organic and conventional intensive greenhouses. Our study was conducted in newly established farms where the subsurface underlying the greenhouses has been monitored continuously from their establishment. Surprisingly, intensive organic agriculture relying on solid organic matter, such as composted manure that is implemented in the soil prior to planting as the sole fertilizer, resulted in significant down-leaching of nitrate through the vadose zone to the groundwater. On the other hand, similar intensive agriculture that implemented liquid fertilizer through drip irrigation, as commonly practiced in conventional agriculture, resulted in much lower rates of pollution of the vadose zone and groundwater. It has been shown that accurate fertilization methods that distribute the fertilizers through the irrigation system, according to plant demand, during the growing season dramatically reduce the potential for groundwater contamination from both organic and conventional greenhouses.

  7. Is groundwater age the main control for slow turnover of nitrate in a fractured groundwater system?

    Science.gov (United States)

    Osenbrück, Karsten; Schwientek, Marc; Rügner, Hermann; Grathwohl, Peter

    2015-04-01

    Slow transformation processes are known to control the chemical, isotopic, and redox evolution of large-scale aquifers (Edmunds et al., 1982; Katz et al., 1995). However, at the field scale some of the crucial biogeochemical processes governing pollutant turnover and their interrelations with hydrology are poorly understood. Particularly, only little is known about denitrification in fractured rock aquifers. Therefore, the main objective of the presented study is to assess where and how slow turnover of nitrate ans other pollutants in the deeper subsurface take place. The studied fractured and partly karstified aquifer consisting of Triassic black limestones and dolomites is located in the catchment of the Ammer river (ca. 350 km²) close to Tübingen in southern Germany. Near the recharge area, the aquifer is covered by loess allowing intensive agriculture. Further downgradient, the cover consist of a series of mudstones and sandstones of variable permeability. The aquifer is used for drinking water purposes by regional water suppliers. Land-use is dominated by agriculture with arable land covering nearly 50% of the catchment. Over the last years a variety of groundwater samples have been collected from the groundwater system including 6 water supply wells, 4 karstic springs, and 9 monitoring wells in the recharge area. This allowed to identify spatial and temporal patterns of water quality including concentrations of major ions, dissolved organic carbon (DOC), organic pollutants (e.g., pesticides), and environmental isotopes. Groundwater age distributions at most of these locations were derived from tritium, 3He, CFCs and SF6. Groundwaters in the recharge area show high concentrations of nutrients (e.g. 20-51 mg/L of nitrate and 0.2 to 0.05 µg/L of phosphate). Of special concern are disparate nitrate concentrations ranging from below 0.4 to 20 mg/L in water supply wells although screen depths of the production wells are similar. Concentrations of dissolved

  8. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Science.gov (United States)

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  9. A meta-analysis and statistical modelling of nitrates in groundwater at the African scale

    Science.gov (United States)

    Ouedraogo, Issoufou; Vanclooster, Marnik

    2016-06-01

    Contamination of groundwater with nitrate poses a major health risk to millions of people around Africa. Assessing the space-time distribution of this contamination, as well as understanding the factors that explain this contamination, is important for managing sustainable drinking water at the regional scale. This study aims to assess the variables that contribute to nitrate pollution in groundwater at the African scale by statistical modelling. We compiled a literature database of nitrate concentration in groundwater (around 250 studies) and combined it with digital maps of physical attributes such as soil, geology, climate, hydrogeology, and anthropogenic data for statistical model development. The maximum, medium, and minimum observed nitrate concentrations were analysed. In total, 13 explanatory variables were screened to explain observed nitrate pollution in groundwater. For the mean nitrate concentration, four variables are retained in the statistical explanatory model: (1) depth to groundwater (shallow groundwater, typically assumptions of the data set, we do not develop a statistical model for these data. The data-based statistical model presented here represents an important step towards developing tools that will allow us to accurately predict nitrate distribution at the African scale and thus may support groundwater monitoring and water management that aims to protect groundwater systems. Yet they should be further refined and validated when more detailed and harmonized data become available and/or combined with more conceptual descriptions of the fate of nutrients in the hydrosystem.

  10. NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA

    Science.gov (United States)

    Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.

    2009-12-01

    Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one

  11. The Effect of Flow on Pollution and Remediation in Groundwater

    Institute of Scientific and Technical Information of China (English)

    Moiwo J. Paul

    2003-01-01

    Flow, solute transport and pollution remediation through attenuation in unconsolidated porous media were investigated in this study. The variables used in the investigation include soil texture, porosity, topography and hydraulic conductivity. The study revealed that hydraulic conductivity is highly dependent on soil texture, porosity and topography.Hydraulic conductivity was noted to have a controlling influence on groundwater flow and residence time, and the degree of natural attenuation in hydrogeologic systems. Contaminant transport simulated with the MODFLOW Model revealed dominance of advective transport of contaminants in unconsolidated porous media. However, attenuation through sorption (linear isotherm equilibrium controlled) and reaction (first-order irreversible decay) also retarded contaminant plume migration. Thus natural attenuation was found to be highly feasible in clay formations due to low hydraulic conductivity and long groundwater residence times. Though natural attenuation processes including dispersion, diffusion, dilution, mixing, volatilization and biodegradation were not investigated for in this paper, it is shown to be a sound remediation technique of contaminated ground water due to its capacity to destroy or transform contaminants or at least retard their flow.

  12. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  13. Initial Results from the Third Round of Remediated Nitrate Salt Surrogate Formulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leonard, Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartline, Ernest Leon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tian, Hongzhao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    High explosives science and technology (M-7) is currently working on the third round of formulation and testing of Remediated nitrate salt (RNS) surrogates. This report summarizes the calorimetry results from the 15% sWheat mixtures. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) surrogate formulation and testing standard procedure", released February 16, 2016. Results from the first and second rounds of formulation and testing were documented in memoranda M7-16-6042 and M7-16-6053.

  14. A co-metabolic approach to groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, A.V.; Boerman, P.A.; Strandberg, G.W.; Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Herbes, S.E. (Oak Ridge National Lab., TN (United States)); Phelps, T.J.; White, D.C. (Tennessee Univ., Knoxville, TN (United States). Inst. for Applied Microbiology)

    1991-01-01

    In support of the US Department of Energy's (DOE) Integrated Demonstration (Cleanup of Organics in Soils and Groundwater at Non-arid Sites) at the Savannah River Site (SRS), Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) are involved in demonstrations of the use of methanotrophs in bioreactors for remediation of contaminated groundwater. In preparation for a field demonstration at ORNL's K-25 Site in Oak Ridge, Tennessee, ORNL is conducting batch experiments, is operating a number of bench-scale bioreactors, has designed pretreatment systems, and has modified a field-scale bioreactor provided by the Air Force Engineering and Services Center for use at the site. UT is operating bench-scale bioreactors with the goal of determining the stability of a trichloroethylene-degrading methanotrophic consortia during shifts in operating conditions (e.g. pH, nutrient inputs, and contaminant mixtures). These activities are all aimed at providing the knowledge base necessary for successful treatment of contaminated groundwater at the SRS and K-25 sites as well as other DOE sites. 18 refs., 1 fig. , 1 tab.

  15. ASPECTS CONCERNING NITRATE AND NITRITE POLLUTION OF GROUNDWATERS

    Directory of Open Access Journals (Sweden)

    A. UNGUREANU

    2011-03-01

    Full Text Available Aspects concerning nitrate and nitrite pollution of groundwaters. Water is a basic natural resource for the good functioning of all thebiological processes in nature. It is very important for life and for the developmentof human activities. The quality of the ground water has begun to degrade moreand more, as a result of the physical, chemical and bacteriological changes.Nitrogen compounds pollution of the underground has increased lately. This hasbeen caused by the excessive and irrational use of nitrogen derived fertilizers, bythe wrong storage of the dejections resulted from zootechnical processes and byother chemical substances discharged into water. Samples were collected fromdifferent wells in order to check whether the well water was drinkable. The resultof the test revealed the existence of high concentrations of nitrates as well asvalues exceeding normal microbiological parameters. The value recorded in thetown of Segarcea, the county of Dolj, showed extremely high concentrations ofnitrates of the drinking water in the wells. Thus, Segarcea is the town with thegreatest number of contaminated wells in the country.

  16. Degradation of nitrates with the participation of Fe(II) and Fe(0) in groundwater: A review

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Mineev, V. G.

    2015-02-01

    Nitrates from soil and nitrogen fertilizers unused by plants become hazardous pollutants and contaminate surface and ground waters. In the water-saturated layers, into which nitrates are leached, the content of organic matter (i.e., electron donors necessary for nitrification) can be insufficient. The deficiency of electrons in the groundwater can be eliminated by Fe(II) minerals that remained in the heavy rocks and are available to microorganisms due to dispersion. However, when the groundwater table is shallow (less than at 10 m), the natural denitrification develops poorly; therefore, remediation is needed to enrich the contaminated water with electron donors. Zerovalent iron is most frequently used for this purpose. The efficiency of the Fe0 barriers for the purification of groundwater from nitrates increases due to the activation of anaerobic denitrifying bacteria. In addition, the geochemical conditions and the composition of the bacterial community change in the Fe0 barrier zone, which favors the development of a wide range of anaerobic hydrogenotrophic bacteria (primarily Fe(III) reductants).

  17. Nitrate pollution in groundwater in some rural areas of Nalgonda district, Andhra Pradesh, India.

    Science.gov (United States)

    Brindha, K; Rajesh, R; Murugan, R; Elango, L

    2012-01-01

    Intake of water with high concentration of nitrate is a major problem in many countries as it affects health of humans. The present study was carried out with the objective of determining the causes for higher nitrate concentration in groundwater in parts of Nalgonda district, Andhra Pradesh, India. The study area is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from 46 representative wells. Samples were collected once in two months from March 2008 to January 2009. The nitrate concentration was analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration recorded during the sampling period was 879.65 mg/L and the lowest concentration was below detection limit. Taking into consideration 45 mg/L of nitrate as the maximum permissible limit for drinking water set by BIS, it was found that 13.78% of the groundwater samples collected from this study area possessed nitrate concentration beyond the limit. Overall, wells present in agricultural fields had nitrate levels within permissible limits when compared to those groundwater samples from wells present in settlements which are used for domestic purpose. This indicates that the high nitrate concentration in groundwater of this area is due to poor sanitation facilities and leaching from indiscriminate dumping of animal waste.

  18. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    Science.gov (United States)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  19. Two-stage removal of nitrate from groundwater using biological and chemical treatments.

    Science.gov (United States)

    Ayyasamy, Pudukadu Munusamy; Shanthi, Kuppusamy; Lakshmanaperumalsamy, Perumalsamy; Lee, Soon-Jae; Choi, Nag-Choul; Kim, Dong-Ju

    2007-08-01

    In this study, we attempted to treat groundwater contaminated with nitrate using a two-stage removal system: one is biological treatment using the nitrate-degrading bacteria Pseudomonas sp. RS-7 and the other is chemical treatment using a coagulant. For the biological system, the effect of carbon sources on nitrate removal was first investigated using mineral salt medium (MSM) containing 500 mg l(-1) nitrate to select the most effective carbon source. Among three carbon sources, namely, glucose, starch and cellulose, starch at 1% was found to be the most effective. Thus, starch was used as a representative carbon source for the remaining part of the biological treatment where nitrate removal was carried out for MSM solution and groundwater samples containing 500 mg l(-1) and 460 mg l(-1) nitrate, respectively. About 86% and 89% of nitrate were removed from the MSM solution and groundwater samples, respectively at 72 h. Chemical coagulants such as alum, lime and poly aluminium chloride were tested for the removal of nitrate remaining in the samples. Among the coagulants, lime at 150 mg l(-1) exhibited the highest nitrate removal efficiency with complete disappearance for the MSM solutions. Thus, a combined system of biological and chemical treatments was found to be more effective for the complete removal of nitrate from groundwater.

  20. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece).

    Science.gov (United States)

    Matiatos, Ioannis

    2016-01-15

    Nitrate (NO3) is one of the most common contaminants in aquatic environments and groundwater. Nitrate concentrations and environmental isotope data (δ(15)N-NO3 and δ(18)O-NO3) from groundwater of Asopos basin, which has different land-use types, i.e., a large number of industries (e.g., textile, metal processing, food, fertilizers, paint), urban and agricultural areas and livestock breeding facilities, were analyzed to identify the nitrate sources of water contamination and N-biogeochemical transformations. A Bayesian isotope mixing model (SIAR) and multivariate statistical analysis of hydrochemical data were used to estimate the proportional contribution of different NO3 sources and to identify the dominant factors controlling the nitrate content of the groundwater in the region. The comparison of SIAR and Principal Component Analysis showed that wastes originating from urban and industrial zones of the basin are mainly responsible for nitrate contamination of groundwater in these areas. Agricultural fertilizers and manure likely contribute to groundwater contamination away from urban fabric and industrial land-use areas. Soil contribution to nitrate contamination due to organic matter is higher in the south-western part of the area far from the industries and the urban settlements. The present study aims to highlight the use of environmental isotopes combined with multivariate statistical analysis in locating sources of nitrate contamination in groundwater leading to a more effective planning of environmental measures and remediation strategies in river basins and water bodies as defined by the European Water Frame Directive (Directive 2000/60/EC).

  1. Nitrate contamination of groundwater in the catchment of Goczałkowice reservoir

    Science.gov (United States)

    Czekaj, Joanna; Witkowski, Andrzej J.

    2014-05-01

    Goczałkowice dammed reservoir (area - 26 km2 , volume - 100 million m3 at a typical water level) is a very important source of drinking water for Upper Silesian agglomeration. At the catchment of the reservoir there are many potential sources of groundwater pollution (agriculture, bad practices in wastewater management, intensive fish farming). Thus local groundwater contamination, mainly by nitrogen compounds. The paper presents groundwater monitoring system and preliminary results of the research carried on at Goczałkowice reservoir and its catchment in 2010 - 2014 within the project "Integrated system supporting management and protection of dammed reservoir (ZiZoZap)'. The main objective for hydrogeologists in the project is to assess the role of groundwater in total water balance of the reservoir and the influence of groundwater on its water quality. During research temporal variability of groundwater - surface water exchange has been observed. Monitoring Network of groundwater quality consists of 22 observation wells (nested piezometers included) located around the reservoir - 13 piezometers is placed in two transects on northern and southern shore of reservoir. Sampling of groundwater from piezometers was conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate, nitrite and ammonium were 255 mg/L, 0,16 mg/L and 3,48 mg/L, respectively. Surface water in reservoir (8 points) has also been sampled. Concentrations of nitrate in groundwater are higher than in surface water. Nitrate and ammonium concentrations exceeding standards for drinking water were reported in 18% and 50% of monitored piezometers, respectively. High concentration of nitrate (exceeding more than 5 times maximal admissible concentration) have been a significant groundwater contamination problem in the catchment of the reservoir. Periodically decrease of surface water quality is possible. Results of hydrogeological research indicate substantial spatial

  2. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  3. Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion.

    Science.gov (United States)

    Lee, Young-Chul; Kwon, Tae-Soon; Yang, Jung-Seok; Yang, Ji-Won

    2007-02-01

    Emulsion-based remediation with biodegradable vegetable oils was investigated as an alternative technology for the treatment of subsurface DNAPLs (dense non-aqueous phase liquids) such as TCE (trichloroethylene) and PCE (perchloroethylene). Corn and olive oil emulsions obtained by homogenization at 8000rpm for 15min were used. The emulsion droplets prepared with corn and olive oil gave a similar size distribution (1-10microm) and almost all of initially injected oil, >90%, remained in a dispersed state. In batch experiments, 2% (v/v) oil emulsion could adsorb up to 11,000ppm of TCE or 18,000ppm of PCE without creating a free phase. Results of one-dimensional column flushing studies indicated that contaminants with high aqueous solubility could be efficiently removed by flushing with vegetable oil emulsions. Removal efficiencies exceeded 98% for TCE and PCE with both corn and olive oil emulsions. The results of this study show that flushing with biodegradable oil emulsion can be used for the remediation of groundwater contaminated by DNAPLs.

  4. A Fuzzy Simulation-Based Optimization Approach for Groundwater Remediation Design at Contaminated Aquifers

    Directory of Open Access Journals (Sweden)

    A. L. Yang

    2012-01-01

    Full Text Available A fuzzy simulation-based optimization approach (FSOA is developed for identifying optimal design of a benzene-contaminated groundwater remediation system under uncertainty. FSOA integrates remediation processes (i.e., biodegradation and pump-and-treat, fuzzy simulation, and fuzzy-mean-value-based optimization technique into a general management framework. This approach offers the advantages of (1 considering an integrated remediation alternative, (2 handling simulation and optimization problems under uncertainty, and (3 providing a direct linkage between remediation strategies and remediation performance through proxy models. The results demonstrate that optimal remediation alternatives can be obtained to mitigate benzene concentration to satisfy environmental standards with a minimum system cost.

  5. Laboratory Research into Permeable Reactive Barriers for Groundwater Remediation

    Institute of Scientific and Technical Information of China (English)

    Anthony Adzomani; Jun Dong; Yan Jin

    2003-01-01

    Permeable Reactive Barriers (PRB) is a new technology for groundwater pollution remediation. Contaminants are converted into harmless by products in situ as the polluted water passes through a reactive wall. Experimental results demonstrate how reactive media can be used to remove contaminants from polluted water by laying the reactive wall across the flow direction of the water. The most comprehensively studied and applied reactive barrier type uses granulated Zero Valent Iron (ZVI) particles. In this process elemental iron provides a reducing environment which makes reductive dechlorination of chlorinated organic compounds feasible or changes redox sensitive metals, so that they are immobilized by a precipitation reaction. A reactive wall column which is made up of ZVI, sand and zeolite has shown the highest contaminant removal capacity compared to the other two which have different components. The potentials of ZVI, zeolite and Powdered Activated Carbon (PAC) to remove contaminants are due to their different physico-chemical proper-ties which make them to "sorb"metal contaminants. The results of this experiment show that PRB technology is an efficient method for the treatment of leachate-contaminated groundwater.

  6. Nitrogen and Oxygen Isotopes of Low-Level Nitrate in Groundwater For Environmental Forensics

    Science.gov (United States)

    Wang, Y.

    2009-05-01

    Sources of nitrate in water from human activities include fertilizers, animal feedlots, septic systems, wastewater treatment lagoons, animal wastes, industrial wastes and food processing wastes. Nitrogen and Oxygen isotopic analysis of nitrate in groundwater is essential to source identification and environmental forensics as nitrate from different sources carry distinctly different N and O isotopic compositions. Nitrate is extracted from groundwater samples and converted into AgNO3 using ion exchange techniques. The purified AgNO3 is then broken down into N2 and CO for N and O isotopic measurement. Since nitrate concentrations in natural ground waters are usually less than 2 mg/L, however, such method has been limited by minimum sample size it requires, in liters, which is highly nitrate concentration dependent. Here we report a TurboVap- Denitrifier method for N and O isotopic measurement of low-level dissolved nitrate, based on sample evaporation and isotopic analysis of nitrous oxide generated from nitrate by denitrifying bacteria that lack N2O- reductase activity. For most groundwater samples with mg/L-level of nitrate direct injection of water samples in mLs is applied. The volume of sample is adjusted according to its nitrate concentration to achieve a final sample size optimal for the system. For water samples with ug/L-level of nitrate, nitrate is highly concentrated using a TurboVap evaporator, followed by isotopic measurement with Denitrifier method. Benefits of TurboVap- Denitrifier method include high sensitivity and better precision in both isotopic data. This method applies to both freshwater and seawater. The analyses of isotopic reference materials in nitrate-free de-ionized water and seawater are included as method controls to correct for any blank effects. The isotopic data from groundwater and ocean profiles demonstrate the consistency of the data produced by the TurboVap-Denitrifier method.

  7. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  8. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Matiatos, Ioannis, E-mail: i.matiatos@iaea.org

    2016-01-15

    Nitrate (NO{sub 3}) is one of the most common contaminants in aquatic environments and groundwater. Nitrate concentrations and environmental isotope data (δ{sup 15}N–NO{sub 3} and δ{sup 18}O–NO{sub 3}) from groundwater of Asopos basin, which has different land-use types, i.e., a large number of industries (e.g., textile, metal processing, food, fertilizers, paint), urban and agricultural areas and livestock breeding facilities, were analyzed to identify the nitrate sources of water contamination and N-biogeochemical transformations. A Bayesian isotope mixing model (SIAR) and multivariate statistical analysis of hydrochemical data were used to estimate the proportional contribution of different NO{sub 3} sources and to identify the dominant factors controlling the nitrate content of the groundwater in the region. The comparison of SIAR and Principal Component Analysis showed that wastes originating from urban and industrial zones of the basin are mainly responsible for nitrate contamination of groundwater in these areas. Agricultural fertilizers and manure likely contribute to groundwater contamination away from urban fabric and industrial land-use areas. Soil contribution to nitrate contamination due to organic matter is higher in the south-western part of the area far from the industries and the urban settlements. The present study aims to highlight the use of environmental isotopes combined with multivariate statistical analysis in locating sources of nitrate contamination in groundwater leading to a more effective planning of environmental measures and remediation strategies in river basins and water bodies as defined by the European Water Frame Directive (Directive 2000/60/EC). - Highlights: • More enriched N-isotope values were observed in the industrial/urban areas. • A Bayesian isotope mixing model was applied in a multiple land-use area. • A 3-component model explained the factors controlling nitrate content in groundwater. • Industrial

  9. Nitrate removal from groundwater in columns packed with reed and rice stalks.

    Science.gov (United States)

    Qian, Jiazhong; Wang, Zhiping; Jin, Song; Liu, Yong; Chen, Tianhu; Fallgren, Paul H

    2011-10-01

    Nitrate leaching contaminates groundwater. The objective of this study was to determine if reed and rice stalks could enhance denitrification and reduce nitrate leaching into groundwater. Artificial groundwater spiked with nitrate and field groundwater samples were tested in the columns in sand reactors packed with either reed or rice stalks. The maximum nitrate removal rates were determined to be 1.93 and 1.97 mg nitrate-N l(-1) h(-1), respectively, in the reed and rice stalk-packed columns. The maximum nitrate-nitrogen removal rate in reactors packed with reed stalk was 1.33 mg nitrate-N l(-1) h(-1) when experimented with natural groundwater. Chemical oxygen demand consumption was higher when rice stalk (176.1 mg l(-1)) was used as the substrate, compared to reed stalk (35.2 mg l(-1)) at the same substrate dosage. No nitrite accumulation was detected during the test. The results demonstrate that agricultural byproducts, such as reed and rice stalks, may be used as substrate amendments for enhanced denitrification in natural settings, such as lakeside lagoons, ditches or wetlands.

  10. Median nitrate concentrations in groundwater in the New Jersey Highlands Region estimated using regression models and land-surface characteristics

    Science.gov (United States)

    Baker, Ronald J.; Chepiga, Mary M.; Cauller, Stephen J.

    2015-01-01

    Nitrate-concentration data are used in conjunction with land-use and land-cover data to estimate median nitrate concentrations in groundwater underlying the New Jersey (NJ) Highlands Region. Sources of data on nitrate in 19,670 groundwater samples are from the U.S. Geological Survey (USGS) National Water Information System (NWIS) and the NJ Private Well Testing Act (PWTA).

  11. Modeling approaches to management of nitrate contamination of groundwater in a heavily cultivated area

    Science.gov (United States)

    Koh, E.; Park, Y.; Lee, K.

    2011-12-01

    A three-dimensional variably-saturated groundwater flow and reactive transport modeling framework was implemented to simulate nitrate contamination in a heavily cultivated area in Jeju volcanic Island. In the study area, two localized aquifer systems (perched and regional groundwater) exist due to distributions of impermeable clay layers beneath the perched groundwater. The approximate application rate of chemical fertilizers was surveyed to be 627.9 kg-N/ha per year, which is much higher than the average annual chemical fertilizer usage in Jeju Island, 172 kg-N/ha per year. Severe nitrate contamination has been observed in the perched groundwater system and such perched groundwater has influenced regional groundwater quality, through poorly cemented wall of the distributed throughout the region wells. For a part of managing plan of nitrate contamination in the island, a numerical modeling framework was developed for various scenarios associated with the factors affecting nitrate contamination in the study area (i.e., usage amount of chemical fertilizers, cultivated methods, grouting condition of wells). This work provides useful information to suggest effective ways to manage nitrate contamination of groundwater in the agricultural field. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0001120) and by BK21 project of Korean Government.

  12. Modeling nonpoint source nitrate contamination and associated uncertainty in groundwater of U.S. regional aquifers

    Science.gov (United States)

    Gurdak, J. J.; Lujan, C.

    2009-12-01

    Nonpoint source nitrate contamination in groundwater is spatially variable and can result in elevated nitrate concentrations that threaten drinking-water quality in many aquifers of the United States. Improved modeling approaches are needed to quantify the spatial controls on nonpoint source nitrate contamination and the associated uncertainty of predictive models. As part of the U.S. Geological Survey National Water Quality Assessment Program, logistic regression models were developed to predict nitrate concentrations greater than background in recently recharged (less than 50 years) groundwater in selected regional aquifer systems of the United States; including the Central Valley, California Coastal Basins, Basin and Range, Floridan, Glacial, Coastal Lowlands, Denver Basin, High Plains, North Atlantic Coastal Plain, and Piedmont aquifer systems. The models were used to evaluate the spatial controls of climate, soils, land use, hydrogeology, geochemistry, and water-quality conditions on nitrate contamination. The novel model Raster Error Propagation Tool (REPTool) was used to estimate error propagation and prediction uncertainty in the predictive nitrate models and to determine an approach to reduce uncertainty in future model development. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the prediction uncertainty of the model output. The presented nitrate models, maps, and uncertainty analysis provide important tools for water-resource managers of regional groundwater systems to identify likely areas and the spatial controls on nonpoint source nitrate contamination in groundwater.

  13. Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; He, Li, E-mail: li.he@ncepu.edu.cn; Lu, Hongwei; Fan, Xing

    2014-08-30

    Highlights: • We propose an integrated optimal groundwater remediation design approach. • The approach can address stochasticity in carcinogenic risks. • Goal programming is used to make the system approaching to ideal operation and remediation effects. • The uncertainty in slope factor is evaluated under different confidence levels. • Optimal strategies are obtained to support remediation design under uncertainty. - Abstract: An optimal design approach for groundwater remediation is developed through incorporating numerical simulation, health risk assessment, uncertainty analysis and nonlinear optimization within a general framework. Stochastic analysis and goal programming are introduced into the framework to handle uncertainties in real-world groundwater remediation systems. Carcinogenic risks associated with remediation actions are further evaluated at four confidence levels. The differences between ideal and predicted constraints are minimized by goal programming. The approach is then applied to a contaminated site in western Canada for creating a set of optimal remediation strategies. Results from the case study indicate that factors including environmental standards, health risks and technical requirements mutually affected and restricted themselves. Stochastic uncertainty existed in the entire process of remediation optimization, which should to be taken into consideration in groundwater remediation design.

  14. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    Water pollution in the form of nitrate nitrogen (NO{sub 3}{sup −}–N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO{sub 3}{sup −}–N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO{sub 3}{sup −}–N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO{sub 3}{sup −}–N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious

  15. Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers

    Science.gov (United States)

    Alikhani, Jamal; Deinhart, Amanda L.; Visser, Ate; Bibby, Richard K.; Purtschert, Roland; Moran, Jean E.; Massoudieh, Arash; Esser, Bradley K.

    2016-12-01

    Nitrate is a major source of contamination of groundwater in the United States and around the world. We tested the applicability of multiple groundwater age tracers (3H, 3He, 4He, 14C, 13C, and 85Kr) in projecting future trends of nitrate concentration in 9 long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit. Very low 85Kr concentrations and apparent 3H/3He ages point to a relatively old modern fraction (40-50 years), diluted with pre-modern groundwater, corroborated by the onset and slope of increasing nitrate concentrations. An inverse Gaussian-Dirac model was chosen to represent the age distribution of the sampled groundwater at each well. Model parameters were estimated using a Bayesian inference, resulting in the posterior probability distribution - including the associated uncertainty - of the parameters and projected nitrate concentrations. Three scenarios were considered, including combined historic nitrate and age tracer data, the sole use of nitrate and the sole use of age tracer data. Each scenario was evaluated based on the ability of the model to reproduce the data and the level of reliability of the nitrate projections. The tracer-only scenario closely reproduced tracer concentrations, but not observed trends in the nitrate concentration. Both cases that included nitrate data resulted in good agreement with historical nitrate trends. Use of combined tracers and nitrate data resulted in a narrower range of projections of future nitrate levels. However, use of combined tracer and nitrate resulted in a larger discrepancy between modeled and measured tracers for some of the tracers. Despite nitrate trend slopes between 0.56 and 1.73 mg/L/year in 7 of the 9 wells, the probability that concentrations will increase to levels above the MCL by 2040 are over 95% for only two of the wells, and below 15% in the other wells, due to a leveling off of reconstructed historical

  16. Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater.

    Science.gov (United States)

    Soares, Olivia Salomé G P; Orfão, José J M; Gallegos-Suarez, Esteban; Castillejos, Eva; Rodríguez-Ramos, Inmaculada; Pereira, Manuel Fernando R

    2012-01-01

    The influence of the presence of inorganic and organic matter during the catalytic reduction of nitrate in a local groundwater over a Pd-Cu catalyst supported on carbon nanotubes was investigated. It was observed that the catalyst performance was affected by the groundwater composition. The nitrate conversion attained was higher in the experiment using only deionized water as solvent than in the case of simulated or real groundwater. With exception of sulphate ions, all the other solutes evaluated (chloride and phosphate ions and natural organic matter) had a negative influence on the catalytic activity and selectivity to nitrogen.

  17. Groundwater remediation from the past to the future: A bibliometric analysis.

    Science.gov (United States)

    Zhang, Shu; Mao, Guozhu; Crittenden, John; Liu, Xi; Du, Huibin

    2017-08-01

    Groundwater is an important component of terrestrial ecosystems and plays a role in geochemical cycling. Groundwater is also used for agricultural irrigation and for the domestic supply of drinking water in most nations. However, groundwater contamination has led to many research efforts on groundwater remediation technologies and strategies. This study evaluated a total of 5486 groundwater remediation-related publications from 1995 to 2015 using bibliometric technology and social network analysis, to provide a quantitative analysis and a global view on the current research trend and future research directions. Our results underline a strong research interest and an urgent need to remediate groundwater pollution due to the increasing number of both groundwater contamination and remediation publications. In the past two decades, the United States (U.S.) published 41.1% of the papers and it was the core country of the international collaboration network, cooperating with the other 19 most productive countries. Besides the active international collaboration, the funding agencies also played positive roles to foster the science and technology publications. With respect to the analysis of the distribution of funding agencies, the National Science Foundation of China sponsored most of the groundwater remediation research. We also identified the most productive journals, Environmental Science and Technology and Journal of Contaminant Hydrology, which published 334 and 259 scientific articles (including research articles and reviews) over the past 20 years, respectively. In addition to journal publications, a patent analysis was performed to show the impact of intellectual property protection on journal publications. Three major remediation technologies, including chemical oxidation, biodegradation and adsorption, have received increasing interest in both journal publication and patent development. Our results provide a valuable reference and global overview to identify

  18. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.

    Science.gov (United States)

    Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George

    2013-01-01

    The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.

  19. CHEMICAL DENITRIFICATION OF NITRATE FROM GROUNDWATER VIA SULFAMIC ACID AND ZINC METAL

    Directory of Open Access Journals (Sweden)

    A. Sabzali, M. Gholami, A. R. Yazdanbakhsh, A. Khodadadi, B. Musavi, R. Mirzaee

    2006-07-01

    Full Text Available Nitrate contamination in drinking water can cause methemoglobinemia, which is especially detrimental to infants and nursing mothers. Batch experiments in two units for catalytic reduction of nitrate from groundwater with Zn catalyst and sulfamic acid were conducted. The system includes chemical denitriphication (ChemDen reactor and electrolytic recovery reactoers. A batch study was conducted to optimize parameters like pH, sulfamic acid concentration, Zn concentration, temperature and reaction time governing the ChemDen process. The concentrations of remained nitrate and Zn were measured at the end of the reactions. Results showed that near to 100% of nitrate decreased and the quantity of remained nitrate was <1 mg/L. pH and agitation had great effect on denitrification, and the nitrate removal rate changed rapidly when pH value ranged between 3-4. Two water quality parameters which limit this process were sulfate and chloride ions concentrations in nitrate contaminated water.

  20. Explaining nitrate pollution pressure on the groundwater resource in Kinshasa using a multivariate statistical modelling approach

    Science.gov (United States)

    Mfumu Kihumba, Antoine; Vanclooster, Marnik

    2013-04-01

    Drinking water in Kinshasa, the capital of the Democratic Republic of Congo, is provided by extracting groundwater from the local aquifer, particularly in peripheral areas. The exploited groundwater body is mainly unconfined and located within a continuous detrital aquifer, primarily composed of sedimentary formations. However, the aquifer is subjected to an increasing threat of anthropogenic pollution pressure. Understanding the detailed origin of this pollution pressure is important for sustainable drinking water management in Kinshasa. The present study aims to explain the observed nitrate pollution problem, nitrate being considered as a good tracer for other pollution threats. The analysis is made in terms of physical attributes that are readily available using a statistical modelling approach. For the nitrate data, use was made of a historical groundwater quality assessment study, for which the data were re-analysed. The physical attributes are related to the topography, land use, geology and hydrogeology of the region. Prior to the statistical modelling, intrinsic and specific vulnerability for nitrate pollution was assessed. This vulnerability assessment showed that the alluvium area in the northern part of the region is the most vulnerable area. This area consists of urban land use with poor sanitation. Re-analysis of the nitrate pollution data demonstrated that the spatial variability of nitrate concentrations in the groundwater body is high, and coherent with the fragmented land use of the region and the intrinsic and specific vulnerability maps. For the statistical modeling use was made of multiple regression and regression tree analysis. The results demonstrated the significant impact of land use variables on the Kinshasa groundwater nitrate pollution and the need for a detailed delineation of groundwater capture zones around the monitoring stations. Key words: Groundwater , Isotopic, Kinshasa, Modelling, Pollution, Physico-chemical.

  1. Modeling the impact of the nitrate contamination on groundwater at the groundwater body scale : The Geer basin case study (Invited)

    Science.gov (United States)

    Brouyere, S.; Orban, P.; Hérivaux, C.

    2009-12-01

    In the next decades, groundwater managers will have to face regional degradation of the quantity and quality of groundwater under pressure of land-use and socio-economic changes. In this context, the objectives of the European Water Framework Directive require that groundwater be managed at the scale of the groundwater body, taking into account not only all components of the water cycle but also the socio-economic impact of these changes. One of the main challenges remains to develop robust and efficient numerical modeling applications at such a scale and to couple them with economic models, as a support for decision support in groundwater management. An integrated approach between hydrogeologists and economists has been developed by coupling the hydrogeological model SUFT3D and a cost-benefit economic analysis to study the impact of agricultural practices on groundwater quality and to design cost-effective mitigation measures to decrease nitrate pressure on groundwater so as to ensure the highest benefit to the society. A new modeling technique, the ‘Hybrid Finite Element Mixing Cell’ approach has been developed for large scale modeling purposes. The principle of this method is to fully couple different mathematical and numerical approaches to solve groundwater flow and solute transport problems. The mathematical and numerical approaches proposed allows an adaptation to the level of local hydrogeological knowledge and the amount of available data. In combination with long time series of nitrate concentrations and tritium data, the regional scale modelling approach has been used to develop a 3D spatially distributed groundwater flow and solute transport model for the Geer basin (Belgium) of about 480 km2. The model is able to reproduce the spatial patterns of nitrate concentrations together nitrate trends with time. The model has then been used to predict the future evolution of nitrate trends for two types of scenarios: (i) a “business as usual scenario

  2. NITRATE TOXICITY IN GROUNDWATER: ITS CLINICAL MANIFESTATIONS, PREVENTIVE MEASURES AND MITIGATION STRATEGIES

    Directory of Open Access Journals (Sweden)

    Raaz K. Maheshwari

    2013-09-01

    Full Text Available Groundwater pollution has become a drastic problem principally because of nature and wide spread use of modern chemicals viz. pesticides and fertilizers. Excessive application of fertilizers as well as organic wastes and sewage has been implicated in the nitrogen pollution of groundwater. Therefore, the issue of rising nitrate concentration in groundwater has become a subject of extensive research in India and Rajasthan in particular. In natural water, nitrate ((NO3- N is usually 100ppm and in organic matters (amine and /or amides resulting in the production of nitrosamines (carcinogens. Number of cases (human and livestock, suffering from gastric cancer have been observed. Reverse osmosis (RO process has great potential in the mitigation of nitrate ion containing waters. Generally, the presence of particular substances may affect the removal of specific ions. The presence of di-hydrogen phosphate ions (DHP-ions in the feed solution enhances the nitrate removal efficiency of the polyamide RO membrane. In this present research work, a Flmtec TW30, polyamide thin-film composite, RO membrane was used for nitrate removal through RO set up. The rejection of individual nitrate was found to be around 76%. After addition of KH2¬PO4 to the feed containing nitrate ions the rejection was improved up to 84. This high level of increment in rejection of nitrate ion indicates the possible usage of KH2¬PO4 in RO for nitrate removal. This fact of removal is due to the K+ ions binding to the electronic lone-pairs of polyamide membrane holding di-hydrogen phosphate ions. This establishes a negative layer on the surface of the membrane. The diffusion of nitrate through the membrane is diminished by the formed layer. Present manuscript delineates clinical manifestations of nitrate toxicity and mitigation of nitrate ion by means of state-of-the-art reverse osmosis technology.

  3. Groundwater level and nitrate concentration trends on Mountain Home Air Force Base, southwestern Idaho

    Science.gov (United States)

    Williams, Marshall L.

    2014-01-01

    Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).

  4. Use of LCA as decision support for the selection of remedial strategies for remediation of contaminated soil and groundwater

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    little attention in established life cycle impact assessment methodologies. Often groundwater is included in a general freshwater compartment, is simply disregarded, or is only functioning as a sink for contaminant emissions. When applying LCA for decision support for contaminated site remediation...

  5. Development and applications of groundwater remediation technologies in the USA

    Science.gov (United States)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  6. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin et al

    2008-01-01

    Full Text Available The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM, transmission electron microscopy (TEM, and x-ray diffraction (XRD to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Experimentally, ZVIN of this study was prepared by sodium borohydride reduction method at room temperature and ambient pressure. The morphology of as-synthesized ZVIN shows that the nearly ball and ultrafine particles ranged of 20–50 nm were observed with FE–SEM or TEM analysis. The kinetic model of nitrites or nitrates reductive reaction by ZVIN is proposed as a pseudo first-order kinetic equation. The nitrite and nitrate removal efficiencies using ZVIN were found 65–83% and 51–68%, respectively, based on three different initial concentrations. Based on the XRD pattern analyses, it is found that the quantitative relationship between nitrite and Fe(III or Fe(II is similar to the one between nitrate and Fe(III in the ZVIN study. The possible reason is due to the faster nitrite reduction by ZVIN. In fact, the occurrence of the relative faster nitrite reductive reaction suggested that the passivation of the ZVIN have a significant contribution to iron corrosion. The extended x-ray absorption fine structure (EXAFS or x-ray absorption near edge structure (XANES spectra show that the nitrites or nitrates reduce to N2 or NH3 while oxidizing the ZVIN to Fe2O3 or Fe3O4 electrochemically. It is also very clear that decontamination of nitrate or nitrite species in groundwater via the in-situ remediation with a ZVIN permeable reactive barrier would be environmentally attractive.

  7. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  8. Assessing the relationship between groundwater nitrate and animal feeding operations in Iowa (USA)

    Science.gov (United States)

    Zirkle, Keith W.; Nolan, Bernard T.; Jones, Rena R.; Weyer, Peter J.; Ward, Mary H.; Wheeler, David C.

    2016-01-01

    Nitrate-nitrogen is a common contaminant of drinking water in many agricultural areas of the United States of America (USA). Ingested nitrate from contaminated drinking water has been linked to an increased risk of several cancers, specific birth defects, and other diseases. In this research, we assessed the relationship between animal feeding operations (AFOs) and groundwater nitrate in private wells in Iowa. We characterized AFOs by swine and total animal units and type (open, confined, or mixed), and we evaluated the number and spatial intensities of AFOs in proximity to private wells. The types of AFO indicate the extent to which a facility is enclosed by a roof. Using linear regression models, we found significant positive associations between the total number of AFOs within 2 km of a well (p trend  5 mg/L) compared with low-nitrate (≤ 5 mg/L) wells (p = 0.001). A generalized additive model for high-nitrate status identified statistically significant areas of risk for high levels of nitrate. Adjustment for some AFO predictor variables explained a portion of the elevated nitrate risk. These results support a relationship between animal feeding operations and groundwater nitrate concentrations and differences in nitrate loss from confined AFOs vs. open or mixed types.

  9. Assessing the relationship between groundwater nitrate and animal feeding operations in Iowa (USA).

    Science.gov (United States)

    Zirkle, Keith W; Nolan, Bernard T; Jones, Rena R; Weyer, Peter J; Ward, Mary H; Wheeler, David C

    2016-10-01

    Nitrate-nitrogen is a common contaminant of drinking water in many agricultural areas of the United States of America (USA). Ingested nitrate from contaminated drinking water has been linked to an increased risk of several cancers, specific birth defects, and other diseases. In this research, we assessed the relationship between animal feeding operations (AFOs) and groundwater nitrate in private wells in Iowa. We characterized AFOs by swine and total animal units and type (open, confined, or mixed), and we evaluated the number and spatial intensities of AFOs in proximity to private wells. The types of AFO indicate the extent to which a facility is enclosed by a roof. Using linear regression models, we found significant positive associations between the total number of AFOs within 2km of a well (p trend 5mg/L) compared with low-nitrate (≤5mg/L) wells (p=0.001). A generalized additive model for high-nitrate status identified statistically significant areas of risk for high levels of nitrate. Adjustment for some AFO predictor variables explained a portion of the elevated nitrate risk. These results support a relationship between animal feeding operations and groundwater nitrate concentrations and differences in nitrate loss from confined AFOs vs. open or mixed types. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    Science.gov (United States)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  11. Nitrate Biogeochemistry and Reactive Transport in California Groundwater: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Esser, B K; Beller, H; Carle, S; Cey, B; Hudson, G B; Leif, R; LeTain, T; Moody-Bartel, C; Moore, K; McNab, W; Moran, J; Tompson, A

    2006-02-24

    Nitrate is the number one drinking water contaminant in the United States. It is pervasive in surface and groundwater systems,and its principal anthropogenic sources have increased dramatically in the last 50 years. In California alone, one third of the public drinking-water wells has been lost since 1988 and nitrate contamination is the most common reason for abandonment. Effective nitrate management in groundwater is complicated by uncertainties related to multiple point and non-point sources, hydrogeologic complexity, geochemical reactivity, and quantification of denitrification processes. In this paper, we review an integrated experimental and simulation-based framework being developed to study the fate of nitrate in a 25 km-long groundwater subbasin south of San Jose, California, a historically agricultural area now undergoing rapid urbanization with increasing demands for groundwater. The modeling approach is driven by a need to integrate new and archival data that support the hypothesis that nitrate fate and transport at the basin scale is intricately related to hydrostratigraphic complexity, variability of flow paths and groundwater residence times, microbial activity, and multiple geochemical reaction mechanisms. This study synthesizes these disparate and multi-scale data into a three-dimensional and highly resolved reactive transport modeling framework.

  12. Long-Term Response of Groundwater Nitrate Concentrations to Management Regulations in Nebraska's Central Platte Valley

    Directory of Open Access Journals (Sweden)

    Mary E. Exner

    2010-01-01

    Full Text Available The impact of 16 years (1988–2003 of management practices on high groundwater nitrate concentrations in Nebraska's central Platte River valley was assessed in a 58,812-ha (145,215-ac groundwater quality management area intensively cropped to irrigated corn (Zea mays L.. Crop production and groundwater nitrate data were obtained from ~23,800 producer reports. The terrace, comprising ~56% of the study area, is much more intensively cropped to irrigated corn than the bottomland. From 1987 to 2003, average groundwater nitrate concentrations in the primary aquifer beneath the bottomland remained static at ~8 mg N/l. During the same period, average groundwater nitrate concentrations in the primary aquifer beneath the terrace decreased from 26.4 to 22.0 mg N/l at a slow, but significant (p < 0.0001, rate of 0.26 mg N/l/year. Approximately 20% of the decrease in nitrate concentrations can be attributed to increases in the amount of N removed from fields as a consequence of small annual increases in yield. During the study, producers converted ~15% of the ~28,300 furrow-irrigated terrace hectares (~69,800 ac to sprinkler irrigation. The conversion is associated with about an additional 50% of the decline in the nitrate concentration, and demonstrates the importance of both improved water and N management. Average N fertilizer application rates on the terrace were essentially unchanged during the study. The data indicate that groundwater nitrate concentrations have responded to improved management practices instituted by the Central Platte Natural Resources District.

  13. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Directory of Open Access Journals (Sweden)

    F. Nakagawa

    2013-06-01

    Full Text Available The stable isotopic compositions of nitrate dissolved in 49 brands of bottled drinking water collected worldwide were measured, to trace the fate of atmospheric nitrate (NO3− atm that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from −0.2‰ to +4.5‰ n = 49. The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol L−1 to 8.5 μmol L−1 with higher NO3−atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3−atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3−atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3−atm.

  14. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Science.gov (United States)

    Nakagawa, F.; Suzuki, A.; Daita, S.; Ohyama, T.; Komatsu, D. D.; Tsunogai, U.

    2013-06-01

    The stable isotopic compositions of nitrate dissolved in 49 brands of bottled drinking water collected worldwide were measured, to trace the fate of atmospheric nitrate (NO3- atm) that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O) of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from -0.2‰ to +4.5‰ n = 49). The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol L-1 to 8.5 μmol L-1 with higher NO3-atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3-atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3-atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3-atm.

  15. New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements

    Science.gov (United States)

    Opsahl, S. P.; Musgrove, M.; Slattery, R. N.

    2017-03-01

    Understanding nitrate dynamics in groundwater systems as a function of climatic conditions, especially during contrasting patterns of drought and wet cycles, is limited by a lack of temporal and spatial data. Nitrate sensors have the capability for making accurate, high-frequency measurements of nitrate in situ, but have not yet been evaluated for long-term use in groundwater wells. We measured in situ nitrate continuously in two groundwater monitoring wells -one rural and one urban-located in the recharge zone of a productive karst aquifer in central Texas in order to resolve changes that occur over both short-term (hourly to daily) and long-term (monthly to yearly) periods. Nitrate concentrations, measured as nitrate-nitrogen in milligrams per liter (mg/L), during drought conditions showed little or no temporal change as groundwater levels declined. During aquifer recharge, extremely rapid changes in concentration occurred at both wells as documented by hourly data. At both sites, nitrate concentrations were affected by recharging surface water as evidenced by nitrate concentrations in groundwater recharge (0.8-1.3 mg/L) that were similar to previously reported values for regional recharging streams. Groundwater nitrate concentrations responded differently at urban and rural sites during groundwater recharge. Concentrations at the rural well (approximately 1.0 mg/L) increased as a result of higher nitrate concentrations in groundwater recharge relative to ambient nitrate concentrations in groundwater, whereas concentrations at the urban well (approximately 2.7 mg/L) decreased as a result of the dilution of higher ambient nitrate concentrations relative to those in groundwater recharge. Notably, nitrate concentrations decreased to as low as 0.8 mg/L at the urban site during recharge but postrecharge concentrations exceeded 3.0 mg/L. A return to higher nitrate concentrations postrecharge indicates mobilization of a localized source of elevated nitrate within the

  16. Nitrate levels and the age of groundwater from the Upper Devonian sandstone aquifer in Fife, Scotland.

    Science.gov (United States)

    McNeill, G W; Anderson, J; Elliot, T

    2003-03-01

    The tritium concentrations in 13 groundwater samples from boreholes throughout the Upper Devonian sandstone aquifer of Fife have been measured. Due to atmospheric variations in tritium concentrations over the last century, this radioactive tracer can be used as a groundwater age indicator. In this study, the groundwater tritium concentrations have allowed for the area to be divided into three zones, and the variable chemistry of the groundwater samples, including the problem of recent elevated nitrate levels in the Fife Aquifer, has been interpreted in terms of their relative ages.

  17. Impact of Groundwater Level on Nitrate Nitrogen Accumulation in the Vadose Zone Beneath a Cotton Field

    Directory of Open Access Journals (Sweden)

    Xiyun Jiao

    2017-02-01

    Full Text Available In this study, the impacts of groundwater level on nitrate nitrogen accumulation in the vadose zone of a cotton field were investigated. Experiments were conducted in a cotton field at the CAS Ecological Agricultural Experiment Station in Nanpi from 2008 to 2010. A vertical observation well was drilled, and time-domain reflectometry probes and soil solution extractors were installed every 50 cm in the walls of the well to a depth of 5 m. The soil water content was monitored, and soil solution samples were obtained and analyzed every six days throughout the growing seasons during the three studied years. Additionally, a water consumption experiment was conducted, and the topsoil water content and leaf area index were measured in the cotton field. The resulting data were used to estimate parameters for use in a soil hydraulic and nitrate nitrogen movement model, and cotton evapotranspiration was calculated using the Penman–Monteith method. Groundwater level increases and decreases of ±4 m were simulated during a ten-year period using HYDRUS-1D. The results showed significant nitrate nitrogen accumulation in the vadose zone when the groundwater level remained unchanged or decreased, with increased accumulation as the groundwater depth increased. Additionally, increased precipitation and a deeper groundwater level resulted in greater nitrate nitrogen leaching in the cotton root zone. Therefore, irrigation and fertilization strategies should be adjusted based on precipitation conditions and groundwater depth.

  18. A Sustainability Assessment Methodology for Prioritizing the Technologies of Groundwater Contamination Remediation

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Wang, Yue

    2016-01-01

    More and more groundwater has 23 been polluted recently, and technologies for groundwater contamination remediation are of vital importance; however, it is usually difficult for the users to select the most suitable technology among multiple alternatives. In order to address this, this study aims...... at developing a sustainability assessment framework for prioritizing the technologies for groundwater contamination remediation by combining the concept of sustainability and multi-criteria decision making (MCDM) method. A criterion system which consists of six criteria in three aspects has been proposed...... for sustainability assessment of technologies for groundwater contamination remediation, and a novel MCDM method by combining the logarithmic fuzzy preference programming based fuzzy analytic hierarchy process and the improved ELECTRE method has been developed for prioritizing the alternatives. In order...

  19. [Distribution Characteristics and Influencing Factors of Nitrate Pollution in Shallow Groundwater of Liujiang Basin].

    Science.gov (United States)

    Wang, He; Gu, Hong-biao; Chi, Bao-ming; Li, Hai-jun; Jiang, Hai-ning

    2016-05-15

    Taking the nitrate in shallow groundwater of Liujiang basin as the research object, a total of 215 groups of shallow groundwater samples were collected during the wet period in July 2014 and the drought period in April 2015 on the basis of groundwater pollution investigation. The characteristics of spatial and temporal variability and the account of nitrate pollution were analyzed based on the model of semivariogram, the geostatistics of ArcGIS and factor analysis, respectively. The results showed that the study region in the southeast was the main nitrate-polluted area, with concentrations of up to 30-120 mg · L⁻¹, in both wet and drought periods, while the nitrate-contaminated area in drought period was about 1. 4 times higher than that in wet period. The spatial distribution of nitrate was primarily influenced by human activities and the geological conditions, and secondarily by Eh, DO, pH and landform conditions. The nitrate concentration was less than 20 mg · L⁻¹ in north. Pollution in local middle area was rather serious, due to human activities and the loss of nitrogen fertilizer in agricultural cultivation; the area to the south, which was confined by impervious boundary, was seriously contaminated, as indicated by the nitrate accumulation effects.

  20. Application of natural resource valuation concepts for development of sustainable remediation plans for groundwater.

    Science.gov (United States)

    Connor, John A; Paquette, Shawn; McHugh, Thomas; Gie, Elaine; Hemingway, Mark; Bianchi, Gino

    2017-04-07

    This paper explores the application of natural resource assessment and valuation procedures as a tool for developing groundwater remediation strategies that achieve the objectives for health and environmental protection, in balance with considerations of economic viability and conservation of natural resources. The natural resource assessment process, as applied under U.S. and international guidelines, entails characterization of groundwater contamination in terms of the pre-existing beneficial services of the impacted resource, the loss of these services caused by the contamination, and the measures and associated costs necessary to restore or replace the lost services. Under many regulatory programs, groundwater remediation objectives assume that the impacted groundwater may be used as a primary source of drinking water in the future, even if not presently in use. In combination with a regulatory preference for removal or treatment technologies, this assumed exposure, while protective of human health, can drive the remedy selection process toward remedies that may not be protective of the groundwater resource itself or of the other natural resources (energy, materials, chemicals, etc.) that may be consumed in the remediation effort. To achieve the same health and environmental protection goals under a sustainable remediation framework, natural resource assessment methods can be applied to restore the lost services and preserve the intact services of the groundwater so as to protect both current and future users of that resource. In this paper, we provide practical guidelines for use of natural resource assessment procedures in the remedy selection process and present a case study demonstrating the use of these protocols for development of sustainable remediation strategies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Impacts of Human Activities on the Occurrence of Groundwater Nitrate in an Alluvial Plain: A Multiple Isotopic Tracers Approach

    Institute of Scientific and Technical Information of China (English)

    Zhonghe Pang; Lijuan Yuan; Tianming Huang; Yanlong Kong; Jilai Liu; Yiman Li

    2013-01-01

    Nitrate pollution is a severe problem in areas with intensive agricultural activities.This study focuses on nitrate occurrence and its constraints in a selected alluvial fan using chemical data combined with environmental isotopic tracers (18O,3H,and 15N).Results show that groundwater nitrate in the study area is as high as 258.0 mg/L (hereafter NO3-) with an average of 86.8 mg/L against national drinking water limit of 45 mg/L and a regional baseline value of 14.4 mg/L.Outside of the riparian zone,nitrate occurrence is closely related to groundwater circulation and application of chemical fertilizer.High groundwater nitrate is found in the recharge area,where nitrate enters into groundwater through vertical infiltration,corresponding to high 3H and enriched 18O in the water.In the riparian zone,on the contrary,the fate of groundwater nitrate is strongly affected by groundwater level.Based on two sampling transects perpendicular to the riverbank,we found that the high level of nitrate corresponds to the deeper water table (25 m) near the urban center,where groundwater is heavily extracted.Groundwater nitrate is much lower (<12.4 mg/L) at localities with a shallow water table (5 m),which is likely caused by denitrification in the aquifer.

  2. The numerical simulation for coal gangue as roadbed material on groundwater nitrate concentration

    Directory of Open Access Journals (Sweden)

    DU Yongli

    2014-06-01

    Full Text Available Numerical simulation was used to elaborate temporal and spatial distribution of nitrate concentration in groundwater under one highway,which was constructed with coal gangue based on experiment.Experimental results indicated that the contaminated area spread around over time,but more obviously in horizontal direction,especially in groundwater flow direction.In addition,nitrate concentration decreased gradually in two-axis direction,and contaminated degree decreased with the increasing of distance from the contaminated source caused leaching solution.Numerical simulation suggests that the nitrate concentration (N in the section will only meet the standard of class III (GB/T14848-93 for groundwater environmental quality after 10 years,although the concentration reaches the standard of class I currently.

  3. Monitoring of Nitrate and Pesticide Pollution in Mnasra, Morocco Soil and Groundwater.

    Science.gov (United States)

    Marouane, Bouchra; Dahchour, Abdelmalek; Dousset, Sylvie; El Hajjaji, Souad

    2015-06-01

    This study evaluates the levels of nitrates and pesticides occurring in groundwater and agricultural soil in the Mnasra, Morocco area, a zone with intensive agricultural activity. A set of 108 water samples and 68 soil samples were collected from ten selected sites in the area during agricultural seasons, from May 2010 to September 2012. The results reveal that 89.7% of water samples exceeded the standard limit of nitrate concentrations for groundwater (50 mg/L). These results can be explained by the prevailing sandy nature of the soil in the area, the frequency of fertilizer usage, and the shallow level of the water table, which favors the leaching of nitrate from field to groundwater. In contrast, the selected pesticide molecules were not detected in the analysed soil and water samples; levels were below the quantification limit in all samples. This situation could be explained by the probable partial or total transformation of the molecules in soil.

  4. Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments.

    Science.gov (United States)

    Thorgersen, Michael P; Lancaster, W Andrew; Vaccaro, Brian J; Poole, Farris L; Rocha, Andrea M; Mehlhorn, Tonia; Pettenato, Angelica; Ray, Jayashree; Waters, R Jordan; Melnyk, Ryan A; Chakraborty, Romy; Hazen, Terry C; Deutschbauer, Adam M; Arkin, Adam P; Adams, Michael W W

    2015-08-01

    The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. The concentrations of nitrate and uranium were in the ranges of 0.1 μM to 230 mM and nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Moreover, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for two Pseudomonas strains isolated from ORR wells and by a model denitrifier, Pseudomonas stutzeri RCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed.

  5. Hydrogen-based tubular catalytic membrane for removing nitrate from groundwater.

    Science.gov (United States)

    Chen, Y X; Zhang, Y; Liu, H Y; Sharma, K R; Chen, G H

    2004-02-01

    A porous tubular ceramic membrane coated with palladium-cupper (Pd-Cu) catalyst on its surface was prepared and evaluated for catalytic reduction of nitrate from groundwater. Nitrate reduction activity and selectivity with the catalytic membrane were compared with Pd-Cu/Al2O3 catalyst particles. The catalytic membrane reactor exhibited a better selectivity by enabling an effective control of hydrogen gas, thus minimizing ammonium production. No leaching of palladium and copper into aqueous phase was observed, thereby indicating a high chemical stability of the metallic ions on the carrier support. This was also evidenced by the X-ray photoelectron spectroscopy (XPS) profiles of fresh and used catalysts, which showed no significant difference in surface compositions. Due to its higher selectivity in nitrate reduction and better flexibility in terms of operating conditions, the tubular catalytic ceramic membrane could be useful in removing nitrate from groundwater.

  6. Preparation of nitrate-selective porous magnetic resin and assessment of its performance in removing nitrate from groundwater.

    Science.gov (United States)

    Liu, Cheng; Zhu, Lifei; Zhang, Qian; Chen, Wei

    2017-02-01

    Nitrate-selective, porous magnetic anion-exchange resin (NS-PMAER) with enhanced affinity and higher selectivity for nitrate was synthesized, characterized and its performance in nitrate removal was investigated. The results show that NS-PMAER consists of spherical particles with an average size of 200 μm. It has mean pore diameter, total pore volume, and BET specific surface area of 21.38 nm, 0.3605 cm(3)/g, and 67.455 m(2)/g, respectively. The specific saturation magnetization of NS-PMAER was about 10.79 emu/g. Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS) results indicate that NS-PMAER has selectivity for nitrate higher than that of MIEX® resin; its coefficients of selectivity toward nitrate for nitrate and sulfate are 20.978 and 6.769, respectively, higher than those of MIEX® resin (1.256 and 4.342, respectively). Its working exchange capacity was 72.41 mg/mL. Column-exchange experiments' results suggest that it could be easily regenerated using 1.5 mol/L sodium chloride solution for a contact time of 30 min. Its recovery rate stayed at > 95% even after five rounds of recycling. Results of the pilot test indicate that NS-PMAER could effectively remove nitrate in groundwater, and ensure that nitrate concentrations of effluent to meet the guideline limit for drinking water by the World Health Organization.

  7. Modeling groundwater nitrate concentrations in private wells in Iowa

    Science.gov (United States)

    Wheeler, David C.; Nolan, Bernard T.; Flory, Abigail R.; DellaValle, Curt T.; Ward, Mary H.

    2015-01-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square = 0.77) and was acceptable in the testing set (r-square = 0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.

  8. CHEMICAL DENITRIFICATION OF NITRATE FROM GROUNDWATER VIA SULFAMIC ACID AND ZINC METAL

    OpenAIRE

    A. Sabzali, M. Gholami, A. R. Yazdanbakhsh, A. Khodadadi, B. Musavi, R. Mirzaee

    2006-01-01

    Nitrate contamination in drinking water can cause methemoglobinemia, which is especially detrimental to infants and nursing mothers. Batch experiments in two units for catalytic reduction of nitrate from groundwater with Zn catalyst and sulfamic acid were conducted. The system includes chemical denitriphication (ChemDen reactor) and electrolytic recovery reactoers. A batch study was conducted to optimize parameters like pH, sulfamic acid concentration, Zn concentration, temperature and reacti...

  9. Identification of groundwater nitrate sources in pre-alpine catchments: a multi-tracer approach

    Science.gov (United States)

    Stoewer, Myriam; Stumpp, Christine

    2014-05-01

    Porous aquifers in pre-alpine areas are often used as drinking water resources due to their good water quality status and water yield. Maintaining these resources requires knowledge about possible sources of pollutants and a sustainable management practice in groundwater catchment areas. Of particular interest in agricultural areas, like in pre-alpine regions, is limiting nitrate input as main groundwater pollutant. Therefore, the objective of the presented study is i) to identify main nitrate sources in a pre-alpine groundwater catchment with current low nitrate concentration using stable isotopes of nitrate (d18O and d15N) and ii) to investigate seasonal dynamics of nitrogen compounds. The groundwater catchment areas of four porous aquifers are located in Southern Germany. Most of the land use is organic grassland farming as well as forestry and residential area. Thus, potential sources of nitrate mainly are mineral fertilizer, manure/slurry, leaking sewage system and atmospheric deposition of nitrogen compounds. Monthly freshwater samples (precipitation, river water and groundwater) are analysed for stable isotope of water (d2H, d18O), the concentration of major anions and cations, electrical conductivity, water temperature, pH and oxygen. In addition, isotopic analysis of d18O-NO3- and d15N-NO3- for selected samples is carried out using the denitrifier method. In general, all groundwater samples were oxic (10.0±2.6mg/L) and nitrate concentrations were low (0.2 - 14.6mg/L). The observed nitrate isotope values in the observation area compared to values from local precipitation, sewage, manure and mineral fertilizer as well as to data from literature shows that the nitrate in freshwater samples is of microbial origin. Nitrate derived from ammonium in fertilizers and precipitation as well as from soil nitrogen. It is suggested that a major potential threat to the groundwater quality is ammonia and ammonium at a constant level mainly from agriculture activities as

  10. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010

    Institute of Scientific and Technical Information of China (English)

    Xinyu Zhang; Zhiwei Xu; Xiaomin Sun; Wenyi Dong; Deborah Ballantine

    2013-01-01

    The nitrate-nitrogen (NO3--N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations,representing typical agro-and forest ecosystems,were assessed using monitoring data collected between 2004 and 2010.Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater,and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made.Results indicated that most of the NO3--N concentrations in groundwater from the agro-and forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard:Quality Standard for Ground Water (< 20 mg/L).Over the study period,the average NO3--N concentrations were significantly higher in agro-ecosystems (4.1 ±-0.33 mg/L) than in forest ecosystems (0.5 + 0.04 mg/L).NO3--N concentrations were relatively higher (> 10 mg N/L) in 10 of the 43 wells sampled in the agricultural ecosystems.These elevated concentrations occurred mainly in the Ansai,Yucheng,Linze,Fukang,Akesu,and Cele field sites,which were located in arid and semiarid areas where irrigation rates are high.We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations.

  11. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production

    Science.gov (United States)

    Lockhart, K. M.; King, A. M.; Harter, T.

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤ 150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10 mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤ 21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  12. Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution

    Science.gov (United States)

    Martínez-Bastida, Juan J.; Arauzo, Mercedes; Valladolid, Maria

    2010-05-01

    The intrinsic vulnerability of groundwater in the Comunidad de Madrid (central Spain) was evaluated using the DRASTIC and GOD indexes. Groundwater vulnerability to nitrate pollution was also assessed using the composite DRASTIC (CD) and nitrate vulnerability (NV) indexes. The utility of these methods was tested by analyzing the spatial distribution of nitrate concentrations in the different aquifers located in the study area: the Tertiary Detrital Aquifer, the Moor Limestone Aquifer, the Cretaceous Limestone Aquifer and the Quaternary Aquifer. Vulnerability maps based on these four indexes showed very similar results, identifying the Quaternary Aquifer and the lower sub-unit of the Moor Limestone Aquifer as deposits subjected to a high risk of nitrate pollution due to intensive agriculture. As far as the spatial distribution of groundwater nitrate concentrations is concerned, the NV index showed the greatest statistical significance ( p real impact of each type of land use. The results of this study provide a basis on which to guide the designation of nitrate vulnerable zones in the Comunidad de Madrid, in line with European Union Directive 91/676/EEC.

  13. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  14. Removal of Selenium and Nitrate in Groundwater Using Organic Carbon-Based Reactive Mixtures

    Science.gov (United States)

    An, Hyeonsil; Jeen, Sung-Wook

    2016-04-01

    Treatment of selenium and nitrate in groundwater was evaluated through column experiments. Four columns consisting of reactive mixtures, either organic carbon-limestone (OC-LS) or organic carbon-zero valent iron (OC-ZVI), were used to determine the removal efficiency of selenium with different concentrations of nitrate. The source waters were collected from a mine site in Korea or were prepared artificially based on the mine drainage water or deionized water, followed by spiking of elevated concentrations of Se (40 mg/L) and nitrate (100 or 10 mg/L as NO3-N). The results for the aqueous chemistry showed that selenium and nitrate were effectively removed both in the mine drainage water and deionized water-based artificial input solution. However, the removal of selenium was delayed when selenium and nitrate coexisted in the OC-LS columns. The removal of selenium was not significant when the influent nitrate concentration was 100 mg/L as NO3-N, while most of nitrate was gradually removed within the columns. In contrast, 94% of selenium was removed when the influent nitrate concentration was reduced to 10 mg/L as NO3-N. In the OC-ZVI column, selenium and nitrate was removed almost simultaneously and completely even with the high nitrate concentration; however, a high concentration of ammonia was produced as a by-product of abiotic reaction between ZVI and nitrate. The elemental analysis for the solid samples after the termination of the experiments showed that selenium was accumulated in the reactive materials where removal of aqueous-phase selenium mostly occurred. The X-ray absorption near-edge structure (XANES) study indicated that selenium existed in the forms of SeS2 and Se(0) in the OC-LS column, while selenium was present in the forms of FeSe, SeS2 and absorbed Se(IV) in the OC-ZVI column. This study shows that OC-based reactive mixtures have an ability to remove selenium and nitrate in groundwater. However, the removal of selenium was influenced by the high

  15. Neural network prediction of nitrate in groundwater of Harran Plain, Turkey

    Science.gov (United States)

    Yesilnacar, M. Irfan; Sahinkaya, Erkan; Naz, Muhsin; Ozkaya, Bestamin

    2008-11-01

    Monitoring groundwater quality by cost-effective techniques is important as the aquifers are vulnerable to contamination from the uncontrolled discharge of sewage, agricultural and industrial activities. Faulty planning and mismanagement of irrigation schemes are the principle reasons of groundwater quality deterioration. This study presents an artificial neural network (ANN) model predicting concentration of nitrate, the most common pollutant in shallow aquifers, in groundwater of Harran Plain. The samples from 24 observation wells were monthly analysed for 1 year. Nitrate was found in almost all groundwater samples to be significantly above the maximum allowable concentration of 50 mg/L, probably due to the excessive use of artificial fertilizers in intensive agricultural activities. Easily measurable parameters such as temperature, electrical conductivity, groundwater level and pH were used as input parameters in the ANN-based nitrate prediction. The best back-propagation (BP) algorithm and neuron numbers were determined for optimization of the model architecture. The Levenberg-Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 25. The model tracked the experimental data very closely ( R = 0.93). Hence, it is possible to manage groundwater resources in a more cost-effective and easier way with the proposed model application.

  16. Comparison of policies for controlling groundwater nitrate pollution from agriculture in the Eastern Mancha aquifer (Spain).

    Science.gov (United States)

    Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Stalder, A.; Garcia-Prats, A.; Henriquez-Dole, L.

    2012-04-01

    Groundwater nitrate pollution from agriculture has given rise to different legal frameworks. The European Water Framework Directive (WFD) is the most recent one. This work aims to help in the definition of the most cost-efficient policy to control non-point groundwater to attain the objectives established in the WFD. In this study we performed a cost-effectiveness analysis of different policies for controlling groundwater nitrate pollution from agriculture. The policies considered were taxes on nitrogen fertilizers, water price, taxes on emissions and fertilizer standards. We used a hydro-economic model, where we maximized the farmer's benefits. The benefits were calculated as sum of crop revenue minus variable and fixed cost per hectare minus the damage costs from nitrogen leaching. In the cost-effectiveness analysis we considered the costs as the reduction on benefits due to the application of a policy and the effectiveness the reduction on nitrate leaching. The methodology was applied to Eastern Mancha aquifer in Spain. The aquifer is part of the Júcar River Basin, which was declared as EU Pilot Basin in 2002 for the implementation of the WFD. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has provoked a steady decline of groundwater levels and a reduction of groundwater discharged into the Júcar River, as well as nitrate concentrations higher than those allowed by the WFD at certain locations (above 100 mg/l.). Crop revenue was calculated using production functions and the amount of nitrate leached was estimated by calibrated leaching functions. These functions were obtained by using an agronomic model (a GIS version of EPIC, GEPIC), and they depend on the water and the fertilizer use. The Eastern Mancha System was divided into zones of homogeneous crop production and nitrate leaching properties. Given the different soil types and climatic

  17. High Resolution Site Characterization as key element for proper design and cost estimation of groundwater remediation

    Directory of Open Access Journals (Sweden)

    Pieter Dijkshoorn

    2014-12-01

    Full Text Available Substantial amounts of money are spent each year on cleaning up ground water contaminations that were caused by historical industrial site activities. Too often, however, remedial objectives are not achieved within the anticipated time frame. Moreover, remedial budgets which were estimated prior to the start of remediation turn out to be largely insufficient to meet the remedial objectives. This situation, very common, creates significant troubles for all the stakeholders involved in the remediation project. The reason for not meeting remedial regulatory closure criteria or exceeding remedial budgets is often due to an incomplete conceptual site model. Having conducted high resolution site characterization programs at numerous sites where remediation was previously conducted, ERM has found several recurring themes: • Missed source areas and plumes; • Inadequate understanding of source area and plume architectures (i.e., three-dimensional contaminant distribution; • Inadequate understanding of the effects of site (hydrogeologic conditions on the ability to access contamination (i.e., via remedial additive injections of groundwater/soil gas extraction. This paper explains why remediations often fail and what the alternatives to prevent these failures (and exceeding remedial budgets are. More specifically, it focuses on alternative investigation methods and approaches that help to get to a more complete (high resolution conceptual site model. This more complete conceptual site model in return helps a more focused remedial design with a higher remedial efficiency. As a minimum, it will take away a lot of (financial uncertainty during the decision making when selecting a remedial alternative. Contaminants that have a greater density then water are known to have a greater complexity in terms of both investigation as well as remediation. Therefore, they will be the main focus of this paper.

  18. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer.

    Science.gov (United States)

    Buvaneshwari, Sriramulu; Riotte, Jean; Sekhar, M; Mohan Kumar, M S; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Giriraja, P R; Praveenkumarreddy, Yerabham; Moger, Hemanth; Durand, Patrick; Braun, Jean-Jacques; Ruiz, Laurent

    2017-02-01

    Agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO3 hot spots associated to deep groundwater levels (30-60m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO3 concentrations suggest that significant lateral flow prevented NO3 enrichment; iii) low NO3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigation with NO3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200kgN/ha/yr in hotspot areas, enhancing

  19. Optimization of enhanced bioelectrical reactor with electricity from microbial fuel cells for groundwater nitrate removal.

    Science.gov (United States)

    Liu, Ye; Zhang, Baogang; Tian, Caixing; Feng, Chuanping; Wang, Zhijun; Cheng, Ming; Hu, Weiwu

    2016-01-01

    Factors influencing the performance of a continual-flow bioelectrical reactor (BER) intensified by microbial fuel cells for groundwater nitrate removal, including nitrate load, carbon source and hydraulic retention time (HRT), were investigated and optimized by response surface methodology (RSM). With the target of maximum nitrate removal and minimum intermediates accumulation, nitrate load (for nitrogen) of 60.70 mg/L, chemical oxygen demand (COD) of 849.55 mg/L and HRT of 3.92 h for the BER were performed. COD was the dominant factor influencing performance of the system. Experimental results indicated the undistorted simulation and reliable optimized values. These demonstrate that RSM is an effective method to evaluate and optimize the nitrate-reducing performance of the present system and can guide mathematical models development to further promote its practical applications.

  20. Advances in Groundwater Remediation: Achieving Effective In Situ Delivery of Chemical Oxidants and Amendments

    DEFF Research Database (Denmark)

    Siegrist, Robert L.; Crimi, Michelle; Broholm, Mette Martina

    2012-01-01

    Contamination of soil and groundwater by organic chemicals represents a major environmental problem in urban areas throughout the United States and other industrialized nations. In situ chemical oxidation (ISCO) has emerged as one of several viable methods for remediation of organically contamina...... delivery of treatment fl uids, with an emphasis on chemical oxidants and amendments, which can help achieve cleanup goals and protect groundwater and associated drinking water resources.......Contamination of soil and groundwater by organic chemicals represents a major environmental problem in urban areas throughout the United States and other industrialized nations. In situ chemical oxidation (ISCO) has emerged as one of several viable methods for remediation of organically...... ) delivered into the subsurface using injection wells, probes, or other techniques. A continuing challenge for ISCO, as well as other in situ remediation technologies, is how to achieve in situ delivery and obtain simultaneous contact between treatment fl uids, such as oxidants and amendments, and the target...

  1. Evaluating the information content of multiple groundwater age tracers in projecting nitrate vulnerability

    Science.gov (United States)

    Alikhani, J.; Massoudieh, A.; Deinhart, A.; Visser, A.; Esser, B.; Moran, J. E.

    2015-12-01

    Nitrate is one of the major sources of contamination of groundwater in the United States and around the world. In this study the applicability of multiple groundwater age tracers including 3H, 3He, 4He, 14C, 13C, and 85Kr in projecting future trends of nitrate concentration in several long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit, is studied. Several lumped parameter models (LPM)s were considered to represent the groundwater age distribution at each well, including binary mixtures between Inverse Gaussian(young) and Dirac(old), generalized inverse Gaussian, and Levy distributions . LPM model parameters and unknown physical parameters (crustal production rate of 4He, dissolved inorganic carbon contribution from rock dissolution) were estimated using a Bayesian inference, resulting in the posterior probability distribution of the parameters and therefore the uncertainty associated with each. The performance of each LPM in reproducing the data while accounting for the level of model complexity is evaluated using deviance information criteria (DIC) and Bayes Factors (BF). Historical nitrate concentration data are also evaluated as an additional tracer to refine the age distribution. We found that historical nitrate levels can reduce the uncertainty about the age distribution. LPMs with a distinct feature to represent the old fraction of groundwater (for example Inverse Gaussian-Dirac) are better at reproducing the tracer data but with the price of a larger number of parameters, which results in a larger uncertainty about the age distribution itself. Although the uncertainty regarding the shape of the age distribution remains relatively high, whether nitrate is included as a tracer or not, different models predict similar future trends in nitrate concentration.

  2. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  3. Are groundwater nitrate concentrations reaching a turning point in some chalk aquifers?

    Science.gov (United States)

    Smith, J T; Clarke, R T; Bowes, M J

    2010-09-15

    In past decades, there has been much scientific effort dedicated to the development of models for simulation and prediction of nitrate concentrations in groundwaters, but producing truly predictive models remains a major challenge. A time-series model, based on long-term variations in nitrate fertiliser applications and average rainfall, was calibrated against measured concentrations from five boreholes in the River Frome catchment of Southern England for the period spanning from the mid-1970s to 2003. The model was then used to "blind" predict nitrate concentrations for the period 2003-2008. To our knowledge, this represents the first "blind" test of a model for predicting nitrate concentrations in aquifers. It was found that relatively simple time-series models could explain and predict a significant proportion of the variation in nitrate concentrations in these groundwater abstraction points (R(2)=0.6-0.9 and mean absolute prediction errors 4.2-8.0%). The study highlighted some important limitations and uncertainties in this, and other modelling approaches, in particular regarding long-term nitrate fertiliser application data. In three of the five groundwater abstraction points (Hooke, Empool and Eagle Lodge), once seasonal variations were accounted for, there was a recent change in the generally upward historical trend in nitrate concentrations. This may be an early indication of a response to levelling-off (and declining) fertiliser application rates since the 1980s. There was no clear indication of trend change at the Forston and Winterbourne Abbas sites nor in the trend of nitrate concentration in the River Frome itself from 1965 to 2008. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Groundwater Nitrate Contamination Risk Assessment: A Comparison of Parametric Systems and Simulation Modelling

    Directory of Open Access Journals (Sweden)

    Dario Sacco

    2007-01-01

    Full Text Available Groundwater nitrate contamination is a source of rising concern that has been faced through the introduction of several regulations in different countries. However the methodologies used in the definition of Nitrate Vulnerable Zones are not included in the regulations. The aim of this work was to compare different methodologies, used to asses groundwater nitrate contamination risks, based on parametric systems or simulation modelling. The work was carried out in Piedmont, Italy, in an area characterised by intensive animal husbandry, high N load, a shallow water table and a coarse type of sub-soil sediments. Only N loads from agricultural non-point sources were considered. Different methodologies with different level of information have been compared to determine the groundwater nitrate contamination risk assessment: N load, IPNOA index, the intrinsic contamination risk from nitrates, leached N and N concentration of the soil solution estimated by the simulation model. The good correlation between the IPNOA index and the intrinsic nitrate contamination risk revealed that the parameters that describe the soil in this area did not lead to a different classification of the parcels. The intrinsic nitrate contamination risk was greatly influenced by N fertilisation, however the effect of the soils increased the variability in comparison to the IPNOA index. The leached N and N concentration in the leaching were closely correlated. The dilution effect of percolated water was almost negligible. Both methodologies were slightly correlated to the N fertilisation and the two indexes. The correlations related to the intrinsic nitrate contamination risk was higher than those related to IPNOA, and this means that the effect of taking into account soil parameters increases the correlation to the prediction of the simulation model.

  5. The Resilience of Groundwater Remediation System in Response to Changing Conditions

    Science.gov (United States)

    Hou, D.

    2016-12-01

    Anthropogenic activities have caused the contamination of groundwater resources at many locations. In an effort to protect human health and prevent further spreading of groundwater contamination, remediation systems have been or will be built at hundreds of thousands of sites. While the short term effectiveness has been the focus of past research and practice, the long-term effectiveness is increasingly scrutinized. When assessing the long-term effectiveness of groundwater remediation systems, it is important to examine how existing remediation systems respond to changing geophysical (e.g. climate change) and social (e.g. improved living standard and changing development needs) conditions. The resilience of remediation strategies, or their potential to adapt to future changes, is a critical sustainability consideration. We intend to examine the resilience of groundwater remediation systems in response to changing conditions. Among others, we explore the effects of sea level rise and changing hydroclimatic conditions on the life cycle impact of phytoremediation and bioremediation systems. The study was conducted in the San Francisco Bay area, where thousands of contaminated sites are located in an area that may be affected by sea level rise and changing hydroclimatic conditions.

  6. Reducing nitrate leaching to groundwater in an intensive dairy farming system

    NARCIS (Netherlands)

    Verloop, J.; Boumans, L.J.M.; Keulen, van H.; Oenema, J.; Hilhorst, G.J.; Aarts, H.F.M.; Sebek, L.B.J.

    2006-01-01

    Dairy farming is one of the main contributors to nitrate leaching to groundwater, particularly on soils that are susceptible to leaching, such as light well-drained sandy soils. In the Netherlands, as in many other European countries, these soils are predominantly used for dairy farming. A prototype

  7. Nitrate leaching to groundwater at experimental farm "De Marke" and other Dutch sandy soils

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.

    2001-01-01

    This study focuses on nitrate leaching to the groundwater as a result of the land use system of experimental farm 'De Marke', translated to other sandy soils in the Netherlands. The land use was extrapolated to five major sandy soil map units, selected from the 1: 50 000 Soil Map of the Netherlands,

  8. Application of nitrate and water isotopes to assessment of groundwater quality beneath dairy farms in California

    Science.gov (United States)

    Young, M. B.; Harter, T.; Kendall, C.; Silva, S. R.

    2009-12-01

    In California’s Central Valley, nitrate contamination of drinking water wells is a significant concern, and there are multiple potential sources of nitrate in this area including septic discharge, synthetic and manure fertilizers, and concentrated animal feeding operations. Dairies represent the majority of animal feeding operations in California, and have been shown to be potential sources of nitrate, salinity, dissolved organic carbon, and pathogens to groundwater. Within individual dairies, different land use areas including barns and freestalls, corrals, liquid waste lagoons, and fields for forage crops (often fertilized with animal waste, synthetic fertilizer, or both), each of which may have different impacts on the groundwater. In this study, groundwater samples were collected from two dairies in the San Joaquin Valley, where the water table is fairly shallow, and from five dairies in the Tulare Lake Basin, where the water table is much deeper. In each dairy, nitrate isotopes, water isotopes, nutrient concentrations, and other chemical and physical parameters were measured in monitoring wells located within different land use areas of the dairies. Across all sampled dairy wells, δ15N-NO3 ranged from +3.2 to +49.4‰, and δ18O-NO3 ranged from -3.1 to +19.2‰. Mean nitrate concentrations, δ15N-NO3, and δ18O-NO3 were significantly higher in the northern (San Joaquin Valley) dairy wells in comparison to the southern (Tulare Lake Basin) dairy wells. No consistent differences in nitrate isotopic compositions were found between the different land use areas, and large spatial variability in both nitrate concentrations and nitrate isotopic composition was observed within most of the individual dairies. These results emphasize the challenges associated with monitoring groundwater beneath dairies due to high spatial heterogeneity in the aquifer and groundwater constituents. At four of the seven dairies, δ18O and δ2H of the ground water in wells located

  9. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    D. Vandel

    2003-09-01

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  10. Bridging the gap between empirical and mechanistic models for nitrate in groundwater

    Science.gov (United States)

    Nolan, B. T.; Malone, R. W.; Gronberg, J.; Thorp, K.; Ma, L.

    2011-12-01

    Water-quality models are useful tools for predicting the vulnerability of groundwater to nitrate contamination, and include both empirical and mechanistic approaches. Empirical models commonly are used at regional and national scales. Such models are data-driven and have comparatively few parameters, but their capability to simulate processes is limited. In contrast, mechanistic models are physically based, simulate controlling processes, and can have many parameters. The GroundWAter Vulnerability Assessment model (GWAVA), an example of the first approach, is a national-scale nonlinear regression model (R2=0.80) that predicts areally averaged nitrate concentration in groundwater based on mid-1990s land use. The Root Zone Water Quality Model (RZWQM2) is an example of the second approach and simulates N cycling processes, crop growth, and the fate and transport of agricultural chemicals at the field-scale for daily time steps. Thorough accounting by RZWQM2 of key processes can yield more accurate predictions, but application at large spatial scales is difficult because of the numerous parameters. To bridge the gap between these contrasting scales and approaches, we developed metamodels (MMs) to predict nitrate concentrations and N fluxes in the Corn Belt. Metamodels are simplified representations of mechanistic models which map outputs from the latter onto the inputs. Our MMs consisted of artificial neural networks (ANNs), which are inherently flexible and do not require linearity or normally distributed data. The MMs were based on RZWQM2 models previously calibrated to data from field sites in Nebraska, Iowa, and Maryland. The three sites are in corn-soybean rotation and reflect diverse soil types and climatic conditions as well as different management practices. We calibrated the MMs to RZWQM2 predictions of N in tile drainage and leachate below the root zone of crops. Therefore the MMs represent an integrated approach to vulnerability assessment-nitrate leaching

  11. Vulnerability of recently recharged groundwater in principal [corrected] aquifers of the United States to nitrate contamination.

    Science.gov (United States)

    Gurdak, Jason J; Qi, Sharon L

    2012-06-05

    Recently recharged water (defined here as aquifer to subaquifer scale. New logistic regression models were developed using data from the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program and National Water Information System for 17 principal aquifers of the U.S. to identify important source, transport, and attenuation factors that control nonpoint source nitrate concentrations greater than relative background levels in recently recharged groundwater and were used to predict the probability of detecting elevated nitrate in areas beyond the sampling network. Results indicate that dissolved oxygen, crops and irrigated cropland, fertilizer application, seasonally high water table, and soil properties that affect infiltration and denitrification are among the most important factors in predicting elevated nitrate concentrations. Important differences in controlling factors and spatial predictions were identified in the principal aquifer and national-scale models and support the conclusion that similar spatial scales are needed between informed groundwater management and model development.

  12. Evaluation of nitrate removal effect on groundwater using artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Considering the non-linear, complex and multivariable process of biological denitrification, an activated sludge process was introduced to remove nitrate in groundwater with the aid of artificial neural networks(ANN) to evaluate the nitrate removal effect. The parameters such as COD, NH3-N, NO3--N, NO2--N, MLSS,DO, etc. , were used for input nodes, and COD , NH3 -N , NO3--N , NO2--N were selected for output nodes. Experimental ANN training results show that ANN was able to predict the output water quality parameters very well. Most of relative errors of NO3--N and COD were in the range of ± 10% and ±5% respectively. The results predicted by ANN model of nitrate removal in groundwater produced good agreement with the experimental data. Though ANN model can optimize effect of the whole system, it cannot replace the water treatment process.

  13. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells

    Science.gov (United States)

    Zhang, Baogang; Liu, Ye; Tong, Shuang; Zheng, Maosheng; Zhao, Yinxin; Tian, Caixing; Liu, Hengyuan; Feng, Chuanping

    2014-12-01

    Electricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly as electrical stimulation means for enhancement of bacterial denitrification to remove nitrate effectively from groundwater. With maximum power density of 502.5 mW m-2 and voltage outputs ranging from 500 mV to 700 mV, the nitrate removal is accelerated, with less intermediates accumulation, compared with control sets without electrical stimulation. Denitrification bacteria proliferations and activities are promoted as its number and Adenosine-5'-triphosphate (ATP) concentration increased one order of magnitude (3.5 × 107 in per milliliter biofilm solution) and about 1.5 folds, respectively. Effects of electricity from MFCs on enhancement of bacterial behaviors are demonstrated for the first time. These results indicate that MFCs can be applied in the in-situ bioremediation of nitrate polluted groundwater for efficiency improvement.

  14. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    Science.gov (United States)

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  15. Multiobjective optimization for Groundwater Nitrate Pollution Control. Application to El Salobral-Los Llanos aquifer (Spain).

    Science.gov (United States)

    Llopis-Albert, C.; Peña-Haro, S.; Pulido-Velazquez, M.; Molina, J.

    2012-04-01

    Water quality management is complex due to the inter-relations between socio-political, environmental and economic constraints and objectives. In order to choose an appropriate policy to reduce nitrate pollution in groundwater it is necessary to consider different objectives, often in conflict. In this paper, a hydro-economic modeling framework, based on a non-linear optimization(CONOPT) technique, which embeds simulation of groundwater mass transport through concentration response matrices, is used to study optimal policies for groundwater nitrate pollution control under different objectives and constraints. Three objectives were considered: recovery time (for meeting the environmental standards, as required by the EU Water Framework Directive and Groundwater Directive), maximum nitrate concentration in groundwater, and net benefits in agriculture. Another criterion was added: the reliability of meeting the nitrate concentration standards. The approach allows deriving the trade-offs between the reliability of meeting the standard, the net benefits from agricultural production and the recovery time. Two different policies were considered: spatially distributed fertilizer standards or quotas (obtained through multi-objective optimization) and fertilizer prices. The multi-objective analysis allows to compare the achievement of the different policies, Pareto fronts (or efficiency frontiers) and tradeoffs for the set of mutually conflicting objectives. The constraint method is applied to generate the set of non-dominated solutions. The multi-objective framework can be used to design groundwater management policies taking into consideration different stakeholders' interests (e.g., policy makers, agricultures or environmental groups). The methodology was applied to the El Salobral-Los Llanos aquifer in Spain. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has

  16. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.

    Science.gov (United States)

    Liu, Hongyuan; Guo, Min; Zhang, Yan

    2014-01-01

    Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.

  17. Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source

    Institute of Scientific and Technical Information of China (English)

    WANG XuMing; WANG JianLong

    2009-01-01

    Removal of nitrate from groundwater was investigated using biodegradable meal box (BMB) and poly(ε-caprolactone) (PCL) as carbon source and biofilm carrier. The experimental results show that nitrate in groundwater can be effectively removed using BMB and PCL as carbon source. Denitrification 7.5. The pH value of effluent ranged from 7 to 8, and NO2-N concentration was less than 0.1 mg/L. Compared with BMB, PCL could decrease nitrite accumulation; however, more significant influence of temperature on denitrification was observed for PCL as carbon source. Temperature constants for BMB and PCL were 0.045 and 0.068, respectively, at 10-30℃. Based on denitrification efficiency and cost, BMB is more suitable as a carbon source for denitrification of groundwater than PCL.

  18. Identification of nitrate sources in groundwater using a stable isotope and 3DEEM in a landfill in Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhifei [School of Environment, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Yang, Yu; Lian, Xinying [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Jiang, Yonghai, E-mail: jyhai203@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xi, Beidou [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Lanzhou Jiaotong University, Gansu 730070 (China); Peng, Xing [School of Environment, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); and others

    2016-09-01

    The groundwater was sampled in a typical landfill area of the Northeast China. Coupled stable isotope and three dimensional excitation–emission matrix (3DEEM) were applied to dentify diffused NO{sub 3}{sup −} inputs in the groundwater in this area. The results indicated that combined with the feature of groundwater hydrochemistry and three-dimensional fluorescence technology can effectively identify the nitrate pollution sources. The nitrate was derived from manure and sewage by δ{sup 15}N and δ{sup 18}O–NO{sub 3}{sup −} values of groundwater in the different periods. The excitation–emission matrix fluorescence spectroscopy was further evidence of groundwater DOM mainly which comes from the landfill. The protein-like was very significant at the sampling points near the landfill (SPNL), but only fulvic acid-like appeared at downstream of the landfill groundwater sampling points (DLGSP) in the study area. Partial denitrification processes helped to attenuate nitrate concentration in anaerobic environment. - Highlights: • We used stable isotope and 3DEEM to evaluate of nitrate sources. • Groundwater hydrochemistry was used to assess groundwater recharge. • The degradation process of organic matters was assessed using 3DEEM in groundwater. • This approach is a effective tool for trace to the nitrate sources in groundwater.

  19. Use of iron-based technologies in contaminated land and groundwater remediation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, Andrew B. [School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom)], E-mail: A.Cundy@brighton.ac.uk; Hopkinson, Laurence [School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Whitby, Raymond L.D. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2008-08-01

    Reactions involving iron play a major role in the environmental cycling of a wide range of important organic, inorganic and radioactive contaminants. Consequently, a range of environmental clean-up technologies have been proposed or developed which utilise iron chemistry to remediate contaminated land and surface and subsurface waters, e.g. the use of injected zero zero-valent iron nanoparticles to remediate organic contaminant plumes; the generation of iron oxyhydroxide-based substrates for arsenic removal from contaminated waters; etc. This paper reviews some of the latest iron-based technologies in contaminated land and groundwater remediation, their current state of development, and their potential applications and limitations.

  20. Building factorial regression models to explain and predict nitrate concentrations in groundwater under agricultural land

    Science.gov (United States)

    Stigter, T. Y.; Ribeiro, L.; Dill, A. M. M. Carvalho

    2008-07-01

    SummaryFactorial regression models, based on correspondence analysis, are built to explain the high nitrate concentrations in groundwater beneath an agricultural area in the south of Portugal, exceeding 300 mg/l, as a function of chemical variables, electrical conductivity (EC), land use and hydrogeological setting. Two important advantages of the proposed methodology are that qualitative parameters can be involved in the regression analysis and that multicollinearity is avoided. Regression is performed on eigenvectors extracted from the data similarity matrix, the first of which clearly reveals the impact of agricultural practices and hydrogeological setting on the groundwater chemistry of the study area. Significant correlation exists between response variable NO3- and explanatory variables Ca 2+, Cl -, SO42-, depth to water, aquifer media and land use. Substituting Cl - by the EC results in the most accurate regression model for nitrate, when disregarding the four largest outliers (model A). When built solely on land use and hydrogeological setting, the regression model (model B) is less accurate but more interesting from a practical viewpoint, as it is based on easily obtainable data and can be used to predict nitrate concentrations in groundwater in other areas with similar conditions. This is particularly useful for conservative contaminants, where risk and vulnerability assessment methods, based on assumed rather than established correlations, generally produce erroneous results. Another purpose of the models can be to predict the future evolution of nitrate concentrations under influence of changes in land use or fertilization practices, which occur in compliance with policies such as the Nitrates Directive. Model B predicts a 40% decrease in nitrate concentrations in groundwater of the study area, when horticulture is replaced by other land use with much lower fertilization and irrigation rates.

  1. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    Science.gov (United States)

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  2. Nitrate Contamination in the groundwater of the Lake Acıgöl Basin, SW Turkey

    Science.gov (United States)

    Karaman, Muhittin; Budakoǧlu, Murat; Taşdelen, Suat

    2017-04-01

    The lacustrine Acıgöl basin, formed as an extensional half-graben, hosts various bodies of water, such as cold-hot springs, lakes, streams, and wells. The hydrologically closed basin contains a hypersaline lake (Lake Acıgöl) located in the southern part of the basin. The brackish springs and deep waters discharged along the Acıgöl fault zone in the southern part of the basin feed the hypersaline lake. Groundwater is used as drinking, irrigation, and domestic water in the closed Acıgöl Basin. Groundwater flows into the hypersaline lake from the highland. The Acıgöl basin hosts large plains (Hambat, Başmakçı, and Evciler). Waters in agricultural areas contain high amounts of nitrate; groundwater samples in agricultural areas contain nitrate levels higher than 10 mg/L. Nitrate concentrations in the groundwater samples varied from 0 to 487 mg/L (n=165); 25.4 % of the groundwater samples from the basin had nitrate concentrations above 10 mg/L (the WHO drinking guideline) and 52.2% of the groundwater samples from the basin had nitrate concentrations above 3.0 mg/L, and these high values were regarded as the result of human activity. The highest nitrate values were measured in the Hambat plain (480 and 100 mg/L) and Yirce Pinari spring (447 mg/L), which discharges along the Acıgöl fault zone in the southern part of the basin. The average multi-temporal nitrate concentration of the Yirce Pınarı spring was 3.3 mg/L. Extreme nitrate values were measured in the Yirce Pınarı spring during periods when sheep wool was washed (human activity). The lowest nitrate concentrations were observed in some springs that discharged along the Acıgöl fault zone in the southern part of the basin. Nitrate was not detected in deep groundwater discharged along the Acıgöl fault zone. Nitrate concentrations in deep groundwater and some springs discharged along the Acıgöl fault zone and those feeding the hypersaline lake were significantly affected by redox conditions

  3. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management: Standard Operating Procedures with QA/QC

    Science.gov (United States)

    2015-05-01

    GUIDANCE DOCUMENT Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management: Standard Operating Procedures... Groundwater Monitoring for Site Remediation and Management 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Halden, R.U., Roll, I.B. 5d...DEPLOYMENT WORK As with any groundwater sampling method, the decision to apply the IS2 technology is based on the site characteristics and the type

  4. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    Science.gov (United States)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  5. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.; Miller, Charles W.; Baker, S.

    2015-01-14

    The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is a continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.

  6. Petroleum contaminated ground-water: Remediation using activated carbon.

    OpenAIRE

    2006-01-01

    Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-wat...

  7. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Directory of Open Access Journals (Sweden)

    U. Tsunogai

    2012-11-01

    Full Text Available The stable isotopic compositions of nitrate dissolved in 49 types of bottled drinking water collected worldwide were determined, to trace the fate of atmospheric nitrate (NO3atm that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from −0.2‰ to +4.5‰ (n = 49. The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol l−1 to 8.5 μmol l−1, with higher NO3atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3atm.

  8. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    Science.gov (United States)

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  9. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation

    NARCIS (Netherlands)

    De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M.

    2013-01-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile l

  10. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  11. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation

    NARCIS (Netherlands)

    De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M.

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile

  12. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  13. Biological Nitrate Removal from Groundwater by Filamentous Media at Pilot Scale, 2015

    Directory of Open Access Journals (Sweden)

    Leila Keshtgar

    2016-07-01

    Full Text Available Background: The compounds which contain nitrogen entering the environment can cause some problems, such as eutrophication for water resources and potential risk for human health because of methemoglobinemia and cancer. Biological techniques are effective in removing nitrate. The aim of this study was to remove nitrate from groundwater using denitrification. The main objectives of this research were determining the reduction of water nitrate based on different retention time and also the effect of using grape extract as organic matter and electron acceptor in biological nitrate removal from water. Methods: In this experimental study, the effect of heterotrophic Pseudomonas separated from Shiraz wastewater treatment plant on removing nitrate from groundwater was investigated at pilot scale using grape extract as carbon source and filamentous media at constant pH (7±0.1 and temperature (20±1 °C. During this study, 2 pilots were made. Pilot number 1 was used for separation and growth of the above mentioned bacteria (Pseudomonas that are able to remove nitrate. Pilot number 2 was also used for surveying the removal of nitrate by these bacteria. At least, 13 samples were examined in every retention time and each test was repeated for 2 or 3 times. Statistical analysis was performed in SPSS (ver.19 software using one-way repeated measures ANOVA, and Bonferroni tests. Results: According to the results, nitrate removal rates were 49%, 55%, 67% and, 67% at retention times of 1, 1.5, 2, and 2.5 hours, respectively. The best retention time was 2 hours with 67% removal rate (P<0.05. Conclusion: The results showed that using grape extract as the carbon source and proper growth of bacteria in filamentous media led to a significant increase in the removal rate

  14. Evaluation of nitrate source in groundwater of southern part of North China Plain based on multi-isotope

    Institute of Scientific and Technical Information of China (English)

    方晶晶; 周爱国; 马传明; 刘存富; 蔡鹤生; 甘义群; 刘运德

    2015-01-01

    Nitrate pollution in groundwater is a serious water quality problem that increases the risk of developing various cancers. Groundwater is the most important water resource and supports a population of 5 million in Anyang area of the southern part of the North China Plain. Determining the source of nitrate pollution is the challenge in hydrology area due to the complex processes of migration and transformation. A new method is presented to determine the source of nitrogen pollution by combining the composition characteristics of stable carbon isotope in dissolved organic carbon in groundwater. The source of groundwater nitrate is dominated by agricultural fertilizers, as well as manure and wastewater. Mineralization, nitrification and mixing processes occur in the groundwater recharge area, whereas the confined groundwater area is dominated by denitrification processes.

  15. Impact of intensive horticulture practices on groundwater content of nitrates, sodium, potassium, and pesticides.

    Science.gov (United States)

    Melo, Armindo; Pinto, Edgar; Aguiar, Ana; Mansilha, Catarina; Pinho, Olívia; Ferreira, Isabel M P L V O

    2012-07-01

    A monitoring program of nitrate, nitrite, potassium, sodium, and pesticides was carried out in water samples from an intensive horticulture area in a vulnerable zone from north of Portugal. Eight collecting points were selected and water-analyzed in five sampling campaigns, during 1 year. Chemometric techniques, such as cluster analysis, principal component analysis (PCA), and discriminant analysis, were used in order to understand the impact of intensive horticulture practices on dug and drilled wells groundwater and to study variations in the hydrochemistry of groundwater. PCA performed on pesticide data matrix yielded seven significant PCs explaining 77.67% of the data variance. Although PCA rendered considerable data reduction, it could not clearly group and distinguish the sample types. However, a visible differentiation between the water samples was obtained. Cluster and discriminant analysis grouped the eight collecting points into three clusters of similar characteristics pertaining to water contamination, indicating that it is necessary to improve the use of water, fertilizers, and pesticides. Inorganic fertilizers such as potassium nitrate were suspected to be the most important factors for nitrate contamination since highly significant Pearson correlation (r = 0.691, P < 0.01) was obtained between groundwater nitrate and potassium contents. Water from dug wells is especially prone to contamination from the grower and their closer neighbor's practices. Water from drilled wells is also contaminated from distant practices.

  16. Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater.

    Science.gov (United States)

    Chen, Ying-Xue; Zhang, Yan; Chen, Guang-Hao

    2003-05-01

    This study focused on the appropriate catalyst preparation and operating conditions for maximizing catalytic reduction efficiency of nitrate into nitrogen gas from groundwater. Batch experiments were conducted with prepared Pd and/or Cu catalysts with hydrogen gas supplied under specific operating conditions. It has been found that Pd-Cu combined catalysts prepared at a mass ratio of 4:1 can maximize the nitrate reduction into nitrogen gas. With an increase in the quantity of the catalysts, both nitrite intermediates and ammonia can be kept at a low level. It has also been found that the catalytic activity is mainly affected by the mass ratio of hydrogen gas to nitrate nitrogen, and hydrogen gas gauge pressure. Appropriate operating values of H(2)/NO(3)-N ratio, hydrogen gas gauge pressure, pH, and initial nitrate concentration have been determined to be 44.6g H(2)/g N, 0.15 atm, 5.2 (-), 100 mg x L(-1) for maximizing the catalytic reduction of nitrate from groundwater.

  17. Evaluating Chemical Tracers as Indicators of Nitrate-Nitrogen Sources in Groundwater

    Science.gov (United States)

    Nitka, A.; DeVita, W.; McGinley, P.

    2014-12-01

    Groundwater nitrate-N concentrations greater than 3 mg/L usually indicate contamination from either agriculture or wastewater disposal. The objective of this study was to use chemical indicators to reliably determine sources of nitrate contamination in private wells. We developed an analytical method for a suite of human waste indicators. The selection of chemical tracers was based on their likely occurrence and mobility in groundwater. The suite included artificial sweeteners, pharmaceuticals and personal care products. Pesticide metabolites were used to identify contamination due to agricultural practices. A densely populated suburban area with adjacent agricultural land was selected. Eighteen private water supply wells and six monitoring wells were analyzed for nitrate-N and contaminant indicators. All of the wells with nitrate concentrations greater than 3 mg/L had at least one chemical indicator. Of these, 90% had two or more human waste contaminants, 40% had pesticide metabolites, and 30% had both. Of the wells with nitrate greater than 10 mg/L, 80% had two or more human waste indicators, 70% had pesticide metabolites, and 50% had both. The results of this research will help direct land management decisions and selection of appropriate water treatment options.

  18. Feasibility of phyto remediation of common soil and groundwater pollutants

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rein, Arno; Clausen, Lauge Peter Westergaard

    his report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose was applied...

  19. Spatio-temporal variability of groundwater nitrate concentration in Texas: 1960 to 2010.

    Science.gov (United States)

    Chaudhuri, Sriroop; Ale, Srinivasulu; Delaune, Paul; Rajan, Nithya

    2012-01-01

    Nitrate (NO) is a major contaminant and threat to groundwater quality in Texas. High-NO groundwater used for irrigation and domestic purposes has serious environmental and health implications. The objective of this study was to evaluate spatio-temporal trends in groundwater NO concentrations in Texas on a county basis from 1960 to 2010 with special emphasis on the Texas Rolling Plains (TRP) using the Texas Water Development Board's groundwater quality database. Results indicated that groundwater NO concentrations have significantly increased in several counties since the 1960s. In 25 counties, >30% of the observations exceeded the maximum contamination level (MCL) for NO (44 mg L NO) in the 2000s as compared with eight counties in the 1960s. In Haskell and Knox Counties of the TRP, all observations exceeded the NO MCL in the 2000s. A distinct spatial clustering of high-NO counties has become increasingly apparent with time in the TRP, as indicated by different spatial indices. County median NO concentrations in the TRP region were positively correlated with county-based area estimates of crop lands, fertilized croplands, and irrigated croplands, suggesting a negative impact of agricultural practices on groundwater NO concentrations. The highly transmissive geologic and soil media in the TRP have likely facilitated NO movement and groundwater contamination in this region. A major hindrance in evaluating groundwater NO concentrations was the lack of adequate recent observations. Overall, the results indicated a substantial deterioration of groundwater quality by NO across the state due to agricultural activities, emphasizing the need for a more frequent and spatially intensive groundwater sampling.

  20. Genetic associations as indices of nitrogen cycling rates in an aerobic denitrification biofilter used for groundwater remediation.

    Science.gov (United States)

    Zhang, Yan; Ji, Guodong; Wang, Rongjing

    2015-10-01

    An aerobic denitrification biofilter (ADB) for groundwater remediation was developed with high removal efficiencies (total nitrogen (TN): 82.3-95.8%; NO3(-)-N: 93.2-98.2%). Nitrate (NO3(-)-N) transformation rates stabilized between 21.0 and 23.4 g/(m(3) h), whereas nitrite (NO2(-)-N) and ammonium (NH4(+)-N) transformation rates remained less than 6.0 g/(m(3) h) as the dissolved oxygen (DO) level increased from 1.0 mg/L to 6.0 mg/L. Nitric oxide (NO) and nitrous oxide (N2O) accumulated with great fluctuations (NO: 0-1.6×10(-3) g/(m(3) h); N2O: 0.1-1.1g/(m(3)h)) throughout the experiment. This study suggested that gene associations reflect quantitative relationships with aerobic denitrification rates and can provide useful information regarding aerobic denitrification processes in groundwater. Especially, the qnorB/nosZ ratio acts as the main driver for NO3(-)-N and NH4(+)-N transformation, while the qnorB/nosZ ratio followed by the (nirS+nirK)/nosZ ratio serve a dominant role in the accumulation of N2O and NO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Nitrate dynamics in the soil and unconfined aquifer in arid groundwater coupled ecosystems of the Monte desert, Argentina

    Science.gov (United States)

    Aranibar, J. N.; Villagra, P. E.; Gomez, M. L.; JobbáGy, E.; Quiroga, M.; Wuilloud, R. G.; Monasterio, R. P.; Guevara, A.

    2011-12-01

    In arid ecosystems, vegetation controls water and nitrate movement in the soil, reducing solute transport to aquifers. Here we analyzed nitrate distribution and transport throughout the soil profile and to the groundwater under different ecologic (vegetation type) and topographic (upland/lowland) situations across sand dune ecosystems with shallow water tables, subject to domestic grazing in the Monte desert. Based on vertical nitrate distributions in deep soil profiles we found that dune uplands (deep groundwater, low productivity) lost relatively more nitrogen than lowlands (shallow groundwater, high productivity), likely reinforcing productivity contrasts along these topographic positions. The traditional practice of nighttime animal concentration in corrals may affect nitrogen transport, with poorly vegetated interdunes at livestock posts showing higher subsoil nitrate concentrations than a well-vegetated nonsettled interdune. Vegetation left its imprint on the vertical distribution of nitrate, as suggested by the presence of a depletion zone that matched the depth of maximum root densities, followed by an underlying zone of accumulation. To explore how nitrogen exports to groundwater could affect water quality and nutrient supply to phreatophyte plants, we characterized groundwater flow patterns based on a potentiometric map and sediment characteristics, and measured groundwater electric conductivity, nitrate and arsenic concentration, and stable isotopes across 29 wells (5.8-12 m deep). Under the present land use and climate conditions, nitrate leaching does not seem to have an important and widespread effect on water quality. Nitrate concentration exceeded established limits for human consumption (45 mg L-1) in only one well, while arsenic concentration exceeded the established limits (10 μg L-1) in all but one well, reaching extreme values of 629 μg L-1. Yet, our analysis suggests that nitrate exports from corrals can reach the aquifer in localized areas

  2. TREATMENT TESTS FOR EX SITU REMOVAL OF CHROMATE & NITRATE & URANIUM (VI) FROM HANFORD (100-HR-3) GROUNDWATER FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BECK MA; DUNCAN JB

    1994-01-03

    This report describes batch and ion exchange column laboratory scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}{sup -}) and uranium (present as uranium [VI]) from contaminated Hanford site groundwaters. The technologies investigated include: chemical precipitation or coprecipitation to remove chromate and uranium; and anion exchange to remove chromate, uranium and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan. The method suggested for future study is anion exchange.

  3. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leah L. [Stanford Univ., CA (United States)

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.

  4. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ

    Science.gov (United States)

    Piscopo, Amy N.; Neupauer, Roseanna M.; Kasprzyk, Joseph R.

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  5. On the use of coprostanol to identify source of nitrate pollution in groundwater

    Science.gov (United States)

    Nakagawa, Kei; Amano, Hiroki; Takao, Yuji; Hosono, Takahiro; Berndtsson, Ronny

    2017-07-01

    Investigation of contaminant sources is indispensable for developing effective countermeasures against nitrate (NO3-) pollution in groundwater. Known major nitrogen (N) sources are chemical fertilizers, livestock waste, and domestic wastewater. In general, scatter diagrams of δ18O and δ15N from NO3- can be used to identify these pollution sources. However, this method can be difficult to use for chemical fertilizers and livestock waste sources due to the overlap of δ18O and δ15N ranges. In this study, we propose to use coprostanol as an indicator for the source of pollution. Coprostanol can be used as a fecal contamination indicator because it is a major fecal sterol formed by the conversion of cholesterol by intestinal bacteria in the gut of higher animals. The proposed method was applied to investigate NO3- pollution sources for groundwater in Shimabara, Nagasaki, Japan. Groundwater samples were collected at 33 locations from March 2013 to November 2015. These data were used to quantify relationships between NO3-N, δ15N-NO3-, δ18O-NO3-, and coprostanol. The results show that coprostanol has a potential for source identification of nitrate pollution. For lower coprostanol concentrations (polluted group, fertilizer is likely to be the predominant source of NO3-. However, higher concentration coprostanol samples in the nitrate-polluted group can be related to pollution from livestock waste. Thus, when conventional diagrams of isotopic ratios cannot distinguish pollution sources, coprostanol may be a useful tool.

  6. Distribution of groundwater nitrate contamination in GIS environment: A case study, Sonqor plain

    Directory of Open Access Journals (Sweden)

    Parasto Setareh

    2014-06-01

    Full Text Available Background: Nitrate is a pollutant of groundwater resources which can results health risks such as methemoglobinemia and formation of nitrosamine compounds in higher concentration limits. The present study was aimed to determine the nitrite level, causes of pollution and zonation of nitrite concentration in drinking water resources in the villages of Sonqor. Methods: In this descriptive-analytrical study, 73 samples of all groundwater resources of Sonqor plain were taken in ,high water (March 2010 and low water (September 2011 periods. Water nitrate levels were then determined by spectrophotometry. Results were compared by national standards and analyzed by SPSS and Arcview GIS 9.3 software. Finally, the concentration distribution mapping was carried out in GIS environment and the factors affecting nitrite changes were analyzed. Results: nitrate concentration of water resources of Sonqor plain was fluctuating at 3.09-88.5 mg per liter.In one station, nitrite concentrations in the high (88.5 mg/liter and low (71.4 mg/liter water seasons were higher than the maximum limit. Based on the maps, a relatively high concentration of nitrite was observed in the Eastern and Southeastern regions. Conclusion: The findings indicated a reverse correlation between nitrite concentration changes and changes of static surface depth. Low thickness of alluvium, location of wells in the downstream farmlands, farming condition of the region, nitrate leaching from agricultural soils and wide application of nitrogen fertilizers in agriculture were considered as the causes of the pollution in one station.

  7. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Kapil K., E-mail: kkn2104@columbia.edu [Columbia Water Center (India Office), Columbia University, New Delhi 110 016 (India); Gosain, A.K. [Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016 (India)

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km{sup 2} with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO{sub 3}) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO{sub 3} transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R{sup 2} correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO{sub 3} removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO{sub 3} concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the

  8. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are

  9. Groundwater remediation and the cost effectiveness of phytoremediation.

    Science.gov (United States)

    Compernolle, T; Van Passel, S; Weyens, N; Vangronsveld, J; Lebbe, L; Thewys, T

    2012-10-01

    In 1999, phytoremediation was applied at the site of a Belgian car factory to contain two BTEX plumes. This case study evaluates the cost effectiveness of phytoremediation compared to other remediation options, applying a tailored approach for economic evaluation. Generally, when phytoremediation is addressed as being cost effective, the cost effectiveness is only determined on an average basis. This study however, demonstrates that an incremental analysis may provide a more nuanced conclusion. When the cost effectiveness is calculated on an average basis, in this particular case, the no containment strategy (natural attenuation) has the lowest cost per unit mass removed and hence, should be preferred. However, when the cost effectiveness is determined incrementally, no containment should only be preferred if the value of removing an extra gram of contaminant mass is lower than 320 euros. Otherwise, a permeable reactive barrier should be adopted. A similar analysis is provided for the effect determined on the basis of remediation time. Phytoremediation is preferred compared to 'no containment' if reaching the objective one year earlier is worth 7 000 euros.

  10. Pesticides and nitrate in groundwater underlying citrus croplands, Lake Wales Ridge, central Florida, 1999-2005.

    Science.gov (United States)

    Choquette, Anne F.

    2014-01-01

    This report summarizes pesticide and nitrate (as nitrogen) results from quarterly sampling of 31 surficial-aquifer wells in the Lake Wales Ridge Monitoring Network during April 1999 through January 2005. The wells, located adjacent to citrus orchards and used for monitoring only, were generally screened (sampled) within 5 to 40 feet of the water table. Of the 44 citrus pesticides and pesticide degradates analyzed, 17 were detected in groundwater samples. Parent pesticides and degradates detected in quarterly groundwater samples, ordered by frequency of detection, included norflurazon, demethyl norflurazon, simazine, diuron, bromacil, aldicarb sulfone, aldicarb sulfoxide, deisopropylatrazine (DIA), imidacloprid, metalaxyl, thiazopyr monoacid, oxamyl, and aldicarb. Reconnaissance sampling of five Network wells yielded detection of four additional pesticide degradates (hydroxysimazine, didealkylatrazine, deisopropylhydroxyatrazine, and hydroxyatrazine). The highest median concentration values per well, based on samples collected during the 1999–2005 period (n=14 to 24 samples per well), included 3.05 µg/L (micrograms per liter) (simazine), 3.90 µg/L (diuron), 6.30 µg/L (aldicarb sulfone), 6.85 µg/L (aldicarb sulfoxide), 22.0 µg/L (demethyl norflurazon), 25.0 µg/ (norflurazon), 89 µg/ (bromacil), and 25.5 mg/L (milligrams per liter) (nitrate). Nitrate concentrations exceeded the 10 mg/L (as nitrogen) drinking water standard in one or more groundwater samples from 28 of the wells, and the median nitrate concentration among these wells was 14 mg/L. Sampled groundwater pesticide concentrations exceeded Florida’s health-guidance benchmarks for aldicarb sulfoxide and aldicarb sulfone (4 wells), the sum of aldicarb and its degradates (6 wells), simazine (2 wells), the sum of simazine and DIA (3 wells), diuron (2 wells), bromacil (1 well), and the sum of norflurazon and demethyl norflurazon (1 well). The magnitude of fluctuations in groundwater pesticide

  11. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    Science.gov (United States)

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  12. Nitrate Transport Modeling in Deep Aquifers. Comparison between Model Results and Data from the Groundwater Monitoring Network

    NARCIS (Netherlands)

    Uffink GJM; Romkens PFAM; LBG

    2001-01-01

    Nitrate measurements from the Netherlands Groundwater Monitoring Network and model simulations were compared for deep aquifers in the eastern part of the Netherlands. The area studied measured 40 x 30 km2. The model describes advective-dispersive solute transport in groundwater and utilizes a first-

  13. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...

  14. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California

    Science.gov (United States)

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.

    2013-01-01

    Nitrate contamination of groundwater systems used for human water supplies is a major environmental problem in many parts of the world. Fertilizers containing a variety of reduced nitrogen compounds are commonly added to soils to increase agricultural yields. But the amount of nitrogen added during fertilization typically exceeds the amount of nitrogen taken up by crops. Oxidation of reduced nitrogen compounds present in residual fertilizers can produce substantial amounts of nitrate which can be transported to the underlying water table. Because nitrate concentrations exceeding 10 mg/L in drinking water can have a variety of deleterious effects for humans, agriculturally derived nitrate contamination of groundwater can be a serious public health issue. The Central Valley aquifer of California accounts for 13 percent of all the groundwater withdrawals in the United States. The Central Valley, which includes the San Joaquin Valley, is one of the most productive agricultural areas in the world and much of this groundwater is used for crop irrigation. However, rapid urbanization has led to increasing groundwater withdrawals for municipal public water supplies. That, in turn, has led to concern about how contaminants associated with agricultural practices will affect the chemical quality of groundwater in the San Joaquin Valley. Crop fertilization with various forms of nitrogen-containing compounds can greatly increase agricultural yields. However, leaching of nitrate from soils due to irrigation has led to substantial nitrate contamination of shallow groundwater. That shallow nitrate-contaminated groundwater has been moving deeper into the Central Valley aquifer since the 1960s. Denitrification can be an important process limiting the mobility of nitrate in groundwater systems. However, substantial denitrification requires adequate sources of electron donors in order to drive the process. In many cases, dissolved organic carbon (DOC) and particulate organic carbon

  15. Nitrate isotopic composition and ancillary variables (land use, redox, excess N2, age, water isotopics) in California groundwater

    Science.gov (United States)

    Veale, Nathan; Moran, Jean; Visser, Ate; Singleton, Michael; Esser, Bradley

    2017-04-01

    Nitrate is a critical water quality issue in California, the United States and the world. Lawrence Livermore National Laboratory (LLNL) has compiled a large, unique database of California groundwater nitrate isotopic compositions (δ15N-NO3 and δ18O-NO3), acquired largely through more than a decade of coordination with the State of California Groundwater Ambient Monitoring and Assessment (GAMA) program. The water samples are predominantly from shallow aquifers accessed by domestic and monitoring wells. The database of >1,300 nitrate isotopic compositions includes a number of important ancillary parameters: DO, ORP and DOC (measured for 18% of samples); excess air and dissolved N2 (24%); water isotopic composition (δ18O-H2O and δD-H2O) (43%); and tritium/3He groundwater age (27%). Methods used at LLNL include sample preparation by the denitrifier method (for δ15N-NO3 and δ18O-NO3) and Isotope Ratio Mass Spectrometry with (δ15N-NO3 and δ18O-NO3 and δ18O-H2O and δD-H2O), Noble Gas Mass Spectrometry (NGMS; for excess air and groundwater age), and Membrane Inlet Mass Spectrometry (MIMS; for major dissolved gases and excess N2). Redox indicators (DO, ORP and DOC) in conjunction with excess N2, groundwater age, and nitrate isotopic composition are used to assess the presence or absence, and potentially the rate of, saturated-zone denitrification. Comparison of δ18O-NO3 to δ18O-H2O isotopic composition is used to distinguish synthetic nitrate from nitrification of reduced forms of nitrogen as a source of groundwater nitrate. Groundwater age is used to discern timing and temporal trends in groundwater nitrate isotopic composition. The relationship of nitrate isotopic composition to ancillary parameters (redox, excess N2, water isotopic composition and groundwater age) is explored, along with its relationship to well location, screened interval, and land use, with a focus on the extent of saturated-zone denitrification and the significance of synthetic nitrate as

  16. Real-time monitoring of nitrate transport in the deep vadose zone under a crop field - implications for groundwater protection

    Science.gov (United States)

    Turkeltaub, Tuvia; Kurtzman, Daniel; Dahan, Ofer

    2016-08-01

    Nitrate is considered the most common non-point pollutant in groundwater. It is often attributed to agricultural management, when excess application of nitrogen fertilizer leaches below the root zone and is eventually transported as nitrate through the unsaturated zone to the water table. A lag time of years to decades between processes occurring in the root zone and their final imprint on groundwater quality prevents proper decision-making on land use and groundwater-resource management. This study implemented the vadose-zone monitoring system (VMS) under a commercial crop field. Data obtained by the VMS for 6 years allowed, for the first time known to us, a unique detailed tracking of water percolation and nitrate migration from the surface through the entire vadose zone to the water table at 18.5 m depth. A nitrate concentration time series, which varied with time and depth, revealed - in real time - a major pulse of nitrate mass propagating down through the vadose zone from the root zone toward the water table. Analysis of stable nitrate isotopes indicated that manure is the prevalent source of nitrate in the deep vadose zone and that nitrogen transformation processes have little effect on nitrate isotopic signature. The total nitrogen mass calculations emphasized the nitrate mass migration towards the water table. Furthermore, the simulated pore-water velocity through analytical solution of the convection-dispersion equation shows that nitrate migration time from land surface to groundwater is relatively rapid, approximately 5.9 years. Ultimately, agricultural land uses, which are constrained to high nitrogen application rates and coarse soil texture, are prone to inducing substantial nitrate leaching.

  17. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    Science.gov (United States)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  18. Monitoring the risk of nitrate and pesticides Pollution in Mnasra groundwater and soil under Field Condition-Morocco

    Science.gov (United States)

    El hajjaji, Souad; Dahchour, abdelmalek

    2017-04-01

    Agricultural activities are probably the most significant anthropogenic sources of nitrate an pesticides contamination in groundwater and soil. Irrigation system is among the causes behind leaching of nitrate and pesticides from soil surface to groundwater. Gharb plain is the largest agriculture irrigated zone in northwest of Morocco, well known for its intensive agricultural activities. The excessive use of fertilizers and manure under gravity irrigation system, presents a huge risk to groundwater quality especially for sandy-loam soils similar to those of the area. The purpose of the present study was the evaluation of the level of nitrate and pesticides contamination in groundwater and soil, and the attempt to relate it to the irrigation system adopted in Gharb area. A set of 108 water samples and 60 soil samples were collected from ten selected sites located in the area during agricultural seasons, from May 2010 to September 2012. The results reveal that 89.7% of water samples exceeded the standard limit of nitrate concentrations for groundwater (50 mg/L). These results could be explained by the prevailing sandy nature of the soil in the area, the frequency of fertilizer usage, and the shallow level of the water table, which favors the leaching of nitrate from field to groundwater. In contrast, the selected pesticide molecules were not detected in the analyzed soil and water samples; levels were below the quantification limit in all samples.). Attempts to focus on the main physical and chemical factors behind the magnitude of contamination are discussed

  19. Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams

    Science.gov (United States)

    Azizian, Morvarid; Boano, Fulvio; Cook, Perran L. M.; Detwiler, Russell L.; Rippy, Megan A.; Grant, Stanley B.

    2017-05-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. Here we utilize a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N-cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damköhler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  20. Determination of ecologically vital groundwaters at selected sites in the Formerly Utilized Sites Remedial Action Program

    Energy Technology Data Exchange (ETDEWEB)

    Vinikour, W.S.; Yin, S.C.L.

    1989-08-01

    The US Department of Energy is classifying groundwaters at sites in its Formerly Utilized Sites Remedial Action Program (FUSRAP). Of particular concern is the potential presence of groundwaters that are highly vulnerable to contamination and that are either (1) irreplaceable sources of drinking water or (2) ecologically vital. Conditions at nine FUSRAP sites were evaluated to determine if ecologically vital groundwaters are present. The sites evaluated were Wayne Interim Storage Site, Maywood Interim Storage Site, and Middlesex Sampling Plant in New Jersey; Ashland 2 Site, Seaway Industrial Park, Colonie Interim storage Site, and Niagara Falls Storage Site in New York; and the St. Louis Airport Site and Hazelwood Interim Storage Site in Missouri. The analyses indicated that groundwaters are vulnerable to contamination at all but two of the sites -- the Ashland 2 and Seaway Industrial Park sites in New York. Groundwater discharge points were identified within a 2-mile radius (i.e., the classification review area) of all of the sites. No ecologically vital groundwater areas exist in the vicinities of any of the nine FUSRAP sites evaluated. 35 refs., 17 figs.

  1. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.

    Science.gov (United States)

    Sutton, Patrick T; Ginn, Timothy R

    2014-12-15

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor.

    Science.gov (United States)

    Zhai, Siyuan; Zhao, Yinxin; Ji, Min; Qi, Wenfang

    2017-05-01

    A spiral fiber based biofilm reactor was developed to remove nitrate and chromate simultaneously. The denitrification and Cr(VI) removal efficiency was evaluated with synthetic groundwater (NO3(-)-N=50mg/L) under different Cr(VI) concentrations (0-1.0mg/L), carbon nitrogen ratios (C/N) (0.8-1.2), hydraulic retention times (HRT) (2-16h) and initial pHs (4-10). Nitrate and Cr(VI) were completely removed without nitrite accumulation when the Cr(VI) concentration was lower than 0.4mg/L. As Cr(VI) up to 1.0mg/L, the system was obviously inhibited, but it recovered rapidly within 6days due to the strong adaption and domestication of microorganisms in the biofilm reactor. The results demonstrated that high removal efficiency of nitrate (≥99%) and Cr(VI) (≥95%) were achieved at lower C/N=0.9, HRT=8h, initial pH=7, and Cr(VI)=1.0mg/L. The technology proposed in present study can be alternative for simultaneous removal of co-contaminants in groundwater.

  3. A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC).

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2013-04-01

    A considerable increase in nitrate concentration in groundwater has become a serious concern worldwide. We developed a novel submerged microbial desalination-denitrification cell (SMDDC) to in situ remove nitrate from groundwater, produce electric energy, and potentially treat wastewater. The SMDDC, which was composed of an anode and a cathode chamber, can be easily applied to subsurface environments. When current was produced by bacteria on the anode, [Formula: see text] and Na(+) were transferred into the anode and cathode through anion and cation exchange membrane, respectively; the anode effluent was directed to the cathode where [Formula: see text] was reduced to N(2) through autotrophic denitrification. For proof-of-concept, the SMDDC was fed with synthetic wastewater as fuel and submerged into a glass reactor filled with synthetic groundwater. The SMDDC produced 3.4 A/m(2) of current density, while removing 90.5% of nitrate from groundwater with 12 h wastewater hydraulic retention time (HRT) and 10 Ω of external resistance. The nitrate concentration and ionic strength of groundwater were the main limiting factors to the system performance. Besides, the external resistance and HRT were also affecting the system performance. Furthermore, the SMDDC showed improved performance with high ionic strength of groundwater (2200 μS/cm) and was able to reduce groundwater salinity as well. External nitrification was beneficial to the current generation and nitrate removal rate, but was not affecting total nitrogen removal. Results clearly indicate that this system holds a great potential for efficient and cost-effective treatment of nitrate-containing groundwater and energy recovery.

  4. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process....... The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL...... leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal...

  5. Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Removal of nitrate from groundwater was investigated using biodegradable meal box(BMB) and poly(ε-caprolactone)(PCL) as carbon source and biofilm carrier.The experimental results show that nitrate in groundwater can be effectively removed using BMB and PCL as carbon source.Denitrification rates supported by BMB and PCL were 52.80 and 42.77 mg(NO3-N)/(m2h),respectively,at 30 ℃ and pH 7.5.The pH value of effluent ranged from 7 to 8,and NO2-N concentration was less than 0.1 mg/L.Compared with BMB,PCL could decrease nitrite accumulation;however,more significant influence of temperature on denitrification was observed for PCL as carbon source.Temperature constants for BMB and PCL were 0.045 and 0.068,respectively,at 10-30℃.Based on denitrification efficiency and cost,BMB is more suitable as a carbon source for denitrification of groundwater than PCL.

  6. Got Milk? Got Water? Innovative Approach to Evaluating Groundwater Nitrate Nonpoint Source Pollution from Animal Farming

    Science.gov (United States)

    Harter, T.; Vanderschans, M.; Leijnse, A.; Meyer, R. D.; Mathews, M. C.

    2002-12-01

    The California dairy industry produces 20% of US milk and is the largest animal industry in the state. Many of the dairy facilities are located in low-relief valleys and basins with vulnerable groundwater resources. The continued influx of dairies into California's Central Valley has raised critical questions regarding their environmental performance, in particular with respect to groundwater quality impacts. While animal farming systems are considered among the leading sources of groundwater nitrate,little is known about the actual impact of dairy farming practices on groundwater quality in the extensive alluvial aquifers underlying the Central Valley. With our work we attempt to characterize and assess shallow groundwater underneath dairies in a relatively vulnerable hydrogeologic region and to discern the impact from various individual sources and management practices within dairies. An extensive shallow groundwater monitoring network was installed on five representative dairy operations in the northeastern San Joaquin Valley, California. The monitoring network spans all dairy management units: manure water lagoons, corrals, storage areas, and manure treated forage fields under various management practices. We recently also surveyed production well water quality. Water quality is found to be highly variable, both in time and space. We propose that a meaningful interpretation of these (nonpoint source pollution) data is only possible by explicitly considering the various scales affiliated with groundwater measurement, pollution source management, regulatory control, and beneficial use. Using statistical analysis and innovative modeling tools, we provide an interpretation of the observed data that is meaningful at the field scale (the scale unit of management decisions), the farm scale (considered to be a regulatory and planning unit), and the regional scale (considered to be a planning unit).

  7. Broom fibre PRB for heavy metals groundwater remediation

    Science.gov (United States)

    Molinari, A.; Troisi, S.; Fallico, C.; Paparella, A.; Straface, S.

    2009-04-01

    Soil contamination by heavy metal and, though it, of groundwater represent a serious alteration of original geochemical levels owing to various human activities as: particular industrial processes and their non-correct treatment emission, urban traffic, use of phytosanitary product and mineral fertilizer. Heavy metals are genotoxic contaminants who can be found by environmental matrix analysis or by examination of the genetic damage inducted, after exposition, to sentry organism. In this last case we use a relative quantitation of the gene expression monitoring the mitochondrial oxidative metabolism hepatopancreas's gene of the organism used by bioindicator. This test is based on consideration that the hepatopancreas is the first internal organ affected by heavy metals or any other pollutant that the organism is exposed. In this work, the organism used by bioindicator to evalutate the pollutant contamination of waste water is Danio rerio (Zebrafish) that is a little tropical fish of 2-3 cm, native on asiatic south-east rivers. This organism has a large use in scientific field because its genoma is almost completely mapped and, above all, because the congenital gene cause in human, if it was mutated in zebrafish, similar damage or almost similar mutation that happens in human being so you can develop a dose - response curve. To do this, after prepared a cadmium solution with a concentration 10 times the Italian normative limit, the organisms have been put in the aquarium to recreate the optimal condition to survival of zebrafish observed by continuous monitoring by web-cam. After one month exposition, that we took little by little sample fish to analyzing, for different exposition time, the hepatopancreas's fish. First results shows considerable variation of the gene expression by interested gene in mitochondrial oxidative metabolism compared to control, highlighting the mutagenity caused by heavy metals on Danio rerio's hepatopancreas and, mutatis mutandis, also in

  8. Factors Governing the Performance of Bauxite for Fluoride Remediation of Groundwater.

    Science.gov (United States)

    Cherukumilli, Katya; Delaire, Caroline; Amrose, Susan; Gadgil, Ashok J

    2017-02-21

    Globally, 200 million people drink groundwater contaminated with fluoride concentrations exceeding the World Health Organization's recommended level (WHO-MCL = 1.5 mg F(-)/L). This study investigates the use of minimally processed (dried/milled) bauxite ore as an inexpensive adsorbent for remediating fluoride-contaminated groundwater in resource-constrained areas. Adsorption experiments in synthetic groundwater using bauxites from Guinea, Ghana, U.S., and India as single-use batch dispersive media demonstrated that doses of ∼10-23 g/L could effectively remediate 10 mg F(-)/L. To elucidate factors governing fluoride removal, bauxites were characterized using X-ray fluorescence, X-ray diffraction, gas-sorption analysis, and adsorption isotherms/envelopes. All ores contained gibbsite, had comparable surface areas (∼14-17 m(2)/g), had similar intrinsic affinities and capacities for fluoride, and did not leach harmful ions into product water. Fluoride uptake on bauxite -primarily through ion-exchange- was strongly pH-dependent, with highest removal occurring at pH 5.0-6.0. Dissolution of CaCO3, present in trace amounts in India bauxite, significantly hindered fluoride removal by increasing solution pH. We also showed that fluoride remediation with the best-performing Guinea bauxite was ∼23-33 times less expensive than with activated alumina. Overall, our results suggest that bauxite could be an affordable fluoride-remediation adsorbent with the potential to improve access to drinking water for millions living in developing countries.

  9. Identification of the nitrate contamination sources of the Brusselian sands groundwater body (Belgium) using a dual-isotope approach.

    Science.gov (United States)

    Mattern, Samuel; Sebilo, Mathieu; Vanclooster, Marnik

    2011-09-01

    Isotopic fingerprinting is an advanced technique allowing the classification of the nitrate source pollution of groundwater, but needs further development and validation. In this study, we performed measurements of natural stable isotopic composition of nitrate ((15)N and (18)O) in the groundwater body of the Brussels sands (Belgium) and studied the spatial and temporal dynamics of the isotope signature of this aquifer. Potential nitrogen sources sampled in the region had isotopic signatures that fell within the corresponding typical ranges found in the literature. For a few monitoring stations, the isotopic data strongly suggest that the sources of nitrate are from mineral fertiliser origin, as used in agriculture and golf courses. Other stations suggest that manure leaching from unprotected stockpiles in farms, domestic gardening practices, septic tanks and probably cemeteries contribute to the nitrate pollution of this groundwater body. For most monitoring stations, nitrate originates from a mixing of several nitrogen sources. The isotopic signature of the groundwater body was poorly structured in space, but exhibited a clear temporal structure. This temporal structure could be explained by groundwater recharge dynamics and cycling process of nitrogen in the soil-nitrogen pool.

  10. Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones

    Science.gov (United States)

    Jang, Cheng-Shin; Chen, Shih-Kai

    2015-04-01

    Groundwater nitrate-N contamination occurs frequently in agricultural regions, primarily resulting from surface agricultural activities. The focus of this study is to establish groundwater protection zones based on indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N in the Choushui River alluvial fan in Taiwan. The groundwater protection zones are determined by univariate indicator kriging (IK) estimation, aquifer vulnerability assessment using logistic regression (LR), and integration of the IK estimation and aquifer vulnerability using simple IK with local prior means (sIKlpm). First, according to the statistical significance of source, transport, and attenuation factors dominating the occurrence of nitrate-N pollution, a LR model was adopted to evaluate aquifer vulnerability and to characterize occurrence probability of nitrate-N exceeding 0.5 mg/L. Moreover, the probabilities estimated using LR were regarded as local prior means. IK was then used to estimate the actual extent of nitrate-N pollution. The integration of the IK estimation and aquifer vulnerability was obtained using sIKlpm. Finally, groundwater protection zones were probabilistically determined using the three aforementioned methods, and the estimated accuracy of the delineated groundwater protection zones was gauged using a cross-validation procedure based on observed nitrate-N data. The results reveal that the integration of the IK estimation and aquifer vulnerability using sIKlpm is more robust than univariate IK estimation and aquifer vulnerability assessment using LR for establishing groundwater protection zones. Rigorous management practices for fertilizer use should be implemented in orchards situated in the determined groundwater protection zones.

  11. Groundwater nitrate pollution: High-resolution approach of calculating the nitrogen balance surplus for Germany

    Science.gov (United States)

    Klement, Laura; Bach, Martin; Breuer, Lutz; Häußermann, Uwe

    2017-04-01

    The latest inventory of the EU Water Framework Directive determined that 26.3% of Germany's groundwater bodies are in a poor chemical state regarding nitrate. As of late October 2016, the European Commission has filed a lawsuit against Germany for not taking appropriate measures against high nitrate levels in water bodies and thus failing to comply with the EU Nitrate Directive. Due to over-fertilization and high-density animal production, Agriculture was identified as the main source of nitrate pollution. One way to characterize the potential impact of reactive nitrogen on water bodies is the soil surface nitrogen balance where all agricultural nitrogen inputs within an area are contrasted with the output, i.e. the harvest. The surplus nitrogen (given in kg N per ha arable land and year) can potentially leach into the groundwater and thus can be used as a risk indicator. In order to develop and advocate appropriate measures to mitigate the agricultural nitrogen surplus with spatial precision, high-resolution data for the nitrogen surplus is needed. In Germany, not all nitrogen input data is available with the required spatial resolution, especially the use of mineral fertilizers is only given statewide. Therefore, some elements of the nitrogen balance need to be estimated based on agricultural statistics. Hitherto, statistics from the Federal Statistical Office and the statistical offices of the 16 federal states of Germany were used to calculate the soil surface balance annually for the spatial resolution of the 402 districts of Germany (mean size 890 km2). In contrast, this study presents an approach to estimate the nitrogen surplus at a much higher spatial resolution by using the comprehensive Agricultural census data collected in 2010 providing data for 326000 agricultural holdings. This resulted in a nitrogen surplus map with a 5 km x 5 km grid which was subsequently used to calculate the nitrogen concentration of percolation water. This provides a

  12. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters

    Science.gov (United States)

    Kunkel, R.; Kreins, P.; Tetzlaff, B.; Wendland, F.

    2009-04-01

    The fundamental objectives of the European Union-Water Framework Directive and the EU Groundwater Directive are to attain a good status of water and groundwater resources in the member states of the EU by 2015. Following the implementation time table, the EU member States carried out a review about the qualitative and quantitative status for all river basins in the EU. For river basins, whose good status cannot be guaranteed by 2015, catchment wide operational plans and measurement programs are to be drafted and implemented until 2009. In the river basin district Weser, Germany, which comprises a catchment area of ca. 49.000 km2, the achievement of the good status is unclear, or rather unlikely for 63% of the groundwater bodies. Inputs from diffuse sources and most of all nitrogen losses from agriculturally used land have been identified as the main reasons for exceeding the groundwater threshold value for nitrate (50 mg/l) and for failing the „good qualitative status" of groundwater in 2015. For this reason the drafting and implementation of measurement programs in the Weser basin are primarily focused on nitrate. The achievement of good qualitative status of groundwater bodies entails a particular challenge especially for large river basins as the complex ecological, hydrological, hydrogeological and agro-economic relationships have to be considered simultaneously. Integrated large scale agroeconomic- hydrologic models are powerful tools to analyze the actual pollution loads and "hot spot" areas and to predict the temporal and spatial effects of reduction measures. We used the interdisciplinary model network REGFLUD to predict the nitrogen intakes into groundwater and the nitrogen losses to surface waters by different pathways at the regional scale using an area differentiated approach. The model system combines the agro-economic model RAUMIS for estimating nitrogen surpluses from agriculture and the hydrological models GROWA/DENUZ/WEKU for describing the

  13. Electrical imaging of subsurface nanoparticle propagation for in-situ groundwater remediation

    Science.gov (United States)

    Flores Orozco, Adrián; Gallistl, Jakob; Schmid, Doris; Micic Batka, Vesna; Bücker, Matthias; Hofmann, Thilo

    2017-04-01

    Application of nanoparticles has emerged as a promising in situ remediation technology for the remediation of contaminated groundwater, particularly for areas difficult to access by other remediation techniques. The performance of nanoparticle injections, as a foremost step within this technology, is usually assessed through the geochemical analysis of soil and groundwater samples. This approach is not well suited for a real-time monitoring, and often suffers from a poor spatio-temporal resolution and only provides information from areas close to the sampling points. To overcome these limitations we propose the application of non-invasive Induced Polarization (IP) imaging, a geophysical method that provides information on the electrical properties of the subsurface. The analysis of temporal changes in the electrical images allows tracking the propagation of the injected nanoparticle suspension and detection of the induced bio-geochemical changes in the subsurface. Here, we present IP monitoring results for data collected during the injection of Nano-Goethite particles (NGP) used for simulation of biodegradation of a BTEX plume (i.e., benzene, toluene, ethylbenzene, and xylene) at the Spolchemie II site, CZ. Frequency-domain IP measurements were collected parallel to the groundwater flow direction and centred on the NGP injection point. Pre-injection imaging results revealed high electrical conductivities (> 10 S/m) and negligible polarization effects in the BTEX-contaminated part of the saturated zone (below 5 m depth). The apparently contradictory observation - BTEX compounds are poor electrical conductors - can be explained by the release of carbonic acids (a metabolic by-product of the biodegradation of hydrocarbons), which leads to an increase of the electrical conductivity. Post-injection images revealed a significant decrease (> 50%) of the electrical conductivity, with even larger changes in the proximity of the injection points, most likely due to the

  14. Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor.

    Science.gov (United States)

    Zhou, Minghua; Wang, Wei; Chi, Meiling

    2009-10-01

    To improve denitrification performance and effective degradation of organic pollutants from micro-polluted groundwater simultaneously, a novel three-dimensional (3D) bio-electrochemical reactor was developed, which introduced activated carbon into a traditional two-dimensional (2D) reactor as the third electrode. The static and dynamic characteristics of the reactor were investigated with special attentions paid to the performance comparison of these two reactors. In the 3D reactor both TOC and nitrate removal efficiency were greatly improved, and the formation of nitrite byproduct is considerably reduced, comparing with that of the 2D reactor. The role of activated carbon biofilm was explored and possible remediation mechanisms for the 2D and 3D reactors were suggested. In such a 3D reactor, the denitrification rate improved greatly to 0.288 mg NO(3)-N/cm(2)/d and the current efficiency could reach as high as 285%. Further, it demonstrated good performance stably against variable conditions, indicating very promising in application for groundwater remediation.

  15. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  16. Acceleration of groundwater remediation by deep sweeps and vortex ejections induced by rapidly pulsed pumping

    Science.gov (United States)

    Kahler, David M.; Kabala, Zbigniew J.

    2016-05-01

    One key limiting factor to groundwater remediation is contaminant sequestered in pores whose contents do not mix well with the bulk flow. Mixing between well-connected (pores whose volume is flushed as water flows through the aquifer) and poorly connected pores (pores whose volume does not exchange readily when water flows through the aquifer) is of primary concern. Under steady flow, contaminants are effectively trapped in the poorly connected pores and are transferred only by molecular diffusion. This slow mixing process between pore types is a bottleneck to remediation. We present a novel rapidly pulsed pumping method that increases the mixing between these pore types. We do it in the context of pump-and-treat remediation because it is the most common remediation practice. In rapidly pulsed pumping, the increase in flow causes a deep sweep, which pushes the flow into poorly connected pores and sweeps out sequestered contaminants. The decrease in flow causes a vortex ejection, which causes the vortex within the poorly connected pore to emerge with contaminant. These actions are modeled with computational fluid mechanics to elucidate the individual mechanisms and determine how they function and interact. Cleanup of single and multiple poorly connected pore systems were simulated and show the acceleration possible. This technique can decrease the time and cost needed to remediate contaminated aquifers, which in the United States has been estimated to exceed $1 trillion. Since our rapidly pulsed pumping method enhances mixing between well-connected and poorly connected pores, it can be applied to other remediation schemes such as in situ methods.

  17. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization.

    Science.gov (United States)

    Tang, Wangwang; Kovalsky, Peter; He, Di; Waite, T David

    2015-11-01

    Capacitive deionization (CDI) is an emerging water desalination technology in which pairs of porous electrodes are electrically charged to remove ionic species from water. In this work, the feasibility of fluoride and nitrate removal from brackish groundwaters by batch-mode CDI was investigated. Initially, the effects of flow rate, initial fluoride concentration, and initial coexisting NaCl concentration on fluoride removal were studied. The steady-state fluoride concentration declined as the initial fluoride concentration decreased while initial NaCl concentration remained constant. Due to the competitive electrosorption between fluoride and chloride for limited pore surface sites, a higher initial chloride concentration resulted in a higher equilibrium dissolved fluoride concentration. A simplified one-dimensional transport model for dual anions was developed and found to reliably describe the dynamic process of removal of both fluoride and chloride ions in CDI cells over a range of well-defined operating conditions. Based on the ability of the model to describe fluoride removal, it was extended to description of nitrate removal from brackish groundwaters and also found to perform well. Thus, the approach to description of ion removal, at least in batch studies, appears robust and should assist in optimization of design and operating conditions such that optimal removal of trace ionic species is achieved even when high background concentrations of salt are present.

  18. Vinegar-amended anaerobic biosand filter for the removal of arsenic and nitrate from groundwater.

    Science.gov (United States)

    Snyder, Kathryn V; Webster, Tara M; Upadhyaya, Giridhar; Hayes, Kim F; Raskin, Lutgarde

    2016-04-15

    The performance of a vinegar-amended anaerobic biosand filter was evaluated for future application as point-of-use water treatment in rural areas for the removal of arsenic and nitrate from groundwater containing common ions. Due to the importance of sulfate and iron in arsenic removal and their variable concentrations in groundwater, influent sulfate and iron concentrations were varied. Complete removal of influent nitrate (50 mg/L) and over 50% removal of influent arsenic (200 μg/L) occurred. Of all conditions tested, the lowest median effluent arsenic concentration was 88 μg/L. Iron removal occurred completely when 4 mg/L was added, and sulfate concentrations were lowered to a median concentration removal and the establishment of reducing conditions, arsenic concentrations remained above the World Health Organization's arsenic drinking water standard. Further research is necessary to determine if anaerobic biosand filters can be improved to meet the arsenic drinking water standard and to evaluate practical implementation challenges.

  19. Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

    2010-04-30

    Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on

  20. Comparison of surrogate models with different methods in groundwater remediation process

    Indian Academy of Sciences (India)

    Jiannan Luo; Wenxi Lu

    2014-10-01

    Surrogate modelling is an effective tool for reducing computational burden of simulation optimization. In this article, polynomial regression (PR), radial basis function artificial neural network (RBFANN), and kriging methods were compared for building surrogate models of a multiphase flow simulation model in a simplified nitrobenzene contaminated aquifer remediation problem. In the model accuracy analysis process, a 10-fold cross validation method was adopted to evaluate the approximation accuracy of the three surrogate models. The results demonstrated that: RBFANN surrogate model and kriging surrogate model had acceptable approximation accuracy, and further that kriging model’s approximation accuracy was slightly higher than RBFANN model. However, the PR model demonstrated unacceptably poor approximation accuracy. Therefore, the RBFANN and kriging surrogates were selected and used in the optimization process to identify the most cost-effective remediation strategy at a nitrobenzene-contaminated site. The optimal remediation costs obtained with the two surrogate-based optimization models were similar, and had similar computational burden. These two surrogate-based optimization models are efficient tools for optimal groundwater remediation strategy identification.

  1. Natural Attenuation Software (NAS): A computer program for estimating remediation times of contaminated groundwater

    Science.gov (United States)

    Mendez, E.; Widdowson, M.; Brauner, S.; Chapelle, F.; Casey, C.; ,

    2004-01-01

    This paper describes the development and application of a modeling system called Natural Attenuation Software (NAS). NAS was designed as a screening tool to estimate times of remediation (TORs), associated with monitored natural attenuation (MNA), to lower groundwater contaminant concentrations to regulatory limits. Natural attenuation processes that NAS models include advection, dispersion, sorption, biodegradation, and non-aqueous phase liquid (NAPL) dissolution. This paper discusses the three main interactive components of NAS: 1) estimation of the target source concentration required for a plume extent to contract to regulatory limits, 2) estimation of the time required for NAFL contaminants in the source area to attenuate to a predetermined target source concentration, and 3) estimation of the time required for a plume extent to contract to regulatory limits after source reduction. The model's capability is illustrated by results from a case study at a MNA site, where NAS time of remediation estimates compared well with observed monitoring data over multiple years.

  2. Assessment of ammonium, nitrate, phosphate, and heavy metal pollution in groundwater from Amik Plain, southern Turkey.

    Science.gov (United States)

    Ağca, Necat; Karanlık, Sema; Ödemiş, Berkant

    2014-09-01

    Amik Plain is one of the most important agricultural areas of Turkey. Because the groundwater resources have been used not only for irrigation but also for drinking purpose, groundwater resources play a vital role in this area. However, there exist no or a very limited number of studies on groundwater quality and its physicochemical and heavy metal composition for Amik Plain. This study aimed to assess groundwater of Amik Plain in terms of human health and suitability for irrigation based on physicochemical variables, heavy metals, and their spatial distribution. A total of 92 groundwater samples were collected from wells and were analyzed for temperature (T), salt content (SC), dissolved oxygen (DO), ammonium (NH4(+)), nitrate (NO3(-)), and phosphorus (P) and such heavy metals as cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn). The temperature, SC, DO, NH4(+), and NO3(-) parameters were measured in situ immediately with YSI Professional plus instrument (Pro Plus). Water depth was taken from owner of the wells. Heavy metal analyses were carried out in triplicate using inductively coupled atomic emission spectrometer (ICP-AES). The ICP-AES was calibrated for all the metals by running different concentrations of standard solutions. Descriptive statistical analyses were calculated to characterize distribution of physicochemical properties and heavy metal contents of groundwater. Correlation analysis was used to assess the possible relationships among heavy metals and physicochemical properties of the groundwater. Spatial variability in groundwater parameters were determined by geostatistical methods. Result shows that the highest and lowest coefficient of variation occurred for NO3(-) and T, respectively. Mean water table depth was 92.1 m, and only 12 of all the samples exceeded the desirable limit of 50 mg/L for NO3(-) content. The metal concentrations showed a dominance in the order of Fe >

  3. Quantifying reduction in ecological risk in Penrhyn Estuary, Sydney, Australia, following groundwater remediation.

    Science.gov (United States)

    Hunt, James; Birch, Gavin; Warne, Michael

    2012-01-01

    The environmental risk associated with discharge of contaminated groundwater containing a complex mixture of at least 14 volatile chlorinated hydrocarbons (VCHs) to Penrhyn Estuary, Sydney, Australia has previously been assessed. That probabilistic ecological risk assessment (ERA) was undertaken using surface water monitoring data from 2004 to 2005. Subsequently, in 2006, a groundwater remediation system was installed and commissioned to prevent further discharge of VCHs into the estuary. The present study assessed the ecological risk posed to the estuary after 2006 to evaluate the success of the remediation system. The ERA was undertaken using toxicity data derived from direct toxicity assessment (DTA) of preremediation contaminated groundwater using indigenous species, exposure data from surface water monitoring between 2007 and 2008 and the joint probability curve (JPC) methodology. The risk posed was measured in 4 zones of the entire site: source area (2), tributary (2), the inner estuary and outer estuary at high, low, and a combination of high and low tides. In the 2 source areas, risk decreased by over 2 and over 1 orders of magnitude to maximum values of less than 0.5%. In 1 estuary, risk decreased by over 1 order of magnitude, from a maximum of 36% to a maximum of 2.3%. At the other tributary and both the inner and outer estuaries, the risk decreased to less than 1%, regardless of the tide. This analysis revealed that the remediation system was very effective and that the standard level of protection required for slightly to moderately affected ecosystems (95% of species) by the Australian and New Zealand Guidelines for Fresh and Marine Water Quality was met postremediation.

  4. A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC)

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2013-01-01

    A considerable increase in nitrate concentration in groundwater has become a serious concern worldwide. We developed a novel submerged microbial desalination-denitrification cell (SMDDC) to in situ remove nitrate from groundwater, produce electric energy, and potentially treat wastewater. The SMDDC......, which was composed of an anode and a cathode chamber, can be easily applied to subsurface environments. When current was produced by bacteria on the anode, NO3- and Na+ were transferred into the anode and cathode through anion and cation exchange membrane, respectively; the anode effluent was directed...

  5. Nitrate and fluoride contamination in groundwater of an intensively managed agroecosystem: a functional relationship.

    Science.gov (United States)

    Kundu, Manik Chandra; Mandal, Biswapati; Hazra, Gora Chand

    2009-04-01

    A study was conducted to assess the potential of nitrate-nitrogen (NO(3)-N) and fluoride (F) contamination in drinking groundwater as a function of lithology, soil characteristics and agricultural activities in an intensively cultivated district in India. Two hundred and fifty two groundwater samples were collected at different depths from various types of wells and analyzed for pH, electrical conductivity (EC), NO(3)-N load and F content. Database on lithology, soil properties, predominant cropping systems, fertilizer and pesticide uses were also recorded for the district. The NO(3)-N load in groundwater samples were low ranging from 0.12 to 6.58 microg mL(-1) with only 8.7% of them contained greater than 3.0 microg mL(-1) well below the 10 microg mL(-1), the threshold limit fixed by WHO for drinking purpose. Samples from the habitational areas showed higher NO3-N content over the agricultural fields. The content decreased with increasing depth of wells (r=-0.25, PFluoride content in groundwater was also low (0.02 to 1.15 microg mL(-1)) with only 4.0% of them exceeding 1.0 microg mL(-1) posing a potential threat of fluorosis. On average, its content varied little spatially and along depth of sampling aquifers indicating little occurrence of F containing rocks/minerals in the geology of the district. The content showed a significant positive correlation (r=0.234, P=< or =0.01) with the amount of phosphatic fertilizer (single super phosphate) used for agriculture. Results thus indicated that the groundwater of the study area is presently safe for drinking purpose but some anthropogenic activities associated with intensive cultivation had a positive influence on its loading with NO(3)-N and F.

  6. Data and Model Uncertainties associated with Biogeochemical Groundwater Remediation and their impact on Decision Analysis

    Science.gov (United States)

    Pandey, S.; Vesselinov, V. V.; O'Malley, D.; Karra, S.; Hansen, S. K.

    2016-12-01

    Models and data are used to characterize the extent of contamination and remediation, both of which are dependent upon the complex interplay of processes ranging from geochemical reactions, microbial metabolism, and pore-scale mixing to heterogeneous flow and external forcings. Characterization is wrought with important uncertainties related to the model itself (e.g. conceptualization, model implementation, parameter values) and the data used for model calibration (e.g. sparsity, measurement errors). This research consists of two primary components: (1) Developing numerical models that incorporate the complex hydrogeology and biogeochemistry that drive groundwater contamination and remediation; (2) Utilizing novel techniques for data/model-based analyses (such as parameter calibration and uncertainty quantification) to aid in decision support for optimal uncertainty reduction related to characterization and remediation of contaminated sites. The reactive transport models are developed using PFLOTRAN and are capable of simulating a wide range of biogeochemical and hydrologic conditions that affect the migration and remediation of groundwater contaminants under diverse field conditions. Data/model-based analyses are achieved using MADS, which utilizes Bayesian methods and Information Gap theory to address the data/model uncertainties discussed above. We also use these tools to evaluate different models, which vary in complexity, in order to weigh and rank models based on model accuracy (in representation of existing observations), model parsimony (everything else being equal, models with smaller number of model parameters are preferred), and model robustness (related to model predictions of unknown future states). These analyses are carried out on synthetic problems, but are directly related to real-world problems; for example, the modeled processes and data inputs are consistent with the conditions at the Los Alamos National Laboratory contamination sites (RDX and

  7. Optimal Design of Groundwater Remediation Problems under Uncertainty Using Probabilistic Multi-objective Evolutionary Technique

    Science.gov (United States)

    Yang, Y.; Wu, J.

    2011-12-01

    The previous work in the field of multi-objective optimization under uncertainty has concerned with the probabilistic multi-objective algorithm itself, how to effectively evaluate an estimate of uncertain objectives and identify a set of reliable Pareto optimal solutions. However, the design of a robust and reliable groundwater remediation system encounters major difficulties owing to the inherent uncertainty of hydrogeological parameters such as hydraulic conductivity (K). Thus, we need to make reduction of uncertainty associated with the site characteristics of the contaminated aquifers. In this study, we first use the Sequential Gaussian Simulation (SGSIM) to generate 1000 conditional realizations of lnK based on the sampled conditioning data acquired by field test. It is worthwhile to note that the cost for field test often weighs heavily upon the remediation cost and must thus be taken into account in the tradeoff between the solution reliability and remedial cost optimality. In this situation, we perform Monte Carlo simulation to make an uncertainty analysis of lnK realizations associated with the different number of conditioning data points. The results indicate that the uncertainty of the site characteristics and the contaminant concentration output from transport model is decreasing and then tends toward stabilization with the increase of conditioning data. This study presents a probabilistic multi-objective evolutionary algorithm (PMOEA) that integrates noisy genetic algorithm (NGA) and probabilistic multi-objective genetic algorithm (MOGA). The evident difference between deterministic MOGA and probabilistic MOGA is the use of probabilistic Pareto domination ranking and niche technique to ensure that each solution found is most reliable and robust. The proposed algorithm is then evaluated through a synthetic pump-and-treat (PAT) groundwater remediation test case. The 1000 lnK realizations generated by SGSIM with appropriate number of conditioning data (30

  8. Prediction of nitrate contamination trends of groundwater in Al-Butana region of Sudan

    Directory of Open Access Journals (Sweden)

    Abdelmonem M. Abdellah

    2012-07-01

    Full Text Available It has been documented that the increase of population in a confined area increases the risk of nitrate ion (NO3- contamination where modern sewage system is absent and traditional latrine holes are spread. In this study the NO3- levels of 209 well water samples belonging to previous construction analyses (CA and a total of 121 well water samples belonging to the current study analyses (SA in Al-Butana region of Sudan were statistically analyzed and located using the geographical information system (GIS. Cross comparison among the CA and the SA data were investigated and graphed. The GIS-map indicated that the nitrate ion levels > 50 mg/l were found in the central and southern part of the study area. Nitrate ion levels in the CA revealed that only 4 boreholes (1.91% exceeded the maximum permissible limit of 50 mg/l set by SSMO, WHO and EEC standards and guidelines while none of the investigated boreholes in the SA exceeded the maximum adopted level (MAL of 50 mg/l. Depicted trend graphs revealed that NO3- increases, gradually, over time almost in all parts of the study area as a result of the wide spread of traditional latrine holes and septic tanks system. Some boreholes are expected to reach the MAL within few years. The gradual increase in NO3- indicates that NO3- contamination may constitute a real forthcoming problem and threatens groundwater quality of the aquifer(s of the study area.

  9. Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates.

    Science.gov (United States)

    Pardo-Igúzquiza, Eulogio; Chica-Olmo, Mario; Luque-Espinar, Juan A; Rodríguez-Galiano, Víctor

    2015-11-01

    Contamination by nitrates is an important cause of groundwater pollution and represents a potential risk to human health. Management decisions must be made using probability maps that assess the nitrate concentration potential of exceeding regulatory thresholds. However these maps are obtained with only a small number of sparse monitoring locations where the nitrate concentrations have been measured. It is therefore of great interest to have an efficient methodology for obtaining those probability maps. In this paper, we make use of the fact that the discrete probability density function is a compositional variable. The spatial discrete probability density function is estimated by compositional cokriging. There are several advantages in using this approach: (i) problems of classical indicator cokriging, like estimates outside the interval (0,1) and order relations, are avoided; (ii) secondary variables (e.g. aquifer parameters) can be included in the estimation of the probability maps; (iii) uncertainty maps of the probability maps can be obtained; (iv) finally there are modelling advantages because the variograms and cross-variograms of real variables that do not have the restrictions of indicator variograms and indicator cross-variograms. The methodology was applied to the Vega de Granada aquifer in Southern Spain and the advantages of the compositional cokriging approach were demonstrated.

  10. Nitrate removal under different ecological remediation measures in Taihu Lake: a 15N mass-balance approach.

    Science.gov (United States)

    Liu, Dandan; Li, Zhengkui; Zhang, Wanguang

    2014-12-01

    Ecological remediation is an important measure for the protection of lake water quality in removing nutrients, such as nitrate (NO3 (-)). In this study, four bioremediation processes (bare sediment, immobilized nitrogen cycling bacteria (INCB) added, Elodea nuttallii added, E. nuttallii-INCB assemblage) were operated at a lab to elucidate the effect of macrophyte appearance and INCB addition on NO3 (-) removal and achieve the optimal processes for biomediation. (15) N-NO3 solution was added to microcosms to identify the key nitrogen transformation processes responsible for NO3 (-) removal. Results showed that nitrate removal was significantly enhanced after the addition of INCB and E. nuttallii. In the treatments with INCB added, E. nuttallii added, and INCB and E. nuttallii-INCB assemblage, nitrate removal ratio achieved 94.74, 98.76, and 99.15 %, respectively. In contrast, only 23.47 % added nitrate was removed in the control. Plant uptake and denitrification played an important role in nitrogen removal. The water quality was substantially improved by the addition of INCB and macrophyte that can accelerate denitrification and promote nitrogen assimilation of plants. The results indicated that plant uptake and microbial denitrification were key processes for nitrate removal.

  11. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.

    2013-01-01

    A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other

  12. Effect of groundwater recycle system on nitrate load distribution in an agricultural island, Japan

    Science.gov (United States)

    Bai, J.; Onodera, S. I.; Jin, G.; Saito, M.; Shimizu, Y.; Matsumori, K.

    2016-12-01

    As one of the major elements for crops, nitrogen directly affects the agricultural production. However, the excess application of fertilizers leads to a lot of environmental problems such as groundwater and surface water contamination. Especially, groundwater contamination by nitrate (NO3-) has been an important issue in agriculture areas. Ikuchijima Island, located on the Seto Inland Sea of western Japan is one of the most famous and important agricultural island in Japan, with citrus groves cover 42% of the island. Groundwater is one of important water resources in the area because of low annual rainfall and relatively high risk of drought in the area. To maintain and improve crop yields, nitrogen fertilizer is applied over the whole year at a rate of 2,400 kg ha-1 yr-1. Consequently, most of the groundwater of the agricultural area are significantly contaminated by NO3-, and are considered in "eutrophic" condition. Therefore, the recycle of high NO3- groundwater to the irrigation on the catchment scale is effective strategy for saving both fertilizer usage and groundwater resource in the area. In this study, we estimated nitrogen load from the catchments in Ikuchijima Island using the SWAT (Soil and Water Assessment Tool) model. Especially, we tried to simulate the effect of reducing fertilizer application on nitrogen load assumed the recycle of NO3- in groundwater. The results showed that NO3- loads were highest near the coastal areas, which is related to the distribution of citrus farms. 42% of nitrogen load was from citrus farms in the north region of the island, and it ups to 60 % in the south region. It indicates fertilizer is the major source of nitrogen load in the island. Higher average nitrogen loadings also occurred in high density of residential area. The total nitrogen load from whole island was estimated to be 82507kg/year when the annual nitrogen fertilizer application is 240kg/ha/year. However, it decreased to 42548kg/year when the fertilizer

  13. Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain

    Science.gov (United States)

    Chen, Jianyao; Tang, Changyuan; Sakura, Yasuo; Yu, Jingjie; Fukushima, Yoshihiro

    2005-06-01

    A survey of the quality of groundwater across a broad area of the North China Plain, undertaken in 1998 to 2000, indicates that nitrate pollution is a serious problem affecting the drinking water for a vast population. The use of nitrogen (N)-fertilizer in agriculture has greatly increased over the past 20 years to meet the food needs of the rapidly expanding population. During the study, 295 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. High concentrations of nitrate, especially in a recharge area along the western side, but also in the vicinity of Beijing and locally in other parts of the plain, pose a serious problem for the drinking water supply. In places, the nitrate concentration exceeds the maximum for safe drinking water of 45 mg/L. The intense use of N-fertilizer and the widespread use of untreated groundwater for crop irrigation contribute greatly to the problem, but no doubt the disposal of industrial and municipal waste into streams and infiltrating the aquifer also contribute to the problem; however, the lack of data prevents evaluation of those sources. In the recharge area, nitrate is found at depths of as much as 50 m. Near Beijing, relatively high concentrations of nitrate occur at depths of as much as 80 m. In the discharge area, in the vicinity of the Yellow River, high concentrations of nitrate occur at depths of <8 m.

  14. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers

    Science.gov (United States)

    Ransom, Katherine M.; Grote, Mark N.; Deinhart, Amanda; Eppich, Gary; Kendall, Carol; Sanborn, Matthew E.; Souders, A. Kate; Wimpenny, Joshua; Yin, Qing-zhu; Young, Megan; Harter, Thomas

    2016-07-01

    Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.

  15. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are

  16. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty

    Science.gov (United States)

    He, L.; Huang, G. H.; Lu, H. W.

    2008-12-01

    In this study a simulation-based fuzzy chance-constrained programming (SFCCP) model is developed based on possibility theory. The model is solved through an indirect search approach which integrates fuzzy simulation, artificial neural network and simulated annealing techniques. This approach has the advantages of: (1) handling simulation and optimization problems under uncertainty associated with fuzzy parameters, (2) providing additional information (i.e. possibility of constraint satisfaction) indicating that how likely one can believe the decision results, (3) alleviating computational burdens in the optimization process, and (4) reducing the chances of being trapped in local optima. The model is applied to a petroleum-contaminated aquifer located in western Canada for supporting the optimal design of groundwater remediation systems. The model solutions provide optimal groundwater pumping rates for the 3, 5 and 10 years of pumping schemes. It is observed that the uncertainty significantly affects the remediation strategies. To mitigate such impacts, additional cost is required either for increased pumping rate or for reinforced site characterization.

  17. Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990-2006

    Science.gov (United States)

    Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.

    2010-01-01

    Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to

  18. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China.

    Science.gov (United States)

    Huan, Huan; Wang, Jinsheng; Teng, Yanguo

    2012-12-01

    The assessment of groundwater vulnerability to pollution has become a useful tool for groundwater pollution prevention and control. Following the theory of overlay index method and with the aid of GIS technique and a statistical method, this study employed a modified DRASTIC model to assess the groundwater vulnerability to nitrate in Jilin City of northeast China. In order to reduce the subjectivity of the overlay index method, the model was optimized by rebuilding the index system, adjusting the rating scale of each index, reassigning the index weights and comparing grading methods for groundwater vulnerability to nitrate. The criteria for these optimizations were the correlation coefficient of each index with the nitrate concentration in groundwater. Net recharge (R), soil type (S), impact of vadose zone (I), groundwater velocity (V) and land use type (L) were picked up to compose the index system. And then the accuracy of vulnerability mapping was discussed by a group of integrated indicators, including the corresponding relationship between the extreme nitrate concentration and the vulnerability classes, F statistic and class difference between the groundwater vulnerability classification and concentration classification of NO(3)-N. The optimized model graded by geometrical interval method improved the correlation between vulnerability index and nitrate concentration to the order of 0.6698 which was 0.4098 higher than that by the DRASTIC model. By level difference calculation, the correct vulnerability regions accounted for 64.45% of the study area. Lastly, sensitivity analyses indicated that the soil media and groundwater velocity were the most critical factors affecting groundwater vulnerability to nitrate. In short, RSIVL model was suitable to assess the groundwater vulnerability to nitrate in the study area with readily available hydrogeological and hydrochemical data. Hence, the mapping of groundwater vulnerability to nitrate can be applied for sensible

  19. [Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River basin].

    Science.gov (United States)

    Su, Yong-Zhong; Yang, Xiao; Yang, Rong

    2014-10-01

    In irrigated agricultural ecosystems, the accumulation, distribution and transfer of nitrate nitrogen (NO(3-)-N) in soil profile and groundwater nitrate pollution were influenced by irrigation and fertilization, and were closely related to soil textural characteristics. In this study, a monitoring section with 10 groundwater observation wells along Heihe River flood land-old oasis croplands-newly cultivated sandy croplands-fixed sandy land outside oasis was established in Pingchuan desert-oasis in Linze county in the middle of Heihe river basin, and groundwater NO(3-)-N concentration was continuously monitored. Soil texture and NO(3-)-N concentration in the unsaturated zone at different landscape locations were determined. The NO(3-)-N transfer change in soil profile, nitrate leaching of soils with different texture and fertility levels in the 0-100 cm layer were analyzed. The results indicated that the vertical distribution of soil texture was sandy loam in the 0-130 cm depth, loam in the 130-190 cm and clay loam in the 190-300 cm for the old oasis croplands. For newly cultivated sandy croplands, sand content was more than 80% in each soil layer of the 0-300 cm profile, although a thin clay layer occurred in the 140-160 cm depth. The clay layer occurred 160 cm below the sand-fixing zone outside oasis. There were significant correlations between soil NO(3-)-N concentration and silt + clay content, and the order of significant degree was the natural soils of sandy lands > the newly cultivated sandy croplands > the old oasis croplands. The loss of N leaching was closely correlated to the silt + caly content in the 0-100 cm soil depth. The groundwater NO(3-)-N concentration varied from 1.01 to 5.17 mg · L(-1), with a mean value of 2.65 mg · L(-1) and from 6.6 to 29.5 mg · L(-1), with an average of 20.8 mg · L(-1) in the area of old oasis croplands and the newly cultivated croplands, respectively. The averaged groundwater NO(3-)-N concentration in the area of newly

  20. Assessment and remediation of a historical pipeline release : tools, techniques and technologies applied to in-situ/ex-situ soil and groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N. [EBA Engineering Consultants Ltd., Calgary, AB (Canada); Kohlsmith, B. [Kinder Morgan Canada Inc., Calgary, AB (Canada)

    2008-07-01

    Tools, techniques, and technologies applied to in-situ/ex-situ soil and groundwater remediation were presented as part of an assessment and remediation of a historical pipeline release. The presentation discussed the initial assessment, as well as a discussion of remediation of hydrophobic soils, re-assessment, site specific criteria, a remediation trial involving bioventing and chemical oxidation, and a full scale remediation. The pipeline release occurred in the summer of 1977. The event was followed by a complete surface remediation with a significant amount of topsoil being removed and replaced. In 2004, a landowner complained of poor crop growth in four patches near the area of the historical spill. An initial assessment was undertaken and several photographs were presented. It was concluded that a comprehensive assessment set the base for a careful staged approach to the remediation of the site including the establishment of site specific criteria. The process was made possible with a high level of communication between all stakeholders. In addition, the most appropriate solution for the site was realized. figs.

  1. In situ Remediation of Petroleum Contaminated Groundwater by Permeable Reactive Barrier with Hydrothermal Palygorskite as Medium

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sheng-yu; ZHANG Yu-ling; SU Xiao-si; ZHANG Ying

    2013-01-01

    The permeable reactive barrier(PRB) has proven to be a cost-effective technique to remediate the petroleum contaminated groundwater at a northeast field site in China.In this study,the geology,hydrogeology and contamination characterization of the field site were investigated and the natural hydrothermal palygorskite was chosen as a reactive medium.Furthermore,the adsorption of the total petroleum hydrocarbons(TPH) in the groundwater onto hydrothermal palygorskite and the adsorption kinetics were investigated.The results indicate that the removal rates of TPH,benzene,naphthalene and phenantharene could all reach up to 90% by hydrothermal palygorskite with a diameter of 0.25-2.00 mm that had been thermally pretreated at 140 ℃.The adsorption of TPH onto hydrothermal palygorskite after pretreatment followed a pseudo-second-order kinetic model and a Langmuir adsorption isotherm,suggesting that the theoretic adsorption capacity of hydrothermal palygorskite for adsorbate could be 4.2 g/g.Scanning electron microscopy(SEM),infrared spectroscopy(IR),X-ray diffraction(XRD) and X-ray fluorescence spectroscopy(XRF) were carried out to analyze the adsorption mechanism.The results reveal that hydrothermal palygorskite is a fibrous silicate mineral enriched in Mg and A1 with large surface area and porosity.The dense cluster acicular and fibrous crystal of hydrothermal palygorskite,and its effect polar group —OH played an important role in the physical and chemical adsorption processes of it for contaminants.This study has demonstrated hydrothermal palygorskite is a reliable reactive medium for in situ remediation of petroleum contaminated groundwater at field sites.

  2. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo, E-mail: thilo.hofmann@univie.ac.at

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  3. PLAN-TA9-2443(U), Rev. B Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-16

    This document identifies scope and some general procedural steps for performing Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing. This Test Plan describes the requirements, responsibilities, and process for preparing and testing a range of chemical surrogates intended to mimic the energetic response of waste created during processing of legacy nitrate salts. The surrogates developed are expected to bound1 the thermal and mechanical sensitivity of such waste, allowing for the development of process parameters required to minimize the risk to worker and public when processing this waste. Such parameters will be based on the worst-case kinetic parameters as derived from APTAC measurements as well as the development of controls to mitigate sensitivities that may exist due to friction, impact, and spark. This Test Plan will define the scope and technical approach for activities that implement Quality Assurance requirements relevant to formulation and testing.

  4. Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczałkowice reservoir, Poland)

    Science.gov (United States)

    Czekaj, Joanna; Jakóbczyk-Karpierz, Sabina; Rubin, Hanna; Sitek, Sławomir; Witkowski, Andrzej J.

    2016-08-01

    Goczałkowice dammed reservoir (area - 26 km2) is a strategic object for flood control in the Upper Vistula River catchment and one of the most important source of drinking water in the Upper Silesian Industrial Region (Southern Poland). Main aims of the investigation were identification of sources of nitrate and assessment of their significance in potential risk to groundwater quality. In the catchment area monitoring network of 22 piezometers, included 14 nested, have been installed. The significant spatial and seasonal differences in chemical composition between northern and southern part of the catchment were indicated based on the groundwater sampling conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate were identified in northern part of the study area 255 mg/L as a results of inappropriate sewage management and agriculture activity. Results, based on the combines multi-scale hydrogeological and hydrochemical field studies, groundwater flow and transport modelling, dual stable isotope approach and geochemical modelling indicate mainly agriculture and inappropriate sewage water management as a sources of NO3- contamination of groundwater which moreover is affected by geochemical processes. In general, contaminated groundwater does not impact surface water quality. However, due to high concentration of nitrate in northern part a continues measurements of nitrogen compounds should be continued and used for reducing uncertainty of the predictive scenarios of the mass transport modelling in the study area.

  5. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.

    Science.gov (United States)

    Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

    2008-12-01

    To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies.

  6. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  7. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation

    Directory of Open Access Journals (Sweden)

    Hengzhen Li

    2013-12-01

    Full Text Available Micro-nano bubbles (MNBs are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

  8. Hydrogeology, groundwater seepage, nitrate distribution, and flux at the Raleigh hydrologic research station, Wake County, North Carolina, 2005-2007

    Science.gov (United States)

    McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.

    2013-01-01

    gradients in the groundwater discharge area near the Neuse River were complex and were affected by fluctuations in river stage, with the exception of a well completed in a diabase dike. Water-quality data from the wells and surface-water sites at the RHRS were collected continuously as well as during periodic sampling events. Surface-water samples collected from a tributary were most similar in chemical composition to groundwater found in the regolith and transition zone. Nitrate (measured as nitrite plus nitrate, as nitrogen) concentrations in the sampled wells and tributary ranged from about 5 to more than 120 milligrams per liter as nitrogen. Waterborne continuous resistivity profiling conducted on the Neuse River in the area of the RHRS measured areas of low apparent resistivity that likely represent groundwater contaminated by high concentrations of nitrate. These areas were located on either side of a diabase dike and at the outfall of two unnamed tributaries. The diabase dike preferentially directed the discharge of groundwater to the Neuse River and may isolate groundwater movement laterally. Discrete temperature measurements made within the pore water beneath the Neuse River revealed seeps of colder groundwater discharging into warmer surface water near a diabase dike. Water-quality samples collected from the pore water beneath the Neuse River indicated that nitrate was present at concentrations as high as 80 milligrams per liter as nitrogen on the RHRS side of the river. The highest concentrations of nitrate were located within pore water collected from an area near a diabase dike that was identified as a suspected seepage area. Hydraulic head was measured and pore water samples were collected from two 140-centimeter-deep (55.1-inch-deep) multiport piezometers that were installed in bed sediments on opposite sides of a diabase dike. The concentration of nitrate in pore water at a suspected seepage area ranged from 42 to 82 milligrams per liter as nitrogen with a

  9. Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir.

    Science.gov (United States)

    Voordouw, Gerrit; Grigoryan, Aleksandr A; Lambo, Adewale; Lin, Shiping; Park, Hyung Soo; Jack, Thomas R; Coombe, Dennis; Clay, Bill; Zhang, Frank; Ertmoed, Ryan; Miner, Kirk; Arensdorf, Joseph J

    2009-12-15

    Sulfide formation by oil field sulfate-reducing bacteria (SRB) can be diminished by the injection of nitrate, stimulating the growth of nitrate-reducing bacteria (NRB). We monitored the field-wide injection of nitrate into a low temperature (approximately 30 degrees C) oil reservoir in western Canada by determining aqueous concentrations of sulfide, sulfate, nitrate, and nitrite, as well as the activities of NRB in water samples from 3 water plants, 2 injection wells, and 15 production wells over 2 years. The injection water had a low sulfate concentration (approximately 1 mM). Nitrate (2.4 mM, 150 ppm) was added at the water plants. Its subsequent distribution to the injection wells gave losses of 5-15% in the pipeline system, indicating that most was injected. Continuous nitrate injection lowered the total aqueous sulfide output of the production wells by 70% in the first five weeks, followed by recovery. Batchwise treatment of a limited section of the reservoir with high nitrate eliminated sulfide from one production well with nitrate breakthrough. Subsequent, field-wide treatment with week-long pulses of 14 mM nitrate gave breakthrough at an additional production well. However, this trend was reversed when injection with a constant dose of 2.4 mM (150 ppm) was resumed. The results are explained by assuming growth of SRB near the injection wellbore due to sulfate limitation. Injection of a constant nitrate dose inhibits these SRB initially. However, because of the constant, low temperature of the reservoir, SRB eventually grow back in a zone further removed from the injection wellbore. The resulting zonation (NRB closest to and SRB further away from the injection wellbore) can be broken by batch-wise increases in the concentration of injected nitrate, allowing it to re-enter the SRB-dominated zone.

  10. Nitrates

    Science.gov (United States)

    ... Blockers Angiotensin-Converting Enzyme (ACE) Inhibitors Antiarrhythmics Anticoagulants Antiplatelet Therapy Aspirin Beta-Blockers Blood Thinners Calcium Channel Blockers Digitalis Medicines Diuretics Inotropic Agents Statins, Cholesterol-Lowering Medicines Nitrates Disclaimer The information ...

  11. Evaluation of Nitrate Fluxes to Groundwater under Agriculture Land Uses across the Loess Plateau - A Catchment Scale Investigation

    Science.gov (United States)

    Turkeltaub, T.; Jia, X.; Binley, A. M.

    2016-12-01

    Nitrate management is required for fulfilling the objective of high agriculture productivity and concurrently reduced groundwater contamination to minimum. Yet, nitrate is considered as a non-point contaminant. Therefore, understanding the temporal and spatial processes controls of nitrate transport in the vadose zone are imperative for protection of groundwater. This study is conducted in the Loess Plateau which located in the north-central of mainland China and characterized with a semi-arid climate. Moreover, it accounts for about 6.6% of the Chinese territory and supports over 8.5% of the Chinese population. This area undergoes high pressure from human activities and requiring optimal management interventions. Integrated modelling frameworks, which include unsaturated and saturated processes, are able to simulate nitrate transport under various scenarios, and provide reasonable prediction for the decision-makers. We used data obtained from soil samples collected across a region of 41 × 104 km2 (243 samples, to 5 m depth) to derive unsaturated flow and transport properties. Particle size distributions, saturated hydraulic conductivity, water content at field capacity (0.33 atm) and saturated water content were also obtained for the shallower layers (0-40 cm). The van Genuchten - Mualem soil parameters describing the retention and the unsaturated hydraulic conductivity curves were estimated with the Rosetta code. The analysis of the soil samples indicated that the silt loam soil type is dominant. Hence, a scaling approach was chosen as an adequate method for estimation of representative retention and hydraulic conductivity curves. Water flow and nitrate leaching were simulated with mechanistic based 1-D model for each agriculture land use within the area. The simulated nitrate losses were compared with results of root zone model simulations. Subsequently, the calculated fluxes were input as upper boundary conditions in the Modflow model to examine the regional

  12. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  13. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Science.gov (United States)

    Peter, S.; Rechsteiner, R.; Lehmann, M. F.; Brankatschk, R.; Vogt, T.; Diem, S.; Wehrli, B.; Tockner, K.; Durisch-Kaiser, E.

    2012-11-01

    For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N) can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3-) removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ) were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3- concentration (> 50%) was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3- pool (by up to 22‰ for δ15N and up to 12‰ for δ18O) provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3- removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3- concentration with a rate of ~21 μmol N l-1 d-1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3- removal rates were lower (~6 μmol l-1 d-1). Hence, discharge-modulated vegetation-soil-groundwater coupling was found to be a key driver for riparian NO3- removal. We estimated that, despite higher rates in the fairly constrained willow bush hot spot, total NO3- removal from the groundwater is lower than in the extended forest area. Overall, the aquifer in the restored section was more effective and removed ~20% more NO3- than the channelized section.

  14. Morphophysical pedotransfer functions for groundwater pollution by nitrate leaching in Central Chile

    Directory of Open Access Journals (Sweden)

    Ignacio Fuentes

    2014-09-01

    Full Text Available Nitrate leaching (NL is a major concern in agriculture due to its impact on human health and ecosystems. Solute movement through soil is governed by various hydraulic and physical properties that determine water flow. To study such relationships, a pedotransfer function of groundwater pollution was developed in two alluvial irrigated soils under long-term pig slurry applications. Two basins of central Chile, San Pedro (Typic Xerochrepts and Pichidegua (Mollic Xerofluvents were selected, where maize (Zea mays L. was grown in spring-summer, while during autumn-winter period a ryegrass-barley-oat mixed crop was established in San Pedro and a fallow management applied in Pichidegua. Soils in cultivated and control sites were characterized in physical and hydraulic terms. Nitrogen and water budgets were determined measuring periodically (biweekly N concentration (N-NO3- and N-NH4+ and monitoring water contents in soil profiles, respectively. Dye tracer tests were performed with brilliant blue (BB dye and the staining patterns analyzed. To contrast the effect of slurry additions over soil physical properties and over NL, t-Student tests were performed. Some accurate pollution groundwater NL pedotransfer functions were obtained calculated through least square fit models and artificial neural networks. Textural porosity, mean diameter variation, slow drainage porosity, air conductivity at 33 kPa water tension and N-NO3- concentrations were directly related to NL. In terms of preferential flow analysis, stained path width > 200 mm was inversely associated to NL. Finally, dye tracer tests provided a better understanding of the characteristics and pattern of water/solute movement through soil to groundwater.

  15. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    Science.gov (United States)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in

  16. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    Science.gov (United States)

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  17. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data.

    Science.gov (United States)

    Zhai, Yuanzheng; Lei, Yan; Wu, Jin; Teng, Yanguo; Wang, Jinsheng; Zhao, Xiaobing; Pan, Xiaodong

    2017-02-01

    Nitrate pollution has pervaded many parts of the world, especially in developing countries such as China. Based on the available groundwater nitrate data sets in China (2000-2015), the groundwater pollution levels at the provincial scale are evaluated which contains 33 provinces (units) except for Macau because of lacking data. Then, the potential risks posed to human health in national scale are quantified. In order to make the results more precise and systematical, both drinking and dermal contact exposure pathways are considered, and the influenced crowd are more finely divided into four groups to study the impacts of age and gender on the outcome, which include infants (0-6 months), children (7 months-17 years old), adult males (18 years old-), and adult females (18 years old-). Results indicate that there are seven units whose groundwater nitrate concentrations exceed the standard value with Shaanxi being a seriously poor condition. Facing the same level of nitrate, the health risk level changes in the order of infants > children > adult males > adult females. That is to say, minors and males are more vulnerable compared with adults and females, respectively. There is no adverse effect on adult females of the whole country, while gender really impacts on the health risk assessment result. Adult males, children, and infants face various degrees of health risk respectively in Shaanxi and Shandong, which are needed to pay more attention to.

  18. Village environs as source of nitrate contamination in groundwater: a case study in basaltic geo-environment in central India.

    Science.gov (United States)

    Reddy, D V; Nagabhushanam, P; Peters, Edward

    2011-03-01

    Nitrate is one of the common contaminants in the present day groundwaters resulting from increased population associated with poor sanitary conditions in the habitat area and increased agricultural activity. The hydrochemical measurements on water samples from a virgin watershed, situated in the basaltic geo-environment, have become necessary as the groundwater is the only source of drinking water for the villagers of the area. High preferential recharge conditions prevail in the area due to fractures in the solid basaltic lava flows. Instead of dilution due to fresh recharge, the post-monsoon hydrochemical concentrations in the groundwater are observed to have increased probably due to fast migration of pollutants to the aquifer through preferential recharge. As a result, the deep aquifer waters are more contaminated with hazardous nitrate than the shallow waters. Further, the village environ wells are more polluted with nitrate than the agriculture areas which could be attributed to the unhygienic sanitary conditions and livestock waste dump pits in the villages. This study suggests proper management of the sewage system and creation of suitable dump yard for the livestock and household waste to minimize the level of nitrate pollution in the well waters of village environs.

  19. Development of Enhanced Remedial Techniques for Petroleum Fuel and Related Contaminants in Soil and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-10

    Western Research Institute (WRI) in conjunction with Earth Tech and the U.S. Department of Energy (DOE) was to identify proper sites with soils and/or groundwater contaminated by petroleum constituents and MTBE. Biodegradation rates would have been quantitatively assessed in both laboratory and field tests to achieve the optimal destruction of contaminants of concern. WRI and Earth Tech identified a site contaminated with high concentrations of methanol associated with petroleum hydrocarbons. The site was assessed and a remediation project plan was prepared; however, the site was soon acquired by a new company. An agreement between Earth Tech, WRI, and the new site owners could not be reached; therefore, a work was performed to identify a new project site. Task 33 was terminated and the available funding was redeployed to other Tasks after receiving approval from the U.S. DOE task manager.

  20. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, D. [Univ. of Waterloo (Canada); Jowett, R. [Waterloo Barrier Inc., Rockwood, Ontario (Canada); Gamble, M. [C3 Environmental, Breslau, Ontario (Canada)

    1997-12-31

    The Waterloo Barrier{trademark} steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10{sup -8} to 10{sup -10} cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier{trademark} cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier{trademark} in these applications.

  1. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, Olaf; Thierfeldt, Stefan [Brenk Systemplanung GmbH, Aachen (Germany); Hummel, Lothar [TUV Sud AG, Munchen (Germany)

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detector was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)

  2. [Assessment of shallow groundwater nitrate concentrations in typical terrestrial ecosystems of Chinese Ecosystem Research Network (CERN) during 2004-2009].

    Science.gov (United States)

    Xu, Zhi-Wei; Zhang, Xin-Yu; Sun, Xiao-Min; Yuan, Guo-Fu; Wang, Sheng-Zhong; Liu, Wen-Hua

    2011-10-01

    The nitrate-N (NO3(-) -N) concentrations of 38 shallow groundwater wells from 31 of the typical terrestrial ecosystems on Chinese Ecosystem Research Network (CERN) were assessed using the monitoring data from 2004 to 2009. The results showed that the average values of NO3(-) -N concentrations were significantly higher in the agricultural (4.85 mg x L(-1) +/- 0.42 mg x L(-1)), desert (oasis) (3.72 mg x L(-1) +/- 0.42 mg x L(-1)) and urban ecosystems (3.77 mg x L(-1) 0.51 mg x L(-1)) than in the grass (1.59 mg x L(-1) +/- 0.35 mg L(-1)) and forest ecosystems (0.39 mg x L(-1) +/- 0.03 mg x L(-1)). Nitrate was the major form of nitrogen, with between 56% to 88% of nitrogen in the nitrate-N form in the shallow groundwater of desert (oasis), urban and agricultural ecosystems. Nitrate-N concentrations for some agricultural ecosystems (Ansai, Yanting, Yucheng) and desert (oasis) ecosystems (Cele, Linze, Akesu) analysis exceeded the 10 mg x L(-1) World Health Organization drinking water standards between 14.3% and 84.6%. Significant seasonality was found in Ansai, Fengqiu, Yanting agricultural ecosystems and the Beijing urban ecosystem using the relatively high frequency monitoring data, with the higher nitrate concentrations usually found during summer and winter months. The monitoring results indicated that the shallow groundwater of agricultural ecosystems was contaminated by agricultural management practices, i.e. fertilization, while the shallow groundwater of forest ecosystems was under natural condition with no contamination from human activities.

  3. Laboratory Validation of Passive Flow Focusing of Horizontal Wells for in Situ Groundwater Remediation

    Science.gov (United States)

    DiMarco, A.; Crimi, M.; Holsen, T.; Bellona, C.; Kumarage, P.; Divine, C.; O'Fallon, T.

    2014-12-01

    A new concept for in situgroundwater remediation was recently developed where drilled horizontal wells filled with granular treatment media are installed in the direction of groundwater flow. Due to the differences in hydraulic conductivity (K) of the media in the well and the surrounding aquifer, groundwater is "focused" into the well and treated (Figure 1). Initial computer simulations demonstrate that the horizontal well will have a substantial capture zone making this a viable and appealing remediation strategy. In this work, a laboratory scale model was constructed to validate the computer simulations and determine the expected capture zone of a horizontal well under a range of hydraulic conductivity differentials. We have built a physical model to replicate a horizontal well in a confined aquifer. The model is constructed inside a 55-gallon drum packed with sand and water is pumped into the bottom of the drum and flows upward through the system. Within the aquifer, we installed a 1" screened well packed with lime-soda beads. To define the capture zone, we placed manometers in the aquifer. Finally, a constant head is applied to the system (Figure 2 and 3). Initial tests have shown that the 1" well with a hydraulic conductivity 65 times greater than the surrounding aquifer (kwell= 1.3 cm/sec vs. kaquifer= 0.02cm/sec) will capture a significant percentage (over 80% in some configurations) of the water applied to the system. A tracer test has shown that the water velocity in the well is substantially higher than the aquifer. Manometer readings confirm the flowfield effects of the well and these data are being used to calibrate numerical models. The presentation will focus on the observed behavior of the physical model under varying applied head and hydraulic conductivities and discuss the potential design implications for full-scale application.

  4. Enhanced Remediation of Toluene in the Vadose Zone via a Nitrate-Rich Nutrient Solution: Field Study

    Science.gov (United States)

    Tindall, J. A.; Friedel, M. J.

    2003-12-01

    The objective of this study was to test the effectiveness of nitrate-rich nutrient solutions and hydrogen peroxide (H202) to enhance in-situ microbial remediation of toluene. Three sand filled plots (2 m2 surface area and 1.5 meters deep) were tested in three phases (each phase lasting approximately 2 weeks). During each phase, toluene (21.6 mol as an emulsion in 50L of water) was applied uniformly via sprinkler irrigation. Passive remediation was allowed to occur during the first (control) phase. A nutrient solution (modified Hoagland), concentrated in 40L of water, was tested during the second phase. The final phase involved addition of 230 moles of H202 in 50L of water to increase the available oxygen needed for aerobic biodegradation. During the first phase, toluene concentrations in soil gas were reduced from 120 ppm to 25 ppm in 14 days. After the addition of nutrients during the second phase, concentrations were reduced from 90 ppm to about 8 ppm within 14 days, and for the third phase (H202), toluene concentrations were about 1 ppm after only five days. Initial results suggest that this method could be an effective means of remediating a contaminated site, directly after a BTEX spill, without the intrusiveness and high cost of other abatement technologies such as bioventing and soil vapor extraction. However, further tests need to be completed to determine the effect of each of the BTEX components.

  5. The groundwater nitrate isotope quandary: Is the dual isotopic composition of groundwater nitrate a recorder of interactions between N and Fe in the subsurface?

    Science.gov (United States)

    Wankel, S. D.; Hansel, C. M.; Tang, Y.; Johnston, D. T.

    2012-12-01

    18ɛ:15ɛ typically observed in studies of groundwater NO3- under reducing conditions. We also conducted flow-through sediment incubations to examine the co-reduction of nitrate and various iron oxide minerals. Effluent NO3- exhibited values of 18ɛ:15ɛ that shifted over time, suggesting multiple mechanisms that may vary in proportion as the system (and microbial community) evolved. Isotope modeling results help to constrain a number of possible mechanisms, including microbially induced abiotic NO3- reduction by mineral associated Fe(II), and anaerobic or microaerophilic NO3- production by NO2- oxidizing and/or anammox bacteria. Considering the abundance of Fe-bearing minerals in the Earth's crust, the coupling of Fe cycling with transformations of inorganic nitrogen species may represent an unrecognized, yet important, link among global N, C and Fe cycles.

  6. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution.

    Science.gov (United States)

    Hosono, Takahiro; Tokunaga, Takahiro; Kagabu, Makoto; Nakata, Haruhiko; Orishikida, Takanori; Lin, In-Tian; Shimada, Jun

    2013-05-15

    During early 2000, a new analytical procedure for nitrate isotopic measurement, termed the "denitrifier method", was established. With the development of the nitrate isotope tracer method, much research has been reported detailing sources of groundwater nitrate and denitrification mechanisms. However, a shortcoming of these tracer studies has been indicated owing to some overlapping of isotope compositions among different source materials and denitrification trends. In order to reduce these uncertainties, we examined nitrate isotope ratios within a frame of "regional groundwater flow dynamics" to eliminate unnecessary uncertainties in elucidating nitrate sources and behaviors. A total of 361 samples were collected from the Kumamoto area: the circulated groundwater system with a scale of 10(3) km(2) in southern Japan. Subsequently, the nitrate pollution was examined within the above-mentioned framework. As a result, a reasonable identification of the sources and attenuation behaviors (both denitrification and dilution) of groundwater nitrate pollution was obtained over the study area. This study demonstrates that the use of nitrate isotope tracers efficiently improves with a comprehensive understanding of groundwater flow dynamics. The approach emphasized in this study is important and should be applicable in other areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation

    Science.gov (United States)

    Xiong, Z.; Kaback, D.; Bennett, P. J.

    2011-12-01

    Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of nZVI particles were observed in a monitoring well located 5 feet downgradient from

  8. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain

    Science.gov (United States)

    Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Pulido-Velazquez, D.

    2010-10-01

    SummaryAlthough the legislation on groundwater quality targets pollutant concentration, the effects of measures on non-point source pollution control are often evaluated in terms of their emission reduction potential at the source, not on their capacity of reducing the pollutant concentration in groundwater. This paper applies a hydro-economic modelling framework to an aquifer, El Salobral-Los Llanos aquifer (Mancha Oriental, Spain), where nitrate concentrations higher than those allowed by the EU Water Framework Directive and Groundwater Directive are locally found due to the intense fertilizer use in irrigated crops. The approach allows defining the economically optimal allocation of spatially variable fertilizer standards in agricultural basins using a hydro-economic model that links the fertilizer application with groundwater nitrate concentration at different control sites while maximizing net economic benefits. The methodology incorporates results from agronomic simulations, groundwater flow and transport into a management framework that yields the fertilizer allocation that maximizes benefits in agriculture while meeting the environmental standards. The cost of applying fertilizer standards was estimated as the difference between the private net revenues from actual application and the scenarios generated considering the application of the standards. Furthermore, the cost of applying fertilizer standards was compared with the cost of taxing nitrogen fertilizers in order to reduce the fertilizer use to a level that the nitrate concentration in groundwater was below the limit. The results show the required reduction of fertilizer application in the different crop areas depending on its location with regards to the control sites, crop types and soil-plant conditions, groundwater flow and transport processes, time horizon for meeting the standards, and the cost of implementing such a policy (as forgone benefits). According to the results, a high fertilizer price

  9. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture......-reducing batches disappearance of toluene, phenol, o-cresol and o-cresol was observed, whereas no removal of benzene, the xylenes, naphthalane, 2,3-DMP, 2,4-DMP, 2,5-DMP and 3,5-DMP was detected during 7 months of incubation....

  10. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach.

    Science.gov (United States)

    Pastén-Zapata, Ernesto; Ledesma-Ruiz, Rogelio; Harter, Thomas; Ramírez, Aldo I; Mahlknecht, Jürgen

    2014-02-01

    Nitrate isotopic values are often used as a tool to understand sources of contamination in order to effectively manage groundwater quality. However, recent literature describes that biogeochemical reactions may modify these values. Therefore, data interpretation is difficult and often vague. We provide a discussion on this topic and complement the study using halides as comparative tracers assessing an aquifer underneath a sub-humid to humid region in NE Mexico. Hydrogeological information and stable water isotopes indicate that active groundwater recharge occurs in the 8000km(2) study area under present-day climatic and hydrologic conditions. Nitrate isotopes and halide ratios indicate a diverse mix of nitrate sources and transformations. Nitrate sources include organic waste and wastewater, synthetic fertilizers and soil processes. Animal manure and sewage from septic tanks were the causes of groundwater nitrate pollution within orchards and vegetable agriculture. Dairy activities within a radius of 1,000 m from a sampling point significantly contributed to nitrate pollution. Leachates from septic tanks caused nitrate pollution in residential areas. Soil nitrogen and animal waste were the sources of nitrate in groundwater under shrubland and grassland. Partial denitrification processes helped to attenuate nitrate concentration underneath agricultural lands and grassland, especially during summer months.

  11. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, T.K.; Kim, Y.; Wan, J.

    2009-06-01

    Methods for remediating groundwaters contaminated with uranium (U) through precipitation under oxidizing conditions are needed because bioreduction-based approaches require indefinite supply of electron donor. Although strategies based on precipitation of some phosphate minerals within the (meta)autunite group have been considered for this purpose, thermodynamic calculations for K- and Ca-uranyl phopsphates, meta-ankoleite and autunite, predict that U concentrations will exceed the Maximum Contaminant Level (MCL = 0.13 {micro}M for U) at any pH and pCO{sub 2}, unless phosphate is maintained at much higher concentrations than the sub-{micro}M levels typically found in groundwaters. We hypothesized that potassium uranyl vanadate will control U(VI) concentrations below regulatory levels in slightly acidic to neutral solutions based on thermodynamic data available for carnotite, K{sub 2}(UO{sub 2}){sub 2}V{sub 2}O8. The calculations indicate that maintaining U concentrations below the MCL through precipitation of carnotite will be sustainable in some oxidizing waters having pH in the range of 5.5 to 7, even when dissolution of this solid phase becomes the sole supply of sub-{micro}M levels of V. Batch experiments were conducted in solutions at pH 6.0 and 7.8, chosen because of their very different predicted extents of U(VI) removal. Conditions were identified where U concentrations dropped below its MCL within 1 to 5 days of contact with oxidizing solutions containing 0.2 to 10 mM K, and 0.1 to 20 {micro}M V(V). This method may also have application in extracting (mining) U and V from groundwaters where they both occur at elevated concentrations.

  12. Multi-Objective Optimization with Function Approximation Including Application to Computationally Expensive Groundwater Remediation Design

    Science.gov (United States)

    Akhtar, T.; Shoemaker, C. A.

    2009-12-01

    Water Resources design decisions frequently entail trade-offs between conflicting objectives, for instance cost minimization and contaminant(s) concentration minimization. Multi-objective optimization methods (including those based on evolutionary methods) typically require a very large number of simulations to find a solution. Many groundwater remediation problems are modeled by computationally intensive systems of Partial Differential Equations and simulations. Hence it is desirable that these models are calibrated via algorithms that require less number of simulations. A new strategy called Gap Optimized Multi-Objective Optimization using Response Surfaces (GOMORS) is proposed for multi-objective optimization of computationally expensive problems. A multi-objective management framework is devised to analyze the trade-offs between conflicting objectives. We will present applications to test functions and to a groundwater contamination problem. The pumping rates at different well locations and management periods are the decision variables, and cost and contaminant concentration are the objectives to be minimized. The optimization strategy is iterative and makes use of Radial Basic Functions to develop response surfaces as an approximation of the computationally expensive objectives. A novel method called the Gap Optimization method is introduced. The gap optimization method incorporates use of a multi-objective evolutionary optimization (MOEA) method that is applied to select the next point for expensive evaluation and consequent improvement of the surrogate model. In order to provide sound alternatives to the decision makers, the evaluation point selection procedure strives to ensure that the final trade-off curve generated from the algorithm is close to the true Pareto front and includes a diverse set of solutions. After the final iteration, a set of candidate solutions is selected via the iterative Gap Optimization procedure and the last MOEA iteration, and

  13. Sustainability appraisal tools for soil and groundwater remediation: how is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures?

    Science.gov (United States)

    Beames, Alistair; Broekx, Steven; Lookman, Richard; Touchant, Kaat; Seuntjens, Piet

    2014-02-01

    The state-of-the-science in sustainability assessment of soil and groundwater remediation is evaluated with the application of four decision support systems (DSSs) to a large-scale brownfield revitalization case study. The DSSs were used to perform sustainability appraisals of four technically feasible remediation alternatives proposed for the site. The first stage of the review compares the scope of each tool's sustainability indicators, how these indicators are measured and how the tools differ in terms of standardization and weighting procedures. The second stage of the review compares the outputs from the tools and determines the key factors that result in differing results between tools. The evaluation of indicator sets and tool structures explains why the tools generate differing results. Not all crucial impact areas, as identified by sustainable remediation forums, are thoroughly considered by the tools, particularly with regard to the social and economic aspects of sustainability. Variations in boundary conditions defined between technologies, produce distorted environmental impact results, especially when in-situ and ex-situ technologies are compared. The review draws attention to the need for end users to be aware of which aspects of sustainability are considered, how the aspects are measured and how all aspects are ultimately balanced in the evaluation of potential remediation strategies. Existing tools can be improved by considering different technologies within the same boundary conditions and by expanding indicator sets to include indicators deemed to be relevant by remediation forums. © 2013.

  14. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA

    Science.gov (United States)

    Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.

    2015-01-01

    We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.

  15. Progress Toward Cleanup of Operable Unit 1 Groundwater at the US DOE Mound, Ohio, Site: Success of a Phase-Combined Remedy – 15310

    Energy Technology Data Exchange (ETDEWEB)

    Hooten, Gwendolyn [U.S. Department of Energy, Harrison, OH (United States). Office of Legacy Management; Cato, Rebecca [Stoller Newport News Nuclear Inc., Weldon Spring, MS (United States); Looney, Brian [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Huntsman, Brent [Terran Corporation, Beavercreek, OH (United States)

    2015-03-01

    Operable Unit 1 (OU-1) soil and groundwater have been affected by volatile organic compounds (VOC) Present groundwater remedy is collection, treatment, and disposal (pump and treat [P&T]) Several combinations of technologies were used to address soil and groundwater contamination Monitored natural attenuation (MNA) is a viable alternative Majority of source term has been excavated VOC concentrations in groundwater have decreased Attenuation mechanisms have been observed in the subsurface at OU-1

  16. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle...

  17. Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments.

    Science.gov (United States)

    McAleer, E B; Coxon, C E; Richards, K G; Jahangir, M M R; Grant, J; Mellander, Per E

    2017-05-15

    At the catchment scale, a complex mosaic of environmental, hydrogeological and physicochemical characteristics combine to regulate the distribution of groundwater and stream nitrate (NO3(-)). The efficiency of NO3(-) removal (via denitrification) versus the ratio of accumulated reaction products, dinitrogen (excess N2) & nitrous oxide (N2O), remains poorly understood. Groundwater was investigated in two well drained agricultural catchments (10km(2)) in Ireland with contrasting subsurface lithologies (sandstone vs. slate) and landuse. Denitrification capacity was assessed by measuring concentration and distribution patterns of nitrogen (N) species, aquifer hydrogeochemistry, stable isotope signatures and aquifer hydraulic properties. A hierarchy of scale whereby physical factors including agronomy, water table elevation and permeability determined the hydrogeochemical signature of the aquifers was observed. This hydrogeochemical signature acted as the dominant control on denitrification reaction progress. High permeability, aerobic conditions and a lack of bacterial energy sources in the slate catchment resulted in low denitrification reaction progress (0-32%), high NO3(-) and comparatively low N2O emission factors (EF5g1). In the sandstone catchment denitrification progress ranged from 4 to 94% and was highly dependent on permeability, water table elevation, dissolved oxygen concentration solid phase bacterial energy sources. Denitrification of NO3- to N2 occurred in anaerobic conditions, while at intermediate dissolved oxygen; N2O was the dominant reaction product. EF5g1 (mean: 0.0018) in the denitrifying sandstone catchment was 32% less than the IPCC default. The denitrification observations across catchments were supported by stable isotope signatures. Stream NO3(-) occurrence was 32% lower in the sandstone catchment even though N loading was substantially higher than the slate catchment.

  18. Treatment tests for ex situ removal of chromate, nitrate, and uranium (VI) from Hanford (100-HR-3) groundwater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.; Duncan, J.B.

    1993-11-15

    This report describes batch and anion exchange column laboratory-scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}), and uranium (present as uranyl (uranium [VI]) carbonato anionic species) from contaminated Hanford Site groundwaters. The technologies investigated include chemical precipitation or coprecipitation to remove chromate and uranium, and anion exchange to remove chromate, uranium, and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan (DOE-RL 1993). The goal of these tests was to determine the best method to remove selected contaminants to below the concentration of the project performance goals. The raw data and observations made during these tests can be found in the Westinghouse Hanford Company (WHC) laboratory notebooks (Beck 1992, Herting 1993). The method recommended for future study is anion exchange with Dowex 21K resin.

  19. Simulation–optimization model for groundwater contamination remediation using meshfree point collocation method and particle swarm optimization

    Indian Academy of Sciences (India)

    Mategaonkar Meenal; T I Eldho

    2012-06-01

    Remediation of the groundwater contamination problem is a tedious, time consuming and expensive process. Pump and treat (PAT) is one of the commonly used techniques for groundwater remediation in which the contaminated groundwater is pumped, treated and put back to the aquifer system or other sources. Developing simulation-optimization (S/O) model proved to be very useful in the design process of an effective PAT system. Simulation models help in predicting the spatial and temporal variation of the contamination plume while optimization models help in minimizing the cost of pumping. Generally, grid or mesh based models such as Finite Difference Method (FDM) or Finite Element Methods (FEM) is used for the groundwater flow and transport simulation. But it is found that grid/mesh generation is a time consuming process. Therefore, recently Meshfree (MFree) based numerical models are developed to avoid this difficulty of meshing and remeshing. MFree Point Collocation Method (PCM) is a simple meshfree method used for the simulation of coupled groundwater flow and contaminant transport. For groundwater optimization problems, even though number of methods such as linear programming, nonlinear programming, etc. are available, evolutionary algorithm based techniques such as genetic algorithm (GA) and particle swarm optimization (PSO) are found to be very effective. In this paper, a simulation model using MFree PCM for confined groundwater flow and transport and a PSO based single objective optimization model are developed and coupled to get an effective S/O model for groundwater remediation using PAT. The S/O model based on PCM and PSO is applied for a polluted hypothetical confined aquifer and its performance is compared with Finite Element Method–Binary Coded Genetic Algorithm (FEM–GA) model. It is found that both the models are in good agreement with each other showing the applicability of the present approach. The PCM–PSO based S/O model is simple and more

  20. A master-slave parallel hybrid multi-objective evolutionary algorithm for groundwater remediation design under general hydrogeological conditions

    Science.gov (United States)

    Wu, J.; Yang, Y.; Luo, Q.; Wu, J.

    2012-12-01

    This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.

  1. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    Science.gov (United States)

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  2. Redox Roll-Front Mobilization of Geogenic Uranium by Nitrate Input into Aquifers: Risks for Groundwater Resources.

    Science.gov (United States)

    van Berk, Wolfgang; Fu, Yunjiao

    2017-01-03

    Redox conditions are seen as the key to controlling aqueous uranium concentrations (cU(aq)). Groundwater data collected by a state-wide groundwater quality monitoring study in Mecklenburg-Western Pomerania (Germany) reveal peak cU(aq) up to 75 μg L(-1) but low background uranium concentrations (median cU(aq) aquifer depth and performed semigeneric 2D reactive mass transport modeling which is based on chemical thermodynamics. The combined interpretation of modeling results and measured data reveals that high cU(aq) and its depth-specific distribution depending on redox conditions is a result of a nitrate-triggered roll-front mobilization of geogenic uranium in the studied aquifers which are unaffected by nuclear activities. The modeling results show that groundwater recharge containing (fertilizer-derived) nitrate drives the redox shift from originally reducing toward oxidizing environments, when nitrate input has consumed the reducing capacity of the aquifers, which is present as pyrite, degradable organic carbon, and geogenic U(IV) minerals. This redox shift controls the uranium roll-front mobilization and results in high cU(aq) within the redoxcline. Moreover, the modeling results indicate that peak cU(aq) occurring at this redox front increase along with the temporal progress of such redox conversion within the aquifer.

  3. Microbial community in packed bed bioreactor involved in nitrate remediation from low level radioactive waste.

    Science.gov (United States)

    Mishra, Madhusmita; Jain, Savita; Thakur, Ashoke Ranjan; RayChaudhuri, Shaon

    2014-03-01

    Nitrate is the second largest contaminant of agriculture soil after pesticides. It also is a major pollutant from nuclear and metallurgical operations. Conventional methods for nitrate removal suffers from high cost and complexity leaving bioremediation as a viable alternative strategy. A pilot plant of 2.5 m(3)/day capacity has been functioning since 2005 based on microbial consortia treating actual effluent from nuclear power plant having pH of 7-8.5 (optimum) with N:C ratio of 1:1.7. The maximum biodegradable nitrate concentration of 3000 ppm could be reduced to below permissible limit (44.2 ppm) within 24 h in presence of sodium acetate as carbon source. Culture independent analysis (16S rDNA based) revealed clones having closest identity with uncultured bacterium, Pseudomonas stutzeri and Azoarcus sp. The existence of dissimilatory pathway of nitrate reduction in the community DNA is indicated by presence of nirS and nirK gene. Though the microbial mass was developed using municipal sewage, absence of Mycobacterium sp was confirmed using PCR. The understanding of the molecular identification of the consortium would help in developing the preservation strategy of the microbial mass for replication and perpetuation of the system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. PERFORMANCE EVALUATION OF A CARBON-BASED REACTIVE BARRIER FOR NITRATE REMEDIATION

    Science.gov (United States)

    Nitrate (NO3-) is a common ground water contaminant related to agricultural activity, waste water disposal, leachate from landfills, septic systems, and industrial processes. This study reports on the performance of a carbon-based permeable reactive barrier (PRB) that was constr...

  5. CARBON-BASED REACTIVE BARRIER FOR NITRATE REMEDIATION AT A FORMER SWINE CAFO

    Science.gov (United States)

    Nitrate (NO3-) is a common ground water contaminant related to agricultural activity, waste water disposal, leachate from landfills, septic systems, and industrial processes. This study reports on the performance of a carbon-based permeable reactive barrier (PRB) that was constr...

  6. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  7. Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain).

    Science.gov (United States)

    Chica-Olmo, Mario; Luque-Espinar, Juan Antonio; Rodriguez-Galiano, Victor; Pardo-Igúzquiza, Eulogio; Chica-Rivas, Lucía

    2014-02-01

    Groundwater nitrate pollution associated with agricultural activity is an important environmental problem in the management of this natural resource, as acknowledged by the European Water Framework Directive. Therefore, specific measures aimed to control the risk of water pollution by nitrates must be implemented to minimise its impact on the environment and potential risk to human health. The spatial probability distribution of nitrate contents exceeding a threshold or limit value, established within the quality standard, will be helpful to managers and decision-makers. A methodology based on non-parametric and non-linear methods of Indicator Kriging was used in the elaboration of a nitrate pollution categorical map for the aquifer of Vega de Granada (SE Spain). The map has been obtained from the local estimation of the probability that a nitrate content in an unsampled location belongs to one of the three categories established by the European Water Framework Directive: CL. 1 good quality [Min - 37.5 ppm], CL. 2 intermediate quality [37.5-50 ppm] and CL. 3 poor quality [50 ppm - Max]. The obtained results show that the areas exceeding nitrate concentrations of 50 ppm, poor quality waters, occupy more than 50% of the aquifer area. A great proportion of the area's municipalities are located in these poor quality water areas. The intermediate quality and good quality areas correspond to 21% and 28%, respectively, but with the highest population density. These results are coherent with the experimental data, which show an average nitrate concentration value of 72 ppm, significantly higher than the quality standard limit of 50 ppm. Consequently, the results suggest the importance of planning actions in order to control and monitor aquifer nitrate pollution. © 2013.

  8. Implications of Fe/Pd Bimetallic Nanoparticles Immobilized on Adsorptive Activated Carbon for the Remediation of Groundwater and Sediment Contaminated with PCBs

    Science.gov (United States)

    In order to respond to the current limitations and challenges in remediating groundwater and sediment contaminated with polychlorinated biphenyls (PCBs), we have recently developed a new strategy, integration of the physical adsorption of PCBs with their electrochemical dechlori...

  9. Implications of Fe/Pd Bimetallic Nanoparticles Immobilized on Adsorptive Activated Carbon for the Remediation of Groundwater and Sediment Contaminated with PCBs

    Science.gov (United States)

    In order to respond to the current limitations and challenges in remediating groundwater and sediment contaminated with polychlorinated biphenyls (PCBs), we have recently developed a new strategy, integration of the physical adsorption of PCBs with their electrochemical dechlori...

  10. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  11. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    Energy Technology Data Exchange (ETDEWEB)

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is

  12. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    Energy Technology Data Exchange (ETDEWEB)

    Borden, R.C.; Cherry, R.S.

    2000-09-30

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced {approximately}7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe{reg_sign} rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The

  13. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    Energy Technology Data Exchange (ETDEWEB)

    Borden, R. E.; Cherry, Robert Stephen

    2000-09-01

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced ~7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe® rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The system was tested in a

  14. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters

    Science.gov (United States)

    Kazakis, Nerantzis; Voudouris, Konstantinos S.

    2015-06-01

    In the present study the DRASTIC method was modified to estimate vulnerability and pollution risk of porous aquifers to nitrate. The qualitative parameters of aquifer type, soil and impact of the vadose zone were replaced with the quantitative parameters of aquifer thickness, nitrogen losses from soil and hydraulic resistance. Nitrogen losses from soil were estimated based on climatic, soil and topographic data using indices produced by the GLEAMS model. Additionally, the class range of each parameter and the final index were modified using nitrate concentration correlation with four grading methods (natural breaks, equal interval, quantile and geometrical intervals). For this reason, seventy-seven (77) groundwater samples were collected and analyzed for nitrate. Land uses were added to estimate the pollution risk to nitrates. The two new methods, DRASTIC-PA and DRASTIC-PAN, were then applied in the porous aquifer of Anthemountas basin together with the initial versions of DRASTIC and the LOSN-PN index. The two modified methods displayed the highest correlations with nitrate concentrations. The two new methods provided higher discretisation of the vulnerability and pollution risk, whereas the high variance of the (ANOVA) F statistic confirmed the increase of the average concentrations of NO3-, increasing from low to high between the vulnerability and pollution risk classes. The importance of the parameters of hydraulic resistance of the vadose zone, aquifer thickness and land use was confirmed by single-parameter sensitivity analysis.

  15. In situ nitrate from groundwater using freely available carbon material at an industrially polluted site

    CSIR Research Space (South Africa)

    Israel, S

    2011-09-01

    Full Text Available concentrations, nitrate in drinking water can be toxic to infants and young animals. In situ treatment could be a robust and effective technique for removal of nitrate, iron and manganese....

  16. Network environmental analysis based ecological risk assessment of a naphthalene-contaminated groundwater ecosystem under varying remedial schemes

    Science.gov (United States)

    Wang, Zheng; He, Li; Lu, Hongwei; Ren, Lixia; Xu, Zongda

    2016-12-01

    Many of the existing ecological risk studies for groundwater ecosystems paid little attention to either small-scale regions (e.g., an industrial contamination site) or ignored anthropogenic activities (e.g., site remediation). This study presented a network environmental analysis based ecological risk assessment (ERA) framework to a naphthalene-contaminated groundwater remediation site. In the ERA, four components (vegetation, herbivore, soil micro-organism and carnivore) were selected, which are directly or indirectly exposed to the contaminated groundwater ecosystem. By incorporating both direct and indirect ecosystem interactions, the risk conditions of the whole ecosystem and its components were quantified and illustrated in the case study. Results indicate that despite there being no input risks for herbivores and carnivores, the respective integral risks increase to 0.0492 and 0.0410. For soil micro-organisms, 58.8% of the integral risk comes from the input risk, while the other 41.2% of the integral risk comes from the direct risk. Therefore, the risk flow within the components is a non-negligible risk origination for soil micro-organisms. However, the integral risk for vegetation was similar to the input risk, indicating no direct risk. The integral risk at the 5-year point after remediation was the highest for the four components. This risk then decreased at the 10-year point, and then again increased. Results from the sensitivity analysis also suggest that the proposed framework is robust enough to avoid disturbance by parameter uncertainty.

  17. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.

    Science.gov (United States)

    De Biase, Cecilia; Carminati, Andrea; Oswald, Sascha E; Thullner, Martin

    2013-11-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile losses to the atmosphere. Especially for (potentially) toxic VOCs, the latter needs to be minimized to limit atmospheric emissions. In this study, numerical simulation was used to investigate quantitatively the removal of volatile organic compounds in two pilot-scale water treatment systems: an unplanted vertical flow filter and a planted one, which could also be called a vertical flow constructed wetland, both used for the treatment of contaminated groundwater. These systems were intermittently loaded with contaminated water containing benzene and MTBE as main VOCs. The highly dynamic but permanently unsaturated conditions in the porous medium facilitated aerobic biodegradation but could lead to volatile emissions of the contaminants. Experimental data from porous material analyses, flow rate measurements, solute tracer and gas tracer test, as well as contaminant concentration measurements at the boundaries of the systems were used to constrain a numerical reactive transport modeling approach. Numerical simulations considered unsaturated water flow, transport of species in the aqueous and the gas phase as well as aerobic degradation processes, which made it possible to quantify the rates of biodegradation and volatile emissions and calculating their contribution to total contaminant removal. A range of degradation rates was determined using experimental results of both systems under two operation modes and validated by field data obtained at different operation modes applied to the filters. For both filters, simulations and experimental data point to high biodegradation rates, if the flow filters have had time to build up their removal capacity. For this case volatile

  18. Linking ground-water age and chemistry data along flow paths: Implications for trends and transformations of nitrate and pesticides

    Science.gov (United States)

    Tesoriero, Anthony J.; Saad, David A.; Burow, Karen R.; Frick, Elizabeth A.; Puckett, Larry J.; Barbash, Jack E.

    2007-10-01

    Tracer-based ground-water ages, along with the concentrations of pesticides, nitrogen species, and other redox-active constituents, were used to evaluate the trends and transformations of agricultural chemicals along flow paths in diverse hydrogeologic settings. A range of conditions affecting the transformation of nitrate and pesticides (e.g., thickness of unsaturated zone, redox conditions) was examined at study sites in Georgia, North Carolina, Wisconsin, and California. Deethylatrazine (DEA), a transformation product of atrazine, was typically present at concentrations higher than those of atrazine at study sites with thick unsaturated zones but not at sites with thin unsaturated zones. Furthermore, the fraction of atrazine plus DEA that was present as DEA did not increase as a function of ground-water age. These findings suggest that atrazine degradation occurs primarily in the unsaturated zone with little or no degradation in the saturated zone. Similar observations were also made for metolachlor and alachlor. The fraction of the initial nitrate concentration found as excess N 2 (N 2 derived from denitrification) increased with ground-water age only at the North Carolina site, where oxic conditions were generally limited to the top 5 m of saturated thickness. Historical trends in fluxes to ground water were evaluated by relating the times of recharge of ground-water samples, estimated using chlorofluorocarbon concentrations, with concentrations of the parent compound at the time of recharge, estimated by summing the molar concentrations of the parent compound and its transformation products in the age-dated sample. Using this approach, nitrate concentrations were estimated to have increased markedly from 1960 to the present at all study sites. Trends in concentrations of atrazine, metolachlor, alachlor, and their degradates were related to the timing of introduction and use of these compounds. Degradates, and to a lesser extent parent compounds, were detected

  19. Perennial filter strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion.

    Science.gov (United States)

    Zhou, Xiaobo; Helmers, Matthew J; Asbjornsen, Heidi; Kolka, Randy; Tomer, Mark D

    2010-01-01

    Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3-N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20 PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)--soybean [Glycine max. (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3-N concentration from 2005 to 2008. The results indicated significant increases in NO3-N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion.

  20. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia).

    Science.gov (United States)

    Re, V; Sacchi, E; Kammoun, S; Tringali, C; Trabelsi, R; Zouari, K; Daniele, S

    2017-09-01

    Nitrate contamination still remains one of the main groundwater quality issues in several aquifers worldwide, despite the perduring efforts of the international scientific community to effectively tackle this problem. The classical hydrogeological and isotopic investigations are obviously of paramount importance for the characterization of contaminant sources, but are clearly not sufficient for the correct and long-term protection of groundwater resources. This paper aims at demonstrating the effectiveness of the socio-hydrogeological approach as the best tool to tackle groundwater quality issues, while contributing bridging the gap between science and society. An integrated survey, including land use, hydrochemical (physicochemical parameters and major ions) and isotopic (δ(15)NNO3 and δ(18)ONO3) analyses, coupled to capacity building and participatory activities was carried out to correctly attribute the nitrate origin in groundwater from the Grombalia Basin (North Tunisia), a region where only synthetic fertilizers have been generally identified as the main source of such pollution. Results demonstrates that the basin is characterized by high nitrate concentrations, often exceeding the statutory limits for drinking water, in both the shallow and deep aquifers, whereas sources are associated to both agricultural and urban activities. The public participation of local actors proved to be a fundamental element for the development of the hydrogeological investigation, as it permitted to obtain relevant information to support data interpretation, and eventually guaranteed the correct assessment of contaminant sources in the studied area. In addition, such activity, if adequately transferred to regulators, will ensure the effective adoption of management practices based on the research outcomes and tailored on the real needs of the local population, proving the added value to include it in any integrated investigation. Copyright © 2017 Elsevier B.V. All rights

  1. Assessing the Life Cycle Impact of Four Groundwater Remediation Technologies: P&T, EIB, PRB, and ISM

    Science.gov (United States)

    Hou, D.; Al-Tabbaa, A.

    2012-12-01

    As sustainable remediation draws attention from both industry and academia, there is growing interest in evaluating the environmental sustainability of various environmental remediation technologies. This study aims at assessing four groundwater remediation technologies from a life cycle impact perspective: pump and treat (P&T), enhanced in-situ bioremediation (EIB), permeable reactive barrier (PRB), and in-situ soil mixing (ISM). The technologies were compared under a variety of scenarios, with site location, plume dimension, hydrology, and chemistry and geochemistry parameters changing in a wide range. This life cycle assessment (LCA) has chosen chlorinated ethylene as the study subject because chlorinated solvents are the most prevalent organic contaminants in soil and groundwater. The USEPA TRACI method was used in the life cycle impact assessment (LCIA). A multi-criteria decision analysis (MCDA) score is used to rank the four remediation technologies. The assessment results indicated that P&T tended to have the highest life cycle impact under most scenarios. The other three technologies can all be the most desired technology (with lowest life cycle impact), under different distributional, hydrogeological, and chemical conditions: PRB was the most desired when treatment zone was long, hydraulic gradient or hydraulic conductivity was low, or contaminants degraded fast in the reactive media; ISM became the most desirable when hydraulic gradient or hydraulic conductivity was very high; and EIB was most desirable under most other conditions.

  2. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  3. Necessary and Sufficient Standards Closure Process pilot: F- and H-Area groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Bullington, M.

    1995-09-25

    The DOE Standards Committee`s Necessary and Sufficient (N and S) Standards Closure Process was piloted at SRS on the F- and H- Area Seepage Basins Groundwater Remediation Project. For this existing Environmental Restoration project, the set of N and S standards for design and safety documentation were identified, independently confirmed and approved. Implementation of these standards on the project can lead to a $2.8 Million cost savings on the design, construction/installation, and safety documentation scope of $18 Million. These savings were primarily from site design of power distribution and piping for the water treatment units. Also contributing to the savings were a more appropriate level of safety documentation and the alternate ``commercial`` bids made by vendors in response to a request for proposals for water treatment units. The use of the N and S Process on an ER activity, details on the cost savings, lessons learned and recommendations for broader implementation of the N and S Process are described herein.

  4. Complex Controls on Groundwater Quality in Growing Mid-sized Cities: A Case Study Focused on Nitrate and Emerging Contaminants

    Science.gov (United States)

    Ohr, C. A.; Godsey, S.; Welhan, J. A.; Larson, D. M.; Lohse, K. A.; Finney, B.; Derryberry, D.

    2015-12-01

    Many regions rely on quality groundwater to support urban growth. Groundwater quality often responds in a complex manner to stressors such as land use change, climate change, or policy decisions. Urban growth patterns in mid-sized cities, especially ones that are growing urban centers in water-limited regions in the western US, control and are controlled by water availability and its quality. We present a case study from southeastern Idaho where urban growth over the past 20 years has included significant ex-urban expansion of houses that rely on septic systems rather than city sewer lines for their wastewater treatment. Septic systems are designed to mitigate some contaminants, but not others. In particular, nitrates and emerging contaminants, such as pharmaceuticals, are not removed by most septic systems. Thus, even well-maintained septic systems at sufficiently high densities can impact down gradient water quality. Here we present patterns of nitrate concentrations over the period from 1985-2015 from the Lower Portneuf River Valley in southeastern Idaho. Concentrations vary from 0.03 to 27.09 nitrate-nitrogen mg/L, with average values increasing significantly over the 30 year time period from 3.15 +/- 0.065 to 3.57 +/- 0.43 mg/L. We examine temporal changes in locations of nitrate hotspots, and present pilot data on emerging contaminants of concern. Initial results suggest that high nitrate levels are generally associated with higher septic densities, but that this pattern is influenced by legacy agricultural uses and strongly controlled by underlying aquifer properties. Future work will include more detailed hydrological modeling to predict changes in hotspot locations under potential climate change scenarios.

  5. Simulation of nitrate-concentration variation and estimation of nitrogen-form transformation in groundwater by modified rain-runoff model

    Science.gov (United States)

    Hong, N.; Hama, T.; Suenaga, Y.; Huang, X.; Wei, Q.; Kawagoshi, Y.

    2015-12-01

    Groundwater is an important drinking-water source throughout the world. Nitrate is considered as one of the most widespread contaminant in groundwater and some studies have presented that intake of excess amount of nitrate could be associated with several types of disease. Modeling of nitrate-concentration in groundwater and estimation of nitrogen-form transformation by meteorological effects is necessary for countermeasure to nitrate contamination in groundwater. In this research, groundwater-quality tank model (GQTM) coupled with Fuzzy Optimize Method (FOM) and Shuffled Complex Evolution-University of Arizona (SCE-UA) is proposed to simulate NO3- and Cl- concentrations simultaneously. For the simulation, daily precipitation data and weekly data of NO3- and Cl- concentrations at two observation wells in Kumamoto City for three years (2012-2015) were used. The GQTM coupled with FOM and SCE-UA algorithm provided accurate simulation results in the variations of NO3- and Cl- concentrations. Difference in the concentration-variation ratio between NO3- and Cl- suggested that NO3- concentration variation was mainly due to dilution and concentration processes rather than nitrogen transformation by nitrification-denitrification reaction in the both observation wells. This calculation provides a simple and reliable method in nitrification and denitrification process estimation. The GQTM coupled with FOM and SCE-UA must be useful for managing of groundwater supplies in effective and sustainable manner by providing scientific evidence for the risk of groundwater quality.

  6. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: observations, calibrated models, simulations and agro-hydrological conclusions.

    Science.gov (United States)

    Kurtzman, Daniel; Shapira, Roi H; Bar-Tal, Asher; Fine, Pinchas; Russo, David

    2013-08-01

    Nitrate contamination of groundwater under land used for intensive-agriculture is probably the most worrisome agro-hydrological sustainability problem worldwide. Vadose-zone samples from 0 to 9 m depth under citrus orchards overlying an unconfined aquifer were analyzed for variables controlling water flow and the fate and transport of nitrogen fertilizers. Steady-state estimates of water and NO3-N fluxes to groundwater were found to vary spatially in the ranges of 90-330 mm yr(-1) and 50-220 kg ha(-1) yr(-1), respectively. Calibration of transient models to two selected vadose-zone profiles required limiting the concentration of NO3-N in the solution that is taken up by the roots to 30 mg L(-1). Results of an independent lysimeter experiment showed a similar nitrogen-uptake regime. Simulations of past conditions revealed a significant correlation between NO3-N flux to groundwater and the previous year's precipitation. Simulations of different nitrogen-application rates showed that using half of the nitrogen fertilizer added to the irrigation water by farmers would reduce average NO3-N flux to groundwater by 70%, decrease root nitrogen uptake by 20% and reduce the average pore water NO3-N concentration in the deep vadose zone to below the Israeli drinking water standard; hence this rate of nitrogen application was found to be agro-hydrologically sustainable. Beyond the investigation of nitrate fluxes to groundwater under citrus orchards and the interesting case-study aspects, this work demonstrates a methodology that enables skillful decisions concerning joint sustainability of both the water resource and agricultural production in a common environmental setting.

  7. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    Energy Technology Data Exchange (ETDEWEB)

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  8. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  9. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater

    Science.gov (United States)

    Schaefer, C. E.; Fuller, M. E.; Condee, C. W.; Lowey, J. M.; Hatzinger, P. B.

    2007-01-01

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate (˜ 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.

  10. The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron.

    Science.gov (United States)

    Cho, Dong-Wan; Chon, Chul-Min; Jeon, Byong-Hun; Kim, Yongje; Khan, Moonis Ali; Song, Hocheol

    2010-10-01

    Bench-scale batch experiments were performed to investigate the feasibility of using different types of clay minerals (bentonite, fuller's earth, and biotite) with zero-valent iron for their potential utility in enhancing nitrate reduction and ammonium control. Kinetics experiments performed with deionized water (DW) and groundwater (GW) revealed nitrate reduction by Fe(0) proceeded at significantly faster rate in GW than in DW, and such a difference was attributed to the formation of green rust in GW. The amendment of the minerals at the dose of 25 g L(-1) in Fe(0) reaction in GW resulted in approximately 41%, 43%, and 33% more removal of nitrate in 64 h reaction for bentonite, fuller's earth, and biotite, respectively, compared to Fe(0) alone reaction. The presumed role of the minerals in the rate enhancement was to provide sites for the formation of surface bound green rust. Bentonite and fuller's earth also effectively removed ammonium produced from nitrate reduction by adsorption, with the removal efficiencies significantly increased with the increase in mineral dose above 5:1 Fe(0) to mineral mass ratio. Such a removal of ammonium was not observed for biotite, presumably due to its lack of swelling property. Equilibrium adsorption experiments indicated bentonite and fuller's earth had maximum ammonium adsorption capacity of 5.6 and 2.1 mg g(-1), respectively.

  11. Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model.

    Science.gov (United States)

    Rebolledo, Boris; Gil, Antonia; Flotats, Xavier; Sánchez, José Ángel

    2016-04-15

    In the present study an overlay method to assess groundwater vulnerability is proposed. This new method based on multicriteria decision analysis (MCDA) was developed and validated using an appropriate case study in Aragon area (NE Spain). The Vulnerability Index to Nitrates from Agricultural Sources (VINAS) incorporates a novel Logic Scoring of Preferences (LSP) approach, and it has been developed using public geographic information from the European Union. VINAS-LSP identifies areas with five categories of vulnerability, taking into account the hydrogeological and environmental characteristics of the territory as a whole. The resulting LSP map is a regional screening tool that can provide guidance on the potential risk of nitrate pollution, as well as highlight areas where specific research and farming planning policies are required.

  12. Numerical simulation of a fine-grained denitrification layer for removing septic system nitrate from shallow groundwater

    Science.gov (United States)

    MacQuarrie, Kerry T. B.; Sudicky, Edward A.; Robertson, William D.

    2001-11-01

    One of the most common methods to dispose of domestic wastewater involves the release of septic effluent from drains located in the unsaturated zone. Nitrogen from such systems is currently of concern because of nitrate contamination of drinking water supplies and eutrophication of coastal waters. It has been proposed that adding labile carbon sources to septic distribution fields could enhance heterotrophic denitrification and thus reduce nitrate concentrations in shallow groundwater. In this study, a numerical model which solves for variably saturated flow and reactive transport of multiple species is employed to investigate the performance of a drain field design that incorporates a fine-grained denitrification layer. The hydrogeological scenario simulated is an unconfined sand aquifer. The model results suggest that the denitrification layer, supplemented with labile organic carbon, may be an effective means to eliminate nitrogen loading to shallow groundwater. It is also shown that in noncalcareous aquifers, the denitrification reaction may provide sufficient buffering capacity to maintain near neutral pH conditions beneath and down gradient of the drain field. Leaching of excess dissolved organic carbon (DOC) from the denitrification layer is problematic, and causes an anaerobic plume to develop in simulations where the water table is less than 5-6 m below ground surface; this anaerobic plume may lead to other down gradient changes in groundwater quality. A drain field and denitrification layer of smaller dimensions is shown to be just as effective for reducing nitrate, but has the benefit of reducing the excess DOC leached from the layer. This configuration will minimize the impact of wastewater disposal in areas where the water table is as shallow as 3.5 m.

  13. Development Of A New Redox-Active Porous Material For Groundwater Remediation

    Science.gov (United States)

    Zhuang, Y.; White, M.; Fialips, C. I.

    2008-12-01

    Laboratory experiments have shown that reducing iron in smectites promotes the degradation of various redox sensitive organics, including nitroaromatics and chlorinated compounds. Fe-bearing smectites have however never been used in the design of permeable reactive barriers (PRBs) for groundwater remediation. One basic requirement when designing PRBs is to keep their permeability equal to or higher than that of the surrounding aquifer materials to avoid affecting groundwater flow. Smectite clays are very low permeability materials and, when physically mixed with permeable materials, such as sand, clay particles can migrate and clog up pores, resulting in a progressive loss in permeability. In this study, we are developing a novel Fe-bearing clay-material suitable for permeable water treatment systems, including PRBs. Fe-smectite particles are tightly attached to the surface of sand grains using polyvinyl alcohol (PVA). To identify optimum procedures, we are studying the relationships between the size and texture of the sand grains, the clay/PVA and clay/sand ratio, the quality and extent of clay coverage, the stability of the clay-coated sand to changes in pH and redox conditions, and its hydraulic properties before and after iron reduction. The best clay coatings have been obtained using the most angular sands with rough surfaces and medium grain sizes (0.3-0.6mm). An optimum coating of 61.5 mg clay/g sand was obtained using the nontronite Nau- 2. The clay-coated sand is stable when pH is below 7 (no detachment of the clay particles). For pH higher than 7, a maximum of 14% of the clay-coating is detaching when the sample is not disturbed, and 28% if shaken. XRD analyses of the clay-coated sand also show that the coated smectite retains its swelling properties (d-spacing at 17.1Å after ethylene glycol treatment). The clay-coated sand is also stable to changes in redox conditions, with less than 15% detachment after 4h of treatment with sodium dithionite at 25

  14. Viscosity-Modification to Improve Remediation Efficiencies within Heterogeneous Contaminated Groundwater Aquifers: Laboratory and Field-Scale Evaluation

    Science.gov (United States)

    Silva, J. A.; Crimi, M.

    2013-12-01

    A key challenge in in situ groundwater remediation practice is achieving efficient contact between the injected remedial fluid and the target contamination in the presence of subsurface permeability heterogeneities. Even apparently small permeability contrasts can affect the delivery and subsurface distribution of injected remedial fluids, as a result of preferential flows, and reduce treatment effectiveness as a result of bypassing of contaminated media of lower permeability. Viscosity-modification is a technique that can be used to mitigate the effects of permeability heterogeneity and improve the delivery and distribution of remediation fluids during subsurface injection. Viscosity-modification involves increasing the viscosity of the injected fluid, and modifying the fluids rheological character in some cases. The increased viscosity provides a reduced fluid mobility condition within higher permeability media that, in turn, enhances the penetration of fluids into adjacent lower permeability media, improving the overall sweep efficiency within heterogeneous geomedia. Herein, we present the results of laboratory (two-dimensional flow tank) and numerical experiments that were designed to critically evaluate the utility of viscosity-modification for groundwater remediation application. Specifically, we will address the benefits and limitations of the approach and highlight the effect of system variables on the degree sweep efficiency improvement achievable. We also present the results of a recently completed Environmental Security Technology Certification Program (ESTCP) technology validation project in which viscosity-modification was applied to permanganate in situ chemical oxidation. Site selection criteria, implementation design considerations, and the long-term effects of viscosity-modified fluid treatments will be discussed.

  15. Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater

    Institute of Scientific and Technical Information of China (English)

    Mullika Teerakun; Alissara Reungsang; Chien-Jung Lin; Chih-Hsiang Liao

    2011-01-01

    This study attempted to construct a three series barrier system to treat high concentrations of trichloroethylene (TCE; 500 mg/L) in synthetic groundwater. The system consisted of three reactive barriers using iron fillings as an iron-based barrier in the first column,sugarcane bagasse mixed with anaerobic sludge as an anaerobic barrier in the second column, and a biofilm coated on oxygen carbon inducer releasing material as an aerobic barrier in the third column. In order to evaluate the extent of removal of TCE and its metabolites in the aquifer down gradient of the barrier system, a fourth column filled with sand was applied. Residence time of the system was investigated by a bromide tracer test. The results showed that residence time in the column system of the control set and experimental set were 23.62 and 29.99 days, respectively. The efficiency of the three series barrier system in removing TCE was approximately 84% in which the removal efficiency of TCE by the iron filling barrier, anaerobic barrier and aerobic barrier were 42%, 16% and 25%,respectively. cis-Dichloroethylene (cis-DCE), vinyl chloride (VC), ethylene and chloride ions were observed as metabolites following TCE degradation. The presence of chloride ions in the effluent from the column system indicated the degradation of TCE. However,cis-DCE and VC were not fully degraded by the proposed barrier system which suggested that another remediation technology after the barrier treatment such as air sparging and adsorption by activated carbon should be conducted.

  16. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    Science.gov (United States)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  17. Natural Oxidant Demand Variability, Potential Controls, and Implications for in Situ, Oxidation-Based Remediation of Contaminated Groundwater

    Science.gov (United States)

    Dettmer, A.; Cruz, S.; Dungan, B.; Holguin, F. O.; Ulery, A. L.; Hunter, B.; Carroll, K. C.

    2014-12-01

    Naturally occurring reduced species associated with subsurface materials can impose a significant natural oxidant demand (NOD), which is the bulk consumption of oxidants by soil water, minerals, and organic matter. Although injection of oxidants has been used for chemical transformation of organic contaminants, NOD represents a challenge for the in-situ delivery of oxidants as a remediation alternative. Co-injection of complexation agents with oxidants has been proposed to facilitate the delivery of oxidants for in situ chemical oxidation remediation of contaminated groundwater. This study investigates variability of NOD for different oxidants and sediments. The effect of the addition of various complexation agents, including EDTA, tween 80, hydroxypropyl-beta-cyclodextrin (HPCD), humic acid, and four generations of poly(amidoamine) (PAMAM) dendrimers, on the NOD was also examined. NOD was measured for a clay loam (collected from Air Force Plant 44 in Tucson, AZ). Varying amounts of biosolids were mixed with subsamples of the clay loam to create three additional reference soils in order to study the effect of organic matter and other soil characteristics on the NOD. Bench-scale laboratory experiments were conducted to determine the NOD for various oxidants, using the four soils, and replicated with and without various delivery agents. Measured NOD showed variability for each soil and oxidant composition. Additionally, significant differences were observed in NOD with the addition of delivery agents. The results support the elucidation of potential controls over NOD and have implications for in situ, oxidation-based remediation of contaminated groundwater.

  18. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  19. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging.

    Science.gov (United States)

    Schubert, Michael; Schmidt, Axel; Müller, Kai; Weiss, Holger

    2011-02-01

    A common approach for remediation of groundwater contamination with volatile organic compounds (VOCs) is contaminant stripping by means of in situ air sparging (IAS). For VOC stripping, pressurized air is injected into the contaminated groundwater volume, followed by the extraction of the contaminant-loaded exhaust gas from the vadose soil zone and its immediate on-site treatment. Progress assessment of such remediation measure necessitates information (i) on the spatial range of the IAS influence and (ii) on temporal variations of the IAS efficiency. In the present study it was shown that the naturally occurring noble gas radon can be used as suitable environmental tracer for achieving the related spatial and temporal information. Due to the distinct water/air partitioning behaviour of radon and due to its straightforward on-site detectability, the radon distribution pattern in the groundwater can be used as appropriate measure for assessing the progression of an IAS measure as a function of space and time. The presented paper discusses both the theoretical background of the approach and the results of an IAS treatment accomplished at a VOC contaminated site lasting six months, during which radon was applied as efficiency indicator.

  20. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    Science.gov (United States)

    Katz, B.G.; Chelette, A.R.; Pratt, T.R.

    2004-01-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO3 values (1.7-13.8???) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (??15N-NO3=5.3-8.9???) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA

  1. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    Science.gov (United States)

    Katz, Brian G.; Chelette, Angela R.; Pratt, Thomas R.

    2004-04-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m 3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO 3 values (1.7-13.8‰) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (δ 15N-NO 3=5.3-8.9‰) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA

  2. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: Natural sources versus human pollution

    Science.gov (United States)

    Kreitler, Charles W.; Browning, Lawrence A.

    1983-02-01

    Results of nitrogen-isotope analyses of nitrate in the waters of the Cretaceous Edwards aquifer in Texas, U.S.A., indicate that the source of the nitrate is naturally-occurring nitrogen compounds in the recharge streams. In contrast, nitrogen isotopes of nitrate in the fresh waters of the Pleistocene Ironshore Formation on Grand Cayman Island, West Indies, indicate that human wastes are the source of the nitrate. The Cretaceous Edwards Limestone is a prolific aquifer that produces principally from fracture porosity along the Balcones Fault Zone. Recharge is primarily by streams crossing the fault zone. Rainfall is ˜ 70 cm yr. -1, and the water table is generally deeper than 30 m below land surface. The δ15 N of 73 samples of nitrate from Edwards waters ranged from + 1.9 to + 10‰ with an average of + 6.2‰. This δ15 N range is within the range of nitrate in surface water in the recharge streams ( δ 15N range = + 1 to + 8.3‰ ) and within the range of nitrate in surface water from the Colorado River, Texas, ( δ 15N range = + 1 to + 11‰ ). No sample was found to be enriched in 15N, which would suggest the presence of nitrate from animal waste ( δ 15N range = + 10 to + 22‰ ). The Ironshore Formation contains a small freshwater lens that is recharged entirely by percolation through the soil. Average rainfall is 165 cm yr. -1, and the water table is within 3 m of land surface. The δ15 N of four nitrate samples from water samples of the Ironshore Formation ranged from + 18 to + 23.9‰, which indicates a cesspool/septictank source of the nitrate. Limestone aquifers in humid environments that are recharged by percolation through the soil appear to be more susceptible to contamination by septic tanks than are aquifers in subhumid environments that feature thick unsaturated sections and are recharged by streams.

  3. Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran.

    Science.gov (United States)

    Rahmati, Omid; Melesse, Assefa M

    2016-10-15

    Effective management and sustainable development of groundwater resources of arid and semi-arid environments require monitoring of groundwater quality and quantity. The aim of this paper is to develop a reasonable methodological framework for producing the suitability map for drinking water through the geographic information system, remote sensing and field surveys of the Andimeshk-Dezful, Khozestan province, Iran as a semi-arid region. This study investigated the delineation of groundwater potential zone based on Dempster-Shafer (DS) theory of evidence and evaluate its applicability for groundwater potentiality mapping. The study also analyzed the spatial distribution of groundwater nitrate concentration; and produced the suitability map for drinking water. The study has been carried out with the following steps: i) creation of maps of groundwater conditioning factors; ii) assessment of groundwater occurrence characteristics; iii) creation of groundwater potentiality map (GPM) and model validation; iv) collection and chemical analysis of water samples; v) assessment of groundwater nitrate pollution; and vi) creation of groundwater potentiality and quality map. The performance of the DS was also evaluated using the receiver operating characteristic (ROC) curve method and pumping test data to ensure its generalization ability, which eventually, the GPM showed 87.76% accuracy. The detailed analysis of groundwater potentiality and quality revealed that the 'non acceptable' areas covers an area of about 1479km(2) (60%). The study will provide significant information for groundwater management and exploitation in areas where groundwater is a major source of water and its exploration is critical to support drinking water need. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Stochastic uncertainties and sensitivities of a regional-scale transport model of nitrate in groundwater

    NARCIS (Netherlands)

    Brink, C.v.d.; Zaadnoordijk, W.J.; Burgers, S.; Griffioen, J.

    2008-01-01

    Groundwater quality management relies more and more on models in recent years. These models are used to predict the risk of groundwater contamination for various land uses. This paper presents an assessment of uncertainties and sensitivities to input parameters for a regional model. The model had

  5. Mobility of Nanoscale and Microscale iron for groundwater remediation: experiments and modelling

    Science.gov (United States)

    Tosco, T.; Gastone, F.; Sethi, R.

    2012-12-01

    Colloidal suspensions of zerovalent iron micro- and nanoparticles (MZVI and NZVI) have been studied in recent years for in-situ groundwater remediation. Thanks to their small size, MZVI and NZVI can be dispersed in aqueous suspensions and directly injected into the subsurface, for a targeted treatment of contamination plumes and even sources. However, colloidal dispersions of such particles are not stable in pure water, due to fast aggregation (for NZVI) and gravitational sedimentation (for MZVI). Viscous, environmentally friendly fluids (guar gum and xanthan gum solutions), which exhibit shear thinning rheological properties, were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1-3). The present work reports laboratory tests and numerical modelling concerning the mobility of MZVI and NZVI viscous suspensions in porous media. The efficacy of xanthan and guar gum was investigated in column transport tests, performed injecting highly concentrated iron suspensions (20 g/L), dispersed in xanthan gum (3g/L) and guar gum (3-6 g/l) solutions. Particle breakthrough curves and concentration profiles were monitored by magnetic susceptibility measurements. Pressure drop at column ends was also continuously monitored. The tests proved that green polymers can greatly improve both colloidal stability and mobility of the particles. Their use is fundamental in particular for MZVI, which cannot be transported nor even dispersed in pure water. A numerical model for NZVI and NZVI transport in porous media was then developed (E-MNM1D, Enhanced Micro-and Nanoparticle transport Model in porous media in 1D geometry) (4). Due to the high concentration of the particles and to the non-Newtonian rheology of the carrier fluid, hydrodynamic parameters, fluid properties and concentration of deposed and suspended particles are mutually influenced. The rheological properties of the suspensions are accounted for through a variable

  6. Corrective measures evaluation report for Tijeras Arroyo groundwater.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Johnathan L (North Wind, Inc., Idaho Falls, ID); Orr, Brennon R. (North Wind, Inc., Idaho Falls, ID); Dettmers, Dana L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID); Howard, M. Hope (North Wind, Inc., Idaho Falls, ID)

    2005-08-01

    This Corrective Measures Evaluation report was prepared as directed by a Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for Tijeras Arroyo Groundwater. Supporting information includes background concerning the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. The evaluation of remedial alternatives included identifying and describing four remedial alternatives, an overview of the evaluation criteria and approach, comparing remedial alternatives to the criteria, and selecting the preferred remedial alternative. As a result of the Corrective Measures Evaluation, monitored natural attenuation of the contaminants of concern (trichloroethene and nitrate) is the preferred remedial alternative for implementation as the corrective measure for Tijeras Arroyo Groundwater. Design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are also presented.

  7. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  8. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.

  9. Groundwater nitrate pollution in Souss-Massa basin (south-west ...

    African Journals Online (AJOL)

    EJIRO

    impacted groundwater supply and quality. ... the junction of these two mountain chains and to the West by the .... Center of Energy, Sciences and Nuclear Techniques of Morocco. .... dismisses manuring, agricultural waste and soil's natural.

  10. 去除地下水中硝酸盐的渗透性反应墙研究%Removal of Nitrate from Groundwater Using Permeable Reactive Barrier

    Institute of Scientific and Technical Information of China (English)

    李秀利; 杨君君; 卢晓霞; 张姝; 侯珍

    2013-01-01

    通过土柱试验模拟地下水环境,研究以发酵树皮和沙子混合物为反应介质的渗透性反应墙(生物墙)对地下水中硝酸盐的去除情况,探讨其作用机制与影响因素,为硝酸盐污染地下水的修复提供经济有效的方法.结果表明,从模拟生物墙运行的第3d起,墙内为强还原环境(Eh在-100 mV之下),有利于硝酸盐的还原降解.在15 d的运行时间内,模拟生物墙对水中硝态氮(NO3--N)的去除率为80% ~ 90%左右(NO3-N由进水的20 mg·L-1可降至出水的1.6 mg·L-1);出水中亚硝态氮(NO2-N)的浓度较低,一直小于2.5mg·L-1;出水中铵态氮(NH4+-N)的浓度在前2d较低,从第3d起升至12 mg·L-1.模拟生物墙对NO3--N的去除机制主要为吸附和微生物降解.提高模拟生物墙内水流速度后,NO3-N的去除率有所下降,出水中NH4+-N的浓度明显降低.在模拟生物墙下游串联一个模拟沸石墙,可去除水中98%的NH4-N.%To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand ( biowall) , and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV) , which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen ( NO3- -N ) by the simulated biowall was 80%-90% ( NO3--N was reduced from 20 mg·L-1 in the inlet water to 1.6 mg·L-1 in the outlet water); the concentration of nitrite nitrogen ( NO2- -N) in the outlet water was below 2. 5 mg· L-1 ; the concentration of ammonium nitrogen ( NH4+ -N) was low in the first two days but increased to about 12 mg·L-1 since day three. The major mechanisms involved in the removal of nitrate

  11. The Transboundary Aquifer Management Challenge: Linking Landscape Patterns and Groundwater Nitrate Concentrations in the Abbotsford-Sumas Aquifer, USA/Canada

    Science.gov (United States)

    Gallagher, T.; Gergel, S. E.

    2015-12-01

    Changes in land use and landscape pattern can have an array of impacts on aquatic systems, including impacts which span international waters and borders. Globally, agricultural land use patterns and practices are among the factors responsible for elevated nitrate concentrations in groundwater aquifers. Coordination of landscape monitoring across trans-boundary aquifers is needed to monitor and address contamination issues as landscape patterns can vary widely among different political jurisdictions. Landscape indicators, which quantify the amount and arrangement of land cover (such as proportion and abundance of land cover types), are one such way to improve our understanding of cross-border aquatic system interactions. In Western North America, the Abbotsford-Sumas Aquifer (ASA) spans the US-Canada border and provides drinking water for over 100,000 people. Intensive agriculture combined with high precipitation and well-drained soils make this aquifer susceptible to nitrate leaching. To understand how landscape patterns influence nitrate concentrations, we ask: Which landscape indicators correlate most strongly with elevated nitrate concentrations? A seamless cross-border land cover mosaic was created by harmonizing a variety of US and Canadian geodata. Auxiliary high spatial resolution imagery (e.g., 5m RapidEye and historical Google Earth) were used to quantify fine-scale landscape features (such as number of farm field renovations) with suspected mechanistic links to nitrate sources. We examined groundwater nitrate concentrations in shallow wells (screens Washington State Department of Ecology and Environment Canada. Surrounding each well, terrestrial zones of influence (aligned with the directional flow of groundwater) were delineated within which landscape patterns were characterized. Multiple regression was used to compare the strength of relationships between land use practices and nitrate concentrations. Preliminary results show strong positive

  12. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents.

    Science.gov (United States)

    Němeček, Jan; Pokorný, Petr; Lhotský, Ondřej; Knytl, Vladislav; Najmanová, Petra; Steinová, Jana; Černík, Miroslav; Filipová, Alena; Filip, Jan; Cajthaml, Tomáš

    2016-09-01

    The present report describes a 13month pilot remediation study that consists of a combination of Cr(VI) (4.4 to 57mg/l) geofixation and dechlorination of chlorinated ethenes (400 to 6526μg/l), achieved by the sequential use of nanoscale zerovalent iron (nZVI) particles and in situ biotic reduction supported by whey injection. The remediation process was monitored using numerous techniques, including physical-chemical analyses and molecular biology approaches which enabled both the characterization of the mechanisms involved in pollutant transformation and the description of the overall background processes of the treatment. The results revealed that nZVI was efficient toward Cr(VI) by itself and completely removed it from the groundwater (LOQ 0.05mg/l) and the subsequent application of whey resulted in a high removal of chlorinated ethenes (97 to 99%). The persistence of the reducing conditions, even after the depletion of the organic substrates, indicated a complementarity between nZVI and the whey phases in the combined technology as the subsequent application of whey phase partially assisted the microbial regeneration of the spent nZVI by promoting its reduction into Fe(II), which further supported remediation conditions at the site. Illumina sequencing and the detection of functional vcrA and bvcA genes documented a development in the reducing microbes (iron-reducing, sulfate-reducing and chlororespiring bacteria) that benefited under the conditions of the site and that was probably responsible for the high dechlorination and/or Cr(VI) reduction. The results of this study demonstrate the feasibility and high efficiency of the combined nano-biotechnological approach of nZVI and whey application in-situ for the removal of Cr(VI) and chlorinated ethenes from the groundwater of the contaminated site.

  13. Demonstration test and evaluation of ultraviolet/ultraviolet catalyzed peroxide oxidation for groundwater remediation at Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In the UItraviolet/Ultraviolet Catalyzed Groundwater Remediation program, W.J. Schafer Associates, Inc. (WJSA) demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another (such as in activated carbon or air stripping). Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the TCA was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system.

  14. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China.

    Science.gov (United States)

    Zhai, Yuanzheng; Zhao, Xiaobing; Teng, Yanguo; Li, Xiao; Zhang, Junjun; Wu, Jin; Zuo, Rui

    2017-03-01

    In order to learn the pollution circumstance of groundwater nitrate detailedly in Songnen Plain of Northeast China and estimate its potential risk to human health of local residents, a total of 389 groundwater samples were collected in 2014 and studied from residential areas and public water supply wells in 11 cities and counties in southeastern of Songnen Plain. The analysis results showed that the spatial distributions of main chemical components in groundwater had great variations with statistical concentrations in the order of TDS> HCO3> Ca> NO3> Cl> Na> SO4> Mg> K> NH4> NO2. As for NO3, it ranged from less than 0.02mg/L to 497mg/L with an average value of 39.46mg/L indicating an obviously anthropogenic pollution. Even more than 32% of the samples exceeded the Grade III threshold (20mg/L of N) according to China's standard. The results obtained from principal component analysis showed that high NO3 concentration could be attributed to human activities, especially the excessive use of chemical fertilizers in agriculture. Further, a human health risk assessment (HHRA) model derived from the US Environmental Protection Agency (USEPA) was applied to estimate the potential health risk of groundwater nitrate considering both drinking water and dermal contact pathways. The results indicated that potential health risks of adult males and females within about 60% of the area were at the acceptable level, while those within about 40% were beyond the acceptable level. The area at the acceptable level for children covered 49% of the total area while the same value for infants was 37%. The NO3 concentration in southeast and northeast of the study area was the highest so that residents in these regions were at the highest health risk. In conclusion, risk levels for different crowds in the study area varied obviously, generally in the order of infants> children> adult females> adult males, and the potential health risks of residents, especially minors and rural residents

  15. Applications of Nano Reactive Materials in Remediation of Persistence Organic Pollutants in Sediments and Groundwater - Presentation

    Science.gov (United States)

    Remediation of sediments and water contaminated hydrophobic organic chemicals (HOCs) such as polychlorinated biphenyls (PCBs) remains a scientific and technical challenge. PCBs-contaminated sediments are ubiquitous despite the production and use of PCBs was banned in 1979 due to...

  16. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minhee, E-mail: heelee@pknu.ac.kr [Department of Environmental Geosciences, Pukyong National University, 599-1 Daeyondong, Namgu, Busan 608-737 (Korea, Republic of); Yang, Minjune [Department of Environmental Geosciences, Pukyong National University, 599-1 Daeyondong, Namgu, Busan 608-737 (Korea, Republic of)

    2010-01-15

    The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24 h by using sunflower and the residual uranium concentration of the treated water was lower than 30 {mu}g/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25 mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.

  17. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater.

    Science.gov (United States)

    Lee, Minhee; Yang, Minjune

    2010-01-15

    The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.

  18. Microbial Oxidation of Pyrite Coupled to Nitrate Reduction in Anoxic Groundwater Sediment

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo; Jacobsen, Ole Stig;

    2009-01-01

    denitrification process with pyrite as the primary electron donor. The process demonstrates a temperature dependency (Q10) of 1.8 and could be completely inhibited by addition of a bactericide (NaN3). Experimentally determined denitrification rates show that more than 50% of the observed nitrate reduction can...

  19. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    Science.gov (United States)

    Jurgens, Bryant; Bohlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  20. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    Science.gov (United States)

    Jurgens, Bryant C.; Böhlke, J. K.; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-12-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters - the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  1. Ecosystem and human health impacts from increased corn production: vulnerability assessment of exposure to high nitrate concentrations in groundwater and blue baby syndrome

    Science.gov (United States)

    Garcia, V.; Cooter, E. J.

    2013-12-01

    The Renewable Fuel Standard (RFS) requires oil refiners to reach a target of 15 billion gallons of corn-based ethanol by 2022. However, there are concerns that the broad-scale use of corn as a source of ethanol may lead to unintended economic and environmental consequences. This study applies the geophysical relationships captured with linked meteorological, air quality and agriculture models to examine the impact of corn production before enactment of the RFS in 2002 and at the height of the RFS targets in 2022. In particular, we investigate the probability of high-levels of nitrate in groundwater resulting from increased corn production and then relate this vulnerability to the potential for infants to acquire Methemoglobinemia, or 'Blue Baby Syndrome'. Blue Baby Syndrome (BBS) is a potentially fatal condition that occurs when the hemoglobin (Fe2+) in an infant's red blood cells is oxidized to methemoglobin (Fe3+), preventing the uptake of oxygen from the baby's blood. Exposure to high levels of nitrate in groundwater occur near the intersection of areas where surface water can more readily leach into shallow aquifers, wells are the main source of drinking water, and high nitrogen inputs exist. We use a coupled meteorological, agricultural and air quality model to identify areas vulnerable to increased nitrate contamination and associated risk to acquiring BBS. We first verify the relationship between predictive variables (e.g., nitrogen deposition and fertilization rates, landcover, soils and aquifer type) and nitrate groundwater levels by applying a regression model to over 800 nitrate measurements taken from wells located throughout the US (Figure 1). We then apply the regression coefficients to the coupled model output to identify areas that are at an increased risk for high nitrate groundwater levels in 2022. Finally, we examine the potential change in risk for acquiring BBS resulting from increased corn production by applying an Oral Reference Dose (Rf

  2. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.

    Science.gov (United States)

    Ji, Min-Kyu; Park, Won-Bae; Khan, Moonis Ali; Abou-Shanab, Reda A I; Kim, Yongje; Cho, Yunchul; Choi, Jaeyoung; Song, Hocheol; Jeon, Byong-Hun

    2012-04-01

    Nitrate (NO(3)(-)) is a commonly found contaminant in groundwater and surface water. It has created a major water quality problem worldwide. The laboratory batch experiments were conducted to investigate the feasibility of HCl-treated zero-valent iron (Fe(0)) combined with different adsorbents as hybrid systems for simultaneous removal of nitrate (NO(3)(-)) and ammonium (NH(4)(+)) ions from aqueous solution. The maximum NO(3)(-) removal in combined Fe(0)-granular activated carbon (GAC), Fe(0)-filtralite and Fe(0)-sepiolite systems was 86, 96 and 99%, respectively, at 45 °C for 24 h reaction time. The NO(3)(-) removal rate increased with the increase in initial NO(3)(-) concentration. The NO(3)(-) removal efficiency by hybrid systems was in the order of sepiolite > filtralite > GAC. The NH(4)(+) produced during the denitrification process by Fe(0) was successfully removed by the adsorbents, with the removal efficiency in the order of GAC > sepiolite > filtralite. Results of the present study suggest that the use of a hybrid system could be a promising technology for achieving simultaneous removal of NO(3)(-) and NH(4)(+) ions from aqueous solution.

  3. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor.

    Science.gov (United States)

    Ziv-El, Michal C; Rittmann, Bruce E

    2009-01-01

    To evaluate the simultaneous reduction kinetics of the oxidized compounds, we treated nitrate-contaminated groundwater (approximately 9.4 mg-N/L) containing low concentrations of perchlorate (approximately 12.5 microg/L) and saturated with dissolved oxygen (approximately 8 mg/L) in a hydrogen-based membrane biofilm reactor (MBfR). We systematically increased the hydrogen availability and simultaneously varied the surface loading of the oxidized compounds on the biofilm in order to provide a comprehensive, quantitative data set with which to evaluate the relationship between electron donor (H(2)) availability, surface loading of the electron acceptors (oxidized compounds), and simultaneous bioreduction of the electron acceptors. Increasing the H(2) pressure delivered more H(2) gas, and the total H(2) flux increased linearly from approximately 0.04 mg/cm(2)-d for 0.5 psig (0.034 atm) to 0.13 mg/cm(2)-d for 9.5 psig (0.65 atm). This increased rate of H(2) delivery allowed for continued reduction of the acceptors as their surface loading increased. The electron acceptors had a clear hydrogen-utilization order when the availability of hydrogen was limited: oxygen, nitrate, nitrite, and then perchlorate. Spiking the influent with perchlorate or nitrate allowed us to identify the maximum surface loadings that still achieved more than 99.5% reduction of both oxidized contaminants: 0.21 mg NO(3)-N/cm(2)-d and 3.4 microg ClO(4)/cm(2)-d. Both maximum values appear to be controlled by factors other than hydrogen availability.

  4. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    Science.gov (United States)

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  5. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  6. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  7. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  8. Life cycle assessment of soil and groundwater remediation technologies: literature review

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2010-01-01

    Background, aim, and scope Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation...... and scope definition and the applied impact assessment. The studies differ in their basic approach since some are prospective with focus on decision support while others are retrospective aiming at a more detailed assessment of a completed remediation project. Literature review The literature review showed...... scenarios in terms of their associated environmental burden. Main features An overview of the assessed remediation technologies and contaminant types covered in the literature is presented. The LCA methodologies of the 12 reviewed studies were compared and discussed with special focus on their goal...

  9. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater based on a coupled agroeconomic - hydro(geo)logic model (Invited)

    Science.gov (United States)

    Wendland, F.

    2010-12-01

    The fundamental objectives of the European Union-Water Framework Directive and the EU Groundwater Directive are to attain a good status of water and groundwater resources in the member states of the EU by 2015. For river basins, whose good status cannot be guaranteed by 2015, catchment wide operational plans and measurement programs have to be drafted and implemented until 2009. In the river basin district Weser, Germany, which comprises a catchment area of ca. 49.000 km2, the achievement of the good status is unclear, or rather unlikely for 63% of the groundwater bodies. Inputs from diffuse sources and most of all nitrate losses from agriculturally used land have been identified as the main reasons for exceeding the groundwater threshold value for nitrate (50 mg/l) and for failing the good qualitative status of groundwater. The achievement of good qualitative status of groundwater bodies entails a particular challenge as the complex ecological, hydrological, hydrogeological and agro-economic relationships have to be considered simultaneously. We used an interdisciplinary model network to predict the nitrogen intakes into groundwater at the regional scale using an area differentiated approach. The model system combines the agro-economic model RAUMIS for estimating nitrogen surpluses from agriculture and the hydrological models GROWA/DENUZ/WEKU for describing the reactive nitrate transport in the soil-groundwater system. In a first step the model is used to analyze the present situation using N surpluses from agriculture for the year 2003. In many region of the Weser basin, particularly in the northwestern part which is characterized by high livestock densities, predicted nitrate concentrations in percolation water exceed the EU groundwater quality standard of 50 mg/L by far. In a second step the temporal and spatial impacts of the common agricultural policy (CAP) of the EU, already implemented agri-environmental measures of the Federal States and the expected

  10. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup;

    2012-01-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples......) and a dense network of multilevel samplers (640 samples). The hydraulic gradient and conductivity were determined. Depletion of the contaminant source is described in the companion paper (Fjordbøge et al., 2012). Field data showed four distinct phases for PCE mass discharge: (1) baseline conditions, (2......) initial rapid reduction, (3) temporary increase, and (4) slow long-term reduction. Numerical modeling was utilized to develop a conceptual understanding of the four phases and to identify the governing processes. The initial rapid reduction of mass discharge was a result of the changed hydraulic...

  11. Remediation of nitrate-contaminated wastewater using denitrification biofilters with straws of ornamental flowers added as carbon source.

    Science.gov (United States)

    Chang, Junjun; Ma, Luyao; Zhou, Yuanyang; Zhang, Shenghua; Wang, Weilu

    Straws of four ornamental flowers (carnation, rose, lily, and violet) were added into denitrification biofilters using gravel as matrix through vertically installed perforated polyvinylchloride pipes to provide organic carbon for the treatment of nitrate-contaminated wastewater operating in batch mode. Removal efficiencies of nitrate and phosphate, as well as temporal variations of nitrogen and carbon during batches 10 and 19, were investigated and assessed. Nitrate removal was efficiently enhanced by the addition of flower straws, but decreased gradually as the organic substances were consumed. Phosphate removal was also improved, although this very limited. High nitrate removal rates were achieved during the initial 12 h in the two batches each lasting for 3 days, along with the depletion of influent dissolved oxygen due to aerobic degradation of the organic compounds. NO2(-)-N of 0.01-2.83 mg/L and NH4(+)-N of 0.02-1.69 mg/L were formed and both positively correlated to the nitrate reduced. Inorganic carbon (IC) concentrations increased during the batches and varied conversely with the nitrate contents, and could be indicative of nitrate removal due to the highly significant positive correlation between NO3(-)-N removed and IC concentration (r(2) = 0.881, p nitrate-contaminated wastewater, although further optimization of carbon source addition is still required.

  12. Use of diverse geochemical data sets to determine sources and sinks of nitrate and methane in groundwater, Garfield County, Colorado, 2009

    Science.gov (United States)

    McMahon, P.B.; Thomas, J.C.; Hunt, A.G.

    2011-01-01

    Previous water-quality assessments reported elevated concentrations of nitrate and methane in water from domestic wells screened in shallow zones of the Wasatch Formation, Garfield County, Colorado. In 2009, the U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, analyzed samples collected from 26 domestic wells for a diverse set of geochemical tracers for the purpose of determining sources and sinks of nitrate and methane in groundwater from the Wasatch Formation. Nitrate concentrations ranged from less than 0.04 to 6.74 milligrams per liter as nitrogen (mg/L as N) and were significantly lower in water samples with dissolved-oxygen concentrations less than 0.5 mg/L than in samples with dissolved-oxygen concentrations greater than or equal to 0.5 mg/L. Chloride/bromide mass ratios and tracers of groundwater age (tritium, chlorofluorocarbons, and sulfur hexafluoride) indicate that septic-system effluent or animal waste was a source of nitrate in some young groundwater (less than 50 years), although other sources such as fertilizer also may have contributed nitrate to the groundwater. Nitrate and nitrogen gas (N2) concentrations indicate that denitrification was the primary sink for nitrate in anoxic groundwater, removing 99 percent of the original nitrate content in some samples that had nitrate concentrations greater than 10 mg/L as N at the time of recharge. Methane concentrations ranged from less than 0.0005 to 32.5 mg/L and were significantly higher in water samples with dissolved-oxygen concentrations less than 0.5 mg/L than in samples with dissolved-oxygen concentrations greater than or equal to 0.5 mg/L. High methane concentrations (greater than 1 mg/L) in some samples were biogenic in origin and appeared to be derived from a relatively deep source on the basis of helium concentrations and isotopic data. One such sample had water-isotopic and major-ion compositions similar to that of produced water from the

  13. Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence

    Science.gov (United States)

    Degnan, James R.; Böhlke, John Karl; Pelham, Krystle; David M. Langlais,; Walsh, Gregory J.

    2015-01-01

    Explosives used in construction have been implicated as sources of NO3– contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3– can be complicated by other NO3– sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3– transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3– sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3– (low δ15N, high δ18O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3– subjected to partial denitrification (high δ15N, high δ18O); (3) relatively persistent concentrations of blasting-related biogenic NO3– derived from nitrification of NH4+ (low δ15N, low δ18O); and (4) stable but spatially variable biogenic NO3– concentrations, consistent with recharge from septic systems (high δ15N, low δ18O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ15N/Δδ18O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  14. A BIOTIC CONTROL PERSPECTIVE ON NITRATE CONTAMINATION OF GROUNDWATER FROM AGRICULTURAL PRODUCTION

    OpenAIRE

    Erickson, Jon D.; Schlapfer, Felix

    2001-01-01

    Agronomists consider the continuity and nutrient capturing properties of cover crops as important determinants of nutrient cycling in agricultural systems. Managing for these biotic control functions can help limit nutrient loss and groundwater contamination between main crop harvests. This simulation study highlights the potential role of cover crop management in a welfare economics framework. The objective is to find the optimal combination of nutrient input to the main crop, the extent of ...

  15. Environmental- and health-risk-induced remediation design for benzene-contaminated groundwater under parameter uncertainty: a case study in Western Canada.

    Science.gov (United States)

    Fan, X; He, L; Lu, H W; Li, J

    2014-09-01

    This study proposes an environmental- and health-risk-induced remediation design approach for benzene-contaminated groundwater. It involves exposure frequency and intake rates that are important but difficult to be exactly quantified as breakthrough point. Flexible health-risk control is considered in the simulation and optimization work. The proposed approach is then applied to a petroleum-contaminated site in western Canada. Different situations about remediation durations, public concerns, and satisfactory degrees are addressed by the approach. The relationship between environmental standards and health-risk limits is analyzed, in association with their effect on remediation costs. Insights of three uncertain factors (i.e. exposure frequency, intake rate and health-risk threshold) for the remediation system are also explored, on a basis of understanding their impacts on health risk as well as their importance order. The case study results show that (1) nature attenuation plays a more important role in long-term remediation scheme than the pump-and-treat system; (2) carcinogenic risks have greater impact on total pumping rates than environmental standards for long-term remediation; (3) intake rates are the second important factor affecting the remediation system's performance, followed by exposure frequency; (4) the 10-year remediation scheme is the most robust choice when environmental and health-risk concerns are not well quantified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran.

    Science.gov (United States)

    Baghapour, Mohammad Ali; Fadaei Nobandegani, Amir; Talebbeydokhti, Nasser; Bagherzadeh, Somayeh; Nadiri, Ata Allah; Gharekhani, Maryam; Chitsazan, Nima

    2016-01-01

    Extensive human activities and unplanned land uses have put groundwater resources of Shiraz plain at a high risk of nitrate pollution, causing several environmental and human health issues. To address these issues, water resources managers utilize groundwater vulnerability assessment and determination of protection. This study aimed to prepare the vulnerability maps of Shiraz aquifer by using Composite DRASTIC index, Nitrate Vulnerability index, and artificial neural network and also to compare their efficiency. The parameters of the indexes that were employed in this study are: depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity, and land use. These parameters were rated, weighted, and integrated using GIS, and then, used to develop the risk maps of Shiraz aquifer. The results indicated that the southeastern part of the aquifer was at the highest potential risk. Given the distribution of groundwater nitrate concentrations from the wells in the underlying aquifer, the artificial neural network model offered greater accuracy compared to the other two indexes. The study concluded that the artificial neural network model is an effective model to improve the DRASTIC index and provides a confident estimate of the pollution risk. As intensive agricultural activities are the dominant land use and water table is shallow in the vulnerable zones, optimized irrigation techniques and a lower rate of fertilizers are suggested. The findings of our study could be used as a scientific basis in future for sustainable groundwater management in Shiraz plain.

  17. REDUCED PERMEABILITY IN GROUNDWATER REMEDIATION SYSTEMS: ROLE OF MOBILIZED COLLOIDS AND INJECTED CHEMICALS

    Science.gov (United States)

    The success of pump-and-treat or in situ remediation of contaminated aquifers depends in part on the ability to maintain the permeability of the aquifer, withdrawal wells, and delivery systems at a reasonable cost while moving significant quantities of water. We have considered o...

  18. Advances In Groundwater Remediation: Achieving Effective In Situ Delivery Of Chemical Oxidants And Amendments

    DEFF Research Database (Denmark)

    Siegrist, Robert L.; Crimi, Michelle; McCray, John E.

    Contamination of soil and groundwater by organic chemicals represents a major environmental problem in urban areas throughout the United States and other industrialized nations. Over many decades a wide variety of toxic organic chemicals have intentionally or accidentally been released into the s......Contamination of soil and groundwater by organic chemicals represents a major environmental problem in urban areas throughout the United States and other industrialized nations. Over many decades a wide variety of toxic organic chemicals have intentionally or accidentally been released...

  19. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  20. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates

    Science.gov (United States)

    Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi

    2014-11-01

    We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0 mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.

  1. Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging.

    Science.gov (United States)

    Flores Orozco, Adrián; Velimirovic, Milica; Tosco, Tiziana; Kemna, Andreas; Sapion, Hans; Klaas, Norbert; Sethi, Rajandrea; Bastiaens, Leen

    2015-05-01

    The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.

  2. Permeable reactive barriers for the remediation of groundwater in a mining area: results for a pilot-scale project

    Science.gov (United States)

    Martinez-Sanchez, Maria Jose; Perez-Sirvent, Carmen; Garcia-Lorenzo, Maria Luz; Martinez-Lopez, Salvadora; Perez-Espinosa, Victor; Gonzalez-Ciudad, Eva; Belen Martinez-Martinez, Lucia; Hernandez, Carmen; Molina-Ruiz, Jose

    2017-04-01

    The Sierra Minera of Cartagena-La Union is located in the Region of Murcia, Southeast of Spain. This zone presents high levels of heavy metals due to natural, geogenic reasons. In addition, the prolonged mining activity, and subsequent abandonment of farms, has had consequences on the environment, including severe affectation of the groundwater in the area. To remediate this situation, the Permeable Reactive Barrier (PRB) technology was assayed, which required in addition to the hydro-geological study of the zone, a careful optimization study for the design and construction of PRBs. For such a purpose a pilot-scale project was developed, and this communication reports some of the most relevant findings obtained after a four-years monitorization period. The selected reactive material for the PRBs was limestone filler. The filler is a waste material produced in many factories in the zone. These residues have good adsorption properties, high alkalinity, low cost and high availability, which make them suitable for use in remediation. The PRB was constituted by a 50% limestone filler and 50% sand, a proportion optimized by means of independent batch experiments. A layer of gravel was placed at the top, and on it a layer of natural soil. The barrier was designed in the form of a continuous trench, because the level of the contaminated groundwater was not very deep. In this way, the barrier could be prepared with standard excavation equipment. Parallel to the barrier, 6 wells where arranged downstream for sample collection. The pH and conductivity of the samples was measured directly in situ, and the content of Zn, Cd, Cu, Fe, and Pb were analyzed in the laboratory. All the samples collected after the PRB was constructed had basic pH values between 7.5 and 8. The conductivity was between 5 and 11 mS / cm except for the well 4, which had a value of 3.70 mS / cm. The concentration values of trace elements were below the detection limit (atomic absorption measurement) in

  3. Biorremediação de águas subterrâneas impactadas por gasolina e etanol com o uso de nitrato Nitrate bioremediation of groundwater impacted with gasoline and ethanol

    Directory of Open Access Journals (Sweden)

    Ana Hilda Romero Costa

    2009-06-01

    Full Text Available Neste estudo, avaliou-se, durante 32 meses e por meio de um experimento de campo, a utilização da biorremediação com injeção de nitrato na recuperação de águas subterrâneas impactadas por gasolina com 25% de etanol. Por meio da análise da massa e da distribuição espacial dos compostos dissolvidos, verificou-se que a bioestimulação influenciou positivamente na biodegradação do etanol e dos BTEX, evitou a formação de zonas altamente redutoras (90% dos valores foram superiores a +100 mV e impediu o avanço das plumas de BTEX e etanol na área monitorada. Os resultados indicam que a bioestimulação com nitrato é uma alternativa altamente eficiente para se remediarem águas subterrâneas impactadas por gasolina contendo etanol.In this study, nitrate bioremediation in groundwater impacted with gasoline containing 25% ethanol was evaluated during 32 months in a field experiment. By means of mass and spatial distribution analysis of the dissolved compounds, biostimulation was found to have a positive influence on ethanol and BTEX biodegradation, and prevented the formation of highly reducing zones (90% of values were higher than + 100 mV and BTEX and ethanol plume migration in the monitoring area. Results indicate that nitrate biostimulation is a highly efficient alternative in remediating groundwater impacted by gasohol.

  4. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heejung [School of Earth and Environmental Sciences (BK21 SEES), Seoul National University, Seoul 151–747 (Korea, Republic of); Kaown, Dugin, E-mail: dugin1@snu.ac.kr [School of Earth and Environmental Sciences (BK21 SEES), Seoul National University, Seoul 151–747 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta (Canada); Lee, Jin-Yong [Department of Geology, Kangwon National University, Chuncheon 200–701 (Korea, Republic of); Hyun, Yunjung [Planning and Management Group, Korea Environment Institute, Sejong 339-007 (Korea, Republic of); Lee, Kang-Kun [School of Earth and Environmental Sciences (BK21 SEES), Seoul National University, Seoul 151–747 (Korea, Republic of)

    2015-11-15

    An integrated study based on hydrogeochemical, microbiological and dual isotopic approaches for nitrate and sulfate was conducted to elucidate sources and biogeochemical reactions governing groundwater contaminants in different seasons and under different land use in a basin of Korea. The land use in the study area is comprised of forests (58.0%), vegetable fields (27.6%), rice paddy fields (11.4%) and others (3.0%). The concentrations of NO{sub 3}–N and SO{sub 4}{sup 2−} in groundwater in vegetable fields were highest with 4.2–15.2 mg L{sup −1} and 1.6–19.7 mg L{sup −1} respectively, whereas under paddy fields NO{sub 3}–N concentrations ranged from 0 to 10.7 mg L{sup −1} and sulfate concentrations were ~ 15 mg L{sup −1}. Groundwater with high NO{sub 3}–N concentrations of > 10 mg L{sup −1} had δ{sup 15}N–NO{sub 3}{sup −} values ranging from 5.2 to 5.9‰ and δ{sup 18}O values of nitrate between 2.7 and 4.6‰ suggesting that the nitrate was mineralized from soil organic matter that was amended by fertilizer additions. Elevated concentrations of SO{sub 4}{sup 2−} with δ{sup 34}S–SO{sub 4}{sup 2−} values between 1 and 6‰ in aquifers in vegetable fields indicated that a mixture of sulfate from atmospheric deposition, mineralization of soil organic matter and from synthetic fertilizers is the source of groundwater sulfate. Elevated δ{sup 18}O–NO{sub 3}{sup −} and δ{sup 18}O–SO{sub 4}{sup 2−} values in samples collected from the paddy fields indicated that denitrification and bacterial sulfate reduction are actively occurring removing sulfate and nitrate from the groundwater. This was supported by high occurrences of denitrifying and sulfate reducing bacteria in groundwater of the paddy fields as evidenced by 16S rRNA pyrosequencing analysis. This study shows that dual isotope techniques combined with microbial data can be a powerful tool for identification of sources and microbial processes affecting NO{sub 3}{sup

  5. 生物反硝化去除地下水中硝酸盐的混合碳源研究%Biological denitrification for nitrate removal from groundwater using mixed carbon sources

    Institute of Scientific and Technical Information of China (English)

    沈志红; 张增强; 王豫琪; 王珍; 陈园; 魏素娜

    2011-01-01

    选取麦秸、锯末、乙醇为碳源,比较了这3种物质单独或两两组合作为碳源的情况下,生物反硝化去除模拟地下水中硝酸盐的效果.结果表明,以麦秸为碳源的反应体系具有较好的反硝化效果,但反应器出水具有颜色和异味;锯末+乙醇作为混合碳源的反应体系比单独添加锯末或乙醇反应体系的脱氮效果好;碳氮比(C/N)为40的混合碳源用量有利于硝酸盐的去除;添加0.5%(乙醇占总碳源量的百分比)的乙醇对以锯末为碳源的反应体系的硝酸盐去除具有显著的促进作用.%Wheat straw, sawdust and ethanol were selected as carbon soureas for denitdfication microorganisms to remediate nitrate from groundwater. The effect of wheat straw, sawdust, ethanol, wheat straw + ethanol, sawdust + ethanol as well as wheat straw + sawdust as carbon sources to remove nitrate from the simulated groundwater were compared. The results showed that the reactor packed with wheat straw had good nitrate removal efficiency, but the effluent from the reactor was colored and had a bad odor. The reactor packed with sawdust + ethanol had a better performance than the reactor packed with sawdust or ethanol alone. The ratio of carbon and nitrogen (C/N) 40 was beneficial to nitrate removal. When using sawdust as carbon source, 0.5% ethanol (the percentage of ethanol to the amount of carbon sources) had a significant effect on improving denitrification.

  6. Evaluation of Groundwater Remediation Technologies Based on Fuzzy Multi-Criteria Decision Analysis Approaches

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-06-01

    Full Text Available Petroleum is an essential resource for the development of society and its production is huge. There is a great risk of leakage of oil during production, refining, and transportation. After entering the environment, the oil pollutants will be a great threat to the environment and may endanger human health. Therefore, it is very important to remediate oil pollution in the subsurface. However, it is necessary to choose the appropriate remediation technology. In this paper, 18 technologies are evaluated through constructing a parameter matrix with each technology and seven performance indicators, and a comprehensive analysis model is presented. In this model, four MCDA methods are used. They are SWA (Simple Weighted Addition Method, WP (Weighted Product Method, CGT (Cooperative Game Theory, and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution. Mean ranking and Borda ranking methods are used to integrate the results of SWA, WP, CGT, and TOPSIS. Then two selection priorities of each method (mean ranking and Borda ranking are obtained. The model is proposed to help decide the best choice of remediation technologies. It can effectively reduce contingency, subjectivity, one-sidedness of the traditional methods and provide scientific reference for effective decision-making.

  7. Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management

    Science.gov (United States)

    2015-08-01

    research stage, the IS2 is similar in 12 price to other practices and can be expected to improve in cost-effectiveness if brought to market . 13 1.0...M., & Puls, R. W. (1993). Passive sampling of groundwater monitoring wells without purging: multilevel well chemistry and tracer disappearance...sgrp/GWRep10/start.htm. USEPA. (2004). Cleaning Up the Nation’s Waste Sites: Markets and Technology Trends. Washington, DC. Verreydt, G., Bronders

  8. Implementation of agronomical and geochemical modules into a 3D groundwater code for assessing nitrate storage and transport through unconfined Chalk aquifer

    Science.gov (United States)

    Picot-Colbeaux, Géraldine; Devau, Nicolas; Thiéry, Dominique; Pettenati, Marie; Surdyk, Nicolas; Parmentier, Marc; Amraoui, Nadia; Crastes de Paulet, François; André, Laurent

    2016-04-01

    Chalk aquifer is the main water resource for domestic water supply in many parts in northern France. In same basin, groundwater is frequently affected by quality problems concerning nitrates. Often close to or above the drinking water standards, nitrate concentration in groundwater is mainly due to historical agriculture practices, combined with leakage and aquifer recharge through the vadose zone. The complexity of processes occurring into such an environment leads to take into account a lot of knowledge on agronomy, geochemistry and hydrogeology in order to understand, model and predict the spatiotemporal evolution of nitrate content and provide a decision support tool for the water producers and stakeholders. To succeed in this challenge, conceptual and numerical models representing accurately the Chalk aquifer specificity need to be developed. A multidisciplinary approach is developed to simulate storage and transport from the ground surface until groundwater. This involves a new agronomic module "NITRATE" (NItrogen TRansfer for Arable soil to groundwaTEr), a soil-crop model allowing to calculate nitrogen mass balance in arable soil, and the "PHREEQC" numerical code for geochemical calculations, both coupled with the 3D transient groundwater numerical code "MARTHE". Otherwise, new development achieved on MARTHE code allows the use of dual porosity and permeability calculations needed in the fissured Chalk aquifer context. This method concerning the integration of existing multi-disciplinary tools is a real challenge to reduce the number of parameters by selecting the relevant equations and simplifying the equations without altering the signal. The robustness and the validity of these numerical developments are tested step by step with several simulations constrained by climate forcing, land use and nitrogen inputs over several decades. In the first time, simulations are performed in a 1D vertical unsaturated soil column for representing experimental nitrates

  9. Nitrate pollution of groundwater in the alsatian plain (France)—A multidisciplinary study of an agricultural area: The Central Ried of the ill river

    Science.gov (United States)

    Bernhard, C.; Carbiener, R.; Cloots, A. R.; Froehlicher, R.; Schenck, Ch.; Zilliox, L.

    1992-09-01

    The area studied is part of the “Ried Central” of the Ill river (Middle Alsatian plain in northeastern France). This area is located mainly in the present floodplain of the Ill. The closeness of the water table to the surface results in quasi general soil hydromorphism. The economic constraints of the last two decades led to deep changes in agricultural activities in the study area. These have essentially involved a marked extension of intensive cultivation of grain corn at the expense of grasslands. The study of the influence of this change on the parallel increase in the concentration of nitrate in groundwater is only feasible when a multidisciplinary approach is adopted. The analyses carried out in the field and in the laboratory show that nitrate reduction occurs in gleyed or peaty horizons of hydromorphic soils. The aptitude and efficiency of the permanent ambient vegetation (alluvial forests and grasslands) in retaining nitrate must be emphasized. The amount of nitrate eliminated from the aquifer by rivers fed by this aquifer is considerable. This evacuation of nitrate into the Ill is a fine example of waste and illustrates the absurdity of the economic situation responsible for excessive nitrogen fertilization of farmlands. In determining hazard zones, this study also proposes practical solutions to the problem of nitrate pollution: diminution of land area under cultivation, reintroduction of grasslands, and a more judicious use of nitrogen manure.

  10. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  11. CNP budgets of a coral-dominated fringing reef at La Réunion, France: coupling of oceanic phosphate and groundwater nitrate

    Science.gov (United States)

    Cuet, P.; Atkinson, M. J.; Blanchot, J.; Casareto, B. E.; Cordier, E.; Falter, J.; Frouin, P.; Fujimura, H.; Pierret, C.; Susuki, Y.; Tourrand, C.

    2011-06-01

    Productivity, nutrient input, nutrient uptake, and release rates were determined for a coral-dominated reef flat at La Réunion, France, to assess the influence of groundwater nitrogen on carbon and nutrient budgets. Water samples were collected offshore in the ocean, at the reef crest and back reef for nutrients, picoplankton, pH, and total alkalinity. Volume transport of ocean water across the reef flat was measured using both current meters and drogues. Groundwater advected onto the reef flat and mixed with incoming ocean water. Metabolic rates for the reef community were determined to be: gross primary production = 1,000 mmol C m-2 d-1, community respiration = 960 mmol C m-2 d-1, and community calcification = 210 mmol C m-2 d-1. Across the reef flat, silicate behaved conservatively, there was net uptake of phosphate (0.06 mmol P m-2 d-1) and net release of nitrate, ammonia, dissolved and particulate organic nitrogen (total 7.0 mmol N m-2 d-1). Groundwater nitrate contributed 37% of the increase in nitrate plus ammonia. The first-order mass transfer coefficient of phosphate was 3.3 m d-1, and for nitrate plus ammonia, 5.9 m d-1. Gross N and P uptake from estimates of mass transfer and uptake of particles were 0.37 mmol P m-2 d-1 and 7.2 mmol N m-2 d-1, respectively giving an N:P uptake ratio of 20:1. Thus, the elevation of nitrogen across the reef flat maintains a high N:P flux, enhancing algal growth downstream of the transect. We conclude that net community production (40 mmol C m-2 d-1) was sustained by net uptake of phosphate from the ocean and net uptake of new nitrogen from groundwater.

  12. Estimating the Regional Flux of Nitrate and Agricultural Herbicide Compounds from Groundwater to Headwater Streams of the Northern Atlantic Coastal Plain, USA

    Science.gov (United States)

    Ator, S.; Denver, J. M.

    2011-12-01

    Agriculture is common in the Northern Atlantic Coastal Plain (NACP, including New Jersey through North Carolina), and groundwater discharge provides nitrogen (primarily in the form of nitrate) and herbicide compounds from agricultural sources along with the majority of flow to NACP streams. Poor water quality has contributed to ecological degradation of tidal streams and estuaries along much of the adjacent mid-Atlantic coast. Although statistical models have provided estimates of total instream nutrient flux in the Coastal Plain, the regional flux of nitrogen and herbicides during base flow is less well understood. We estimated the regional flux of nitrate and selected commonly used herbicide compounds from groundwater to non-tidal headwater streams of the NACP on the basis of late-winter or spring base-flow samples from 174 such streams. Sampled streams were selected using an unequal-probability random approach, and flux estimates are based on resulting population estimates rather than empirical models, which are commonly used for such estimates. Base-flow flux in the estimated 8,834 NACP non-tidal headwater streams are an estimated 21,200 kilograms per day of nitrate (as N) and 5.83, 0.565, and 20.7 kilograms per day of alachlor, atrazine, and metolachlor (including selected degradates), respectively. Base-flow flux of alachlor and metolachlor is dominated by degradates; flux of parent compounds is less than 3 percent of the total flux of parent plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications generally varies predictably with regional variations in hydrogeology. Abundant nonpoint (primarily agricultural) sources and hydrogeologic conditions, for example, contribute to particularly large base-flow flux from the Delmarva Peninsula to Chesapeake Bay. In the Delmarva Peninsula part of the Chesapeake Watershed, more than 10 percent of total nonpoint nitrogen applications is transported through groundwater to stream base flow

  13. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain).

    Science.gov (United States)

    Rodriguez-Galiano, Victor; Mendes, Maria Paula; Garcia-Soldado, Maria Jose; Chica-Olmo, Mario; Ribeiro, Luis

    2014-04-01

    Watershed management decisions need robust methods, which allow an accurate predictive modeling of pollutant occurrences. Random Forest (RF) is a powerful machine learning data driven method that is rarely used in water resources studies, and thus has not been evaluated thoroughly in this field, when compared to more conventional pattern recognition techniques key advantages of RF include: its non-parametric nature; high predictive accuracy; and capability to determine variable importance. This last characteristic can be used to better understand the individual role and the combined effect of explanatory variables in both protecting and exposing groundwater from and to a pollutant. In this paper, the performance of the RF regression for predictive modeling of nitrate pollution is explored, based on intrinsic and specific vulnerability assessment of the Vega de Granada aquifer. The applicability of this new machine learning technique is demonstrated in an agriculture-dominated area where nitrate concentrations in groundwater can exceed the trigger value of 50 mg/L, at many locations. A comprehensive GIS database of twenty-four parameters related to intrinsic hydrogeologic proprieties, driving forces, remotely sensed variables and physical-chemical variables measured in "situ", were used as inputs to build different predictive models of nitrate pollution. RF measures of importance were also used to define the most significant predictors of nitrate pollution in groundwater, allowing the establishment of the pollution sources (pressures). The potential of RF for generating a vulnerability map to nitrate pollution is assessed considering multiple criteria related to variations in the algorithm parameters and the accuracy of the maps. The performance of the RF is also evaluated in comparison to the logistic regression (LR) method using different efficiency measures to ensure their generalization ability. Prediction results show the ability of RF to build accurate models

  14. Vulnerability for nitrate loading and acid deposition as represented by geohydrochemical districts in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Beek, C.G.E.M. van; Hesen, P.L.G.M. [Kiwa Water Research, Nieuwegein (Netherlands); Willems, W.J. [National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands)

    2004-07-01

    Geohydrochemical districts are areas which behave similarly with regard to pollution, resulting in comparable groundwater chemistries. Recognition of geohydrochemical districts gives a quick assessment of effects of pollution on the chemical composition of groundwater, and conversely also in effects of remedial measures. Moreover, geohydrochemical districts may serve as a starting point for predicting the future chemical composition of groundwater abstracted from phreatic aquifers by waterworks for the public drinking water supply. In this contribution geohydrochemical districts are distinguished in The Netherlands with respect to nitrate loading and acid deposition, but the same approach may be used for estimating the vulnerability of (abstracted) groundwater for pesticides and other chemical pollutants.

  15. The impact of surface water - groundwater interactions on nitrate cycling assessed by means of hydrogeologic and isotopic techniques in the Alento river basin (Italy)

    Science.gov (United States)

    Stellato, Luisa; Di Rienzo, Brunella; Di Fusco, Egidio; Rubino, Mauro; Marzaioli, Fabio; Terrasi, Filippo; D'Onofrio, Antonio; De Vita, Pantaleone; Allocca, Vincenzo; Salluzzo, Antonio; Rimauro, Juri; Romano, Nunzio; Celico, Fulvio

    2017-04-01

    Currently a major concern of water resources managers is to understand the fate and dynamics of nutrients in riverine ecosystems because of their potential impacts on both river quality and human health (e.g., European Council Directive 91/676/EEC). Nutrients are released within a catchment (or river basin) mainly by agricultural practices and urban/industrial activities, in addition to natural sources such as soils and organic matter. They are discharged into surface water bodies by means of nutrient-rich groundwater inflows and/or overland flow pathways, which can be important controls on hot moment/hot spot type biogeochemical behaviors. Groundwater has been recognized to have a major role in controlling stream ecosystem health since it influences stream ecology when surface and subsurface water are hydraulically connected. In particular, processes occurring at the reach or sub-reach scale more directly influence nutrient transport to rivers than larger scale processes. In this general context, the main scope of this study, within the framework of the IAEA Coordinated Research Project (CRP) "Environmental Isotopes and Age Dating Methods to Assess Nitrogen Pollution and Other Quality Issues in Rivers", was to spatially and temporally quantify groundwater inflows to the Alento river (Southern Italy) to characterize sw-gw interactions in the catchment in order to finally assess nitrates contamination of a groundwater dependent river ecosystem. Four sampling campaigns have been carried out in July and October 2014, in April 2015 and in June 2016 during which 1 spring, rain water, 17 surface water and 27 groundwater points were sampled all over the plain. The piezometric reconstruction has been realized by means of the monitoring of groundwater levels in 43 domestic and agricultural wells (10-15 m deep). The preliminary hydrogeological (water table morphology and stream discharge measurements), physico-chemical (T and EC), hydrochemical and isotopic (222Rn, δD and

  16. Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater

    Science.gov (United States)

    Huebsch, M.; Grimmeisen, F.; Zemann, M.; Fenton, O.; Richards, K. G.; Jordan, P.; Sawarieh, A.; Blum, P.; Goldscheider, N.

    2015-04-01

    Two different in situ spectrophotometers are compared that were used in the field to determine nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites. One sensor was a double wavelength spectrophotometer (DWS) and the other a multiple wavelength spectrophotometer (MWS). The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs. Both sensors are sufficient to monitor highly time-resolved NO3-N concentrations in emergent groundwater. However, the chosen path length of the sensors had a significant influence on the sensitivity and the range of detectable NO3-N. The accuracy of the calculated NO3-N concentrations of the sensors can be affected if the content of additional substances such as turbidity, organic matter, nitrite or hydrogen carbonate significantly varies after the sensors have been calibrated to a particular water matrix. The MWS offers more possibilities for calibration and error detection but requires more expertise compared with the DWS.

  17. Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater

    Directory of Open Access Journals (Sweden)

    M. Huebsch

    2014-11-01

    Full Text Available Two different in-situ spectrophotometers are compared that were used in the field to determine nitrate-nitrogen (NO3-N concentrations at two distinct spring discharge sites. One sensor was a double wavelength spectrophotometer (DWS and the other a multiple wavelength spectrophotometer (MWS. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs. Both sensors are sufficient to monitor highly time-resolved NO3-N concentrations in emergent groundwater. However, the chosen path length of the sensors had a significant influence on the sensitivity and the range of detectable NO3-N. The accuracy of the calculated NO3-N concentrations of the sensors can be affected, if the content of additional substances such as turbidity, organic matter, nitrite or hydrogen carbonate significantly varies after the sensors have been calibrated to a particular water matrix. The MWS offers more possibilities for calibration and error detection, but requires more expertise compared with the DWS.

  18. Remediation of Groundwater Polluted by Aromatic Compounds by Means of Adsorption

    Directory of Open Access Journals (Sweden)

    Silvana Canzano

    2014-07-01

    Full Text Available In this work, an experimental and modeling analysis of the adsorption of four aromatic compounds (i.e., toluene, naphthalene, o-xylene and ethylbenzene onto a commercial activated carbon is carried out. The aim is to assess the suitability of the adsorption process for the treatment of polluted groundwater, also when a multiple contamination is detected. Batch adsorption tests from simulated polluted groundwater are performed in single-compound systems and in two binary systems (i.e., toluene + naphthalene and o-xylene + ethylbenzene, at constant temperature (20 °C and pH (7. Experimental results in single-compound systems reveal that all of the analytes are significantly adsorbed on the tested activated carbon. In particular, toluene and naphthalene adsorption capacities are the highest and of similar value, while for o-xylene and ethylbenzene, the performances are lower. The adsorption of these compounds seems to be influenced by a combined effect of several parameters, such as hydrophobicity, molecule size, structure of the molecule, etc. Experimental results in binary systems show a different behavior of the two systems, which confirms their complexity and explains the interest in these complex adsorption systems. In particular, toluene and naphthalene are mutually competitive, while in the case of o-xylene + ethylbenzene, only the former undergoes competitive effects. The analysis of the entire experimental data set is integrated with a dedicated modeling analysis using the extended Langmuir model. For both single-compound and binary systems, this model provides acceptable results, in particular for low equilibrium concentrations, like those more commonly found in groundwater, and for the compounds involved in adsorptive competitive effects.

  19. Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA

    Science.gov (United States)

    Landon, Matthew K.; Green, Christopher T.; Belitz, Kenneth; Singleton, Michael J.; Esser, Bradley K.

    2011-09-01

    In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated >5 mg/L NO3-N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use.

  20. Evaluation of the effectiveness of different methods for the remediation of contaminated groundwater by determining the petroleum hydrocarbon content

    Energy Technology Data Exchange (ETDEWEB)

    Voyevoda, Maryna; Geyer, Wolfgang; Mothes, Sibylle [Department of Analytical Chemistry, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Mosig, Peter [Centre for Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Seeger, Eva M. [Department of Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany)

    2012-08-15

    The effectiveness of different remediation procedures for decreasing the amount of TPH (total petroleum hydrocarbons) in contaminated groundwater was evaluated at the site of a former refinery. The investigations were carried out on samples taken from several gravel based HSSF (horizontal subsurface flow) constructed wetlands (CW) which differed in relation to their filter material additives (no additive, charcoal, and ferric oxides additives) and examined the potential effect of these additives on the overall treatment efficiency. Samples of the following gravel based HSSF CW were investigated. No filter additive (system A), 0.1% activated carbon (system B), 0.5% iron(III) hydroxide (system C), and the reference (system D). Systems A-C were planted with common reed (Phragmites australis), whereas system D remained unplanted. In addition, the influence of seasonal conditions on the reduction of these hydrocarbons and the correlation between the amounts of TPH and BTEX (benzene, toluene, ethylbenzene, and xylene isomers), on the one hand, and methyl tert-butyl ether, on the other, was investigated. The study was carried out by using a modified GC-FID approach and multivariate methods. The investigations carried out in the first year of operation demonstrated that the effectiveness of the petroleum hydrocarbon removal was highest and reached a level of 93 {+-} 3.5% when HSSF filters with activated carbon as a filter additive were used. This remediation method allowed the petroleum hydrocarbon content to be reduced independently of seasonal conditions. The correlation between the reduction of TPH and BTEX was found to be R = 0.8824. Using this correlation coefficient, the time-consuming determination of the BTEX content was no longer necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Nitrate reduction during ground-water recharge, Southern High Plains, Texas

    Science.gov (United States)

    Fryar, Alan E.; Macko, Stephen A.; Mullican, William F., III; Romanak, Katherine D.; Bennett, Philip C.

    2000-01-01

    In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO 3- contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km 2 area of Texas suggest that reduction during recharge limits NO 3- loading to ground water. Tritium and Cl - concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO -3-N suggest denitrification, but O 2 concentrations ≥3.24 mg l -1 indicate that NO 3- reduction in ground water is unlikely. The presence of denitrifying and NO 3--respiring bacteria in cores, typical soil-gas δ15N values water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.

  2. Catchment-scale variation in the nitrate concentrations of groundwater seeps in the Catskill Mountains, New York, U.S.A.

    Science.gov (United States)

    West, A.J.; Findlay, S.E.G.; Burns, Douglas A.; Weathers, K.C.; Lovett, Gary M.

    2001-01-01

    Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3-) concentrations. Large contributions from deep groundwater with high NO3- concentrations have been invoked to explain high NO3- concentrations in stream water during the growing season. To determine whether variable contributions of groundwater could explain among-catchment differences in streamwater, we measured NO3- concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and bedding planes and had consistently lower temperatures than adjacent streamwaters. Nitrate concentrations in seeps ranged from near detection limits (0.005 mg NO3--N/L) to 0.75 mg NO3--N/L. Within individual catchments, groundwater residence time does not seem to strongly affect NO3- concentrations because in three out of four catchments there were non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, and seep NO3- concentrations. Across catchments, there was a significant but weak negative relationship between NO3- and SiO2 concentrations. The large range in NO3- concentrations of seeps across catchments suggests: 1) the principal process generating among-catchment differences in streamwater NO3- concentrations must influence water before it enters the groundwater flow system and 2) this process must act at large spatial scales because among-catchment variability is much greater than intra-catchment variability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3- concentrations among catchments in the Catskill Mountains.

  3. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    Science.gov (United States)

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  4. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground

  5. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  6. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  7. 离子交换树脂脱除地下水中的硝酸盐%Nitrate Removal from Groundwater by Ion Exchange Resin Processes

    Institute of Scientific and Technical Information of China (English)

    费宇雷; 曹国民; 张立辉; 迟峰; 李栋

    2011-01-01

    地下水是我国华北地区最重要的饮用水水源之一,特别是华北农村生活饮用水几乎全部来自地下水.然而,华北又是我国地下水硝酸盐污染比较严重的地区.研究开发适合华北农村分散式供水特点的地下水脱硝酸盐技术,对于保障农村的饮水安全具有十分重要的意义,为此把简单、高效且投资和运行费用相对较低的离子交换法用于脱除地下水中的硝酸盐.考察了普通强碱性阴离子交换树脂Purolite A 300E和硝酸盐选择性强碱性阴离子交换树脂Purolite A 520E脱除地下水中硝酸盐的效果,比较了地下水中SO2-4和Cl-等阴离子对两类不同树脂交换性能的影响.结果表明,Purolite A 300E和Purolite A 520E树脂均能有效地去除地下水中的硝酸盐,两者的NO-3-N饱和交换容量分别为49.02和48.54 mg/g.但是,当地下水中含有较高浓度的SO2-4或Cl-时,Purolite A 520E脱除硝酸盐的效果明显优于Pumlite A 300E.%Groundwater is one of the most important drinking water source in North China, especially in some rural areas of North China, groundwater may be the only drinking water source.But unfortunately the groundwater has badly been contaminated by nitrate in North China.To research and develop an appropriate nitrate removal process which can fit in with the needs of the rural area water supply has great significance for guaranteeing drinking water safety of peasants.Thus, the ion exchange process with characteristics of simple, efficiency as well as relatively low investment and operating cost was applied to remove nitrate from groundwater.The performances of nitrate removal from groundwater by a strongly basic anion exchange resin (Purolite A 300E) and a nitrate selective macroporous strong basic anion resin (Purolite A 520E) were evaluated, and the effect of sulfate and chloride in groundwater on these two resins' efficiency was compared.The results show that the nitrate in groundwater can be

  8. Groundwater remediation engineering--Study on the flow distribution of air sparging using acetylene

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan-mei; ZHANG Ying; HUANG Guo-qiang; JIANG Bin; LI Xin-gang

    2005-01-01

    Air sparging(AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  9. Laboratory evaluation of the hydrogen sulfide gas treatment approach for remediation of chromate-, uranium(VI)-, and nitrate-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, E.C.; Baechler, M.A.; Beck, M.A. [Westinghouse Hanford Co., Richland, WA (United States); Amonette, J.E. [Pacific Northwest Lab., Richland, WA (United States)

    1994-08-01

    Bench-scale soil treatment tests were conducted as part of an effort to develop and implement an in situ chemical treatment approach to the remediation of metal and radionuclide contaminated soils through the use of reactive gases. In general, > 90% immobilization of chromium and > 50% immobilization of uranium was achieved. Leach test results indicate that the treatment process is irreversible for chromium but partially reversible for uranium indicates that immobilization for this contaminant is more readily achieved in organic rich soils. This observation is ascribed to the reducing nature of organic matter. Additional tests were also conducted with soils contaminated to the 5,000 ppm level with nitrate. Nitrate was not found to interfere significantly with treatment of the contaminants. Nitrite was observed in the leachate samples obtained from tests with an organic-rich soil containing clay, however. Leachate chemistries suggested that no other significantly hazardous byproducts were generated by the treatment process and that soil alteration effects were minimal. Test results also suggest that treatment effectiveness is somewhat lower in very dry soils but still able to immobilize chromium and uranium to an acceptable degree. Results of these testing activities indicate that the concentration of hydrogen sulfide in the gas mixture is not a limited factor in treatment as long as a sufficient volume of the mixture is delivered to the soil to achieve a mole ratio of hydrogen sulfide to contaminant of at least 10.

  10. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  11. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K.

    2013-01-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p < 0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from − 0.44 to 0.91 mg/L/yr for nitrate (as N) and − 8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  12. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate.

  13. Comparison of granular activated carbon and macroreticular synthetic adsorbents for groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Musterman, J.L.; Boero, V.J. [Eckenfelder Inc., Nashville, TN (United States). Wastewater Management Division; Plantz, D.A. [Rohm and Haas Co., Spring House, PA (United States)

    1995-12-31

    An evaluation of Calgon F-400 and Ambersorb 563 and 572 and XAD-4 resins for removal of VOCs from an activated sludge treated groundwater was performed using continuous flow reactors. Breakthrough and EBCT-ST curves were developed and the capacities of the adsorbents were determined. Comparison of the performance of the adsorbents indicated that: (1) Ambersorb 563 resin provided greater VOC adsorption capacity and run-time to breakthrough than Ambersorb 572 and XAD-4 resins or the F-400 GAC. (2) Ambersorb 563 resin could also be operated at three times the surface loading rate of the GAC system resulting in smaller equipment size. (3) The Ambersorb 563 resin showed negligible TOC removal despite a high specificity for the target organic analytes. A cost analysis indicated that the installed cost for a 6.31 L/s Ambersorb 563 resin system was 2.8 times the cost of a F-400 GAC system. The annual operating cost however, was four times lower and the total present worth was $549,000 less.

  14. Experimental Design for One Dimensional Electrolytic Reactive Barrier for Remediation of Munition Constituent in Groundwater

    Science.gov (United States)

    Gent, David B.; Wani, Altaf; Alshawabkeh, Akram N.

    2012-01-01

    A combination of direct electrochemical reduction and in-situ alkaline hydrolysis has been proposed to decompose energetic contaminants such as 1,3,5-Trinitroperhydro- 1,3,5-triazine and 2,4,6-Trinitrotoluene (RDX) in deep aquifers. This process utilizes natural groundwater convection to carry hydroxide produced by an upstream cathode to remove the contaminant at the cathode as well as in the pore water downstream as it migrates toward the anode. Laboratory evaluation incorporated fundamental principles of column design coupled with reactive contaminant modeling including electrokinetics transport. Batch and horizontal sand-packed column experiments included both alkaline hydrolysis and electrochemical treatment to determine RDX decomposition reaction rate coefficients. The sand packed columns simulated flow through a contaminated aquifer with a seepage velocity of 30.5 cm/day. Techniques to monitor and record the transient electric potential, hydroxide transport and contaminant concentration within the column were developed. The average reaction rate coefficients for both the alkaline batch (0.0487 hr−1) and sand column (0.0466 hr−1) experiments estimated the distance between the cathode and anode required to decompose 0.5 mg/L RDX to the USEPA drinking water lifetime Health Advisory level of 0.002 mg/L to be 145 and 152 cm. PMID:23472044

  15. Experimental Design for One Dimensional Electrolytic Reactive Barrier for Remediation of Munition Constituent in Groundwater.

    Science.gov (United States)

    Gent, David B; Wani, Altaf; Alshawabkeh, Akram N

    2012-12-30

    A combination of direct electrochemical reduction and in-situ alkaline hydrolysis has been proposed to decompose energetic contaminants such as 1,3,5-Trinitroperhydro- 1,3,5-triazine and 2,4,6-Trinitrotoluene (RDX) in deep aquifers. This process utilizes natural groundwater convection to carry hydroxide produced by an upstream cathode to remove the contaminant at the cathode as well as in the pore water downstream as it migrates toward the anode. Laboratory evaluation incorporated fundamental principles of column design coupled with reactive contaminant modeling including electrokinetics transport. Batch and horizontal sand-packed column experiments included both alkaline hydrolysis and electrochemical treatment to determine RDX decomposition reaction rate coefficients. The sand packed columns simulated flow through a contaminated aquifer with a seepage velocity of 30.5 cm/day. Techniques to monitor and record the transient electric potential, hydroxide transport and contaminant concentration within the column were developed. The average reaction rate coefficients for both the alkaline batch (0.0487 hr(-1)) and sand column (0.0466 hr(-1)) experiments estimated the distance between the cathode and anode required to decompose 0.5 mg/L RDX to the USEPA drinking water lifetime Health Advisory level of 0.002 mg/L to be 145 and 152 cm.

  16. Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the Piedmont of South Taihang Mountains, China.

    Science.gov (United States)

    Li, Jing; Li, Fadong; Liu, Qiang; Suzuki, Yoshimi

    2014-12-01

    Irrigation projects have diverted water from the lower reaches of the Yellow River in China for more than 50 years and are unique in the world. This study investigated the effect of irrigation practices on the transfer and regional migration mechanisms of nitrate (NO3(-)) in surface water and groundwater in a Yellow River alluvial fan. Hydrochemical indices (EC, pH, Na(+), K(+), Mg(2+), Ca(2+), Cl(-), SO4(2-), and HCO(3-)) and stable isotopic composition (δ18O and δD) were determined for samples. Correlation analysis and principal component analysis (PCA) were performed to identify the sources of water constituents. Kriging was employed to simulate the spatial diffusion of NO3(-) and stable isotopes. Our results demonstrated that the groundwater exhibited more complex saline conditions than the surface water, likely resulting from alkaline conditions and lixiviation. NO3(-) was detected in all samples, 87.0% of which were influenced by anthropogenic activity. The NO3(-) pollution in groundwater was more serious than the common groundwater irrigation areas in the North China Plain (NCP), and was also slightly higher than that in surface water in the study area, but this was not statistically significant (p > 0.05). In addition, the groundwater sites with higher NO3(-) concentrations did not overlap with the spatial distribution of fertilizer consumption, especially in the central and western parts of the study area. NO3(-) distributions along the hydrogeological cross-sections were related to the groundwater flow system. Hydrochemical and environmental isotopic evidences indicate that surface water-groundwater interactions influence the spatial distribution of NO3(-) in the Piedmont of South Taihang Mountains.

  17. Phosphate-Based Mineralization of Arsenic in Contaminated Soil: A Potential Remediation Method for Soil and Groundwater

    Science.gov (United States)

    Neupane, G.; Donahoe, R. J.

    2009-12-01

    Soil arsenic contamination resulting from the use of arsenical compounds is a widespread environmental problem. A phosphate-based remediation method which has the potential to immobilize arsenic in both oxidizing and reducing subsurface systems is under laboratory investigation. Although phosphate treatments have been reported to be effective in removal of arsenic from contaminated water, its use in contaminated soils has not been tested. This study aims to (1) determine the competitive adsorption/desorption of arsenate and phosphate at surfaces of ferric hydroxide coated sand in the absence or presence of calcium ions, and (2) develop a method of arsenic fixation which involves phosphoric acid flushing of arsenic from contaminated soil and precipitation of arsenic as apatite-like phases. Ferric hydroxide is a significant arsenic sequestering constituent in soil. Phosphate competes with arsenate for adsorption sites on the ferric hydroxide surface. Batch adsorption experiments conducted using ferric hydroxide coated sand have indicated similar pH-controlled adsorption mechanisms for both arsenate and phosphate. The data obtained from the adsorption experiments is being used to guide the development of a phosphate-based method for soil and groundwater arsenic remediation. Batch experiments were performed using 3g of contaminated soil in contact with 45 ml of treatment fluid (a dilute phosphoric acid and calcium hydroxide solution). Solution samples were collected at 24, 72, 144, 312, and 384 hours, with continuous agitation at 200 rpm. Solution concentrations of phosphorus and calcium generally decreased with time and were primarily controlled by pH. It has been experimentally demonstrated that solution arsenic concentrations can be lowered by maintaining high pH with adequate calcium supply. A batch experiment conducted at pH > 11, using 1 kg of soil in contact with 1 liter of 0.25% H3PO4, precipitated a white material giving an XRD signature indicative of brushite

  18. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation.

    Science.gov (United States)

    Corseuil, Henry Xavier; Gomez, Diego E; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J J

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  19. Synoptic Multi-tracer Sensing for Mapping Groundwater-Surface Water Discharges and Estimating Reactive Nitrate Loading along a Gaining Lowland River

    Science.gov (United States)

    Pai, H.; Villamizar, S. R.; Harmon, T. C.

    2015-12-01

    Distributed groundwater (GW) discharges to surface water (GW-SW discharges) in river systems remain difficult to delineate across spatiotemporal scales yet are important to understand with respect to link land management practices to nonpoint source constituent loading. In this work, we develop and test a relatively low-cost strategy for watershed-scale mapping distributed GW-SW discharges for nitrate (NO3-) in a gaining lowland river. We employ ambient GW specific conductance (SC) and nitrate as tracers using a high-resolution longitudinal synoptic sensing along the lower Merced River (38 river km) in Central California. Using available GW SC, we first calibrate a simple distributed GW-SW discharge model (segment-by-segment mixing model) at 1-km resolution for 13 synoptic sampling events at upstream daily flows ranging from 1.3 to 31.6 m3s-1. We then apply the distributed discharge estimates to a similar distributed nitrate loading model, adding a first-order decay term representing shallow aquifer denitrification along the GW-SW flow path. Best-fitting model outcomes (RMSE = 0.06-0.98 mg L-1) were found when we censored GW nitrate data following below detection thresholds (typically 0.5 mg L-1 NO3-N). The range of reach-estimated dimensionless denitrification rate terms varied from 0 to 0.432, which is slightly lower than previous regional results (0.17-1.06), accounting for our reach travel time.

  20. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use.

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K

    2013-05-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (pwells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from -0.44 to 0.91 mg/L/yr for nitrate (as N) and -8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  1. A methodology for assessing public health risk associated with groundwater nitrate contamination: a case study in an agricultural setting (southern Spain).

    Science.gov (United States)

    Chica-Olmo, Mario; Peluso, Fabio; Luque-Espinar, Juan Antonio; Rodriguez-Galiano, Victor; Pardo-Igúzquiza, Eulogio; Chica-Rivas, Lucía

    2016-09-28

    Groundwater nitrate contamination from agriculture is of paramount environmental interest. A continuous consumption of polluted water as drinking water or for culinary purposes is by no means a minor hazard for people's health that must be studied. This research presents a new methodology for the spatial analysis of health risk rate from intake of nitrate-polluted groundwater. The method is illustrated through its application to a water quality sampling campaign performed in the south of Spain in 2003. The probability risk model used by the US Environmental Protection Agency has been applied, considering a residential intake framework and three representative population age groups (10, 40 and 65 years).The method was based upon coupling Monte Carlo simulations and geostatistics, which allowed mapping of the health risk coefficient (RC). The maps obtained were interpreted in the framework of water resources management and user's health protection (municipalities). The results showed waterborne health risk caused by nitrate-polluted water is moderately low for the region. The observed risk was larger for the elderly and children, although no significant differences were found among the three age groups (RC average values of 95th percentile for age of 0.37, 0.33 and 0.37, respectively). Significant risk values of RC > 1 were obtained for 10 % of the surface in the NW site of the study area, where the municipalities with the highest contamination thresholds are located (agricultural activity). Nitrate concentration and intake rate stood out as the main explanatory variables of the RC.

  2. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  3. Combining Push Pull Tracer Tests and Microbial DNA and mRNA Analysis to Assess In-Situ Groundwater Nitrate Transformations

    Science.gov (United States)

    Henson, W.; Graham, W. D.; Huang, L.; Ogram, A.

    2015-12-01

    Nitrogen transformation mechanisms in the Upper Floridan Aquifer (UFA) are still poorly understood because of karst aquifer complexity and spatiotemporal variability in nitrate and carbon loading. Transformation rates have not been directly measured in the aquifer. This study quantifies nitrate-nitrogen transformation potential in the UFA using single well push-pull tracer injection (PPT) experiments combined with microbial characterization of extracted water via qPCR and RT-qPCR of selected nitrate reduction genes. Tracer tests with chloride and nitrate ± carbon were executed in two wells representing anoxic and oxic geochemical end members in a spring groundwater contributing area. A significant increase in number of microbes with carbon addition suggests stimulated growth. Increases in the activities of denitrification genes (nirK and nirS) as measured by RT-qPCR were not observed. However, only microbes suspended in the tracer were obtained, ignoring effects of aquifer material biofilms. Increases in nrfA mRNA and ammonia concentrations were observed, supporting Dissimilatory Reduction of Nitrate to Ammonia (DNRA) as a reduction mechanism. In the oxic aquifer, zero order nitrate loss rates ranged from 32 to 89 nmol /L*hr with no added carbon and 90 to 240 nmol /L*hr with carbon. In the anoxic aquifer, rates ranged from 18 to 95 nmol /L*hr with no added carbon and 34 to 207 nmol /L*hr with carbon. These loss rates are low; 13 orders of magnitude less than the loads applied in the contributing area each year, however they do indicate that losses can occur in oxic and anoxic aquifers with and without carbon. These rates may include, ammonia adsorption, uptake, or denitrification in aquifer material biofilms. Rates with and without carbon addition for both aquifers were similar, suggesting aquifer redox state and carbon availability alone are insufficient to predict response to nutrient additions without characterization of microbial response. Surprisingly, these

  4. Effect of Co-Contaminant on Denitrification Removal of Nitrate in Drinking Water

    Directory of Open Access Journals (Sweden)

    Arzu KILIÇ

    2012-12-01

    Full Text Available In recent years, nitrogenous fertilizers used in agriculture, unconscious and without treatment wastewater is discharged led to an increase in groundwater nitrate pollution. In many countries, nitrate concentration in the ground waters used as drinking water source exceeded the maximum allowable concentration of 10 mg/L NO3-N. According to a study, some wells in the Harran Plain contain nitrate as high as 180 mg/L NO3--N and the average concentration for whole plain is 35 mg/L NO3--N (Yesilnacar et al., 2008. Additionally, increased water consumption, unconscious use of fertilizers and pesticides has led to the emergence of co-contaminant in drinking water. Recently, hazardous to human health co-contaminant such as arsenic, pesticides, perchlorate, selenate, chromate, uranium are observed in the nitrate pollution drinking water. There are many processes used for the removal of nitrate. The physical–chemical technologies that can be used for nitrate removal are reverse osmosis, ion exchange and electrodialysis (Alvarez et al., 2007. Important disadvantages of these processes are their poor selectivity, high operation and maintenance costs and the generation of brine wastes after treatment. Consequently, biological treatment processes to convert nitrates to benign dinitrogen gas, could be an interesting alternative for the remediation of groundwater contaminated with nitrates. The aim of this article, effective and cheap method for the removal of nitrate from drinking water biological denitrification is to examine the usability of contaminated drinking water with co-contaminant pollutions.

  5. Diffuse pollution (pesticides and nitrate) at catchment scale on two constrasted sites: mass balances and characterization of the temporal variability of groundwater quality.

    Science.gov (United States)

    Baran, N.; Gutierrez, A.

    2009-04-01

    Enhanced monitoring of groundwater quality over several years has revealed a nitrate and /or pesticide contamination of aquifers in North America and Europe (Gilliom et al., 2006; Ifen, 2004). In many countries (France, United Kingdom, Denmark, Switzerland), drinking water is partly or dominantly supplied by groundwater. Assessing the extent of nitrate or pesticide contamination in aquifer and understanding the transport of the solutes to groundwater is, therefore, of major importance for the management of groundwater resources. Besides, the objective set by the European Water Framework Directive (WFD - 2000/60/EC, OJEC 2000) is for "all groundwater bodies to achieve the good quantitative and chemical status … at the latest by 2015". The Directive demands that European Union Member States not only characterize their levels of groundwater contamination, but also that they study the evolutionary trends of their pollutant concentrations. Monitoring groundwater quality for nitrate and pesticide is thus particularly relevant as well as the characterization of the transfer of solutes to and in groundwater is essential for effective water resource management. Several countries have approached the stage of characterization of their groundwater bodies either by using data derived from various measurement networks, as in France or by establishing specific sampling and analysis protocols (NAQUA network in Switzerland; NAWQA network in the United States). Pesticide monitoring networks, where they exist, are often less than 10 years old with a fairly low measurement frequency (1 to 4 analyses per year). Chemical status and trend interpretations are thus difficult and limited. Characterizing an entire groundwater body from observations limited in time and space remains a challenge. Little published data exists concerning intensive monitoring over several years, whether at the catchment outlet or at observation points spread over a basin, that would allow these

  6. Monitoring and Modelling of the Long-term Effect of Changing Agriculture on Nitrate Concentrations in Groundwater and Streams in Small Experimental subsurface dominant watersheds

    Science.gov (United States)

    Fovet, Ophelie; Hrachowitz, Markus; Ruiz, Laurent; Faucheux, Mikael; Aquilina, Luc; Molenat, Jerome; Durand, Patrick; Gascuel-Odoux, Chantal

    2013-04-01

    Management and prediction of water quality in watersheds is critical especially in agricultural regions. Water quality in watersheds varies in a very broad range of temporal scales, from storm events or diurnal cycles, seasonal cycles, to pluriannual trends. It varies also spatially, with contrasted dynamics of solutes in the soil, the recharge, the groundwater and the streams. This is challenging both in term of monitoring and of modelling. Agricultural watershed are interesting to discriminate short term from long term mechanisms, as most of them experienced drastic changes in agricultural inputs in the past 50 years. Recently, the analysis of long-term stream water quality data sets has allowed improving significantly our understanding of solute residence time in watersheds [1]. However, as historical agricultural practices are usually poorly documented, large assumptions are needed to achieve such exercises. Despite the large amount of research in the past 30 years dedicated to understand and model the dynamics of agricultural-borne diffuse pollution at the watershed level, there is no accepted perceptual model explaining the observed dynamics of water quality simultaneously at all the relevant spatial and temporal scales and a very little number of sites sufficiently documented to test it. We present results from a long-term comprehensive monitoring of agricultural inputs and chemistry of surface water (20 years) and groundwater (10 years) in small experimental watersheds (ORE AgrHys, http://www.inra.fr/ore_agrhys/). Results showed (i) a strong stability in the stream chemistry whereas agricultural inputs in these small watersheds were highly variable from year to year, (ii) a high spatial heterogeneity of the groundwater chemistry, both laterally along the hillslope and vertically and (iii) contrasted behavior of long-term trends in agricultural inputs and nitrate concentration in groundwater. A simple model was developed, based on linear reservoirs, and run

  7. Spatial and Temporal Variability in Nitrate Concentration below the Root Zone in an Almond Orchard and its Implications for Potential Groundwater Contamination

    Science.gov (United States)

    Baram, S.; Couvreur, V.

    2015-12-01

    Spatial and Temporal Variability in Nitrate Concentration below the Root Zone in an Almond Orchard and its Implications for Potential Groundwater Contamination S. Baram1, M. Read1, D. Smart2, T. Harter1, J Hopmans11Department of Land, Air & Water Resources University of California Davis 2Department of Viticulture and Enology University of California Davis Estimates of water and fertilizer losses below the root zone of nitrogen (N) intensive agricultural orchard crops are major concern in groundwater protection. However, microscopic and macroscopic heterogeneity in unsaturated soils make accurate loss estimates very challenging. In this study we aimed to examine field scale variability in nitrate (NO3-) losses below the root zone (>250cm) of a 15 years old almond orchard in Madera county California. Based on a soil variability survey, tensiometers and solution samplers were installed at 17 locations around the 40 acre orchard. The hydraulic potential and the NO3- concentrations were monitored over two growing seasons. Nitrate concentrations varied spatially and temporarily, and ranged from below to more than 30 times higher than the drinking water contamination standard of >10 mg NO3--N L-1. Principal component analysis of the relations between the NO3- concentration, presence of a hard pan in the subsurface, its depth and thickness, and the fertigation and irrigation events indicated that none of these factors explained the observed variability in pore-water NO3- concentrations, with hard pan being the most dominant factor. Throughout the irrigation season minimal leaching was observed, yet post-harvest and preseason flooding events led to deep drainage. Due to the high spatial and temporal variability in the NO3- concentration and the potential for deep drainage following a wet winter or flooding event we conclude that the most efficient way to protect ground water is by transitioning to high frequency low nitrogen fertigation which would retain NO3-in the active

  8. Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002-50

    Science.gov (United States)

    Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.

    2013-01-01

    Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome. In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three