WorldWideScience

Sample records for groundwater model component

  1. AWRA-G: A continental scale groundwater component linked to a land surface water balance model

    Science.gov (United States)

    Joehnk, Klaus; Crosbie, Russell; Peeters, Luk; Doble, Rebecca

    2013-04-01

    The Australian Water Resources Assessment (AWRA) system is a combination of models, data sources and analysis techniques that together will describe the water balance of Australia's landscapes, rivers and groundwater systems. It is a grid based water balance model that has lumped representation of the water balance of the soil, groundwater and surface water stores for each cell. The purpose of AWRA is to operationally provide up to date, credible, comprehensive, and accurate information about the history, present state and future trajectory of the water balance across Australia with sufficient spatial and temporal detail and enable water resources management for undertaking annual water resource assessments and national water accounts. AWRA is developed to link three major components: a landscape water balance model (AWRA-L), a river routing model (AWRA-R), and a groundwater component model (AWRA-G). These three component models combined are expected to be able to model the fluxes and stores of water throughout the landscape. The groundwater component (AWRA-G) addresses an improved representation of groundwater in the AWRA system to describe basic aquifer dynamics and groundwater-surface water processes. While most continental scale land surface models do not have the capacity to allow water to flow between cells and thus ignore this element of the water balance, AWRA-G does account for lateral flows. In general, AWRA-G provides estimates of groundwater fluxes that are not incorporated into either AWRA-L and its modifications to in-cell soil and groundwater processes, or AWRA-R. The processes integrated into AWRA-G thus are lateral groundwater flow between cells in regional and intermediate groundwater flow systems, groundwater discharge to the ocean, groundwater extraction and infiltration, river losses to groundwater, recharge from overbank flooding, and interactions between deep confined systems and surficial groundwater systems. Basis of AWRA-G is a good

  2. Investigating groundwater flow components in an Alpine relict rock glacier (Austria) using a numerical model

    Science.gov (United States)

    Pauritsch, Marcus; Wagner, Thomas; Winkler, Gerfried; Birk, Steffen

    2017-03-01

    Relict rock glaciers are complex hydrogeological systems that might act as relevant groundwater storages; therefore, the discharge behavior of these alpine landforms needs to be better understood. Hydrogeological and geophysical investigations at a relict rock glacier in the Niedere Tauern Range (Austria) reveal a slow and fast flow component that appear to be related to the heterogeneous structure of the aquifer. A numerical groundwater flow model was used to indicate the influence of important internal structures such as layering, preferential flow paths and aquifer-base topography. Discharge dynamics can be reproduced reasonably by both introducing layers of strongly different hydraulic conductivities or by a network of highly conductive channels within a low-conductivity zone. Moreover, the topography of the aquifer base influences the discharge dynamics, which can be observed particularly in simply structured aquifers. Hydraulic conductivity differences of three orders of magnitude are required to account for the observed discharge behavior: a highly conductive layer and/or channel network controlling the fast and flashy spring responses to recharge events, as opposed to less conductive sediment accumulations sustaining the long-term base flow. The results show that the hydraulic behavior of this relict rock glacier and likely that of others can be adequately represented by two aquifer components. However, the attempt to characterize the two components by inverse modeling results in ambiguity of internal structures when solely discharge data are available.

  3. Investigating groundwater flow components in an Alpine relict rock glacier (Austria) using a numerical model

    Science.gov (United States)

    Pauritsch, Marcus; Wagner, Thomas; Winkler, Gerfried; Birk, Steffen

    2016-11-01

    Relict rock glaciers are complex hydrogeological systems that might act as relevant groundwater storages; therefore, the discharge behavior of these alpine landforms needs to be better understood. Hydrogeological and geophysical investigations at a relict rock glacier in the Niedere Tauern Range (Austria) reveal a slow and fast flow component that appear to be related to the heterogeneous structure of the aquifer. A numerical groundwater flow model was used to indicate the influence of important internal structures such as layering, preferential flow paths and aquifer-base topography. Discharge dynamics can be reproduced reasonably by both introducing layers of strongly different hydraulic conductivities or by a network of highly conductive channels within a low-conductivity zone. Moreover, the topography of the aquifer base influences the discharge dynamics, which can be observed particularly in simply structured aquifers. Hydraulic conductivity differences of three orders of magnitude are required to account for the observed discharge behavior: a highly conductive layer and/or channel network controlling the fast and flashy spring responses to recharge events, as opposed to less conductive sediment accumulations sustaining the long-term base flow. The results show that the hydraulic behavior of this relict rock glacier and likely that of others can be adequately represented by two aquifer components. However, the attempt to characterize the two components by inverse modeling results in ambiguity of internal structures when solely discharge data are available.

  4. Three-dimensional model for multi-component reactive transport with variable density groundwater flow

    Science.gov (United States)

    Mao, X.; Prommer, H.; Barry, D.A.; Langevin, C.D.; Panteleit, B.; Li, L.

    2006-01-01

    PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. ?? 2004 Elsevier Ltd. All rights reserved.

  5. Groundwater Recharge Modeling in Azraq Basin (Jordan) Considering the Unsaturated Flow Components

    Science.gov (United States)

    Sharif, M. Al; Jazzar, T. Al

    2009-04-01

    Water resources in Azraq basin at the northeastern part of Jordan are at critical juncture, due to the continual and excessive abstraction of groundwater accompanied with small amounts of groundwater recharge by precipitation, and high rates of evaporation losses over the entire basin. Groundwater recharge from precipitation over the basin was estimated using soil water balance. It was found that only about 2% to 3 % of annual average rainfall infiltrates ground surface to reach the shallow aquifer. The three dimensional finite difference groundwater flow model MODFLOW (Processing Modflow Pro, version7) was utilized in order to simulate groundwater flow in the basin. Steady state was calibrated using hydraulic conductivity and flows. The calibrated hydraulic conductivity ranged between 0.1 m/day to 7.0 m/day, the system water balance for the steady state showed that spring discharge from the basin was about 15.0 MCM/yr, groundwater recharge by precipitation was about 9.5 MCM/yr, and the trans-boundaries inflow was 5.5 MCM/yr. Transient state was also calibrated using the specific yield ranged between 0.02 to 0.4. Water balance for the year 2002 showed that there are about 40 MCM/yr as water deficit and a maximum drawdown of about 22 m occur in the well field area. Groundwater recharge at five earth dams have been simulated starting from 1995, it was shown that water deficit that occur in 2002 will decreases by about 15 MCM/yr, drawdown has been slightly affected by these recharge dams. This was attributed to the high abstraction rate at the well field area; the second reason is that the locations of these earth dams are far from the well field area. The calibrated model was used to predict the aquifer future subjected to different scenarios, four scenarios were tested to verify the model ability to be a prediction tool. These scenarios showed that continuing with the current abstraction rate which is 57 MCM/yr until year 2025 will lead to an increase of the

  6. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  7. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    Science.gov (United States)

    Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

    2012-01-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  8. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. O. Cuthbert

    2013-03-01

    Full Text Available Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is presented and tested using a range of numerical models, including a modified soil moisture balance model (SMBM for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via preferential flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in preferential flow pathways due to seasonal ploughing of the topsoil and to a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010 is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  9. Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site

    Science.gov (United States)

    Zhu, Chen; Hu, Fang Q.; Burden, David S.

    2001-11-01

    Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH) 3(a), and Fe(OH) 3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO 42- transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.

  10. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  11. Spatial control of groundwater contamination, using principal component analysis

    Indian Academy of Sciences (India)

    N Subba Rao

    2014-06-01

    A study on the geochemistry of groundwater was carried out in a river basin of Andhra Pradesh to probe into the spatial controlling processes of groundwater contamination, using principal component analysis (PCA). The PCA transforms the chemical variables, pH, EC, Ca2+, Mg2+, Na+, K+, HCO$^{−}_{3}$, Cl−, SO$^{2−}_{4}$, NO$^{−}_{3}$ and F−, into two orthogonal principal components (PC1 and PC2), accounting for 75% of the total variance of the data matrix. PC1 has high positive loadings of EC, Na+, Cl−, SO$^{2−}_{4}$, Mg2+ and Ca2+, representing a salinity controlled process of geogenic (mineral dissolution, ion exchange, and evaporation), anthropogenic (agricultural activities and domestic wastewaters), and marine (marine clay) origin. The PC2 loadings are highly positive for HCO$^{−}_{3}$, F−, pH and NO$^{−}_{3}$, attributing to the alkalinity and pollution controlled processes of geogenic and anthropogenic origins. The PC scores reflect the change of groundwater quality of geogenic origin from upstream to downstream area with an increase in concentration of chemical variables, which is due to anthropogenic and marine origins with varying topography, soil type, depth of water levels, and water usage. Thus, the groundwater quality shows a variation of chemical facies from Na+ > Ca2+ > Mg2+ > K+: HCO$^{−}_{3}$ > Cl− > SO$^{2−}_{4}$ > NO$^{−}_{3}$ > F− at high topography to Na+ > Mg2+ > Ca2+ > K+: Cl− > HCO$^{−}_{3}$ > SO$^{2−}_{4}$ > NO$^{−}_{3}$ > F− at low topography. With PCA, an effective tool for the spatial controlling processes of groundwater contamination, a subset of explored wells is indexed for continuous monitoring to optimize the expensive effort.

  12. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... of the evolution in natural baseline properties in groundwater....

  13. Applied groundwater modeling, 2nd Edition

    Science.gov (United States)

    Anderson, Mary P.; Woessner, William W.; Hunt, Randall J.

    2015-01-01

    This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies.

  14. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  15. Features of spatiotemporal groundwater head variation using independent component analysis

    Science.gov (United States)

    Hsiao, Chin-Tsai; Chang, Liang-Cheng; Tsai, Jui-Pin; Chen, You-Cheng

    2017-04-01

    The effect of external stimuli on a groundwater system can be understood by examining the features of spatiotemporal head variations. However, the head variations caused by various external stimuli are mixed signals. To identify the stimuli features of head variations, we propose a systematic approach based on independent component analysis (ICA), frequency analysis, cross-correlation analysis, well-selection strategy, and hourly average head analysis. We also removed the head variations caused by regional stimuli (e.g., rainfall and river stage) from the original head variations of all the wells to better characterize the local stimuli features (e.g., pumping and tide). In the synthetic case study, the derived independent component (IC) features are more consistent with the features of the given recharge and pumping than the features derived from principle component analysis. In a real case study, the ICs associated with regional stimuli highly correlated with field observations, and the effect of regional stimuli on the head variation of all the wells was quantified. In addition, the tide, agricultural, industrial, and spring pumping features were characterized. Therefore, the developed method can facilitate understanding of the features of the spatiotemporal head variation and quantification of the effects of external stimuli on a groundwater system.

  16. Groundwater characterisation and modelling: problems, facts and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [INTERA KB, Sollentuna (Sweden)

    1999-12-01

    For the last 10 years, the Aespoe Hard Rock Laboratory (HRL) in Sweden has been the main test site for the development of suitable methods for the final disposal of spent nuclear fuel. Major achievements have been made in the development of new groundwater sampling and modelling techniques. The natural condition of the groundwater is easily disturbed by drilling and sampling. The effects from borehole activities which may bias the real character of the groundwater have been identified. The development of new sampling techniques has improved the representativeness of the groundwater samples. In addition, methods to judge the representativeness better have been developed. For modelling of the Aespoe site, standard groundwater modelling codes based on thermodynamic laws have been applied. The many limitations of existing geochemical models used at the Aespoe site and the need to decode the complex groundwater information in terms of origin, mixing and reactions at site scale necessitated the development of a new modelling tool. This new modelling concept was named M3. In M3 modelling the assumption is that the groundwater chemistry is a result of mixing as well as water/rock reactions. The M3 model compares the groundwater compositions from a site. The similarities and differences of the groundwater compositions are used to quantify the contribution from mixing and reactions on the measured data. In order to construct a reliable model the major components, stable isotopes and tritium are used. Initially, the method quantifies the contribution from the flow system. Subsequently, contributions from reactions are calculated. The model differs from many other standard models which primarily use reactions rather than mixing to determine the groundwater evolution. The M3 code has been used for the following type of modelling: calculate the mixing portions at Aespoe, quantify the contribution from inorganic and organic reactions such as biogenic decomposition and sulphate

  17. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  18. Evolution of Groundwater Major Components in the Hebei Plain:Evidences from 30-Year Monitoring Data

    Institute of Scientific and Technical Information of China (English)

    Yanhong Zhan; Huaming Guo; Yu Wang; Ruimin Li; Chuntang Hou; Jingli Shao; Yali Cui

    2014-01-01

    Groundwater is the main water source in the Hebei Plain. Evolution of groundwater chemistry can not only provide scientific data for sustainable usage of groundwater resources, but also help us in better understanding hydrogeochemical processes in aquifers. Spatial distribution and tem-poral evolution were analyzed on basis of monitoring data between 1975 and 2005. Results showed that major components in groundwater had increasing trends since 1970s. Major components in shallow groundwater increased more than those in deep one. In shallow groundwater of piedmont alluvial fan-recharge zone, concentrations of Na+, Ca2+, SO42- had great increasing trends, while other major components increased by less than 30%. There were great increasing trends in Na+, Cl-, SO42-concen-trations in deep groundwater of central alluvial plain-intermediate zone, while other major components increased by no more than 20%. Deep groundwater from coast plain-discharge zone and piedmont al-luvial fan-recharge zone showed no significant variations in major ion concentrations. In shallow groundwater, dissolution, evaporation and human activities played a major role in the increase in major components. However, groundwater mixture resulting from deep groundwater exploitation was be-lieved to be the major factors for the increases in major components in deep groundwater of central al-luvial plain-intermediate zone.

  19. Develop a Model Component

    Science.gov (United States)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  20. Distributed models coupling soakaways, urban drainage and groundwater

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin

    , and how these can be modeled in an integrated environment with distributed urban drainage and groundwater flow models. The thesis: 1. Identifies appropriate models of soakaways for use in an integrated and distributed urban water and groundwater modeling system 2. Develops a modeling concept that is able...... of the literature and on modeling studies, a new modeling concept is proposed which fulfills the need for integrated models coupling distributed urban drainage with groundwater. The suggested solution consists of a base equation for soakaway infiltration and additional components for clogging, upscaling......Alternative methods for stormwater management in urban areas, also called Water Sensitive Urban Design (WSUD) methods, have become increasingly important for the mitigation of urban stormwater management problems such as high runoff volumes, combined sewage overflows, poor water quality...

  1. The nature and role of physical models in enhancing sixth grade students' mental models of groundwater and groundwater processes

    Science.gov (United States)

    Duffy, Debra Lynne Foster

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate students' ideas and changes in ideas rather than measure their achievement. The measures included a groundwater survey, classroom observations, and one-on-one follow-up student interviews for triangulation of data sources. The research was carried out at a K-12 independent school in eastern Virginia using two classes of sixth grade earth science students (n=30). The findings suggest that physical models help students identify the components porosity and permeability with respect to water flow in groundwater systems. Higher levels of system thinking were best demonstrated in model components that allowed students to experience groundwater pollution activities and pumping groundwater wells. However, the results also indicated that due to model constraints, students can develop misconceptions during the use of physical models, specifically more complex physical models as in the Groundwater Exploration Activity Model. A pure discovery learning format while using physical models without guidance or formative assessment probes can lead to misconceptions about groundwater processes as well as confusion between model attributes and real world groundwater systems. The implications of this study relate directly to the inclusion of groundwater in the new national science standards released in 2011; A Framework for K-12 Science Standard; Practices, Crosscutting Concepts, and Core Ideas (NRC, 2011). The new national standards, as in other educational reform efforts, will have the ability to affect curricular and instructional strategies in science education. From the results of this study, it was concluded that best practices for using

  2. Hydroeconomic modeling of sustainable groundwater management

    Science.gov (United States)

    MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard

    2017-03-01

    In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.

  3. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  4. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  5. Groundwater Risk Assessment Model (GRAM: Groundwater Risk Assessment Model for Wellfield Protection

    Directory of Open Access Journals (Sweden)

    Nara Somaratne

    2013-09-01

    Full Text Available A groundwater risk assessment was carried out for 30 potable water supply systems under a framework of protecting drinking water quality across South Australia. A semi-quantitative Groundwater Risk Assessment Model (GRAM was developed based on a “multi-barrier” approach using likelihood of release, contaminant pathway and consequence equation. Groundwater vulnerability and well integrity have been incorporated to the pathway component of the risk equation. The land use of the study basins varies from protected water reserves to heavily stocked grazing lands. Based on the risk assessment, 15 systems were considered as low risk, four as medium and 11 systems as at high risk. The GRAM risk levels were comparable with indicator bacteria—total coliform—detection. Most high risk systems were the result of poor well construction and casing corrosion rather than the land use. We carried out risk management actions, including changes to well designs and well operational practices, design to increase time of residence and setting the production zone below identified low permeable zones to provide additional barriers to contaminants. The highlight of the risk management element is the well integrity testing using down hole geophysical methods and camera views of the casing condition.

  6. Developing a Model Component

    Science.gov (United States)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  7. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... and uncertainty estimation. Essential issues relating to calibration are discussed. The classical regression methods are described; however, the main focus is on the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The next two chapters describe case studies in which the GLUE methodology...

  8. The 3D simulation and optimized management model of groundwater systems based on ecoenvironmental water demand

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater's economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da'an in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.

  9. Using the Community Land Model to Assess Uncertainty in Basin Scale GRACE-Based Groundwater Estimates

    Science.gov (United States)

    Swenson, S. C.; Lawrence, D. M.

    2015-12-01

    One method for interpreting the variability in total water storage observed by GRACE is to partition the integrated GRACE measurement into its component storage reservoirs based on information provided by hydrological models. Such models, often designed to be used in couple Earth System models, simulate the stocks and fluxes of moisture through the land surface and subsurface. One application of this method attempts to isolate groundwater changes by removing modeled surface water, snow, and soil moisture changes from GRACE total water storage estimates. Human impacts on groundwater variability can be estimated by further removing model estimates of climate-driven groundwater changes. Errors in modeled water storage components directly affect the residual groundwater estimates. Here we examine the influence of model structure and process representation on soil moisture and groundwater uncertainty using the Community Land Model, with a particular focus on basins in the western U.S.

  10. Application of vector autoregressive model for rainfall and groundwater level analysis

    Science.gov (United States)

    Keng, Chai Yoke; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee

    2017-08-01

    Groundwater is a crucial water supply for industrial, agricultural and residential use, hence it is important to understand groundwater system. Groundwater is a dynamic natural resource and can be recharged. The amount of recharge depends on the rate and duration of rainfall, as rainfall comprises an important component of the water cycle and is the prime source of groundwater recharge. This study applies Vector Autoregressive (VAR) model in the analysis of rainfall and groundwater level. The study area that is focused in the study is along the East-West Highway, Gerik-Jeli, Malaysia. The VAR model with optimum lag length 8, VAR(8) is selected to model the rainfall and groundwater level in the study area. Result of Granger causality test shows significant influence of rainfall to groundwater level. Impulse Response Function reveals that changes in rainfall significantly affect changes in groundwater level after some time lags. Moreover, Variance Decomposition reported that rainfall contributed to the forecast of the groundwater level. The VAR(8) model is validated by comparing the actual value with the in-sample forecasted value and the result is satisfied with all forecasted groundwater level values lies inside the confidence interval which indicate that the model is reliable. Furthermore, the closeness of both actual and forecasted groundwater level time series plots implies the high degree of accurateness of the estimated model.

  11. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  12. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  13. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  14. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion

    Science.gov (United States)

    de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2017-04-01

    Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.

  15. Pesticides in groundwater: modelling and data analysis of the past, present and future

    DEFF Research Database (Denmark)

    Binning, Philip John; McKnight, Ursula S.; Malaguerra, Flavio

    to jointly manage our groundwater and surface water resources. Here, observed pesticide data is analyzed and combined with models to address these questions and needs. Groundwater and surface water pesticide observations reflect the fact that these two hydrological components have a strong interaction...

  16. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    Science.gov (United States)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  17. This year`s model: Geochemical modeling and groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Tuchfeld, H.A.; Simmons, S.P.; Jesionek, K.S. [GeoSyntec Consultants, Walnut Creek, CA (United States)]|[GeoSyntec Consultants, Atlanta, GA (United States); Romito, A.A. [Browning-Ferris Industries, Inc., Houston, TX (United States)

    1998-07-01

    It has been determined that landfill gas migration is a source of volatile organic compounds (VOCs) in groundwater. This can occur through: direct partitioning of migrating gas constituents into the groundwater; alteration of the physiochemical properties of the groundwater; and by indirect means (such as migration of landfill gas condensate and vadose zone water contaminated by landfill gas). This article examines the use of geochemical modeling as a useful tool for differentiating the effects of municipal solid waste (MSW) landfill gas versus leachate on groundwater quality at MSW landfill sites.

  18. Calibration of Models Using Groundwater Age (Invited)

    Science.gov (United States)

    Sanford, W. E.

    2009-12-01

    Water-resource managers are frequently concerned with the long-term ability of a groundwater system to deliver volumes of water for both humans and ecosystems under natural and anthropogenic stresses. Analysis of how a groundwater system responds to such stresses usually involves the construction and calibration of a numerical groundwater-flow model. The calibration procedure usually involves the use of both groundwater-level and flux observations. Water-level data are often more abundant, and thus the availability of flux data can be critical, with well discharge and base flow to streams being most often available. Lack of good flux data however is a common occurrence, especially in more arid climates where the sustainability of the water supply may be even more in question. Environmental tracers are frequently being used to estimate the “age” of a water sample, which represents the time the water has been in the subsurface since its arrival at the water table. Groundwater ages provide flux-related information and can be used successfully to help calibrate groundwater models if porosity is well constrained, especially when there is a paucity of other flux data. As several different methods of simulating groundwater age and tracer movement are possible, a review is presented here of the advantages, disadvantages, and potential pitfalls of the various numerical and tracer methods used in model calibration. The usefulness of groundwater ages for model calibration depends on the ability both to interpret a tracer so as to obtain an apparent observed age, and to use a numerical model to obtain an equivalent simulated age observation. Different levels of simplicity and assumptions accompany different methods for calculating the equivalent simulated age observation. The advantages of computational efficiency in certain methods can be offset by error associated with the underlying assumptions. Advective travel-time calculation using path-line tracking in finite

  19. Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging

    Energy Technology Data Exchange (ETDEWEB)

    Critto, Andrea; Carlon, Claudio; Marcomini, Antonio

    2003-04-01

    Information on soil and groundwater contamination was used to develop a site conceptual model and to identify exposure scenarios. - The characterization of a hydrologically complex contaminated site bordering the lagoon of Venice (Italy) was undertaken by investigating soils and groundwaters affected by the chemical contaminants originated by the wastes dumped into an illegal landfill. Statistical tools such as principal components analysis and geostatistical techniques were applied to obtain the spatial distribution of chemical contaminants. Dissolved organic carbon (DOC), SO{sub 4}{sup 2-} and Cl{sup -} were used to trace the migration of the contaminants from the top soil to the underlying groundwaters. The chemical and hydrogeological available information was assembled to obtain the schematic of the conceptual model of the contaminated site capable to support the formulation of major exposure scenarios, which are also provided.

  20. Groundwater Modeling of the Texas High Plains using Modflow

    Science.gov (United States)

    Hernandez, J. E.; Gowda, P. H.; Misra, D.; Marek, T.; Howell, T. A.

    2008-12-01

    The objective of this study was to develop and calibrate a groundwater model for a 4-county area in the Texas High Plains of the Ogallala Aquifer Region. This study is a major component of a comprehensive regional analysis of groundwater depletion in the Ogallala Aquifer Region with the purpose of understanding short- and long-term effects of existing and alternative land use scenarios on groundwater changes. A comprehensive geographic information system (GIS) database was developed for this purpose that included a recent land cover map. This 2008 land cover map was developed using Landsat satellite imagery with ground-truth points for Dallam, Sherman, Hartley, and Moore Counties in Texas. Other GIS layers included aquifer elevation contours, surficial geology, hydraulic conductivity contours, saturated thickness areas, well locations and piezometric heads, aquifer discharge and recharge areas, topography, hydrographic data, ecological regions, and soil type data. The hydrologic simulations were done using MODFLOW. Anticipated outcomes from this modeling effort include the effect of change in land use/land cover on sustainability of the aquifer life in the study region. Our results will be used to develop strategies to conserve groundwater in the Ogallala Aquifer beneath Central High Plains and improve regional water planning.

  1. Constraining groundwater modeling with magnetic resonance soundings.

    Science.gov (United States)

    Boucher, Marie; Favreau, Guillaume; Nazoumou, Yahaya; Cappelaere, Bernard; Massuel, Sylvain; Legchenko, Anatoly

    2012-01-01

    Magnetic resonance sounding (MRS) is a noninvasive geophysical method that allows estimating the free water content and transmissivity of aquifers. In this article, the ability of MRS to improve the reliability of a numerical groundwater model is assessed. Thirty-five sites were investigated by MRS over a ∼5000 km(2) domain of the sedimentary Continental Terminal aquifer in SW Niger. Time domain electromagnetic soundings were jointly carried out to estimate the aquifer thickness. A groundwater model was previously built for this section of the aquifer and forced by the outputs from a distributed surface hydrology model, to simulate the observed long-term (1992 to 2003) rise in the water table. Uncertainty analysis had shown that independent estimates of the free water content and transmissivity values of the aquifer would facilitate cross-evaluation of the surface-water and groundwater models. MRS results indicate ranges for permeability (K = 1 × 10(-5) to 3 × 10(-4) m/s) and for free water content (w = 5% to 23% m(3) /m(3) ) narrowed by two orders of magnitude (K) and by ∼50% (w), respectively, compared to the ranges of permeability and specific yield values previously considered. These shorter parameter ranges result in a reduction in the model's equifinality (whereby multiple combinations of model's parameters are able to represent the same observed piezometric levels), allowing a better constrained estimate to be derived for net aquifer recharge (∼22 mm/year).

  2. Modeling the impact of the nitrate contamination on groundwater at the groundwater body scale : The Geer basin case study (Invited)

    Science.gov (United States)

    Brouyere, S.; Orban, P.; Hérivaux, C.

    2009-12-01

    In the next decades, groundwater managers will have to face regional degradation of the quantity and quality of groundwater under pressure of land-use and socio-economic changes. In this context, the objectives of the European Water Framework Directive require that groundwater be managed at the scale of the groundwater body, taking into account not only all components of the water cycle but also the socio-economic impact of these changes. One of the main challenges remains to develop robust and efficient numerical modeling applications at such a scale and to couple them with economic models, as a support for decision support in groundwater management. An integrated approach between hydrogeologists and economists has been developed by coupling the hydrogeological model SUFT3D and a cost-benefit economic analysis to study the impact of agricultural practices on groundwater quality and to design cost-effective mitigation measures to decrease nitrate pressure on groundwater so as to ensure the highest benefit to the society. A new modeling technique, the ‘Hybrid Finite Element Mixing Cell’ approach has been developed for large scale modeling purposes. The principle of this method is to fully couple different mathematical and numerical approaches to solve groundwater flow and solute transport problems. The mathematical and numerical approaches proposed allows an adaptation to the level of local hydrogeological knowledge and the amount of available data. In combination with long time series of nitrate concentrations and tritium data, the regional scale modelling approach has been used to develop a 3D spatially distributed groundwater flow and solute transport model for the Geer basin (Belgium) of about 480 km2. The model is able to reproduce the spatial patterns of nitrate concentrations together nitrate trends with time. The model has then been used to predict the future evolution of nitrate trends for two types of scenarios: (i) a “business as usual scenario

  3. Groundwater Level Prediction using M5 Model Trees

    Science.gov (United States)

    Nalarajan, Nitha Ayinippully; Mohandas, C.

    2015-01-01

    Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.

  4. Study of Seasonal Variation in Groundwater Quality of Sagar City (India) by Principal Component Analysis

    OpenAIRE

    Hemant Pathak; S. N. Limaye

    2011-01-01

    Groundwater is one of the major resources of the drinking water in Sagar city (India.). In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis fa...

  5. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  6. Coastal groundwater table estimation by an elevation fluctuation neural model

    Institute of Scientific and Technical Information of China (English)

    HE Bin; WANG Yi

    2007-01-01

    Restrictions of groundwater management are often derived from the insufficient or missing groundwater database. A suitable and complete groundwater database will allow sound engineering plans for sustainable water usage, including the drilling of wells, rates of water withdrawal, and eventually artificial recharge of the aquifer. The spatial-temporal variations of groundwater monitoring data are fluently influenced by the presence of manual factors, monitor equipment malfunctioning, natural phenomena, etc. Thus, it is necessary for researchers to check and infill the groundwater database before running the numerical groundwater model. In this paper, an artificial neural network (ANN)-based model is formulated using the hydrological and meteorological data to infill the inadequate data in the groundwater database. Prediction results present that ANN method could be a desirable choice for estimating the missing groundwater data.

  7. Modeling groundwater flow on massively parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.

    1994-12-31

    The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.

  8. Identifying Components of Groundwater Flow, Flux, and Storage in Tuolumne Meadows, Yosemite, California

    Science.gov (United States)

    Vialpando, M., III; Lowry, C.; Visser, A.; Moran, J. E.; Esser, B. K.

    2015-12-01

    High elevation meadows in the Sierra Nevada of California, USA represent mixing zones between surface water and groundwater. Quantifying the exchange between stream water and groundwater, and the residence time of water stored in meadow sediments will allow examination of the possible buffer effect that groundwater has on meadows and streams. This in turn has implications for the resilience of the ecosystem as well as the downstream communities that are dependent upon runoff for water supply. Stream flow was measured and water samples were collected along a 5 km reach of the Tuolumne River and adjacent wells during both spring runoff and baseflow. Water samples were analyzed for concentrations of dissolved noble gases and anions, sulfur-35, tritium and radon to study surface water-groundwater interactions and residence times. Although lower than average because of the ongoing drought in California, discharge in early July 2015 was about 35 times that measured during the previous fall. During baseflow, a small component of fracture flow (2%) is identified using dissolved helium. Radon, anions and stream discharge identify reaches of groundwater discharge. Anions show a steady increase in the groundwater component over the western portion of the meadow during baseflow, and over 50% of stream water is exchanged with meadow groundwater, without a net gain or loss of stream flow. Sulfur-35 and tritium results indicated that groundwater contributing to stream flow has recharged within the previous two years. With the current drought, estimated as the most severe in 1200 years, accurate estimations of water availability are becoming increasingly important to water resource managers.

  9. Advances in the Coupled Soil Water and Groundwater Models

    Institute of Scientific and Technical Information of China (English)

    杨玉峥; 王志敏

    2014-01-01

    Models simulating the reciprocal transformation between the soil water and groundwater are of great practical importance to the development and utilization of water resources and prevention and remedy of water pollution. In this paper, popular coupled models of soil water and groundwater will be analyzed. Besides, advantages and disadvantages of different models will be summarized as a reference for the numerical model of soil water and groundwater.

  10. Improving large-scale groundwater models by considering fossil gradients

    Science.gov (United States)

    Schulz, Stephan; Walther, Marc; Michelsen, Nils; Rausch, Randolf; Dirks, Heiko; Al-Saud, Mohammed; Merz, Ralf; Kolditz, Olaf; Schüth, Christoph

    2017-05-01

    Due to limited availability of surface water, many arid to semi-arid countries rely on their groundwater resources. Despite the quasi-absence of present day replenishment, some of these groundwater bodies contain large amounts of water, which was recharged during pluvial periods of the Late Pleistocene to Early Holocene. These mostly fossil, non-renewable resources require different management schemes compared to those which are usually applied in renewable systems. Fossil groundwater is a finite resource and its withdrawal implies mining of aquifer storage reserves. Although they receive almost no recharge, some of them show notable hydraulic gradients and a flow towards their discharge areas, even without pumping. As a result, these systems have more discharge than recharge and hence are not in steady state, which makes their modelling, in particular the calibration, very challenging. In this study, we introduce a new calibration approach, composed of four steps: (i) estimating the fossil discharge component, (ii) determining the origin of fossil discharge, (iii) fitting the hydraulic conductivity with a pseudo steady-state model, and (iv) fitting the storage capacity with a transient model by reconstructing head drawdown induced by pumping activities. Finally, we test the relevance of our approach and evaluated the effect of considering or ignoring fossil gradients on aquifer parameterization for the Upper Mega Aquifer (UMA) on the Arabian Peninsula.

  11. Recent developments in modeling groundwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Witherspoon, P.A.

    1977-05-20

    This paper reviews the developments in the mathematical modeling of groundwater systems over the past decde. The first part of the paper is devoted to a description of the physics of the different types of problems that are of interest in hydrogeology and a statement of the related initial-boundary-value problems. The various numerical techniques that have been employed to solve the governing equations are discussed in the second part. In the third section a few typical case histories are presented to illustrate the trend of progress that has occurred in the application of mathematical modeling to actual field problems.

  12. Component Composition Using Feature Models

    DEFF Research Database (Denmark)

    Eichberg, Michael; Klose, Karl; Mitschke, Ralf;

    2010-01-01

    In general, components provide and require services and two components are bound if the first component provides a service required by the second component. However, certain variability in services - w.r.t. how and which functionality is provided or required - cannot be described using standard...... interface description languages. If this variability is relevant when selecting a matching component then human interaction is required to decide which components can be bound. We propose to use feature models for making this variability explicit and (re-)enabling automatic component binding. In our...... approach, feature models are one part of service specifications. This enables to declaratively specify which service variant is provided by a component. By referring to a service's variation points, a component that requires a specific service can list the requirements on the desired variant. Using...

  13. Reliability of travel times to groundwater abstraction wells: Application of the Netherlands Groundwater Model - LGM

    NARCIS (Netherlands)

    Kovar K; Leijnse A; Uffink G; Pastoors MJH; Mulschlegel JHC; Zaadnoordijk WJ; LDL; IMD; TNO/NITG; Haskoning

    2005-01-01

    A modelling approach was developed, incorporated in the finite-element method based program LGMLUC, making it possible to determine the reliability of travel times of groundwater flowing to groundwater abstraction sites. The reliability is seen here as a band (zone) around the expected travel-time i

  14. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    Science.gov (United States)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D

  15. Data-driven methods to improve baseflow prediction of a regional groundwater model

    Science.gov (United States)

    Xu, Tianfang; Valocchi, Albert J.

    2015-12-01

    Physically-based models of groundwater flow are powerful tools for water resources assessment under varying hydrologic, climate and human development conditions. One of the most important topics of investigation is how these conditions will affect the discharge of groundwater to rivers and streams (i.e. baseflow). Groundwater flow models are based upon discretized solution of mass balance equations, and contain important hydrogeological parameters that vary in space and cannot be measured. Common practice is to use least squares regression to estimate parameters and to infer prediction and associated uncertainty. Nevertheless, the unavoidable uncertainty associated with physically-based groundwater models often results in both aleatoric and epistemic model calibration errors, thus violating a key assumption for regression-based parameter estimation and uncertainty quantification. We present a complementary data-driven modeling and uncertainty quantification (DDM-UQ) framework to improve predictive accuracy of physically-based groundwater models and to provide more robust prediction intervals. First, we develop data-driven models (DDMs) based on statistical learning techniques to correct the bias of the calibrated groundwater model. Second, we characterize the aleatoric component of groundwater model residual using both parametric and non-parametric distribution estimation methods. We test the complementary data-driven framework on a real-world case study of the Republican River Basin, where a regional groundwater flow model was developed to assess the impact of groundwater pumping for irrigation. Compared to using only the flow model, DDM-UQ provides more accurate monthly baseflow predictions. In addition, DDM-UQ yields prediction intervals with coverage probability consistent with validation data. The DDM-UQ framework is computationally efficient and is expected to be applicable to many geoscience models for which model structural error is not negligible.

  16. An approach to improve direct runoff estimates and reduce uncertainty in the calculated groundwater component in water balances of large lakes

    Science.gov (United States)

    Wiebe, Andrew J.; Conant, Brewster; Rudolph, David L.; Korkka-Niemi, Kirsti

    2015-12-01

    Groundwater is important in the overall water budget of a lake because it affects the quantity and quality of surface water and the ecological health of the lake. The water balance equation is frequently used to estimate the net groundwater flow for small lakes but is seldom used to determine net groundwater flow components for large lakes because: (1) errors accumulate in the calculated groundwater term, and (2) there is an inability to accurately quantify the direct runoff component. In this water balance study of Lake Pyhäjärvi (155 km2) in Finland, it was hypothesized a hydrograph separation model could be used to estimate direct runoff to the lake and, when combined with a rigorous uncertainty analyses, would provide reliable net groundwater flow estimates. The PART hydrograph separation model was used to estimate annual per unit area direct runoff values for the watershed of the inflowing Yläneenjoki River (a subwatershed of the lake) which were then applied to other physically similar subwatersheds of the lake to estimate total direct runoff to the lake. The hydrograph separation method provided superior results and had lower uncertainty than the common approach of using a runoff coefficient based method. The average net groundwater flow into the lake was calculated to be +43 mm per year (+3.0% of average total inflow) for the 38 water years 1971-2008. It varied from -197 mm to 284 mm over that time, and had a magnitude greater than the uncertainty for 17 of the 38 years. The average indirect groundwater contribution to the lake (i.e., the groundwater part of the inflowing rivers) was 454 mm per year (+32% of average total inflow) and demonstrates the overall importance of groundwater. The techniques in this study are applicable to other large lakes and may allow small net groundwater flows to be reliably quantified in settings that might otherwise be unquantifiable or completely lost in large uncertainties.

  17. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  18. Using Independent Components Analysis to diminish the response of groundwater in borehole strainmeter

    Science.gov (United States)

    Chen, Chih-Yen; Hu, Jyr-Ching

    2017-04-01

    With designed feather, borehole strainmeter can not only record minor signals of tectonic movements, but also broad environmental signs such as barometry, rainfall and groundwater. Among these external factor, groundwater will influence the observation of borehole strainmeter mostly. According to essential observation, groundwater will cause much bigger response than the target tectonic strain change. We use co-sited piezometer to record pore pressure of groundwater in the rock formation in order to obtain the relationship of stain change and pore pressure. But there still exist some puzzle that can not be solved. First, due to instrument limitation, we could not set the pore pressure transducer in the same aquifer as strainmeter did. In this case, the response due to pore pressure change might be not fully correct. Furthermore, through pore-pressure transducers were set in most observatory, problem of electricity and connectivity will cause the record lack and lost. Therefore, it is necessary to find out a better and more stable method to diminish the groundwater response of strainmeter data.Strain transducer with different orientation can observe the groundwater response in different scale. If we can extract out groundwater signal from each independent strain transducer and estimate its original source. That will significantly rise signal strength and lower noise level. The case belongs some kind of blind-signal-separation (BSS) problem. The procedure of BSS extract or rebuild signal that can't be observed directly in many mixed sources and Independent-Component-Analysis (ICA) is one method adopted broadly. ICA is an analysis to find out parts which have statistics independence and non-Gaussian factor in complex signals. We use FastICA developed by to figure out the groundwater response strain in original strain data, and try to diminish it to rise the signal strength. We preceded strain data previously, then using ICA to separate data into serval independent

  19. Modeling the effects of atmospheric emissions on groundwater composition

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.J.

    1994-12-31

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  20. State space modeling of groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.

    2004-01-01

    Groundwater plays an important role in both urban and rural areas. It is therefore essential to monitor groundwater fluctuations. However, data that becomes available need to be analyzed further in order to extract specific information on the groundwater system. Until recently, simple linear time se

  1. Component Breakout Computer Model

    Science.gov (United States)

    1987-04-29

    Weapon Systems: A Policy Analysis." The Rand Graduate Institute. November 1983. Boger . D. "Statistical Models for Estimating Overhead Costs." M. S...SQUARE SCREEN PROGRAM BO DLS 70 LOCATE 3,5 100 PRINT " I I I I I I I I I I I I I I t I I I t I I i iiitiii I I I I i t I i 110 LOCATE 4,5 I 20...GOTO 4620 4610 REM ***********«««*«««**#«***********#******»,*###!^5|[^,„<c#,5|c„ dl -r C^M EED SUPPORT .c.50 REM A6(6)...N0 OF EMPLOYEES 4660 IF

  2. Custom map projections for regional groundwater models

    Science.gov (United States)

    Kuniansky, Eve L.

    2017-01-01

    For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.

  3. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady

  4. A New Geochemical Reaction Model for Groundwater Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Through a survey of the literature on geology, hydrogeology and hydrogeochemistry, this paper presents a hydrogeochemical model for the groundwater system in a dross-dumping area of the Shandong Aluminium Plant. It is considered that the groundwater-bearing medium is a mineral aggregate and that the interactions between groundwater and the groundwater-bearing medium can be described as a series of geochemical reactions. On that basis, the principle of minimum energy and the equations of mass balance, electron balance and electric neutrality are applied to construct a linear programming mathematical model for the calculation of mass transfer between water and rock with the simplex method.

  5. Groundwater Pathway Model for the Los Alamos National Laboratory Technical Area 21, Material Disposal Area T

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Levitt, Daniel G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Terry Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy [Neptune Inc, Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dash, Zora [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-09

    This report consists of four major sections, including this introductory section. Section 2 provides an overview of previous investigations related to the development of the current sitescale model. The methods and data used to develop the 3-D groundwater model and the techniques used to distill that model into a form suitable for use in the GoldSim models are discussed in Section 3. Section 4 presents the results of the model development effort and discusses some of the uncertainties involved. Three attachments that provide details about the components and data used in this groundwater pathway model are also included with this report.

  6. Baseline groundwater model update for p-area groundwater operable unit, NBN

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. [Savannah River Site (SRS), Aiken, SC (United States); Amidon, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-09-01

    This report documents the development of a numerical groundwater flow and transport model of the hydrogeologic system of the P-Area Reactor Groundwater Operable Unit at the Savannah River Site (SRS) (Figure 1-1). The P-Area model provides a tool to aid in understanding the hydrologic and geochemical processes that control the development and migration of the current tritium, tetrachloroethene (PCE), and trichloroethene (TCE) plumes in this region.

  7. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    Science.gov (United States)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  8. General Separations Area (GSA) Groundwater Flow Model Update: Hydrostratigraphic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-21

    This document describes the assembly, selection, and interpretation of hydrostratigraphic data for input to an updated groundwater flow model for the General Separations Area (GSA; Figure 1) at the Department of Energy’s (DOE) Savannah River Site (SRS). This report is one of several discrete but interrelated tasks that support development of an updated groundwater model (Bagwell and Flach, 2016).

  9. Hydrogeochemical modeling of groundwater chemical environmental evolution in Hebei Plain

    Institute of Scientific and Technical Information of China (English)

    郭永海; 沈照理; 钟佐燊

    1997-01-01

    Using the hydrogeochemical modeling method, the groundwater chemical environmental problems of the Hebei Plain which involve increasing of hardness and total dissolved solids in piedmont area and mixing of saline water with fresh water in middle-eastern area are studied. The water-rock interactions and mass transfer along a ground-water flow path and in mixing processes are calculated. Thus the evolution mechanisms of the groundwater chemical environment are brought to light.

  10. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the setup of mass balances...... to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out, in order to estimate concentrations in the soilplant- air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  11. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin

    Directory of Open Access Journals (Sweden)

    E. H. Sutanudjaja

    2011-09-01

    Full Text Available The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed. The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale.

  12. Modeling falling groundwater tables in major cities of the world

    Science.gov (United States)

    Sutanudjaja, Edwin; Erkens, Gilles

    2016-04-01

    Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.

  13. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    Science.gov (United States)

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the

  14. Groundwater and contaminant transport modelling at the Sydney Tar Ponds

    Energy Technology Data Exchange (ETDEWEB)

    King, M. [Groundwater Insight Inc., Halifax, NS (Canada); Check, G. [Jacques Whitford Environment Ltd., Halifax, NS (Canada); Carey, G. [Environmental Inst. for Continuing Education, Waterloo, ON (Canada); Abbey, D. [Waterloo Hydrogeologic, Waterloo, ON (Canada); Baechler, F. [ADI Ltd., Sydney, NS (Canada)

    2003-07-01

    The Muggah Creek Watershed, a tidal estuary located in Sydney, Nova Scotia, is known locally as the Tar Ponds. Over the past century, the Tar Ponds have accumulated contaminants in the contributing watershed from the iron, steel and coke manufacturing. There are sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). A groundwater modelling program was developed to estimate current contaminant fluxes to the estuary and site streams, through groundwater. Attempts were made to incorporate a complex stratigraphic profile, where groundwater flow and contaminant transport is strongly controlled by shallow fractured bedrock, into the conceptual model developed for the site. This conceptual model for groundwater flow and contaminant transport at the Sydney Tar Ponds site was presented. The complex flow patterns between bedrock and overburden, and between the bedrock units and surface water bodies were illustrated with model simulations. It was found that groundwater flow was dominated by discharge to the streams and the estuary. 6 refs., 2 tabs., 11 figs.

  15. A model for managing sources of groundwater pollution.

    Science.gov (United States)

    Gorelick, S.M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the US Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. -from Author

  16. Study of Seasonal Variation in Groundwater Quality of Sagar City (India by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Hemant Pathak

    2011-01-01

    Full Text Available Groundwater is one of the major resources of the drinking water in Sagar city (India.. In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis factoring has been used to observe the mode of association of parameters and their interrelationships, for evaluating water quality. Average value of BOD, COD, ammonia and iron was high during entire study period. Elevated values of BOD and ammonia in monsoon, slightly more value of BOD in post-monsoon, BOD, ammonia and iron in pre-monsoon period reflected contribution on temporal effect on groundwater. Results of principal component analysis evinced that all the parameters equally and significantly contribute to groundwater quality variations. Factor 1 and factor 2 analysis revealed the DO value deteriorate due to organic load (BOD/Ammonia in different seasons. Hierarchical cluster analysis grouped 15 stations into four clusters in monsoon, five clusters in post-monsoon and five clusters in pre-monsoon with similar water quality features. Clustered group at monsoon, post-monsoon and pre-monsoon consisted one station exhibiting significant spatial variation in physicochemical composition. The anthropogenic nitrogenous species, as fallout from modernization activities. The study indicated that the groundwater sufficiently well oxygenated and nutrient-rich in study places.

  17. Modelling regional transport of pesticide residues in groundwater

    NARCIS (Netherlands)

    Leistra, M.; Beltman, W.H.J.; Boesten, J.J.T.I.; Matser, A.M.; Zee, van der S.E.A.T.M.

    1996-01-01

    The movement of pesticides through soil and groundwater to pumping wells for drinking-water supply was modelled. Most of the retardation and transformation occurs when a pesticide moves through the unsaturated zone. Computed leaching to groundwater increased when soil heterogeneity was taken into

  18. Parameter Estimation and Experimental Design in Groundwater Modeling

    Institute of Scientific and Technical Information of China (English)

    SUN Ne-zheng

    2004-01-01

    This paper reviews the latest developments on parameter estimation and experimental design in the field of groundwater modeling. Special considerations are given when the structure of the identified parameter is complex and unknown. A new methodology for constructing useful groundwater models is described, which is based on the quantitative relationships among the complexity of model structure, the identifiability of parameter, the sufficiency of data, and the reliability of model application.

  19. Modelling Urban diffuse pollution in groundwater

    Science.gov (United States)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  20. Regional groundwater flow modeling of the Geba basin, northern Ethiopia

    Science.gov (United States)

    Gebreyohannes, Tesfamichael; De Smedt, Florimond; Walraevens, Kristine; Gebresilassie, Solomon; Hussien, Abdelwassie; Hagos, Miruts; Amare, Kassa; Deckers, Jozef; Gebrehiwot, Kindeya

    2017-01-01

    The Geba basin is one of the most food-insecure areas of the Tigray regional state in northern Ethiopia due to recurrent drought resulting from erratic distribution of rainfall. Since the beginning of the 1990s, rain-fed agriculture has been supported through small-scale irrigation schemes mainly by surface-water harvesting, but success has been limited. Hence, use of groundwater for irrigation purposes has gained considerable attention. The main purpose of this study is to assess groundwater resources in the Geba basin by means of a MODFLOW modeling approach. The model is calibrated using observed groundwater levels, yielding a clear insight into the groundwater flow systems and reserves. Results show that none of the hydrogeological formations can be considered as aquifers that can be exploited for large-scale groundwater exploitation. However, aquitards can be identified that can support small-scale groundwater abstraction for irrigation needs in regions that are either designated as groundwater discharge areas or where groundwater levels are shallow and can be tapped by hand-dug wells or shallow boreholes.

  1. Regional groundwater flow modeling of the Geba basin, northern Ethiopia

    Science.gov (United States)

    Gebreyohannes, Tesfamichael; De Smedt, Florimond; Walraevens, Kristine; Gebresilassie, Solomon; Hussien, Abdelwassie; Hagos, Miruts; Amare, Kassa; Deckers, Jozef; Gebrehiwot, Kindeya

    2017-05-01

    The Geba basin is one of the most food-insecure areas of the Tigray regional state in northern Ethiopia due to recurrent drought resulting from erratic distribution of rainfall. Since the beginning of the 1990s, rain-fed agriculture has been supported through small-scale irrigation schemes mainly by surface-water harvesting, but success has been limited. Hence, use of groundwater for irrigation purposes has gained considerable attention. The main purpose of this study is to assess groundwater resources in the Geba basin by means of a MODFLOW modeling approach. The model is calibrated using observed groundwater levels, yielding a clear insight into the groundwater flow systems and reserves. Results show that none of the hydrogeological formations can be considered as aquifers that can be exploited for large-scale groundwater exploitation. However, aquitards can be identified that can support small-scale groundwater abstraction for irrigation needs in regions that are either designated as groundwater discharge areas or where groundwater levels are shallow and can be tapped by hand-dug wells or shallow boreholes.

  2. Using multi-objective optimisation to integrate alpine regions in groundwater flow models

    Directory of Open Access Journals (Sweden)

    V. Rojanschi

    2005-01-01

    Full Text Available Within the research project GLOWA Danube, a groundwater flow model was developed for the Upper Danube basin. This paper reports on a preliminary study to include the alpine part of the catchment in the model. A conceptual model structure was implemented and tested using multi-objective optimisation analysis. The performance of the model and the identifiability of the parameters were studied. A possible over-parameterisation of the model was also tested using principal component analysis.

  3. Data fusion modeling for groundwater systems

    Science.gov (United States)

    Porter, David W.; Gibbs, Bruce P.; Jones, Walter F.; Huyakorn, Peter S.; Hamm, L. Larry; Flach, Gregory P.

    2000-03-01

    Engineering projects involving hydrogeology are faced with uncertainties because the earth is heterogeneous, and typical data sets are fragmented and disparate. In theory, predictions provided by computer simulations using calibrated models constrained by geological boundaries provide answers to support management decisions, and geostatistical methods quantify safety margins. In practice, current methods are limited by the data types and models that can be included, computational demands, or simplifying assumptions. Data Fusion Modeling (DFM) removes many of the limitations and is capable of providing data integration and model calibration with quantified uncertainty for a variety of hydrological, geological, and geophysical data types and models. The benefits of DFM for waste management, water supply, and geotechnical applications are savings in time and cost through the ability to produce visual models that fill in missing data and predictive numerical models to aid management optimization. DFM has the ability to update field-scale models in real time using PC or workstation systems and is ideally suited for parallel processing implementation. DFM is a spatial state estimation and system identification methodology that uses three sources of information: measured data, physical laws, and statistical models for uncertainty in spatial heterogeneities. What is new in DFM is the solution of the causality problem in the data assimilation Kalman filter methods to achieve computational practicality. The Kalman filter is generalized by introducing information filter methods due to Bierman coupled with a Markov random field representation for spatial variation. A Bayesian penalty function is implemented with Gauss-Newton methods. This leads to a computational problem similar to numerical simulation of the partial differential equations (PDEs) of groundwater. In fact, extensions of PDE solver ideas to break down computations over space form the computational heart of DFM

  4. Modeling of Groundwater Quantity and Quality Management, Nile Valley, Egypt

    Science.gov (United States)

    Owlia, R.; Fogg, G. E.

    2012-12-01

    Groundwater levels have been rising in the Luxor area of Egypt due to increased agricultural irrigation following the construction of the Aswan High Dam (AHD) in 1970. This has led to soil and groundwater salinity problems caused by increasing evapotranspiration from shallower water table, as well as the degradation of historical monuments whose foundations are weakening by capillary rise of water into the columns and stonework. While similar salinity problems exist elsewhere in the world (e.g., San Joaquin Valley of California), we hypothesize that as long as groundwater discharge to the Nile River continues and serves as a sink for the salt, the regional salt balance will be manageable and will not lead to irreversible salinization of soils. Further, we hypothesize that if a groundwater system such as this one becomes overdrafted, thereby cutting off groundwater discharge to the River, the system salt balance will be less manageable and possibly non-sustainable. With groundwater flow modeling we are investigating approaches for managing the irrigation and groundwater levels so as to eliminate water stresses on Egyptian monuments and antiquities. Consequences of possible actions for managing the water table through groundwater pumping and alternative irrigation practices will be presented. Moreover, through the use of high resolution modeling of system heterogeneity, we will simulate the long term salt balance of the system under various scenarios, including the overdraft case. The salt source will be a function of groundwater discharge to the surface via bare-soil evaporation and crop transpiration. The built-in heterogeneity will account for dispersion, fast transport in connected media and slow mass transfer between aquifer and aquitard materials. Key Words: Groundwater, modeling, water quality, sustainability, salinity, irrigated agriculture, Nile aquifer.

  5. The cyclical component factor model

    DEFF Research Database (Denmark)

    Dahl, Christian Møller; Hansen, Henrik; Smidt, John

    Forecasting using factor models based on large data sets have received ample attention due to the models' ability to increase forecast accuracy with respect to a range of key macroeconomic variables in the US and the UK. However, forecasts based on such factor models do not uniformly outperform...... the simple autoregressive model when using data from other countries. In this paper we propose to estimate the factors based on the pure cyclical components of the series entering the large data set. Monte Carlo evidence and an empirical illustration using Danish data shows that this procedure can indeed...

  6. Interaction of rare earth elements and components of the Horonobe deep groundwater.

    Science.gov (United States)

    Kirishima, Akira; Kuno, Atsushi; Amamiya, Hiroshi; Kubota, Takumi; Kimuro, Shingo; Amano, Yuki; Miyakawa, Kazuya; Iwatsuki, Teruki; Mizuno, Takashi; Sasaki, Takayuki; Sato, Nobuaki

    2017-02-01

    To better understand the migration behavior of minor actinides in deep groundwater, the interactions between doped rare earth elements (REEs) and components of Horonobe deep groundwater were investigated. Approximately 10 ppb of the REEs, i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb were doped into a groundwater sample collected from a packed section in a borehole drilled at 140 m depth in the experiment drift of Horonobe Underground Research Laboratory in Hokkaido, Japan. The groundwater sample was sequentially filtered with a 0.2 μm pore filter, and 10 kDa, 3 kDa and 1 kDa nominal molecular weight limit (NMWL) ultrafilters with conditions kept inert. Next, the filtrate solutions were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of the REEs retained in solution at each filtration step, while the used filters were analyzed through neutron activation analysis (NAA) and TOF-SIMS element mapping to determine the amounts and chemical species of the trapped fractions of REEs on each filter. A strong relationship between the ratios of REEs retained in the filtrate solutions and the ionic radii of the associated REEs was observed; i.e. smaller REEs occur in larger proportions dissolved in the solution phase under the conditions of the Horonobe groundwater. The NAA and TOF-SIMS analyses revealed that portions of the REEs were trapped by the 0.2 μm pore filter as REE phosphates, which correspond to the species predicted to be predominant by chemical equilibrium calculations for the conditions of the Horonobe groundwater. Additionally, small portions of colloidal REEs were trapped by the 10 kDa and 3 kDa NMWL ultrafilters. These results suggest that phosphate anions play an important role in the chemical behavior of REEs in saline (seawater-based) groundwater, which may be useful for predicting the migration behavior of trivalent actinides released from radioactive waste repositories in the far

  7. Monitoring and modelling terbuthylazine and desethyl-terbuthylazine in groundwater.

    Science.gov (United States)

    Fait, G.; Balderacchi, M.; Ferrari, F.; Capri, E.; Trevisan, M.

    2009-04-01

    the future. Therefore, after the monitoring study the leaching of terbuthylazine and desethyl-terbuthylazine in groundwater was simulated with the aim to: 1) to verify a possible dilution effect due to lateral recharge; 2) to verify that the sampling time during the monitoring study was appropriate; 3) to verify the leaching of the metabolites in time. The model MACRO (version 5.1) was used. MACRO is a physically based one-dimensional model, which considers preferential flow (i.e. 'micropores' and 'macropores') to describe the transport of water and solutes in soils. Using the data coming from the monitoring (i.e.: soil, climatic, geology and hydrological data) a scenario was set in each of the eleven Italian sites monitored from 2005 to 2007. A maize monoculture was simulated for 20 years in each site, with a pre-emergence treatment every year. Daily measurements of groundwater table depth were available for each site, and then these data were used in order to reach a good calibration of the soil hydrology. Two sets of soil data were used: soil data acquired from the analysis of the soil core sampled in each site and soil data of the corresponding reference profile obtained from the regional soil maps. Furthermore, in order to estimate soil hydraulic parameters, two sets of pedotransfer functions were used: one developed for the northern Europe soils and one developed for the Po Valley soils. The results showed that the groundwater table depth simulated fitted quite well with the measured data, and then it was demonstrated that the groundwater recharge was constant in time. Only in one site measured and simulated groundwater table depth did not match to each other. This case suggested that hydrological equilibrium was not given only by precipitation/irrigation and evapotranspiration, then lateral or bottom recharge and a consequent dilution effect were assumed. Furthermore, in order to estimate the lateral recharge "Darcy's Law" was applied and it was demonstrated

  8. Groundwater governance: A tale of three participatory models in Andhra Pradesh, India

    National Research Council Canada - National Science Library

    V Ratna Reddy; M Srinivasa Reddy; Sanjit Kumar Rout

    2014-01-01

    .... The main focus of the study is to understand the functioning and efficiency of groundwater management institutions by comparing and contrasting three participatory groundwater models in Andhra Pradesh...

  9. Analysis and integrated modelling of groundwater infiltration to sewer networks

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Balling, Jonas Dueholm; Larsen, Uffe Bay Bøgh

    2016-01-01

    Infiltration of groundwater to sewer systems is a problem for the capacity of the system as well as for treatment processes at waste water treatment plants. This paper quantifies the infiltration of groundwater to a sewer system in Frederikshavn Municipality, Denmark, by measurements of sewer flow...... and novel model set-up, which simulates the interaction between groundwater and sewer flow. The study area has a separate waste water sewer system, but the discharged volumes from the system are approximately twice the volumes from a tight system without infiltration. The model set-up makes use of two...

  10. Using airborne geophysical surveys to improve groundwater resource management models

    Science.gov (United States)

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.

    2010-01-01

    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  11. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    Science.gov (United States)

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  12. Analysis of confidence in continental-scale groundwater recharge estimates for Africa using a distributed water balance model

    Science.gov (United States)

    Mackay, Jonathan; Mansour, Majdi; Bonsor, Helen; Pachocka, Magdalena; Wang, Lei; MacDonald, Alan; Macdonald, David; Bloomfield, John

    2014-05-01

    There is a growing need for improved access to reliable water in Africa as population and food production increases. Currently approximately 300 million people do not have access to a secure source of safe drinking water. To meet these current and future demands, groundwater will need to be increasingly abstracted; groundwater is more reliable than surface water sources due to its relatively long response time to meteorological stresses and therefore is likely to be a more secure water resource in a more variable climate. Recent studies also quantified the volumes of groundwater potentially available which suggest that, if exploited, groundwater could help to meet the demand for fresh water. However, there is still considerable uncertainty as to how these resources may respond in the future due to changes in groundwater recharge and abstraction. Understanding and quantifying groundwater recharge is vital as it forms a primary indicator of the sustainability of underlying groundwater resources. Computational hydrological models provide a means to do this, but the complexity of recharge processes in Africa mean that these simulations are often highly uncertain. This study aims to evaluate our confidence in simulating groundwater recharge over Africa based on a sensitivity analysis using a distributed hydrological model developed by the British Geological Survey, ZOODRM. The model includes land surface, canopy, river, soil and groundwater components. Each component is able to exchange water and as such, forms a distributed water balance of Africa. The components have been parameterised using available spatial datasets of African vegetation, land-use, soil and hydrogeology while the remaining parameters have been estimated by calibrating the model to available river flow data. Continental-scale gridded precipitation and potential evapotranspiration datasets, based on remotely sensed and ground observations, have been used to force the model. Following calibration, the

  13. Analytical models for the groundwater tidal prism and associated benthic water flux

    Science.gov (United States)

    King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.

    2010-01-01

    The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.

  14. Review: Optimization methods for groundwater modeling and management

    Science.gov (United States)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  15. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  16. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  17. Component-specific modeling. [jet engine hot section components

    Science.gov (United States)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  18. LINEAR MODELS FOR MANAGING SOURCES OF GROUNDWATER POLLUTION.

    Science.gov (United States)

    Gorelick, Steven M.; Gustafson, Sven-Ake; ,

    1984-01-01

    Mathematical models for the problem of maintaining a specified groundwater quality while permitting solute waste disposal at various facilities distributed over space are discussed. The pollutants are assumed to be chemically inert and their concentrations in the groundwater are governed by linear equations for advection and diffusion. The aim is to determine a disposal policy which maximises the total amount of pollutants released during a fixed time T while meeting the condition that the concentration everywhere is below prescribed levels.

  19. From groundwater baselines to numerical groundwater flow modelling for the Milan metropolitan area

    Science.gov (United States)

    Crosta, Giovanni B.; Frattini, Paolo; Peretti, Lidia; Villa, Federica; Gorla, Maurizio

    2015-04-01

    Contamination of major aquifers in highly densely populated areas is a major concern for stakeholders involved in the use and protection of groundwater resources. Sustainable groundwater withdrawal and management, and the identification of trends in groundwater contamination require a careful hydrochemical baseline characterization. This characterization is fundamental to investigate the presence and evolutionary trend of contaminants. In fact, it allows recovering and understanding: the spatial-temporal trend of contamination; the relative age of the contamination episodes; the reasons for anomalous behavior of some compounds during migration to and in the groundwater; the associations with which some contaminants can be found; the different behaviors in phreatic and semi-confined and confined aquifers. To attain such a characterization for the Milan metropolitan area (about 2,500 km2, ca 4.000.000 inhabitants, Lombardy, Italy), we carried out three main activities. (1) Collection of complete and reliable datasets concerning the geological, hydrogeological and hydrochemical (over 60,000 chemical analysis since 2003 to 2013) characteristics of the area and of the involved aquifers. This activity was very demanding because the available data are provided by different authorities (Lombardy Region, Provinces, Lombardy Environmental Agency - ARPA Lombardia, public own companies in charge of water system managements) in raw format and with different database standard, which required a large effort of manual verification and harmonization. (2) Completion of a hydrochemical characterization of the metropolitan area aquifers by classical statistical and multivariate statistical analyses, in order to define a baseline both for some major physical chemical characteristics and for the most relevant contaminants. (3) Development of a three dimensional hydrogeological model for the metropolitan area starting from the above listed datasets and existing models. This model will

  20. Groundwater Pathway Model for the Los Alamos National Laboratory Technical Area 54, Area G, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Terry A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Strobridge, Daniel M. [Neptune Inc., Los Alamos, NM (United States); Cole, Gregory L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gable, Carl Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broxton, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Springer, Everett P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schofield, Tracy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    This report consists of four major sections, including this introductory section. Section 2 provides an overview of previous investigations related to the development of the current sitescale model. The methods and data used to develop the 3-D groundwater model and the techniques used to distill that model into a form suitable for use in the GoldSim models are discussed in Section 3. Section 4 presents the results of the model development effort and discusses some of the uncertainties involved. Eight attachments that provide details about the components and data used in this groundwater pathway model are also included with this report. The groundwater modeling effort reported here is a revision of the work that was conducted in 2005 (Stauffer et al., 2005a) in support of the 2008 Area G performance assessment and composite analysis (LANL, 2008). The revision effort was undertaken primarily to incorporate new geologic information that has been collected since 2003 at, and in the vicinity of, Area G. The new data were used to create a more accurate geologic framework model (GFM) that forms the basis of the numerical modeling of the site’s long-term performance. The groundwater modeling uses mean hydrologic properties of the geologic strata underlying Area G; this revision includes an evaluation of the impacts that natural variability in these properties may have on the model projections.

  1. Developing a high resolution groundwater model for Indonesia

    Science.gov (United States)

    Sutanudjaja, E.; de Graaf, I. E.; Alberti, K.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    Groundwater is important in many parts of Indonesia. It serves as a primary source of drinking water and industrial activities. During times of drought, it sustains water flows in streams, rivers, lakes and wetlands, and thus support ecosystem habitat and biodiversity, as well as preventing hazardous forest fire. Besides its importance, groundwater is known as a vulnerable resource as unsustainable groundwater exploitation and management occurs in many areas of the country. Therefore, in order to ensure sustainable management of groundwater resources, monitoring and predicting groundwater changes in Indonesia are imperative. However, large-extent groundwater models to assess these changes on a regional scale are almost non-existent and are hampered by the strong topographical and lithological transitions that characterize Indonesia. In this study, we built an 1 km resolution of steady-state groundwater model for the entire Indonesian archipelago (total inland area: about 2 million km2). Here we adopted the approach of Sutanudjaja et al. (2011) in order to make a MODFLOW (McDonald and Harbaugh, 1988) groundwater model by using only global datasets. Aquifer schematization and properties of the groundwater model were developed from available global lithological map (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorf, 2012). We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. Results are promising. The MODFLOW model can converge with realistic aquifer properties (i.e. transmissivities) and produce reasonable groundwater head spatial distribution that reflects the positions of major groundwater bodies and surface water bodies in the country. For this session, we aim to demonstrate and discuss the results and the prospects of this modeling study. References: D

  2. Development of Groundwater Modeling Capacity in Mongolia: Keys to Success

    Science.gov (United States)

    Anderson, M. T.; Valder, J. F.; Carter, J. M.

    2015-12-01

    Ulaanbaatar, the capital city of Mongolia, is totally dependent on groundwater for its municipal and industrial water supply. Water is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence, however, suggests that current water use and especially the projected water demand from a rapidly growing urban population, is not sustainable from existing water sources. In response, the Mongolia Ministry of Environment and the Mongolian Fresh Water Institute requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers to the U.S. Geological Survey (USGS). Scientists from the USGS-SD Water Science Center provided a workshop to Mongolian water experts on basic principles of groundwater modeling using MODFLOW. The purpose of the workshop was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling. A preliminary steady-state groundwater flow model was developed to simulate groundwater conditions in the Tuul River Basin and for use in water use decision-making. The model consisted of 2 layers, 226 rows, and 260 columns with uniform 500 meter grid spacing. The upper model layer represented the alluvial aquifer and the lower layer represented the underlying bedrock, which includes areas characterized by permafrost. Estimated groundwater withdrawal was 180 m3/day, and estimated recharge was 114 mm/yr. The model will be modified and updated by Mongolian scientists as more data are available. Ultimately the model will be used to assist managers in developing a sustainable water supply, for current use and changing climate scenarios. A key to success was developing in-country technical capacity and partnerships with the Mongolian University of Science and Technology, Mongolian Freshwater Institute, a non-profit organization, UNESCO, and the government of Mongolia.

  3. Hydrogeological modeling for improving groundwater monitoring network and strategies

    Science.gov (United States)

    Thakur, Jay Krishna

    2016-09-01

    The research aimed to investigate a new approach for spatiotemporal groundwater monitoring network optimization using hydrogeological modeling to improve monitoring strategies. Unmonitored concentrations were incorporated at different potential monitoring locations into the groundwater monitoring optimization method. The proposed method was applied in the contaminated megasite, Bitterfeld/Wolfen, Germany. Based on an existing 3-D geological model, 3-D groundwater flow was obtained from flow velocity simulation using initial and boundary conditions. The 3-D groundwater transport model was used to simulate transport of α-HCH with an initial ideal concentration of 100 mg/L injected at various hydrogeological layers in the model. Particle tracking for contaminant and groundwater flow velocity realizations were made. The spatial optimization result suggested that 30 out of 462 wells in the Quaternary aquifer (6.49 %) and 14 out of 357 wells in the Tertiary aquifer (3.92 %) were redundant. With a gradual increase in the width of the particle track path line, from 0 to 100 m, the number of redundant wells remarkably increased, in both aquifers. The results of temporal optimization showed different sampling frequencies for monitoring wells. The groundwater and contaminant flow direction resulting from particle tracks obtained from hydrogeological modeling was verified by the variogram modeling through α-HCH data from 2003 to 2009. Groundwater monitoring strategies can be substantially improved by removing the existing spatio-temporal redundancy as well as incorporating unmonitored network along with sampling at recommended interval of time. However, the use of this model-based method is only recommended in the areas along with site-specific experts' knowledge.

  4. Using EARTH Model to Estimate Groundwater Recharge at Five Representative Zones in the Hebei Plain, China

    Institute of Scientific and Technical Information of China (English)

    Bingguo Wang; Menggui Jin; Xing Liang

    2015-01-01

    Accurate estimation of groundwater recharge is essential for efficient and sustainable groundwater management in many semi-arid regions. In this paper, a lumped parameter model (EARTH) was established to simulate the recharge rate and recharge process in typical areas by the ob-servation datum of weather, soil water and groundwater synthetically, and the spatial and temporal variation law of groundwater recharge in the Hebei Plain was revealed. The mean annual recharge rates at LQ, LC, HS, DZ and CZ representative zones are 220.1, 196.7, 34.1, 141.0 and 188.0 mm/a and the recharge coefficients are 26.5%, 22.3%, 7.2%, 20.4%, and 22.0%, respectively. Recharge rate and re-charge coefficient are gradually reduced from piedmont plain to coastal plain. Groundwater recharge appears as only yearly waves, with higher frequency components of the input series filtered by the deep complicated unsaturated zone (such as LC). While at other zones, groundwater recharge series strongly dependent on the daily rainfall and irrigation because of the shallow water table or coarse lithology.

  5. Bridging groundwater models and decision support with a Bayesian network

    Science.gov (United States)

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  6. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  7. Characterising and modelling groundwater discharge in anagricultural wetland on the French Atlantic coast

    Directory of Open Access Journals (Sweden)

    Ph. Weng

    2003-01-01

    Full Text Available Interaction between a wetland and its surrounding aquifer was studied in the Rochefort agricultural marsh (150 km2. Groundwater discharge in the marsh was measured with a network of nested piezometers. Hydrological modelling of the wetland showed that a water volume of 770,000 m3 yr–1 is discharging into the marsh, but that this water flux essentially takes place along the lateral borders of the wetland. However, this natural discharge volume represents only 20% of the artificial freshwater injected each year into the wetland to maintain the water level close to the soil surface. Understanding and quantifying the groundwater component in wetland hydrology is crucial for wetland management and conservation. Keywords: wetland, hydrology, groundwater, modelling, marsh

  8. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  9. Spatial modeling for groundwater arsenic levels in North Carolina.

    Science.gov (United States)

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  10. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  11. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  12. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    Science.gov (United States)

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  13. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    Science.gov (United States)

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    public-supply wells in Clark County may be receiving a component of water that recharged in areas that are more conducive to contaminant entry. The aquifer sensitivity maps illustrate a critical deficiency in the DRASTIC methodology: the failure to account for the dynamics of the ground-water flow system. DRASTIC indices calculated for a particular location thus do not necessarily reflect the conditions of the ground-water resources at the recharge areas to that particular location. Each hydrogeologic unit was also mapped to highlight those areas that will eventually receive flow from recharge areas with on-site waste-disposal systems. Most public-supply wells in southern Clark County may eventually receive a component of water that was recharged from on-site waste-disposal systems.Traveltimes from particle tracking were used to estimate the minimum and maximum age of ground water within each model-grid cell. Chlorofluorocarbon (CFC)-age dating of ground water from 51 wells was used to calibrate effective porosity values used for the particle- tracking program by comparison of ground-water ages determined through the use of the CFC-age dating with those calculated by the particle- tracking program. There was a 76 percent agreement in predicting the presence of modern water in the 51 wells as determined using CFCs and calculated by the particle-tracking program. Maps showing the age of ground water were prepared for all the hydrogeologic units. Areas with the youngest ground-water ages are expected to be at greatest risk for contamination from anthropogenic sources. Comparison of these maps with maps of public- supply wells in Clark County indicates that most of these wells may withdraw ground water that is, in part, less than 100 years old, and in many instances less than 10 years old. Results of the analysis showed that a single particle-tracking analysis simulating advective transport can be used to evaluate ground-water vulnerability for any part of a ground-wate

  14. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    Science.gov (United States)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  15. Study on the Estimation of Groundwater Withdrawals Based on Groundwater Flow Modeling and Its Application in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    Jingli Shao; Yali Cui; Qichen Hao; Zhong Han; Tangpei Cheng

    2014-01-01

    The amount of water withdrawn by wells is one of the quantitative variables that can be applied to estimate groundwater resources and further evaluate the human influence on ground-water systems. The accuracy for the calculation of the amount of water withdrawal significantly in-fluences the regional groundwater resource evaluation and management. However, the decentralized groundwater pumping, inefficient management, measurement errors and uncertainties have resulted in considerable errors in the groundwater withdrawal estimation. In this study, to improve the esti-mation of the groundwater withdrawal, an innovative approach was proposed using an inversion method based on a regional groundwater flow numerical model, and this method was then applied in the North China Plain. The principle of the method was matching the simulated water levels with the observation ones by adjusting the amount of groundwater withdrawal. In addition, uncertainty analysis of hydraulic conductivity and specific yield for the estimation of the groundwater with-drawal was conducted. By using the proposed inversion method, the estimated annual average groundwater withdrawal was approximately 24.92×109 m3 in the North China Plain from 2002 to 2008. The inversion method also significantly improved the simulation results for both hydrograph and the flow field. Results of the uncertainty analysis showed that the hydraulic conductivity was more sensitive to the inversion results than the specific yield.

  16. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models

    Science.gov (United States)

    Ajami, Hoori; Meixner, Thomas; Maddock, Thomas; Hogan, James F.; Guertin, D. Phillip

    2011-09-01

    Riparian groundwater evapotranspiration (ETg) constitutes a major component of the water balance especially in many arid and semi-arid environments. Although spatial and temporal variability of riparian ETg are controlled by climate, vegetation and subsurface characteristics, depth to water table (DTWT) is often considered the major controlling factor. Relationships between ETg rates and DTWT, referred to as ETg curves, are implemented in MODFLOW ETg packages (EVT, ETS1 and RIP-ET) with different functional forms. Here, the sensitivity of the groundwater budget in MODFLOW groundwater models to ETg parameters (including ETg curves, land-surface elevation and ETg seasonality) are investigated. A MODFLOW model of the hypothetical Dry Alkaline Valley in the Southwestern USA is used to show how spatial representation of riparian vegetation and digital elevation model (DEM) processing methods impact the water budget when RIPGIS-NET (a GIS-based ETg program) is used with MODFLOW's RIP-ET package, and results are compared with the EVT and ETS1 packages. Results show considerable impact on ETg and other groundwater budget components caused by spatial representation of riparian vegetation, vegetation type, fractional coverage areas and land-surface elevation. RIPGIS-NET enhances ETg estimation in MODFLOW by incorporating vegetation and land-surface parameters, providing a tool for ecohydrology studies, riparian ecosystem management and stream restoration.

  17. Ensemble models on palaeoclimate to predict India's groundwater challenge

    Directory of Open Access Journals (Sweden)

    Partha Sarathi Datta

    2013-09-01

    Full Text Available In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.

  18. Kriging-approximation simulated annealing algorithm for groundwater modeling

    Science.gov (United States)

    Shen, C. H.

    2015-12-01

    Optimization algorithms are often applied to search best parameters for complex groundwater models. Running the complex groundwater models to evaluate objective function might be time-consuming. This research proposes a Kriging-approximation simulated annealing algorithm. Kriging is a spatial statistics method used to interpolate unknown variables based on surrounding given data. In the algorithm, Kriging method is used to estimate complicate objective function and is incorporated with simulated annealing. The contribution of the Kriging-approximation simulated annealing algorithm is to reduce calculation time and increase efficiency.

  19. Geochemical controls on shale groundwaters: Results of reaction path modeling

    Energy Technology Data Exchange (ETDEWEB)

    Von Damm, K.L.; VandenBrook, A.J.

    1989-03-01

    The EQ3NR/EQ6 geochemical modeling code was used to simulate the reaction of several shale mineralogies with different groundwater compositions in order to elucidate changes that may occur in both the groundwater compositions, and rock mineralogies and compositions under conditions which may be encountered in a high-level radioactive waste repository. Shales with primarily illitic or smectitic compositions were the focus of this study. The reactions were run at the ambient temperatures of the groundwaters and to temperatures as high as 250/degree/C, the approximate temperature maximum expected in a repository. All modeling assumed that equilibrium was achieved and treated the rock and water assemblage as a closed system. Graphite was used as a proxy mineral for organic matter in the shales. The results show that the presence of even a very small amount of reducing mineral has a large influence on the redox state of the groundwaters, and that either pyrite or graphite provides essentially the same results, with slight differences in dissolved C, Fe and S concentrations. The thermodynamic data base is inadequate at the present time to fully evaluate the speciation of dissolved carbon, due to the paucity of thermodynamic data for organic compounds. In the illitic cases the groundwaters resulting from interaction at elevated temperatures are acid, while the smectitic cases remain alkaline, although the final equilibrium mineral assemblages are quite similar. 10 refs., 8 figs., 15 tabs.

  20. Sustainable Hydro Assessment and Groundwater Recharge Projects (SHARP) in Germany - Water Balance Models

    Science.gov (United States)

    Niemand, C.; Kuhn, K.; Schwarze, R.

    2010-12-01

    SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for

  1. User interface for ground-water modeling: Arcview extension

    Science.gov (United States)

    Tsou, M.-S.; Whittemore, D.O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  2. Complex groundwater flow systems as traveling agent models

    CERN Document Server

    López-Corona, Oliver; Escolero, Oscar; González, Tomás; Morales-Casique, Eric

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits a complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  3. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  4. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data - Modeling future groundwater recharge to predict potential climate change impacts

    Science.gov (United States)

    Gemitzi, Alexandra; Ajami, Hoori; Richnow, Hans-Hermann

    2017-03-01

    Groundwater recharge is one of main components of the water budget that is difficult to quantify due to complexity of recharge processes and limited observations. In the present work a simple regression equation for monthly groundwater recharge estimation is developed by relating simulated recharge from a calibrated Soil and Water Assessment tool (SWAT) model to effective precipitation. Monthly groundwater recharge and actual evapotranspiration (AET) were computed by applying a calibrated (SWAT) model for a ten year period (2005-2015) in Vosvozis river basin in NE Greece. SWAT actual evapotranspiration (AET) results were compared to remotely sensed AET values from the MODerate Resolution Imaging Spectroradiometer (MODIS), indicating the integrity of the modeling process. Water isotopes of 2H and 18O, originally presented herein, were used to infer recharge resources in the basin and provided additional evidence of the applicability of the developed formula. Results showed that the developed recharge estimation method can be effectively applied using MODIS evapotranspiration data, without having to adhere to numerical modeling which is many times constrained by the lack of available data especially in poorly gauged basins. Future trends of groundwater recharge up to 2100 using an ensemble of five downscaled climate change projections indicated that annual recharge will increase up to the middle of the present century and gradually decrease thereafter. However, the predicted magnitude is highly variable depending on the Global Climate Model (GCM) used. While winter recharge will likely increase in the future, summer recharge is expected to decrease as a result of temperature rise in the future.

  5. Improving groundwater predictions utilizing seasonal precipitation forecasts from general circulation models forced with sea surface temperature forecasts

    Science.gov (United States)

    Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad

    2014-01-01

    Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using

  6. Development of a complex groundwater model to assess the relation among groundwater resource exploitation, seawater intrusion and land subsidence

    Science.gov (United States)

    Hsi Ting, Fang; Yih Chi, Tan; Chen, Jhong Bing

    2016-04-01

    The land subsidence, which is usually irreversible, in Taiwan Pintung Plain occurred due to groundwater overexploitation. Many of the land subsidence areas in Taiwan are located in coastal area. It could not only result in homeland loss, but also vulnerability to flooding because the function of drainage system and sea wall are weakened for the lowered ground surface. Groundwater salinization and seawater intrusion could happen more easily as well. This research focuses on grasping the trend of environmental change due to the damage and impact from inappropriate development of aquaculture in the last decades. The main task is developing the artificial neural networks (ANNs) and complex numerical model for conjunctive use of surface and groundwater which is composed of a few modules such as land use, land subsidence, contamination transportation and etc. An approach based on self-organizing map (SOM) is proposed to delineate groundwater recharge zones. Several topics will be studied such as coupling of surface water and groundwater modeling, assessing the benefit of improving groundwater resources by recharge, identifying the improper usage of groundwater resources, and investigating the effect of over-pumping on land subsidence in different depth. In addition, a complete plan for managing both the flooding and water resources will be instituted by scheming non-engineering adaptation strategies for homeland planning, ex. controlling pumping behavior in area vulnerable to land subsidence and increasing groundwater recharge.

  7. The 2016 groundwater flow model for Dane County, Wisconsin

    Science.gov (United States)

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along

  8. Groundwater Resources Assessment For Joypurhat District Using Mathematical Modelling Technique

    Directory of Open Access Journals (Sweden)

    Md. Iquebal Hossain

    2015-06-01

    Full Text Available In this study potential recharge as well as groundwater availability for 5 Upazillas (Akkelpur, Kalai, Joypurhat Sadar, Khetlal and Panchbibi of Joypurhat districts has been estimated using MIKE SHE modelling tools. The main aquifers of the study area are dominated by medium sands, medium and coarse sands with little gravels. The top of aquifers ranges from 15 m to 24 m and the screenable thickness of aquifers range from 33 m to 46 m within the depth range from 57 m to 87 m. Heavy abstraction of groundwater for agricultural, industrial and domestic uses results in excessive lowering of water table making the shallow and hand tubewells inoperable in the dry season. The upazilawise potential recharge for the study area was estimated through mathematical model using MIKE SHE modelling tools in an integrated approach. The required data were collected from the different relevant organisations. The potential recharge of the present study varies from 452 mm to 793 mm. Maximum depth to groundwater table in most of the places occurs at the end of April. At this time, groundwater table in most of the part of Kalai, Khetlal, Akkelpur and Panchbibi goes below suction limit causing HTWs and STWs partially/fully in operable.

  9. Regional scale groundwater modelling study for Ganga River basin

    Science.gov (United States)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  10. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-12-31

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  11. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty (infiltration, fracture-matrix connectivity, fracture frequency, and matrix air entry pressure or van Genuchten {alpha}); and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM)). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  12. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Kapil K., E-mail: kkn2104@columbia.edu [Columbia Water Center (India Office), Columbia University, New Delhi 110 016 (India); Gosain, A.K. [Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016 (India)

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km{sup 2} with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO{sub 3}) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO{sub 3} transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R{sup 2} correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO{sub 3} removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO{sub 3} concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the

  13. The Nature and Role of Physical Models in Enhancing Sixth Grade Students' Mental Models of Groundwater and Groundwater Processes

    Science.gov (United States)

    Duffy, Debra Lynne Foster

    2012-01-01

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate…

  14. The Nature and Role of Physical Models in Enhancing Sixth Grade Students' Mental Models of Groundwater and Groundwater Processes

    Science.gov (United States)

    Duffy, Debra Lynne Foster

    2012-01-01

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate…

  15. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    Science.gov (United States)

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood

  16. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  17. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  18. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  19. Geochemical modelling of groundwater evolution and residence time at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy (Finland); Leino-Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Olkiluoto has been created and the significance of chemical reactions and groundwater mixing along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (63 altogether) obtained from precipitation, Baltic Sea, soil layer, shallow wells in the bedrock, and eight deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and fracture calcite and their isotopic measurements were also utilised. The data covers the bedrock at Olkiluoto to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and mixing of palaeo water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Olkiluoto reveals the complex nature of hydrogeochemical evolution at the site. Changes in

  20. An Architectural Model for Component Groupware

    NARCIS (Netherlands)

    Farias, de Clever R.G.; Goncalves, Carlos E.; Rosatelli, Marta C.; Ferreira Pires, Luis; Sinderen, van Marten; Fuks, Hugo; Lukosch, Stephan; Salgado, Ana Carolina

    2005-01-01

    This paper proposes an architectural model to facilitate the design of component-based groupware systems. This architectural model has been defined based on (1) three pre-defined component types, (2) a refinement strategy that relies on these component types, (3) the identification of layers of coll

  1. Description and application of the combined surface and groundwater flow model MOGROW

    NARCIS (Netherlands)

    Querner, E.P.

    1997-01-01

    In the Netherlands shallow groundwater tables prevail in many parts, such that groundwater and surface water are closely interlinked. Thus the use of a combined groundwater and surface water model is necessary to predict the effect of certain measures on a regional scale. Therefore the model MOGROW

  2. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  3. Incorporating groundwater flow into the WEPP model

    Science.gov (United States)

    William Elliot; Erin Brooks; Tim Link; Sue Miller

    2010-01-01

    The water erosion prediction project (WEPP) model is a physically-based hydrology and erosion model. In recent years, the hydrology prediction within the model has been improved for forest watershed modeling by incorporating shallow lateral flow into watershed runoff prediction. This has greatly improved WEPP's hydrologic performance on small watersheds with...

  4. Understanding symmetrical components for power system modeling

    CERN Document Server

    Das, J C

    2017-01-01

    This book utilizes symmetrical components for analyzing unbalanced three-phase electrical systems, by applying single-phase analysis tools. The author covers two approaches for studying symmetrical components; the physical approach, avoiding many mathematical matrix algebra equations, and a mathematical approach, using matrix theory. Divided into seven sections, topics include: symmetrical components using matrix methods, fundamental concepts of symmetrical components, symmetrical components –transmission lines and cables, sequence components of rotating equipment and static load, three-phase models of transformers and conductors, unsymmetrical fault calculations, and some limitations of symmetrical components.

  5. FINITE VOLUME METHOD OF MODELLING TRANSIENT GROUNDWATER FLOW

    Directory of Open Access Journals (Sweden)

    N. Muyinda

    2014-01-01

    Full Text Available In the field of computational fluid dynamics, the finite volume method is dominant over other numerical techniques like the finite difference and finite element methods because the underlying physical quantities are conserved at the discrete level. In the present study, the finite volume method is used to solve an isotropic transient groundwater flow model to obtain hydraulic heads and flow through an aquifer. The objective is to discuss the theory of finite volume method and its applications in groundwater flow modelling. To achieve this, an orthogonal grid with quadrilateral control volumes has been used to simulate the model using mixed boundary conditions from Bwaise III, a Kampala Surburb. Results show that flow occurs from regions of high hydraulic head to regions of low hydraulic head until a steady head value is achieved.

  6. Groundwater flow modelling of the excavation and operational phases - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Laxemar. The inflow calculations were accompanied by a sensitivity study, which among other matters handled the impact of different deposition hole rejection criteria. The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  7. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  8. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin

    2016-01-01

    experiments include five simulations. First MIKE SHE is forced by observed climate data in two versions i) with groundwater at a fixed uniform depth, and ii) with a dynamical groundwater component simulating shallow groundwater conditions in river valleys. iii) In a third simulation MIKE SHE is forced......The land surface-atmosphere interaction is described differently in large scale surface schemes of regional climate models and small scale spatially distributed hydrological models. In particular, the hydrological models include the influence of shallow groundwater on evapotranspiration during dry...... periods where soils are depleted and groundwater is the only water supply. These mechanisms are analysed by combining a distributed hydrological model (MIKE SHE) and a regional climate model (HIRHAM) and comparing simulation results to the FIFE area observation data in Kansas, USA. The numerical...

  9. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran

    Science.gov (United States)

    Izady, A.; Davary, K.; Alizadeh, A.; Ziaei, A. N.; Akhavan, S.; Alipoor, A.; Joodavi, A.; Brusseau, M. L.

    2015-02-01

    Increased irrigation in the Neishaboor watershed, Iran, during the last few decades has caused serious groundwater depletion, making the development of comprehensive mitigation strategies and tools increasingly important. In this study, SWAT and MODFLOW were employed to integratively simulate surface-water and groundwater flows. SWAT and MODFLOW were iteratively executed to compute spatial and temporal distributions of hydrologic components. The combined SWAT-MODFLOW model was calibrated (2000-2010) and validated (2010-2012) based on streamflow, wheat yield, groundwater extraction, and groundwater-level data. This multi-criteria calibration procedure provided greater confidence for the partitioning of water between soil storage, actual evapotranspiration, and aquifer recharge. The SWAT model provided satisfactory predictions of the hydrologic budget for the watershed outlet. It also provided good predictions of irrigated wheat yield and groundwater extraction. The 10-year mean annual recharge rate estimated using the combined model varied greatly, ranging from 0 to 960 mm, with an average of 176 mm. This result showed good agreement with the independently estimated annual recharge rate from an earlier study. The combined model provides a robust tool for the sustainable planning and management of water resources for areas with stressed aquifers where interaction between groundwater and surface water cannot be easily assessed.

  10. Complexity vs. simplicity: groundwater model ranking using information criteria.

    Science.gov (United States)

    Engelhardt, I; De Aguinaga, J G; Mikat, H; Schüth, C; Liedl, R

    2014-01-01

    A groundwater model characterized by a lack of field data about hydraulic model parameters and boundary conditions combined with many observation data sets for calibration purpose was investigated concerning model uncertainty. Seven different conceptual models with a stepwise increase from 0 to 30 adjustable parameters were calibrated using PEST. Residuals, sensitivities, the Akaike information criterion (AIC and AICc), Bayesian information criterion (BIC), and Kashyap's information criterion (KIC) were calculated for a set of seven inverse calibrated models with increasing complexity. Finally, the likelihood of each model was computed. Comparing only residuals of the different conceptual models leads to an overparameterization and certainty loss in the conceptual model approach. The model employing only uncalibrated hydraulic parameters, estimated from sedimentological information, obtained the worst AIC, BIC, and KIC values. Using only sedimentological data to derive hydraulic parameters introduces a systematic error into the simulation results and cannot be recommended for generating a valuable model. For numerical investigations with high numbers of calibration data the BIC and KIC select as optimal a simpler model than the AIC. The model with 15 adjusted parameters was evaluated by AIC as the best option and obtained a likelihood of 98%. The AIC disregards the potential model structure error and the selection of the KIC is, therefore, more appropriate. Sensitivities to piezometric heads were highest for the model with only five adjustable parameters and sensitivity coefficients were directly influenced by the changes in extracted groundwater volumes.

  11. Quantifying Groundwater Recharge Uncertainty: A Multiple-Model Framework and Case Study

    Science.gov (United States)

    Kikuchi, C.; Ferré, T. P. A.

    2014-12-01

    In practice, it is difficult to estimate groundwater recharge accurately. Despite this challenge, most recharge investigations produce a single, best estimate of recharge. However, there is growing recognition that quantification of natural recharge uncertainty is critical for groundwater management. We present a multiple-model framework for estimating recharge uncertainty. In addition, we show how direct water flux measurements can be used to reduce the uncertainty of estimates of total basin recharge for an arid, closed hydrologic basin in the Atacama Desert, Chile. We first formulated multiple hydrogeologic conceptual models of the basin based on existing data, and implemented each conceptual model for the purpose of conducting numerical simulations. For each conceptual model, groundwater recharge was inversely estimated; then, Null-Space Monte Carlo techniques were used to quantify the uncertainty on the initial estimate of total basin recharge. Second, natural recharge components - including both deep percolation and streambed infiltration - were estimated from field data. Specifically, vertical temperature profiles were measured in monitoring wells and streambeds, and water fluxes were estimated from thermograph analysis. Third, calculated water fluxes were incorporated as prior information to the model calibration and Null-Space Monte Carlo procedures, yielding revised estimates of both total basin recharge and associated uncertainty. The fourth and final component of this study uses value of information analyses to identify potentially informative locations for additional water flux measurements. The uncertainty quantification framework presented here is broadly transferable; furthermore, this research provides an applied example of the extent to which water flux measurements may serve to reduce groundwater recharge uncertainty at the basin scale.

  12. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  13. Distributed parallel computing in stochastic modeling of groundwater systems.

    Science.gov (United States)

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  14. Measurement and modeling of phosphorous transport in shallow groundwater environments.

    Science.gov (United States)

    Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G

    2014-08-01

    added fertilizer P between HEI (187kg P2O5/ha) and REI (124kg P2O5/ha), soil Mehlich 1 P (M1P) values were similar for both systems while they received Pinput. Soil M1P for REI and REI-SD increased to a maximum of 55mg/kg while they received Pinput, and then gradually decreased after Pinput ceased. However, M1P for HEI increased steadily to a maximum of 145mg/kg by the end of the study with continued Pinput. Mehlich-1 P measured six years after the study still showed relatively high levels of P, a legacy effect of Pinput. The main factors influencing groundwater P concentration varied by seasons. During fall with frequent rainfall, the concentrations were influenced mainly by M1P and Pinput, and highlight a need for greater focus on Pinput management (vs. water management) during this season. However, during the dry period of spring, a greater focus on irrigation management is required since depth to water table and rainfall also become contributing factors. Three multivariate models (r(2)=0.67 to 0.93), for spring, fall, and annual periods, were developed for predicting groundwater P concentrations for a wide range of water and P inputs (0 to 191kg P2O5/ha of Pinput). The uniqueness of these models is that they use readily available hydrologic (rainfall and water table depth), management (Pinput), and soil (M1P) data commonly monitored by growers when managing water and nutrient inputs on agricultural landscapes. The development of similar models may not be necessary for other agro-ecosystems in similar regions since long-term data collected in these regions may be applied, with verification, to the models presented here.

  15. Structure and application of an interface program between a geographic-information system and a ground-water flow model

    Science.gov (United States)

    Van Metre, P.C.

    1990-01-01

    A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)

  16. Model checking of component connectors

    NARCIS (Netherlands)

    Izadi, Mohammad

    2011-01-01

    We present a framework for automata theoretic model checking of coordination systems specified in Reo coordination language. To this goal, we introduce Buchi automata of records (BAR) and their augmented version (ABAR) as an operational modeling formalism that covers several intended forms of behavi

  17. Modeling of groundwater flow for Mujib aquifer, Jordan

    Indian Academy of Sciences (India)

    Fayez Abdulla; Tamer Al-Assa’d

    2006-06-01

    Jordan is an arid country with very limited water resources.Groundwater is the main source for its water supply.Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman,Madaba and Karak cities.High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore,proper groundwater management of Mujib aquifer is necessary;and groundwater flow modeling is essential for proper management.For this purpose,Mod flow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses.The model was calibrated for steady state condition by matching observed and simulated initial head counter lines.Drawdown data for the period 1985-1995 were used to calibrate the transient model by matching simulated drawdown with the observed one.Then,the transient model was validated by using drawdown data for the period 1996-2002.The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40 m/d. Calibrated speci fic yield ranges from 0.0001 to 0.15.The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106 m3, the total annual in flow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual out flow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates.Also the model is sensitive to specific yield.

  18. SOFTWARE RELIABILITY MODEL FOR COMPONENT INTERACTION MODE

    Institute of Scientific and Technical Information of China (English)

    Wang Qiang; Lu Yang; Xu Zijun; Han Jianghong

    2011-01-01

    With the rapid progress of component technology,the software development methodology of gathering a large number of components for designing complex software systems has matured.But,how to assess the application reliability accurately with the information of system architecture and the components reliabilities together has become a knotty problem.In this paper,the defects in formal description of software architecture and the limitations in existed model assumptions are both analyzed.Moreover,a new software reliability model called Component Interaction Mode (CIM) is proposed.With this model,the problem for existed component-based software reliability analysis models that cannot deal with the cases of component interaction with non-failure independent and non-random control transition is resolved.At last,the practice examples are presented to illustrate the effectiveness of this model

  19. Groundwater-flow model of the northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming

    Science.gov (United States)

    Peterson, Steven M.; Flynn, Amanda T.; Traylor, Jonathan P.

    2016-12-13

    estimation suite of software with Tikhonov regularization. Calibration targets for the groundwater model included 343,067 groundwater levels measured in wells and 10,820 estimated monthly stream base flows at streamgages. A total of 1,312 parameters were adjusted during calibration to improve the match between calibration targets and simulated equivalents. Comparison of calibration targets to simulated equivalents indicated that, at the regional scale, the model correctly reproduced groundwater levels and stream base flows for 1940–2009. This comparison indicates that the model can be used to examine the likely response of the aquifer system to potential future stresses.Mean calibrated recharge for 1940–49 and 2000–2009 was smaller than that estimated with the soil-water-balance model. This indicated that although the general spatial patterns of recharge estimated with the soil-water-balance model were approximately correct at the regional scale of the Northern High Plains aquifer, the soil-water-balance model had overestimated recharge, and adjustments were needed to decrease recharge to improve the match of the groundwater model to calibration targets. The largest components of the simulated groundwater budgets were recharge from precipitation, recharge from canal seepage, outflows to evapotranspiration, and outflows to stream base flow. Simulated outflows to irrigation wells increased from 7 percent of total outflows in 1940–49 to 38 percent of 1970–79 total outflows and 49 percent of 2000–2009 total outflows.

  20. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  1. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow...

  2. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  3. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  4. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  5. Examining regional groundwater-surface water dynamics using an integrated hydrologic model of the San Joaquin River basin

    Science.gov (United States)

    Gilbert, James M.; Maxwell, Reed M.

    2017-02-01

    Widespread irrigated agriculture and a growing population depend on the complex hydrology of the San Joaquin River basin in California. The challenge of managing this complex hydrology hinges, in part, on understanding and quantifying how processes interact to support the groundwater and surface water systems. Here, we use the integrated hydrologic platform ParFlow-CLM to simulate hourly 1 km gridded hydrology over 1 year to study un-impacted groundwater-surface water dynamics in the basin. Comparisons of simulated results to observations show the model accurately captures important regional-scale partitioning of water among streamflow, evapotranspiration (ET), snow, and subsurface storage. Analysis of this simulated Central Valley groundwater system reveals the seasonal cycle of recharge and discharge as well as the role of the small but temporally constant portion of groundwater recharge that comes from the mountain block. Considering uncertainty in mountain block hydraulic conductivity, model results suggest this component accounts for 7-23 % of total Central Valley recharge. A simulated surface water budget guides a hydrograph decomposition that quantifies the temporally variable contribution of local runoff, valley rim inflows, storage, and groundwater to streamflow across the Central Valley. Power spectra of hydrograph components suggest interactions with groundwater across the valley act to increase longer-term correlation in San Joaquin River outflows. Finally, model results reveal hysteresis in the relationship between basin streamflow and groundwater contributions to flow. Using hourly model results, we interpret the hysteretic cycle to be a result of daily-scale fluctuations from precipitation and ET superimposed on seasonal and basin-scale recharge and discharge.

  6. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard;

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  7. Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2015-01-01

    variability in the concentration at the well, which helps understanding the results of groundwater monitoring programs. The results are used to provide guidance on the design of pumping and regulatory changes for the long-term supply of safe groundwater. The fate of selected pesticides is examined......, for example, if the application of bentazone in a region with a layered aquifer stops today, the concentration at the well can continue to increase for 20 years if a low pumping rate is applied. This study concludes that because of the rapid response of the pesticide concentration at the drinking water well......This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly...

  8. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David (Serco Technical Consulting Services (United Kingdom)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  9. An Elliptical Model for Deformation Due to Groundwater Fluctuations

    Science.gov (United States)

    Tiampo, Kristy F.; Ouegnin, Francois-Alexis; Valluri, Sreeram; Samsonov, Sergey; Fernández, José; Kapp, Garrett

    2012-08-01

    Historically, surface subsidence as a result of subsurface groundwater fluctuations have produced important and, at times, catastrophic effects, whether natural or anthropogenic. Over the past 30 years, numerical and analytical techniques for the modeling of this surface deformation, based upon elastic and poroelastic theory, have been remarkably successful in predicting the magnitude of that deformation (L e M ouélic and A dragna in Geophys Res Lett 29:1853, 2002). In this work we have extended the formula for a circular-shaped aquifer (Geertsma in J Petroleum Tech 25:734-744, 1973) to a more realistic elliptical shape. We have improved the accuracy of the approximation by making use of the cross terms of the expansion for the elliptic coordinates in terms of the eccentricity, e, and the mean anomaly angle, M, widely used in astronomy. Results of a number of simulations, in terms of e and M developed from the transcendental Kepler equation, are encouraging, giving realistic values for the elliptical approximation of the vertical deformation due to groundwater change. Finally, we have applied the algorithm to modeling of groundwater in southern California.

  10. Geochemical modelling of groundwater evolution and residence time at the Haestholmen site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy, Helsinki (Finland); Leino- Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    2001-01-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the geological final disposal of radioactive waste. The performance of technical barriers and migration of possibly released radionuclides depend on the geochemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions that control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors that control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Haestholmen has been created and the significance of geochemical reactions and groundwater mixing along different flow paths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (64 altogether) obtained from precipitation, the Baltic Sea, the soil layer, shallow wells in the bedrock, and 14 deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Haestholmen to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used to evaluate evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution ({delta}{sup 13}C and {delta}{sup 34}S) and mixing of palaeo-water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Haestholmen suggest that changes in external conditions, such as glaciation

  11. Groundwater management under uncertainty using a stochastic multi-cell model

    Science.gov (United States)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  12. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  13. Groundwater components in the alluvial aquifer of the alpine Rhone River valley, Bois de Finges area, Wallis Canton, Switzerland

    Science.gov (United States)

    Schürch, Marc; Vuataz, François-D.

    2000-09-01

    Source, type, and quantity of various components of groundwater, as well as their spatial and temporal variations were determined by different hydrochemical methods in the alluvial aquifer of the upper Rhone River valley, Bois de Finges, Wallis Canton, Switzerland. The methods used are hydrochemical modeling, stable-isotope analysis, and chemical analysis of surface water and groundwater. Sampling during high- and low-water periods determined the spatial distribution of the water chemistry, whereas monthly sampling over three years provided a basis for understanding seasonal variability. The physico-chemical parameters of the groundwater have spatial and seasonal variations. The groundwater chemical composition of the Rhone alluvial aquifer indicates a mixing of weakly mineralized Rhone River water and SO4-rich water entering from the south side of the valley. Temporal changes in groundwater chemistry and in groundwater levels reflect the seasonal variations of the different contributors to groundwater recharge. The Rhone River recharges the alluvial aquifer only during the summer high-water period. Résumé. Origine, type et quantité de nombreux composants d'eau de l'aquifère alluvial dans la vallée supérieure du Rhône, Bois de Finges, Valais, Suisse, ainsi que leurs variations spatiales et temporelles ont été déterminés par différentes méthodes hydrochimiques. Les méthodes utilisées sont la modélisation hydrochimique, les isotopes stables, ainsi que l'échantillonnage en période de hautes eaux et de basses eaux pour étudier la distribution spatiale de la composition chimique, alors qu'un échantillonnage mensuel pendant trois ans sert à comprendre les processus de la variabilité saisonnière. Les paramètres physico-chimiques des eaux souterraines montrent des variations spatiales et saisonnières. La composition chimique de l'aquifère alluvial du Rhône indique un mélange entre une eau peu minéralisée venant du Rhône et une eau sulfatée s

  14. Analytical Modeling of Groundwater Seepages to St. Lucie Estuary

    Science.gov (United States)

    Lee, J.; Yeh, G.; Hu, G.

    2008-12-01

    In this paper, six analytical models describing hydraulic interaction of stream-aquifer systems were applied to St Lucie Estuary (SLE) River Estuaries. These are analytical solutions for: (1) flow from a finite aquifer to a canal, (2) flow from an infinite aquifer to a canal, (3) the linearized Laplace system in a seepage surface, (4) wave propagation in the aquifer, (5) potential flow through stratified unconfined aquifers, and (6) flow through stratified confined aquifers. Input data for analytical solutions were obtained from monitoring wells and river stages at seepage-meter sites. Four transects in the study area are available: Club Med, Harbour Ridge, Lutz/MacMillan, and Pendarvis Cove located in the St. Lucie River. The analytical models were first calibrated with seepage meter measurements and then used to estimate of groundwater discharges into St. Lucie River. From this process, analytical relationships between the seepage rate and river stages and/or groundwater tables were established to predict the seasonal and monthly variation in groundwater seepage into SLE. It was found the seepage rate estimations by analytical models agreed well with measured data for some cases but only fair for some other cases. This is not unexpected because analytical solutions have some inherently simplified assumptions, which may be more valid for some cases than the others. From analytical calculations, it is possible to predict approximate seepage rates in the study domain when the assumptions underlying these analytical models are valid. The finite and infinite aquifer models and the linearized Laplace method are good for sites Pendarvis Cove and Lutz/MacMillian, but fair for the other two sites. The wave propagation model gave very good agreement in phase but only fairly agreement in magnitude for all four sites. The stratified unconfined and confined aquifer models gave similarly good agreements with measurements at three sites but poorly at the Club Med site. None of

  15. Reliable groundwater levels: failures and lessons learned from modeling and monitoring studies

    Science.gov (United States)

    Van Lanen, Henny A. J.

    2017-04-01

    Adequate management of groundwater resources requires an a priori assessment of impacts of intended groundwater abstractions. Usually, groundwater flow modeling is used to simulate the influence of the planned abstraction on groundwater levels. Model performance is tested by using observed groundwater levels. Where a multi-aquifer system occurs, groundwater levels in the different aquifers have to be monitored through observation wells with filters at different depths, i.e. above the impermeable clay layer (phreatic water level) and beneath (artesian aquifer level). A reliable artesian level can only be measured if the space between the outer wall of the borehole (vertical narrow shaft) and the observation well is refilled with impermeable material at the correct depth (post-drilling phase) to prevent a vertical hydraulic connection between the artesian and phreatic aquifer. We were involved in improper refilling, which led to impossibility to monitor reliable artesian aquifer levels. At the location of the artesian observation well, a freely overflowing spring was seen, which implied water leakage from the artesian aquifer affected the artesian groundwater level. Careful checking of the monitoring sites in a study area is a prerequisite to use observations for model performance assessment. After model testing the groundwater model is forced with proposed groundwater abstractions (sites, extraction rates). The abstracted groundwater volume is compensated by a reduction of groundwater flow to the drainage network and the model simulates associated groundwater tables. The drawdown of groundwater level is calculated by comparing the simulated groundwater level with and without groundwater abstraction. In lowland areas, such as vast areas of the Netherlands, the groundwater model has to consider a variable drainage network, which means that small streams only carry water during the wet winter season, and run dry during the summer. The main streams drain groundwater

  16. COMPREHENSIVE INTRODUCTION TO THE TECHNOLOGY OF GROUNDWATER MODELING AND OPTIMAL MANAGEMENT

    Institute of Scientific and Technical Information of China (English)

    武强; 田宝霖; 胡社荣; 金玉洁; 孙卫东; 田开铭

    1995-01-01

    Three numeric simulston and optimal managernent models on groundwater resources are introduced m this paper. These models stand for the present developing levels on the technology of groundwater modeling.and optimal management in China, and show the practical application situations of the technology. Each of the technology of unique characteristics and purposes. According to the tests of the practical engineering, these models have played a very important role in solving the difficult problems of groundwater resources.

  17. Modeling Multiple Stresses Placed Upon A Groundwater System In A Semi-Arid Brackish Environment

    Science.gov (United States)

    Toll, M.; Salameh, E.; Sauter, M.

    2008-12-01

    In semi-arid areas groundwater systems are frequently not sufficiently characterized hydrogeologically and long term data records are generally not available. Long-term time series are necessary, however to design future groundwater abstraction scenarios or to predict the influence of future climate change effects on groundwater resources. To overcome these problems an integrated approach for the provision of a reliable database based on sparse and fuzzy data is proposed. This integrated approach is demonstrated in the lowermost area of the Jordan Valley. The Jordan Valley is part of the Jordan Dead Sea Wadi Araba Rift Valley, which extends from the Red Sea to lake Tiberias and beyond with a major 107 km sinistral strike-slip fault between the Arabian plate to the east and the northeastern part of the African plate to the west. Due to extensional forces a topographic depression was formed. As a result of an arid environment it is filled with evaporites, lacustrine sediments, and clastic fluvial components. A subtropical climate with hot, dry summers and mild humid winters with low amounts of rainfall provide excellent farming conditions. Therefore the Jordan Valley is considered as the food basket of Jordan and is used intensively for agriculture. As a result hundreds of shallow wells were drilled and large amounts of groundwater were abstracted since groundwater is the major source for irrigation. Consequently groundwater quality decreased rapidly since the sixties and signs of overpumping and an increase in soil salinity could clearly be seen. In order to achieve a sustainable state of water resources and to quantify the impact of climate change on water resources a proper assessment of the groundwater resources as well as their quality is a prerequisite. In order to sufficiently describe the complex hydrogeologic flow system an integrated approach, combining geological, geophysical, hydrogeological, historical, and chemical methods was chosen. The aquifer

  18. Two-component Abelian sandpile models.

    Science.gov (United States)

    Alcaraz, F C; Pyatov, P; Rittenberg, V

    2009-04-01

    In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

  19. Hydrogeologic framework refinement, ground-water flow and storage, water-chemistry analyses, and water-budget components of the Yuma area, southwestern Arizona and southeastern California

    Science.gov (United States)

    Dickinson, Jesse E.; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.

    2006-01-01

    The ground-water and surface-water system in the Yuma area in southwestern Arizona and southeastern California is managed intensely to meet water-delivery requirements of customers in the United States, to manage high ground-water levels in the valleys, and to maintain treaty-mandated water-quality and quantity requirements of Mexico. The following components in this report, which were identified to be useful in the development of a ground-water management model, are: (1) refinement of the hydrogeologic framework; (2) updated water-level maps, general ground-water flow patterns, and an estimate of the amount of ground water stored in the mound under Yuma Mesa; (3) review and documentation of the ground-water budget calculated by the Bureau of Reclamation, U.S. Department of the Interior (Reclamation); and (4) water-chemistry characterization to identify the spatial distribution of water quality, information on sources and ages of ground water, and information about the productive-interval depths of the aquifer. A refined three-dimensional digital hydrogeologic framework model includes the following hydrogeologic units from bottom to top: (1) the effective hydrologic basement of the basin aquifer, which includes the Pliocene Bouse Formation, Tertiary volcanic and sedimentary rocks, and pre-Tertiary metamorphic and plutonic rocks; (2) undifferentiated lower units to represent the Pliocene transition zone and wedge zone; (3) coarse-gravel unit; (4) lower, middle, and upper basin fill to represent the upper, fine-grained zone between the top of the coarse-gravel unit and the land surface; and (5) clay A and clay B. Data for the refined model includes digital elevation models, borehole lithology data, geophysical data, and structural data to represent the geometry of the hydrogeologic units. The top surface of the coarse-gravel unit, defined by using borehole and geophysical data, varies similarly to terraces resulting from the down cutting of the Colorado River. Clay A

  20. Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting

    Science.gov (United States)

    Rezaie-balf, Mohammad; Naganna, Sujay Raghavendra; Ghaemi, Alireza; Deka, Paresh Chandra

    2017-10-01

    In this study, two different machine learning models, Multivariate Adaptive Regression Splines (MARS) and M5 Model Trees (MT) have been applied to simulate the groundwater level (GWL) fluctuations of three shallow open wells within diverse unconfined aquifers. The Wavelet coupled MARS and MT hybrid models were developed in an attempt to further increase the GWL forecast accuracy. The Discrete Wavelet Transform (DWT) which is particularly effective in dealing with non-stationary time-series data was employed to decompose the input time series into various sub-series components. Historical data of 10 years (August-1996 to July-2006) comprising monthly groundwater level, rainfall, and temperature were used to calibrate and validate the models. The models were calibrated and tested for one, three and six months ahead forecast horizons. The wavelet coupled MARS and MT models were compared with their simple counterpart using standard statistical performance evaluation measures such as Root Mean Square Error (RMSE), Normalized Nash-Sutcliffe Efficiency (NNSE) and Coefficient of Determination (R2) . The wavelet coupled MARS and MT models developed using multi-scale input data performed better compared to their simple counterpart and the forecast accuracy of W-MARS models were superior to that of W-MT models. Specifically, the DWT offered a better discrimination of non-linear and non-stationary trends that were present at various scales in the time series of the input variables thus crafting the W-MARS models to provide more accurate GWL forecasts.

  1. A Linguistic Model in Component Oriented Programming

    Science.gov (United States)

    Crăciunean, Daniel Cristian; Crăciunean, Vasile

    2016-12-01

    It is a fact that the component-oriented programming, well organized, can bring a large increase in efficiency in the development of large software systems. This paper proposes a model for building software systems by assembling components that can operate independently of each other. The model is based on a computing environment that runs parallel and distributed applications. This paper introduces concepts as: abstract aggregation scheme and aggregation application. Basically, an aggregation application is an application that is obtained by combining corresponding components. In our model an aggregation application is a word in a language.

  2. ShowFlow: A practical interface for groundwater modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tauxe, J.D.

    1990-12-01

    ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

  3. A regional coupled surface water/groundwater model of the Okavango Delta, Botswana

    Science.gov (United States)

    Bauer, Peter; Gumbricht, Thomas; Kinzelbach, Wolfgang

    2006-04-01

    In the endorheic Okavango River system in southern Africa a balance between human and environmental water demands has to be achieved. The runoff generated in the humid tropical highlands of Angola flows through arid Namibia and Botswana before forming a large inland delta and eventually being consumed by evapotranspiration. With an approximate size of about 30,000 km2, the Okavango Delta is the world's largest site protected under the convention on wetlands of international importance, signed in 1971 in Ramsar, Iran. The extended wetlands of the Okavango Delta, which sustain a rich ecology, spectacular wildlife, and a first-class tourism infrastructure, depend on the combined effect of the highly seasonal runoff in the Okavango River and variable local climate. The annual fluctuations in the inflow are transformed into vast areas of seasonally inundated floodplains. Water abstraction and reservoir building in the upstream countries are expected to reduce and/or redistribute the available flows for the Okavango Delta ecosystem. To study the impacts of upstream and local interventions, a large-scale (1 km2 grid), coupled surface water/groundwater model has been developed. It is composed of a surface water flow component based on the diffusive wave approximation of the Saint-Venant equations, a groundwater component, and a relatively simple vadose zone component for calculating the net water exchange between land and atmosphere. The numerical scheme is based on the groundwater simulation software MODFLOW-96. Since the primary model output is the spatiotemporal distribution of flooded areas and since hydrologic data on the large and inaccessible floodplains and tributaries are sparse and unreliable, the model was not calibrated with point hydrographs but with a time series of flooding patterns derived from satellite imagery (NOAA advanced very high resolution radiometer). Scenarios were designed to study major upstream and local interventions and their expected impacts

  4. A research on grey numerical imitation and modeling of groundwater seepage system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on grey set, grey numbers and their operation properties, the grey numerical model of groundwater seepage system was set up for the first time, the whole grey solving method of the model was given and it was proved that the common solving method of the model was only a special case of the grey solving methods. At the same time, the grey solving method was compared widely with common solving method, classical numerical method. The study shows that the grey solving method is better in depicting the procedure of transporting grey data of groundwater system. On the basis of the theoretical study, two basic kinds of cases about groundwater seepage were selected: the prediction of pit yield and the evaluation of groundwater resources on a groundwater basin. In the cases, systematical analyses were made for generalization and greylization of the hydrogeologic conditions, setting up of the grey model, identification and correction of the model as well as its prediction and evaluation. It was pointed out that when the grey numerical model is used to predict pit yield, the upper limit of the “grey band” of groundwater level cannot be higher than planed safe groundwater level, when evaluating the groundwater resource, the lower limit of the “grey band” of groundwater level cannot be lower than controlled level of groundwater.

  5. Surface Water-Groundwater Interactions as a Critical Component of Uranium Plume Persistence

    Science.gov (United States)

    Williams, K. H.; Christensen, J. N.; Hobson, C.

    2015-12-01

    Residual contamination of soils, sediments and groundwater by uranium milling operations presents a lingering problem at former mill sites throughout the upper Colorado River Basin in the western USA. Remedial strategies predicated upon natural flushing by low uranium recharge waters have frequently failed to achieve target concentrations set by national and state regulators. Flushing times of tens of years have often yielded negligible decreases in groundwater uranium concentrations, with extrapolated trends suggesting multiple decades or longer may be required to achieve regulatory goals. The U.S. Department of Energy's Rifle, Colorado field site serves as a natural laboratory for investigating the underlying causes for uranium plume persistence, with recent studies there highlighting the important role that surface water-groundwater interactions play in sustaining uranium delivery to the aquifer. Annual snowmelt-driven increases in Colorado River discharge induce 1-2 m excursions in groundwater elevation at the Rifle site, which enables residual tailings-contaminated materials (so-called Supplemental Standards) to become hydrologically connected to the aquifer for short periods of time during peak discharge. The episodic contact between shallow groundwater and residual contamination leads to abrupt 20-fold increases in groundwater uranium concentration, which serve to seasonally replenish the plume given the location of the Supplemental Standards along the upgradient edge of the aquifer. Uranium isotope composition changes abruptly as uranium concentrations increase reflecting the contribution of a temporally distinct contaminant reservoir. The release of uranium serves to potentially replenish organic matter rich sediments located within the alluvial aquifer at downstream locations, which have been postulated to serve as a parallel contributor to plume persistence following the uptake, immobilization, and slow re-oxidation of uranium.

  6. Stochastic uncertainties and sensitivities of a regional-scale transport model of nitrate in groundwater

    NARCIS (Netherlands)

    Brink, C.v.d.; Zaadnoordijk, W.J.; Burgers, S.; Griffioen, J.

    2008-01-01

    Groundwater quality management relies more and more on models in recent years. These models are used to predict the risk of groundwater contamination for various land uses. This paper presents an assessment of uncertainties and sensitivities to input parameters for a regional model. The model had

  7. Constructive epistemic modeling of groundwater flow with geological structure and boundary condition uncertainty under the Bayesian paradigm

    Science.gov (United States)

    Elshall, Ahmed S.; Tsai, Frank T.-C.

    2014-09-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using hierarchical Bayesian model averaging (BMA), this study shows that segregating different uncertain model components through a BMA tree of posterior model probability, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater flow model of a siliciclastic aquifer-fault system. We consider four uncertain model components. With respect to geological structure uncertainty, we consider three methods for reconstructing the hydrofacies architecture of the aquifer-fault system, and two formation dips. We consider two uncertain boundary conditions, each having two candidate propositions. Through combinatorial design, these four uncertain model components with their candidate propositions result in 24 base models. The study shows that hierarchical BMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models.

  8. Is it worth protecting groundwater from diffuse pollution with agri-environmental schemes? A hydro-economic modeling approach.

    Science.gov (United States)

    Hérivaux, Cécile; Orban, Philippe; Brouyère, Serge

    2013-10-15

    In Europe, 30% of groundwater bodies are considered to be at risk of not achieving the Water Framework Directive (WFD) 'good status' objective by 2015, and 45% are in doubt of doing so. Diffuse agricultural pollution is one of the main pressures affecting groundwater bodies. To tackle this problem, the WFD requires Member States to design and implement cost-effective programs of measures to achieve the 'good status' objective by 2027 at the latest. Hitherto, action plans have mainly consisted of promoting the adoption of Agri-Environmental Schemes (AES). This raises a number of questions concerning the effectiveness of such schemes for improving groundwater status, and the economic implications of their implementation. We propose a hydro-economic model that combines a hydrogeological model to simulate groundwater quality evolution with agronomic and economic components to assess the expected costs, effectiveness, and benefits of AES implementation. This hydro-economic model can be used to identify cost-effective AES combinations at groundwater-body scale and to show the benefits to be expected from the resulting improvement in groundwater quality. The model is applied here to a rural area encompassing the Hesbaye aquifer, a large chalk aquifer which supplies about 230,000 inhabitants in the city of Liege (Belgium) and is severely contaminated by agricultural nitrates. We show that the time frame within which improvements in the Hesbaye groundwater quality can be expected may be much longer than that required by the WFD. Current WFD programs based on AES may be inappropriate for achieving the 'good status' objective in the most productive agricultural areas, in particular because these schemes are insufficiently attractive. Achieving 'good status' by 2027 would demand a substantial change in the design of AES, involving costs that may not be offset by benefits in the case of chalk aquifers with long renewal times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Modeling Reactive Transport in Coupled Groundwater-Conduit Systems

    Science.gov (United States)

    Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.

    2002-05-01

    Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from

  10. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    CERN Document Server

    Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq

    2010-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...

  11. Crash test for groundwater recharge models: The effects of model complexity and calibration period on groundwater recharge predictions

    Science.gov (United States)

    Moeck, Christian; Von Freyberg, Jana; Schrimer, Maria

    2016-04-01

    An important question in recharge impact studies is how model choice, structure and calibration period affect recharge predictions. It is still unclear if a certain model type or structure is less affected by running the model on time periods with different hydrological conditions compared to the calibration period. This aspect, however, is crucial to ensure reliable predictions of groundwater recharge. In this study, we quantify and compare the effect of groundwater recharge model choice, model parametrization and calibration period in a systematic way. This analysis was possible thanks to a unique data set from a large-scale lysimeter in a pre-alpine catchment where daily long-term recharge rates are available. More specifically, the following issues are addressed: We systematically evaluate how the choice of hydrological models influences predictions of recharge. We assess how different parameterizations of models due to parameter non-identifiability affect predictions of recharge by applying a Monte Carlo approach. We systematically assess how the choice of calibration periods influences predictions of recharge within a differential split sample test focusing on the model performance under extreme climatic and hydrological conditions. Results indicate that all applied models (simple lumped to complex physically based models) were able to simulate the observed recharge rates for five different calibration periods. However, there was a marked impact of the calibration period when the complete 20 years validation period was simulated. Both, seasonal and annual differences between simulated and observed daily recharge rates occurred when the hydrological conditions were different to the calibration period. These differences were, however, less distinct for the physically based models, whereas the simpler models over- or underestimate the observed recharge depending on the considered season. It is, however, possible to reduce the differences for the simple models by

  12. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    Science.gov (United States)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

  13. Application of Time-Series Model to Predict Groundwater Dynamic in Sanjiang Plain,Northeast China

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhaoqing; LIU Guihua; YAN Baixing

    2011-01-01

    To study the groundwater dynamic in the typical region of Sanjiang Plain,long-term groundwater level observation data in the Honghe State Farm were collected and analyzed in this paper.The seasonal and long-term groundwater dynamic was explored.From 1996 to 2008,groundwater level kept declining due to intensive exploitation of groundwater resources for rice irrigation.A decline of nearly 5 m was found for almost all the monitoring wells.A time-series method was established to model the groundwater dynamic.Modeled results by time-series model showed that the groundwater level in this region would keep declining according to the current exploitation intensity.A total dropdown of 1.07 m would occur from 2009 to 2012.Time-series model can be used to model and forecast the groundwater dynamic with high accuracy.Measures including control on groundwater exploitation amount and application of water saving irrigation technique should be taken to prevent the continuing declining of groundwater in the Sanjiang Plain.

  14. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  15. Transient,spatially-varied recharge for groundwater modeling

    Science.gov (United States)

    Assefa, Kibreab; Woodbury, Allan

    2013-04-01

    This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin

  16. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-07-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  17. evaluation of models for assessing groundwater vulnerability to ...

    African Journals Online (AJOL)

    DR. AMINU

    Key words: Groundwater, Vulnerability, Pollution, Nigeria. INTRODUCTION ... natural groundwater vulnerability: net recharge, soil properties, unsaturated zone ... such as dispersion, oxidation, natural attenuation, sorption etc. A low depth to ...

  18. Modelling groundwater over-extraction in the southern Jordan Valley with scarce data

    Science.gov (United States)

    Alfaro, Paulina; Liesch, Tanja; Goldscheider, Nico

    2017-08-01

    To deal with the challenge of groundwater over-extraction in arid and semi-arid environments, it is necessary to establish management strategies based on the knowledge of hydrogeological conditions, which can be difficult in places where hydrogeological data are dispersed, scarce or present potential misinformation. Groundwater levels in the southern Jordan Valley (Jordan) have decreased drastically in the last three decades, caused by over-extraction of groundwater for irrigation purposes. This study presents a local, two-dimensional and transient numerical groundwater model, using MODFLOW, to characterise the groundwater system and the water balance in the southern Jordan Valley. Furthermore, scenarios are simulated regarding hydrological conditions and management options, like extension of arable land and closure of illegal wells, influencing the projection of groundwater extraction. A limited dataset, literature values, field surveys, and the `crop water-requirement method' are combined to determine boundary conditions, aquifer parameters, and sources and sinks. The model results show good agreement between predicted and observed values; groundwater-level contours agree with the conceptual model and expected flow direction, and, in terms of water balance, flow volumes are in accordance with literature values. Average annual water consumption for irrigation is estimated to be 29 million m3 and simulation results show that a reduction of groundwater pumping by 40% could recover groundwater heads, reducing the water taken from storage. This study presents an example of how to develop a local numerical groundwater model to support management strategies under the condition of data scarcity.

  19. Large-Scale Water Resources Management within the Framework of GLOWA-Danube - Part A: The Groundwater Model

    Science.gov (United States)

    Barthel, R.; Rojanschi, V.; Wolf, J.; Braun, J.

    2003-04-01

    the catchment developed by the research group uses a finite difference approach (MODFLOW). A transport model (nitrogen) will be added in a second stage (MT3D). A three-dimensional conceptual hydrogeological model consisting of four layers was developed. Only aquifers with basin-wide occurrence are considered. Aquifers on the local scale cannot be included in the model due to insufficient data availability, the model grid resolution (1km2) used and various limitations arising from the MODFLOW-approach. The cell size of 1 km is compulsory for all models in DANUBIA in order to facilitate 1:1 parameter exchange. The concept of DANUBIA is based on the parallel execution of strictly independent disciplinary models. At each time step, the required parameters are exchanged. On the "physical side" the groundwater model has interfaces to a soil water and a surface water model which provide important parameters that are used as model boundary conditions. The soil water model calculates the groundwater recharge as the infiltration through a layered soil zone. The surface water model calculates the heads in the rivers, which are used to determine flow from the aquifers to the rivers and vice versa. The main aim of the groundwater model is to assess and forecast quantity and quality of the groundwater resources together with the other physically based models under conditions of global change. On the "socio-economic side", the groundwater model exchanges data with the so-called "Actors" component, a group of models concerned with the human impact on the water cycle. The amount of groundwater extraction for drinking water purposes is a boundary condition of the groundwater model calculated by the Actors models. The feedback between demand and supply invokes the need for complex optimization algorithms.

  20. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  1. Data and Model Uncertainties associated with Biogeochemical Groundwater Remediation and their impact on Decision Analysis

    Science.gov (United States)

    Pandey, S.; Vesselinov, V. V.; O'Malley, D.; Karra, S.; Hansen, S. K.

    2016-12-01

    Models and data are used to characterize the extent of contamination and remediation, both of which are dependent upon the complex interplay of processes ranging from geochemical reactions, microbial metabolism, and pore-scale mixing to heterogeneous flow and external forcings. Characterization is wrought with important uncertainties related to the model itself (e.g. conceptualization, model implementation, parameter values) and the data used for model calibration (e.g. sparsity, measurement errors). This research consists of two primary components: (1) Developing numerical models that incorporate the complex hydrogeology and biogeochemistry that drive groundwater contamination and remediation; (2) Utilizing novel techniques for data/model-based analyses (such as parameter calibration and uncertainty quantification) to aid in decision support for optimal uncertainty reduction related to characterization and remediation of contaminated sites. The reactive transport models are developed using PFLOTRAN and are capable of simulating a wide range of biogeochemical and hydrologic conditions that affect the migration and remediation of groundwater contaminants under diverse field conditions. Data/model-based analyses are achieved using MADS, which utilizes Bayesian methods and Information Gap theory to address the data/model uncertainties discussed above. We also use these tools to evaluate different models, which vary in complexity, in order to weigh and rank models based on model accuracy (in representation of existing observations), model parsimony (everything else being equal, models with smaller number of model parameters are preferred), and model robustness (related to model predictions of unknown future states). These analyses are carried out on synthetic problems, but are directly related to real-world problems; for example, the modeled processes and data inputs are consistent with the conditions at the Los Alamos National Laboratory contamination sites (RDX and

  2. Incorporating Groundwater Dynamics and Surface/Subsurface Runoff Mechanisms in Regional Climate Modeling over River Basins in China

    Institute of Scientific and Technical Information of China (English)

    QIN Peihua; XIE Zhenghui; YUAN Xing

    2013-01-01

    To improve the capability of numerical modeling of climate-groundwater interactions,a groundwater component and new surface/subsurface runoff schemes were incorporated into the regional climate model RegCM3,renamed RegCM3_Hydro.20-year simulations from both models were used to investigate the effects of groundwater dynamics and surface/subsurface runoff parameterizations on regional climate over seven river basins in China.A comparison of results shows that RegCM3_Hydro reduced the positive biases of annual and summer (June,July,August) precipitation over six river basins,while it slightly increased the bias over the Huaihe River Basin in eastern China.RegCM3_Hydro also reduced the cold bias of surface air temperature from RegCM3 across years,especially for the Haihe and the Huaihe river basins,with significant bias reductions of 0.80℃ and 0.88℃,respectively.The spatial distribution and seasonal variations of water table depth were also well captured.With the new surface and subsurface runoff schemes,RegCM3_Hydro increased annual surface runoff by 0.11-0.62 mm d-1 over the seven basins.Though previous studies found that incorporating a groundwater component tends to increase soil moisture due to the consideration of upward groundwater recharge,our present work shows that the modified runoff schemes cause less infiltration,which outweigh the recharge from groundwater and result in drier soil,and consequently cause less latent heat and more sensible heat over most of the basins.

  3. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals

    NARCIS (Netherlands)

    Grift, B. van der; Griffioen, J.

    2008-01-01

    Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic an

  4. Modelling of the groundwater flow in Baltic Artesian Basin

    Science.gov (United States)

    Virbulis, J.; Sennikovs, J.; Bethers, U.

    2012-04-01

    Baltic Artesian Basin (BAB) is a multi-layered complex hydrogeological system underlying about 480'000 km2 in the territory of Latvia, Lithuania, Estonia, Poland, Russia, Belarus and the Baltic Sea. The model of the geological structure contains 42 layers including aquifers and aquitards from Cambrian up to the Quaternary deposits. The finite element method was employed for the calculation of the steady state three-dimensional groundwater flow with free surface. The horizontal and vertical hydraulic conductivities of geological materials were assumed constant in each of the layers. The Precambrian basement forms the impermeable bottom of the model. The zero water exchange is assumed through the side boundaries of BAB. Simple hydrological model is applied on the surface. The level of the lakes, rivers and the sea is fixed as constant hydraulic head in corresponding mesh points. The infiltration is set as a flux boundary condition elsewhere. Instead of extensive coupling with hydrology model, a constant mean value of 70 mm/year was assumed as an infiltration flux for the whole BAB area and this value was adjusted during the automatic calibration process. Averaged long-term water extraction was applied at the water supply wells with large debits. In total 49 wells in Lithuania (total abstraction 45000 m3/day), 161 in Latvia (184000 m3/day) and 172 in Estonia (24000 m3/day) are considered. The model was calibrated on the statistically weighted (using both spatial and temporal weighting function) borehole water level measurements applying automatic parameter optimization method L-BFGS-B for hydraulic conductivities of each layer. The steady-stade calculations were performed for the situations corresponding to undisturbed situation (1950-ies), intensive groundwater use (1980-ies) and present state situation (after 2000). The distribution of piezometric heads and principal flows inside BAB was analyzed based on the model results. The results demonstrate that generally the

  5. SR-Site groundwater flow modelling methodology, setup and results

    Energy Technology Data Exchange (ETDEWEB)

    Selroos, Jan-Olof (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken three groundwater flow modelling studies. These are performed within the SR-Site project and represent time periods with different climate conditions. The simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. Three time periods are addressed; the Excavation and operational phases, the Initial period of temperate climate after closure, and the Remaining part of the reference glacial cycle. The present report is a synthesis of the background reports describing the modelling methodology, setup, and results. It is the primary reference for the conclusions drawn in a SR-Site specific context concerning groundwater flow during the three climate periods. These conclusions are not necessarily provided explicitly in the background reports, but are based on the results provided in these reports. The main results and comparisons presented in the present report are summarised in the SR-Site Main report.

  6. Interactive Online Real-time Groundwater Model for Irrigation Water Allocation in the Heihe Mid-reaches, China

    Science.gov (United States)

    Pedrazzini, G.; Kinzelbach, W.

    2016-12-01

    In the Heihe Basin and many other semi-arid regions in the world the ongoing introduction of smart meter IC-card systems on farmers' pumping wells will soon allow monitoring and control of abstractions with the goal of preventing further depletion of the resource. In this regard, a major interest of policy makers concerns the development of new and the improvement of existing legislation on pricing schemes and groundwater/surface water quotas. Predictive knowledge on the development of groundwater levels for different allocation schemes or climatic change scenarios is required to support decision-makers in this task. In the past groundwater models have been a static component of investigations and their results delivered in the form of reports. We set up and integrated a groundwater model into a user-friendly web-based environment, allowing direct and easy access to the novice user. Through operating sliders the user can select an irrigation district, change irrigation patterns such as partitioning of surface- and groundwater, size of irrigation area, irrigation efficiency, as well as a number of climate related parameters. Reactive handles allow to display the results in real-time. The implemented software is all license free. The tool is currently being introduced to irrigation district managers in the project area. Findings will be available after some practical experience to be expected in a given time. The accessibility via a web-interface is a novelty in the context of groundwater models. It allows delivering a product accessible from everywhere and from any device. The maintenance and if necessary updating of model or software can occur remotely. Feedback mechanisms between reality and prediction will be introduced and the model periodically updated through data assimilation as new data becomes available. This will render the model a dynamic tool steadily available and evolving over time.

  7. Modeling of groundwater productivity in northeastern Wasit Governorate, Iraq using frequency ratio and Shannon's entropy models

    Science.gov (United States)

    Al-Abadi, Alaa M.

    2017-05-01

    In recent years, delineation of groundwater productivity zones plays an increasingly important role in sustainable management of groundwater resource throughout the world. In this study, groundwater productivity index of northeastern Wasit Governorate was delineated using probabilistic frequency ratio (FR) and Shannon's entropy models in framework of GIS. Eight factors believed to influence the groundwater occurrence in the study area were selected and used as the input data. These factors were elevation (m), slope angle (degree), geology, soil, aquifer transmissivity (m2/d), storativity (dimensionless), distance to river (m), and distance to faults (m). In the first step, borehole location inventory map consisting of 68 boreholes with relatively high yield (>8 l/sec) was prepared. 47 boreholes (70 %) were used as training data and the remaining 21 (30 %) were used for validation. The predictive capability of each model was determined using relative operating characteristic technique. The results of the analysis indicate that the FR model with a success rate of 87.4 % and prediction rate 86.9 % performed slightly better than Shannon's entropy model with success rate of 84.4 % and prediction rate of 82.4 %. The resultant groundwater productivity index was classified into five classes using natural break classification scheme: very low, low, moderate, high, and very high. The high-very high classes for FR and Shannon's entropy models occurred within 30 % (217 km2) and 31 % (220 km2), respectively indicating low productivity conditions of the aquifer system. From final results, both of the models were capable to prospect GWPI with very good results, but FR was better in terms of success and prediction rates. Results of this study could be helpful for better management of groundwater resources in the study area and give planners and decision makers an opportunity to prepare appropriate groundwater investment plans.

  8. Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996-2010

    Science.gov (United States)

    Smith, Erik A.; Westenbroek, Stephen M.

    2015-01-01

    Groundwater recharge is one of the most difficult components of a water budget to ascertain, yet is an important boundary condition necessary for the quantification of water resources. In Minnesota, improved estimates of recharge are necessary because approximately 75 percent of drinking water and 90 percent of agricultural irrigation water in Minnesota are supplied from groundwater. The water that is withdrawn must be supplied by some combination of (1) increased recharge, (2) decreased discharge to streams, lakes, and other surface-water bodies, and (3) removal of water that was stored in the system. Recent pressure on groundwater resources has highlighted the need to provide more accurate recharge estimates for various tools that can assess the sustainability of long-term water use. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, used the Soil-Water-Balance model to calculate gridded estimates of potential groundwater recharge across Minnesota for 1996‒2010 at a 1-kilometer (0.621-mile) resolution. The potential groundwater recharge estimates calculated for Minnesota from the Soil-Water Balance model included gridded values (1-kilometer resolution) of annual mean estimates (that is, the means for individual years from 1996 through 2010) and mean annual estimates (that is, the mean for the 15-year period 1996−2010).

  9. GIS-based hydrogeological databases and groundwater modelling

    Science.gov (United States)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  10. Groundwater transport modeling with nonlinear sorption and intraparticle diffusion

    Science.gov (United States)

    Singh, Anshuman; Allen-King, Richelle M.; Rabideau, Alan J.

    2014-08-01

    Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of "dual mode" sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including "dual mode" and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.

  11. Uniqueness, scale, and resolution issues in groundwater model parameter identification

    Directory of Open Access Journals (Sweden)

    Tian-chyi J. Yeh

    2015-07-01

    Full Text Available This paper first visits uniqueness, scale, and resolution issues in groundwater flow forward modeling problems. It then makes the point that non-unique solutions to groundwater flow inverse problems arise from a lack of information necessary to make the problems well defined. Subsequently, it presents the necessary conditions for a well-defined inverse problem. They are full specifications of (1 flux boundaries and sources/sinks, and (2 heads everywhere in the domain at at least three times (one of which is t = 0, with head change everywhere at those times must being nonzero for transient flow. Numerical experiments are presented to corroborate the fact that, once the necessary conditions are met, the inverse problem has a unique solution. We also demonstrate that measurement noise, instability, and sensitivity are issues related to solution techniques rather than the inverse problems themselves. In addition, we show that a mathematically well-defined inverse problem, based on an equivalent homogeneous or a layered conceptual model, may yield physically incorrect and scenario-dependent parameter values. These issues are attributed to inconsistency between the scale of the head observed and that implied by these models. Such issues can be reduced only if a sufficiently large number of observation wells are used in the equivalent homogeneous domain or each layer. With a large number of wells, we then show that increase in parameterization can lead to a higher-resolution depiction of heterogeneity if an appropriate inverse methodology is used. Furthermore, we illustrate that, using the same number of wells, a highly parameterized model in conjunction with hydraulic tomography can yield better characterization of the aquifer and minimize the scale and scenario-dependent problems. Lastly, benefits of the highly parameterized model and hydraulic tomography are tested according to their ability to improve predictions of aquifer responses induced by

  12. Damage modelling in plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. [Universite Bordeaux 1, UMR 5801 (CNRS-SPS-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)], E-mail: martin@lcts.u-bordeaux1.fr; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SPS-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France); Schlosser, J.; Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, St. Paul Lez Durance (France)

    2009-04-30

    The plasma facing components of controlled fusion devices are submitted to high heat fluxes in operating conditions (from 10 to 20 MW/m{sup 2}). These components are made of a carbon/carbon composite tile bonded to a copper alloy heat sink. Due to the thermal expansion mismatch between the composite and the copper alloy, significant stresses may develop during fabrication and under heat load inducing damage in the composite material as well as at the copper/composite interface. The present study describes a modelling approach aimed at predicting damage development in plasma facing components. For this purpose, damage laws related to the non-linear behaviour of both the composite material and the copper/composite joint have been identified. These constitutive laws were then introduced in a numerical model representative of a plasma facing component. Results show the development of damage within the assembly submitted to a heat load.

  13. An easily installable groundwater lysimeter to determine waterbalance components and hydraulic properties of peat soils

    Directory of Open Access Journals (Sweden)

    K. Schwaerzel

    2003-01-01

    Full Text Available A simple method for the installation of groundwater lysimeters in peat soils was developed which reduces both time and financial effort significantly. The method was applied on several sites in the Rhinluch, a fen peat land 60 km northwest of Berlin, Germany. Over a two-year period, upward capillary flow and evapotranspiration rates under grassland with different groundwater levels were measured. The installation of tensiometers and TDR probes additionally allowed the in situ determination of the soil hydraulic properties (water retention and unsaturated hydraulic conductivity. The results of the measurements of the unsaturated hydraulic conductivity demonstrate that more than one single method has to be applied if the whole range of the conductivity function from saturation to highly unsaturated is to be covered. Measuring the unsaturated conductivity can be done only in the lab for an adequately wide range of soil moisture conditions. Keywords: peat soils, soil hydraulic properties, evapotranspiration, capillary flow, root distribution, unsaturated zone

  14. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling

    Science.gov (United States)

    Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne

    2010-05-01

    Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are

  15. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Directory of Open Access Journals (Sweden)

    R. Barthel

    2006-01-01

    Full Text Available Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models – in particular on the regional scale – it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge" in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  16. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Science.gov (United States)

    Barthel, R.

    2006-09-01

    Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models - in particular on the regional scale - it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge") in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  17. Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow...

  18. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  19. Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells.

    Science.gov (United States)

    Aisopou, Angeliki; Binning, Philip J; Albrechtsen, Hans-Jørgen; Bjerg, Poul L

    2015-01-01

    This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly affect the pesticide breakthrough time and maximum concentration at the well. The effect of the pumping rate on the pesticide concentration depends on the hydrogeology of the aquifer; in a layered aquifer, a high pumping rate resulted in a considerably different breakthrough than a low pumping rate, while in an aquifer with a stream the effect of the pumping rate was insignificant. Pesticide application history and properties have also a great impact on the effect of the pumping rate on the concentration at the well. The findings of the study show that variable pumping rates can generate temporal variability in the concentration at the well, which helps understanding the results of groundwater monitoring programs. The results are used to provide guidance on the design of pumping and regulatory changes for the long-term supply of safe groundwater. The fate of selected pesticides is examined, for example, if the application of bentazone in a region with a layered aquifer stops today, the concentration at the well can continue to increase for 20 years if a low pumping rate is applied. This study concludes that because of the rapid response of the pesticide concentration at the drinking water well due to changes in pumping, wellhead management is important for managing pesticide concentrations.

  20. Two-component model of solar plages

    Institute of Scientific and Technical Information of China (English)

    LI; Jianping(李建平); DING; Mingde(丁明德); FANG; Cheng(方成)

    2002-01-01

    By use of the 2-m Mcmath-Pierce telescope at Kitt Peak, the high-quality spectra of a plage with moderate brightness near the center of solar disk were obtained. The data include seven spectral lines, which are Hα, Hβ, CaII H and K lines and the infrared triplet. With the consideration of fine structures of solar plages, a two-component atmospheric model is constructed by keeping the cool component to be the quiet atmosphere. Three cases of the hot component are given for different filling factors where the temperature and density distribution are adjusted in order to reproduce the seven observed spectral profiles. We also briefly discuss the influence of the column density at the base of the corona, m0, and the macro-turbulent velocity on the required filling factor and computed profiles. The two-component model is compared with precious one-component semi-empirical models. The limitation of the model is pointed out and further improvement is indicated.

  1. Groundwater degassing in fractured rock: Modelling and data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering

    1998-11-01

    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  2. Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India

    Science.gov (United States)

    Sahoo, Sasmita; Jha, Madan K.

    2017-07-01

    Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997-2006, followed by validation (2007-2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.

  3. Preliminary site description: Groundwater flow simulations. Simpevarp area (version 1.1) modelled with CONNECTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Worth, David [Serco Assurance Ltd, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden); Holmen, Johan [Golder Associates, Stockholm (Sweden)

    2004-08-01

    The main objective of this study is to assess the role of known and unknown hydrogeological conditions for the present-day distribution of saline groundwater at the Simpevarp and Laxemar sites. An improved understanding of the paleo-hydrogeology is necessary in order to gain credibility for the Site Descriptive Model in general and the Site Hydrogeological Description in particular. This is to serve as a basis for describing the present hydrogeological conditions as well as predictions of future hydrogeological conditions. This objective implies a testing of: geometrical alternatives in the structural geology and bedrock fracturing, variants in the initial and boundary conditions, and parameter uncertainties (i.e. uncertainties in the hydraulic property assignment). This testing is necessary in order to evaluate the impact on the groundwater flow field of the specified components and to promote proposals of further investigations of the hydrogeological conditions at the site. The general methodology for modelling transient salt transport and groundwater flow using CONNECTFLOW that was developed for Forsmark has been applied successfully also for Simpevarp. Because of time constraints only a key set of variants were performed that focussed on the influences of DFN model parameters, the kinematic porosity, and the initial condition. Salinity data in deep boreholes available at the time of the project was too limited to allow a good calibration exercise. However, the model predictions are compared with the available data from KLX01 and KLX02 below. Once more salinity data is available it may be possible to draw more definite conclusions based on the differences between variants. At the moment though the differences should just be used understand the sensitivity of the models to various input parameters.

  4. Groundwater modeling in integrated water resources management--visions for 2020.

    Science.gov (United States)

    Refsgaard, Jens Christian; Højberg, Anker Lajer; Møller, Ingelise; Hansen, Martin; Søndergaard, Verner

    2010-01-01

    Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.

  5. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    Science.gov (United States)

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-01-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater. PMID:28220874

  6. Assessment of Nitrate Contamination of Groundwater in Korea Using a Mathematical Simulation Model

    Science.gov (United States)

    Lee, E.; Kim, M.; Lee, K.

    2005-12-01

    According to the nationwide groundwater monitoring system, nitrate is one of the major contaminants found in groundwater in Korea. Septic systems, animal waste and fertilizer are potential sources of nitrate contamination. There have been a growing number of studies on identification of the source of nitrate contamination of groundwater at agricultural sites, or analysis of the groundwater contamination at intensive livestock facilities. However, there have been a few studies on linkage between the surface loading of nitrate sources and the level of groundwater contamination. The objective of this study is to assess the groundwater contamination with nitrate resulted from current agricultural practices, and the potential impacts of changes in the practices on the groundwater contamination by using a mathematical model. An integrated modeling framework incorporating the nitrogen leaching model, LEACHN, and mass transport model, RT3D linked to MODFLOW was used to account for the fate and transport of nitrate through soil and groundwater. Data were collected from different areas so that they could represent the condition of agricultural sites in Korea. The groundwater nitrate contamination was assessed for different crops and soil types under varying fertilization rates and manure application.

  7. Efficient Calibration of Computationally Intensive Groundwater Models through Surrogate Modelling with Lower Levels of Fidelity

    Science.gov (United States)

    Razavi, S.; Anderson, D.; Martin, P.; MacMillan, G.; Tolson, B.; Gabriel, C.; Zhang, B.

    2012-12-01

    Many sophisticated groundwater models tend to be computationally intensive as they rigorously represent detailed scientific knowledge about the groundwater systems. Calibration (model inversion), which is a vital step of groundwater model development, can require hundreds or thousands of model evaluations (runs) for different sets of parameters and as such demand prohibitively large computational time and resources. One common strategy to circumvent this computational burden is surrogate modelling which is concerned with developing and utilizing fast-to-run surrogates of the original computationally intensive models (also called fine models). Surrogates can be either based on statistical and data-driven models such as kriging and neural networks or simplified physically-based models with lower fidelity to the original system (also called coarse models). Fidelity in this context refers to the degree of the realism of a simulation model. This research initially investigates different strategies for developing lower-fidelity surrogates of a fine groundwater model and their combinations. These strategies include coarsening the fine model, relaxing the numerical convergence criteria, and simplifying the model geological conceptualisation. Trade-offs between model efficiency and fidelity (accuracy) are of special interest. A methodological framework is developed for coordinating the original fine model with its lower-fidelity surrogates with the objective of efficiently calibrating the parameters of the original model. This framework is capable of mapping the original model parameters to the corresponding surrogate model parameters and also mapping the surrogate model response for the given parameters to the original model response. This framework is general in that it can be used with different optimization and/or uncertainty analysis techniques available for groundwater model calibration and parameter/predictive uncertainty assessment. A real-world computationally

  8. Overview of the model component in ECOCLIM

    DEFF Research Database (Denmark)

    Geels, Camilla; Boegh, Eva; Bendtsen, J

    As part of the Danish strategic research project ECOCLIM: Ecosystems Surface Exchange of Greenhouse Gases in an Environment of Changing Anthropogenic and Climate forcing a model system will be developed. This model system will be based on both terrestrial and marine ecosystems in order to be able...... and atmospheric models. We will use the model system to 1) quantify the potential effects of climate change on ecosystem exchange of GHG and 2) estimate the impacts of changes in management practices including land use change and nitrogen (N) loads. Here the various model components will be introduced...

  9. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh

    OpenAIRE

    Shamsudduha, M.; Taylor, R. G.; Chandler, R. E.

    2015-01-01

    Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation‐induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L−1). At these ...

  10. Impact of climate Change on Groundwater Recharge in the Tiber River Basin (Central Italy) Using Regional Climate model Outputs

    Science.gov (United States)

    Muluneh, F. B.; Setegn, S. G.; Melesse, A. M.; Fiori, A.

    2011-12-01

    Quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by many internal and external drivers. Changes in climate variables can affect the quantity and quality of various components of hydrological cycle. Among others, the local effects of climate change on groundwater resources were not fully studied in different part of the world as compared to the surface water. Moreover, understanding the potential impact of climate change on groundwater is more complex than surface water. The main objective of this study is to analyze the potential impact of climate change on Groundwater recharge in the Tiber River Basin using outputs from Regional Climate model. In this study, a physically-based watershed model called Soil Water Assessment Tool (SWAT) was used to estimate recharge characteristics and its response to climate change in Tiber River Basin (central Italy). The SWAT model was successfully calibrated and validated using observed weather and flow data for the period of 1963-1970 and 1971-1978 respectively. During calibration, the model was highly sensitivity to groundwater flow parameters. Dynamically downscaled rainfall and temperature datasets from ten Regional Climate Models (RCM) archived in 'Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE)' were used to force the model to assess the climate change impact on the study area. A quantile-mapping statistical correction procedure was applied to the RCM dataset to correct the inherent systematic biases. The climate change analysis indicated that by the end of 2080s the rainfall was found to decrease nearly up to 40% in dry period and there was an increase in temperature that could reach as high as 3 to 5 oC. By the end of 2080s the ground water recharge shows a decreasing trend as a response to changes in rainfall. However as the timing of both precipitation and

  11. Representation of an open repository in groundwater flow models

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott; Sun, Alexander [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    2005-08-01

    The effect of repository tunnels on groundwater flow has been identified as a potential issue for the nuclear waste repository being considered by SKB for a fractured granite formation in Sweden. In particular, the following pre-closure and post-closure processes have been identified as being important: inflows into open tunnels as functions of estimated grouting efficiencies, drawdown of the water table in the vicinity of the repository, upcoming of saline water, 'turnover' of surface water in the upper bedrock, and resaturation of backfilled tunnels following repository closure. The representation of repository tunnels within groundwater models is addressed in this report. The primary focus is on far-field flow that is modeled with a continuum porous medium approximation. Of particular interest are the consequences of the tunnel representation on the transient response of the groundwater system to repository operations and repository closure, as well as modeling issues such as how the water-table free surface and the coupling to near-surface hydrogeology should be handled. The overall objectives are to understand the consequences of current representations and to identify appropriate approximations for representing open tunnels in future groundwater modeling studies. The following conclusions can be drawn from the results of the simulations: 1. Two-phase flow may be induced in the vicinity of repository tunnels during repository pre-closure operations, but the formation of a two-phase flow region will not significantly affect far-field flow or inflows into tunnels. 2. The water table will be drawn down to the repository horizon and tunnel inflows will reach a steady-state value within about 5 years. 3. Steady-state inflows at the repository edge are estimated to be about 250 m{sup 3}/year per meter of tunnel. Inflows will be greater during the transient de-watering period and less for tunnel locations closer to the repository center. 4. Significant

  12. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    Science.gov (United States)

    Sahoo, S.; Russo, T. A.; Elliott, J.; Foster, I.

    2017-05-01

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combination of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. We conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.

  13. Learning Software Component Model for Online Tutoring

    Directory of Open Access Journals (Sweden)

    K. Duraiswamy

    2012-01-01

    Full Text Available Problem statement: Web services are interface elements which allow applications to render functional services to requesting clients using open standard protocols. A lecture method combines both social association and urban processing as course design and delivery is termed as Interface Learning. Many Interface learning services is presenting through online. To make an online tutoring scheme more effective, the previous study used web services and application programs like instant messaging based on environments in which students reside. But the downside is that it is difficult to maintain the service request queues online. The services and data storage processes are inefficient. Approach: To overcome all the above issues, a Learning Software Component Model (LSCM framework is formed in the present study to build a component model based on communication services available on the network. In addition to this, the proposed software component modeled with Learning Object (LO aspects integrates the related sub hierarchical components with the main component object framework. Based on LSCM, training schedules are identified efficiently. Results: The proposed LSCM framework is experimented to show the performance improvement with the previous online tutoring scheme based on web services in terms of delivery report, maintenance of tutoring sessions and reliability. Conclusion: Compared to an existing online tutoring through web services, the proposed LSCM framework performance is 75% better in providing learning services to the providers.

  14. A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh

    Science.gov (United States)

    Islam, Md Bayzidul; Firoz, A. B. M.; Foglia, Laura; Marandi, Andres; Khan, Abidur Rahman; Schüth, Christoph; Ribbe, Lars

    2017-01-01

    The water resources that supply most of the megacities in the world are under increased pressure because of land transformation, population growth, rapid urbanization, and climate-change impacts. Dhaka, in Bangladesh, is one of the largest of 22 growing megacities in the world, and it depends on mainly groundwater for all kinds of water needs. The regional groundwater-flow model MODFLOW-2005 was used to simulate the interaction between aquifers and rivers in steady-state and transient conditions during the period 1981-2013, to assess the impact of development and climate change on the regional groundwater resources. Detailed hydro-stratigraphic units are described according to 150 lithology logs, and a three-dimensional model of the upper 400 m of the Greater Dhaka area was constructed. The results explain how the total abstraction (2.9 million m3/d) in the Dhaka megacity, which has caused regional cones of depression, is balanced by recharge and induced river leakage. The simulated outcome shows the general trend of groundwater flow in the sedimentary Holocene aquifers under a variety of hydrogeological conditions, which will assist in the future development of a rational and sustainable management approach.

  15. A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh

    Science.gov (United States)

    Islam, Md Bayzidul; Firoz, A. B. M.; Foglia, Laura; Marandi, Andres; Khan, Abidur Rahman; Schüth, Christoph; Ribbe, Lars

    2017-05-01

    The water resources that supply most of the megacities in the world are under increased pressure because of land transformation, population growth, rapid urbanization, and climate-change impacts. Dhaka, in Bangladesh, is one of the largest of 22 growing megacities in the world, and it depends on mainly groundwater for all kinds of water needs. The regional groundwater-flow model MODFLOW-2005 was used to simulate the interaction between aquifers and rivers in steady-state and transient conditions during the period 1981-2013, to assess the impact of development and climate change on the regional groundwater resources. Detailed hydro-stratigraphic units are described according to 150 lithology logs, and a three-dimensional model of the upper 400 m of the Greater Dhaka area was constructed. The results explain how the total abstraction (2.9 million m3/d) in the Dhaka megacity, which has caused regional cones of depression, is balanced by recharge and induced river leakage. The simulated outcome shows the general trend of groundwater flow in the sedimentary Holocene aquifers under a variety of hydrogeological conditions, which will assist in the future development of a rational and sustainable management approach.

  16. Modeling structural dynamic behavior of SSME components

    Science.gov (United States)

    Kiefling, Larry A.; Saxon, J. B.; Prickett, T. L.

    1991-01-01

    FEM studies are presented of the nozzle and the low-pressure fuel-pump inducer designs for the Space Shuttle Main Engine (SSME) to analyze the effects of structural vibrations. FEM preprocessing software based on a CAD system is employed to develop a model of the component's sophisticated geometry. The nozzle geometry is also defined by means of the preprocessing technique and subsequently analyzed with respect to time-transient loading. The analysis is conducted with a Cray supercomputer using the SPAR/EAL FEM program. The investigation of the nozzle demonstrates the advantageous use of symmetry in the determination of nozzle response to SSME start-up transients. Plots of time vs strain are developed for gages on the nozzle wall and steerhorn tubing. The results of the inducer modeling are found to be adequate for investigating the component's principle modes, and the nozzle results indicate the suitability of the FEM techniques for optimizing the design of engine components.

  17. European-scale modelling of groundwater denitrification and associated N2O production

    KAUST Repository

    Keuskamp, J.A.

    2012-06-01

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N 2O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N 2O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N 2O production is expected. Predicted N leaching (16% of the N inputs) and N 2O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. © 2012 Elsevier Ltd. All rights reserved.

  18. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    Directory of Open Access Journals (Sweden)

    H. Hashemi

    2013-02-01

    Full Text Available Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.

  19. Climate change impact on shallow groundwater conditions in Hungary: Conclusions from a regional modelling study

    Science.gov (United States)

    Kovács, Attila; Marton, Annamária; Tóth, György; Szöcs, Teodóra

    2016-04-01

    A quantitative methodology has been developed for the calculation of groundwater table based on measured and simulated climate parameters. The aim of the study was to develop a toolset which can be used for the calculation of shallow groundwater conditions for various climate scenarios. This was done with the goal of facilitating the assessment of climate impact and vulnerability of shallow groundwater resources. The simulated groundwater table distributions are representative of groundwater conditions at the regional scale. The introduced methodology is valid for modelling purposes at various scales and thus represents a versatile tool for the assessment of climate vulnerability of shallow groundwater bodies. The calculation modules include the following: 1. A toolset to calculate climate zonation from climate parameter grids, 2. Delineation of recharge zones (Hydrological Response Units, HRUs) based on geology, landuse and slope conditions, 3. Calculation of percolation (recharge) rates using 1D analytical hydrological models, 4. Simulation of the groundwater table using numerical groundwater flow models. The applied methodology provides a quantitative link between climate conditions and shallow groundwater conditions, and thus can be used for assessing climate impacts. The climate data source applied in our calculation comprised interpolated daily climate data of the Central European CARPATCLIM database. Climate zones were determined making use of the Thorntwaite climate zonation scheme. Recharge zones (HRUs) were determined based on surface geology, landuse and slope conditions. The HELP hydrological model was used for the calculation of 1D water balance for hydrological response units. The MODFLOW numerical groundwater modelling code was used for the calculation of the water table. The developed methodology was demonstrated through the simulation of regional groundwater table using spatially averaged climate data and hydrogeological properties for various time

  20. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    Science.gov (United States)

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other

  1. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  2. Entropy weight coefficient model and its application in evaluation of groundwater vulnerability of the Sanjiang Plain

    Institute of Scientific and Technical Information of China (English)

    LIU Rentao; FU Qiang; GAI Zhaomei

    2007-01-01

    The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.

  3. A meta-analysis and statistical modelling of nitrates in groundwater at the African scale

    Science.gov (United States)

    Ouedraogo, Issoufou; Vanclooster, Marnik

    2016-06-01

    Contamination of groundwater with nitrate poses a major health risk to millions of people around Africa. Assessing the space-time distribution of this contamination, as well as understanding the factors that explain this contamination, is important for managing sustainable drinking water at the regional scale. This study aims to assess the variables that contribute to nitrate pollution in groundwater at the African scale by statistical modelling. We compiled a literature database of nitrate concentration in groundwater (around 250 studies) and combined it with digital maps of physical attributes such as soil, geology, climate, hydrogeology, and anthropogenic data for statistical model development. The maximum, medium, and minimum observed nitrate concentrations were analysed. In total, 13 explanatory variables were screened to explain observed nitrate pollution in groundwater. For the mean nitrate concentration, four variables are retained in the statistical explanatory model: (1) depth to groundwater (shallow groundwater, typically assumptions of the data set, we do not develop a statistical model for these data. The data-based statistical model presented here represents an important step towards developing tools that will allow us to accurately predict nitrate distribution at the African scale and thus may support groundwater monitoring and water management that aims to protect groundwater systems. Yet they should be further refined and validated when more detailed and harmonized data become available and/or combined with more conceptual descriptions of the fate of nutrients in the hydrosystem.

  4. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow model...

  5. Geostatistical simulation of geological architecture and uncertainty propagation in groundwater modeling

    DEFF Research Database (Denmark)

    He, Xiulan

    Groundwater modeling plays an essential role in modern subsurface hydrology research. It’s generally recognized that simulations and predictions by groundwater models are associated with uncertainties that originate from various sources. The two major uncertainty sources are related to model...... parameters and model structures, which are the primary focuses of this PhD research. Parameter uncertainty was analyzed using an optimization tool (PEST: Parameter ESTimation) in combination with a random sampling method (LHS: Latin Hypercube Sampling). Model structure, namely geological architecture...

  6. Documentation for the MODFLOW 6 Groundwater Flow Model

    Science.gov (United States)

    Langevin, Christian D.; Hughes, Joseph D.; Banta, Edward R.; Niswonger, Richard G.; Panday, Sorab; Provost, Alden M.

    2017-08-10

    This report documents the Groundwater Flow (GWF) Model for a new version of MODFLOW called MODFLOW 6. The GWF Model for MODFLOW 6 is based on a generalized control-volume finite-difference approach in which a cell can be hydraulically connected to any number of surrounding cells. Users can define the model grid using one of three discretization packages, including (1) a structured discretization package for defining regular MODFLOW grids consisting of layers, rows, and columns, (2) a discretization by ver­tices package for defining layered unstructured grids consisting of layers and cells, and (3) a general unstruc­tured discretization package for defining flexible grids comprised of cells and their connection properties. For layered grids, a new capability is available for removing thin cells and vertically connecting cells overlying and underlying the thin cells. For complex problems involving water-table conditions, an optional Newton-Raphson formulation, based on the formulations in MODFLOW-NWT and MODFLOW-USG, can be acti­vated. Use of the Newton-Raphson formulation will often improve model convergence and allow solutions to be obtained for difficult problems that cannot be solved using the traditional wetting and drying approach. The GWF Model is divided into “packages,” as was done in previous MODFLOW versions. A package is the part of the model that deals with a single aspect of simulation. Packages included with the GWF Model include those related to internal calculations of groundwater flow (discretization, initial conditions, hydraulic conduc­tance, and storage), stress packages (constant heads, wells, recharge, rivers, general head boundaries, drains, and evapotranspiration), and advanced stress packages (streamflow routing, lakes, multi-aquifer wells, and unsaturated zone flow). An additional package is also available for moving water available in one package into the individual features of the advanced stress packages. The GWF Model

  7. Documentation of a groundwater flow model developed to assess groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    The U.S. Geological Survey developed a groundwater flow model for the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina as part of a detailed assessment of the groundwater availability of the area and included an evaluation of how these resources have changed over time from stresses related to human uses and climate trends. The assessment was necessary because of the substantial dependency on groundwater for agricultural, industrial, and municipal needs in this area.

  8. Modelling groundwater systems: Understanding and improving groundwater quantity and quality management

    NARCIS (Netherlands)

    Ebrahim, G.Y.

    2013-01-01

    Groundwater is one of the most important natural resources. It is the principal source of drinking water in rural and many urban cities, and widely used for irrigation in most arid and semi-arid countries. However, recently it has become apparent that many human activities are negatively impacting b

  9. Modelling wetland-groundwater interactions in the boreal Kälväsvaara esker, Northern Finland

    Science.gov (United States)

    Jaros, Anna; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2016-04-01

    Many types of boreal peatland ecosystems such as alkaline fens, aapa mires and Fennoscandia spring fens rely on the presence of groundwater. In these ecosystems groundwater creates unique conditions for flora and fauna by providing water, nutrients and constant water temperature enriching local biodiversity. The groundwater-peatland interactions and their dynamics are not, however, in many cases fully understood and their measurement and quantification is difficult due to highly heterogeneous structure of peatlands and large spatial extend of these ecosystems. Understanding of these interactions and their changes due to anthropogenic impact on groundwater resources would benefit the protection of the groundwater dependent peatlands. The groundwater-peatland interactions were investigated using the fully-integrated physically-based groundwater-surface water code HydroGeoSphere in a case study of the Kälväsvaara esker aquifer, Northern Finland. The Kälväsvaara is a geologically complex esker and it is surrounded by vast aapa mire system including alkaline and springs fens. In addition, numerous small springs occur in the discharge zone of the esker. In order to quantify groundwater-peatland interactions a simple steady-state model was built and results were evaluated using expected trends and field measurements. The employed model reproduced relatively well spatially distributed hydrological variables such as soil water content, water depths and groundwater-surface water exchange fluxes within the wetland and esker areas. The wetlands emerged in simulations as a result of geological and topographical conditions. They could be identified by high saturation levels at ground surface and by presence of shallow ponded water over some areas. The model outputs exhibited also strong surface water-groundwater interactions in some parts of the aapa system. These areas were noted to be regions of substantial diffusive groundwater discharge by the earlier studies. In

  10. Bayesian methods for model choice and propagation of model uncertainty in groundwater transport modeling

    Science.gov (United States)

    Mendes, B. S.; Draper, D.

    2008-12-01

    The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission

  11. Independent Component Analysis in Multimedia Modeling

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai; Kolenda, Thomas

    2003-01-01

    Modeling of multimedia and multimodal data becomes increasingly important with the digitalization of the world. The objective of this paper is to demonstrate the potential of independent component analysis and blind sources separation methods for modeling and understanding of multimedia data, which...... largely refers to text, images/video, audio and combinations of such data. We review a number of applications within single and combined media with the hope that this might provide inspiration for further research in this area. Finally, we provide a detailed presentation of our own recent work on modeling...... combined text/image data for the purpose of cross-media retrieval....

  12. Independent Component Analysis in Multimedia Modeling

    DEFF Research Database (Denmark)

    Larsen, Jan

    Modeling of multimedia and multimodal data becomes increasingly important with the digitalization of the world. The objective of this paper is to demonstrate the potential of independent component analysis and blind sources separation methods for modeling and understanding of multimedia data, which...... largely refers to text, images/video, audio and combinations of such data. We review a number of applications within single and combined media with the hope that this might provide inspiration for further research in this area. Finally, we provide a detailed presentation of our own recent work on modeling...... combined text/image data for the purpose of cross-media retrieval....

  13. Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI GuoMin; YANG Liao; DANG XueYa; ZHAO ChunHu; HOU GuangCai; ZHANG MaoSheng

    2007-01-01

    The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei,Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  14. Model-data integration for predictive assessment of groundwater reactive transport systems

    NARCIS (Netherlands)

    Carniato, L.

    2014-01-01

    Predicting the evolution of groundwater contamination is a major concern for society, in particular when investments are made to remediate the contamination. Groundwater reactive transport models are valuable tools to integrate the available measurements in a consistent framework, improving our unde

  15. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  16. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  17. A Simulation Model for Component Commonality

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiao-chi; ZHANG Zi-gang

    2002-01-01

    Component commonality has been cited as a powerful approach for manufacturers to cope with increased component proliferation and to control inventory costs. To fully realize its potential benefits, one needs a clear understanding of its impacts on the system. In this paper, the feasibility of using a simulation model to provide a systematic perspective for manufacturing firms to implement a commonality strategy is demonstrated. Alternative commonality strategies including the stage of employing commonality and the allocation policies are simulated. Several interesting results on effects of commonality, allocation policies,and optimal solutions are obtained. We then summarize qualitative insights and managerial implications into the component commonality design and implementation, and inventory management in a general multi-stage assembly system.

  18. Cross-validation of methods used for analysis af MTBE and other gasoline components in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Lacorte, S.; Rosell, M.; Barcelo [Department of Environmental Chemistry, IIQAB-CSIC, Barcelona (Spain); Olivella, L.; Figueras, M.; Ginebreda, A. [Ministry of Environmental Affairs, Barcelona (Spain). Catalan Water Agency

    2003-06-01

    Head space gas chromatography with flame-ionization detection (HS-GC-FID), and purge and trap gas chromatography-mass spectrometry (P and T-GC-MS) have been used to determine methyl-tert-butyl ether (MTBE) and benzene, toluene, and the xylenes (BTEX) in groundwater. In the work discussed in this paper measures of quality, e.g. recovery (94-111%), precision (4.6-12.2%), limits of detection (0.3-5.7 {mu}g L{sup -1} for HS and 0.001 {mu}g L{sup -1} for PT), and robustness, for both methods were compared. In addition, for purposes of comparison, groundwater samples from areas suffering from odor problems because of fuel spillage and tank leakage were analyzed by use of both techniques. For high concentration levels there was good correlation between results from both methods. Results from P and T analysis showed that 20 of the 21 samples from the vulnerable areas contained MTBE at concentrations up to 666 mug L{sup -1}. Levels in seven samples exceeded maximum permissible levels for odor and taste set by the USEPA (20-40 {mu}g L{sup -1}); for thirteen of the samples levels were between 0.28 and 17.9 {mu}g L{sup -1}. The sensitivity of HS-GC-FID was, however, two to three orders of magnitude lower and concentrations of 6-10 {mu}g L{sup -1} could not always be detected, leading to false negatives. The same behavior was observed for analysis of BTEX - the lower sensitivity of HS-GC-FID and coelution of peaks led to results of poor reliability, and confirmation by GC-MS was always necessary. The applicability of two analytical methods widely used for routine monitoring of VOC thus depends on the organoleptic thresholds of MTBE and BTEX in groundwater (20 {mu}g L{sup -1}) and the need to survey trace concentrations of persistent MTBE in vulnerable aquifers. (orig.)

  19. Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India

    Science.gov (United States)

    Ravikumar, P.; Somashekar, R. K.

    2017-05-01

    The present study envisages the importance of graphical representations like Piper trilinear diagram and Chadha's plot, respectively to determine variation in hydrochemical facies and understand the evolution of hydrochemical processes in the Varahi river basin. The analytical values obtained from the groundwater samples when plotted on Piper's and Chadha's plots revealed that the alkaline earth metals (Ca2+, Mg2+) are significantly dominant over the alkalis (Na+, K+), and the strong acidic anions (Cl-, SO4 2-) dominant over the weak acidic anions (CO3 2-, HCO3 -). Further, Piper trilinear diagram classified 93.48 % of the samples from the study area under Ca2+-Mg2+-Cl--SO4 2- type and only 6.52 % samples under Ca2+-Mg2+-HCO3 - type. Interestingly, Chadha's plot also demonstrated the dominance of reverse ion exchange water having permanent hardness (viz., Ca-Mg-Cl type) in majority of the samples over recharging water with temporary hardness (i.e., Ca-Mg-HCO3 type). Thus, evaluation of hydrochemical facies from both the plots highlighted the contribution from the reverse ion exchange processes in controlling geochemistry of groundwater in the study area. Further, PCA analysis yielded four principal components (PC1, PC2, PC3 and PC4) with higher eigen values of 1.0 or more, accounting for 65.55, 10.17, 6.88 and 6.52 % of the total variance, respectively. Consequently, majority of the physico-chemical parameters (87.5 %) loaded under PC1 and PC2 were having strong positive loading (>0.75) and these are mainly responsible for regulating the hydrochemistry of groundwater in the study area.

  20. Development of conceptual groundwater flow model for Pali Area ...

    African Journals Online (AJOL)

    use

    be accelerated due to climate change (Mall et al., 2006). Groundwater ... experiencing groundwater pollution problem due to rapid industrialization ... LITERATURE REVIEW ... the impact of a proposed action on existing conditions of ..... Water Air. Soil Pollut., 128: 369-389. Gurunadha Rao VVS, Thangarajan M (1999).

  1. MODFLOW-NWT 2016 groundwater flow model for Dane County, Wisconsin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A new groundwater flow model was created for Dane County, Wisconsin, to replace an earlier model developed in the 1990s by the Wisconsin Geological and Natural...

  2. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  3. Estimating spatiotemporal variability and sustainability of shallow groundwater in a well-irrigated plain of the Haihe River basin using SWAT model

    Science.gov (United States)

    Zhang, Xueliang; Ren, Li; Kong, Xiangbin

    2016-10-01

    Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.

  4. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    Science.gov (United States)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  5. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prashant, E-mail: prashantkumar@csio.res.in [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Bansod, Baban K.S.; Debnath, Sanjit K. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Thakur, Praveen Kumar [Indian Institute of Remote Sensing (ISRO), Dehradun 248001 (India); Ghanshyam, C. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India)

    2015-02-15

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper.

  6. Nitrate Transport Modeling in Deep Aquifers. Comparison between Model Results and Data from the Groundwater Monitoring Network

    NARCIS (Netherlands)

    Uffink GJM; Romkens PFAM; LBG

    2001-01-01

    Nitrate measurements from the Netherlands Groundwater Monitoring Network and model simulations were compared for deep aquifers in the eastern part of the Netherlands. The area studied measured 40 x 30 km2. The model describes advective-dispersive solute transport in groundwater and utilizes a first-

  7. An Analysis of Groundwater in Sinjar Plain (Northwest of Iraq) Using WQI Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sinjar plain-northwest Iraq has an abundant amount of groundwater. Due to the importance of this water source, the water quality index (WQI) model was used in the classification of groundwater in the western and eastern regions of Sinjar plain for beneficial use. Groundwater samples were chemically analyzed to calculate the values of WQI. This model consists of a single number of the integrated deviation from standard quality, which indicates the relative importance of each relevant variable for beneficial use. The results indicate that the WQI could be used to determine the particular uses of groundwater. The groundwater in the Sinjar plain is more suitable for irrigation than for livestock drinking and domestic use.

  8. Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model

    Science.gov (United States)

    Mfumu Kihumba, Antoine; Vanclooster, Marnik; Ndembo Longo, Jean

    2017-02-01

    This study assessed the vulnerability of groundwater against pollution in the Kinshasa region, DR Congo, as a support of a groundwater protection program. The parametric vulnerability model (DRASTIC) was modified and calibrated to predict the intrinsic vulnerability as well as the groundwater pollution risk. The method uses groundwater body specific parameters for the calibration of the factor ratings and weightings of the original DRASTIC model. These groundwater specific parameters are inferred from the statistical relation between the original DRASTIC model and observed nitrate pollution for a specific period. In addition, site-specific land use parameters are integrated into the method. The method is fully embedded in a Geographic Information System (GIS). Following these modifications, the correlation coefficient between groundwater pollution risk and observed nitrate concentrations for the 2013-2014 survey improved from r = 0.42, for the original DRASTIC model, to r = 0.61 for the calibrated model. As a way to validate this pollution risk map, observed nitrate concentrations from another survey (2008) are compared to pollution risk indices showing a good degree of coincidence with r = 0.51. The study shows that a calibration of a vulnerability model is recommended when vulnerability maps are used for groundwater resource management and land use planning at the regional scale and that it is adapted to a specific area.

  9. Evaluation model coupling exploitable groundwater resources and land subsidence control in regional loose sediments

    Science.gov (United States)

    Luo, Z. J.; Zhao, S. J.; Jin, WZ; Ma, Q. S.; Wu, X. H.

    2016-08-01

    The loose sediments in the Yangtze River Delta, the North China Plain, the plain of Northern Jiangsu and other districts in China are of great thickness, complex in structure and abundant in groundwater. Groundwater overexploitation easily results in geological disasters of land subsidence. Aiming at the issues, assessment models coupling exploitable groundwater resources and land subsidence control in regional loose sediments were brought up in this paper. The two models were: (1) a three dimensional groundwater seepage model with land subsidence based on the one dimensional Terzaghi consolidation theory; (2) a three dimensional full coupling model on groundwater seepage and land subsidence based on the Biot consolidation theory to simulate and calculate. It can be used to simulate and calculate the problems in real situations. Thus, the groundwater seepage and land subsidence were coupled together in the model to evaluate the amount of exploitable groundwater under the specific requirements of land subsidence control. The full coupling model, which considers the non-linear characteristics of soil mass and the dynamic changes of soil permeability with stress state based on the Biot consolidation theory, is more coincident with the variation characteristics of the hydraulic and mechanical properties of soil mass during the pumping process, making the evaluation results more scientific and reasonable.

  10. MODFLOW2005 model used to simulate the effects of groundwater withdrawals from aquifers in Ocean County and vicinity, New Jersey

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional groundwater flow model was developed to simulate the effects of withdrawals on the groundwater-flow systems of five aquifers in and around Ocean...

  11. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    Science.gov (United States)

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the flow system, ground water flows through zones of high transmissivity that have resulted from regional faulting and fracturing. The conceptual model of the Death Valley regional ground-water flow system used for this study is adapted from the two previous ground-water modeling studies. The three-dimensional digital hydrogeologic framework model developed for the region also contains elements of both of the hydrogeologic framework models used in the previous investigations. As dictated by project scope, very little reinterpretation and refinement were made where these two framework models disagree; therefore, limitations in the hydrogeologic representation of the flow system exist. Despite limitations, the framework model provides the best representation to date of the hydrogeologic units and structures that control regional ground-water flow and serves as an important information source used to construct and calibrate the predevelopment, steady-state flow model. In addition to the hydrogeologic framework, a complex array of mechanisms accounts for flow into, through, and out of the regional ground-water flow system. Natural discharges from the regional ground-water flow system occur by evapotranspiration, springs, and subsurface outflow. In this study, evapotranspiration rates were adapted from a related investigation that developed maps of evapotranspiration areas and computed rates from micrometeorological data collected within the local area over a multiyear period. In some cases, historical spring flow records were used to derive ground-water discharge rates for isolated regional springs. For this investigation, a process-based, numerical model was developed to estimat

  12. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features

  13. Groundwater flow modelling of an abandoned partially open repository

    Energy Technology Data Exchange (ETDEWEB)

    Bockgaard, Niclas (Golder Associates AB (Sweden))

    2010-12-15

    As a part of the license application, according to the nuclear activities act, for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study presented here serves as an input for analyses of so-called future human actions that may affect the repository. The objective of the work was to investigate the hydraulic influence of an abandoned partially open repository. The intention was to illustrate a pessimistic scenario of the effect of open tunnels in comparison to the reference closure of the repository. The effects of open tunnels were studied for two situations with different boundary conditions: A 'temperate' case with present-day boundary conditions and a generic future 'glacial' case with an ice sheet covering the repository. The results were summarized in the form of analyses of flow in and out from open tunnels, the effect on hydraulic head and flow in the surrounding rock volume, and transport performance measures of flow paths from the repository to surface

  14. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  15. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  16. Use of a mixing model to investigate groundwater-surface water mixing and nitrogen biogeochemistry in the bed of a groundwater-fed river

    Science.gov (United States)

    Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao

    2010-05-01

    The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual

  17. Groundwater-flow model for the Wood River Valley aquifer system, south-central Idaho

    Science.gov (United States)

    Fisher, Jason C.; Bartolino, James R.; Wylie, Allan H.; Sukow, Jennifer; McVay, Michael

    2016-06-27

    A three-dimensional numerical model of groundwater flow was developed for the Wood River Valley (WRV) aquifer system, Idaho, to evaluate groundwater and surface-water availability at the regional scale. This mountain valley is located in Blaine County and has a drainage area of about 2,300 square kilometers (888 square miles). The model described in this report can serve as a tool for water-rights administration and water-resource management and planning. The model was completed with support from the Idaho Department of Water Resources, and is part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the WRV. A highly reproducible approach was taken for constructing the WRV groundwater-flow model. The collection of datasets, source code, and processing instructions used to construct and analyze the model was distributed as an R statistical-computing and graphics package.

  18. A Groundwater flow Model of the Colorado River Delta to Support Riparian Habitat Restoration in Northern Mexico

    Science.gov (United States)

    Maddock, T.; Feirstein, E.; Baird, K. J.; Ajami, H.

    2007-05-01

    Quantification of groundwater flow dynamics and of the interactions among groundwater, surface water, and riparian vegetation, represent key components in the development of a balanced restoration plan for functional riparian ecosystems. A groundwater model was developed using MODFLOW 2000 to support of riparian restoration along the Colorado River Delta (Mexico: Baja California, Sonora). The Colorado River is widely recognized as one of the most modified and allocated rivers in the United States. For over 50 years flows into the Delta were severely reduced by the requirements of an emergent American West. However, subsequent to discharge pulses associated with the filling of Lake Powell, and the increased precipitation that accompanied ENSO cycles, a semblance of a native riparian habitat has been observed in the Delta since the 1980's (Zamora- Arroyo et al. 2001). The Delta and the riparian ecosystems of the region have since become the focus of a substantial body of multidisciplinary research. The research goal is to understand water table dynamics with particular attention to stream-aquifer interactions and groundwater behavior in the root zone. Groundwater reliant transpiration requirements were quantified for a set of dominant native riparian species using the Riparian ET (RIP-ET) package, an improved MODFLOW evapotranspiration (ET) module. RIP-ET simulates ET using a set of eco-physiologically based curves that more accurately represents individual plant species, reflects habitat complexity, and deals spatially with plant and water table distribution. When used in conjunction with a GIS based postprocessor (RIP-GIS.net), RIP-ET provides the basis for mapping groundwater conditions as they relate to user-specified plant groups. This explicit link between groundwater and plant sustainability is a driver to restoration design and allows for scenario modeling of various hydrologic conditions. Groundwater requirements determined in this research will be used by

  19. Groundwater Development Stress: Global-Scale Indices Compared to Regional Modeling.

    Science.gov (United States)

    Alley, William M; Clark, Brian R; Ely, David M; Faunt, Claudia C

    2017-08-15

    The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global-scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional-scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional-scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional-scale models with global-scale analyses would greatly enhance knowledge of the global groundwater depletion problem. © 2017, National Ground Water Association.

  20. Groundwater Flow Modeling Using Pmwin Model in the Wakal River Basin, Rajasthan, India

    Science.gov (United States)

    Biswas, H.; Melesse, A.; McClain, M.; Sukop, M.

    2008-05-01

    The absence of surface water resources in the driest and largest state of India, Rajasthan, has put pressure on the groundwater resources of the state. The water supply problem is exacerbated by the increasing human population, deforestation, unsustainable land-use and irrigation practices. The problem is even severe during droughts. The monsoon rainfall from June to September is the main source of the groundwater recharge in the region.To be able to exploit this natural resource in a sustainable manner with minimal impact on the environment, there is a need to evaluate the potential of the aquifer in terms of water quantity and replenishment using the tolls of groundwater modeling. A numerical model for regional ground water flow was developed using Processing Modflow for Windows (PMWIN)model for a 120 squre Km watershed in the Wakal River Basin in the Jhadol block, Udaipur District, Rajasthan. The model was calibrated for steady state conditions. Watershed boundary formed the no-flow boundaries and was set around the model except north-east part of the study area, where the boundary had been set as constant head. The modeled area consisted of a 143 columns x 177 rows with one layer which simulated an unconfined aquifer in a hard rock terrain. Hydraulic conductivity of the unconfined aquifer were determined using pump tests conducted in the field and validated from literature of studies in a similar groundwater system. Main input of the model was determined from the 3-months monsoon rainfall. Abstraction rates from open dug wells, and evapotranspiration were applied as output at different cells. A steady-state flow simulation was carried out and calibrated against July 2006 water levels. The calibration was carried out by comparing computed and observed heads at 187 wells. There was a good match between the simulated water level contours with the observed water level contours. This model can be used in the future to run transient simulations for full understanding

  1. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool.

    Science.gov (United States)

    Nobre, R C M; Rotunno Filho, O C; Mansur, W J; Nobre, M M M; Cosenza, C A N

    2007-12-07

    A groundwater vulnerability and risk mapping assessment, based on a source-pathway-receptor approach, is presented for an urban coastal aquifer in northeastern Brazil. A modified version of the DRASTIC methodology was used to map the intrinsic and specific groundwater vulnerability of a 292 km(2) study area. A fuzzy hierarchy methodology was adopted to evaluate the potential contaminant source index, including diffuse and point sources. Numerical modeling was performed for delineation of well capture zones, using MODFLOW and MODPATH. The integration of these elements provided the mechanism to assess groundwater pollution risks and identify areas that must be prioritized in terms of groundwater monitoring and restriction on use. A groundwater quality index based on nitrate and chloride concentrations was calculated, which had a positive correlation with the specific vulnerability index.

  2. Groundwater suitability recharge zones modelling - A GIS application

    Science.gov (United States)

    Dabral, S.; Bhatt, B.; Joshi, J. P.; Sharma, N.

    2014-11-01

    Groundwater quality in Gujarat state is highly variable and due to multiplicity of factors viz. influenced by direct sea water encroachment, inherent sediment salinity, water logging, overexploitation leading to overall deterioration in ground water quality, coupled with domestic and industrial pollution etc. The groundwater scenario in the state is not very encouraging due to imbalance between recharge and groundwater exploitation. Further, the demand for water has increased manifold owing to agricultural, industrial and domestic requirement and this has led to water scarcity in many parts of the state, which is likely to become more severe in coming future due to both natural and manmade factors. Therefore, sustainable development of groundwater resource requires precise quantitative assessment based on reasonably valid scientific principles. Hence, delineation of groundwater potential zones (GWPZ), has acquired great significance. The present study focuses on the integrated Geospatial and Multi-Criteria Decision Making (MCDM) techniques to determine the most important contributing factors that affect the groundwater resources and also to delineate the potential zones for groundwater recharge. The multiple thematic layers of influencing parameters viz. geology, geomorphology, soil, slope, drainage density and land use, weightages were assigned to the each factor according to their relative importance as per subject experts opinion owing to the natural setup of the region. The Analytical Hierarchy Process (AHP) was applied to these factors and potential recharge zones were identified. The study area for the assessment of groundwater recharge potential zones is Mahi-Narmada inter-stream region of Gujarat state. The study shows that around 28 % region has the excellent suitability of the ground water recharge.

  3. Pool scrubbing models for iodine components

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K. [Battelle Ingenieurtechnik GmbH, Eschborn (Germany)

    1996-12-01

    Pool scrubbing is an important mechanism to retain radioactive fission products from being carried into the containment atmosphere or into the secondary piping system. A number of models and computer codes has been developed to predict the retention of aerosols and fission product vapours that are released from the core and injected into water pools of BWR and PWR type reactors during severe accidents. Important codes in this field are BUSCA, SPARC and SUPRA. The present paper summarizes the models for scrubbing of gaseous Iodine components in these codes, discusses the experimental validation, and gives an assessment of the state of knowledge reached and the open questions which persist. The retention of gaseous Iodine components is modelled by the various codes in a very heterogeneous manner. Differences show up in the chemical species considered, the treatment of mass transfer boundary layers on the gaseous and liquid sides, the gas-liquid interface geometry, calculation of equilibrium concentrations and numerical procedures. Especially important is the determination of the pool water pH value. This value is affected by basic aerosols deposited in the water, e.g. Cesium and Rubidium compounds. A consistent model requires a mass balance of these compounds in the pool, thus effectively coupling the pool scrubbing phenomena of aerosols and gaseous Iodine species. Since the water pool conditions are also affected by drainage flow of condensate water from different regions in the containment, and desorption of dissolved gases on the pool surface is determined by the gas concentrations above the pool, some basic limitations of specialized pool scrubbing codes are given. The paper draws conclusions about the necessity of coupling between containment thermal-hydraulics and pool scrubbing models, and proposes ways of further simulation model development in order to improve source term predictions. (author) 2 tabs., refs.

  4. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh

    Science.gov (United States)

    Shamsudduha, Mohammad; Taylor, Richard G.; Chandler, Richard E.

    2015-01-01

    Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation-induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L-1). At these scales, the GRMs reveal statistically significant inverse associations between observed As concentrations and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped and developed groundwater-fed irrigation periods. Further, the GRMs show that the spatial variation of groundwater As concentrations is well explained by not only surface geology but also statistical interactions (i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irrigation, which induces additional recharge where it is enabled by a permeable surface geology. Collectively, these statistical associations indicate that irrigation-induced recharge serves to flush mobile As from shallow groundwater.

  5. Modeling the influence of surface waters on the head of Prekmursko polje groundwater body

    OpenAIRE

    Biro, Andrej

    2016-01-01

    The focus of the thesis is the simulation of the impact of river Mura on a groundwater aquifier Mursko and Prekmursko polje, spreading along the river Mura, between Goričko and Slovenske gorice hills. The existing numerical groundwater model was upgraded with the geometry of the river. Using HEC - RAS software, a floodwave was analysed and the results were used as input data for the groundwater model, designed in ModFlow software. The results represent the impact of the floodwave on the groun...

  6. Applying dispersive changes to Lagrangian particles in groundwater transport models

    Science.gov (United States)

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.

  7. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  8. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Science.gov (United States)

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  9. Recommended Henry’s Law Constants for Non-Groundwater Pathways Models in GoldSim

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-20

    This memorandum documents the source and numerical value of Henry’s law constants for volatile radionuclides of interest used in the non-groundwater (air and radon) pathways models for the 2018 E-Area Performance Assessment.

  10. Impacts of model initialization on an integrated surface water - groundwater model

    KAUST Repository

    Ajami, Hoori

    2015-04-01

    Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin-up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin-up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin-up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics.

  11. Metabolic syndrome components in murine models.

    Science.gov (United States)

    Lawson, Heather A; Cheverud, James M

    2010-03-01

    Animal models have enriched understanding of the physiological basis of metabolic disorders and advanced identification of genetic risk factors underlying the metabolic syndrome (MetS). Murine models are especially appropriate for this type of research, and are an excellent resource not only for identifying candidate genomic regions, but also for illuminating the possible molecular mechanisms or pathways affected in individual components of MetS. In this review, we briefly discuss findings from mouse models of metabolic disorders, particularly in light of issues raised by the recent flood of human genome-wide association studies (GWAS) results. We describe how mouse models are revealing that genotype interacts with environment in important ways, indicating that the underlying genetics of MetS is highly context dependant. Further we show that epistasis, imprinting and maternal effects each contribute to the genetic architecture underlying variation in metabolic traits, and mouse models provide an opportunity to dissect these aspects of the genetic architecture that are difficult if not impossible to ascertain in humans. Finally we discuss how knowledge gained from mouse models can be used in conjunction with comparative genomic methods and bioinformatic resources to inform human MetS research.

  12. Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study

    Science.gov (United States)

    Illman, W.A.; Zhu, J.; Craig, A.J.; Yin, D.

    2010-01-01

    Groundwater modeling has become a vital component to water supply and contaminant transport investigations. An important component of groundwater modeling under steady state conditions is selecting a representative hydraulic conductivity (K) estimate or set of estimates which defines the K field of the studied region. Currently, there are a number of characterization approaches to obtain K at various scales and in varying degrees of detail, but there is a paucity of information in terms of which characterization approach best predicts flow through aquifers or drawdowns caused by some drawdown inducing events. The main objective of this paper is to assess K estimates obtained by various approaches by predicting drawdowns from independent cross-hole pumping tests and total flow rates through a synthetic heterogeneous aquifer from flow-through tests. Specifically, we (1) characterize a synthetic heterogeneous aquifer built in the sandbox through various techniques (permeameter analyses of core samples, single-hole, cross-hole, and flow-through testing), (2) obtain mean K fields through traditional analysis of test data by treating the medium to be homogeneous, (3) obtain heterogeneous K fields through kriging and steady state hydraulic tomography, and (4) conduct forward simulations of 16 independent pumping tests and six flowthrough tests using these homogeneous and heterogeneous K fields and comparing them to actual data. Results show that the mean K and heterogeneous K fields estimated through kriging of small-scale K data (core and single-hole tests) yield biased predictions of drawdowns and flow rates in this synthetic heterogeneous aquifer. In contrast, the heterogeneous K distribution or ?K tomogram? estimated via steady state hydraulic tomography yields excellent predictions of drawdowns of pumping tests not used in the construction of the tomogram and very good estimates of total flow rates from the flowthrough tests. These results suggest that steady state

  13. Accessible integration of agriculture, groundwater, and economic models using the Open Modeling Interface (OpenMI: methodology and initial results

    Directory of Open Access Journals (Sweden)

    T. Bulatewicz

    2010-03-01

    Full Text Available Policy for water resources impacts not only hydrological processes, but the closely intertwined economic and social processes dependent on them. Understanding these process interactions across domains is an important step in establishing effective and sustainable policy. Multidisciplinary integrated models can provide insight to inform this understanding, though the extent of software development necessary is often prohibitive, particularly for small teams of researchers. Thus there is a need for practical methods for building interdisciplinary integrated models that do not incur a substantial development effort. In this work we adopt the strategy of linking individual domain models together to build a multidisciplinary integrated model. The software development effort is minimized through the reuse of existing models and existing model-linking tools without requiring any changes to the model source codes, and linking these components through the use of the Open Modeling Interface (OpenMI. This was found to be an effective approach to building an agricultural-groundwater-economic integrated model for studying the effects of water policy in irrigated agricultural systems. The construction of the integrated model provided a means to evaluate the impacts of two alternative water-use policies aimed at reducing irrigated water use to sustainable levels in the semi-arid grasslands overlying the Ogallala Aquifer of the Central US. The results show how both the economic impact in terms of yield and revenue and the environmental impact in terms of groundwater level vary spatially throughout the study region for each policy. Accessible integration strategies are necessary if the practice of interdisciplinary integrated simulation is to become widely adopted.

  14. Spatial Models of Sewer Pipe Leakage Predict the Occurrence of Wastewater Indicators in Shallow Urban Groundwater.

    Science.gov (United States)

    Roehrdanz, Patrick R; Feraud, Marina; Lee, Do Gyun; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2017-02-07

    Twentieth century municipal wastewater infrastructure greatly improved U.S. urban public health and water quality. However, sewer pipes deteriorate, and their accumulated structural defects may release untreated wastewater to the environment via acute breaks or insidious exfiltration. Exfiltrated wastewater constitutes a loss of potentially reusable water and delivers a complex and variable mix of contaminants to urban shallow groundwater. Yet, predicting where deteriorated sewers impinge on shallow groundwater has been challenging. Here we develop and test a spatially explicit model of exfiltration probability based on pipe attributes and groundwater elevation without prior knowledge of exfiltrating defect locations. We find that models of exfiltration probability can predict the probable occurrence in underlying shallow groundwater of established wastewater indicators including the artificial sweetener acesulfame, tryptophan-like fluorescent dissolved organic matter, nitrate, and a stable isotope of water (δ(18)O). The strength of the association between exfiltration probability and indicators of wastewater increased when multiple pipe attributes, distance weighting, and groundwater flow direction were considered in the model. The results prove that available sanitary sewer databases and groundwater digital elevation data can be analyzed to predict where pipes are likely leaking and contaminating groundwater. Such understanding could direct sewer infrastructure reinvestment toward water resource protection.

  15. Reduced Resolution Groundwater Modeling in the Rio Grande for Real Time Scenario Evaluation

    Science.gov (United States)

    Roach, J. D.; Tidwell, V. C.

    2006-12-01

    As the finite, and often over-allocated water resources of the western United States are challenged by growing demands, computer based simulations can provide a powerful tool for evaluating potential water use scenarios in support of hydrologic decision making and water policy analysis. To represent the complexities of water resource management, a model should capture the salient behaviors and interactions between, the groundwater, surface water, and human behavioral systems, while to effectively connect science to the decision process, the model should run quickly enough to allow real time evaluation of a wide range of scenarios by stakeholders and decision makers themselves. As these potentially mutually exclusive objectives are pursued, the tradeoffs between resolution, run time, and the degree of coupling between modeled systems must be considered. In the Upper Rio Grande in New Mexico, three MODFLOW based, distributed groundwater models of the Espanola, Albuquerque, and Socorro groundwater basins have been used to calibrate a spatially simplified representation of the groundwater system in the region. The groundwater model is dynamically coupled to surface water and human behavioral systems as part of an integrated system dynamics based model which runs quickly enough to support rapid basin scale water policy scenario evaluation. This presentation will focus on development of the simplified groundwater model, and the performance tradeoffs and gains associated with spatial aggregation and dynamic coupling to the surface water system.

  16. Conceptual model and numerical simulation of the groundwater-flow system of Bainbridge Island, Washington

    Science.gov (United States)

    Frans, Lonna M.; Bachmann, Matthew P.; Sumioka, Steve S.; Olsen, Theresa D.

    2011-01-01

    Groundwater is the sole source of drinking water for the population of Bainbridge Island. Increased use of groundwater supplies on Bainbridge Island as the population has grown over time has created concern about the quantity of water available and whether saltwater intrusion will occur as groundwater usage increases. A groundwater-flow model was developed to aid in the understanding of the groundwater system and the effects of groundwater development alternatives on the water resources of Bainbridge Island. Bainbridge Island is underlain by unconsolidated deposits of glacial and nonglacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Eleven principal hydrogeologic units are recognized in the study area and form the basis of the groundwater-flow model. A transient variable-density groundwater-flow model of Bainbridge Island and the surrounding area was developed to simulate current (2008) groundwater conditions. The model was calibrated to water levels measured during 2007 and 2008 using parameter estimation (PEST) to minimize the weighted differences or residuals between simulated and measured hydraulic head. The calibrated model was used to make some general observations of the groundwater system in 2008. Total flow through the groundwater system was about 31,000 acre-ft/ yr. The recharge to the groundwater system was from precipitation and septic-system returns. Groundwater flow to Bainbridge Island accounted for about 1,000 acre-ft/ yr or slightly more than 5 percent of the recharge amounts. Groundwater discharge was predominately to streams, lakes, springs, and seepage faces (16,000 acre-ft/yr) and directly to marine waters (10,000 acre-ft/yr). Total groundwater withdrawals in 2008 were slightly more than 6 percent (2,000 acre-ft/yr) of the total flow. The calibrated model was used to simulate predevelopment conditions

  17. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    Energy Technology Data Exchange (ETDEWEB)

    Baruffi, F. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cisotto, A., E-mail: segreteria@adbve.it [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Pretner, A.; Galli, A. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Scarinci, A., E-mail: andrea.scarinci@sgi-spa.it [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Marsala, V.; Panelli, C. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Gualdi, S., E-mail: silvio.gualdi@bo.ingv.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Bucchignani, E., E-mail: e.bucchignani@cira.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Torresan, S., E-mail: torresan@cmcc.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Pasini, S., E-mail: sara.pasini@stud.unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); Critto, A., E-mail: critto@unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); and others

    2012-12-01

    information about the potential variations of the water balance components (e.g. river discharge, groundwater level and volume) due to climate change. Such projections were used to develop potential hazard scenarios for the case study area, to be further applied within climate change risk assessment studies for groundwater resources and associated ecosystems. This paper describes the models' chain and the methodological approach adopted in the TRUST project and analyzes the hazard scenarios produced in order to investigate climate change risks for the case study area. -- Highlights: Black-Right-Pointing-Pointer An integrated modeling approach for groundwater resources assessment is proposed. Black-Right-Pointing-Pointer The interrelationship between climate change and groundwater is considered. Black-Right-Pointing-Pointer Adaptation measures to mitigate climate change impacts on groundwater are examined. Black-Right-Pointing-Pointer The methodology is applied to high Veneto and Friuli plains groundwater. Black-Right-Pointing-Pointer Climate, geomorphoclimatic and hydrogeologic scenarios are presented.

  18. Documentation of finite-difference model for simulation of three-dimensional ground-water flow

    Science.gov (United States)

    Trescott, Peter C.; Larson, S.P.

    1976-01-01

    User experience has indicated that the documentation of the model of three-dimensional ground-water flow (Trescott and Larson, 1975) should be expanded. This supplement is intended to fulfill that need. The original report emphasized the theory of the strongly implicit procedure, instructions for using the groundwater-flow model, and practical considerations for application. (See also W76-02962 and W76-13085) (Woodard-USGS)

  19. Modeling Groundwater and Return Flow in an Integrated Framework to Investigate the Resilience of U.S. Water Resources in the Future

    Science.gov (United States)

    Voisin, N.; Leung, L. R.; Hejazi, M. I.; Liu, L.; Huang, M.; Li, H. Y.; Tesfa, T. K.

    2014-12-01

    To advance understanding of the interactions between human activities and the water cycle, an integrated terrestrial water cycle component has been added to an Earth system model. This includes a land surface model fully coupled to a river routing model and generic water management model applicable globally at 1/2o resolution and regionally at 1/8o resolution. A global integrated assessment model and its regionalized version for the U.S. are used to simulate water demand consistent with the energy technology and socio-economics scenarios. Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. As groundwater provides an important source of water supply for irrigation and other uses worldwide, the integrated modeling framework has been extended to represent groundwater as an additional supply source, and to account for the return flow generated from the groundwater and surface water withdrawals. In this presentation, we evaluate the groundwater supply and return flow modules by analyzing the simulated regulated flow, reservoir storage and supply deficit for irrigation and non irrigation sectors over major hydrologic regions of the conterminous U.S. The modeling framework is then used to provide insights on the resilience of future water resources in the U.S. ensured specifically by the return flow and groundwater dependence.

  20. Damage modelling in Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.; Camus, G. [Bordeaux-1 Univ. des Sciences et Technologies-3, LCTS, Lab. des Composites Thermostructuraux, CNRS-UMR 5801, 33 - Pessac, (France); Schlosser, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2007-07-01

    Full text of publication follows: The plasma facing components (PFC) of controlled fusion devices are submitted to high heat fluxes in operating conditions (10 MW/m2 for Tore Supra and up to 20 MW/m{sup 2} for ITER, Cadarache, France). Active cooling is required to maintain a reasonable surface temperature and to avoid critical heat flux and melting of the components. The PFC developed for Tore Supra are made of a carbon/carbon (C/C) composite flat tile bonded to a copper alloy heat sink. Under operating conditions, because of the thermal expansion mismatch existing between the C/C composite and the copper alloy, these components withstand significant stresses which induce damage in the C/C material as well as at the copper/composite interface. Design tools are thus required in order to analyse the initiation and the propagation of damage in thermally loaded PFC. The present study describes a modelling approach aimed at predicting damage in actively cooled PFC. For this purpose, dedicated experimental procedures have been developed and sound constitutive laws taking into account the damage related non linear behaviour of both the C/C material and the Cu-C/C joint have been established. Various tests have first been performed on C/C samples in tension and compression, within the fibre axis and off-axis, as well as in shear using a Iosipescu type device, in order to carefully analyse the non-linear mechanical behaviour of this material. A constitutive law able to handle complex multiaxial loadings, established within a classical thermodynamical framework and using scalar damage variables, was then identified. Tensile and shear tests were also performed on C/C-Cu samples in order to identify a cohesive zone model representative of the damageable behaviour of the joint. These constitutive laws were then introduced in a numerical model representative of a PFC. Obtained results have evidenced the progressive development of damage which takes place in the assembly when

  1. Development of a river-groundwater interaction model and its application to a catchment in Northwestern China

    Science.gov (United States)

    Hu, Litang; Xu, Zongxue; Huang, Weidong

    2016-12-01

    The river-groundwater interaction is an important component of the hydrological cycle. This study develops an integrated river-GW model that uses a one-dimensional open channel flow model and a three-dimensional saturated GW flow model to describe the dynamic river-GW relationship at the basin scale, as well as groundwater flow and streamflow in arid regions. The model is tested with three cases, and the good agreement between the simulated and observed results demonstrates that the model can be used to simulate river-GW interactions. The integrated river-GW model is applied to the middle reaches of the Heihe River Basin and is calibrated using multi-source field data, including hydraulic heads from observation wells, streamflow, and spring flow. The case studies in the Heihe River Basin find that the following: (1) the river-GW relationships vary seasonally and spatially and depend on many factors, such as the river flow and GW uses; (2) in the middle reaches, the annual mean river-groundwater flux exchange from Yinluoxia to the Heihe Bridge is approximately 17% of the mean streamflow and increases to more than 49% from the Heihe Bridge to Zhengyixia; and (3) after the implementation of the water reallocation plan in 2000, the river-GW relationship in some reaches changed from a gaining stream to a losing stream due to the increase of GW abstraction. These findings suggest that GW pumpage should be controlled rationally and demonstrate that the integrated river-GW model can be used to analyse the temporal-spatial trends of river-groundwater interaction in arid regions.

  2. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Taylour G., E-mail: tgburton@uh.edu [Civil and Environmental Engineering, University of Houston, W455 Engineering Bldg. 2, Houston, TX 77204-4003 (United States); Rifai, Hanadi S., E-mail: rifai@uh.edu [Civil and Environmental Engineering, University of Houston, N138 Engineering Bldg. 1, Houston, TX 77204-4003 (United States); Hildenbrand, Zacariah L., E-mail: zac@informenv.com [Inform Environmental, LLC, Dallas, TX 75206 (United States); Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Carlton, Doug D., E-mail: doug.carlton@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Fontenot, Brian E., E-mail: brian.fonteno@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. - Graphical abstract: A relative increase in beryllium concentrations in groundwater for the Barnett Shale region from 2001 to 2011 was visually correlated with the locations of gas wells in the region that have been hydraulically fractured over the same time period

  3. Model Calibration of a Groundwater Flow Analysis for an Underground Structure Using Data Assimilation Technique

    Science.gov (United States)

    Yamamoto, S.; Honda, M.; Sakurai, H.

    2015-12-01

    Model calibration of groundwater flow analysis is a difficult task, especially in the complicated hydrogeological condition, because available information about hydrogeological properties is very limited. This often causes non-negligible differences between predicted results and real observations. We applied the Ensemble Kalman Filter (EnKF), which is a type of data assimilation technique, to groundwater flow simulation in order to obtain a valid model that can reproduce accurately the observations. Unlike conventional manual calibration, this scheme not only makes the calibration work efficient but also provides an objective approach not depending on the skills of engineers.In this study, we focused on estimating hydraulic conductivities of bedrocks and fracture zones around an underground fuel storage facility. Two different kinds of groundwater monitoring data were sequentially assimilated into the unsteady groundwater flow model via the EnKF.Synthetic test results showed that estimated hydraulic conductivities matched their true values and our method works well in groundwater flow analysis. Further, influences of each observation in the state updating process were quantified through sensitivity analysis.To assess the feasibility under practical conditions, the assimilation experiments using real field measurements were performed. The results showed that the identified model was able to approximately simulate the behavior of groundwater flow. On the other hand, it was difficult to reproduce the observation data correctly in a specific local area. This suggests that inaccurate area is included in the assumed hydrogeological conceptual model of this site, and could be useful information for the model validation.

  4. A new method to dynamically simulate groundwater table in land surface model VIC

    Institute of Scientific and Technical Information of China (English)

    YANG Hongwei; XIE Zhenghui

    2003-01-01

    Soil moisture plays an important role in water and energy balance in land-atmospheric interaction, but is impacted directly by the groundwater table. Dynamic variation of the groundwater table can be described mathematically by a moving boundary problem. In this paper, the moving boundary problem is reduced to a fixed boundary problem through a coordinate transformation. A new model of groundwater table simulation is developed using the mass-lumped finite element method and is coupled with the land surface model of Variable Infiltration Capacity (VIC). The simulation results show that the new model not only can simulate the groundwater table dynamically, but also can evade the choice of water table depth scale in computation with a low computation cost.

  5. Augmenting a Large-Scale Hydrology Model to Reproduce Groundwater Variability

    Science.gov (United States)

    Stampoulis, D.; Reager, J. T., II; Andreadis, K.; Famiglietti, J. S.

    2016-12-01

    To understand the influence of groundwater on terrestrial ecosystems and society, global assessment of groundwater temporal fluctuations is required. A water table was initialized in the Variable Infiltration Capacity (VIC) hydrologic model in a semi-realistic approach to account for groundwater variability. Global water table depth data derived from observations at nearly 2 million well sites compiled from government archives and published literature, as well as groundwater model simulations, were used to create a new soil layer of varying depth for each model grid cell. The new 4-layer version of VIC, hereafter named VIC-4L, was run with and without assimilating NASA's Gravity Recovery and Climate Experiment (GRACE) observations. The results were compared with simulations using the original VIC version (named VIC-3L) with GRACE assimilation, while all runs were compared with well data.

  6. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae

    2008-01-01

    constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behaviour as a means of computation...... constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems) is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI), University of Southern Denmark. Once specified, the software model has......Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics...

  7. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    Science.gov (United States)

    Paulson, A.J.; Balistrieri, L.

    1999-01-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal

  8. Modeling approaches to management of nitrate contamination of groundwater in a heavily cultivated area

    Science.gov (United States)

    Koh, E.; Park, Y.; Lee, K.

    2011-12-01

    A three-dimensional variably-saturated groundwater flow and reactive transport modeling framework was implemented to simulate nitrate contamination in a heavily cultivated area in Jeju volcanic Island. In the study area, two localized aquifer systems (perched and regional groundwater) exist due to distributions of impermeable clay layers beneath the perched groundwater. The approximate application rate of chemical fertilizers was surveyed to be 627.9 kg-N/ha per year, which is much higher than the average annual chemical fertilizer usage in Jeju Island, 172 kg-N/ha per year. Severe nitrate contamination has been observed in the perched groundwater system and such perched groundwater has influenced regional groundwater quality, through poorly cemented wall of the distributed throughout the region wells. For a part of managing plan of nitrate contamination in the island, a numerical modeling framework was developed for various scenarios associated with the factors affecting nitrate contamination in the study area (i.e., usage amount of chemical fertilizers, cultivated methods, grouting condition of wells). This work provides useful information to suggest effective ways to manage nitrate contamination of groundwater in the agricultural field. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0001120) and by BK21 project of Korean Government.

  9. How to use an educational sand-box model to enhance the knowledge groundwater dynamics

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2013-12-01

    Full Text Available Forty-five adults, which do professionally not deal with geology or groundwaters, filled a voluntary questionnaire on groundwater dynamics in Slovenia. The survey pointed out that about a fifth to a quarter of them has a weak knowledge on this topic. Groundwater occurrence, production and pollution are quite well known, excluding a widely spread opinion on subsurface water veins and underground rivers and lakes (which are true only for karstic aquifers, but groundwater protection is much less known. It has turned out that the answers often base on the experience of the interviewee rather than on an understanding of a regional groundwater dynamics. Therefore, we believe that it is worth to start a systematic education on groundwaters not only for geologists but also for general public. The VO-KA company from Ljubljana has given an incentive for development of an educational sand-box model of the Ljubljansko polje aquifer, which will be used to spread knowledge on ground- and drinking water. The model of an inhomogeneous and anisotropic intergranular aquifer has predominately a two-dimensional water flow. It enables visualisation of natural features and anthropogenic on the quantity and quality state of the stored groundwater. It can be used to explain hydrogeological phenomena on various levels of knowledge, from simple visualisation to more complicated mathematical descriptions.

  10. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction.

    Science.gov (United States)

    Baruffi, F; Cisotto, A; Cimolino, A; Ferri, M; Monego, M; Norbiato, D; Cappelletto, M; Bisaglia, M; Pretner, A; Galli, A; Scarinci, A; Marsala, V; Panelli, C; Gualdi, S; Bucchignani, E; Torresan, S; Pasini, S; Critto, A; Marcomini, A

    2012-12-01

    information about the potential variations of the water balance components (e.g. river discharge, groundwater level and volume) due to climate change. Such projections were used to develop potential hazard scenarios for the case study area, to be further applied within climate change risk assessment studies for groundwater resources and associated ecosystems. This paper describes the models' chain and the methodological approach adopted in the TRUST project and analyzes the hazard scenarios produced in order to investigate climate change risks for the case study area.

  11. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  12. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  13. Modelling the impact of a subsurface barrier on groundwater flow in the lower Palar River basin, southern India

    Science.gov (United States)

    Senthilkumar, M.; Elango, L.

    2011-06-01

    Groundwater modelling is widely used as a management tool to understand the behaviour of aquifer systems under different hydrological stresses, whether induced naturally or by humans. The objective of this study was to assess the effect of a subsurface barrier on groundwater flow in the Palar River basin, Tamil Nadu, southern India. Groundwater is supplied to a nearby nuclear power plant and groundwater also supplies irrigation, industrial and domestic needs. In order to meet the increasing demand for groundwater for the nuclear power station, a subsurface barrier/dam was proposed across Palar River to increase the groundwater heads and to minimise the subsurface discharge of groundwater into the sea. The groundwater model used in this study predicted that groundwater levels would increase by about 0.1-0.3 m extending out a distance of about 1.5-2 km from the upstream side of the barrier, while on the downstream side, the groundwater head would lower by about 0.1-0.2 m. The model also predicted that with the subsurface barrier in place the additional groundwater requirement of approximately 13,600 m3/day (3 million gallons (UK)/day) can be met with minimum decline in regional groundwater head.

  14. Modeling of groundwater draft based on satellite-derived crop acreage estimation over an arid region of northwest India

    Science.gov (United States)

    Bhadra, Bidyut Kumar; Kumar, Sanjay; Paliwal, Rakesh; Jeyaseelan, A. T.

    2016-11-01

    Over-exploitation of groundwater for agricultural crops puts stress on the sustainability of natural resources in the arid region of Rajasthan state, India. Hydrogeological study of groundwater levels of the study area during the pre-monsoon (May to June), post-monsoon (October to November) and post-irrigation (February to March) seasons of 2004-2005 to 2011-2012 shows a steady decline of groundwater levels at the rate of 1.28-1.68 m/year, mainly due to excessive groundwater draft for irrigation. Due to the low density of the groundwater observation-well network in the study area, assessment of groundwater draft, and thus groundwater resource management, becomes a difficult task. To overcome the situation, a linear groundwater draft model (LGDM) has been developed based on the empirical relationship between satellite-derived crop acreage and the observed groundwater draft for the year 2003-2004. The model has been validated for a decade, during three year-long intervals (2005-2006, 2008-2009 and 2011-2012) using groundwater draft, estimated through a discharge factor method. Further, the estimated draft was validated through observed pumping data from random sampled villages (2011-2012). The results suggest that the developed LGDM model provides a good alternative to the estimation of groundwater draft based on satellite-based crop area in the absence of groundwater observation wells in arid regions of northwest India.

  15. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt

    Directory of Open Access Journals (Sweden)

    S.M. Ghoraba

    2013-06-01

    Full Text Available Groundwater contamination is a major problem related strongly to both; protection of environment and the need of water. In the present study groundwater quality was investigated in the central part of the Nile Delta (El-Gharbiya Governorate. El-Gharbiya Governorate is an agricultural land and its densely populated area inhabited, includes small communities which totally not served by public sewers. Hydrochemical analyses were used to assess the quality of water in samples taken from the canals, drains and groundwater. A laboratory study and mathematical modeling works were presented. Two numerical computer models by the applying of finite difference method were adopted. Both models deal with the flow as a three-dimensional and unsteady. Results obtained include determining the levels of water and the values of solute concentration and distribution of it in the region at different times. The groundwater model MODFLOW was used to deal with the hydrodynamics of the flow through porous media. A solute transport model which can be communicated with MODFLOW through data files MT3DMS, was used to solve the problem of contaminants transport and the change of their concentrations with time. A proposed groundwater remediation scheme by using group of extraction wells was suggested at Birma region where the concentration values of ammonium contaminant are the up most according to hydrochemical analyses results. Proposed scenario for cleaning is to use a set of wells to pump contaminated groundwater extraction for treatment and reused to irrigation.

  16. Groundwater resources management through the applications of simulation modeling: a review.

    Science.gov (United States)

    Singh, Ajay

    2014-11-15

    The global population is increasing rapidly and expected to touch the 9.5 billion mark by 2050 from the current 7.2 billion. The management of the groundwater resources is a challenging task worldwide against the backdrop of the growing water demand for industrial, agricultural, and domestic uses and shrinking resources. Moreover, this task has been hampered significantly due to declining/rising groundwater levels and associated contamination. A broad range of solutions could be considered to address the aforementioned problems of groundwater management, but the effectiveness of all the solutions and their combinations cannot be verified with field experiments. Given their predictive capability, simulation models are often the only viable means of providing input to management decisions, as they can forecast the likely impacts of a particular water management strategy. This paper presents a comprehensive review on the simulation modeling applications for the management of groundwater resources. The past papers on the overview of groundwater simulation models, use of remote sensing and GIS in groundwater modeling, and application of simulation models in arid and semiarid regions are described in detail. Conclusions are drawn where gaps exist and more research needs to be focused. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico

    Science.gov (United States)

    González-Herrera, Roger; Sánchez-y-Pinto, Ismael; Gamboa-Vargas, José

    2002-09-01

    The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Résumé. Le modèle conceptuel classique de l'aquifère karstique libre de la péninsule du Yucatan (Mexique) consiste en une lentille d'eau douce flottant sur une eau salée plus dense qui pénètre à plus de 40 km à l'intérieur des terres. La transmissivité de l'aquifère est très élevée, en sorte que le gradient hydraulique est très faible, compris entre 7 et 10 mm/km dans la plus grande partie du nord de la péninsule. Le modèle AQUIFER a été utilisé pour explorer les écoulements souterrains régionaux dans cet

  18. Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects

    Science.gov (United States)

    Wada, Yoshihide

    2016-03-01

    Except for frozen water in ice and glaciers, groundwater is the world's largest distributed store of freshwater and has strategic importance to global food and water security. In this paper, the most recent advances quantifying groundwater depletion (GWD) are comprehensively reviewed. This paper critically evaluates the recently advanced modeling approaches estimating GWD at regional and global scales, and the evidence of feedbacks to the Earth system including sea-level rise associated with GWD. Finally, critical challenges and opportunities in the use of groundwater are identified for the adaption to growing food demand and uncertain climate.

  19. Modelling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects.

    Science.gov (United States)

    Wada, Yoshihide

    2015-01-01

    Except for frozen water in ice and glaciers, groundwater is the world's largest distributed store of freshwater and has strategic importance to global food and water security. In this paper, the most recent advances quantifying groundwater depletion (GWD) are comprehensively reviewed. This paper critically evaluates the recently advanced modeling approaches estimating GWD at regional and global scales, and the evidence of feedbacks to the Earth system including sea-level rise associated with GWD. Finally, critical challenges and opportunities in the use of groundwater are identified for the adaption to growing food demand and uncertain climate.

  20. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    Science.gov (United States)

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  1. Improving the representation of river-groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model

    KAUST Repository

    Zampieri, Matteo

    2012-02-01

    Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions and the ecosystem dynamics. In regional-scale climate applications land surface models (LSMs) are commonly coupled to atmospheric models to close the surface energy, mass and carbon balance. LSMs in these applications are used to resolve the momentum, heat, water and carbon vertical fluxes, accounting for the effect of vegetation, soil type and other surface parameters, while lack of adequate resolution prevents using them to resolve horizontal sub-grid processes. Specifically, LSMs resolve the large-scale runoff production associated with infiltration excess and sub-grid groundwater convergence, but they neglect the effect from loosing streams to groundwater. Through the analysis of observed data of soil moisture obtained from the Oklahoma Mesoscale Network stations and land surface temperature derived from MODIS we provide evidence that the regional scale soil moisture and surface temperature patterns are affected by the rivers. This is demonstrated on the basis of simulations from a land surface model (i.e., Community Land Model - CLM, version 3.5). We show that the model cannot reproduce the features of the observed soil moisture and temperature spatial patterns that are related to the underlying mechanism of reinfiltration of river water to groundwater. Therefore, we implement a simple parameterization of this process in CLM showing the ability to reproduce the soil moisture and surface temperature spatial variabilities that relate to the river distribution at regional scale. The CLM with this new parameterization is used to evaluate impacts of the improved representation of river-groundwater interactions on the simulated water cycle parameters and the surface energy budget at the regional scale. © 2011 Elsevier B.V.

  2. Initial hydraulic heads for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the hydraulic-head values in 16 model layers used to initiate the transient simulation of the Death Valley regional ground-water flow...

  3. [Solute transport modeling application in groundwater organic contaminant source identification].

    Science.gov (United States)

    Wang, Shu-Fang; Wang, Li-Ya; Wang, Xiao-Hong; Lin, Pei; Liu, Jiu-Rong; Xin, Bao-Dong; He, Guo-Ping

    2012-03-01

    Investigation and numerical simulation, based on RT3D (reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene (PCE) and trichloroethylene (TCE) in the groundwater of a city in the north of China and reverse the input intensity. Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab. The results indicate that the factories and industries are the source of the PCE and TCE in groundwater. Natural attenuation was identified and the natural attenuation rates are 93.15%, 61.70% and 61.00% for PCE, and 70.05%, 73.66% and 63.66% for TCE in 173 days. The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period. The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater. The PCE and TCE concentration are found to be 0 and 5 mg x kg(-1) from surface to 35 cm in vadose zone. All above results suggest that PCE and TCE in groundwater are from the source in the surface. Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater, and the rest was transported to groundwater through vadose zone. Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand, pebble and gravel of the Quaternary.

  4. Site-scale groundwater flow modelling of Ceberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D. [Duke Engineering and Services (United States); Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Ceberg, which adopts input parameters from the SKB study site near Gideaa, in northern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the model of conductive fracturezones. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The volumetric flow balance between the regional and site-scale models suggests that the nested modelling and associated upscaling of hydraulic conductivities preserve mass balance only in a general sense. In contrast, a comparison of the base and deterministic (Variant 4) cases indicates that the upscaling is self-consistent with respect to median travel time and median canister flux. These suggest that the upscaling of hydraulic conductivity is approximately self-consistent but the nested modelling could be improved. The Base Case yields the following results for a flow porosity of {epsilon}{sub f} 10{sup -4} and a flow-wetted surface area of a{sub r} = 0.1 m{sup 2}/(m{sup 3} rock): The median travel time is 1720 years. The median canister flux is 3.27x10{sup -5} m/year. The median F-ratio is 1.72x10{sup 6} years/m. The base case and the deterministic variant suggest that the variability of the travel times within

  5. Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment

    Science.gov (United States)

    Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

    2013-04-01

    Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993

  6. Evaluation of a Model-Based Groundwater Drought Indicator in the Conterminous U.S.

    Science.gov (United States)

    Li, Bailing; Rodell, Matthew

    2015-01-01

    Monitoring groundwater drought using land surface models is a valuable alternative given the current lack of systematic in situ measurements at continental and global scales and the low resolution of current remote sensing based groundwater data. However, uncertainties inherent to land surface models may impede drought detection, and thus should be assessed using independent data sources. In this study, we evaluated a groundwater drought index (GWI) derived from monthly groundwater storage output from the Catchment Land Surface Model (CLSM) using a GWI similarly derived from in situ groundwater observations. Groundwater observations were obtained from unconfined or semi-confined aquifers in eight regions of the central and northeastern U.S. Regional average GWI derived from CLSM exhibited strong correlation with that from observation wells, with correlation coefficients between 0.43 and 0.92. GWI from both in situ data and CLSM was generally better correlated with the Standard Precipitation Index (SPI) at 12 and 24 month timescales than at shorter timescales, but it varied depending on climate conditions. The correlation between CLSM derived GWI and SPI generally decreases with increasing depth to the water table, which in turn depends on both bedrock depth (a CLSM parameter) and mean annual precipitation. The persistence of CLSM derived GWI is spatially varied and again shows a strong influence of depth to groundwater. CLSM derived GWI generally persists longer than GWI derived from in situ data, due at least in part to the inability of coarse model inputs to capture high frequency meteorological variability at local scales. The study also showed that groundwater can have a significant impact on soil moisture persistence where the water table is shallow. Soil moisture persistence was estimated to be longer in the eastern U.S. than in the west, in contrast to previous findings that were based on models that did not represent groundwater. Assimilation of terrestrial

  7. Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report - December 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    This Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report (CCM/CME Report) has been prepared by the U.S. Department of Energy (DOE) and Sandia Corporation (Sandia) to meet requirements under the Sandia National Laboratories-New Mexico (SNL/NM) Compliance Order on Consent (the Consent Order). The Consent Order, entered into by the New Mexico Environment Department (NMED), DOE, and Sandia, became effective on April 29, 2004. The Consent Order identified the Tijeras Arroyo Groundwater (TAG) Area of Concern (AOC) as an area of groundwater contamination requiring further characterization and corrective action. This report presents an updated Conceptual Site Model (CSM) of the TAG AOC that describes the contaminant release sites, the geological and hydrogeological setting, and the distribution and migration of contaminants in the subsurface. The dataset used for this report includes the analytical results from groundwater samples collected through December 2015.

  8. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh

    Science.gov (United States)

    Taylor, Richard G.; Chandler, Richard E.

    2015-01-01

    Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation‐induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L−1). At these scales, the GRMs reveal statistically significant inverse associations between observed As concentrations and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped and developed groundwater‐fed irrigation periods. Further, the GRMs show that the spatial variation of groundwater As concentrations is well explained by not only surface geology but also statistical interactions (i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irrigation, which induces additional recharge where it is enabled by a permeable surface geology. Collectively, these statistical associations indicate that irrigation‐induced recharge serves to flush mobile As from shallow groundwater. PMID:27524841

  9. A fully coupled depth-integrated model for surface water and groundwater flows

    Science.gov (United States)

    Li, Yuanyi; Yuan, Dekui; Lin, Binliang; Teo, Fang-Yenn

    2016-11-01

    This paper presents the development of a fully coupled surface water and groundwater flow model. The governing equations of the model are derived based on a control volume approach, with the velocity profiles of the two types of flows being both taken into consideration. The surface water and groundwater flows are both modelled based on the unified equations and the water exchange and interaction between the two types of flows can be taken into account. The model can be used to simulate the surface water and groundwater flows simultaneously with the same numerical scheme without other effort being needed to link them. The model is not only suitable for the porous medium consisting of fine sediments, but also for coarse sediments and crushed rocks by adding a quadratic friction term. Benchmark tests are conducted to validate the model. The model predictions agree well with the data.

  10. A simplified model of soakaway infiltration interaction with a shallow groundwater table

    DEFF Research Database (Denmark)

    Roldin, Maria; Locatelli, Luca; Mark, Ole

    2013-01-01

    This paper presents a new and simplified modeling concept for soakaway infiltration in the presence of a shallow groundwater table, including representation of the local groundwater mound and its effects on the infiltration rate. The soil moisture retention curve is used to represent the influence......-dimensional unsaturated/saturated flow model based on Richard’s equation. The comparison shows that soakaway emptying times calculated by the new model are on average 13% higher than the emptying times of the two-dimensional model. The deviation is smaller for scenarios including a shallow groundwater table, only around...... scenarios at all times during the simulation period. The extra uncertainty introduced by this new model is compensated for by the reduction in runtime; it is on average 600 times faster than the two-dimensional model. Furthermore, the new model is based on the same input parameters as the two...

  11. Hanford groundwater modeling: statistical methods for evaluating uncertainty and assessing sampling effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, D.B.

    1979-01-01

    This report is the first in a series of three documents which address the role of uncertainty in the Rockwell Hanford Operations groundwater model development and application program at Hanford Site. Groundwater data collection activities at Hanford are reviewed as they relate to Rockwell groundwater modeling. Methods of applying statistical and probability theory in quantifying the propagation of uncertainty from field measurements to model predictions are discussed. It is shown that measures of model accuracy or uncertainty provided by a statistical analysis can be useful in guiding model development and sampling network design. Recommendations are presented in the areas of model input data needs, parameter estimation data needs, and model verification and variance estimation data needs. 8 figures.

  12. Site-scale groundwater flow modelling of Aberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D. [Duke Engineering and Services (United States); Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden)

    1998-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Aberg, which adopts input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position and the advective travel times and paths through the geosphere. The nested modelling approach and the scale dependency of hydraulic conductivity raise a number of questions regarding the regional to site-scale mass balance and the method`s self-consistency. The transfer of regional heads via constant head boundaries preserves the regional pattern recharge and discharge in the site-scale model, and the regional to site-scale mass balance is thought to be adequate. The upscaling method appears to be approximately self-consistent with respect to the median performance measures at various grid scales. A series of variant cases indicates that the study results are insensitive to alternative methods on transferring boundary conditions from the regional model to the site-scale model. The flow paths, travel times and simulated heads appear to be consistent with on-site observations and simple scoping calculations. The variabilities of the performance measures are quite high for the Base Case, but the

  13. A simulation/optimization model for groundwater resources management in the Afram Plains area, Ghana

    Science.gov (United States)

    Yidana, S.M.

    2008-01-01

    A groundwater flow simulation model was developed using available hydrogeo logical data to A groundwater flow simulation model was developed using available hydrogeological data to describe groundwater flow in the Afram Plains area. A nonlinear optimization model was then developed and solved for the management of groundwater resources to meet irrigation and household needs. The objective was to maximize groundwater extraction for irrigation activities from the shallow aquifers of the southern Voltaian Sedimentary Basin that underly the area This would improve food security, raise the standard of living and ultimately alleviate poverty in the Afram Plains. The calibrated flow model is in tandem with the general hydrochemical evolution of groundwater in the area and fits the observed data with about a 98% degree of confidence. Groundwater resources may not be the limiting factor in the development of irrigated agriculture. Groundwater has tremendous potential to meet current and future irrigation needs. It was determined from this study that profit from maize irrigation in the Afram Plains area could rise from US$301, 000 in 2007 to over US$3.5 million by the end of the last management period (2013) as irrigation practice is improved, and the economic strength to increase the acreage for irrigation improves. Even with these margins of profit, the drawdown constraint was not reached in any of the management periods. It is expected that rechargefrom the irrigation water would reclaim the lost hydraulic head. The single significant constraint was the amount of land area that could be developed for irrigation in the area. The profit obtained per unit cubic meter of water used also improved over the same management period.

  14. Regional modeling of cadmium leaching to groundwater in the Kempen region, The Netherlands

    OpenAIRE

    van der Grift, B.; J. C. Rozemeijer; J. Griffioen

    2003-01-01

    Sandy soils in the border area of Belgium and the Netherlands (the Kempen region), are heavily contaminated with cadmium and zinc by atmospheric deposition from nearby smelters. Leaching of heavy metals from the topsoil is a major risk for groundwater contamination. The sandy soils in the Kempen area are vulnerable for leaching due to the acidifying conditions in these soils. Regional modeling of groundwater contamination by leaching of cadmium from soils in a diffusely polluted area is the s...

  15. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, A.J.; Balistrieri, L.

    1999-11-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.

  16. Geochemical modeling and multivariate statistical evaluation of trace elements in arsenic contaminated groundwater systems of Viterbo Area, (Central Italy).

    Science.gov (United States)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia

    2014-01-01

    Contamination of groundwater by naturally occurring arsenic has recently become a disturbing environmental problem in Viterbo area, Central Italy. Arsenic concentrations in most of the public supply networks exceed the maximum allowable limit of 10 μg/l (WHO) for drinking water. The primary purpose of this paper is to obtain a better understanding of the factors contributing to the high levels of As in water supply networks. This study focuses on (a) the determination of basic hydrochemical characteristics of groundwater, (b) the identification of the major sources and processes controlling the As contamination in public supply networks, (c) to find out possible relationships among the As and other trace elements through principal component analysis (PCA). Groundwater samples from public water supply wells and springs were collected and analysed for physico-chemical parameters and trace elements. Springs and well water samples are predominantly of the Na-HCO3, Na -Ca-HCO3 and Ca-HCO3 types and the highest arsenic concentrations were observed in Na-HCO3 type water. Eh-pH diagrams reveal that H2AsO4 (-) and HAsO4 (2-), As(V) arsenate, are the dominating As species highlighting slightly to moderately oxidizing conditions. Geochemical modeling indicates that arsenic-bearing phases were undersaturated in the groundwater, however most of the samples were saturated with respect to Fe (i.e. magnetite, hematite and goethite) and Al (diaspore and boehmite) oxide and hydroxide minerals. Concentrations of As, Li, B, Co, Sr, Mo, U and Se are highly correlated (r > 0.7) with each other, however in some groundwater samples As show also good correlations (r > 0.5) with Fe and Mn elements reflecting the relationships among the trace elements result from different geochemical processes. Evaluation of the principal component (PCA) analysis and geochemical modeling suggest that the occurrence of As and other trace element concentrations in groundwater are probably derived

  17. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  18. Modelling the distribution of tritium in groundwater across South Africa to assess the vulnerability and sustainability of groundwater resources in response to climate change

    Science.gov (United States)

    van Rooyen, Jared; Miller, Jodie; Watson, Andrew; Butler, Mike

    2017-04-01

    Groundwater is critical for sustaining human populations, especially in semi-arid to arid areas, where surface water availability is low. Shallow groundwater is usually abstracted for this purpose because it is the easiest to access and assumed to be renewable and regularly recharged by precipitation. Renewable, regularly recharged groundwater is also called modern groundwater, ie groundwater that has recently been in contact with the atmosphere. Tritium can be used to determine whether or not a groundwater resource is modern because the half-life of tritium is only 12.36 years and tritium is dominantly produced in the upper atmosphere and not in the rock mass. For this reason, groundwater with detectable tritium activities likely has a residence age of less than 50 years. In this study, tritium activities in 277 boreholes distributed across South Africa were used to develop a national model for tritium activity in groundwater in order to establish the extent of modern groundwater across South Africa. The tritium model was combined with modelled depth to water using 3079 measured static water levels obtained from the National Groundwater Archive and validated against a separate set of 40 tritium activities along the west coast of South Africa. The model showed good agreement with the distribution of rainfall which has been previously documented across the globe (Gleeson et al., 2015), although the arid Karoo basin in south west South Africa shows higher than expected tritium levels given the very low regional precipitation levels. To assess the vulnerability of groundwater to degradation in quality and quantity, the tritium model was incorporated into a multi-criteria evaluation (MCE) model which incorporated other indicators of groundwater stress including mean annual precipitation, mean annual surface temperature, electrical conductivity (as a proxy for groundwater salinization), potential evaporation, population density and cultivated land usage. The MCE model

  19. Modelling the effects of surface water flood pulses on groundwater

    NARCIS (Netherlands)

    Schot, P.P.; Wassen, M.J.

    2010-01-01

    Flood pulses in wetlands steer ecosystem development directly through surface water processes and indirectly through the effects of the flood pulse on groundwater. Direct effects on ecosystems are exerted by e.g. inundation and deposition of sediments containing nutrients. Indirect effects include t

  20. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-08-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  1. Groundwater modelling in decision support: reflections on a unified conceptual framework

    Science.gov (United States)

    Doherty, John; Simmons, Craig T.

    2013-11-01

    Groundwater models are commonly used as basis for environmental decision-making. There has been discussion and debate in recent times regarding the issue of model simplicity and complexity. This paper contributes to this ongoing discourse. The selection of an appropriate level of model structural and parameterization complexity is not a simple matter. Although the metrics on which such selection should be based are simple, there are many competing, and often unquantifiable, considerations which must be taken into account as these metrics are applied. A unified conceptual framework is introduced and described which is intended to underpin groundwater modelling in decision support with a direct focus on matters regarding model simplicity and complexity.

  2. Modeling mineral phase change chemistry of groundwater in a rural-urban fringe.

    Science.gov (United States)

    Singh, S K; Srivastava, Prashant K; Gupta, M; Mukherjee, S

    2012-01-01

    This research paper aims to determine the genetic origin of the chemical elements in groundwater. It deals with the results of physicochemical parameters, to evaluate the hydro-geochemistry of groundwater in rural-urban fringe of district Bareilly, India. Pre- and post-monsoon sampling has been carried out, which reveals inter-seasonal variability effect on the hydro-geochemical processes. Geochemical modeling especially computation of saturation index was undertaken using the WATEQ4F model. Majority of samples fall in the category of undersaturation, which further suggests that groundwater still has potential to dissolve more minerals. Chemical categorizations of groundwater samples were performed with the help of the Aquachem model. Grouping of groundwater on the Piper diagram reveals a common composition and origin. In most of the area, water facies is of Ca(2+)-HCO(3)(-) type in both the seasons. It also indicates that in pre-monsoon, ion exchange is the dominant process, whereas in post-monsoon, both ion exchanges as well as reverse ion exchanges are reported in the groundwater of the study area.

  3. Hydrogeochemical Modelling for Groundwater in Neyveli Aquifer, Tamil Nadu, India, Using PHREEQC: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Chidambaram, S.; Anandhan, P. [Annamalai University, Department of Earth Sciences (India); Prasanna, M. V., E-mail: geoprasanna@gmail.com [Curtin University, Department of Applied Geology, School of Engineering and Science (Malaysia); Ramanathan, AL. [Jawaharlal Nehru University, School of Environmental Sciences (India); Srinivasamoorthy, K. [Pondicherry University, Department of Earth Sciences, School of Physical, Chemical and Applied Sciences (India); Senthil Kumar, G. [HNB Garwhal University, Department of Geology (India)

    2012-09-15

    Sophisticated geochemical models have been used to describe and predict the chemical behaviour of complex natural waters and also to protect the groundwater resources from future contamination. One such model is used to study the hydrogeochemical complexity in a mine area. Extraction of groundwater from the coastal aquifer has been in progress for decades to mine lignite in Neyveli. This extraction has developed a cone of depression around the mine site. This cone of depression is well established by the geochemical nature of groundwater in the region. 42 groundwater samples were collected in a definite pattern and they were analysed for major cations, anions and trace elements. The saturation index (SI) of the groundwater for carbonate, sulphate and silica minerals was studied and it has been correlated with the recharge and the discharge regions. The SI of alumino silicates has been used to decipher the stage of weathering. The SI{sub Gibbsite} - SI{sub K-feldspar} has been spatially distributed and the regions of discharge and recharge were identified. Then two flow paths A1 and A2 were identified and inverse modelling using PHREEQC were carried out to delineate the geochemical process that has taken place from recharge to discharge. The initial and final solutions in both the flow paths were correlated with the thermodynamic silicate stability diagrams of groundwater and it was found that the state of thermodynamic stability of the end solutions along the flow path were approaching similar states of equilibrium at the discharge.

  4. Climate change impact on freshwater resources in a deltaic environment: A groundwater modeling study

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, John D.; Panagopoulos, Andreas; Nastos, Panagiotis T.; Kotsopoulos, Spyros; Ghionis, George; Poulos, Serafim

    2016-04-01

    Climate change is expected to affect the hydrological cycle, altering seawater level and groundwater recharge to coastal aquifers with various other associated impacts on natural ecosystems and human activities. As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. This study investigates the impacts of climate change on the groundwater of the deltaic plain of River Pinios (Central Greece). Geophysical data processing indicates that the phreatic aquifer extends mainly in the central and northern parts of the region. A one-layer transient groundwater flow and contaminant mass transport model of the aquifer system is calibrated and validated. Impacts of climate change were evaluated by incorporating the estimated recharge input and sea level change of different future scenarios within the simulation models. The most noticeable and consistent result of the climate change impact simulations is a prominent sea water intrusion in the coastal aquifer mainly as a result of sea level change which underlines the need for a more effective planning of environmental measures.

  5. Geochemical modeling of groundwater evolution in a volcanic aquifer system of Kumamoto area, Japan

    Science.gov (United States)

    Hossain, S.; Hosono, T.; Ide, K.; Shimada, J.

    2013-12-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater in a volcanic aquifer system of Kumamoto area (103 Km2) in southern Japan. The modeling was based on flow paths proposed by different researcher using different techniques, and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in hydrochemical data of groundwater, mineralogical data, and saturation indices data of minerals in groundwater. Hydrochemical data from a total of 180 spring, river and well water samples were used to evaluate water quality and to determine processes that control groundwater chemistry. The samples from the area were classified as recharge zone water (Ca-HCO3 and Ca-SO4 type), lateral flow to discharge zone water (Ca-HCO3 and Na-HCO3 type) and stagnant zone water (Na-Cl type). The inverse geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. The downstream changes in groundwater chemistry could be largely explained by the weathering of plagioclase to kaolinite, with possible contributions from weathering of biotite and pyroxene. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into three categories (1) silicate weathering reactions (2) precipitation of amorphous silica and clay minerals and (3) Cation exchange reactions of Ca2+ to Na+.

  6. Factor weighting in DRASTIC modelling for assessing the groundwater vulnerability in Salatiga groundwater basin, Central Java Province, Indonesia

    Science.gov (United States)

    Kesuma, D. A.; Purwanto, P.; Putranto, T. T.; Rahmani, T. P. D.

    2017-06-01

    The increase in human population as well as area development in Salatiga Groundwater Basin, Central Java Province, will increase the potency of groundwater contamination in that area. Groundwater quality, especially the shallow groundwater, is very vulnerable to the contamination from industrial waste, fertilizer/agricultural waste, and domestic waste. The first step in the conservation of groundwater quality is by conducting the mapping of the groundwater vulnerability zonation against the contamination. The result of this research was groundwater vulnerability map which showed the areas vulnerable to the groundwater contamination. In this study, groundwater vulnerability map was assessed based on the DRASTIC Method and was processed spatially using Geographic Information System. The DRASTIC method is used to assess the level of groundwater vulnerability based on weighting on seven parameters, which are: depth to the water table (D), recharge (R), aquifer material (A), soil media (S), topography (T), impact of vadose zone (I), and hydraulic conductivity (C). The higher the DRASTIC Index will result in the higher vulnerability level of groundwater contamination in that area. The DRASTIC Indexes in the researched area were 85 - 100 (low vulnerability level), 101 -120 (low to moderate vulnerability level), 121 - 140 (moderate vulnerability level), 141 - 150, (moderate to high vulnerability level), and 151 - 159 (high vulnerability level). The output of this study can be used by local authority as a tool for consideration to arrange the policy for sustainable area development, especially the development in an area affecting the quality of Salatiga Groundwater Basin.

  7. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  8. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae; Top, Søren

    2008-01-01

    of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical...... of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behaviour, and the transformation of the software system into the S-functions. The general aim of this work is the improvement of multi-disciplinary development of embedded systems with the focus on the relation...... constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behaviour as a means of computation...

  9. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    Science.gov (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  10. TEMPORAL AND SPATIAL DISCRETIZATION ON QUASI-3-D GROUNDWATER FINITE ELEMENT MODELLING TO AVOID SPURIOUS OSCILLATION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-wei; TAKEUCHI Kuniyoshi; CHEN Jing

    2007-01-01

    In this article, the finite element solution of quasi-three-dimensional (quasi-3-D) groundwater flow was mathematically analyzed. The research shows that the spurious oscillation solution to the Finite Element Model (FEM) is the results choosing the small time step or the large element size L and using the non-diagonal storage matrix. The mechanism for this phenomenon is explained by the negative weighting factor of implicit part in the discretized equations. To avoid spurious oscillation solution, the criteria on the selection of and L for quasi-3-D groundwater flow simulations were identified. An application example of quasi-3-D groundwater flow simulation was presented to verify the criteria. The results indicate that temporal discretization scale has significant impact on the spurious oscillations in the finite-element solutions, and the spurious oscillations can be avoided in solving practical quasi-3-D groundwater flow problems if the criteria are satisfied.

  11. Modelling the role of groundwater hydro-refugia in East African hominin evolution and dispersal

    Science.gov (United States)

    Cuthbert, M. O.; Gleeson, T.; Reynolds, S. C.; Bennett, M. R.; Newton, A. C.; McCormack, C. J.; Ashley, G. M.

    2017-05-01

    Water is a fundamental resource, yet its spatiotemporal availability in East Africa is poorly understood. This is the area where most hominin first occurrences are located, and consequently the potential role of water in hominin evolution and dispersal remains unresolved. Here, we show that hundreds of springs currently distributed across East Africa could function as persistent groundwater hydro-refugia through orbital-scale climate cycles. Groundwater buffers climate variability according to spatially variable groundwater response times determined by geology and topography. Using an agent-based model, grounded on the present day landscape, we show that groundwater availability would have been critical to supporting isolated networks of hydro-refugia during dry periods when potable surface water was scarce. This may have facilitated unexpected variations in isolation and dispersal of hominin populations in the past. Our results therefore provide a new environmental framework in which to understand how patterns of taxonomic diversity in hominins may have developed.

  12. Groundwater contamination from an inactive uranium mill tailings pile: 1. Application of a chemical mixing model

    Science.gov (United States)

    White, A. F.; Delany, J. M.; Narasimhan, T. N.; Smith, A.

    1984-11-01

    Low-pH process waters contained in a number of inactive and abandoned uranium mill tailings in the United States represent potential sources of radionuclide and trace metal contamination of groundwater. Detailed investigations at a typical site at Riverton, Wyoming, indicate that chemical transport occurs from initial dewatering of the tailings, downward infiltration due to precipitation, and groundwater intrusion into the base of the tailings pile. Except for elevated uranium and molybdenum concentrations, current radionuclide and trace metal transport is limited by the near-neutral pH conditions of the groundwater. Significant reactions include the dissolution of calcite, production of CO2, and precipitation of gypsum and the hydroxides of iron and aluminum. A geochemical mixing model employing the PHREEQE computer code is used to estimate current rates of the groundwater contamination by tailings water. A maximum mixing of 1.7% of pore water is a factor of 2 less than steady state estimates based on hydraulic parameters.

  13. Status of geochemical modeling of groundwater evolution at the Tono in-situ tests site, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sasamoto, Hiroshi; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States)

    1999-12-01

    Hydrochemical investigation of Tertiary sedimentary rocks at JNC's Tono in-situ tests site indicate the groundwaters are: meteoric in origin, chemically reducing at depths greater than a few tens of meters in the sedimentary rock, relatively old [carbon-14 ages of groundwaters collected from the lower part of the sedimentary sequence range from 13,000 to 15,000 years BP (before present)]. Ca-Na-HCO{sub 3} type solutions near the surface, changing to Na-HCO{sub 3} type groundwaters with increasing depth. The chemical evolution of the groundwaters is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest it is possible to interpret approximately the 'real' groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) if the following assumptions are adopted: CO{sub 2} concentration in the gas phase contacting pore solutions in the overlying soil zone=10{sup -1} bar, minerals in the rock zone that control the solubility of respective elements in the groundwater include; chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), muscovite (K) and pyrite (Eh and sulfate). It is noted, however, that the available field data may not be sufficient to adequately constrain parameters in the groundwater evolution model. In particular, more detailed information characterizing certain site properties (e.g., the actual mineralogy of 'plagioclase', 'clay' and 'zeolite') are needed to improve the model. Alternative conceptual models of key reactions may also be necessary. For this reason, a model that accounts for ion-exchange reactions among clay minerals, and which is based on the results of laboratory experiments, has also been evaluated in the present study. Further improvements of model considering ion-exchange reactions are needed in future, however. (author)

  14. Groundwater flow model for the Little Plover River basin in Wisconsin’s Central Sands

    Science.gov (United States)

    Ken Bradbury,; Fienen, Michael N.; Kniffin, Maribeth; Jacob Krause,; Westenbroek, Stephen M.; Leaf, Andrew T.; Barlow, Paul M.

    2017-01-01

    The Little Plover River is a groundwater-fed stream in the sand plains region of central Wisconsin. In this region, sandy sediment deposited during or soon after the last glaciation forms an important unconfined sand and gravel aquifer. This aquifer supplies water for numerous high-capacity irrigation, municipal, and industrial wells that support a thriving agricultural industry. In recent years the addition of many new wells, combined with observed diminished flows in the Little Plover and other nearby rivers, has raised concerns about the impacts of the wells on groundwater levels and on water levels and flows in nearby lakes, streams, and wetlands. Diverse stakeholder groups, including well operators, Growers, environmentalists, local land owners, and regulatory and government officials have sought a better understanding of the local groundwater-surface water system and have a shared desire to balance the water needs of the he liagricultural, industrial, and urban users with the maintenance and protection of groundwater-dependent natural resources. To help address these issues, the Wisconsin Department of Natural Resources requested that the Wisconsin Geological and Natural History Survey and U.S. Geological Survey cooperatively develop a groundwater flow model that could be used to demonstrate the relationships among groundwater, surface water, and well withdrawals and also be a tool for testing and evaluating alternative water management strategies for the central sands region. Because of an abundance of previous studies, data availability, local interest, and existing regulatory constraints the model focuses on the Little Plover River watershed, but the modeling methodology developed during this study can apply to much of the larger central sands of Wisconsin. The Little Plover River groundwater flow model simulates three-dimensional groundwater movement in and around the Little Plover River basin under steady-state and transient conditions. This model

  15. Analysis of multicomopnent groundwater flow in karst aquifer by CFC, tritium, tracer test and modelling, case study at Skaistkalnes vicinity, Latvia

    Science.gov (United States)

    Bikshe, Janis; Babre, Alise; Delina, Aija; Popovs, Konrads

    2014-05-01

    Groundwater in karst environments tends to have difficulties to distinguish multiple flows if several sources of water are present. Skaistkalne vicinity faces with such situation where old groundwater, fresh groundwater and inflow from river Iecava occurs. Attempts were made to distinguish groundwater residence time of multiple components of water applying CFC and tritium dating techniques supplied by tracer test and numerical model of study area. Study area covers territory between two rivers Iecava and Memele with water level difference of 7 meters and horizontal distance of 2.2 kilometres between both. Study area consists of karst affected Devonian gypsum and carbonaceous rocks covered by Quaternary low to high permeable deposits. Confined groundwater at depth of 10-25 meters where analysed by CFC's and tritium. At this depth groundwater exhibits anoxic reducing environment that has caused degradation of CFC's at similar degree in all samples. Taking it into account, mean residence time based on CFC piston flow model is 22 - 42 years and 28 - 34 years based on binary mixing model. Tritium results show signs of incensement of groundwater residence time towards discharge area. CFC combined with tritium proved increased vertical velocity in middle part between the rivers likely caused by hydrogeological window in Quaternary deposits created by karst processes. Numerical model (Delina et al. 2012) was applied and calculations yielded groundwater flow velocity rate at 0.3 - 1 m/day in area between the rivers. Investigation of CFC data resulted in possible groundwater flow rate of at a minimum of 0.2 m/day although it's not applicable to all sampled wells due to specific hydrogeological conditions. Tracer test was made between the rivers in order to distinguish main water flow paths and flow velocity. Results showed that very high permeable conduits connect rivers and karst lakes with velocity rates of 800 - 1300 m/day. Complex investigation leads to conclude that

  16. Modeling groundwater-surface water interactions in an operational setting by linking object- oriented river basin management model (RiverWare) with 3-D finite-difference groundwater model (MODFLOW).

    Science.gov (United States)

    Valerio, A.; Rajaram, H.; Zagona, E.

    2007-12-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flow periods in riparian environments in the semi-arid southwestern United States. As an example, over-appropriation of human water use in the Middle Rio Grande region adversely impacts the habitat of the endangered Rio Grande silvery minnow. Improved management practices during low flow conditions could prevent channel desiccation and habitat destruction. We present a modeling tool with significant potential for improved decision-making in stream reaches influenced by significant surface-groundwater interactions. While river basin management models typically represent operational complexities such as human elements of water demand and consumption with a high degree of sophistication, they often represent groundwater-surface water interactions semi-empirically or at coarse resolution. In contrast, distributed groundwater models, with an adequately fine grid represent groundwater-surface water interactions accurately, but seldom incorporate complex details of water rights and user demands. To best exploit the strengths of both classes of models, we have developed a link between the object-oriented river management software package RiverWare and the USGS groundwater modeling program MODFLOW. An interactive time stepping approach is used in the linked model. RiverWare and MODFLOW run in parallel exchanging data after each time-step. This linked framework incorporates several features critical to modeling groundwater-surface interactions in riparian zones, including riparian ET, localized variations in seepage rates and rule-based water allocations to users and/or environmental flows, and is expected to be an improved tool for modeling groundwater-surface water interaction in regions where groundwater storage repose to changing river conditions is rapid. The performance of the linked model is illustrated through applications on the Rio Grande in the vicinity of

  17. Modelling free surface aquifers to analyze the interaction between groundwater and sinuous streams

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, W. M.; Bjerg, Poul Løgstrup;

    Several mathematical methods for modelling free surface aquifers are available. Aquifer-stream interaction is an important application of these models, and are challenging to simulate because stream interaction is described by a highly variable head boundary, which can cause numerical instabilities...... and errors. In addition, when streams are sinuous, groundwater flow is truly 3-dimensional, with strong vertical flows and sharp changes in horizontal direction. Here 3 different approaches to simulating free surface aquifers are compared for simulating groundwater-stream interaction. The aim of the models...... was to investigate the effect of meander bends on the spatial and temporal variability of aquifer-stream interaction, and to develop a new 3D conceptual model of groundwater-stream interaction. Three mathematical methods were tested, representing the three main methods available for modeling 3D unconfined aquifers...

  18. Integrated modelling for assessing the risk of TCE groundwater contamination to human and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Funder, Simon Goltermann; Finkel, Michael;

    2009-01-01

    management tools designed to work with sparse data sets from preliminary site assessments are needed which can explicitly link contaminant point sources with groundwater, surface water and ecological impacts. Here, a novel integrated modelling approach was employed for evaluating the impact of a TCE...... groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamics-based decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical volatilisation model for the stream...... of “effective” parameters in groundwater transport modelling. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk to either human or ecological receptors. The current work will be extended to additional...

  19. MODFLOW-NWT model used to evaluate the potential effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow in Miami-Dade County, Florida

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional, surface-water/groundwater model (MODFLOW-NWT with the Surface-Water Routing Process) was developed to the predict the effects of groundwater...

  20. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area.

    Science.gov (United States)

    Rabeiy, Ragab ElSayed

    2017-04-04

    The continuous growth and development of population need more fresh water for drinking, irrigation, and domestic in arid countries like Egypt. Evaluation the quality of groundwater is an essential study to ensure its suitability for different purposes. In this study, 812 groundwater samples were taken within the middle area of Upper Egypt (Sohag Governorate) to assess the quality of groundwater for drinking and irrigation purposes. Eleven water parameters were analyzed at each groundwater sample (Na(+), K(+), Ca(2+), Mg(2+), HCO3(-) SO4(2-), Fe(2+), Mn(2+), Cl(-), electrical conductivity, and pH) to exploit them in water quality evaluation. A classical statistics were applied for the raw data to examine the distribution of physicochemical parameters in the investigated area. The relationship between groundwater parameters was tested using the correlation coefficient where a strong relationship was found between several water parameters such as Ca(2+) and Cl(-). Water quality index (WQI) is a mathematical model used to transform many water parameters into a single indicator value which represents the water quality level. Results of WQI showed that 20% of groundwater samples are excellent, 75% are good for drinking, and 7% are very poor water while only 1% of samples are unsuitable for drinking. To test the suitability of groundwater for irrigation, three indices are used; they are sodium adsorption ration (SAR), sodium percentage (Na%), and permeability index (PI). For irrigation suitability, the study proved that most sampling sites are suitable while less than 3% are unsuitable for irrigation. The spatial distribution of the estimated values of WQI, SAR, Na%, PI, and each groundwater parameter was spatially modeled using GIS.

  1. Integrating Electrical Analogy and Computer Modeling of Groundwater Flow for Teaching Flownet Concepts

    Directory of Open Access Journals (Sweden)

    Murthy Kasi

    2013-10-01

    Full Text Available Laplace equation is the basic differential equation that governs the steady flow of a fluid through an isotropic and homogeneous porous medium and also the steady flow of current in a conducting medium. Therefore, a steady-state groundwater flow problem can be formulated as an analogous electrical current flow problem. A flow net, set of grids formed by orthogonally intersecting equipotential lines and flow lines, is a graphical solution to the equations of steady groundwater flow. By definition, flownet for the original groundwater problem and the corresponding analogous electrical problem should be similar. This feature allows the possibility of introducing the concepts of flownets to students using the easily demonstrable electrical counterpart of the problem in a laboratory setting. This paper discusses the efforts of the authors to widen the scope of an experiment already included in the Fluid Mechanics laboratory course of a Civil Engineering curriculum and to better teach flownet principles using the electrical analogy of groundwater flow problems. Students used a simple experimental setup to obtain flownets for selected groundwater flow situations with different boundary conditions using the electrical analogy concept. Students also used a groundwater flow computer model to obtain flownets for the same flow situations and compared the results. The laboratory lesson plan consisted of five steps: (i study and understand the selected physical groundwater problems, (ii conceptualize the corresponding analogous electrical problems (iii use the electrical analogy experimental setup to obtain flownets, (iv study and understand the mathematical formulation of the problems, and (v compare the analogous results with those obtained from a groundwater flow computer model. Sample results obtained by students are presented. The student feedback indicated that this approach resulted in an effective learning of the concepts involved.

  2. Model-based evaluation of subsurface monitoring networks for improved efficiency and predictive certainty of regional groundwater models

    Science.gov (United States)

    Gosses, M. J.; Wöhling, Th.; Moore, C. R.; Dann, R.; Scott, D. M.; Close, M.

    2012-04-01

    Groundwater resources worldwide are increasingly under pressure. Demands from different local stakeholders add to the challenge of managing this resource. In response, groundwater models have become popular to make predictions about the impact of different management strategies and to estimate possible impacts of changes in climatic conditions. These models can assist to find optimal management strategies that comply with the various stakeholder needs. Observations of the states of the groundwater system are essential for the calibration and evaluation of groundwater flow models, particularly when they are used to guide the decision making process. On the other hand, installation and maintenance of observation networks are costly. Therefore it is important to design monitoring networks carefully and cost-efficiently. In this study, we analyse the Central Plains groundwater aquifer (~ 4000 km2) between the Rakaia and Waimakariri rivers on the Eastern side of the Southern Alps in New Zealand. The large sedimentary groundwater aquifer is fed by the two alpine rivers and by recharge from the land surface. The area is mainly under agricultural land use and large areas of the land are irrigated. The other major water use is the drinking water supply for the city of Christchurch. The local authority in the region, Environment Canterbury, maintains an extensive groundwater quantity and quality monitoring programme to monitor the effects of land use and discharges on groundwater quality, and the suitability of the groundwater for various uses, especially drinking-water supply. Current and projected irrigation water demand has raised concerns about possible impacts on groundwater-dependent lowland streams. We use predictive uncertainty analysis and the Central Plains steady-state groundwater flow model to evaluate the worth of pressure head observations in the existing groundwater well monitoring network. The data worth of particular observations is dependent on the problem

  3. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    Science.gov (United States)

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  4. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping

    Science.gov (United States)

    Naghibi, Seyed Amir; Moghaddam, Davood Davoodi; Kalantar, Bahareh; Pradhan, Biswajeet; Kisi, Ozgur

    2017-05-01

    In recent years, application of ensemble models has been increased tremendously in various types of natural hazard assessment such as landslides and floods. However, application of this kind of robust models in groundwater potential mapping is relatively new. This study applied four data mining algorithms including AdaBoost, Bagging, generalized additive model (GAM), and Naive Bayes (NB) models to map groundwater potential. Then, a novel frequency ratio data mining ensemble model (FREM) was introduced and evaluated. For this purpose, eleven groundwater conditioning factors (GCFs), including altitude, slope aspect, slope angle, plan curvature, stream power index (SPI), river density, distance from rivers, topographic wetness index (TWI), land use, normalized difference vegetation index (NDVI), and lithology were mapped. About 281 well locations with high potential were selected. Wells were randomly partitioned into two classes for training the models (70% or 197) and validating them (30% or 84). AdaBoost, Bagging, GAM, and NB algorithms were employed to get groundwater potential maps (GPMs). The GPMs were categorized into potential classes using natural break method of classification scheme. In the next stage, frequency ratio (FR) value was calculated for the output of the four aforementioned models and were summed, and finally a GPM was produced using FREM. For validating the models, area under receiver operating characteristics (ROC) curve was calculated. The ROC curve for prediction dataset was 94.8, 93.5, 92.6, 92.0, and 84.4% for FREM, Bagging, AdaBoost, GAM, and NB models, respectively. The results indicated that FREM had the best performance among all the models. The better performance of the FREM model could be related to reduction of over fitting and possible errors. Other models such as AdaBoost, Bagging, GAM, and NB also produced acceptable performance in groundwater modelling. The GPMs produced in the current study may facilitate groundwater exploitation

  5. Joint assimilation of piezometric heads and groundwater temperatures for improved modelling of river-aquifer interactions

    Science.gov (United States)

    Kurtz, Wolfgang; Hendricks-Franssen, Harrie-Jan; Vereecken, Harry

    2013-04-01

    Measured groundwater temperatures close to streams contain valuable information for the assessment of mass transfer rates between river and aquifer and the hydraulic properties around a streambed. For groundwater management close to rivers, the characterization of these hydraulic properties is of special interest because exchange fluxes between river and aquifer influence the sustainability of groundwater abstraction and the quality of pumped drinking water. Additionally, it can be important for groundwater management to gain reliable predictions of groundwater temperatures, e.g. in order to regulate the temperature of extracted drinking water. Data assimilation techniques, like the ensemble Kalman filter (EnKF), provide a flexible stochastic framework to merge model simulations with different types of measurement data in order to enhance the (real-time) prediction of groundwater states and to improve the estimation of uncertain hydraulic subsurface parameters. EnKF has already been used for managed river-aquifer systems to improve the prediction of groundwater levels and the estimation of hydraulic parameters by the assimilation of measured piezometric head data. As temperature data can provide additional information on stream-aquifer exchange it is investigated whether this information further constrains states, fluxes and parameters of the river-groundwater system. For this purpose, we performed data assimilation experiments with two different model setups: (i) a simple synthetic model of a river-aquifer system where the parameters and simulation conditions were perfectly known (ii) a more complex model of the Limmat aquifer in Zurich where real-world data were assimilated. Results for the synthetic case suggest that a joint assimilation of piezometric heads and groundwater temperatures together with updating of uncertain hydraulic conductivities and leakage coefficients gives the best estimation of states, fluxes and hydraulic properties (i.e., hydraulic

  6. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-05-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in

  7. Modeling sustainable groundwater management: packaging and sequencing of policy interventions.

    Science.gov (United States)

    Esteban, Encarna; Dinar, Ariel

    2013-04-15

    Of the many studies estimating effectiveness of policy reforms most have been considering various types of policy reforms in isolation from each other. Such pattern has also been the case in water resource regulations. In the case of groundwater almost all policy interventions considered in the literature have been implemented individually, without taking into account the possible interactions and impacts among them. In this paper, we focus on two policy instruments: water quota and uniform water tax. The paper demonstrates how packaging and sequencing sets of policy interventions, with possible triggers to initiate their time of implementation, may be more effective in achieving a sustainable groundwater management than single policies when environmental externalities exist. The policy instruments are applied to the Western la Mancha aquifer in Southeast Spain, a major aquifer that is managed by a command and control approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  9. Groundwater modeling of Saq Aquifer Buraydah Al Qassim for better water management strategies.

    Science.gov (United States)

    Al-Salamah, Ibrahim S; Ghazaw, Yousry M; Ghumman, Abdul Razzaq

    2011-02-01

    Saudi Arabia is an arid country. It has limited water supplies. About 80-90% of water supplies come from groundwater, which is depleting day by day. It needs appropriate management. This paper has investigated groundwater modeling of Saq Aquifer in Buraydah Al Qassim to estimate the impact of its excessive use on depletion of Saq Aquifer. MODFLOW model has been used in this study. Data regarding the aquifer parameters was measured by pumping tests. Groundwater levels and discharge of wells in the area for the year 2008 and previous record of year 1999 have been collected from Municipal Authority of Buraydah. Location of wells was determined by Garmin. The model has been run for different sets of pumping rates to recommend an optimal use of groundwater resources and get prolonged life of aquifer. Simulations have been made for a long future period of 27 years (2008-2035). Model results concluded that pumping from the Saq Aquifer in Buraydah area will result into significant cones of depression if the existing excessive pumping rates prevail. A drawdown up to 28 m was encountered for model run for 27 years for existing rates of pumping. Aquifer withdrawals and drawdowns will be optimal with the conservation alternative. The management scheme has been recommended to be adopted for the future protection of groundwater resources in Kingdom of Saudi Arabia.

  10. How Many Separable Sources? Model Selection In Independent Components Analysis

    DEFF Research Database (Denmark)

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysi...... might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian.......Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis....../Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from...

  11. Large Scale Groundwater Flow Model for Ho Chi Minh City and its Catchment Area, Southern Vietnam

    Science.gov (United States)

    Sigrist, M.; Tokunaga, T.; Takizawa, S.

    2005-12-01

    Ho Chi Minh City (HCMC) has become a fast growing city in recent decades and is still growing at a high pace. The water demand for more than 7 million people has increased tremendously, too. Beside surface water, groundwater is used in big amounts to satisfy the need of water. By now, more than 200,000 wells have been developed with very little control. To investigate the sustainability of the water abstraction, a model had been built for the HCMC area and its surrounding. On the catchment scale (around 24,000km2); however, many questions have remained unsolved. In this study, we first gathered and complied geological and hydrogeological information as well as data on groundwater quality to get an idea on regional groundwater flow pattern and problems related to the temporal change of the groundwater situation. Two problems have been depicted by this study. One is the construction of a water reservoir upstream of the Saigon River. This construction has probably changed the water table of the unconfined aquifer, and hence, has significantly changed the properties of soils in some areas. The other problem is the distribution of salty groundwater. Despite the distance of more than 40km from the seashore, groundwater from some wells in and around HCMC shows high concentrations of chloride. Several wells started to produce non-potable water. The chloride concentrations show a complicated and patchy distribution below HCMC, suggesting the possibility of the remnant saltwater at the time of sediment deposition. On the other hand, seawater invades along the streams far beyond HCMC during the dry season and this might be one of the possible sources of salty groundwater by vertical infiltration. A large-scale geological model was constructed and transformed into a hydrogeological model to better understand and quantify the groundwater flow system and the origin of saltwater. Based on the constructed model and numerical calculation, we discuss the influence of reservoir

  12. Semantic network based component organization model for program mining

    Institute of Scientific and Technical Information of China (English)

    王斌; 张尧学; 陈松乔

    2003-01-01

    Based on the definition of component ontology, an effective component classification mechanism and a facet named component relationship are proposed. Then an application domain oriented, hierarchical component organization model is established. At last a hierarchical component semantic network (HCSN) described by ontology interchange language(OIL) is presented and then its function is described. Using HCSN and cooperating with other components retrieving algorithms based on component description, other components information and their assembly or composite modes related to the key component can be found. Based on HCSN, component directory library is catalogued and a prototype system is constructed. The prototype system proves that component library organization based on this model gives guarantee to the reliability of component assembly during program mining.

  13. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions : An integrated modeling approach

    Science.gov (United States)

    Huntington, Justin L.; Niswonger, Richard G.

    2012-01-01

    Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic

  14. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical......The practical implementation of the European Water Framework Directive has resulted in an increased focus on the groundwater-surface water interaction zone. A gap exists with respect to preliminary assessment methodologies that are capable of evaluating and prioritising point sources...... volatilisation model for the stream. The model is tested on a Danish case study involving a 750 m long TCE groundwater plume discharging into a stream. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk...

  15. Explaining nitrate pollution pressure on the groundwater resource in Kinshasa using a multivariate statistical modelling approach

    Science.gov (United States)

    Mfumu Kihumba, Antoine; Vanclooster, Marnik

    2013-04-01

    Drinking water in Kinshasa, the capital of the Democratic Republic of Congo, is provided by extracting groundwater from the local aquifer, particularly in peripheral areas. The exploited groundwater body is mainly unconfined and located within a continuous detrital aquifer, primarily composed of sedimentary formations. However, the aquifer is subjected to an increasing threat of anthropogenic pollution pressure. Understanding the detailed origin of this pollution pressure is important for sustainable drinking water management in Kinshasa. The present study aims to explain the observed nitrate pollution problem, nitrate being considered as a good tracer for other pollution threats. The analysis is made in terms of physical attributes that are readily available using a statistical modelling approach. For the nitrate data, use was made of a historical groundwater quality assessment study, for which the data were re-analysed. The physical attributes are related to the topography, land use, geology and hydrogeology of the region. Prior to the statistical modelling, intrinsic and specific vulnerability for nitrate pollution was assessed. This vulnerability assessment showed that the alluvium area in the northern part of the region is the most vulnerable area. This area consists of urban land use with poor sanitation. Re-analysis of the nitrate pollution data demonstrated that the spatial variability of nitrate concentrations in the groundwater body is high, and coherent with the fragmented land use of the region and the intrinsic and specific vulnerability maps. For the statistical modeling use was made of multiple regression and regression tree analysis. The results demonstrated the significant impact of land use variables on the Kinshasa groundwater nitrate pollution and the need for a detailed delineation of groundwater capture zones around the monitoring stations. Key words: Groundwater , Isotopic, Kinshasa, Modelling, Pollution, Physico-chemical.

  16. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites

    Science.gov (United States)

    Döll, Petra; Müller Schmied, Hannes; Schuh, Carina; Portmann, Felix T.; Eicker, Annette

    2014-07-01

    Groundwater depletion (GWD) compromises crop production in major global agricultural areas and has negative ecological consequences. To derive GWD at the grid cell, country, and global levels, we applied a new version of the global hydrological model WaterGAP that simulates not only net groundwater abstractions and groundwater recharge from soils but also groundwater recharge from surface water bodies in dry regions. A large number of independent estimates of GWD as well as total water storage (TWS) trends determined from GRACE satellite data by three analysis centers were compared to model results. GWD and TWS trends are simulated best assuming that farmers in GWD areas irrigate at 70% of optimal water requirement. India, United States, Iran, Saudi Arabia, and China had the highest GWD rates in the first decade of the 21st century. On the Arabian Peninsula, in Libya, Egypt, Mali, Mozambique, and Mongolia, at least 30% of the abstracted groundwater was taken from nonrenewable groundwater during this time period. The rate of global GWD has likely more than doubled since the period 1960-2000. Estimated GWD of 113 km3/yr during 2000-2009, corresponding to a sea level rise of 0.31 mm/yr, is much smaller than most previous estimates. About 15% of the globally abstracted groundwater was taken from nonrenewable groundwater during this period. To monitor recent temporal dynamics of GWD and related water abstractions, GRACE data are best evaluated with a hydrological model that, like WaterGAP, simulates the impact of abstractions on water storage, but the low spatial resolution of GRACE remains a challenge.

  17. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  18. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  19. A groundwater-flow model for the Treasure Valley and surrounding area, southwestern Idaho

    Science.gov (United States)

    Bartolino, James R.; Vincent, Sean

    2017-04-17

    The U.S. Geological Survey (USGS), in partnership with the Idaho Department of Water Resources (IDWR) and Idaho Water Resource Board (IWRB), will construct a numerical groundwater-flow model of the Treasure Valley and surrounding area. Resource managers will use the model to simulate potential anthropogenic and climatic effects on groundwater for water-supply planning and management. As part of model construction, the hydrogeologic understanding of the aquifer system will be updated with information collected during the last two decades, as well as new data collected for the study.

  20. Recharge source identification using isotope analysis and groundwater flow modeling for Puri city in India

    Science.gov (United States)

    Nayak, P. C.; Vijaya Kumar, S. V.; Rao, P. R. S.; Vijay, T.

    2016-11-01

    The holy city of Lord Jagannath is situated on the sea shore of the Bay of Bengal in Odisha state in India. Puri is a city of high religious importance and heritage value, details of the rituals, fairs, and festivals, and related aspects are covered extensively. It is found that water levels in two wells (Ganga and Yamuna) are declining and the causes are studied by undertaking modeling study of rainfall-recharge processes, surface water-groundwater interactions, and increasing demands due to urbanization at basin scale. Hydrochemical analysis of groundwater samples indicates that pH value is varying from 7 to 8.4 and electrical conductivity (EC) is found in between 238 and 2710 μmhos/cm. The EC values indicate that the shallow groundwater in Puri is not saline. Stable isotopic signatures of O-18, Deuterium indicate two different sources are active in the city area. In most of the handpumps, water recharged by the surface water sources. From the current investigation, it is evident that in a few handpumps and most of the dug-wells, isotopic signatures of water samples resembles with local precipitation. The groundwater recharge is taking place from the north-southern direction. Visual MODFLOW has been used for studying groundwater aspects and different scenarios have been developed. It is suggested to maintain water level in Samang Lake to restore depletion in groundwater level in two wells.

  1. A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation

    Science.gov (United States)

    Turnadge, Chris; Smerdon, Brian D.

    2014-11-01

    Mathematical models of varying complexity have been developed since the 1960s to interpret environmental tracer concentrations in groundwater flow systems. This review examines published studies of model-based environmental tracer interpretation, the progress of different modelling approaches, and also considers the value of modelling tracer concentrations directly rather than estimations of groundwater age. Based on citation metrics generated using the Web of Science and Google Scholar reference databases, the most highly utilised interpretation approaches are lumped parameter models (421 citations), followed closely by direct age models (220 citations). A third approach is the use of mixing cell models (99 citations). Although lumped parameter models are conceptually simple and require limited data, they are unsuitable for characterising the internal dynamics of a hydrogeological system and/or under conditions where large scale anthropogenic stresses occur within a groundwater basin. Groundwater age modelling, and in particular, the simulation of environmental tracer transport that explicitly accounts for the accumulation and decay of tracer mass, has proven to be highly beneficial in constraining numerical models. Recent improvements in computing power have made numerical simulation of tracer transport feasible. We argue that, unlike directly simulated ages, the results of tracer mass transport simulation can be compared directly to observations, without needing to correct for apparent age bias or other confounding factors.

  2. Modeling nonpoint source nitrate contamination and associated uncertainty in groundwater of U.S. regional aquifers

    Science.gov (United States)

    Gurdak, J. J.; Lujan, C.

    2009-12-01

    Nonpoint source nitrate contamination in groundwater is spatially variable and can result in elevated nitrate concentrations that threaten drinking-water quality in many aquifers of the United States. Improved modeling approaches are needed to quantify the spatial controls on nonpoint source nitrate contamination and the associated uncertainty of predictive models. As part of the U.S. Geological Survey National Water Quality Assessment Program, logistic regression models were developed to predict nitrate concentrations greater than background in recently recharged (less than 50 years) groundwater in selected regional aquifer systems of the United States; including the Central Valley, California Coastal Basins, Basin and Range, Floridan, Glacial, Coastal Lowlands, Denver Basin, High Plains, North Atlantic Coastal Plain, and Piedmont aquifer systems. The models were used to evaluate the spatial controls of climate, soils, land use, hydrogeology, geochemistry, and water-quality conditions on nitrate contamination. The novel model Raster Error Propagation Tool (REPTool) was used to estimate error propagation and prediction uncertainty in the predictive nitrate models and to determine an approach to reduce uncertainty in future model development. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the prediction uncertainty of the model output. The presented nitrate models, maps, and uncertainty analysis provide important tools for water-resource managers of regional groundwater systems to identify likely areas and the spatial controls on nonpoint source nitrate contamination in groundwater.

  3. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    NARCIS (Netherlands)

    Jansen, Gijs M.C.; Del Val Alonso, Laura; Griffioen, Jasper; Groenendijk, P.

    2012-01-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented simulation model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emission

  4. Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    1999-02-24

    A regional groundwater flow model encompassing approximately 100 mi{sup 2} surrounding the C, K. L. and P reactor areas has been developed. The Reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department.

  5. Modeling transient groundwater age in the Middle Wairarapa Valley, New Zealand

    Science.gov (United States)

    Evison, R.; Daughney, C.; Jackson, B. M.; Toews, M. W.; Cornaton, F. J.; Gyopari, M.; McAllister, D.

    2013-12-01

    Age information provides insights into groundwater flow and transport processes and thus enables better groundwater management. It is accepted that groundwater is composed of a mixture of water with different ages. For example, a groundwater sample with an old mean age may still contain a fraction of young water; recent contamination is therefore a potential risk that may not be conveyed by consideration of the mean age alone. This project focuses on catchment-scale evaluation of the full distribution of groundwater age as a function of space and time in the 270 km2 Middle Wairarapa Valley, New Zealand. The Wairarapa Valley exhibits complex interactions between its rivers and shallow aquifers. Agriculture is an integral part of the region with widespread irrigation and nutrient application. This requires effective regional management due to the risk of contamination and depletion of groundwater reservoirs. The starting point was a transient finite-element groundwater flow model originally developed by Greater Wellington Regional Council (GWRC). The GWRC flow model was converted to simulate transport of the age tracer tritium using Ground Water (GW) software. There are several techniques to calibrate groundwater models and assess appropriate parameter values, all of which have the problem of non-uniqueness. In this study the Gauss-Marquardt-Levenberg method was utilized to calibrate the model (through PEST), but in order to increase robustness, a classic Monte Carlo method with uniform random sampling was also used to sample the domain's global range of flow and transport parameters. This provided an increased measure of confidence in model output, as the global range of parameter values could be explored, which is not achieved via the localized Gauss-Marquardt-Levenberg parameter estimation scheme. The calibration objective with both methods used least squares minimization between the simulated and observed hydraulic head levels and tritium concentrations. GW

  6. Groundwater Modeling in Coastal Arid Regions Under the Influence of Marine Saltwater Intrusion

    Science.gov (United States)

    Walther, Marc; Kolditz, Olaf; Grundmann, Jens; Liedl, Rudolf

    2010-05-01

    The optimization of an aquifer's "safe yield", especially within agriculturally used regions, is one of the fundamental tasks for nowaday's groundwater management. Due to the limited water ressources in arid regions, conflict of interests arise that need to be evaluated using scenario analysis and multicriterial optimization approaches. In the context of the government-financed research project "International Water Research Alliance Saxony" (IWAS), the groundwater quality for near-coastal, agriculturally used areas is investigated under the influence of marine saltwater intrusion. Within the near-coastal areas of the study region, i.e. the Batinah plains of Northern Oman, an increasing agricultural development could be observed during the recent decades. Simultaneously, a constant lowering of the groundwater table was registered, which is primarily due to the uncontrolled and unsupervised mining of the aquifers for the local agricultural irrigation. Intensively decreased groundwater levels, however, cause an inversion of the hydraulic gradient which is naturally aligned towards the coast. This, in turn,leads to an intrusion of marine saltwater flowing inland, endangering the productivity of farms near the coast. Utilizing the modeling software package OpenGeoSys, which has been developed and constantly enhanced by the Department of Environmental Informatics at the Helmholtz Centre for Environmental Research Leipzig (UFZ; Kolditz et al., 2008), a three-dimensional, density-dependent model including groundwater flow and mass transport is currently being built up. The model, comprehending three selected coastal wadis of interest, shall be used to investigate different management scenarios. The main focus of the groundwater modelling are the optimization of well positions and pumping schemes as well as the coupling with a surface runoff model, which is also used for the determination of the groundwater recharge due to wadi runoff downstream of retention dams. Based on

  7. Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    L. Surinaidu

    2014-09-01

    Full Text Available The Singareni Collieries Company Ltd (SCCL is exploiting coal in the Godavari valley coal fields spread over 5.33 km2 in Andhra Pradesh, India. In the area, six workable coal seams have been identified in Barakar formation by the analysis of the geologic logs of 183 bore wells. A finite difference based numerical groundwater flow model is developed with twenty conceptual layers and with a total thickness of 320 m. The flow model was calibrated under steady state conditions and predicted groundwater inflows into the mine pits at different mine development stages. The groundwater budget results revealed that the mining area would receive net groundwater inflows of 5877 m3 day−1, 12,818 m3 day−1, 12,910 m3 day−1, 20,428 m3 day−1, 22,617 m3 day−1 and 14,504 m3 day−1 at six mine development stages of +124 m (amsl, +93 m (amsl, +64 m (amsl, +41 m (amsl, +0 m (amsl and −41 m (amsl, respectively. The results of the study can be used to plan optimal groundwater pumping and the possible locations to dewater the groundwater for safe mining at different mine development stages.

  8. Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system

    Science.gov (United States)

    Brooks, Lynette E.; Masbruch, Melissa D.; Sweetkind, Donald S.; Buto, Susan G.

    2014-01-01

    This report describes the construction, calibration, evaluation, and results of a steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system that was developed as part of the U.S. Geological Survey National Water Census Initiative to evaluate the nation’s groundwater availability. The study area spans 110,000 square miles across five states. The numerical model uses MODFLOW-2005, and incorporates and tests complex hydrogeologic and hydrologic elements of a conceptual understanding of an interconnected groundwater system throughout the region, including mountains, basins, consolidated rocks, and basin fill. The level of discretization in this model has not been previously available throughout the study area.

  9. Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios

    Science.gov (United States)

    Banta, Edward R.

    2014-01-01

    Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable

  10. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  11. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  12. Improved water resource management for a highly complex environment using three-dimensional groundwater modelling

    Science.gov (United States)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Dressmann, Horst; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2017-08-01

    A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.

  13. Hydrodynamic modeling for groundwater assessment in Sana'a Basin, Yemen

    Science.gov (United States)

    Alwathaf, Yahia; El Mansouri, Bouabid

    2012-11-01

    Yemen is a semi-arid country with very limited water resources. Sana'a Basin is located in the central part of Yemen and is the major source of water for drinking and irrigation. High abstraction rates in Sana'a Basin rising from 21.1 million (M) m3 in 1972 to 227.7 Mm3 in 2006, have led to a major decline in water levels and deterioration in groundwater quality. Effective management of groundwater resources in Sana'a Basin can be aided by modelling. FEFLOW was used to build a groundwater flow model for the basin and the model was calibrated under transient conditions for the period 1972-2006. The water balance for transient conditions of the Sana'a Basin in 2006 indicated that the total annual inflow was 116.9 Mm3, and the total annual outflow was 245.8 Mm3. Three scenarios for potential groundwater extraction for the period 2006-2020 are presented. The first represents the present status based on the 2006 extraction rates without introducing any management measures. The second is based on maximum domestic, agricultural and industrial consumption of water resources. The third simulates the effect of water-resource augmentation, i.e. the increase of groundwater recharge, and maximizes sustainability by reducing water consumption. Identified areas of the basin require prompt management action.

  14. Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data

    Directory of Open Access Journals (Sweden)

    D. Herckenrath

    2013-10-01

    Full Text Available Increasingly, ground-based and airborne geophysical data sets are used to inform groundwater models. Recent research focuses on establishing coupling relationships between geophysical and groundwater parameters. To fully exploit such information, this paper presents and compares different hydrogeophysical inversion approaches to inform a field-scale groundwater model with time domain electromagnetic (TDEM and electrical resistivity tomography (ERT data. In a sequential hydrogeophysical inversion (SHI a groundwater model is calibrated with geophysical data by coupling groundwater model parameters with the inverted geophysical models. We subsequently compare the SHI with a joint hydrogeophysical inversion (JHI. In the JHI, a geophysical model is simultaneously inverted with a groundwater model by coupling the groundwater and geophysical parameters to explicitly account for an established petrophysical relationship and its accuracy. Simulations for a synthetic groundwater model and TDEM data showed improved estimates for groundwater model parameters that were coupled to relatively well-resolved geophysical parameters when employing a high-quality petrophysical relationship. Compared to a SHI these improvements were insignificant and geophysical parameter estimates became slightly worse. When employing a low-quality petrophysical relationship, groundwater model parameters improved less for both the SHI and JHI, where the SHI performed relatively better. When comparing a SHI and JHI for a real-world groundwater model and ERT data, differences in parameter estimates were small. For both cases investigated in this paper, the SHI seems favorable, taking into account parameter error, data fit and the complexity of implementing a JHI in combination with its larger computational burden.

  15. Improved water resource management using three dimensional groundwater modelling for a highly complex environmental

    Science.gov (United States)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2017-04-01

    Proper allocation and management of groundwater is an important and critical challenge under rising water demands of various environmental sectors but good groundwater quality is often limited because of urbanization and contamination of aquifers. Given the predictive capability of groundwater models, they are often the only viable means of providing input to water management decisions. However, modelling flow and transport processes can be difficult due to their unknown subsurface heterogeneity and typically unknown distribution of contaminants. As a result water resource management tasks are based on uncertain assumption on contaminants patterns and this uncertainty is typically not incorporated into the assessment of risks associated with different proposed management scenarios. A three-dimensional groundwater model was used to improve water resource management for a study area, where drinking water production is close to different former landfills and industrial areas. To avoid drinking water contamination, artificial groundwater recharge with surface water into the gravel aquifer is used to create a hydraulic barrier between contaminated sites and drinking water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction and magnitude between existing observation points using a newly developed three point estimation method for a large amount of scenarios was carried out. Due to the numerous observation points 32 triangles (three-points) were created which cover the entire area around the Hardwald. We demonstrated that systematically applying our developed methodology helps to identify important locations which are sensitive to changing boundary conditions and where additional protection is required without highly computational demanding transport modelling. The presented integrated approach using the flow direction

  16. Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models

    Science.gov (United States)

    Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric; Naranjo, Ramon C.; Huntington, Justin

    2017-01-01

    The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.

  17. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  18. Support of the Generic Framework programme : calibration of groundwater flow models

    NARCIS (Netherlands)

    Stroet, Chris C.B.M. te; Minnema, Benny

    2003-01-01

    This report is to support the “Generic Framework programme” which consists of a series of projects to create a standard in the modelling processes that are used in water management issues. The topic of support is the field of model calibration. TNO-NITG is elaborating the calibration of groundwater

  19. Modelling the effect of buried valleys on groundwater flow: case study in Ventspils vicinity, Latvia

    Science.gov (United States)

    Delina, Aija; Popovs, Konrads; Bikse, Janis; Retike, Inga; Babre, Alise; Kalvane, Gunta

    2015-04-01

    Buried subglacial valleys are widely distributed in glaciated regions and they can have great influence on groundwater flow and hence on groundwater resources. The aim of this study is to evaluate the effect of the buried valleys on groundwater flow in a confined aquifer (Middle Devonian Eifelian stage Arukila aquifer, D2ar) applying numerical modelling. The study area is located at vicinity of Ventspils Town, near wellfield Ogsils where number of the buried valleys with different depth and filling material are present. Area is located close to the Baltic Sea at Piejūra lowland Rinda plain and regional groundwater flow is towards sea. Territory is covered by thin layer of Quaternary sediments in thicknesses of 10 to 20 meters although Prequaternary sediments are exposed at some places. Buried valleys are characterized as narrow, elongated and deep formations that is be filled with various, mainly Pleistocene glacigene sediments - either till loam of different ages or sand and gravel or interbedding of both above mentioned. The filling material of the valleys influences groundwater flow in the confined aquifers which is intercepted by the valleys. It is supposed that glacial till loam filled valleys serves as a barrier to groundwater flow and as a recharge conduit when filled with sand and gravel deposits. Numerical model was built within MOSYS modelling system (Virbulis et al. 2012) using finite element method in order to investigate buried valley influence on groundwater flow in the study area. Several conceptual models were tested in numerical model depending on buried valley filling material: sand and gravel, till loam or mixture of them. Groundwater flow paths and travel times were studied. Results suggested that valley filled with glacial till is acting as barrier and it causes sharp drop of piezometric head and downward flow. Valley filled with sand and gravel have almost no effect on piezometric head distribution, however it this case buried valleys

  20. Component-based Discrete Event Simulation Using the Fractal Component Model

    OpenAIRE

    Dalle, Olivier

    2007-01-01

    In this paper we show that Fractal, a generic component model coming from the Component-Based Software Engineering (CBSE) community, meets most of the functional expectations identified so far in the simulation community for component-based modeling and simulation. We also demonstrate that Fractal offers additional features that have not yet been identified in the simulation community despite their potential usefulness. Eventually we describe our ongoing work on such a new simulation architec...

  1. Geologic and geophysical models for Osage County, Oklahoma, with implications for groundwater resources

    Science.gov (United States)

    Hudson, Mark R.; Smith, David V.; Pantea, Michael P.; Becker, Carol J.

    2016-06-16

    This report summarizes a three-dimensional (3-D) geologic model that was constructed to provide a framework to investigate groundwater resources of the Osage Nation in northeastern Oklahoma. This report also presents an analysis of an airborne electromagnetic (AEM) survey that assessed the spatial variation of electrical resistivity to depths as great as 300 meters in the subsurface. The report and model provide support for a countywide assessment of groundwater resources, emphasizing the Upper Pennsylvanian rock units in the shallow subsurface of central and eastern Osage County having electrical resistivity properties that may indicate aquifers.

  2. A method to filter out the effect of river stage fluctuation on groundwater level using time series models

    Science.gov (United States)

    Yoon, Heesung; Park, Eungyu; Yoon, Pilsun; Lee, Eunhee; Kim, Gyoo-Bum

    2016-04-01

    A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river, South Korea. First, one-step ahead direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Based on the direct prediction models, recursive prediction models for the simulation of groundwater level fluctuations were designed. The effect of river stage fluctuation on groundwater level data was filtered out by setting a constant value for river stage inputs of the recursive time series models. The hybrid water table fluctuation method was employed to estimate the groundwater recharge using the filtered data. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

  3. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    Science.gov (United States)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-ft in 1996 and 6,300 acre-ft in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by ET, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased.

  4. Chemical modeling of groundwater in the Banat Plain, southwestern Romania, with elevated As content and co-occurring species by combining diagrams and unsupervised multivariate statistical approaches.

    Science.gov (United States)

    Butaciu, Sinziana; Senila, Marin; Sarbu, Costel; Ponta, Michaela; Tanaselia, Claudiu; Cadar, Oana; Roman, Marius; Radu, Emil; Sima, Mihaela; Frentiu, Tiberiu

    2017-04-01

    The study proposes a combined model based on diagrams (Gibbs, Piper, Stuyfzand Hydrogeochemical Classification System) and unsupervised statistical approaches (Cluster Analysis, Principal Component Analysis, Fuzzy Principal Component Analysis, Fuzzy Hierarchical Cross-Clustering) to describe natural enrichment of inorganic arsenic and co-occurring species in groundwater in the Banat Plain, southwestern Romania. Speciation of inorganic As (arsenite, arsenate), ion concentrations (Na(+), K(+), Ca(2+), Mg(2+), HCO3(-), Cl(-), F(-), SO4(2-), PO4(3-), NO3(-)), pH, redox potential, conductivity and total dissolved substances were performed. Classical diagrams provided the hydrochemical characterization, while statistical approaches were helpful to establish (i) the mechanism of naturally occurring of As and F(-) species and the anthropogenic one for NO3(-), SO4(2-), PO4(3-) and K(+) and (ii) classification of groundwater based on content of arsenic species. The HCO3(-) type of local groundwater and alkaline pH (8.31-8.49) were found to be responsible for the enrichment of arsenic species and occurrence of F(-) but by different paths. The PO4(3-)-AsO4(3-) ion exchange, water-rock interaction (silicates hydrolysis and desorption from clay) were associated to arsenate enrichment in the oxidizing aquifer. Fuzzy Hierarchical Cross-Clustering was the strongest tool for the rapid simultaneous classification of groundwaters as a function of arsenic content and hydrogeochemical characteristics. The approach indicated the Na(+)-F(-)-pH cluster as marker for groundwater with naturally elevated As and highlighted which parameters need to be monitored. A chemical conceptual model illustrating the natural and anthropogenic paths and enrichment of As and co-occurring species in the local groundwater supported by mineralogical analysis of rocks was established. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  6. Application of Harmony Search algorithm to the solution of groundwater management models

    Science.gov (United States)

    Tamer Ayvaz, M.

    2009-06-01

    This study proposes a groundwater resources management model in which the solution is performed through a combined simulation-optimization model. A modular three-dimensional finite difference groundwater flow model, MODFLOW is used as the simulation model. This model is then combined with a Harmony Search (HS) optimization algorithm which is based on the musical process of searching for a perfect state of harmony. The performance of the proposed HS based management model is tested on three separate groundwater management problems: (i) maximization of total pumping from an aquifer (steady-state); (ii) minimization of the total pumping cost to satisfy the given demand (steady-state); and (iii) minimization of the pumping cost to satisfy the given demand for multiple management periods (transient). The sensitivity of HS algorithm is evaluated by performing a sensitivity analysis which aims to determine the impact of related solution parameters on convergence behavior. The results show that HS yields nearly same or better solutions than the previous solution methods and may be used to solve management problems in groundwater modeling.

  7. Modeling the time-varying interaction between surface water and groundwater bodies

    Science.gov (United States)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  8. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    Science.gov (United States)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    The development of groundwater resources within the Ethiopian Rift is complicated by the strong physiographic contrasts between the rift floor and the highland and by the manifold hydrogeological setting composed of volcanic rocks of different type and age that are intersected by numerous faults. Hydrogeochemical and isotope data from various regions within the Ethiopian Rift suggest that the aquifers within the semi-arid rift floor receive a significant contribution of groundwater flow from the humid highland. For example, the major ion composition of groundwater samples from Gidabo River Basin (3302 km²) in the southern part of the Main Ethiopian Rift reveals a mixing trend from the highland toward the rift floor; moreover, the stable isotopes of water, deuterium and O-18, of the rift-floor samples indicate a component recharged in the highland. This work aims to assess if the hydrological and hydrogeological data available for Gidabo River Basin is consistent with these findings and to characterize the regional aquifer system within the rift setting. For this purpose, a two-step approach is employed: First, the semi-distributed hydrological model SWAT is used to obtain an estimate of the spatial and temporal distribution of groundwater recharge within the watershed; second, the numerical groundwater flow model MODFLOW is employed to infer aquifer properties and groundwater flow components. The hydrological model was calibrated and validated using discharge data from three stream gauging stations within the watershed (Mechal et al., Journal of Hydrology: Regional Studies, 2015, doi:10.1016/j.ejrh.2015.09.001). The resulting recharge distribution exhibits a strong decrease from the highland, where the mean annual recharge amounts to several hundred millimetres, to the rift floor, where annual recharge largely is around 100 mm and below. Using this recharge distribution as input, a two-dimensional steady-state groundwater flow model was calibrated to hydraulic

  9. Simulation of groundwater flow in the glacial aquifer system of northeastern Wisconsin with variable model complexity

    Science.gov (United States)

    Juckem, Paul F.; Clark, Brian R.; Feinstein, Daniel T.

    2017-05-04

    The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle

  10. Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer

    Science.gov (United States)

    Kolbe, Tamara; Marçais, Jean; Thomas, Zahra; Abbott, Benjamin W.; de Dreuzy, Jean-Raynald; Rousseau-Gueutin, Pauline; Aquilina, Luc; Labasque, Thierry; Pinay, Gilles

    2016-12-01

    Nitrogen pollution of freshwater and estuarine environments is one of the most urgent environmental crises. Shallow aquifers with predominantly local flow circulation are particularly vulnerable to agricultural contaminants. Water transit time and flow path are key controls on catchment nitrogen retention and removal capacity, but the relative importance of hydrogeological and topographical factors in determining these parameters is still uncertain. We used groundwater dating and numerical modeling techniques to assess transit time and flow path in an unconfined aquifer in Brittany, France. The 35.5 km2 study catchment has a crystalline basement underneath a ∼60 m thick weathered and fractured layer, and is separated into a distinct upland and lowland area by an 80 m-high butte. We used groundwater discharge and groundwater ages derived from chlorofluorocarbon (CFC) concentration to calibrate a free-surface flow model simulating groundwater flow circulation. We found that groundwater flow was highly local (mean travel distance = 350 m), substantially smaller than the typical distance between neighboring streams (∼1 km), while CFC-based ages were quite old (mean = 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters (i.e. arrangement of geological layers and permeability profile) within the constraints of the CFC age data. However, circulation was sensitive to topography in the lowland area where the water table was near the land surface, and to recharge rate in the upland area where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL), defined as the mean groundwater travel distance divided by the mean of the reference surface distances (the distance water would have to travel across the surface of the digital elevation model). Lowland, rGW-LOCAL was near 1, indicating primarily topographical controls. Upland, r

  11. Development of a Groundwater Management Model for the Project Shoal Area

    Energy Technology Data Exchange (ETDEWEB)

    G. Lamorey; S. Bassett; R. Schumer; D. Boyle; G. Pohll; J. Chapman

    2006-09-01

    This document describes the development of a user-friendly and efficient groundwater management model of the Project Shoal Area (PSA and surrounding area that will allow the U.S. Department of Energy and State of Nevada personnel to evaluate the impact of proposed water-use scenarios. The management model consists of a simple hydrologic model within an interactive groundwater management framework. This framework is based on an object user interface that was developed by the U.S. Geological Survey and has been used by the Desert Research Institute researchers and others to couple disparate environmental resource models, manage temporal and spatial data, and evaluate model results for management decision making. This framework was modified and applied to the PSA and surrounding Fairview Basin. The utility of the management model was demonstrated through the application of hypothetical future scenarios including mineral mining, regional expansion of agriculture, and export of water to large urban areas outside the region. While the results from some of the scenarios indicated potential impacts to groundwater levels near the PSA and others did not, together they demonstrate the utility of the management tool for the evaluation of proposed changes in groundwater use in or near the PSA.

  12. Modelling, design and realization of microfluidic components

    NARCIS (Netherlands)

    Oosterbroek, R.E.

    1999-01-01

    During the last decades, miniaturization of electrical components and systems has assumed large proportions. The reason for these developments is the application of etch and deposition techniques in the IC-production (integrated circuit), which allows a large amount of functionality per surface

  13. Advanced Placement: Model Policy Components. Policy Analysis

    Science.gov (United States)

    Zinth, Jennifer

    2016-01-01

    Advanced Placement (AP), launched in 1955 by the College Board as a program to offer gifted high school students the opportunity to complete entry-level college coursework, has since expanded to encourage a broader array of students to tackle challenging content. This Education Commission of the State's Policy Analysis identifies key components of…

  14. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin;

    2016-01-01

    experiments include five simulations. First MIKE SHE is forced by observed climate data in two versions i) with groundwater at a fixed uniform depth, and ii) with a dynamical groundwater component simulating shallow groundwater conditions in river valleys. iii) In a third simulation MIKE SHE is forced...

  15. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    Energy Technology Data Exchange (ETDEWEB)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  16. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    Science.gov (United States)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  17. Multi-model groundwater-management optimization: reconciling disparate conceptual models

    Science.gov (United States)

    Timani, Bassel; Peralta, Richard

    2015-09-01

    Disagreement among policymakers often involves policy issues and differences between the decision makers' implicit utility functions. Significant disagreement can also exist concerning conceptual models of the physical system. Disagreement on the validity of a single simulation model delays discussion on policy issues and prevents the adoption of consensus management strategies. For such a contentious situation, the proposed multi-conceptual model optimization (MCMO) can help stakeholders reach a compromise strategy. MCMO computes mathematically optimal strategies that simultaneously satisfy analogous constraints and bounds in multiple numerical models that differ in boundary conditions, hydrogeologic stratigraphy, and discretization. Shadow prices and trade-offs guide the process of refining the first MCMO-developed `multi-model strategy into a realistic compromise management strategy. By employing automated cycling, MCMO is practical for linear and nonlinear aquifer systems. In this reconnaissance study, MCMO application to the multilayer Cache Valley (Utah and Idaho, USA) river-aquifer system employs two simulation models with analogous background conditions but different vertical discretization and boundary conditions. The objective is to maximize additional safe pumping (beyond current pumping), subject to constraints on groundwater head and seepage from the aquifer to surface waters. MCMO application reveals that in order to protect the local ecosystem, increased groundwater pumping can satisfy only 40 % of projected water demand increase. To explore the possibility of increasing that pumping while protecting the ecosystem, MCMO clearly identifies localities requiring additional field data. MCMO is applicable to other areas and optimization problems than used here. Steps to prepare comparable sub-models for MCMO use are area-dependent.

  18. Groundwater modeling of the proposed new production reactor site, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.B.; Haselow, J.S.; Andersen, P.F.; Spalding, C.P.; Davis, D.H.

    1990-01-05

    This report addresses groundwater modeling performed to support the Environmental Impact Statement (EIS) that is being prepared by the Department of Energy (DOE). The EIS pertains to construction and operation of a new production reactor (NPR) that is under consideration for the Savannah River Site (SRS). Three primary issues are addressed by the modeling analysis: (1) groundwater availability, (2) changes in vertical hydraulic gradients as a result of groundwater pumpage, and (3) migration of potential contaminants from the NPR site. The modeling indicates that the maximum pumpage to be used, 1000 gpm, will induce only minor drawdown across SRS. Pumpage of this magnitude will have a limited effect on the upward gradient from the Cretaceous into the Tertiary near Upper Three Runs Creek. Potentiometric surface maps generated from modeled results indicate that horizontal flow in the water table is either towards Four Mile Creek to the north or to Pen Branch on the south. Particle tracking analysis indicates that the primary flow paths are vertical into the Lower Tertiary Zone, with very little lateral migration. Total travel times from the NPR site to the edge of the model (approximately 3 miles) is on the order of 50 years. The flow direction of water in the Lower Tertiary Zone is relatively well defined due to the regional extent of the flow system. The Pen Branch Fault does not influence contaminant migration for this particular site because it is in the opposite direction of Lower Tertiary Zone groundwater flow. 20 refs., 27 figs., 2 tabs.

  19. Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models

    Science.gov (United States)

    Kolditz, Olaf; Ratke, Rainer; Diersch, Hans-Jörg G.; Zielke, Werner

    This work examines variable density flow and corresponding solute transport in groundwater systems. Fluid dynamics of salty solutions with significant density variations are of increasing interest in many problems of subsurface hydrology. The mathematical model comprises a set of non-linear, coupled, partial differential equations to be solved for pressure/hydraulic head and mass fraction/concentration of the solute component. The governing equations and underlying assumptions are developed and discussed. The equation of solute mass conservation is formulated in terms of mass fraction and mass concentration. Different levels of the approximation of density variations in the mass balance equations are used for convection problems (e.g. the Boussinesq approximation and its extension, fully density approximation). The impact of these simplifications is studied by use of numerical modelling. Numerical models for nonlinear problems, such as density-driven convection, must be carefully verified in a particular series of tests. Standard benchmarks for proving variable density flow models are the Henry, Elder, and salt dome (HYDROCOIN level 1 case 5) problems. We studied these benchmarks using two finite element simulators - ROCKFLOW, which was developed at the Institute of Fluid Mechanics and Computer Applications in Civil Engineering and FEFLOW, which was developed at the Institute for Water Resources Planning and Systems Research Ltd. Although both simulators are based on the Galerkin finite element method, they differ in many approximation details such as temporal discretization (Crank-Nicolson vs predictor-corrector schemes), spatial discretization (triangular and quadrilateral elements), finite element basis functions (linear, bilinear, biquadratic), iteration schemes (Newton, Picard) and solvers (direct, iterative). The numerical analysis illustrates discretization effects and defects arising from the different levels of the density of approximation. We contribute

  20. A web platform for integrated surface water - groundwater modeling and data management

    Science.gov (United States)

    Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf

    2016-04-01

    Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.

  1. Assessment of Groundwater Potential Based on Multicriteria Decision Making Model and Decision Tree Algorithms

    Directory of Open Access Journals (Sweden)

    Huajie Duan

    2016-01-01

    Full Text Available Groundwater plays an important role in global climate change and satisfying human needs. In the study, RS (remote sensing and GIS (geographic information system were utilized to generate five thematic layers, lithology, lineament density, topology, slope, and river density considered as factors influencing the groundwater potential. Then, the multicriteria decision model (MCDM was integrated with C5.0 and CART, respectively, to generate the decision tree with 80 surveyed tube wells divided into four classes on the basis of the yield. To test the precision of the decision tree algorithms, the 10-fold cross validation and kappa coefficient were adopted and the average kappa coefficient for C5.0 and CART was 90.45% and 85.09%, respectively. After applying the decision tree to the whole study area, four classes of groundwater potential zones were demarcated. According to the classification result, the four grades of groundwater potential zones, “very good,” “good,” “moderate,” and “poor,” occupy 4.61%, 8.58%, 26.59%, and 60.23%, respectively, with C5.0 algorithm, while occupying the percentages of 4.68%, 10.09%, 26.10%, and 59.13%, respectively, with CART algorithm. Therefore, we can draw the conclusion that C5.0 algorithm is more appropriate than CART for the groundwater potential zone prediction.

  2. Evaluation of groundwater pollution risk (GPR) from agricultural activities using DRASTIC model and GIS

    Science.gov (United States)

    Mohd Ariffin, Sabrina; Zawawi, Mohamed Azwan Mohamed; Che Man, Hasfalina

    2016-06-01

    Groundwater Pollution risk (GPR) map which utilized groundwater quality is important in order to prevent the groundwater contaminant concentration due to the agricultural activities. DRASTIC model and GIS application are two important tools that had been used for accessing and predicting the quality of groundwater. These supplementary tools are calculating, visualizing, and presenting the GPR by using DRASTIC index for each hydrogeologic factor through ArcGIS software. This study was covered approximately Selangor basin area where the GPR has been defined. There are four categories of agricultural activities in the Selangor basin which are animal husbandary areas, horticultural lands, short term crops and tree, palm and other permanent crops. The map showed that the “low” zones of GPR occupied 56% of the east side of the Selangor basin, 34% of the west side of the Selangor basin exposed to “medium” zones of GPR and the “high” zones of GPR covered 10% at the north side and the south to the west side of the Selangor basin. As a particular, for agricultural activities which is 52% of Selangor basin area, the “low”, ‘’medium” and “high” zones of GPR was occupied as 42%, 43% and 15% respectively. Based on four categories of agricultural landuse, GPR map validated by nitrate distribution map, shows that the 99% of the variation in nitrate distribution zones are explained by GPR zones. In conclusion, groundwater pollution risk was affected by agricultural activities.

  3. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errormodelling. The RS irrigated areas and actual evapotranspiration can be used to: (i) understand irrigation dynamics, (ii) constrain irrigation models in data scarce regions, as well as (iii) pinpointing areas that require better ground

  4. Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling

    Science.gov (United States)

    Hyndman, D. W.; Xu, T.; Deines, J. M.; Cao, G.; Nagelkirk, R.; Viña, A.; McConnell, W.; Basso, B.; Kendall, A. D.; Li, S.; Luo, L.; Lupi, F.; Ma, D.; Winkler, J. A.; Yang, W.; Zheng, C.; Liu, J.

    2017-08-01

    Water sustainability in megacities is a growing challenge with far-reaching effects. Addressing sustainability requires an integrated, multidisciplinary approach able to capture interactions among hydrology, population growth, and socioeconomic factors and to reflect changes due to climate variability and land use. We developed a new systems modeling framework to quantify the influence of changes in land use, crop growth, and urbanization on groundwater storage for Beijing, China. This framework was then used to understand and quantify causes of observed decreases in groundwater storage from 1993 to 2006, revealing that the expansion of Beijing's urban areas at the expense of croplands has enhanced recharge while reducing water lost to evapotranspiration, partially ameliorating groundwater declines. The results demonstrate the efficacy of such a systems approach to quantify the impacts of changes in climate and land use on water sustainability for megacities, while providing a quantitative framework to improve mitigation and adaptation strategies that can help address future water challenges.

  5. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    . In the second, we examine ecological impacts related to the flows and temperatures in the Silver Creek ecosystem that are important for the fish habitat. The Silver Creek ecosystem is controlled by large-scale interactions of surface water and groundwater systems in the Lower Wood River Valley, USA......Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  6. Testing alternative uses of electromagnetic data to reduce the prediction error of groundwater models

    Science.gov (United States)

    Kruse Christensen, Nikolaj; Christensen, Steen; Ferre, Ty Paul A.

    2016-05-01

    In spite of geophysics being used increasingly, it is often unclear how and when the integration of geophysical data and models can best improve the construction and predictive capability of groundwater models. This paper uses a newly developed HYdrogeophysical TEst-Bench (HYTEB) that is a collection of geological, groundwater and geophysical modeling and inversion software to demonstrate alternative uses of electromagnetic (EM) data for groundwater modeling in a hydrogeological environment consisting of various types of glacial deposits with typical hydraulic conductivities and electrical resistivities covering impermeable bedrock with low resistivity (clay). The synthetic 3-D reference system is designed so that there is a perfect relationship between hydraulic conductivity and electrical resistivity. For this system it is investigated to what extent groundwater model calibration and, often more importantly, model predictions can be improved by including in the calibration process electrical resistivity estimates obtained from TEM data. In all calibration cases, the hydraulic conductivity field is highly parameterized and the estimation is stabilized by (in most cases) geophysics-based regularization. For the studied system and inversion approaches it is found that resistivities estimated by sequential hydrogeophysical inversion (SHI) or joint hydrogeophysical inversion (JHI) should be used with caution as estimators of hydraulic conductivity or as regularization means for subsequent hydrological inversion. The limited groundwater model improvement obtained by using the geophysical data probably mainly arises from the way these data are used here: the alternative inversion approaches propagate geophysical estimation errors into the hydrologic model parameters. It was expected that JHI would compensate for this, but the hydrologic data were apparently insufficient to secure such compensation. With respect to reducing model prediction error, it depends on the type

  7. An automated method to build groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs

    Directory of Open Access Journals (Sweden)

    P. A. Marker

    2015-02-01

    Full Text Available Large-scale integrated hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data alone. Due to sparse sampling in space, lithological borehole logs may overlook structures that are important for groundwater flow at larger scales. Good spatial coverage along with high spatial resolution makes airborne time-domain electromagnetic (AEM data valuable for the structural input to large-scale groundwater models. We present a novel method to automatically integrate large AEM data-sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study. Benchmarking hydrological performance by comparison of simulated hydrological state variables, the cluster model performed competitively. Calibrations of 11 hydrostratigraphic cluster models with 1–11 hydraulic conductivity zones showed improved hydrological performance with increasing number of clusters. Beyond the 5-cluster model hydrological performance did not improve. Due to reproducibility and possibility of method standardization and automation, we believe that hydrostratigraphic model generation with the proposed method has important prospects for groundwater models used in water resources management.

  8. Calibration of transient groundwater models using time series analysis and moment matching

    NARCIS (Netherlands)

    Bakker, M.; Maas, K.; Von Asmuth, J.R.

    2008-01-01

    A comprehensive and efficient approach is presented for the calibration of transient groundwater models. The approach starts with the time series analysis of the measured heads in observation wells using all active stresses as input series, which may include rainfall, evaporation, surface water leve

  9. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.

    Science.gov (United States)

    Sutton, Patrick T; Ginn, Timothy R

    2014-12-15

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Informing groundwater model hydrostratigraphy with airborne time-domain electromagnetic data and borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Bauer-Gottwein, Peter; Mosegaard, Klaus

    lithological information directly into groundwater models is proposed. The approach builds on a clay-fraction inversion which is a spatially variable translation of resistivity values from EM data into clay-fraction values using borehole lithological information. Hydrostratigraphical units are obtained through...

  11. Addressing Current Challenges on Groundwater Model Structure through Effective Use of Geophysical Data

    DEFF Research Database (Denmark)

    Vilhelmsen, Troels Norvin; Marker, Pernille Aabye; Foged, Nikolaj;

    We wish to present a method for effective generation of structural models for groundwater flow simulations. The methodology is presented for two cases. A regional scale test, where geophysical data and borehole data is used for generating the regional scale hydrostratigraphy, and a local detailed...

  12. Comparing Modeled and Measured Mercury Speciation in Contaminated Groundwater: Importance of Dissolved Organic Matter Composition.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Biester, Harald

    2016-07-19

    In addition to analytical speciation, reliable Hg species modeling is crucial for predicting the mobility and toxicity of Hg, but geochemical speciation codes have not yet been tested for their prediction accuracy. Our study compares analyses of Hg species in highly Hg-contaminated groundwater (Hgtot: 0.02-4 μmol·L(-1)) at three sites with predictions of Hg speciation obtained from three geochemical codes (WHAM, Visual MINTEQ, PHREEQC) with and without implementation of Hg complexation by dissolved organic matter (DOM). Samples were analyzed for chemical composition, elemental, inorganic, and DOM-bound Hg (Hg(0), Hginorg, HgDOM). Hg-DOM complexation was modeled using three approaches: binding to humic/fulvic acids, binding to thiol-groups, or a combination of both. Results of Hg(0) modeling were poor in all scenarios. Prediction accuracy for Hginorg and HgDOM strongly depended on the assumed DOM composition. Best results were achieved when weaker binding sites, simulated by WHAMs DOM submodel, were combined with strongly binding thiol groups. Indications were found that thiol-DOM ratios in groundwater are likely to be lower than in surface water, highlighting the need for analytical thiol quantification in groundwater DOM. This study shows that DOM quality is a crucial parameter for prediction of Hg speciation in groundwater by means of geochemical modeling.

  13. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.;

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical...

  14. GROUNDWATER FLOW MODEL CALIBRATION USING WATER LEVEL MEASUREMENTS AT SHORT INTERVALS

    Science.gov (United States)

    Groundwater flow models are usually calibrated with respect to water level measurements collected at intervals of several months or even years. Measurements of these kinds are not sensitive to sudden or short stress conditions, such as impact from stormwater drainage flow or flas...

  15. GSFLOW model simulations used to evaluate the impact of irrigated agriculture on surface water - groundwater interaction

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Watershed-scale coupled surface water (SW) – groundwater (GW) flow modeling was used to examine changes in streamflow and SW – GW interaction resulting from...

  16. Effec